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Abstract

Scene structure recovery from images is one of the fundamental problems that

has been studied since the early day of computer vision. It is well-known that

scene appearance in images does not only rely on scene geometric structure

but also surface properties, illumination, and the properties of camera that is

used to capture the images. Then, the scene geometric structure can be esti-

mated from the appearance of the images under some assumption regarding

surface reflection properties and surrounding environment such as illumi-

nation, hence the name photometric-based scene recovery. However, many

photometric-based scene recovery studies emphasize only in the relationship

of scene appearance, surface properties, and illumination, while take for the

granted that the camera properties are calibrated or measured beforehand.

In this work, we focus on improving the photometric-based surface recov-

ery method to account for the camera properties such as radiometric response

function so we can avoid time-consuming and cumbersome camera calibra-

tion with no additional images are required. The key idea behind this work

is to make use of inherent properties that lie inside the input images such as

the consistency between the irradiance converted from the camera’s image

formation model and the irradiance estimated from a reflection model. In

other words, we use the physical clues that reside in the images to perform

camera calibration while simultaneously estimate the scene structure.
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First, we present photometric stereo techniques that can estimate surface

orientations from a sequence of object images taken under different lighting

directions with a radiometrically uncalibrated camera. The original photo-

metric stereo assumes the images are captured by a camera with a linear

response function. However, cameras often have a non-linear response func-

tion, and thus, the radiometric calibration is required to cancel the effect

of nonlinear response function before taking images which are later used for

physics-based analysis of the scene. Unfortunately, the radiometric calibra-

tion is a time-consuming pre-process that requires either many additional

images or a calibration target.

Here we use the consistency between the irradiance converted from the

inverse response function and the irradiance estimated from Lambertian re-

flection model to formulate a linear optimization problem to estimate the

surface normals of a Lambertian surface and the response function simulta-

neously. We empirically show that our proposed method can produce surface

orientation from images accurately even though the images were captured by

radiometrically uncalibrated cameras.

Then, we extend the proposed method for the surfaces that do not follow

Lambertian reflection model. Many real-world objects contain reflections

that do not follow Lambertian reflection property such as specular highlights

or weak specular lobe. Our simultaneous estimation model does not account

for these kinds of reflection so it produces distorted surfaces when specular

highlights are observed in the input images.

However, many non-Lambertian surfaces exhibit reflection similar to Lam-

bertian surfaces where no specular highlight is not observed. Therefore, we

can treat specular highlights pixels as outliers to Lambertian reflection model

and use a robust estimation technique such as RANSAC to determine in-
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verse response function and surface normals that maximize the number of

diffuse reflection. The experiments on synthetic images and real images illus-

trate that our proposed method can compensate the nonlinearity of response

function even though there exist corrupted measurements such as specular

highlights in the scene.

Finally, we refocus ourselves into a more practical ground of photometric

stereo by pursuing a radiometric calibration method for uncalibrated pho-

tometric stereo where light source directions and intensities are unknown.

Without light source directions, there exist multiple solutions of surface nor-

mals, light source directions, and response functions that satisfy the given

photometric stereo images. Assume that the target object has Lambertian

reflection property, we can express radiometrically calibrated images of the

object as an image matrix with the rank of three that exhibits linear depen-

dency property under linear response function. However, this assumption

is no longer true under nonlinear response functions as the nonlinearity of

the response function variates the images so that each element of the image

matrix deviates from the linear model we assume. As the result, the image

matrix loses its rank-3 structure and becomes full rank.

Here we propose a radiometric calibration method for uncalibrated photo-

metric stereo. Given the response function is monotonicity increasing, there

exists an inverse function that can restore the rank-3 property of the image

matrix. Therefore, we formulate a singular value minimization problem with

a rank constraint to find an inverse response function that produces the best

rank-3 image matrix from the full-rank input matrix.

With this method, ones can compensate the nonlinearity of the response

function even when the light source directions and intensities are not known

beforehand. Therefore, our method allows existing uncalibrated photometric
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stereo techniques to estimate surface normals without neither the calibration

of light sources and the calibration of the camera response function. More-

over, we do not assume that the input images must be color and our method

works well with grayscale objects. That is, our method allows one to estimate

response function for each color channel separately.

We conducted experiments on both synthetic and real images to validate

the inverse response function calibration of our method. We used existing

uncalibrated photometric stereo techniques to estimate surfaces from images

calibrated with our method and compared that to those estimated from ra-

diometrically calibrated and uncalibrated images. The experimental results

illustrated that our proposed method can compensate the nonlinearity of the

response function used for capturing the scene even when light source direc-

tions and intensities are unknown so that the surfaces estimated from images

calibrated with our method were similar to ones estimated from radiometri-

cally calibrated images.
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Chapter 1

Introduction

1.1 Background

3D scene reconstruction from 2D images is one of the fundamental problems

in computer vision that has been studied extensively for a long time. Various

methods have been developed to accurately recover the surface and geometry

of a scene from given one or multiple images. Those surface recover methods

can be categorized into two groups: geometry-based and photometry-based

surface recovery methods.

Geometry-based methods make use of the relationship of geometry and

its 2D projection on images to subsume the location and geometry of the sur-

face. Well-known examples of these methods are including multi-view stereo

vision, shape from structured light and time-of-flight camera. In contrast,

photometry-based methods use of the relationship between the surface’s re-

flection properties, scene illumination, light sources, and the light that is

reflected into the camera to recover the surface orientation.

Photometric stereo is one of the photometry-based methods that recover

surface orientations from multiple images of a stationary object taken un-
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Chapter 1. Introduction 2

der varying light sources. The classic Woodham’s photometric stereo[60]

assumes that the object follows the Lambertian reflection model and that

the directions and intensities of directional light sources are known a priori.

These assumptions are difficult to achieve outside the laboratory and prevent

photometric stereo from being used outside the computer vision community.

Thus, current research trends in photometric stereo emphasize relaxing such

assumptions; generalization of materials and light sources.

Another assumption that is usually taken for granted is that images are

captured using a camera with a linear radiometric response function; i.e.,

pixel values in the images are linearly proportional to irradiance values. Un-

fortunately, this assumption is not always true because response functions in

consumer cameras are often nonlinear to enhance image quality visually, e.g .,

compensating for a nonlinear mapping of a display, and simulating traditional

films response. Moreover, these nonlinear relationships vary among camera

models and manufacturers. Despite its benefit in aesthetics and display-

ing system, this nonlinearity may lead to unsatisfactory corrupted results in

many computer vision methods which assume a linear camera response func-

tion. Therefore, cumbersome and time-consuming radiometric calibration is

required to cancel the effect of the nonlinear relationships so that irradiance

values can be subsumed from pixel values.

In this thesis, we discuss the relationship between radiometric response

function calibration and surfaces reflection property. Concretely, we propose

a framework in which allow surface recovery using photometric stereo from

radiometrically uncalibrated images. Then, we extend the framework to

handle corrupted measurements that do not follow Lambertian reflection.

In a later chapter, we sought for more practical use of auto radiometric

calibration by continuing our research onto uncalibrated photometric stereo

2



Chapter 1. Introduction 3

which the light source directions and intensities are unknown.

1.2 Overview of the Thesis

This thesis focuses on developing photometric-based surface recovery meth-

ods that invariant to nonlinear radiometric response function. The contribu-

tions of this thesis can be separated as follows:

1.2.1 Photometric Stereo with Auto Radiometric Cal-

ibration

First, we address the problem of Lambertian surface recovery from a set of ra-

diometric uncalibrated images. Specifically, we propose a photometric stereo

method to determine normals of Lambertian surfaces regardless nonlinearity

of response function. The key idea is the consistency of irradiance images cal-

culated by inverse response function and irradiance estimated from reflection

model. We then formulate a linear optimization problem to simultaneous

estimate surface normals and response function without additional images

for radiometric calibration. With this method, one can recover surfaces of

objects from uncalibrated images without aberration caused by nonlinear re-

sponse function. We empirically show that our method can estimate surfaces

normal from both synthetic images and real images were taken by a camera

with a nonlinear response function.

3
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Figure 1.1: Photometric stereo with auto radiometric calibration using ir-
radiance consistency. The irradiance estimated from surface property (top)
must equal to the irradiance estimated from the inverse response function
(bottom).

1.2.2 Non-Lambertian Surface Recovery from Radio-

metrically Uncalibrated Images

Second, we focus on the simultaneous estimation of non-Lambertian surfaces

and radiometric response function from a set of radiometric uncalibrated

images. In this work, we extend our method to handle the specular highlights,

noise, and other corrupted measurements. We regard those pixel values as

outliers to a reflection model, specifically Lambertian reflection model, and

propose a framework to determine inliers, and surfaces at the same time.

Our experimental results show that our method can remove distortion due to

specularity while compensating the effect of nonlinearity of response function

that resides in the input images.

4



Chapter 1. Introduction 5

1.2.3 Auto Radiometric Calibration in Uncalibrated

Photometric Stereo

Last but not least, we study about auto radiometric calibration method us-

ing uncalibrated photometric stereo input images. We propose an auto ra-

diometric calibration method which makes use of photometric properties to

determine an inverse response function even when we do not have information

about light source directions and intensities. We observe that pixel intensi-

ties form a matrix with the rank of 3 under a linear response function but

the matrix is altered to be a full-rank when the response function is non-

linear. Given the response function is monotonically increasing, we can find

an inverse response function that returns the matrix back into the rank of

3. We then use the rank constraint to formulate an optimization problem to

determine the inverse response function with neither additional images and

a priori knowledge about light source directions. The experimental results

demonstrate that the proposed method can compensate the nonlinearity of

the matrix so that the estimated surfaces were similar to the one estimated

with calibrated images.

5



Chapter 2

Preliminaries

In order to establish a concrete foundation for the main subject of this dis-

sertation, this chapter briefly explains fundamental knowledge of reflectance

analysis and radiometric calibration.

2.1 Reflection

Reflection of a ray of light that fall onto an object surface can be classified

into two categories: diffuse reflection and specular reflection. Consider a light

ray fall onto a surface with rough micro-structure. The light may multiple-

scatters inside the microstructure and sub-surface before scatter back to out-

side in broad directions. This kind of reflection is called diffuse reflection.

On the other hand, the ray of light fall may directly reflect off the surface is

known as specular reflection. The specular reflection mainly exhibit mirror-

like reflection in which the incident light and the reflected light have the same

angle respect to the reflected surface.1

The brightness of the reflected light depends on its microstructure, sur-

1We assume that the surface point where the light incident and the light ray emitted
are sufficiently close.

6



Chapter 2. Preliminaries 7

(a) di�use re�ection (b) specular re�ection 

Figure 2.1: Reflections on surfaces (left) diffuse reflection (right) specular
reflection

face orientation, and state of polarization of the incident illumination [60].

Moreover, the brightness perceived by an observer also depends on the di-

rection that the reflected light emitted to. Therefore, we can model the re-

flectance with a function of the incident angle (θin, φin) and the reflected angle

(θout, φout) called Bi-directional Reflectance Distribution Function (BRDF).

A BRDF ρ(θin, φin, θout, φout) can be expressed as,

ρ(θin, φin, θout, φout) =
E(θout, φout)

I(θin, φin)
, (2.1)

which I(θin, φin) is the irradiance, the light that incidents on the surface

in (θin, φin) direction, and R(θout, φout is the radiance emitted by the light

reflected from the incidented surface into (θout, φout) direction.

2.1.1 Diffuse Reflection

For rough surfaces like chalk and plaster, their micro-structures are very

rough so the light reflected off the surfaces to every direction equally, i.e.,

constant regardless observing directions. The diffuse reflection component of

the surfaces can be approximately expressed by so called Lambertian model.

The BRDF of such surfaces then constant respect to (θin, φin, θout, φout). The

7



Chapter 2. Preliminaries 8

brightness of the surface then solely depends on the radiance that falls on to

the surface which can be given by:

E = max(0, Lρ(cos θ)) (2.2)

where L is the light source intensity and the cosθ is the angle difference

between the light source respect to the surface normal. When Lρ(cos θ) < 0,

it means the light direction is on the opposite side of the surface normal so

there is no incident light from that light source onto the surface.

Conventionally, we can write 2.2 in vector form as an inner product of

incident light direction scaled by its intensity l and surface normal scaled by

its albedo n:

E = l · n. (2.3)

2.1.2 Specular Reflection

An object with very smooth surfaces behaves like a mirror so it precisely

reflects the incident light into the same angle respect to its surface normal.

This mirror-like reflection is known as specular reflection.

When the surface is not perfectly smooth, the incident light may not be

reflected into a particular angle and this result blurred specular highlights

instead of sharp edges. This blurred highlights can be explained by the

existence of microfacets[57]. Microfacets are tiny facets which each of them

acts as a perfect specular reflector. Therefore, the shininess of an object can

be expressed as a distribution of the angle of microfacets normals in an area.

Typically, we can assume that specular highlight can be observed within

small angles and the reflection consist of the additive combination of diffuse

8



Chapter 2. Preliminaries 9

component and specular component. Therefore we can model a reflection

model with specular highlight as following:

Etotal = kdEdiffuse + ksEspecular. (2.4)

Here, kd and ks are diffuse and specular component contants. They represent

the ratio of reflection of diffuse components and specular component to the

incoming light, respectively.

Phong[51] proposed a model to determine the specular component at a

point given an observed direction v̂ and the reflected light direction scaled

by the light source intensity r̂ as,

Especular = (r · v)α . (2.5)

Here, α represents the shininess or distribution of microfacets of the surface

at that point. Subsitute 2.5 in 2.6 and assume the diffuse component follow

Lambertian reflection model, we can write Phong reflection model as,

EPhong = kd (l · n) + ks (r · v)α . (2.6)

There are numerous reflection models that explain the reflection closer

to physical reality, e.g ., Cook and Torrance[10] developed a model that ac-

counts for microfacets distribution, material’s refraction index, and geometry

attenuation function to represent the ratio of light that remains after the re-

flection. Ward BRDF model[58] uses asymmetric distribution to model the

reflection of anisotropic surfaces which the surface property depends on the

observed direction.

9
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Photo diode ADC Demosaic Denoising
White 

balance 
mapping

Tone mappingGamut 
mapping

Irradiance Pixel intensity

Figure 2.2: An image acquisition pipeline

2.2 Radiometric Calibration

This section illustrates an overview of radiometric calibration and radiometric

response functions in cameras.

Let us consider a typical digital image processing pipeline[53]. As de-

picted in Fig. 2.2, after light incidents on a camera sensor, the sensor mea-

sures the light energy and converts it into electrical energy. Then, the cam-

era performs various image signal processing such as demosaicking, noise

reduction, white balancing, and other post-processing to enhance the image,

mainly for aesthetic reasons. Eventually, the processed signal is transformed

into a brightness level in form of pixel intensity. Here, we can treat aforemen-

tioned multi-step signal processing as a so-called camera radiometric response

function that transforms the measured incident light brightness into pixel in-

tensities. Let E an irradiance level detected by a camera sensor and its

corresponding pixel intensity I on the recorded image. Response functions f

can be expressed as

I = f(E). (2.7)

Generally, physics analysis of scenes expects light brightness levels in form

of image irradiance. If the scenes are captured by a linear response function,

we can directly use pixel intensities instead of image irradiance due to their

linear relationship. However, this is not necessarily always true so we need

to cancel out the effect of nonlinear response function by radiometric calibra-

tion. Since the radiometric response function is a monotonically increasing

10
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Figure 2.3: (left) X-Rite ColorChecker Color Redition Chart. (right) Colori-
metric values for each patch in the charts.[63]

function, there is a unique inverse function g that maps an I to an E, i.e.,

g(I) = f−1(I) = E. (2.8)

so we can apply g to the captured images to cancel the response function’s

effect.

A conventional method to determine response function makes use of a

calibration target with known reflectance and color such as a color chart

(Fig.2.3). We can estimate the response function by measuring the deviation

of patches of the color chart in the captured images to their reference value.

One of the research directions in radiometric calibration focuses on re-

laxing the requirement of the calibration target, i.e., radiometric calibration

without a calibration target. The most well-known approach uses multiple

photos of a static scene taken under varying exposure times [35, 11, 40, 17]. If

the response function is constant during the capturing of the scene, it can be

estimated with the relationship between the exposure times and the recorded

pixel intensities. Manning and Picard [35] models this nonlinear response

functions with a gamma curve and used a regression method to estimate the

11
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(a) (b)

Figure 2.4: Radiometric calibration using multiple images (a) examples of
input images (b) the estimated response functions for RGB channels. Images
from Mitsunaga and Nayar [40]

curve function parameters. Devebec and Malik [11] used a non-parametric

model with a smoothness term to approximate a response function in order

to produce HDR images.

Mitsunaga and Nayar [40] proposed a method that represents a response

function with a linear combination of polynomials. This method can ac-

curately estimate a response function even when only rough estimates of

exposure times are available. Grossberg and Nayar [17] studies the space of

response function of camera films and digital sensors. Then they developed

an empirical model that can represent most of the response functions with

only a few basis functions.

Recent works in radiometric calibration focus on relaxing the assumptions

to allow fewer restrictions on input images, e.g ., requiring only a single input

image, or allowing camera movement. Lin et al. [30] proposed a method for

estimating a radiometric response function from a single color image by using

color mixture near edges of regions. The color gradation near edge region

should form a straight line in the RGB space. However, a nonlinear response

function bends this line into a nonlinear curve so the IRF can be estimated

as a function that bends the nonlinear curve back into a straight line. For

12
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grayscale images, intensity mixtures along edge boundaries exhibit a similar

property as the color mixtures so can use a distribution of intensity mix-

tures instead of using color mixtures [31]. And instead of spatial irradiance

mixture, Wilburn et al. [59] made use of temporal irradiance mixtures and

developed a method for radiometric calibration from motion blur in a sin-

gle image. Kim and Pollefeys [25] estimated a radiometric response function

from an image sequence captured using a moving camera. Because irradiance

values observed at a certain point should not change when the camera moves,

the changes in pixel values can be used to compute the changes in exposure

times and the response function. Matsushita and Lin [36] suggested that

noise distributions in uncalibrated images are not symmetry due to nonlin-

ear response functions. They developed a calibration method to estimate an

IRF that makes the noise distribution symmetry. Recently, Lee et al. [27]

have formulated the radiometric calibration from multiple images with dif-

ferent exposure times as a rank minimization problem. This method is more

robust to noise and can estimate response functions more accurately than

previous methods.

13



Chapter 3

Photometric Stereo with Auto

Radiometric Calibration

3.1 Background

Photometric stereo is a method for estimating the surface orientations of a

static object from a set of images taken from a fixed viewpoint but under

different lighting environment. The classic Woodham’s photometric stereo

method[60] assumes that surfaces follow the Lambertian reflection model,

and the directions and intensities of directional light sources are known a

priori. These assumptions are difficult to achieve outside the laboratory

and prevent photometric stereo from being used outside the computer vision

community. Thus, current research trends in photometric stereo emphasize

relaxing such assumptions; i.e., generalizing materials and light sources.

Another assumption that is usually taken for granted is that images are

captured using a camera with a linear radiometric response function; i.e.,

pixel values in the images are linearly proportional to irradiance values. Un-

fortunately, this assumption is not always true because response functions in

14
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consumer cameras are often nonlinear to enhance image quality visually, e.g .,

compensating for a nonlinear mapping of a display, and simulating traditional

films response. Moreover, these nonlinear relationships vary among camera

models and manufacturers. Therefore, cumbersome and time-consuming ra-

diometric calibration is required to cancel the effect of the nonlinear relation-

ships so that irradiance values can be subsumed from pixel values.

In this thesis, we propose an auto radiometric calibration framework for

photometric stereo techniques to estimate surface orientations from a se-

quence of radiometrically uncalibrated images. The main idea is to use the

consistency of irradiance; the irradiance values converted from pixel values

by using the inverse response function (IRF) must be consistent with the

irradiance values computed by the corresponding surface normals and reflec-

tion property, specifically the Lambertian reflection model. In other words,

we exploit the cues inherent in the image formation process to estimate the

IRF as well as surface normals. Then, we derive a linear least-squares prob-

lem with linear constraints to simultaneously determine surface normals and

response functions. Our experiments show that our method allows surface

normals to be estimated from a set of radiometrically uncalibrated images

regardless of nonlinearity of a response function.

The contribution of this research is an auto radiometric calibration frame-

work for photometric stereo methods. This framework requires no additional

images for radiometric calibration. Therefore, it allows one to estimate sur-

face orientations from images taken using consumer cameras without addi-

tional effort to calibrate nonlinearity of radiometric response functions.

This chapter is organized as follows: Section 3.2 gives a brief overview of

previous studies on radiometric calibration, photometric stereo methods, and

relationships to our method. Section 3.3 presents our photometric stereo with

15
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auto radiometric calibration method for Lambertian surfaces. Section 3.4

verifies the surface normal and response function estimation accuracy with

experiments on both synthetic images and images taken from a real camera.

Finally, we conclude this Chapter in Section 3.5.

3.2 Related Work

In this section, we briefly review previous works on radiometric camera cali-

bration and how they are related to our present work.

Originally, one can use an image of a calibration target with known re-

flectances [63]. The response function can be estimated from the relationship

between the referenced reflectances of the calibration target and their corre-

sponding pixel values in the image.

An alternative approach uses multiple images of a static scene taken with

varying exposure times [35, 11, 40, 17]. Manning and Picard [35] used a

regression method to estimate parameters of a response function represented

by a gamma correction curve. Devebec and Malik [11] developed a method for

HDR images processing. Their method employs a non-parametric model with

a smoothness term to approximate a response function in order to produce

HDR images. Mitsunaga and Nayar [40] proposed a radiometric calibration

method which can accurately estimate a response function even when only

rough estimates of exposure times are available. They also suggested that a

response function can be estimated with a linear combination of polynomials.

Grossberg and Nayar [17] studies the space of response function and proposed

an empirical model that can capture most of the response functions with a

few basis functions.

Recent works in radiometric calibration have fewer restrictions on input

16
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images, e.g ., requiring only a single input image, or allowing camera move-

ment. Lin et al. [30] proposed a method for estimating a radiometric response

function from a single color image. Color mixtures in edge regions lie on a

straight line in the RGB space. A nonlinear response function bends this line

into a nonlinear curve. The IRF can be estimated as a function that bends

the nonlinear curve back into a straight line. For grayscale images, one can

use a distribution of intensity mixtures along edge boundaries instead of us-

ing color mixtures [31]. Wilburn et al. [59] conducted radiometric calibration

on the basis of motion blur in a single image. They made use of temporal

irradiance mixtures instead of spatial ones. Grossberg and Nayar [17] argued

that radiometric calibration can be done using the pixel value histograms

of two image frames without exact registration. Matsushita and Lin [36]

suggested that the noise distributions in uncalibrated images of a scene are

symmetry under a linear response function but the noise distributions be-

come asymmetric due to nonlinear response functions. So they developed a

calibration method to estimate an IRF that returns the noise distribution

back into symmetric one.

Although we can conduct radiometric calibration by using these existing

methods separately, they are often cumbersome and require additional images

used for radiometric calibration. Unlike these methods, our proposed method

does not require additional images. More importantly, our method is based

on a different cue; we take advantage of the image formation process for

radiometric calibration.

Previously, radiometric calibration and photometric stereo have been

studied separately. As far as we know, Shi et al . [55] was the first to use

photometric stereo images for radiometric calibration. They calibrate input

images for photometric stereo by using color profile linearity. A color profile

17



Chapter 3. Photometric Stereo with Auto Radiometric Calibration 18

is the RGB values of a surface point under varying illumination conditions.

They observed that a color profile of a Lambertian point forms a straight

line under the RGB space if the response function is linear. In contrast,

color profiles become nonlinear curves if the response function is nonlinear.

Therefore, the IRF can be estimated as a function that makes the nonlinear

curve into a straight line. [27] used a similar idea to cast the radiometric

calibration in photometric stereo image sets into a low-rank matrix comple-

tion problem. They unroll images into matrices in which each consists of

three-row vectors for R, G, and B channels. These matrices give lowest rank

if response function is linear and the rank is increased under nonlinear re-

sponse function. Therefore, the IRF can be determined by finding a function

that minimizes the rank.

Although their methods do not require additional images, the radiometric

calibration step can be considered as a preprocessing and requires nonlinear

optimization. More importantly, their methods cannot handle a certain class

of radiometric response functions such as gamma correction curves as well

as gray objects whose color profiles remain in straight lines even when the

response function is nonlinear.

3.3 Recovering Lambertian Surfaces

3.3.1 Photometric Stereo

We briefly summarize the classic photometric stereo method [60] in which

radiometrically calibrated input images of Lambert surfaces illuminated by

known light sources are assumed. Let us consider a surface observed un-

der orthographic projection and light sources far from the surface, then the

viewing direction and light source directions are constant across the surface.

18
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Let us denote the irradiance value at the p-th pixel (p = 1, 2, . . . , P ) under

the d-th light source (d = 1, 2, 3, . . . , D) by Ep,d. Assuming that the surface

is Lambertian, the irradiance value Ep,d can be described as

Ep,d = nTp ld, (3.1)

where np is the surface normal at the p-th pixel scaled by its albedo and ld

is the direction of the d-th light source scaled by its intensity.

The classic photometric stereo method estimates the scaled surface nor-

mal np from the irradiance value Ep,d with known light sources ld. Because a

scaled surface normal np has three degrees of freedom, i.e., two for a normal

with unit length and one for an albedo, the surface normal can be estimated

from at least three images.

Conventionally, the irradiance value Ep,d in (3.1) is described in a matrix

form: 
Ep,1

...

Ep,D

 =


l1,x l1,y l1,z
...

...
...

lD,x lD,y lD,z



np,x

np,y

np,z

 ,

Ep = Lnp, (3.2)

where ld = (ld,x, ld,y, ld,z)
T and np = (np,x, np,y, np,z)

T . The estimate of the

scaled surface normal n̂p is given by the least-square method:

n̂p =
(
LTL

)−1
LTEp. (3.3)
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This is equivalent to

n̂p = arg min
np

D∑
d=1

(
Ep,d − nTp ld

)2
. (3.4)

The surface normal and albedo are computed from the estimated scaled sur-

face normal n̂p as n̂p/|n̂p| and |n̂p| respectively.

3.3.2 Radiometric Response Function

Suppose a radiometric response function f maps an irradiance value E into

a pixel value I, i.e., I = f(E). Since the radiometric response function is a

monotonically increasing function, there is a unique inverse function g = f−1

that maps an I to an E, i.e., g(I) = f−1(I) = E. Hereafter, we normalize the

ranges of pixel values and irradiance values to [0, 1] without loss of generality.

Assume an IRF g can be approximated as a linear combination of ba-

sis functions such as polynomials [40], or eigenvectors (or eigenfunctions

in this context) of response curve data [17]. In this work, we use the K-

parameters EMoR approximation[17] in which the basis functions are de-

rived from Principle Component Analysis (PCA) on the real world response

function database. The approximated IRF is in the form:

g(I) = g0(I) +
K∑
k=1

ckgk(I), (3.5)

subjects to the boundary conditions, g(0) = 0 and g(1) = 1. Here g0 is the

mean curve or the 0-th basis function, and gk is the k-th basis functions with

their coefficients ck.

20
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3.3.3 Simultaneous Estimation

We propose a technique that uses irradiance consistency to estimate both

the surface normals np (p = 1, 2, ..., P ) and coefficients of the IRF ck (k =

1, 2, ..., K) at the same time.

With calibrated images, we directly substitute the irradiance Ep,d in (3.4)

with the corresponding pixel value Ip,d. For uncalibrated images, we can com-

pensate the nonlinearity of the response function by substituting Ep,d with

its irradiance approximated by the IRF shown in (3.5) Then the relationship

between Lambertian reflection property and pixel intensity can be given by,

Ep,d = g(Ip,d)

nTp ld = g0(Ip,d) +
K∑
k=1

ckgk(Ip,d). (3.6)

Using this relationship, we can simultaneously estimate surface normals n̂p

and IRF ĝ minimizing the difference in irradiance values estimated from sur-

face normals and IRF. More specifically, we combine the PCA approximation

of irradiance in (3.6) into (3.4) to obtain the estimates of the surface normals

and coefficients of the IRF {ĉk}:

{n̂p, ĉk} = arg min
{np,ck}

P∑
p=1

D∑
d=1

[
g0 (Ip,d) +

K∑
k=1

ckgk (Ip,d)− nTp ld

]2
. (3.7)

As response functions and their inverse are monotonicity non-decreasing func-

tion, eq.(3.7) subjects to the constraints ∂g/∂i ≥ 0, which can be given as

discrete derivatives of g as g (is+1)−g (is) ≥ 0. The monotonicity constraints
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can be derived as follows:

g (is+1)− g (is) ≥ 0,(
g0 (is+1) +

K∑
k=1

ckgk (is+1)

)
−

(
g0 (is) +

K∑
k=1

ckgk (is)

)
≥ 0,

K∑
k=1

(ckgk(is+1)− ckgk(is)) ≥ (g0 (is)− g0 (is+1)) , (3.8)

∀is ∈ IS, where IS = {i0, . . . , iS} is the dense sampling of pixel intensities in

the range [0, 1] in monotonically increasing order, e.g ., IS = {0, 1
255
, 2
255
, . . . , 255

255
}

for 8-bit images.

Thus, the simultaneous estimation of the surface normals and the IRF

results in the linear least-square problem in (3.7) with the linear constraints

in (3.8) given that the input images are well-exposed, i.e., the input pixel

values distributed uniformly to cover the whole range of pixel intensity [0, 1].

When the radiometric response function is linear, we can estimate a sur-

face normal at each surface point independently, as shown in (3.2). On the

other hand, when the radiometric response function is nonlinear, we can no

longer estimate each surface point independently as all pixels subject to a

common response function. Therefore, the naive optimization of (3.7) sub-

ject to the constraints of (3.8) is computationally expensive when the number

of pixels increases. Given all pixel values in an image are affected with the

same response function and the number of foreground pixels is greatly larger

than the number of basis functions (PD � K), we could reduce the compu-

tational cost by estimating the IRF (and the surface normals) with a small

number of randomly selected pixels. Using the estimated IRF, all the pixel

values now can be converted to irradiance values, so we can finally estimate

the surface normals of all foreground points using (3.4).
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Note that our simultaneous estimation also has degenerate cases; it fails

to estimate an IRF if pixel values are not well distributed, e.g ., estimating

an IRF from images of a plane which is illuminated by light sources rotated

around its perpendicular axis so the pixel values remain constant across all

images. In such scenes, the nonlinear relationship between irradiance and

pixel values cannot be observed from the images; thus the IRF cannot be

estimated.

3.4 Experiments

3.4.1 Experiments on Synthetic Images

We validated the surfaces and IRF estimation of our method with the ex-

periments on synthetic images of a Lambertian sphere. The images were

illuminated with 20 directional light sources whose directions were uniformly

selected from a hemisphere. The uncalibrated images were obtained by ap-

plying nonlinear response functions from DoRF. We detected shadows in all

images with thresholding, i.e., a pixel value is considered in shadow if its

intensity is less than 5
255

. Then, we discarded all pixels that consisted of only

one or two non-shadow pixel values from the estimation.

We implemented the optimization of (3.7) and its constraint (3.8) by

using a MATLAB’s built-in function fmincon to illustrate that our method

can improve surface estimation accuracy over previous methods despite its

sensitivity to outliers. The number of basis functions was fixed to K = 4. We

used first four functions derived from DoRF database with PCA technique as

our basis functions. To make the estimation tractable, we first estimated an

IRF from 50 randomly selected pixels to calibrate the images then estimated

surface normals with (3.4). The surface normals and IRF estimation took
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Figure 3.1: Samples of surface estimated from synthetic data sets and the
comparison to the ground truth. The response function used to generate the
images are specified over the results. (a) ground truth (b) examples of input
images (c)-(e) Estimated surface normals and difference to the ground truth
in degrees.

Table 3.1: Comparison of average of mean angular error and their SD of the
surface normals estimated from the synthetic data sets using our proposed
method (ours), photometric stereo with sparse Bayesian regression (PS-SBL),
and the classic photometric stereo (PS-LS).

Mean angular error (degrees) Elapsed Time
Method Uncalib. images Calib. images (secs.)
ours 0.68 ± 0.71 0.53± 0.23 2.18± 1.35
PS-SBL 4.42± 4.203 0.002± 0.003 27.83± 0.15
PS-LS 12.09± 3.11 0.0002 ± 0.004 0.39 ± 0.01

about 6 seconds on an Intel Core i7-2600 3.4GHz machine for each set of

images.

To assess surface estimation accuracy, we compared the surfaces esti-

mated using our method (ours) to the surfaces estimated from radiometri-

cally uncalibrated images with the classic photometric stereo (PS-LS) [60],

and photometric stereo with sparse Bayesian learning (PS-SBL) [24] to il-

lustrate the advantage over the state-of-the-art method. The parameters

for PS-SBL were configured as suggested in the original paper, i.e., p = 3,

λsbl = 10−2, σ2
a = 10−2, and σ2

n = 106 .
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The mean angular error of the estimated surfaces are summarized in Ta-

ble 3.1 and few examples of the estimated surfaces and their difference in

degrees to the ground truth are shown in Fig. 3.1 as RGB color-coded sur-

face normals along with their difference to the ground truth. It is clear

that our auto calibration framework compensates nonlinear response func-

tions so the estimated surfaces are more similar to the ground truth than

one of those estimated using PS-LS and PS-SBL. Meanwhile, the nonlinear

reflectance model used in PS-SBL compensates the nonlinearity of response

functions, therefore the mean of angular errors of the estimated surfaces was

significantly lower than those estimated by PS-LS.

We performed the experiments with several numbers of images with a

different combination of images in each iteration. Results summarized in

Fig. 3.2 shows our method can accurately estimate surfaces even when we

used only four images and the accuracy increased when we used more images.

We also conducted experiments on radiometrically calibrated images. As

now the surfaces certainly follow Lambertian reflection model, it is unnec-

essary to address nonlinear reflectance function so we fixed the number of

piecewise reflectance function p = 1 for PS-SBL. The experimental results

show that the difference of the surfaces estimated by the proposed method

from calibrated images is comparable to (or slightly smaller than) that for

uncalibrated images. However, the surfaces estimated by PS-SBL and PS-

LS have less error than those estimated from our proposed method. This is

because the basis functions we used cannot represent a linear function well,

so the estimated IRFs had a subtle deviation from the linear IRF. Those

small errors eventually propagated to the subtle errors on every point of the

estimated surfaces. In contrast, PS-LS and PS-SBL assume calibrated im-

ages and the input images were images of Lambertian surfaces without noise
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Figure 3.2: Comparison of average of mean angular error in degrees of the
surface normals estimated from the synthetic data sets with various number
of input images. The error bars show the standard deviation of the angular
errors.

so that the only precision error become the source of error in the estimated

surfaces.

Also, we evaluated the IRF estimation accuracy of our method to [40]

with EMoR representation [17]. Note that we used images of a static scene

with varying exposure times to estimate IRF with [40], hence, indirect com-

parison. Here, we show some examples of the estimated IRFs fitted to their

corresponding ground truth in Fig. 3.3. The root mean square error (RMSE)

of the fitted IRFs are also shown in the figure. The average of RMSE for all

synthetic images sets is 0.0134 while the RMSE of the IRFs estimated with

[40] is 0.0098.

However, it is worth to mention that our method can estimate the IRFs

accurately up to scale. When selected irradiance values do not well cover

the entire range of irradiance values, there is little information to constrain
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Figure 3.3: The IRFs estimated by ours from synthetic data sets. The dotted
lines show ground truth and the solid lines show the estimated functions. The
RMSE for each IRF are depicted over the graph.

the estimated IRF. Therefore it is possible to obtain multiple IRFs with

different scales that satisfy the selected irradiance values. In our experiments

on synthetic images, this scaling ambiguity did not affect the estimated IRF

but affects the overall scale of the estimated albedos.

3.4.2 Experiments on Real Images

We evaluated the accuracy of our method through the experiments on images

of two real-world objects: sphere, and statue. We used 20 light sources

placed randomly over the objects and calculate the light source direction

from images of a chrome sphere. Then we used images of a Lambertian
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Figure 3.4: The estimated surface normals statue. The name of response
functions are specified in the top row and the method used to estimated the
surfaces are specified in the bottom. (a) ground truth (b) sample input image
(c)-(f) estimated surfaces and difference to the ground truth in degrees.

sphere taken with a calibrated camera to calculate the light source intensities

with (3.1). Instead of using calibrated images, ones can use a luminometer

to directly measure the light source intensities.

We captured images of the objects with a Point Grey Flea 2 camera.

Although the camera provides linear measurements of light intensity, we can

configure its intensity lookup table so it acts like a nonlinear camera. We

configured the lookup table with the measured agfapan-apx-100CD, agfa-

scala-200xCDStandard, and gamma+2.2 nonlinear response functions from

DoRF database [17]. These functions represent three common shapes of
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Figure 3.5: The IRFs estimated from statue with [40] and ours compare to
the ground truth. The RMSEs of the estimated IRFs are included in the
legend.

nonlinear functions in the database: concave, convex, and sigmoid. Since the

ground truth of sphere, and statue were not available, we used the surfaces

estimated from the radiometrically calibrated input images with PS-SBL [24]

as ground truth.

The mean of angular error of the estimated surfaces are presented in

Fig. 3.6. Similar to the experiments with the synthetic images, our auto

radiometric calibration compensated the nonlinearity of response functions

so the estimated surfaces were more similar to the ground truth than those

estimated by PS-LS and PS-SBL from the uncalibrated images. However, it is

possible that shadow pixel values were raised by nonlinear response functions

and became non-shadow in pixel value space. Eventually, those false pixel

values were included in the surface estimation and deviated the surfaces.

This can be observed in the side parts of the estimated statue (agfapan-apx-
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Figure 3.6: Mean angular error of the surfaces estimated from real images
with ours, PS-SBL, and PS-LS methods. Note that the error for sphere
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100CD) in Fig. 3.4. Moreover, noises in the input images also caused the

estimated IRF to deviate from the ground truth IRF. The images calibrated

with such IRFs were marginally different to the ground truth images so that

the surfaces estimated from those images had small angular error over the

surfaces.

We also compared the accuracy of the estimated IRFs to the ones esti-

mated from the images of a static scene using radiometric calibration technique[40].

Instead of images with varying light sources, we captured the images of a

static scene with different exposure times under the same response functions

used for capturing the input images for our method. The IRFs estimated

from both [40] and ours are shown in Fig. 3.5. The RMSE of the estimated

IRFs shows that our method can estimate IRFs accurately without any ad-

ditional image for radiometric calibration.
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3.5 Conclusion

We presented a method for joint estimating surface normals and a radiomet-

ric response function of a camera. Our proposed method takes advantage

of the consistency between the irradiance values from an inverse radiometric

response function and those estimated from surface normals. This method

requires neither cumbersome radiometric calibration preprocessing nor addi-

tional images. We demonstrate experimentally that our method can estimate

surface normals accurately even when images are captured by using cameras

with nonlinear radiometric response functions.
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Chapter 4

Non-Lambertian Surface

Recovery from Uncalibrated

Images

This chapter introduces a RANSAC-based framework to integrate photo-

metric stereo for non-Lambertian surfaces methods into the simultaneous

estimation of surfaces and IRF.

In chapter 3, we assume that objects exhibit Lambertian reflection model

and simultaneously estimate surface normals and inverse response function.

However, there is a very limited number of materials that follow Lambertian

reflection model. For example, specular highlights on surfaces of many real-

world objects are usually observed as saturated pixel values which do not

follow Lambertian reflection. In such kind of surfaces, areas with specular

lobe also behave differently to the pixels consisted of diffuse component solely.

Therefore, including such non-Lambertian pixel values in the simultaneous

estimation leads to warped surfaces and incorrect response functions.

Fortunately, many non-Lambertian surfaces where specular highlights do
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not exist behave similarly to Lambertian surfaces. Assuming that specular

highlights can be observed only within limited angles, we can treat high-

lights as outliers that deviate from the Lambertian reflection model. Con-

sequently, it would be possible to integrate a robust estimation technique

based on RANSAC [13] into our framework to estimate the surfaces of a

non-Lambertian object and the response function of a camera.

The contribution of this work is to propose a RANSAC auto radiometric

calibration framework for photometric stereo technique. One can use our

framework with a photometric stereo technique to estimate surface normals

and inverse response function simultaneously. Our experiments show that

our framework can be integrated with photometric stereo for non-Lambertian

surfaces to avoid outliers such as specular highlights, noisy pixels, and shadow

in the IRF estimation from objects with uniform and non-uniform materials.

The organization of this chapter is as following: Section 4.1 discusses

about previous studies in photometric stero on non-Lambertian surfaces.

Section 4.2 explains the RANSAC-based framework in detail. Section4.3

describes the experiment detail and evaluation of our framework. Lastly, we

concluded our method in Section 4.4.

4.1 Related Work

The problem of estimation of surfaces with specular highlights has been stud-

ied by many researchers which can be categorized as the modeling approach

and the statistical approach.

The modeling approach estimates surface normals by assuming a specific

reflectance property. Georghiades’ [14] used Torrance-Sparrow model to solve

the photometric stereo problem with unknown light sources. Goldman et
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Figure 4.1: Overview of our framework for photometric stereo with auto
radiometric calibration. The outer layer is used for IRF estimation and the
inner layer is used for surface estimation.

al . [15] used the isotropic Ward reflectance model for their example-based

photometric stereo.

The statistical approach regards specular pixels, shadows, as well as other

corrupted measurements as outliers to the Lambertian reflectance model, so

this approach detects and excludes these corrupted measurements from sur-

face estimation. One of the pioneering works in the statistical approach is the

four-sources photometric stereo technique by Coleman and Jain [9]. They

took this approach and proposed a photometric stereo technique for non-

Lambertian surface using four light sources. They estimated four candidate

albedos at a certain location from four possible triplets selected from four

light sources. If all of the candidate albedos do not coincide, it is regarded

due to specularity, and the smallest albedo is used for surface estimation.

Rushmiere et al . [54] use similar idea to design a system to estimate sur-

faces of non-Lambertian surfaces under five light sources. However, they use

only the second, third, and fourth brightest pixel intensities out of five to

avoid shadows and specular. Barsky and Petrou [4] modified this method

to detect both highlights and shadows by using temporal pixel intensity and
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linear dependency. Contrast to[54], this technique does not presume that the

brightest pixel and the darkest pixels must be specular highlights and shad-

ows. Argyriou et al .[3] generalized [4] to handle arbitrary number of light

sources. With an assumption that specular highlights at a point are observed

at most once, they developed a greedy algorithm to iteratively maximize the

number of inliers that match input images. Wu et al . [62] show that cor-

rupted measurements increase the rank of observation matrix. So they cast

the photometric stereo problem as a rank-minimization problem. Ikehata et

al . [23] used a hierarchical Bayesian model derived from a sparse Bayesian

learning framework instead of principal component analysis used in [62].

Unfortunately, all of these existing photometric stereo techniques for non-

Lambertian surfaces assume input images are captured by a camera with a

linear response function.

Our method is similar in spirit to one proposed by Mukaigawa et al .[44]

to use RANSAC-like robust estimation [13] to determine specular region.

Unlike the previous work, our proposed method avoids specular highlight in

the estimation by using RANSAC framework to determine specular region

and estimate response function at the same time. RANSAC has been used by

several works to handle specular highlights in face recognition task [47] and

to remove specularity from non-Lambertian surfaces in photometric stereo

[21, 19].

4.2 Framework for Simultaneous Surface Nor-

mals and IRF Estimation

In this section, we present our RANSAC-based framework to integrate pho-

tometric stereo for non-Lambertian surfaces methods into the simultaneous
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estimation of surfaces and IRF.

Our framework consisted of two layers for surface and IRF estimation as

shown in Fig. 4.1. The outer layer of the framework repeatedly estimates

IRFs. With the estimated IRFs, the inner layer estimates surface normals

using an existing photometric stereo method, and then we determine inliers

which are diffuse pixel values that follow the Lambertian reflection model

with respect to each estimated IRF. The inlier set with the maximum number

of supporting inliers is considered as the consensus diffuse pixel values and

we can use these pixel values to estimate the IRF and surfaces without being

affected by specularity.

Concretely, we use a RANSAC loop in the outer layer to estimate can-

didate IRFs using randomly sampled pixels. Using the estimated IRF, we

generate candidate calibrated image sets for each candidate IRF. Once the

images have been calibrated, we now can use an existing photometric stereo

method to estimate surface normals from the calibrated images for each set of

candidate IRF. Here, we assume that the photometric stereo method we use

can handle corrupted observations such as shadows, and specular highlights

properly so the estimated surfaces have no distortion. Then we determine

inlier pixels in the images, which are diffuse pixel values that follow the

Lambertian reflection model with respect to each estimated inverse response

function. As we assume that diffuse pixels in the input be dominant and

specular can be observed within a small angle, the inlier set with the maxi-

mum number of supporting inliers is considered as the consensus diffuse pixel

values and we can use these pixel values to estimate the IRF and surfaces

without being affected by specularity.

The detailed algorithm for our framework is explained in the rest of this

section as follows:
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1) Randomly Selecting Pixels and Light Sources: The first step of

our method begins by randomly selecting pixel values for the IRF estimation

using RANSAC technique. To avoid corrupted observation, we randomly

select fewest pixel values that still can estimate an IRF so we first randomly

select one foreground pixel.

For a foreground pixel, there are 3 unknowns because a scaled surface

normal has 3 degrees of freedom: two for direction, and one for the scale of

the surface normal. In addition, there are K unknowns for K coefficients in

inverse response functions if we approximate an IRF with K basis functions.

Therefore, we select (3+K) light sources and their corresponding pixel values

for the simultaneous estimation.

tmin =

⌈
3 +K − 1

s

⌉
.tmin = (3 +K − 1) . (4.1)

That is, we select tmin light sources and their corresponding pixel values

of the selected pixel of the selected pixel for the simultaneous estimation.

2) Estimating IRF from Pixel Values of Selected Pixels Under

Selected Light Sources: After the pixel values have been selected, we

estimate an IRF that satisfies the pixel values with (3.7) and (3.8).

Although one might argue that one of the selected pixel values is possibly

a specular highlight, we assume that all selected pixel values are diffuse and

follow Lambertian reflection model in this step and the IRF is estimated with

no distortion from specularity. The goodness of the estimated IRF will be

determined in a later step.

3) Converting All Pixel Values Into Irradiance Values: In this

step, we convert the pixel values in the input images into irradiance values

by using the estimated IRF.

4) Detecting Outliers such as Specular Pixels: In this step, we de-

37



Chapter 4. Non-Lambertian Surface Recovery from Uncalibrated Images 38

termine outlier irradiance values that violate Lambertian reflection property.

We first estimate surface normals from the calibrated input images by

using a photometric stereo method such as [44], or [24]. Assuming the im-

ages are correctly calibrated, the estimated surface normals should have no

distortion from both specularity and nonlinear response function. Then, we

estimate irradiance values from the estimated surface normals with (3.1) and

compare them to the observed irradiance values. An observed irradiance

value is a supporting inlier of the estimated surface normal if it is equal to

the corresponding estimated irradiance value.

In practice, the estimates might contain small errors due to noise in the

input images. We relax the equality constraint by introducing a threshold

for the error. An observed irradiance value is considered as an inlier if the

difference between the observed and estimated irradiance values is less than

this threshold. Let ñp denote the estimated surface normal scaled by its

albedo. Assuming that input images are contaminated with photon shot

noise1, the variance of noise is proportional to the irradiance value [8]. An

observed irradiance value Ep,d supports the estimated normal ñp if

(
Ep,d − ñ>p ld

)2 ≤ τsEp,d, (4.2)

where τs is a specified parameter.

5) Counting Number of Inliers: We then count the number of inliers

to evaluate the goodness of the estimated IRFs. If the IRF is estimated

without outlier, it must be consistent with all diffuse irradiance values in the

images. In contrast, if the IRF is distorted, it will be consistent with only a

few irradiance values. Therefore, the best IRF should maximize the number

of supporting diffuse irradiance values.

1Poisson noise due to random arrivals of photons
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6) Estimating Surface Normals and IRF from Largest Consensus

Set: Up to now, we use only a few randomly selected pixel values to estimate

an IRF. However, it is possible that one of the selected pixel values is a

specular highlight. Therefore, we repeat the whole process multiple times to

produce a set of candidate IRFs. Given the number of iterations is sufficiently

large, there probably exists an iteration in which all selected pixel values are

diffuse. Without distortion from specularity, the IRF should have largest

supporting inlier set. The inliers in the largest inlier set are then determined

as the consensus-diffuse pixel values.

Finally, we estimate the final IRF from the maximum consensus-diffuse

pixel values by using (3.7) and (3.8). Because the pixel values are all diffuse,

the final IRF have no distortion from specularity and surface normals can be

estimated using a photometric stereo method.

When input images are under-exposed, foreground pixel values in the im-

ages probably do not cover the pixel intensity levels. The IRF estimated

from (3.7) might become unrealistic, e.g ., rising sharply in the range with no

foreground pixel values. We can use additional constraints such as smooth-

ness, and integrability in order to avoid such unrealistic IRFs as suggested

in previous studies [30, 36]. In this work, we propose to use prior knowledge

derived from an existing response function database[17]. Let P (c) a prior

model of IRF coefficients constructed by fitting the probabilistic distribution

of coefficients of IRF in DoRF to a multivariate Gaussian mixture model:

P (c) =
M∑
m=1

αmN (c;µm,Σm) , (4.3)

where N is a Gaussian distribution with mean µm, and covariance ma-

trix Σm. αm is the weighting factor for the m-th distribution, and c =
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(c1, · · · , ck)T are the coefficients of IRF. The model parameters µm, Σm and

αm can be obtained using EM algorithm or cross-entropy method [7]. Then,

the prior term can be added to (3.7) as following:

{n̂p, ĉ} = arg min
{np,c}

{ 1

2PD

P∑
p=1

D∑
d=1

w (Ip,d|np, c)− λ log (P (c))}, (4.4)

where w (Ip,d|np, c) =
(
g0 (Ip,d) +

∑K
k=1 ckgk (Ip,d)− nTp ld

)2
, and λ is a reg-

ularization factor for the prior model term. Although an arbitrary number

of normal distributions can be used, we assume the number of normal distri-

butions to M = 5 similar to the previous studies [30, 36] and use Matlab’s

fmincon for this optimization problem.

We remove saturated foreground pixel values and shadows from the IRF

estimation. Those pixel values violate Lambertian reflection model and shad-

ows pixel values might contain excessive noise. We determine all pixel values

with Ipd = 1 as saturated and detect shadow pixels by thresholding.

4.3 Experiments on Specular Objects

4.3.1 Experiments on Synthetic Images

We conducted experiments on both synthetic and real images to validate the

estimation accuracy of our framework on non-Lambertian surfaces.

In our experiments, we used 20 synthesized images of a sphere under the

assumptions of Torrance-Sparrow model [57] and directional light sources

with the same intensities. The light directions were uniformly distributed

over a hemisphere. The images were applied with response functions from

DoRF to obtain uncalibrated images.
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Figure 4.2: Experimental results with respect to the value of λ.

We implemented two variants of the inner layer of our framework with

two photometric stereo methods: a straightforward RANSAC-based method

(ours-RS), and a sparse Bayesian learning-based method (ours-SBL) based

on [24]. Unlike [44], we directly applied RANSAC to Lambertian photometric

stereo to estimate surface normals for each foreground pixel. More specifi-

cally, we select three light directions and their corresponding pixel values to

estimate surface normals using (3.4). Then the supporting inliers are deter-

mined as the observed irradiance values that match ones predicted with the

estimated surface normals. This process is repeated for many iterations and

we regard the support inliers of the iteration that yields a maximum number

of inliers as consensus inliers. Then the final surface normals are estimated

using only consensus inliers.

We use the following equation to determine the number of iterations for

RANSAC processes[13],

number of iterations =
log 1− p

log 1− wn
, (4.5)
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Figure 4.3: Experimental results with respect to the value of τs.

where p is the probability that there is an iteration that the RANSAC al-

gorithm selects only inliers, w is the ratio of inliers and all samples, and n

is a number of samples. Since we assume that specular highlights can be

seen in limited angles, we aggressively set p = 0.95 and w = 0.8. With these

settings, it took about 53 seconds for Ours-RS and 414 seconds for Ours-SBL

to estimate an IRF and surface normals from a set of 20 images with 3,228

foreground pixels.

To calculate the RMSE of the IRFs, we discarded the top ten percent of
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the brightest selected pixel values and used only the rest. This is because the

number of bright diffuse pixel values was small due to specularity. Therefore,

the estimated IRF where the pixel value was near 1 could not be constrained

well; thus, not accurate.

First, we observed the effect of λ in the prior term to the estimated

surfaces and IRF. Here we picked a small positive value to factor the prior

term to match the magnitude of the surfaces estimation term in (4.4). More

specifically, we used various λ to perform surfaces and IRFs estimation from

the synthetic images generated with a selected set of response functions, then

we selected the most appropriate value based on the estimation results.

Fig.4.2 shows that the value of λ = 10−5 gave the best balance of the

IRF and surface estimation accuracy. We found that the IRFs is overfitted

to the prior term when λ >= 10−2. As the pixel values no longer follow

the Lambertian model when the IRFs is overfitted, ours-SBL misclassified

all foreground pixel values, i.e., no result when λ >= 10−2. In contrast,

the sampling process in ours-RS guarantees that there are at least four pixel

values have been determined as inliers. Therefore, the surfaces could be

estimated even when the IRFs were overfitted.
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Figure 4.5: Qualitative results from the synthetic specular sphere. (a) ground
truth, (b) example of an input image from a synthetic images set, (c)-(j)
estimated surfaces estimated using the specified methods. The bottom row
shows angular differences to the ground truth in degrees.

The effect of the threshold τs on the surface and IRF estimation perfor-

mance is shown in Fig.4.3. A larger τs leads to more false positive, i.e., more

outliers are misclassified as inliers. In contrast, a smaller τs causes less pixel

values to be classified as inliers. Here we varied the value of τs and performed

experiments on the synthetic datasets.

We found that τs = 0.05 gave the best balance between the classification

accuracy, angular error, and RMSE of the estimated IRFS. Therefore, we

fixed the threshold to τs = 0.05 for the rest of the experiments. With the

given λ and τs, the average RMSE of the IRFs estimated from ours, ours-

RS, and ours-SBL for all synthetic data sets were 0.0128, 0.0156, and 0.0208

respectively.

We observed that ours-SBL produced surfaces and IRFs with larger er-

rors than the ones estimated by ours without outlier detection. This was due

to scaling ambiguity that distorted the overall shape of the estimated IRF.

When the outlier detection removes bright specular highlights, the range of
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pixel values is narrower so there is less information to constrain the IRF that

are outside of the range of inliers values. Eventually, our method further min-

imized (4.4) by minimizing the scale of IRF while still satisfying both input

pixel values and the boundary conditions. Without enough pixel intensities

to constrain the whole range of IRF, the IRF near the end of the range of

inliers values are therefore incorrectly estimated. Since PS-SBL uses diffuse

components in the pixel with specular highlight to achieve better results,

Ours-SBL took the disrupted bright pixel values into account and it led to

more angular errors. In contrast, Ours-RS was more capable to handle this

kind of distortions since it aggressively discarded outliers such as the incor-

rect calibrated pixel values from the surface estimation, therefore specular

highlights were removed more properly.

We compared the surface normals estimated using our proposed frame-

work to those estimated from PS-SBL, and the simultaneous estimation with-

out outlier detection (ours). Figure 4.5 shows an example of the estimated

surfaces. The bright areas shown in the error maps correspond to the specu-

lar highlight areas in the input images. One can see that ours-RS can remove

the specular pixel values from the surface estimation so it reduces distortion

caused by specular highlights on the estimated surfaces. We summarized the

mean angular errors of the surfaces estimated from all datasets and their stan-

dard deviation in Fig. 4.4. The mean angular error of the surfaces estimated

from ours, ours-RS, and ours-SBL are 1.32°, 0.99°, and 3.19° respectively.

We performed statistical significant with paired samples t-test and found

that ours-RS can produce surfaces lower mean angular errors at significance

level of 0.05.
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4.3.2 Experiments on Real Images

We conducted experiments on images of four real objects made from four

different materials; matte ceramic with painted smooth areas seal, polished

ceramic ghost, opaque plastic tomato, and glossy-painted ceramic fish. The

images were captured under the same lighting environment and nonlinear

response functions used in the experiments with diffuse objects, i.e., agfapan-

apx-100CD, agfa-scala-200xCDStandard, and gamma+2.2. The ground truth

was obtained as the surface normals estimated from the radiometrically cal-

ibrated images by using PS-SBL [24] with a number of piecewise functions

p = 3 as the ground truth.

The qualitative results from the ghost data set are shown in Fig. 4.6. The

error maps indicate that the methods with auto radiometric calibration have

less angular errors. This is because the nonlinearity has been compensated.

And the angular errors from specular highlights in the results estimated from

ours-SBL and ours-RS are reduced. However, we still observed large angular

error along the concave regions due to inter-reflection and cast shadows on

the surfaces.

Also, our framework still has difficulty in recovering the regions with

reflective materials as observed in the results from the fish data set. The

edges of the scale on the object is a non-convex shape and it is made of

reflective glossy paint. Therefore, the pixel values in those areas are greatly

influenced by specular reflection component, hence exhibit a strong effect of

interreflection. Moreover, we observed the distortion in the bottom left part

of the surfaces estimated from fish (gamma 2.2) by Ours-SBL. We performed

statistical significant with paired sample t-test and found that ours-RS did

not have lower mean angular error than ours at significance level of 0.05 with

the specified RANSAC parameters of p = 0.95 and w = 0.8 but it could
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produce surfaces with lower mean angular error than ours at significance

level of 0.05 when we used more conservative parameters of p = 0.95 and

w = 0.7.

We show the quantitative results of the experiments in Fig. 4.8. One can

see that our RANSAC-based method gives less distortion from specularity

so the angular error decreased in most datasets. However, we observed that

there are small errors in the estimated surfaces caused by overly removed pixel

intensities that exceed the threshold in (4.2). These small errors could be

observed over the estimated surfaces: therefore, mean angular error remained

relatively high, even though specular highlights were removed.

4.4 Conclusion

We proposed a framework for photometric stereo techniques to recover sur-

face normals from images captured using a camera with an unknown non-

linear response function. Our framework can be integrated with an existing

photometric stereo method to handle outliers such as specular pixels. The

experiments show that our method can estimate surface normals of the non-

Lambertian surfaces more accurate than the existing methods when images

are radiometrically uncalibrated.

There are two limitations with our proposed method. First, it can esti-

mate response functions and surface reflectance up to scale. Since our method

has no constraint regarding neither scale of albedos nor scale of response func-

tion, the scale of albedo can propagate to the scale of response function and

vice versa. Therefore, it cannot determine the correct scale of estimated IRF

and albedos without additional cues. Second, our shadow thresholding works

incorrectly if noisy pixels are greatly modified by the response function. From
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the experimental results, noisy pixels in shadow areas were greatly amplified

by the agfapan-apx-100CD response function, so the pixel values exceed the

shadow threshold and became non-shadow in pixel-value space. Those non-

shadow pixels were eventually included in the simultaneous estimation and

caused distortion in such areas. Similarly, non-shadow pixels were darkened

by gamma+2.2 function so they become shadow pixels.
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Figure 4.6: Qualitative results from the data set ghost. The response func-
tions used for capturing the images are specified in parenthesis. (a) ground
truth (b) sample of input images (c)-(j) the top row shows the normal maps
estimated from the specified method and the bottom row shows the error
maps.
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Figure 4.7: Samples of qualitative results from the data set seal and tomato.
The response functions used for capturing the images are specified in paren-
thesis. (a) ground truth (b) sample of input images (c)-(j) the top row shows
the normal maps estimated from the specified method and the bottom row
shows the error maps.
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Figure 4.8: The quantitative results from the experiments with real images.
(top) Mean angular error in degrees of surface normals estimated with ours,
ours-RS, ours-SBL, PS-SBL, and PS-LS. (bottom) RMSE of agfapan-apx-
100CD (agfapan), agfa-scala-200xCDStandard (agfascala), and gamma+2.2
response functions estimated from fish, ghost, seal, and tomato images sets.
The RMSE of the IRF estimated by [40] are 0.0034, 0.0032, 0.0117, and
0.0066 respectively.
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Chapter 5

Auto Radiometric Calibration

in Uncalibrated Photometric

Stereo

5.1 Background

This chapter presents a method to perform auto-radiometric calibration to

compensate nonlinearity of the response function that resides in input images

of uncalibrated photometric stereo. In this context, directions of the light

sources used for capturing the scene are unknown.

The classic photometric stereo method[60] assumes that the directions

and intensities of the varying light sources are known or calibrated before-

hand. It then uses the relationship between the varying light sources and

the changes of irradiances according to Lambertian reflection property to

estimate the object’s surface orientations. This condition is hard to achieve

in an uncontrolled environment where light sources are generally unknown.

Therefore this limits the practical use of the photometric stereo.
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There are a lot of studies try to relax this assumption by developing

photometric stereo methods which do not require the light sources to be

known in advance. They extend the photometric stereo to estimate sur-

face normals from images that are captured under complex lightings such

as unknown directional light sources[18, 6, 55, 37, 33], unknown point light

sources[39, 64, 48, 29], or even under natural illumination[5, 22, 20]. In

the context of unknown directional light sources, the photometric stereo

problem is much more difficult than the one with known light source di-

rection especially when target surfaces are assumed to follow Lambertian

reflection property as it suffers from an ambiguity in a class of transforma-

tion call Generalized Bas-Relief transformation (GBR)[6]. Previous studies

make use of additional clues to resolve the GBR ambiguity such as material

isotopy[56], inter-reflection[45], low-dimension feature space[5], prior knowl-

edge about albedo[2], diffuse maxima[48], variation of depth map[52], pixel

color profiles[55], etc. However, most of those methods take it for granted

that the input images must be radiometrically calibrated.

In this chapter, we propose a method to perform radiometric calibration in

photometric stereo input images which light source directions and intensities

are not known. Our method makes use of the rank-3 property of a matrix

constructed by organizing the input images to exhibit linear dependency.

Nonlinear response functions do not preserve this rank property and turn this

image matrix into a full rank one. Therefore, the inverse response function

then can be determined as a function that turns the full rank image matrix

back into the one with rank-3 structure.

The main contribution of this study is an auto radiometric calibration

method for uncalibrated photometric stereo. With this method, ones can

estimate surfaces using uncalibrated photometric stereo methods even when
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light sources directions and intensities are unknown.

The rest of this chapter is organized as follows: Section 5.2 give a brief

explanation regarding previous studies on uncalibrated photometric stereo

and radiometric calibration. Section 5.3 explains about image formation and

rank-3 structure in the image matrix. Section 5.4 explains our proposed

method. Section 5.5 shows experimental results. Lastly, Section 5.6 con-

cludes this chapter.

5.2 Related Work

This section introduces previous works on uncalibrated photometric stereo

methods and discusses the relationship to our proposed method.

Conventional photometric stereo[60] assumes a motionless Lambertian

surface placed under varying directional light sources with known directions

and intensities. Photometric stereo that does not assume known light source

directions was first pioneered by Hayakawa[18]. He proposed a method to

estimate surfaces from images without using neither light source directions

nor intensities. However, there exists an ambiguity in the estimated surfaces

which can be resolved if there are at least 6 known surface normals in the

images or 6 known light source directions. Belhumeur et al .[6] used integra-

bility to reduce the ambiguity to a class of transformation, namely, General-

ized Bas-Relief transformations (GBR). More concretely, given a pair of light

source directions and Lambertian surfaces, we can find a countless number

of transformations that result in the same images when viewing orthograph-

ically regardless the transformed surfaces and light source directions. This

study suggested that we can only estimate surface normals up to a general

bas-relief transformation without additional clues.
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The trend of research in uncalibrated photometric stereo then was refo-

cused on disambiguating GBR ambiguity. There are numerous studies pro-

posed variety of cues that can be used to disambiguate GBR transformations

including specularities[12, 14], symmetry in isotropy for non-Lambertian

materials[34], attached shadow coding[46], and inter-reflections[45]. In con-

text of Lambertian surfaces, many researches suggested that albedo distribution[2],

local diffuse maxima[48], image structure[44, 43, 5], grouping of color and ap-

pearance [55] are feasible for disambiguating the GBR transformation. Al-

most all of these methods except [55] take it for granted that the input images

are already radiometrically calibrated.

Although radiometric calibration is a necessary step before photometric

scene analysis can be carried out, the research on radiometric calibration

itself is usually done separately. Primitively, one can estimate an inverse

response function by using a calibration chart with known reflectance. The

difference of the known reflectance and the recorded pixel intensities can be

used for estimating the inverse response function. To relax the requirement

of using the calibration target, the pioneering works suggested that multiple

photos of a static scene taken under varying exposure times provide enough

information for radiometric calibration [35, 11] along with an empirical [17]

and parametric model[40] that can approximate inverse response function

accurately. However, those methods still need images purposely captured for

radiometric calibration. Later studies aimed toward relaxing this restriction

by using additional clues that lie inside original images or video sequences

such as the distribution of noises[36], distribution of pixel intensities at near

edge [30, 31], vignette [26], low-rank structure [27, 41, 28], reflectance prop-

erties of skin pigments [28], and temporal changes of irradiance [59, 25].

In the context of surface estimation, Abrams et al .[1] incorporate non-
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linear response function into his method for estimate surface normals of an

outdoor scene from time-lapse images taken by a web camera. Despite lacking

light direction, they look up the sun direction using information from GPS

and timestamp. The most well-known method for performing radiometric

calibration in the context of uncalibrated photometric stereo was proposed

by Shi et al .[55]. They illustrate that color profile in a pixel across input

images should be linear, but it becomes a nonlinear curve under nonlinear

response function. Therefore, they can formulate an optimization problem

to determine an inverse response function as a function that can bend the

curves back to a straight line. However, this method assumes color images

and fails to estimate inverse response functions from gray objects which the

color profiles remain straight lines regardless nonlinear response function.

Unlike these methods, our method assumes only directional light sources

without information regarding their light source direction and intensities. At

its core, our method makes use of linear dependency similar to that used by

Lee et al. [27]. However, we do not assume color input images and ours is

able to estimate the inverse response function from gray images, hence, ours

can estimate inverse response function for each image channel separately.

5.3 Rank-3 Structure in Radiometrically Cal-

ibrated Images

In this section, we explain photometric stereo input image representation

in this work and its rank-3 structure in which we can use for the inverse

response function estimation.

Let ed denotes the d-th image as a column vector, we can stack all of D
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Figure 5.1: Irradiance matrix of a Lambertian surface has rank-3 structure.
In-camera nonlinear response functions convert irradiance into a full-rank
pixel intensity matrix. Then, the inverse response functions can be deter-
mined as the one that converts the full-rank intensity matrix back into the
matrix with the rank of 3.

images together to form an irradiance matrix.

E = [e1, . . . , eD] , (5.1)

=


E1,1 E1,2 · · · E1,D

E2,1 E2,2 · · · E2,D

...
...

. . .
...

EP,1 EP,2 · · · EP,D


Let ld = [lx, ly, lz]

T denotes a d-th light source vector with a scaled light

intensity, and np = [nx, ny, nz] is a surface normal scaled with an albedo at

the point p of a Lambertian object. Irradiance Ep,d of the point p illuminated

under ld then can be calculated as a dot product of the light source and the

surface normal,

Ep,d = np · ld. (5.2)

Let N is a surface normal matrix where each row is a surface normal,

i.e.,N = [n1,n1, . . . ,nP ]T , and L is a light source matrix where each column
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represent the light source direction. We can rewrite the image matrix E as:

E =


n1 · l1 n1 · l2 · · · n1 · lD
n2 · l1 n2 · l2 · · · n2 · lD

...
...

. . .
...

nP · l1 nP · l2 · · · nP · lD



=


n1

n2

...

nP

 ·
[
l1, l2, . . . , lD

]

=N · L. (5.3)

Eq.(5.3) suggests that the matrix E has the rank of 3.

Under linear response function, a pixel intensity Ip,d of the point p on

d-th image are linearly proportional to the irradiance received by the im-

age sensor so we can easily substitute pixel intensities with irradiances, i.e.,

Ip,d = Ep,d. The rank of the result image matrix then remains to be the

rank of 3. However, the effect of nonlinear response functions is nonlinearly

proportional to input irradiance of so the pixel intensity matrix is no longer

have linear dependency and its rank becomes full rank. Note that we nor-

malize the irradiances and the intensities into the range of [0, 1] without loss

of generality.

5.4 Proposed Method

In this section, we proposed a method to estimate an inverse response func-

tion from the pixel intensity matrix constructed from photometric stereo
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images without using light source information.

5.4.1 Inverse Response Function Estimation with Ra-

tio of Singular Value Minimization

We first begin by explaining the image structure under nonlinear response

functions. Let Id is a column vector that represents pixel intensities of the d-

th image captured under dth light source. We can construct an image matrix

I by stacking image column vectors [I1, . . . , ID]. Here we take for grant that

the images are aligned so that the pixels from the same coordinate are on

the same row.

The image matrix I is equivalent to that converted from the irradiance

matrix with a response function, i.e., I = f(E) where f is a monotonic

increasing function that operates on the matrix E element-wise.

The nonlinearity of response function alters all elements in I so that the

linear dependency property does not hold and I becomes full-rank. Since

f is a monotonic function, there exists an inverse response function g such

that E = g(I) = f−1(I). So we propose a radiometric calibration method

that estimates an inverse response function g as a function that turns the

full-rank I into a rank-3 matrix.

We then formulate the calibration method by using a ratio of singular

values. Let sI = [s1, s2, . . . ] denotes singular values of the matrix I. The

rank-3 property suggests that the three largest singular values s1, s2, and s3

should be non-zero while the rest of singular values are near zero. However,

the effect of nonlinear response function causes variation in pixel intensities

so the singular values become nonzero everywhere, hence, full-rank structure.

Therefore we can cast the radiometric calibration problem to a singular value

minimization problem to determine the inverse response function ĝ that min-
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imizes the rest of singular values.

ĝ = arg min
g

D∑
i=4

sAi , (5.4)

subjects to A = g(I),
∂g(x)

∂x
> 0

where x is a dense sampling of pixel intensities in that range of [0, 1], e.g .,

x ∈ [0, 0.001, 0.002, . . . , 1]. Note that we normalized irradiance and pixel

intensities into the range of [0, 1] without losing its generality so we can

enforce boundary constraints g(0) = 0 and g(1) = 1.

This optimization setting is closely similar to rank minimization problem

which can be efficiently approximated by a nuclear norm minimization[61].

However, in our case, both nuclear norm minimization and directly mini-

mization of the
∑D

i=4 s
A
i are more likely to produce a degenerate solution

which causes all singular values to be zero and turns the image matrix into

a rank-1 matrix. We avoid this issue by adding a rank constraint to (5.4) to

enforce rank-3 structure. Intuitively, we want to prevent the third singular

value from becoming zero while minimizing the summation of the singular

values, therefore we make a modification by adding sA3 as:

ĝ = arg min
g

D∑
i=4

sAi
sA3
, (5.5)

subjects to A = g(I),
∂g(x)

∂x
> 0.

With this method we can estimate the inverse response function from 4 in-

put images of uncalibrated photometric stereo images. Although the cost

function in (5.4) can estimate an inverse response function accurately from

noise-free images or when there is a small amount of noise, we found that
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the IRF estimation performance degrades rapidly when noise increases.

We took the same approach as suggested by Lee et al .[27] to handle the

noise. Since the noise variates all singular values evenly, the smaller singular

values are therefore more severely affected by the noise. Instead, we can

conveniently use only the fourth singular in the IRF estimation to avoid the

variation from noise. The optimization problem then can be given by:

ĝ = arg min
g

sA4
sA3
, (5.6)

subjects to A = g(I),
∂g(x)

∂x
> 0.

Since all of the pixels share the same response functions, and given that

number of foreground pixels are larger than a number of unknowns, we can

speed up the estimation by using a subset of the images for the inverse

response function estimation instead of the whole images.

5.4.2 Response Function Representations

Thus far, we have not mentioned about the response function representation

of our method. Our method estimates inverse response functions that are

approximated by a linear combination of either a parametric model such as

polynomials[40] or an empirical model[17]. The polynomial representation

is one of the most widely used representations for radiometric calibration

researches[41, 27, 55]. It approximates a response function with K degree

polynomials as:

g(I) = I +
K∑
k=1

ckI
k, (5.7)

subjects to the boundary conditions, g(0) = 0 and g(1) = 1, and mono-

tonicity constraint ∂g(x)
∂x

> 0. This representation has been widely used in
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recent prior works[55, 27] because it can well approximate most of the typical

response functions with only fifth-degree polynomials.

The empirical model of response function (EMoR) is a model derived

from real-world response functions and it has been used in various previous

works[30, 36, 32, 28]. The K-parameters EMoR approximation of an inverse

response function is in the form:

g(I) = g0(I) +
K∑
k=1

ckgk(I), (5.8)

subjects to the boundary conditions and monotonicity constraints. Here, g0

is the mean curve or the 0-th basis function, gk is the k-th basis functions de-

rived from the response functions in the database with Principle Component

Analysis (PCA), and ck is the coefficient of the k-th basis function.

By substituting (5.7) or (5.8]) into (5.6), the optimization problem for

response function then becomes the problem of determining the coefficients

of the basis functions, e.g ., for EMoR representation,

{ĉk} = arg min
{ck}

sA4
sA3
, (5.9)

subjects to A = g0(I) +
K∑
k=1

ckgk(I),
∂g(x)

∂x
> 0.

Despite reported in a prior study[27] that the EMoR representation of

response function is unsuitable for gradient-based convex optimization, we

found that our implementation of the EMoR model works well in our exper-

iments.
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Figure 5.2: Samples of input images compared to the radiometric calibrated
images. (a) agfapan-apx-100CD, (b) agfa-scala-200xCDStandard (agfascala),
(c)gamma+2.2 (d) radiometric calibrated images.

5.5 Experiments

We evaluate the estimation accuracy of our proposed method on both syn-

thetic and real images.

5.5.1 Experiments on Synthetic Images

We performed the experiments to observe the inverse response function esti-

mation accuracy with synthetic images. We generated the synthetic images

of a Lambertian sphere, illuminated under 20 light source with a uniform

intensity. The light source was distributed so that the light source direc-

tions were uniformly over a hemisphere in which the sphere was placed at

the hemisphere’s center. We manually masked out the background and used

only 3228 foreground pixels in the estimation.

To obtain uncalibrated images, we applied nonlinear response functions

picked from DoRF[16] database to the calibrated images. The pixel intensi-

ties that have intensity values less than 5/255 were considered shadows and

were excluded from the inverse response function estimation.

We implemented two variants of our method with polynomial represen-

tation (Ours-poly) and EMoR representation (Ours-EMoR). Both variants
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Figure 5.3: Samples of the inverse response function estimated using our pro-
posed method compared to the ones estimated from previous methods. The
RMSE of the estimated functions are denoted in the legend. (left) agfapan-
apx-100CD (middle) agfa-scala-200xCDStandard (right) gamma+2.2

were implemented by using Matlab’s fmincon. They took about 5 seconds

for the EMoR variant and 1.3 seconds for the polynomial variant on an Intel

Core i5 2.7GHz machine to estimate an inverse response function.

We estimated the IRF using images prepared with response functions

the EMoR database. The number of basis functions for EMoR is K = 5

and we use 6-th degree polynomials (K = 6) for the polynomial variant.

In this experiment, we empirically used the number of random pixels at

P = 400. To demonstrate the estimation accuracy, we compared the root

mean square error (RMSE) of the estimated IRF to those of estimated by auto

radiometric calibration photometric stereo (Auto-PS) with K = 5 in Figure
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Figure 5.5: Average RMSE of the estimated inverse response functions using
various number of images. The error bars indicate standard deviation of the
RMSE.

5.4. The mean and standard deviation of RMSE of the inverse response

function estimated by Ours-EMor, Ours-poly, and Auto-PS were 0.0088 (Sd.

0.0086), 0.0182 (Sd. 0.0256), and 0.0035 (Sd. 0.0038) respectively. Note

that this was an indirect comparison because Auto-PS requires known light

source directions.

The experimental results suggested that Ours-EMoR can estimate the

inverse response function relatively well for most of the response functions

in the database except for a few ones that cannot be represented well with

EMoR representation. The number of the estimated inverse response func-

tions that have the RMSE less than 0.02 was 185 functions. For Ours-poly, it

can accurately estimate smaller subsets of the response functions and there

were 135 inverse response functions with the RMSE less than 0.02. We show

examples of the estimated functions using our proposed method compared

with the previous methods in Figure 5.3.

We then observed the effect of the number of images on the estimated
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function. In this experiments, we prepared images with three response func-

tions, namely, agfapan-apx-100CD, agfa-scala-200xCDStandard, gamma+2.2.

Instead of using the whole set of input images, we selected only a small sub-

set of images for the inverse response function estimation. We repeated this

for several times with various numbers of images. We show the RMSE of the

estimated images with a different number of images in the Figure 5.5.

If a subset of the selected images were relatively similar to each other, or

the light sources used for capturing those images lie close to each other in

the same plane, the images exhibited linear dependency in the image matrix.

When the number of images is small, our assumption that the irradiance

matrix should have the rank of three might no longer hold. Therefore, in

this case, our algorithm produced degenerate solutions which caused a very

large RMSE. On the other hand, when the number of images was sufficiently

large, the probability that the selected images can cause linear dependency so

that is lower, our algorithm could produce appropriate solutions even though

there might have some similar images selected in the estimation. Therefore

the standard deviation became smaller.

The experimental results suggested that the average RMSE increased

when the number of images was increased. This was because our shadow

thresholding aggressively removed pixel coordinates that overlap with shadow

regions. Therefore, it was more likely that the pixels near shadow regions

were also removed so that the inverse response function could not be con-

strained well.

We assessed the inverse response function estimation accuracy of our

method from noisy images. In these experiments, we implemented two cost

functions given by (5.5) and (5.6) with two response function representation.

We denote the implementation of (5.5) with EMoR and polynomials represen-
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Figure 5.6: The mean of RMSE of the inverse response function estimated
from images with various noise levels. (top) agfapan-apx-100CD (bottom-
left) agfa-scala-200xCDStandard (bottom-right) gamma+2.2

tation as Ours-all-EMoR and Ours-all-poly, and denote the implementation

of (5.6) with EMoR and polynomials representation as Ours-s4-EMoR and

Ours-s4-poly.

We prepared the images for the experiments by using additive Gaussian

noise to the calibrated images and then applied the nonlinear response func-

tions to obtain the uncalibrated images.

We compared the inverse response functions estimated with all variants

in Figure 5.7. It is clear that the variants with (5.6) were more robust to

noise as they could produce inverse response functions with smaller RMSE
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Table 5.1: The mean of angular difference in degrees of the surfaces estimated
from synthetic images calibrated with our method, uncalibrated images, and
calibrated images compared to the ground truth.

Response Ours-s4 Ours-all PF14 PF14
functions PF14 PF14 (uncal.) (cal.)

agfapan-apx-100CD 5.15 5.16 9.40 5.226
agfa-scala-200xCDStandard 5.19 5.18 6.260 5.226

gamma+2.2 5.18 5.18 6.913 5.226

Response Ours-s4 Ours-all QLD15 QLD15
functions QLD15 QLD15 (uncal.) (cal.)

agfapan-apx-100CD 5.14 5.15 13.18 5.101
agfa-scala-200xCDStandard 5.14 5.58 5.18 5.101

gamma+2.2 5.65 5.57 7.32 5.101

when noise increased. However, we found that Ours-all-EMoR and Ours-all-

poly produced more accurate results than Ours-s4-EMoR and Ours-s4-poly

when there is a small amount of noise. This was because nonlinear response

functions were the major sources of the singular values variation in the image

matrix when the noise was minimal. The Ours-s4 variants, therefore, could

not capture this variation, hence, produced sub-optimal solutions. In con-

trast, minimizing all of the singular values leads to the more accurate inverse

response functions in this case.

On the other hand, when the noise level increased, the effect of noise

on the singular value variation became larger everywhere. Ours-s4-EMoR

and Ours-s4-poly excluded small singular values from the inverse response

function estimation, therefore, they were more robust to noise.

Lastly, we assessed the accuracy in the surface estimation by applying our

inverse response function estimation to two existing uncalibrated photometric

stereo methods, namely, PF14[48] and QLD15[52]. Both methods assume

directional light sources and require about 10-20 images to estimate surfaces

with uncalibrated photometric stereo. In these experiments, we used the
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Table 5.2: The RMSE of the estimated inverse response functions estimated
from real images. Note that Auto-PS requires light source directions for the
estimation.

input images Ours-s4 Ours-all Auto-PS

sphere agfapan-apx-100CD 0.019 0.057 0.003
sphere agfa-scala-200xCDStandard 0.016 0.016 0.006
sphere gamma+2.2 0.018 0.018 0.066

synthetic images prepared with the response functions agfapan-apx-100CD,

agfa-scala-200xCDStandard, and gamma+2.2.

We compared the estimated surfaces to those estimated with radiometri-

cally uncalibrated and calibrated images. The qualitative results are shown

in the Figure 5.8. The error maps indicated that our proposed method can

compensate the nonlinearity of response functions so the estimated surfaces

were more similar to the ones estimated from calibrated images regardless

the inaccurate estimated inverse response functions. In contrast, the surfaces

that were estimated directly from the uncalibrated images suffered from the

nonlinearity so they differed from the ground truth.

The mean of angular error of the estimated surfaces was summarized in

Table 5.1. The angular errors of the surfaces estimated from the calibrated

images and from the uncalibrated images with our method were relatively

the same. As we used noise-free images in these experiments, the difference

of the mean angular error of the surfaces estimated by Ours-all and Ours-s4

variants were insignificant.
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Figure 5.7: Samples of the inverse response function estimated from im-
ages with different noise level (top) agfapan-apx-100CD (middle) agfa-scala-
200xCDStandard (bottom) gamma+2.2
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5.5.2 Experiments on Real Images

We evaluated the estimation accuracy of our method with the experiments

on images of real objects, sphere, and statue. sphere is a plaster sphere with

broad specular surfaces and statue is a plaster sculpture. We placed the

objects of interests under 20 light sources placed randomly over the objects

then captured the images with a Point Grey Flea 2 camera. Instead of linear

measurements of light intensity, we configured the camera’s intensity lookup

table so acted like a nonlinear camera in this setting. We configured the

camera with the measured agfapan-apx-100CD, agfa-scala-200xCDStandard,

and gamma+2.2 nonlinear response functions to represent three common

shapes of nonlinear functions in the response function database[17]: concave,

convex, and sigmoid.

Since there is no ground truth available for the target objects, we con-

sidered the surface normals estimated from the radiometrically calibrated

input images with PS-SBL [24] as ground truth. Both have 28900 and 82800

foreground pixels respectively.

We performed the inverse response function estimation using two versions

of our proposed method. Both versions used the EMoR representation but

used different cost functions for the inverse response function estimation.

More specifically, we implemented the optimization given in (5.5) and (5.6)

and denoted them with Our-all and Our-s4 respectively.

We then compared the estimated surfaces to the ones estimated from

both radiometrically calibrated and uncalibrated with PF14 and QLD15.

Figure 5.9 and 5.11 show the qualitative experimental results. The error

maps show the angular difference of the estimated surfaces compared to the

ground truth. It is obvious to see that the surfaces estimated from the uncal-

ibrated method were more different to the ground truth than ones estimated
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Table 5.3: The mean of angular difference in degrees of the surfaces esti-
mated from real images calibrated with our method, uncalibrated images,
and calibrated images compared to the ground truth.

input images
Ours-s4 Ours-all PF14 PF14
PF14 PF14 (uncal.) (cal.)

sphere agfapan-apx-100CD 4.69 6.55 5.15 7.79
sphere agfa-scala-200xCDStandard 6.38 6.27 13.06 7.79
sphere gamma+2.2 9.48 8.18 30.10 7.79
statue agfapan-apx-100CD 4.87 9.35 7.49 7.49
statue agfa-scala-200xCDStandard 7.23 6.27 8.90 7.49
statue gamma+2.2 7.12 7.00 10.31 7.49

input images
Ours-s4 Ours-all QLD15 QLD15
QLD15 QLD15 (uncal.) (cal.)

sphere agfapan-apx-100CD 5.49 5.59 11.44 5.49
sphere agfa-scala-200xCDStandard 3.93 3.95 11.03 5.49
sphere gamma+2.2 6.49 5.83 20.90 5.49
statue agfapan-apx-100CD 9.05 13.04 10.74 10.5
statue agfa-scala-200xCDStandard 9.21 9.64 10.04 10.5
statue gamma+2.2 8.34 8.69 13.39 10.5

from the calibrated images. On the other hand, the inverse response func-

tion estimated from our proposed method compensated the nonlinearity of

the response functions so that the estimated surfaces were relatively similar

to the ones estimated from calibrated images.

The quantitative results were summarized in Table 5.3. We can see that

the angular error of the surfaces estimated with the calibrated images and

the images calibrated with our methods had comparable angular errors. Al-

though there were some image sets that the angular error did not improve

the angular error, namely, statue agfapan-apx-100CD and statue agfa-scala-

200xCDStandard estimated by QLD15, we can see that the images calibrated

with our method produced more similar surfaces to the ground truth.
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Table 5.4: The RMSE of the estimated inverse response functions estimated
from real images. Note that Auto-PS requires light source directions for the
estimation.

input images Ours-s4 Ours-all Auto-PS

sphere agfapan-apx-100CD 0.143 0.168 0.061
sphere agfa-scala-200xCDStandard 0.117 0.104 0.038
sphere gamma+2.2 0.063 0.120 0.106
statue agfapan-apx-100CD 0.017 0.067 0.051
statue agfa-scala-200xCDStandard 0.079 0.187 0.020
statue gamma+2.2 0.058 0.126 0.115
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Figure 5.9: Surface estimation results from real images sphere. (top) sample
of inputs (middle) estimated surface normals (bottom) angular difference to
the ground truth
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Figure 5.10: Inverse response functions estimated from the real im-
ages Sphere. (a) agfapan-apx-100CD (b) agfa-scala-200xCD Standard (c)
gamma+2.2
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Figure 5.11: Surface estimation results from real images statue. (top) sample
of inputs (middle) estimated surface normals (bottom) angular difference to
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Figure 5.12: Inverse response functions estimated from the real im-
ages Statue. (a) agfapan-apx-100CD (b) agfa-scala-200xCD Standard (c)
gamma+2.2
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5.6 Conclusion

In this chapter, we present an auto radiometric calibration method for photo-

metric stereo images. It makes use of linear dependency and prior knowledge

about the rank of the to determine an inverse response function that re-

stores the best rank-3 structure from the input images. This method does

not assume known light source directions and intensities. Therefore we can

apply this method to the datasets for uncalibrated photometric stereo. We

empirically show that our proposed method can compensate the nonlinearity

of the response function so estimate the inverse response function relatively

well even though the light source direction is not known beforehand.

Our proposed method has a major limitation. It clearly cannot determine

response functions of a data set which the images are on the same plane or

relatively similar. Moreover, we aggressively exclude pixel coordinates from

the inverse response function estimation even if there exists a shadow pixel

on that coordinate. Therefore, there will be fewer pixels left for the inverse

response function estimation if the input images have large regions of shadows

in the foreground.
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Conclusion

We have presented a photometric stereo technique that accounts for the effect

of nonlinearity of response function that resides in the input images that were

captured by a camera with an unknown non-linear response function. The

proposed method makes use of the consistency of the irradiance calculated

from a reflection model and the irradiance calculated from an inverse response

function. By expressing the inverse response function as a linear combination

of basis functions, we can formulate a linear least squares problem to estimate

surface normals and coefficients that best match the input images.

Then, we have also presented an extension to handle non-Lambertian

surfaces. In this work, we developed a unified framework that incorporates

arbitrary photometric stereo technique into our inverse response function

estimation method. Our key assumption in this work is that pixels with dif-

fusion reflection are dominant and specular highlights can be observed within

limited angles. Then the corrupted measurements such as noisy pixels and

specular highlights can be regarded as outliers to the Lambertian reflection

model. We have done this by using RANSAC algorithm to propose the simul-

taneous surface normals and inverse response function estimation framework
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that maximizes the number of diffuse pixels.

We refocused our attention to pursue more practical ground in auto ra-

diometric calibration by continuing our research into the uncalibrated pho-

tometric stereo. We have presented an auto radiometric calibration method

that takes uncalibrated photometric stereo input images and gives inverse

response functions to cancel out the effect of the response function used for

capturing the scenes as an output. We used a priori knowledge regarding the

reflectance of the objects to construct an image matrix that exhibits linear

dependency. Then we constrain the rank property to solve for the coefficients

of the inverse response functions.

As a whole, we have proposed surface estimation techniques that not

only accounts for surface properties but also camera properties. They make

use of inherent cues that reside in the images to allow ones to recover scene

structure from images with less cumbersome calibration step.

6.1 Future Work

There are a number of open questions that still left to be addressed. We

have not explored how to incorporate non-Lambertian diffuse reflection and

more complex materials such as BRDF into our model. Since we assume

that non-Lambertian model exhibit Lambertian reflection where the specular

highlight is not observed, it fails to handle many real-world surfaces that are

better explained by BRDF. Therefore, it is interesting to directly extend

the consistency of the irradiance for such models to capture more real-world

reflections.

Another possible research would be incorporating the auto radiomet-

ric calibration under more complex illumination such as a near-point light
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source. It is known that light fall off is an important clue for constraining

GBR ambiguity [38, 49, 64] and radiometric calibration [50]. So it would be

interesting whether it can be applied to auto radiometric calibration as well.

Last but not least, there are some things we have yet to try in our ex-

periments, e.g ., replacing our fix threshold for shadow thresholding with an

adaptive threshold so it can capture more non-shadow pixel intensities that

are altered to be shadow more effectively.
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