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Abstract 

 

3D urban maps serve as essential information for a wide range of applications, 

including autonomous vehicle positioning, drone navigation, satellite signal simulation, 

wireless planning, urban planning, city visualization, and disaster simulation. In this 

dissertation, a complete framework for the automatic urban 3D mapping is proposed 

which follows two main objectives: 1) Generating highly accurate and precise urban 3D 

point cloud; 2) 3D building map reconstruction by combining ground and aerial data, and 

optimizing the generated map using the satellite measurements. 

A variety of applications has utilized a mobile mapping system (MMS) as the 

main 3D urban remote sensing platform. However, the accuracy and precision of the 

three-dimensional data acquired by an MMS are highly dependent on the performance of 

the vehicle’s self-localization, which is generally performed by high-end GNSS/IMU 

integration. However, GNSS/IMU positioning quality degrades significantly in dense 

urban areas with high-rise buildings, which block and reflect the satellite signals. 

Traditional landmark updating methods, which improves MMS accuracy by measuring 

ground control points (GCPs) and manually identifying those points in the data is both 

labor-intensive and time-consuming. In the first part of this dissertation, a novel and 

comprehensive framework for automatically geo-referencing MMS data by capitalizing 

on road features extracted from high-resolution aerial surveillance data is proposed. The 

proposed framework has three key steps: (1) extracting road features from the MMS and 

aerial data; (2) obtaining Gaussian mixture models from the extracted aerial road features; 

and (3) performing registration of the MMS data to the aerial map using a dynamic sliding 
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window and the normal distribution transform (NDT). The accuracy of the proposed 

framework is verified using field data, demonstrating that it is a reliable solution for high-

precision urban mapping. 

Vehicle self-localization techniques, such as GNSS, visual odometry, and LiDAR 

scan matching can benefit greatly from 3D map of the surrounding area, especially in 

urban areas. However, 3D map formats such as point cloud and mesh are not suitable for 

these applications, because 3D map assisted vehicle self-localization requires features 

such as edges and surfaces of the buildings, and also the size of the 3D map should be 

compact. Therefore, 3D reconstruction of buildings is necessary to represent the 3D 

geometrical models. Accurate and automatic 3D building map reconstruction is 

challenging in dense urban areas, where buildings are located close to each other. If the 

precise 2D boundary of buildings and its roofs are available, the 3D model can be 

reconstructed by adding the height information to each roof segment. However, 2D maps 

usually provide only the rough footprint of the buildings which is not precise enough. On 

the other hand, with the development of laser scanning technology, airborne laser 

scanning (ALS) has now become readily available for large-scale city mapping, but it is 

still difficult to generate a 3D map using only airborne point cloud due to the difficulty in 

defining the original boundary of each building. In the second part of this dissertation, the 

precise MMS data generated in the first part is combined with the aerial point cloud to 

perform an accurate and precise 3D modeling. Finally, the position of the walls in the map 

is optimized using the satellite signal reflections. 
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Chapter 1.  

Introduction 

 

Accurate and precise three-dimensional maps are essential for many emerging 

applications such as autonomous vehicle positioning, drone navigation, satellite signal 

simulation, wireless planning, urban planning, city visualization, and disaster simulation. 

The accuracy and precision of the map are critical for many of these applications. 

With the development of the advanced technologies such as high-resolution 

imagery and LiDAR sensors equipped on aircrafts and vehicles, the large-scale 3D urban 

mapping became available and applied for many different applications. However, 

automatic processing of a large amount of data provided by these high-definition sensors 

become a challenge for generating highly accurate and precise 3D maps. 

The objective of this research is to produce a high-definition 3D map of urban 

area in different formats by an accurate and precise manner with a fully automated 

framework. The proposed framework should meet following properties: 

 Automation: The 3D map should be generated automatically with a minimum user 

interaction and minimized field surveys. 

 Scalability: The framework should be able to scale for large-scale cities without 

losing other important properties such as automation, accuracy, and precision. 

 High-definition: The method should be able to produce high-resolution outputs 

which represent the geospatial reality in the urban areas.  

 Accuracy: The 3D information generated through the framework should have a 

global geospatial accuracy which is defined for different applications. 
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 Precision: The elements in the map should have high-precision which limits the 

uncertainty of the data, meaning that the different surveys should give the same 

quality data.  

 Applicability: The method should be able to generate outputs in different formats 

such as point cloud, polygonal mesh and vector map to be applied for a different 

application. 

In this dissertation, a comprehensive framework for the urban mapping will be 

proposed which fuses aerial surveillance data and mobile mapping. In this framework, 

the aerial data is taken into account for acquiring the global accuracy and the 3D geometry 

of the structures such as buildings, and MMS is considered for the high-definition data 

acquisition of the urban area from street view. The two aerial and ground-based 

surveillance platforms have complementary features which are effectively considered in 

the proposed framework. Finally, the GNSS measurements are employed to analyze and 

optimize the 3D position of the walls in the generated building models. Chapter 2 covers 

the general overview of the 3D urban mapping. 

In Chapter 3, a novel framework to generate high-definition mobile mapping data 

is proposed which meets the above mentions requirements. The overview of the proposed 

framework is illustrated in Figure 1-1. This system contains these steps: 1) Acquiring 

aerial data consisting of high-resolution aerial image and aerial laser scanning (ALS) with 

the fusion of high-end RTK-GPS and IMU; 2) Generating high-resolution mobile 

mapping surveys containing camera and LiDAR point cloud using high-end RTK GPS, 

IMU and odometer; 3) Calibration of the aerial data with few number of ground control 

points (GCPs); 4) Filtering the buildings and their relief displacement in the aerial image 

using building occlusion map generated by perspective projection of digital surface model 
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(DSM) made from ALS; 5) Filtering moving vehicles from the aerial image using 

multiple aerial images; 6) Extracting road markings from the aerial image utilizing 

adaptive thresholding; 7) Generating normal distribution map from aerial road markings 

which is considered as the reference for the matching; 8) Subdividing each MMS survey 

into small patches; 9) defining a dynamic sliding window over patches to register the 

target patch in the middle of the window; 10) Register the dynamic window to the aerial 

reference using normal distribution transform (NDT); 11) Adjust the MMS trajectory and 

regenerate the MMS data. This method can achieve high accuracy and precision without 

performing labor-intensive and costly landmark update technique which requires field 

 

Figure 1-1. Overview of the MMS registration method. Brown points show the ALS data. The 

middle region shows the aerial image. The black and white part shows the extracted 3D lane 

markings, and blue and green points show the registered MMS survey. 
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survey for hundreds of GCP acquisition and manually picking the points in the point cloud. 

In most of the cases, the accuracy of the output generated using our proposed method can 

even outperform the traditional landmark updating.  

In Chapter 4, the MMS registration framework is extended to three-dimension 

by generating three-dimensional road marking reference from both aerial image and laser. 

In the 3D framework, all registrations are extended from 2D registration to 3D by 

formulating the z-coordinate in the formulations. Using this framework, an accurate and 

precise 3D MMS point cloud is obtained. 

In order to make the large size point clouds of the city with billions of points 

applicable for a variety of applications, an automatic 3D building modeling approach is 

proposed in Chapter 5 of this dissertation. The proposed method takes the combined ALS 

and MMS point cloud as input and generates vector based 3D building models with much 

less information. To generate these three-dimensional models, the buildings segmentation 

is first performed utilizing the 2D boundary map provided by governments. Then, a 

method based on the z-coordinate histogram is proposed to segment the roofs of each 

building. Later, the 3D shape of each roof is reconstructed by feature detection using 

RANSAC and the proposed roof reconstruction algorithm. Finally, reconstructed 

 

Figure 1-2. Overview of the 3D building model reconstruction from point cloud data. The 

modeling is divided into these steps: 1) Building segmentation; 2) Roof segmentation; 3) Roof 

reconstruction; 4) Building reconstruction. 
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buildings are put in the corresponding height to generate the 3D model of each building. 

Figure 1-2 shows the 3D building model reconstruction overview. The reconstructed 3D 

building is optimized one more time using the satellite signal reflections to achieve the 

global accuracy. 

 Accurate and precise urban mapping framework 

In this chapter, a thorough framework for the urban mapping and modeling is 

proposed. The urban mapping suffers from some main challenges. One of the main 

challenges is that the aerial surveillance data do not provide street view details of the 

urban structures and the MMS data have a significant global error because of the 

GNSS/IMU integration problem in an urban area due to the blockage and reflection of 

the satellite signal by the tall buildings. Another main problem of the urban mapping is 

that the point cloud format is too big data because of its format which is not suitable for 

many applications. In this framework, we tackle both of these challenges to make 

automatic accurate and precise 3D mapping and modeling for the dense urban areas where 

there are a lot of tall buildings and also the distance between the buildings are less and 

difficult to distinguish them from each other.  

In this framework, we take multiple aerial images, aerial laser scanning, MMS 

point cloud, MMS images, 2D boundary map and GNSS measurements as inputs and 

output precise and accurate 3D point cloud of the city in addition to 3D buildings models. 

The proposed framework fuses the aerial surveillance data and mobile mapping data to 

perform high-definition, high-accuracy and high-precision 3D mapping and modeling of 

the urban areas. In this framework, the aerial data is taken into account for acquiring the 

global accuracy and the 3D geometry of the structures such as buildings, and MMS which 

is considered for the high-definition data acquisition of the urban area from street view. 
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The two aerial and ground-based surveillance platforms have complementary features 

which are effectively considered in the proposed framework. Finally, the GNSS 

measurements are employed to analyze and optimize the 3D position of the walls in the 

generated building models. Figure 1-3 illustrates the flowchart of the proposed 

framework. 

As can be seen, the proposed framework is made from two main part. The 

objective of the first part is to generate highly accurate MMS data by registering them to 

aerial surveillance data. Aerial data provides 3D geometry of the buildings and roads from 

the top view. However, many applications require high-resolution data from the street 

view. Of course the MMS could a good solution for this demand but the data collected by 

MMS suffers from positioning error. This error makes the MMS data collected in an urban 

area not applicable for important applications such as intelligent vehicle’s localization 

and navigation. To preserve the accuracy of MMS data, we proposed a framework which 

is illustrated in the left part of Figure 1-3. In this part, we take MMS data of each survey, 

subdivide them to small patches and register them to aerial images based on road 

markings extracted from both data. Since the aerial image is two-dimensional information, 

we cannot use it for three-dimensional registration of the MMS data. Multiple overlapping 

aerial images can be used to generate 3D aerial images, but the generated 3D models 

using this method suffers from poor triangulation. Therefore, we can use the only aerial 

image for the highly accurate data generation for the urban areas. Instead of using only 

aerial images, we take ALS data into account to generate a highly accurate 3D reference 

for the registration. For the registration, we propose a method using dynamic sliding 

window over patches of each MMS survey for geo-referencing. The output of this part is 

accurate MMS data and 3D road map. This information can be used in a variety of 
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applications including intelligent vehicles localization, navigation and perception which 

require highly precise maps. 

In the next step, the generated point cloud information is fused with ALS to 

reconstruct the building models in the city. The main problem of the point cloud data is 

its large data size and district point structure which make it unusable for many 

applications. In order to make the large size point clouds of the city with billions of points 

applicable for a variety of applications, an automatic 3D building modeling approach is 

proposed which is shown on the right side of the flowchart. The proposed method takes 

the combined ALS and MMS point cloud as input and generates vector based 3D building 

models with much less information. To generate these three-dimensional models, first the 

buildings segmentation is performed utilizing the 2D boundary map provided by 

governments. Then, a method based on the z-coordinate histogram is proposed to segment 

the roofs of each building. Later, the 3D shape of each roof is reconstructed by feature 

detection using RANSAC and the proposed roof reconstruction algorithm. Finally, 

reconstructed buildings are put in the corresponding height to generate the 3D model of 

each building. 

The remaining part of this document is organized as follows: Chapter 2 covers 

the general overview of the urban mapping framework. The 2D MMS registration 

framework and its details are described in Chapter 3 and different experimental results 

are analyzed to evaluate the proposed framework. Chapter 4 extends the 2D registration 

framework to 3D. Chapter 5 covers the 3D building map reconstruction from point cloud 

data. The conclusion and possible future extensions are discussed in Chapter 6. Finally, 

the Appendix covers the description of the social innovation project designed for the 

social ICT global creative leaders (GCL) program. 
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Chapter 2.  

General Overview of 3D Urban Mapping 

 

 

 Introduction 

Three-dimensional map is the main provider of static environment information 

in the urban areas and may contain a variety of information such as roads, lane positions, 

road markings, intersections, road signs, buildings, bridges, vegetation and other 3D 

structures in the city. In the last decades, 3D city maps mainly appeared for the city 

visualization. However, today these 3D maps are being increasingly employed in a 

different formats for a wide range of applications such as urban planning [1], wireless 

communication planning [2], disaster simulation [3], intelligent vehicles’ localization and 

navigation [4]–[6], road asset inventory [7], railway modeling [8], and vegetation 

detection [9].  

Large-scale spatial information of the city is derived from different data 

acquisition technologies. A standard technique of the urban 3D mapping is to apply stereo 

vision on terrestrial, aerial and satellite imagery [10]. With the advances in the laser 

technologies, aerial and terrestrial laser scanners have become other popular platforms 

for generating 3D road and building models. 

 Data acquisition platforms 

There are a variety of data acquisition platforms for the urban mapping. In this 

section, we will describe the most popular mapping platforms which are MMS and aerial 
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surveillance system. 

2.2.1. Mobile mapping systems (MMS) 

The mobile mapping systems (MMSs) are a sensor platform mounted on the roof 

of a ground vehicle in combination with high-end GPS, inertial measurement unit (IMU) 

and odometer to rapidly capture a lot of 3D datasets essential for creating highly accurate 

and high-resolution representation of the roads and their surrounding environment. These 

systems were designed for the first time in the late 1980s when the GPS technology 

becomes available for public civil usages [11]. While the definition of the MMS is quite 

simple, the real MMS workflow contains plenty of essential factors which missing each 

of them leads fail in the quality control. Figure 2-1 illustrates the generalized workflow 

of the MMS including middle products of each step [12]. This workflow shows the 

 

Figure 2-1. Generalized MMS workflow [13]. 
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detailed consideration of a single data collection using MMS. Traditionally, the MMS 

workflow consists of plenty of site surveys and experiments which require labor-intensive 

and time-consuming procedures. 

2.2.2. Aerial surveillance system 

Aerial surveillance systems including aerial imagery are one of the oldest and 

widely used approaches for the remote sensing of the urban areas. High-resolution aerial 

images can provide an instant data set of a wide area of the city which is very suitable for 

the mapping process. Vertical aerial photos, if combined with accurate localization of the 

aircraft which is obtained from GPS and IMU fusion, can provide geo-referenced data 

which is required in a variety of applications.  

Vertical aerial photos are taken with the high-resolution cameras pointed straight 

down. These photos contain relief displacement of the vertical structures in the urban area. 

If the photos are taken with considerable overlaps along the flight line and between the 

lines, 3D information can be generated using stereo images. However, these technique 

suffers from the poor triangulation. With the development of laser technologies, these 

aerial systems started to be equipped with LiDAR sensor for acquiring direct 3D geometry 

information from the high-altitude. The combination of the aerial images and the LiDAR 

data can provide us an accurate and high-resolution aerial data which can capture the 3D 

geometry of the tall buildings and their roof information which MMS cannot provide. 

Also, since the airplane is flying at a high altitude, its localization is much accurate 

compared with MMS localization. Furthermore, aerial imagery captures a large area in an 

instant shot which makes the relative accuracy of all pixels in an image quite accurate 

compared to laser point clouds.  
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 Map format 

Despite the three-dimensional characteristics of the all objects in the city, the 

map representing them might be in 2D, 2.5D or 3D format. Moreover, 3D maps can be 

served in different formats such as point cloud, polygonal mesh or vector map. For 

deciding the dimension and format, we have to take into account all potential 

requirements of each specific application, and decide the benefit and advantage which 

each format can provide for our use.  

 Applications 

As mentioned in the introduction, three-dimensional maps have been employed 

for a wide range of applications. In this section, we present some of the most recent and 

state of the art applications of the urban 3D urban map. 

2.4.1. Intelligent vehicles localization  

Intelligent vehicles are defined as a system that enables a vehicle to perform a 

collection of intelligent functions such as positioning, navigation, perception, path 

planning, maneuver, and collision avoidance by perceiving its environment using a 

variety of sensors. As the main provider of static environment information for the 

intelligent vehicles, the precise map is considered as a fundamental requirement for a 

wide range of applications.  

Advanced Driving Assistance Systems (ADAS) which offer a mean to enhance 

active and integrated safety are one of the applications that benefit from having access to 

the map [13]. Detailed digital maps have been widely used for these systems and have 

become a “virtual sensor” integrated into the system [14]. ADAS map records a variety 

of information such as traffic signs, traffic lights, lane information, road slope, curvature, 



Chapter 2. General Overview of 3D Urban Mapping 
 

 

 
13 

and height which some of they may not be interesting for a human driver, but they offer 

many benefits to the ADAS applications installed on intelligent vehicles. A good example 

which benefits from ADAS map is the predictive adaptive front lighting system (PAFS). 

The light-based ADAS, which consist of swiveling and tiltable head-light to improve the 

illumination of the road, swivels the headlight depending on the steering angle, map 

information, speed and position of the vehicle, and enables a predictive and early 

swiveling of the headlight to an approaching curve in the map [15]. If a car knows it is on 

a hill and going toward downhill, it can switch to the electric power to take it to the bottom 

of the hill, because it has seen the destination on the map. Figure 2-2 illustrates a sample 

ADAS map generated for the main campus of the University of Tokyo. The map consists 

of the building footprints, drivable areas, sidewalk areas, center line of the road, lane 

information, intersections, road markings, guardrails, poles, traffic signs, traffic lights, 

 

Figure 2-2. ADAS map of the Hongo campus, University of Tokyo. This map is generated from 

the point cloud data acquired by MMS survey. 
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and curve mirrors. 

Self-localization is another crucial requirement of the intelligent vehicles which 

is tightly depending on the precise map. The main vehicle-based self-localization 

technologies such as global navigation satellite systems (GNSS), three-dimensional light 

detection and ranging (LiDAR), and vision-based systems can be assisted by the prior 

map. GNSS is proved as reliable vehicle self-positioning technology for the open sky 

scenario [16]. However, in the urban area with tall buildings, it suffers from the effect of 

multipath and non-line-of-sight (NLOS) [17]. Ray-tracing of the satellite signals reflected 

by buildings within a 3D building map assists GNSS to deal with the problem of signals 

blocked or reflected by buildings in urban areas [5], [18], [19].   

One of the popular LiDAR-based localization is LiDAR odometry and mapping 

 

Figure 2-3. Vehicle self-localization within high-definition point cloud map using 16-layer 

laser scanner and map matching. 
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(LOAM). This method uses online range measurements from the LiDAR mounted on a 

moving vehicle to estimate the 6DOF the car. However, even the state of the art techniques 

using the LiDAR odometry has few meters of localization error in trajectories more than 

few hundred meters [20]. Another well studied LiDAR-based positioning technique for 

the urban area is map matching technique [21]–[23]. This method can achieve high 

accuracy position relative to the prior map, but the map precision and accuracy are vital 

for their global accuracy. Figure 2-3 shows the vehicle self-localization within high-

definition 3D point cloud map.  

Vision-based localizations designed for automated urban driving have the same 

characteristics as LiDAR. Visual odometry suffers from the accumulative localization 

error [24]. Instead, many monocular and stereo vision-based techniques use a precise 

feature map for intelligent vehicle’s positioning [4], [25], [26].  

2.4.2. Road and city asset management 

The government bodies and transportation agencies require managing their every 

road and city assets to maintain the safety standards and quality of the utilities [27]. The 

3D map would also contain high-definition road and highway data which can be used for 

road asset management. In order to increase the road efficiency, perform the regular 

maintenance, improve the safety, transportation agencies are expected to record and 

monitor every asset in the road, and perform virtual surveys. Different efforts have been 

made on the national levels to give a momentum to asset management operations, and 

many government agencies are required or even mandated to develop a detailed road asset 

management plan [28]. A variety of road assets including traffic lights, road signs, and 

utility poles are among those items that regularly are monitored in such systems. 
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Figure 2-4 illustrates an example of road assets to be managed in the map. 

2.4.3. Wireless telecommunication planning 

Wireless communication planning of the outdoor environment is one the key 

requirements for the cities to keep up with new generations of wireless communication 

technologies and rising demands for data capacity and download speeds on cellular 

networks [29]. To understand the signal propagation model in the urban scenarios with 

dense high-rise buildings which cause shadowing by occluding the line-of-sight (LOS), 

channel measurement campaigns are required. To obtain enough data to accurately model 

the wireless channel, few months of measurement is required [30]. Instead, simulation 

 

Figure 2-4. Some example of road assets to be recorded and managed using MMS survey 

performed regularly. 
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done by radio propagate software using ray tracing within a 3D map of the city can 

significantly decrease the extreme amount of time and labor required for measurements 

from many different spatial directions and locations. These tools enable the accurate 

corroboration of the field measurements by simulating the wireless propagation [29]. This 

application requires a large-scale 3D map of the city to perform their ray-tracings. The 

quality of the simulation is tightly connected to the resolution and accuracy of the 

generated 3D map. In addition, the simplicity of the map is required to reduce the 

computation time for the ray tracing. In addition, the material of the buildings facades 

helps to make the simulation result much more close to the reality. RabLab [31], XGtd 

[32] and InSite [33] are examples of signal propagation simulators. Figure 2-5 shows the 

ray tracing using InSite application. 

 

 

Figure 2-5. Wireless communication ray tracing using 3D building models for base station 

positioning (Source: REMCOM Wireless InSite®). 
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2.4.4. Urban city analysis and planning 

In the field of urban planning, the term “urban models” are defined as 

“simplifications of reality – theoretical abstractions that represent systems in such a way 

that essential features crucial to the theory and its application are identified and 

highlighted [34].” These urban spatial models are widely being used to simulate the way 

cities function and convert theory into a testable form without a physical experimentation 

on the real world, and thus support the policy making, city analysis and planning. Over 

the time, theories, technologies, and methodologies have shifted from a 2D to more 

effective 3D models [35]. These models are used for a variety of urban planning tasks and 

applications such as sustainable, hazard, and policy planning, consent, shadow, lighting 

and visibility assessment, growth management, and site familiarization [36].  

2.4.5. 3D city visualization 

3D city models started evolving during the mid-1990s, due to the shift from 2D 

 

Figure 2-6. The area around Tokyo tower from Google earth. 
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to 3D in geographic information systems, and simple 3d models were generated for the 

visualization purposes from the textured digital surface models (DSM) [37]. Visual 3D 

model of the Earth is the information extracted from the aerial and street-level data and 

consists of the 3D geometry of nature and human-made objects on the Earth. Google Earth 

and Microsoft’s Bing maps are examples of the virtual earth [38]. Figure 2-6 illustrates 

the area around the Tokyo Tower in Google Earth. These 3D models have a wide range 

of visual applications such as car navigation, virtual tourism, virtual reality, computer 

games and heritage preserving. Many virtual city applications do not require a high-

accuracy map. However, they require an appearance looking like reality to the human 

eyes. Aerial stereo is advantageous for such applications, because it can provide a nice 

view from the top view which is suitable for virtual city and tourism. 
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Chapter 3.  

Registration of Mobile Mapping System and 

Aerial Imagery 

 

 

 Introduction 

With the ability to obtain high-definition 3D environment information, mobile 

mapping systems (MMS) as the main urban remote sensing platform have been widely 

used in variety of applications such as 3D map reconstruction for intelligent vehicles’ 

navigation and control [39]–[41], 3D city modeling [42], road asset inventory [7], railway 

modeling[8], vegetation detection and urban forest inventory [9], [43], [44]. As the main 

provider of the static environment information for the intelligent vehicles, the map made 

by MMS has been even considered as a “virtual sensor” [45], which enables the 

autonomous driving for a long mileage [46]. Advanced driver assistance systems (ADAS) 

which provide driver and passengers with active and integrated safety require precise sub-

road details in the map, such as position and topology of pavement markings and stop 

lines, which is utilized for lane change assistance and lane departure warning[40], [47]. 

 Vehicle self-localization is another application that is tightly depending on the 

accuracy and precision of the map. The main vehicle-based positioning technologies such 

as global navigation satellite systems (GNSS), 3D light detection and ranging (LiDAR), 

and vision-based systems can be assisted by the prior map. 3D building map helps GNSS 

to deal with the problem of signal blockage and reflection caused by tall buildings in the 
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urban area [48]. Another well studied positioning technique for the urban area is map 

matching technique based on LiDAR [21]–[23] and vision sensors [49]. This method can 

achieve high accuracy position relative to the prior map, but the map precision and 

accuracy are vital for their global accuracy. This method can achieve high accuracy 

position relative to the prior map, but the map precision and accuracy are vital for their 

global accuracy.  

Here, an important question arises regarding how the high-accuracy and high-

precision maps should be obtained in the dense urban area with tall buildings and street 

canyons, in a time and cost-efficient way, while no prior map exists. MMS is a valuable 

geo-information acquisition technology, specially designed for fast and high-definition 

mapping of the dense urban areas. However, its ability to acquire a high-precision 3D data 

is being contaminated by the vehicle’s positioning system. Self-positioning of the MMS 

is obtained by a tight integration of the high-end global navigation satellite system 

(GNSS) and inertial measurement unit (IMU) [7], [50], [51], and the 3D measurements 

acquired by laser scanners mounted on the vehicle are registered based on this integration 

result. In the urban areas where the accuracy of GNSS/IMU degrades significantly, the 

quality of collected data is also affected.  

The map required for many of the applications listed above should be “accurate” 

and “precise.” Figure 3-1 illustrates the definitions of accuracy and precision, the two 

important terms for the mapping. Generally, the map is reconstructed by geo-referencing 

multiple MMS surveys. In the urban areas, each MMS survey contains an independent 

error, and therefore the resulting map would be not accurate and not precise if no 

correction was performed (Figure 3-1a). In this case, the generated map cannot be used 

for any of applications mentioned above. Instead, if some corrections were made, but the 
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corrections were not able to limit the independent error of each survey to a certain amount, 

then the resulting map would be more accurate but still not precise (Figure 3-1b). The 

map after applying the landmark update with a limited number of ground control points 

(GCP) fit in this category. If the surveys were registered together precisely, but the global 

geo-referencing were not performed, the final map would be precise but not accurate 

(Figure 3-1c). Methods using simultaneous localization and mapping (SLAM) without 

the global reference fit in this category. In contrast, in the ideal condition, if all points of 

 

(a) Neither accuracy nor precision 

 

 

(b) Accuracy only 

 

(c) Precision only 

 

 

(d) Both accuracy and precision 

Figure 3-1. Visualized examples of the effects of the terms “accuracy” and “precision” in 

mapping (the red polyline is the ground-truth building footprint). 
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each survey are georeferenced precisely to their correct global position, the resulting map 

would be accurate and precise (Figure 3-1d). If a map is not globally accurate, the data 

obtained from the map cannot be fused or integrated with a global information such as 

GPS data. On the other hand, if the map is not precise, acquired data such as vehicle 

position will not be precise as well.  

Numerous studies in the past deal with the MMS registration to improve the 

global accuracy of the obtained data. One of the standard methods is the landmark update 

[8], [52], which employs the reference GCPs acquired by total station survey to update 

the MMS data. In this method, the reference GCPs are first measured by a field survey. 

Then, the reference points are handpicked in the MMS data of each survey to calculate 

the position correction vector (PCV). In the next step, the trajectory of the vehicle is 

updated by correcting the previously estimated vehicle positions using PCVs. Finally, the 

MMS data is regenerated with the new trajectory. Although this method can preserve 

some level of the accuracy, the precision of data is limited by the number GCP, where 

acquiring the GCP is a labor-intensive and time-consuming task. Various studies have 

used different methods to register multiple MMS surveys to increase the precision. 

Gonzalez et al. [53] proposed a method based on segmenting the highly reflective features 

to align multiple MMS surveys. In this approach, the global accuracy of the resulting 

point cloud is limited by the accuracy of the reference survey. Yao et al. [54] presented a 

method to register MMS point clouds to panoramic images based on a sensor constellation. 

Because this method relies on the relationship between the global positioning system 

(GPS) and a panoramic camera’s position and orientation, it is not suitable for deep urban 

areas where buildings block the satellite signals. Aerial and ground surveillance data are 

two complementary data sources for high-definition 3D urban modeling [55]. 
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Previous studies have shown that aerial surveillance data are very advantageous 

in maintaining the quality of ground surveys. Cheng et al. [42] proposed a method for 

performing automatic registration of airborne and vehicle laser point clouds based on 3D 

road networks and building contours. In this approach, the road networks were utilized 

for coarse registration, and the building contours were used for fine registration. However, 

because of the substantial difference between the two data, the combination of vertical 

and horizontal error cannot achieve better than 83 cm and 196 cm of mean and maximum 

error, respectively. Some other studies used airborne laser scanning (ALS) data to perform 

registration of terrestrial laser scanned (TLS) images [56]–[60]. However, because TLS 

has an entirely different error model compared to the MMS, the proposed methods cannot 

be applied to MMS calibration. Polewski et al. [61] proposed a method to combine the 

advantages of ALS and terrestrial photographs by co-registering the respective point 

clouds. They reported an average 2D position deviation of 66 cm in forested areas.  

Another approach for using aerial surveillance data to achieve global consistency 

involves Lidar-based simultaneous localization and mapping (SLAM), which employs 

aerial images as prior information. Kuemmerle et al. [62] inserted the correspondences 

found between the range data and the aerial images as constraints into a graph-based 

formulation for SLAM. Gruen [63] utilized 169 manually extracted GCPs from the geo-

referenced UAV images to update the MMS data in a 2.2 km2 area. Tournaire et al. [64] 

proposed an image-based strategy for geo-referencing an MMS in an urban area that 

employed multi-view aerial images and “zebra markings” for registration. However, 

because their proposed method and results were preliminary, they did not perform a 

registration of single or multiple MMS surveys to evaluate the performance. Hussnain et 

al. [65] proposed a method that maintains the accuracy of an MMS by performing an 
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automatic registration of a rasterized point cloud to aerial image tiles. Although they 

reported a pixel-level accuracy, a comparison between the proposed method and manually 

measured road markings shows greater errors in the least accurate results. Similarly, Jende 

et al. [66], [67] adopted feature-matching techniques to perform registration of mobile 

mapping images to corresponding aerial images, but they did not report the accuracy and 

performance of their method. Our previous work [68] showed preliminary results of the 

registration of MMSs to aerial images utilizing road markings, in which the proposed 

framework was semi-automatic and fixed-length windows were used for the registration. 

However, that prior work lacked a quantitative evaluation of the georeferencing error.  

In this chapter, we aim to design a fully automated framework to conduct 

accurate and precise mobile mapping of urban areas by employing the road markings 

obtained from high-resolution aerial imagery. The proposed framework achieves MMS 

geo-referencing by (1) extracting road features from the MMS and aerial data; (2) 

generating Gaussian mixture models from the aerial road features; and (3) registering the 

MMS point cloud to the aerial reference using a dynamic sliding window and normal 

distribution transform (NDT). We evaluated the accuracy of the proposed framework by 

applying it to the Hitotsubashi region in Chiyoda-ku, Tokyo, Japan, a dense and complex 

urban scene. The results demonstrated that the proposed framework provides a reliable 

solution for high-precision urban mapping by geo-referencing the MMS surveys with a 

mean error of 11.6 cm. 

 Method 

In this section, we developed a novel and thorough framework for automatic 

MMS geo-referencing based on high-resolution aerial surveillance data, where road 

features are considered as a registration reference. The proposed framework takes 
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multiple MMS surveys, ALS point cloud, and multiple high-resolution aerial images as 

input and as output provides accurate and precise MMS data.  

One unique characteristic of urban areas in well-developed cities is that the road 

pavement typically features clear markings. Because both aerial imagery and ground-

based MMS data capture these markings clearly, they are suitable features to use for 

aligning urban MMS surveys. This section describes how we developed an automatic 

framework for the geo-referencing of the MMS surveys based on high-resolution aerial 

surveillance data in which road features are considered as a registration reference. The 

proposed framework takes multiple MMS surveys, ALS point cloud, and overlapping 

high-resolution aerial images as input and provides accurate and precise MMS data as 

output. The proposed framework is performed in the following sequence. First, road 

markings are extracted from both aerial images and MMS point clouds. Next, a Gaussian 

mixture map is generated from the aerial road markings as a reference. Then, each MMS 

survey is subdivided into fixed-length short patches, and finally, the MMS surveys are 

aligned to the aerial reference based on the registration results from the road markings. 

To overcome the problem of roads obscured by buildings in the aerial images, which is 

called relief displacement and complicates road marking extraction, a perspective 

occlusion map is generated for each image using ALS and the image’s position and 

orientation. In addition, overlapping aerial photographs (forward overlap) are considered 

to exclude moving vehicles which can be mistakenly extracted as road features. For the 

registration, a dynamic-length sliding window is introduced over each MMS survey to 

overcome distortion within the surveys. Figure 3-2 illustrates the overall flow of the 

proposed framework. 
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3.2.1. Extracting road markings from aerial data 

Aerial images in urban areas have some unique characteristics that make 

extracting road markings difficult. In urban areas, the similarity between roads and 

surrounding objects is significant, because roads, sidewalks, building roofs, and parking 

lots are made of similar materials, such as asphalt, cement, and concrete, which have a 

similar appearance in the images [47]. Moreover, the images often contain building edges, 

roof features, vehicles, and other structures that can look like road markings in the image, 

but are not (see Figure 3-3a-h). Furthermore, road obstruction by tall buildings due to the 

relief displacement is yet another challenge. Therefore, it is necessary to develop an 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 3-3. Sample road markings in the aerial images of the Hitotsubashi area in central 

Tokyo. Some of the problematic areas are highlighted by the red dotted rectangles. 
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automatic and thorough system that more correctly extracts road marking features for the 

registration to address the effects described above. 

The main techniques used to extract the road markings from aerial data include 

road segmentation by generating a perspective occlusion map, road recovery by filtering 

vehicles and occluding buildings using overlapping aerial photographs, and binary image 

production by thresholding. These techniques are described in detail in the following 

sections. 

 Road segmentation with perspective occlusion maps and boundary maps 

In this section, an automatic approach that defines the road segment accurately 

by filtering buildings and their obstruction is proposed. In the aerial images, except for 

the structures at the nadir (the center of an aerial photograph), vertical objects such as tall 

buildings appear to lean at a certain angle. This angle increases with the distance from the 

principal point, which is called relief displacement. In combination with the knowledge 

that many building roofs have thick, sharp and white edges, two problems arise: (1) 

original road markings on the pavement can be occluded by the building perspectives and 

(2) building roof edges can be mistakenly identified as road markings. To avoid these 

problems, a perspective occlusion map (POM), which defines the areas occluded by 

buildings, is generated for each aerial image based on the digital surface model (DSM) 

reconstructed from ALS and the position and orientation of the aircraft at the moment of 

image acquisition. For the DSM reconstruction through ALS, 2.5D Delaunay 

triangulation is performed, which projects the ALS points in 2D on an XY plane and 

triangulates the corresponding points to generate a mesh structure (Figure 3-4). Then, the 

points higher than a certain threshold are considered when generating the POM. This 

threshold should be an above ground height to ignore ground points and vehicles on the 
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road surface when generating the POM. 

Consider a set of triangles connected by their common edges or corners that 

representing the DSM mesh. To reconstruct the POM, the DSM should be rasterized, 

which is done by projecting the 3D vertices of each off-ground triangle onto the 2D raster 

using perspective projection and filling all the pixels covered by the projected 2D 

triangles (Figure 3-5a). The resolution of the POM is defined as being equal to that of the 

aerial image. The aircraft's position (𝑐x,y,z) , orientation (𝜔, 𝜙, 𝜅) , and the camera's 

parameters define the projection transformation. To define the 2D projection (𝑥, 𝑦) of 

each vertex (𝑋, 𝑌, 𝑍) , we first define the position of the vertex with respect to the 

camera’s coordinate system (𝑑x,y,z) using the following transform: 

[

𝑑𝑥

𝑑𝑦

𝑑𝑧

] = [
1 0 0
0 cos𝜔 sin𝜔
0 −sin𝜔 cos𝜔

] [
cos𝜙 0 −sin𝜙

0 1 0
sin𝜙 0 cos𝜙

] [
cos 𝜅 sin 𝜅 0
−sin 𝜅 cos 𝜅 0

0 0 1
]([

𝑋
𝑌
𝑍
] − [

𝑐𝑥

𝑐𝑦

𝑐𝑧

]), (1) 

𝑥 = 𝑥0 −
𝑓

𝑑𝑧
𝑑𝑥, (2) 

𝑦 = y0 −
𝑓

𝑑𝑧
𝑑𝑦, (3) 

where 𝑓 is focal length; (𝑥0, 𝑦0) indicates the image coordinates of the principal point; 

 
(a) 

 

 
(b) 

Figure 3-4. DSM reconstruction from ALS by 2.5D Delaunay triangulation: (a) input ALS point 

cloud (color denotes intensity); (b) reconstructed DSM mesh (color denotes height). 
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and 𝑐𝑥,𝑦,𝑧 presents the 3D position of the camera installed on the aircraft. Figure 3-5b 

illustrates the generated POM. It can be seen in Figure 3-5c that the POM can filter all 

buildings and their relief displacements effectively. In order to have clearer road segments, 

we have also used the two-dimensional boundary map of the buildings provided publicly 

by The Geospatial Information Authority of Japan (GSI). The final result of the road 

segmentation is shown in Figure 3-5d where the generated map filters all the buildings 

and their relief displacements effectively. 

 Filtering moving vehicles from the road 

In the road marking extraction from aerial images, vehicles painted in light colors 

can be mistakenly considered as road markings. Since the objective of the road marking 

extraction is the registration between ground and aerial data, we do not require a perfect 

road marking extraction. The extracted road markings are considered as features for the 

registration. Therefore, in areas with few road marking features, missing a lane marking 

or misdetection of a vehicle as a road marking may have a significant effect on the 

registration. On the other hand, in areas with plenty of features such as intersections with 

zebra crossings, missing few features does not affect the matching quality. To obtain the 

 

Figure 3-5. Generation of POM from the DSM: (a) Overview of the buildings’ perspective 

occlusion map generation; (b) original aerial image, (c) generated POM, (d) filtered result of the 

aerial image. 
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best vehicle filtering result, learning methods are suggested. However, we did not have 

access to a large and proper data set for the training. Therefore, we applied a simple 

method which uses multiple aerial images and filters the moving vehicles. If a vehicle is 

detected in the first image and it is moving, it will be more likely not to see the same 

vehicle in the second image and so on. The proposed solution takes multiple images and 

compare the total of their RGB channels, then choose the lowest value. Basically, vehicles 

in the aerial images are between the lane markings or may be on the zebra crossings. This 

simple method not only can filter all the vehicles between the lane markings but also 

filters all vehicles with light colors. However, the parked vehicles cannot be filtered, and 

vehicles with a dark color can filter a part of zebra crossings. Although this simple 

solution is not perfect, it is sufficient enough for our application. Figure 3-6 illustrates 

these steps. 

3.2.2. Road marking extraction from filtered aerial image 

The road markings extracted from the aerial image are considered as references 

for the geo-referencing of the MMS data. To obtain more features for the registration, all 

 

Figure 3-6. Filtering moving vehicles from aerial image: (a) first aerial image; (b) enlarged view 

of some vehicles in the first image; (c) second aerial image; (d) enlarged view of the same areas 

in the second image; (e) vehicle filtering result; (f) enlarged view of the same areas in the filtered 

result, showing both filtered vehicles and a non-filtered vehicle. 
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kinds of road markings and even signs in the sidewalks are considered based on the 

intensity contrast between the markings and the road surface background. After a level 

adjustment of the image, the adaptive Gaussian thresholding is performed for the road 

marking extraction. Figure 3-7 illustrates an example of extracted road markings from 

the aerial image in the bitmap format, where white pixels are the extracted road markings 

and black pixels are the background. 

3.2.3. Road marking extraction from MMS data 

Next, we need to extract similar road markings from the MMS point cloud data. 

Similar to the procedure adopted for the aerial images, the first step is road segmentation. 

Then, the extraction process is performed on each road segment. In addition to precise 

distance, most Lidar scanners installed on the MMS also record the intensity, called the 

reflective luminance, which is a measure of the return strength of the laser pulse that 

generated the point. The intensity value enables the differentiation of different materials 

such as asphalt and pavement markings. The main flow of the process to extract road 

 
(a) 

 
(b) 

Figure 3-7. Road marking extraction from an aerial image by adaptive thresholding: (a) a part of 

the original aerial image; (b) result of the road marking extraction process. 
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markings from the MMS data includes road segmentation from the MMS point cloud 

using a cloth filter simulation, intensity calibration based on distance and incident angle, 

and road marking extraction by intensity thresholding. 

 Ground segmentation of the MMS point cloud 

Ground segmentation from ground and airborne laser point cloud is a well-

researched topic [8], [69]–[71]. Curb-based road surface segmentation is a popular 

method for ground point extraction from MMS data [72]. However, both road surfaces 

and sidewalks include signs and features suitable for matching. Because pavement 

markings on both roads and sidewalks are extracted from aerial images, they should also 

be considered in the MMS data. Therefore, the ground segmentation from MMS should 

be able to extract both roads and sidewalks while excluding buildings and other ground 

structures. For this purpose, a method based on the cloth filter simulation [73] is used for 

ground segmentation. Figure 3-8 shows the result of ground segmentation in a part of 

MMS point cloud. 

 
(a) 

 
(b) 

Figure 3-8. Road segmentation from an MMS point cloud: (a) original MMS point cloud 

consisting of buildings, trees, vehicles and road signs (RGB color is derived from the camera); 

(b) the result of ground segmentation. The red points represent the ground, and the blue points 

are off-ground. 
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 Intensity calibration based on the distance and incidence angle  

The laser scanners installed on MMS can capture the received signal strength 

indication (RSSI) of the returned signal (i.e., intensity/remission), which can be used to 

identify the material of the reflecting surface. Various research groups have used this 

value to differentiate between asphalt and painted parts of the road surface [72]. However, 

the reflected laser signal is significantly affected by the scanning geometry, mainly the 

distance and the laser incidence angle to the target surface [74]–[77]; therefore, it cannot 

be directly used for road marking extraction. In MMS scanning, where the distance 

between the scanner and target is relatively close, and the target surface is larger than the 

footprint of the laser beam, the range dependence can be expressed as 1/𝑅2, where 𝑅 is 

the range [74]. Another important parameter is the incidence angle. The laser footprint 

increases significantly as the incidence angle increases and, therefore, the quality of data 

is affected [78]. Although the effects of distance and incidence angle on laser intensity 

would ideally be modeled individually, different laser scanners from different 

manufacturers can show totally different responses [76]. The transmitted energy, intensity 

bit depth, amplification of low-reflectivity surfaces, and aperture size are some 

instrumental factors that affect the intensity measurements and differ between 

manufacturers.  

In this research, the intensity value is used to differentiate the painted area of the 

roads and sidewalks. One of the characteristics of the road surface is its flatness. As shown 

in Figure 3-9, if the flat surfaces such as road and sidewalk are considered, the incidence 

angle of the laser beam is increased as the range increases. In this case, we can consider 

the intensity change of material only based on the distance of the measured point from 

the MMS scanner, which inherently contains the effect of the incidence angle. 
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 Figure 3-10 shows the effect of distance (consisting the effect of incidence 

angle inherently) on the reflected intensity of the asphalt surface of an experimental road 

using laser installed on the MMS. In the proposed method for the calibration of these two 

effects, the non-linear least square curve fit is employed to model the effect of a change 

in range and incidence angle, and then the fit curve is used to calibrate the intensity using 

following empirical model:  

𝐼c = {

𝑅 < 𝑅1               (𝐼𝑀 × 𝐼𝑟𝑒𝑓)/𝑓𝑐𝑢𝑟𝑣𝑒(𝑅) 

𝑅1 < 𝑅 < 𝑅2                 (𝐼𝑀 × 𝐼𝑟𝑒𝑓)/𝐼𝑚
𝑅 > 𝑅2                                        𝑖𝑔𝑛𝑜𝑟𝑒

, (4) 

where 𝐼ref  and 𝐼c  present the reference and calibrate intensity; 𝐼𝑀  and 𝐼𝑚 

indicate the maximum and minimum reflection of the asphalt surface; 𝑅, 𝑅1 and 𝑅2 

are the reference range, first and second predefined range threshold consecutively; and 

𝑓𝑐𝑢𝑟𝑣𝑒  indicates the fit curve acquired from least square fit. The result of intensity 

calibration is illustrated in Figure 3-11. 

 

Figure 3-10. Effect of the increase of the distance to the reflected intensity value of the asphalt 

surface. By increasing distance, the angle of incidence inherently decreases. The red curve 

illustrates the curve fit to the relation between distance and intensity using a non-linear least 

squares fitting method. 
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 Road marking extraction 

After the calibration of the intensity, we should extract the similar road markings 

from the MMS point cloud for the registration step. MMS road markings are derived by 

applying the adaptive thresholding. Figure 3-12 shows a sample road markings extracted 

from MMS point cloud, where the white points are the road markings.  

3.2.4. 2D registration 

Thus far, we have obtained the road markings from both aerial images and MMS 

surveys. The final step is to perform accurate and precise registration of each MMS survey 

to the aerial image. We have two different input formats. The first input is the aerial road 

markings in the form of a two-dimensional bitmap image, while the other input consists 

of MMS road markings in a three-dimensional point cloud format. To perform the 

registration, we proposed a method based on a dynamic-length sliding window and NDT. 

In this approach, a Gaussian mixture map is first generated from the aerial road markings 

 
(a) 

 

 
(b) 

Figure 3-11. Intensity calibration of MMS point cloud: (a) original intensity of the MMS point 

cloud; (b) calibrated intensity using the proposed method. 
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as a reference. Then, the sliding window is shifted over the patch-wise cropped MMS 

road markings to consecutively perform the registration of each MMS survey. Finally, the 

obtained registration result is employed to align the original MMS point cloud and image 

data. 

 Generating an NDT Map from Aerial Road Markings (Reference) 

The main idea behind the NDT is to represent the observed spatial information 

as a Gaussian mixture model [79]–[81]. To prepare the reference data for the registration, 

the bitmap image of the airborne road markings is divided into a uniform grid with a 

predefined cell size. Assuming that the set of all 𝑛  points within the cell 𝑐𝑖𝑗 , 

{𝑝1, 𝑝2, … 𝑝𝑛 | 𝑝𝑘 = (𝑥𝑘, 𝑦𝑘)}, has been drawn from a normal distribution N(μ, Σ), the 

maximum-likelihood estimate of the mean (𝜇) is defined as follows: 

𝜇 =  
1

𝑛
∑ 𝑝𝑖

𝑛
𝑖=1 , (5) 

 
(a) 

 
(b) 

 

Figure 3-12. Road marking extraction from MMS point cloud: (a) original MMS point cloud 

(the color represents the original intensity); (b) the result of road marking extraction. 
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and the maximum-likelihood estimator of the covariance matrix (Σ) is defined as 

Σ =
1

𝑛−1
∑ (𝑝𝑖 − 𝜇)(𝑝𝑖 − 𝜇)𝑇𝑛

𝑖=1 , (6) 

Figure 3-13a and Figure 3-13b illustrate the representation of the estimated 

Gaussian distributions for 1D and 2D cells. Figure 3-13c shows a part of the aerial road 

markings, and the generated Gaussian mixture map is shown in Figure 3-13d. 

The probability of observing a road marking at a certain 2D coordinate of the 

cell 𝑐𝑖𝑗 is derived from the following equation: 

𝑃(𝑝) ~  𝑒−
(𝑝−𝜇𝑖𝑗)

𝑇
Σ𝑖𝑗
−1(𝑝−𝜇𝑖𝑗)

2 , 
(7) 

where 𝑝 presents the 2D coordinate (𝑥, 𝑦) of the point. 

The size of NDT grid is an important parameter for the registration. If the grid 

size is set to be larger than the suitable dimension, the defined probability density function 

for the cell might not be able to represent well the points included in the cell. In contrast, 

if the grid size is small, each grid can capture only a few number of input road marking 

points, so there will be only a few grids having the normal distribution [82]. Therefore, a 

 
(a) (b) 

 
(c) 

 
(d) 

 

Figure 3-13. Generation of the Gaussian distribution from the reference data: (a) estimated 1D 

Gaussian distribution of the sample points; (b) estimated 2D Gaussian distribution of the sample 

points; (c) extracted aerial road markings; (b) generated NDT map with a 2 m grid size. 
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small error will make the input points out of the corresponding reference grid. 

 Dynamic Sliding Window over MMS patches (Input) 

The original MMS surveys are generated by a direct georeferencing technique 

that registers the Lidar measurements using the positions and orientations acquired from 

deeply coupled GNSS, IMU and odometer measurements [83]. Thus, each survey is made 

from thousands of scan lines where the relative positioning accuracy between two 

consecutive scan lines is at a centimeter-level. Figure 3-14 illustrates the definitions of 

the laser scan line and MMS survey. The absolute accuracy of the survey is defined by 

the continuous quality of the scan line registration, which is affected by satellite visibility, 

the performance of the IMU, and driving conditions. In deep urban areas where tall 

buildings and other structures surrounding the streets, the GNSS/IMU positioning 

accuracy is significantly degraded. In this case, the overall accuracy of each MMS survey 

is mainly affected by the error budget of GNSS/IMU integration [84], which sometimes 

 

Figure 3-14. Illustration of single laser scan and MMS survey. 

 

Single scan line

MMS

MMS Survey
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exceeds a few meters. 

The relative error within each scan line is centimeter-level; therefore, the scan 

line can be considered as a rigid-body during the registration. However, due to the 

uncertainty in the bias of the IMU, a survey consisting of thousands of scan lines cannot 

be treated as a rigid-body. Ideally, to obtain a high-accuracy point cloud from the survey, 

every single scan line should be aligned to its correct absolute position based on the road 

features. However, a single scan line provides only a few recognizable features for the 

registration. To overcome this problem, rather than considering the scan line as the unit 

of registration, short and fixed-length patches consisting of several grouped scan lines are 

considered. The size of the patch should be defined based on the precisions of the IMU 

and the odometer to limit the relative error between the points within a patch (e.g., 1 cm 

relative error). To obtain the patches, the proposed method subdivides each MMS survey 

as shown in Figure 3-15. 

These short pieces still do not contain sufficient road markings, especially to 

accomplish longitudinal registration. Thus, to define the position of the target patch, we 

consider a window that includes tens of patches around the target patch. This window 

should be sufficiently large to cover an adequate number of features for the registration 

 

Figure 3-15. Concept of the dynamic sliding window. 

Target patch Sliding window

Fixed-size patch (based on the IMU accuracy)

Dynamic window size
( based on the availability of the features)

Feature
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process. The length of the window is an important parameter to achieve the required 

quality. If the length is too short, registration quality will suffer from a lack of road 

markings in the window. On the other hand, if a long window is adopted to cover more 

road markings, the relative accuracy of the scans inside the window will decrease due to 

the uncertain bias error of the IMU, which significantly degrades the quality of the 

matching. In this research, instead of defining a fixed-length window, we set the window 

length dynamically based on the availability of a sufficient number of road marking 

features within the window. The concepts of the patches, a target patch, the dynamic 

window and features are illustrated in Figure 3-15. 

The window length is defined for each target patch based on three predefined 

factors: (1) patch length; (2) initial window length; (3) required feature count. Initially, 

the window is defined to include a predefined number of patches. Then, the length of the 

window is extended by adding new patches until it covers the required number of features. 

Finally, the window is registered to the aerial image to calculate the transformation matrix, 

which aligns the target patch. After each registration, the obtained transformation matrix 

is stored, and the window shifts to the next patch, where its length is redefined based on 

the new environment. 

In contrast, the patch length is fixed and is considered as the unit of the 

registration. On one hand, choosing a long patch limits the achievable accuracy. On the 

other hand, the registration accuracy is limited by the aerial image’s resolution. Therefore, 

even very small patches cannot improve the accuracy beyond a certain level, but very 

small patches increase the processing time. Thus, a relatively short patch length should 

be chosen to maintain high accuracy within a reasonable processing time. The initial 

window length defines the initial number of patches around the target patch, but the 
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required feature count defines whether the initial window should be extended. To count 

the existing features in a window, we subdivide the window into feature grids and 

calculate the number of occupied cells (five or more points). If the occupied cells exceed 

the required feature count, the window length is sufficient. If not, a new patch is added to 

the end of the window, and the number of occupied cells is recalculated. This cycle repeats 

until the window covers the required number of features. Figure 3-16 illustrates these 

steps in sequence. Using the proposed method, the window length will increase in areas 

where only a few road markings are available. This enables a robust registration for such 

areas, in which other methods cannot find a reliable approach to conduct the 

transformation between the mobile mapping data and the aerial images. Moreover, at 

crossings where an abundance of road markings exists, the window is kept small to 

achieve highly accurate matching. 

Because the window length is much longer than the sliding interval (which is the 

patch length), two consecutive scans have a large overlap. This overlap provides a smooth 

registration result. 

 2D MMS Registration 

In this section, details of the MMS registration is described. To obtain the 

 

Figure 3-16. The procedure of defining the window length for the target patch. First, the initial 

window around the target patch is divided into a feature grid (left). Second, the occupied 

cells—those containing five or more points—are calculated (middle). The window is extended 

by adding new patches until the number of occupied cells meets or exceeds the required feature 

count (right). 

 

Feature grid
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transformation matrix 𝑀𝑡i
 (Equation 8) which is applied to the target patch 𝑡𝑖 to define 

the position correction vector and generated the adjust patch 𝑡′𝑖 (Equation 9), the target 

window 𝑊𝑡𝑖
= {�⃗⃗� ti1 , … , �⃗⃗� tin}  should be registered to the aerial NDT map. 

𝑀𝑡𝑖
= [

𝑅𝑧(𝜃) 𝑇𝑥,𝑦

0 1
], (8) 

which is applied to the target patch 𝑡𝑖 to generate the aligned patch, 

𝑡′𝑖 = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] 𝑡𝑖 + [
𝑇𝑥

𝑇𝑦
], (9) 

the window 𝑊𝑡𝑖
= {�⃗⃗� ti1 , … , �⃗⃗� tin} should be registered to the aerial map. 

To register the window 𝑊𝑡𝑖
, the points inside it are first subsampled and then transformed 

to absolute coordinates based on an initial guess. While the initial guess for the first 

window is obtained through GNSS/IMU estimation, the transformation matrix of the 

previous window 𝑀𝑡𝑖−1
 is applied to the GNSS/IMU position of the current target patch 

𝑡𝑖  to form the initial guess for the 𝑊𝑡𝑖
. To estimate the matching score, a Gaussian 

mixture model is used instead of a normal distribution to limit the effect of outliers, which 

significantly decrease the output of the normal distribution [80]. Therefore, instead of 

Equation 7, a mixture of uniform and normal distribution is used: 

�́�(𝑥 ) = 𝑐1𝑃(𝑥 ) + 𝑐2𝑃0, (10) 

where 𝑃0 is the expected rate of the outliers, and the constants 𝑐1 and 𝑐2 are defined 

to normalize the distribution. Finally, the score of the point 𝑥 𝑘 is calculated by applying 

it to the log-likelihood function and approximating it to derive the simplicity:  

𝑆(𝑥 𝑘) = 𝑑1𝑒𝑥𝑝 (−𝑑2

(𝑥 𝑘−𝜇𝑗)
𝑇
𝛴𝑗

−1(𝑥 𝑘−𝜇𝑗)

2
), (11) 

where 𝑗 is the index of the closest Gaussian distribution, and 𝑑1 and 𝑑2 are obtained 

from 𝑐1 and 𝑐2. Finally, the cost function of the window 𝑊′𝑡𝑖 = {𝑤′⃗⃗⃗⃗ 
ti1

, … , 𝑤′⃗⃗⃗⃗ 
tin

}, the 

result of registering 𝑊𝑡𝑖
, is defined as follows: 
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𝐶(𝑊′𝑡𝑖) = −∑ 𝑤′⃗⃗⃗⃗ 
𝑡𝑖𝑘

𝑛
𝑘=1 . (12) 

Moreover, to optimize the cost function and achieve the best matching result, the Newton 

optimization method is employed [80]. After obtaining the transformation matrix from 

the road-marking registration, the original MMS data of the corresponding patch are 

calibrated based on the same matrix. 

 Experiment and analyses 

This section covers the experimental results of the proposed framework. The 

experimental setup, experimental area, and analyses are described in detail to evaluate the 

approach. 

3.3.1. MMS, aerial surveillance system 

In this section, details of the MMS and aerial surveillance system, two main data 

acquisition platforms used for the collection data, are described. 

 Mobile mapping system 

For the MMS data collection of the experiments, we used an MMS-K320 system 

developed by Mitsubishi Electrics. As shown in Figure 3-17, this system is equipped with 

two single-layer laser scanners and three cameras to perform a 3D measurement of the 

surroundings, two single frequency GPS receivers, one dual frequency GPS receiver, a 

high-end IMU, and an odometer for a precise vehicle self-localization. Two laser scanners 

with the field of view of 180° were configured to see up (pitch: +25°) and down (pitch: -

25°). The laser scanners could collect reflective luminance which is a measure of the 

return strength of the laser pulse that generated the point. The full specification of the 
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system can be found on the Mitsubishi Electrics website. 

 Aerial surveillance system  

Our aerial surveillance system was equipped with a medium format single head 

camera (Leica RCD30 series 80 MP multispectral imagery) installed in a direct down-

facing position to acquire the high-resolution imagery, a Lidar system (Leica ALS70-HP) 

with a 500 kHz pulse rate for 3D urban mapping, and a high-end GNSS/IMU for 

positioning. The aircraft altitude in the experiments was more than 1700 m, the ground 

sampling distance (GSD) of the acquired aerial images was equal to 12 cm, and the point 

density of the obtained ALS point cloud was less than 10 pts/m2. Figure 3-18 shows the 

aerial system. Table 3-1. Details of the sensor platforms employed for the experiments 

 

Figure 3-17. MMS system description: Mitsubishi Electric’s MMS-K320 (bottom) and the 

configuration of two SICK LMS-511 laser scanners and RTK GPS receivers (top). 
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lists the details of the sensor platforms.   

 
(a) 

 

 
(b) 

Figure 3-18. Aerial surveillance system description: (a) the aircraft used for aerial data 

collection; (b) the sensor setup for the aerial imagery. 
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Table 3-1. Details of the sensor platforms employed for the experiments 

Item Value 

MMS* 

Laser Scanner 

Manufacturer 

(Model) 
SICK (LMS-511) 

No. mounted 2 single layer lasers 

Mounting 

direction 

CH1: Front/Down (-25°), CH2: 

Front/Up (25°) 

Intensity Can be acquired 

No. of points 27,100 points/sec (1 unit) 

Range (max.) 65 m 

Viewing angle 180° 

Camera 

No. mounted 3 

No. of pixels 5 megapixels 

Max capture rate 10 images/sec 

View angle Wide viewing angle (h: 80°, v: 64°) 

Localization 

platform 

Manufacturer Mitsubishi Electrics 

Method RTK-GPS/IMU/odometer 

Self-positioning accuracy *1 Within 6 cm (rms) *4, 5 

Relative accuracy data *2 Within 1 cm (RMS) 

Absolute accuracy data *1, 3 Within 10 cm (RMS) 

Aerial 

system 

Flying height  ~1700 m 

Laser Scanner 

Manufacturer 

(Model) 
Leica (ALS70) 

Mounting 

direction 
Direct-down 

Intensity Can be acquired 

Max 

measurement rate 
500 kHz 

Point cloud 

density *6 
Less than 10 pts/m2 

Field of view ~75°  

Camera 

Manufacturer 

(Model) 
Leica (RCD30) 

Mounting 

direction 
Direct-down 

No. of pixels 80 MP (10320 x 7752 pixels) 

Maximum frame 

rate 
0.8 fps 

Forward overlap 60% 

GSD *7 12 cm/pixel 



Chapter 3. Registration of Mobile Mapping System and Aerial Imagery 

 

 

 
50 

Localization 

platform 

Manufacturer 

(Model) 
Novatel (IMU-LN200) 

Method GNSS/IMU 

* www.mitsubishielectric.co.jp/pas/mms 

*1 Assuming favorable GPS reception (RMS: root mean square). 

*2 Relative accuracy: the consistency of the coordinate values captured during mobile 

measurements. 

*3 Absolute accuracy: the extent to which the coordinate values captured during 

mobile measurements match actual coordinate values. 

*4 Driving on a level road at a constant speed of approx. 40 km/h. 

*5 User must calibrate before each survey. 

*6 Point density is defined by the flying height of the aircraft and the scanner 

measurement rate. 

*7 GSD is defined by the flying height of the aircraft and the camera resolution. 

3.3.2. Experimental area 

To evaluate the performance of the proposed system, the MMS and aerial data 

were acquired in the vicinity of Hitotsubashi, a dense urban area in the Chiyoda-ku area 

 

Figure 3-19. The experimental area around Hitotsubashi intersection, a dense urban area of the 

Chiyoda-ku, Tokyo, Japan. 

http://www.mitsubishielectric.co.jp/pas/mms
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of central Tokyo, Japan (Figure 3-19). Streets around the Hitotsubashi intersection are 

surrounded by tall buildings, trees, and traffic. A survey on the number of Line-of-Sight 

(LOS) GPS satellites in this area showed that two-thirds of the time, less than four 

satellites were visible (Figure 3-20) [85]. This shortage increases the positioning error to 

a few meters, which is unsuitable for precise mapping. Nine MMS surveys were 

performed to obtain ground data of the area; the survey routes included multiple crossings, 

traffic flow, and road markings on the pavement. The aerial survey was performed on 

June 12, 2014 (a cloudy day in spring), and the MMS data were acquired on April 20, 

2016 (a sunny day in spring). If the road markings are substantially altered or repainted 

to a different position after obtaining the aerial image, the registration performance will 

be affected. In our data, a few parts of the road markings were repainted after Jun 12, 

2014 (the date of the aerial image acquisition). To simplify error interpretation, we 

 

Figure 3-20. An example of number of LOS GPS satellites observed in the Hitotsubashi 

intersection in Tokyo, Japan. 
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manually updated the aerial road markings of those areas based on the newer observations, 

and report the effect of these road-marking changes on the performance of the framework 

separately.  

3.3.3. Experimental parameters 

This section provides an overview of the experimental parameters used for the 

final evaluation. Table 3-2. Summary of the parameters applied in our experiment lists 

the parameters. 

Table 3-2. Summary of the parameters applied in our experiment 

Parameters Value Description 

POM 

Generation 

Height threshold 

5 m 

(above the 

ground) 

Defined based on the 

maximum height of the 

vehicles 

Resolution 12 cm/pixel 
Equal to the GSD of the aerial 

image 

MMS ground 

segmentation 

Cloth resolution 2 m 
Larger grids do not cover the 

ground well (set empirically) 

Max iteration 1000 More than 500 is suggested 

Classification 

threshold 
20 cm 

If the cloth resolution is set 

correctly, small values give 

suitable results 

Adaptive 

thresholding 

Block size 
2.5 m (21 

pixels) 
Empirically defined 

Threshold 
weighted mean 

- c 
c = 17 empirically defined 

Dynamic 

sliding 

window 

Patch length 0.5 m 

Defined based on IMU 

performance to limit the error 

within 1 cm 

Window length Dynamic   - 

Initial window 

length 
60 patches Equal to 30 m (60 × 0.5 m) 

Feature grid size 1 m Empirically defined 

Required feature 

count 
400 Empirically defined 

NDT 

registration 
NDT grid size 1 m 

Defined to be smaller than the 

distance between the lane 
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markings and signs in the 

middle of the lanes 

NDT iterations 30 

Should be high enough to let 

the NDT converge (set 

empirically) 

3.3.4. Experimental results 

Nine MMS surveys were georeferenced using the proposed framework. The 

survey routes are shown in Figure 3-21. All the computations were conducted on an off-

the-shelf PC with an 8-core, 3.50 GHz Intel Xeon E3-1270 V2 CPU and 16 GB of RAM 

running the 64-bit version of the Ubuntu 16.04 operating system. The average time 

required to apply the framework was 0.94 seconds per meter per survey, which included 

the registration, visualization, geo-referencing of the original data, and saving the updated 

data. We successfully calibrated all nine surveys using the proposed framework. 

 
Figure 3-21. Routes of the nine surveys S01–S07 on the map. The colors show the estimated 

GPS error reported by MMS. 
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Figure 3-22 illustrates the performance of the proposed method for survey No. 

6 visually. The survey's length was approximately 557 m. In Figure 3-22, the color of the 

MMS point cloud represents the intensity of the lidar reflection. In Figure 3-22b, the 

 
(a) (b) (c) 

 

Figure 3-22. Visual evaluation of the proposed method for survey No. 6: (a) survey route of the 

MMS on the aerial image (after registration); (b) enlarged view of the original MMS point cloud 

before registration (the red points are aerial road markings); (c) enlarged view of the MMS point 

cloud after applying the proposed method. 
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aerial road markings are highlighted in red to show the shift between the aerial image and 

MMS data before registration. The MMS data and aerial image clearly overlap 

(Figure 3-22c). 

3.3.5. Discussion 

The MMS-K320 is able to report the estimated localization error during the 

experiment to allow the operator to increase the accuracy of data collection. Usually, 

when the operators are notified that the localization error exceeds 2.5 meters, they should 

suspend the survey and move the vehicle to a location with sufficient satellite signals and 

wait for the convergence. Then, the survey must be restarted from the beginning. However, 

in dense urban areas like Hitotsubashi intersection, in most cases, even after a move to an 

open-sky area to cause GPS convergence, the error would exceed 2.5 meters before the 

vehicle arrived back at the start point of the survey. Figure 3-23 shows the estimated GPS 

error for each of the nine surveys. 

 
 

Figure 3-23. Estimated GPS error by MMS-K320 for each of the nine surveys. 
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 To evaluate the performance of the proposed framework, 39 GCPs at the corners 

of road signs were measured using the total station surveys in the area, and 136 virtual 

control points (VCPs) were generated from the original GCPs and the aerial image. 

Figure 3-24 illustrates the GCP distribution in the test field. Additionally, a labor-

intensive landmark updating procedure was performed to allow a comparison of the result 

with the proposed MMS geo-referencing framework. For this purpose, the original GCPs 

were manually picked from the MMS point cloud using software provided by the 

company to obtain the calibrated point cloud. The 2D error 𝑑 was calculated for all 

VCPs using the following equation: 

𝑑𝑖 = √(𝑋𝑉𝐶𝑃𝑖
− 𝑥𝑖)

2
+ (𝑌𝑉𝐶𝑃𝑖

− 𝑦𝑖)
2
, (12) 

 
Figure 3-24. Distribution of the GCPs collected in the experimental area utilizing the total station 

survey. The GCPs are from the corner points of road signs, which are clearly captured by both 

the MMS camera and the point cloud. 
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where (𝑋𝑉𝐶𝑃𝑖
, 𝑌𝑉𝐶𝑃𝑖

) is the 2D coordinate of the 𝑖𝑡ℎ VCP, and (𝑥𝑖 , 𝑦𝑖) is the 

coordinate of the point corresponding to the 𝑖𝑡ℎ VCP in the MMS point cloud. For the 

quantitative evaluation, the mean, maximum and standard deviation of the calculated 2D 

error are reported for the original MMS data, landmark updating and the proposed 

approach. 

Figure 3-25 shows a comparison of the proposed method, landmark updating 

and the original MMS data for survey No. 6, which extended for 557 meters from the 

north to the south of the Hitotsubashi intersection. The proposed method successfully 

limited the average error to below 12 cm (the resolution of the aerial image), while its 

maximum error was 20.6 cm. The average error of the landmark updating method was 

20.8 cm, while its maximum error exceeded 66 cm. The average error in the original data 

was reported as 118.6 cm, and the maximum error exceeded 140 cm. As shown, the 

proposed method outperformed the labor- and time-intensive landmark update, due to the 

availability of sufficient road features and their relatively uniform distribution along the 

survey route. Table 3-3 summarizes the compared results. 

 In Figure 3-25. , the landmark updating method resulted in higher accuracy 

than our method for a few virtual control points, which are highlighted by red circles. In 

fact, the coordinates of those VCPs are close to the original GCPs used for landmark 

Table 3-3. Evaluation result of survey No. 6 

Method 
Error (m) 

Mean Max Stdev 

Original data (GPS/IMU/Odometer) 1.186 1.405 0.19 

Landmark updating 0.208 0.664 0.11 

Proposed method 0.102 0.206 0.05 
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updating. Because the objective of the landmark updating technique is to update the 

vehicle’s trajectory to minimize the error in the incorporated GCPs, it performs very well 

for areas around the GCPs. Therefore, its good performance was not unexpected. 

However, the proposed method yielded a better performance in most cases. 

The proposed framework depends on several variables and parameters. In 

particular, the final registration step is sensitive to a variety of parameters such as the 

NDT grid size, the initial window length, the required feature count, and the patch length. 

We evaluated the sensitivity of the proposed framework to all four of these parameters. 

To simplify the interpretation of the error behavior, we evaluated each parameter by 

assigning different values to it while using the default values for the other parameters. 

Table 3-4. The proposed framework's sensitivity to different NDT grid sizes shows the 

registration result of survey No. 6 for various NDT grid sizes. As shown, grid size plays 

an important role in registration quality. 

On one hand, when the grid size is too small (e.g., 0.5 cm), some grids will 

 
Figure 3-25. The 2D error of survey No. 6 in the original data, after the landmark update, and 

after the proposed method 
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contain insufficient points to calculate the Gaussian distribution. Therefore, some 

important road marking information will not be used in the registration. On the other hand, 

if large grids are selected (e.g., 2.0 or 4.0 m), a Gaussian distribution will not provide a 

good estimate of the local environment (which is road markings). Figure 3-26 shows the 

Gaussian mixture models generated using different grid sizes. 

Table 3-4. The proposed framework's sensitivity to different NDT grid sizes 

Item 
Value 

 Proposed   

NDT grid size* (m) 0.5 1 2 4 

Mean error (m) 5.01 0.11 1.20 1.22 

 

   
0.5 m 2.0 m 4.0 m 

  
Aerial image 1.0 m 

 
Figure 3-26. Generated Gaussian mixture models using different grid sizes. 



Chapter 3. Registration of Mobile Mapping System and Aerial Imagery 

 

 

 
60 

The window length is another parameter that affects the registration performance. 

Figure 3-27.  illustrates how the length of the dynamic sliding window changed for 

survey No. 6. Table 3-5 and Table 3-6 show how the initial window length and required 

feature count affect the window length and the registration error, respectively. A short 

initial window length (e.g., 15 and 30 patches) cause the registration to become sensitive 

to false positive features and decrease the matching accuracy. On the other hand, a large 

initial window (e.g., 120 patches) with a fixed required feature count will result in a long 

and static window length, which also affects the matching significantly. In the proposed 

framework, the initial window length was set to 60 patches, which provides the dynamic 

windows with a length of at least 30 m. After selecting a suitable initial window length, 

the required feature count should be defined so that it allows extension of the initial 

window in the absence of road markings. If the required feature count is too small (e.g., 

200), the window length will remain equal to the initial window length. On the other hand, 

 
Figure 3-27. Length of the dynamic sliding window for survey No. 6 

 

 

60 95Window length (patch)

60 patches (30 m)95 patches (47.5 m)

Table 3-5. Evaluation of the sensitivity of the framework to different initial 

window lengths 

Item 
Value 

  Proposed  

Initial window length* 

(patch) 

15 30 60 120 

Min win length (patch) 39 39 60 120 

Mean win length (patch) 59.22 59.16 64.67 120 

Max win length (patch) 95 95 95 120 

Mean error (m) 0.80 0.52 0.11 3.34 
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large feature counts (e.g., 600 or 800) will extend the window length disproportionately, 

which decreases the matching accuracy (Table 3-6). Figure 3-28 shows another visual 

evaluation of proposed method. 

 
Figure 3-28. Visual evaluation of the proposed method: (a) survey route of the MMS on the 

aerial image; (b) enlarged view of the original (red) and calibrated (blue) MMS point cloud on 

the aerial image (the scale is 4 m); (c) enlarged view of the original (red) and calibrated (blue) 

MMS point cloud on the aerial image (the scale is 3 m). 
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Finally, the patch length is important to obtain a smooth point cloud from the 

registration. Figure 3-29 illustrates the georeferenced MMS point cloud using different 

  

0.5 m 1.0 m 

  

2.0 m 4.0 m 

Figure 3-29. Effect of the patch length on the smoothness of the georeferenced 

MMS point cloud 
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patch lengths. As shown, long patches (e.g., 2 and 4 m) result in a non-smooth point cloud. 

Although a smaller patch length is preferred, smaller patch lengths linearly increase the 

execution time.  

Figure 3-30 illustrates the overall performance of the proposed method for all 

nine surveys. In total, the proposed method decreased the average MMS data error from 

99.7 cm to 11.6 cm while limiting the maximum error to 27 cm. The maximum error 

Table 3-6. Evaluation of the sensitivity of the framework to different numbers 

of required features 

Item 
Value 

 Proposed   

Required feature count* 200 400 600 800 

Min win length (patch) 60 60 69 90 

Mean win length (patch) 60 64.67 90.13 119.68 

Max win length (patch) 60 95 130 165 

Mean error (m) 2.37 0.11 0.72 3.58 

* All parameters other than the required feature count were chosen based on Table 3-2. 

 
 

Figure 3-30. Total 2D error of the nine surveys in the original data and by the proposed method 
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reported for the original data was 206 cm. 

Figure 3-31 compares the overall performance of the proposed method with the 

landmark update method for all nine surveys. As shown, the proposed method not only 

significantly outperforms the traditional landmark updating method but also does not 

require the labor-intensive and time-consuming work involved in the conducting the GCP 

survey and manually finding the corresponding points in the data.  

Table 3-7 summarizes the overall performance of the proposed method in 

comparison with other state-of-the-art methods. The main advantage of the proposed 

method compared to the work presented in Kümmerle et al. [62] is its accuracy. In contrast, 

although we could achieve a higher accuracy than Hussnain et al. [65], our method's main 

advantage is that the proposed framework is robust to missing parts of road markings. 

Because Hussnain et al. used a feature-based registration technique with fixed size 

windows (tiles), their method is susceptible to insufficient features during registration. 

 
Figure 3-31. Total 2D error of the nine surveys by the landmark update method and by the 

proposed method 
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We overcame this challenge by applying dynamic overlapping sliding windows for 

registration. The same group reported in Jende et al. [86] that they were able to obtain a 

reliable transformation for fewer than 23% of their image tiles. In contrast, our framework 

achieved an accurate registration for all nine surveys.  

The proposed method's registration is based on the availability of sufficient road 

markings in both MMS and aerial surveys. Therefore, it cannot be performed under 

certain conditions, e.g., under bridges or on streets without road markings. Additionally, 

significant changes to road markings after the aerial survey, because of reconstruction or 

repainting to different positions, will affect the quality of the registration. However, the 

proposed method is robust to small changes. Figure 3-32 illustrates the areas of this study 

where the road markings were repainted after the aerial image acquisition. To assess the 

effect of these road-marking changes, we also performed survey registration using the 

original aerial image (which included outdated road markings rather than the updated 

versions). In that case, the maximum error increased from 27 cm to 52 cm, but the average 

Table 3-7. Overall performance comparison  

Method 
Error (m) 

Mean Max Stdev 

Original data (GPS/IMU/Odometer) 0.997 2.064 0.22 

Landmark updating 0.208 0.72 0.16 

Proposed method 0.116 0.277 0.07 

Original data for [35] (Graph SLAM) 1.3* 1.93* - 

Kümmerle et al. [35] 0.85* 1.47* - 

Original data for [38] 

(GNSS/IMU/Odometer)  
2.13** 2.40** 0.13** 

Hussnain et al. [38] 0.18** 0.32** - 

*The reported numbers are based on reports from the text and Fig. 13 of the cited paper. 

**The reported numbers are extracted from Table 3-2 and Figure 18 of the cited paper. Because 

they reported only the accurate and least accurate results using manually selected corner points 

in their aerial images, we estimated the mean and max values using only the graph of those 

tiles. 
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error increased by only 1 cm. In recent years, aerial surveys have become a popular 

method of acquiring data for different applications. Therefore, different companies have 

begun providing regularly updated aerial data of cities, making the proposed framework 

a promising scheme for accurate urban mapping. 

 Conclusions 

In this chapter, we have presented a novel and thorough framework for automatic 

georeferencing of mobile mapping system (MMS) data that is specially designed for 

urban areas. First, road markings are extracted from high-resolution aerial images based 

on a perspective occlusion map (POM) and adaptive thresholding. The POM is generated 

 
Figure 3-32. Areas where the road markings were repainted after June 12, 2014 (the date of the 

aerial image acquisition). 
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by perspective projection of the digital surface model (DSM) obtained from airborne laser 

scanning (ALS) data. Moving vehicles, which could be mistakenly extracted as road 

markings, are filtered by comparing overlapping aerial photographs. Then, similar road 

markings are extracted from an MMS point cloud to perform registration by road 

segmentation, laser intensity calibration and adaptive thresholding over intensity value. 

Finally, the MMS geo-referencing was achieved by performing a precise registration of 

each MMS survey to the aerial reference, utilizing a dynamic overlapping sliding window 

and a normal distribution transform (NDT). In urban areas, the quality of global 

navigation satellite system (GNSS) measurements is significantly degraded due to 

blockages and reflection of the satellite signals. Therefore, integrated GNSS/IMU 

positioning has a significant error with considerable uncertainty. In such cases, a single 

MMS survey cannot be treated as a rigid body for the registration. The proposed dynamic 

sliding window-based registration overcomes this problem by keeping the window length 

as short as possible based on the availability of road markings in the target area. The 

experimental results from several surveys in a dense urban area in Tokyo were employed 

to assess the performance of the proposed method. In total, the proposed method could 

decrease the average MMS data error from 99.7 cm to 11.6 cm, while it reduced the 

maximum error from more than two meters to 27 cm. These results indicate that the 

proposed method's performance is even better than that of the labor-intensive and time-

consuming landmark update process, yet the proposed method does not require a field 

survey to acquiring the ground control points (GCPs) and avoids having to manually find 

those points in the point cloud data. 

The current proposed framework performs a two-dimensional registration of the 

MMS data. To achieve a high-definition 3D urban mapping, three-dimensional 



Chapter 3. Registration of Mobile Mapping System and Aerial Imagery 

 

 

 
68 

registration is desirable for some applications. In the next Chapter, we will consider a 

three-dimensional calibration of the MMS data based on the fusion of aerial images and 

ALS point clouds.  
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Chapter 4.  

Three-Dimensional Registration of Mobile 

Mapping System and Aerial Surveillance Data 

 

 

 

In the 2D registration method, the MMS point cloud was georeferenced based on 

the registration of the MMS road markings to the road markings extracted from the aerial 

image. This method can improve the 2D accuracy of the MMS point cloud which is 

enough for 2D applications. However, the error in the z-axis is also significant and should 

be considered for the geo-referencing. In order to update the Z-axis of the MMS data, we 

require a 3D reference for the matching, while the aerial image is 2D. In addition, 

applying aerial stereo cannot preserve the required accuracy since its precision is limited 

by poor aerial triangulation. In this research, we generate a 3D reference for the matching 

by fusing aerial image with the ALS data. In this method, first the digital elevation model 

(DEM) is generated from the aerial point cloud. Then, the DEM is applied to the aerial 

road markings to generate 3D references for the matching. Figure 4-1 shows the 3D 

calibration flowchart. 3D registration of MMS data can also remove the roll and pitch 

offset of the sensor.  
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 Generating 3D NDT map from aerial reference 

Extracted road markings from the aerial image have a 2D format. To maintain 

the 3D accuracy of the MMS, we need to generate a 3D reference by adding precise height 

information to the aerial road markings. Therefore, we make a high-resolution ground 

elevation profile from the aerial point cloud. By adding the corresponding height 

information to the each road marking pixel, we can produce 3D reference road marking. 

Figure 4-2 shows the ground elevation profile generated for the Hitotsubashi intersection. 

 

Figure 4-2. Generated high-resolution ground elevation profile from ALS. 
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 3D MMS registration   

In this step, extracted road markings from the MMS survey should be aligned to 

the 3D aerial reference. For the registration, first a 3D normal distribution map is 

generated from the aerial reference. Then, MMS road markings of each survey are patch-

wise cropped, and points within a dynamic sliding window over the patches are registered 

to the 3D NDT map. Finally, the original MMS point cloud is calibrated using the 

calculated transformation matrix.   

To register the MMS survey to the aerial reference, we use the point-to-

distribution variant of normal distributions transform  (P2D-NDT) algorithm [79]. The 

basic idea of this method is to register the input point cloud over the distribution rather 

than directly registering to the reference point cloud. First, the target space is regularly 

subdivided into the fixed-size grids. In our application, we assume the 3D aerial reference 

as the target point cloud. For each grid, 3D normal distribution of the points is calculated 

using the following equations. 

𝜇 =  
1

𝑛
∑ 𝑝𝑖

𝑛
𝑖=1 , (1) 

Σ =
∑ (𝑝𝑖−𝜇)(𝑝𝑖−𝜇)𝑡𝑛

𝑖=1

𝑛−1
, (2) 

The probability of observing a lane marking at 3D-point 𝑝 in this grid is now 

shown by the normal distribution (3): 

𝑃(𝑝)~ exp (−
(𝑝−𝜇)𝑡 ∑  −1(𝑝−𝜇)

2
), (3) 

The grid size is critical for a robust and accurate matching. Usually, larger grid 

size is more robust and smaller grid size is more accurate. In our method, we use the 

coarse-to-fine strategy (2.0m to 0.5m grids) for the map-matching. 

Each MMS survey is generated from thousands of scan lines. These scans are 
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registered based on the fusion of GPS, IMU, and odometer to form a complete point cloud. 

If the self-positing system performs perfectly, points of each laser scan will be registered 

to their exact global position and generate a precise MMS point cloud. Our goal is to 

register each scan line to its correct position in the presence of the error. However, points 

of a single scan do not provide enough features for the registration. Owing to the IMU 

and odometer, the relative position of consequent scan lines within a small patch (e.g. 

0.5m length) is precise. Therefore, we subdivide each survey into small fixed-size patches 

and consider them as a unit of the registration. Since these small patches still do not have 

enough road features especially for the longitudinal matching, we propose a dynamic-size 

sliding window around the target patch overcome this problem. 

The problem of the static-size sliding window is that the window length may be 

too short or too long. If it is short, it may not be able to provide enough feature for a 

precise matching. On the other hand, the large window may contain a significant relative 

error in itself which makes the registration difficult. Therefore, we define the length of 

the window dynamically based on the number of road marking points within the window. 

Although the registration is done based on the window, the transformation matrix 

acquired from every matching is applied only to the center patch of the window. Then, 

the sliding window shifts to the next patch and the window’s length may change. In this 

research, the length of the patches is defined 0.5m based on the IMU performance to limit 

the deformation inside the patch within a centimeter. The window size is defined 

dynamically to have at least 30 patches with enough road markings for the registration. 

Uneven distribution of the points within the window can cause a considerable 

error in the NDT matching. Since MMS point cloud is uneven, we have to perform a 

subsampling before the matching. The best subsampling grid size is obtained empirically 
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to be 30cm. 

For the registration, the input point cloud is moved over the reference NDT map 

using 3D transformation matrix Mt_3D to calculate the optimum transformation which 

obtains the highest matching score. Mt_3D is defined as: 

𝑀𝑡_3𝐷 = [
𝑅(∅𝑥, ∅𝑦 , ∅𝑧) 𝑇𝑥,𝑦,𝑧

0 1
], (4) 

𝑆 = ∏ 𝑃(𝑇(𝑀𝑡_3𝐷 , �⃗⃗� k))
𝑛
𝑘=1 , (5) 

In the optimization process, calculating the Hessain matrix and gradient from S 

is difficult. Therefore, we use the log likelihood (6) as score function. 

−𝑙𝑜𝑔 𝑆′ = − ∑ log(𝑃(𝑇(𝑀𝑡_3𝐷 , �⃗⃗� k)))
𝑛
𝑘=1 , (6) 

In this case, the best transformation matrix is the one that makes the smallest 

value for the Eq. (6). However, this value is very sensitive to outliers. Because, outliers 

make the value of P very small. Thus, the logarithm of P become very large, which affects 

the matching. Therefore, rather than directly using the Eq. (3), the mixture of normal 

distribution and a uniform distribution is used. This distribution is defined as: 

�́�𝑗 =  𝜉
1
𝑃𝑗(�⃗⃗� ) +  𝜉

2
𝑃0, (7) 

Where 𝑃0  is the expected rate of the outliers, and 𝜉1  and 𝜉2  are constants 

such that integral of �́�𝑗  become 1. Eq. (5) is approximated by a Gaussian function and 

we consider that function as score. For more details about the map-matching using 

optimization problem, please refer to [79]. 

 Experiments and evaluations 

To evaluate the performance of the proposed method, we measured seven 

different 3D GCPs at the corner of traffic signs using RTK-GPS and total station. Then, 

24 virtual control points (VCP) are generated by propagating the original GCPs. Using 
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these VCPs, the performance of the conventional MMS, landmark updating and proposed 

were assessed. The accuracy of each method is shown in Table 4-1. We can see that the 

proposed method could decrease the average 3D error of the MMS data from 1.47m to 

0.13m. The proposed method could also outperform expensive and labor-intensive 

landmark updating method. The average error of the landmark updating was 26cm 

whereas the maximum error was 71cm. Figure 4-3 shows the error for all 24 VCPs and 

Figure 4-4 shows the evaluation of 3D registration visually.  

As we can see in Figure 4-3, the landmark updating method over performs our 

proposed method only in the points close to the GCPs. In this figure, virtual control points 

3, 9, 13 and 19 are relatively close to the GCPs used for the landmark updating. Since the 

landmark updating method adjusts the MMS data only based on a few GCPs, it has a good 

performance for the area around GCPs. However, the error model in other points which 

have few meters distance to GCPs follows the error model of the original data. 

 

Table 4-1. Total error of the nine surveys 

Method 
Error (m) 

Mean Max Std 

Original  

MMS data 
1.47 2.07 0.26 

Landmark 

updating 
0.26 0.71 0.10 

Proposed 

method 
0.13 0.39 0.07 
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Figure 4-3. Error of the MMS laser scanning data before calibration, after the 3D calibration 

using the landmark updating method, and after applying the proposed methods. The marked 

virtual control points are relatively close to the GCPs measured for the landmark updating 

method. 

 
Figure 4-4. Visual evaluation of the proposed 3D registration method: (a) Survey route of the 

MMS on the aerial image; (b) Enlarged view of the original MMS point cloud on the aerial image; 

(c) Enlarged view of the MMS point cloud after applying the proposed method. 
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For the VCPs which have few meters distance with GCPs, our proposed method 

has much higher performance. In overall, the proposed using the proposed method, we 

can achieve a high-precision 3D urban mapping without requiring labor-intensive GCP 

measurement. 

Figure 4-5 shows a building after 3D registration of MMS scans. It can be seen 

that the misalignment before the calibration almost removed. 

 Conclusions 

In this chapter, we proposed a complete framework for the automatic 3D 

registration of the MMS laser scanning data to the aerial surveillance data, which could 

improve the accuracy of the mobile mapping system significantly. For this purpose, 3D 

road markings from the combination of high-resolution aerial image and Aerial Laser 

Scanning (ALS) were considered as a reference for the registration. 

The experimental results of the Hitotsubashi intersection in Tokyo has been used 

to evaluate the performance of the proposed method. The results demonstrated that the 

  

  
Figure 4-5. Point cloud of one building after 3D registration. As can be seen misalignment 

removed. 
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proposed method is practical for the precision 3D mapping of the urban area and it could 

achieve a mean error of 13cm in a challenging scenario. 
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Chapter 5.  

3D Urban Modeling Using Ground and  

Aerial Surveillance Data 

 

 

  Introduction 

Research on autonomous vehicles and self-driving cars have become one of the 

popular topics in Intelligent Transportation Systems (ITS) and many research projects 

have been launched toward achieving the goal of driving without human supervision over 

the last few years. The attention of the research in autonomous driving has recently 

switched its focus from the well-structured environments in highways to more 

unstructured environments, like urban traffic scenarios [87], [88]. 

One of the key requirements of such a vehicle which drives without human input 

is precise self-localization, especially in dense urban areas. Accurate and reliable self-

positioning will let the vehicle to be guided along the desired trajectory toward the pre-

defined destination. 

Global Navigation Satellite System (GNSS), stereo-vision based visual 

odometry and scan matching using 360 degrees light detection and ranging (LiDAR) 

scanners are three main self-localization techniques for autonomous vehicles. 

GNSS is a proven vehicle self-localization technique in the open sky. However, 

it suffers from the effect of multipath and Non-Line-Of-Sight (NLOS) propagation in 

dense urban areas [89]. There are different techniques which use the 3D map to detect 

and mitigate the multipath effects [90]–[92]. These methods called 3D map aided GNSS 
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positioning have recently gained more attention because they do not require any extra 

hardware besides GNSS receiver. In [93], [94], 3D building model and the ray-tracing 

algorithm is used to rectify multipath and NLOS effects. In such a 3D map aided GNSS 

positioning technique, accuracy and the level of details of the 3D building model play a 

major role in detection and rectification of Multipath and NLOS. 

Another vehicle self-localization technique uses stereo-vision based visual 

odometry. Visual-odometry, which estimates the full six-degree of freedom (DOFs) of 

vehicle motion from image sequences, produces relatively accurate and has lower drift 

than inertial measurement units (IMU). Visual-odometry methods are, however, 

incremental and prone to small drifts, which, when integrated over time, become 

increasingly significant over large distances [95]. One of the solutions for minimizing 

drift of VO is to use a precomputed 3D model of the environment. Localization with 

respect to the 3D model remains drift-free [96]. 

360-degree LiDAR can generate a dense point cloud and self-localization using 

scan matching acquires centimeter-level accuracy. However, scan matching using a 

precise and priori known high-resolution point cloud map [88], [97] is not feasible for 

urban traffic scenarios. Assume the scenario that many autonomous cars are running 

simultaneously. If each vehicle needs to download a large high-resolution 3D point cloud 

map for localization, network congestion will be a big problem. Therefore, a compact 3D 

building map which provides geometry of surrounding buildings can be replaced with 

large 3D point cloud map.  

As described above, an accurate city scale 3D map can assist major vehicle 

localization techniques. 

Besides assisting self-localization in ITS, 3D building map plays a key role in 
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wireless base station placement [98], wind simulation, air pollution simulations, noise 

propagation estimation [99], urban planning [100], etc. 

With the development of the laser scanning technology, airborne laser scanning 

(ALS) has now become readily available and cost effective for the acquisition of high-

resolution digital elevation models. However, most of the methods require human 

interaction with the software and still modeling results are not simplified enough while 

preserving important structural features [101]. In this chapter, an automatic 3D building 

map reconstruction technique is proposed which integrates ALS point cloud with 2D 

boundary map. 2D boundary map is used to assist the building segmentation of the point 

cloud in dense urban areas, in which defining building edges between two connected 

buildings are difficult. 

 Related works 

Since a broad range of applications benefits from 3D building map of cities, the 

research on 3D building map reconstruction has considerably progressed in the last few 

years. Various technologies ranging from computer vision and image processing, 

photogrammetry and remote sensing have been proposed for this purpose. 

Many researchers with the background of computer vision and image processing 

developed new techniques and algorithms to detect roof edges and reconstruct city scale 

3D building model. However, roof edge detection using aerial images are not efficient 

enough for dense urban areas in which buildings are connected to each other and the edges 

of the each roof is not clear. 

Many other types of research are using point cloud from remote sensing 

techniques such as laser scanning for building reconstruction. The first step of building 

reconstruction from LiDAR point cloud is the extraction of individual buildings’ points 
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from a point cloud. Once buildings are extracted, there are two different approaches for 

3D building model reconstruction: model-driven approaches and data-driven approaches. 

Model-driven approaches use a group of pre-defined models and choose one of 

the models for each building or part of each building [102]–[104]. Model-driven 

reconstruction of buildings is fast and efficient if the model of building exists between 

the predefined models and has been selected correctly, because regularization constraints 

such as parallelity and orthogonality of the edges are already inherent in the model. 

However, model-driven approaches are limited to the few number of pre-defined models 

and therefore they are not flexible and applicable for dense urban areas in which buildings 

have variety in shape and complexity [105].  

In contrast, Data-driven approaches connect individual roof segments, which are 

constructed according to a preliminary segmentation of the building point cloud. 

Compared to Model-driven approaches, Data-driven approaches require a high effort for 

regularization and improving the results. Even though they are widely used [106], [107]. 

The advantages of these approaches are high fit to the input data and flexibility in 

modeling unknown building models or complex roof shapes. One of the challenges in 

model-driven approaches is roof extraction and roof reconstruction. Since these methods 

require extraction of roof features directly from point cloud data, they need more 

computation than model-driven methods. These methods achieve roof segmentation by 

using different techniques such as line and surface fitting techniques such as RANSAC, 

Hough Transform, or using region growing methods.  

 Proposed method 

 

Figure 5-1 illustrates the workflow of the proposed 3D building map 
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reconstruction framework. The input data consist of airborne laser (LiDAR) scan 3D point 

cloud data and 2D building boundary map from The Geospatial Information Authority of 

Japan (GSI). 2D map provided by GSI or most of the national organizations only contains 

a rough footprint of all buildings in the city. Therefore, the 2D map can ease building 

segmentation by providing an acceptable estimation of building boundaries. The proposed 

framework consists of 4 major steps for each building: (1) the first step is building 

segmentation assisted by 2D boundary map; (2) the second step segments out roof 

segments from top to bottom; (3) the third is roof shape reconstruction which contains 

three sub-steps; and (4) the last step reconstructs building model using information from 

step 2 and 3; In the following each step of the proposed method will be described in detail. 

5.3.1. Building segmentation 

The first step of the proposed framework is building segmentation. In building 

segmentation, the set of all points representing a building should be extracted from ALS 

point cloud. This step has an important effect on the computation cost of methods with 

dense point clouds. The proposed method hires 2D map provided by The Geospatial 

Information Authority of Japan (GSI) for building segmentation.2D map contains rough 

footprint of all buildings. Although they are not accurate, provided footprints are giving 

a good estimation of the building boundary in 2D. Since the initial 2D map is not accurate, 

if it is used directly for building segmentation, some important boundary points of the 

building can be mistakenly excluded from set of points which are segmented out as a 

building. Figure 5-2 shows this problem. Therefore, building segmentation in proposed 

method is performed by first expanding building map by the pre-defined threshold, then 

extracting all points within the expanded boundary. The next step is roof segmentation. 
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Figure 5-1. Workflow of the proposed framework 
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(a) 

 

 
(b) 

 
(c) 

 

 
(d) 

 
Figure 5-2. Building segmentation by initial 2D map. (a) Top view of the ALS point cloud. GSI 

2D map is shown by red polygon. As shown, 2D map only provides a footprint of the building 

and it cannot represent the shape of building considering multiple roofs. (b) Extracted set of the 

building segment points using initial 2D map. Important boundary points of the building are 

missing because 2D map is not accurate enough. (c) Boundary points of the building which are 

mistakenly excluded from building segment. (d) Set of building points extracted using expanded 

2D map with pre-defined threshold. 
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5.3.2. Roof segmentation 

2D map provides only a footprint. Therefore, a building segment can consist of 

multiple roofs. In this step, all points belonging to each single roof of the building should 

be extracted. For segmentation of multiple roofs in a building, a method using height 

histogram of a set of building points that is extracted using primary 2D map is proposed. 

In this method, the local maximums of the histogram represent the height of possible flat 

roof segment. 

For roof segmentation, instead of an expanded 2D map, the primary 2D map is 

used. Building segment extracted using expanded 2D map usually contain ground or non- 

building points. However, building segment extracted using primary 2D map usually 

contains only building points. Therefore, using primary 2D map makes roof segmentation 

more accurate. In this approach, only flat roofs are reconstructed. Using this method, non-

horizontal (pitched) roofs also can be modeled using flat planes. 

For roof segment generation, first height histogram of building point cloud is 

calculated. For detecting the height of each roof segment accurately, overlapping bins are 

used. This means the width of the histogram bin is set as 50 cm but two consequent bin 

has only 10 cm shift. Therefore consequent bins are 80% overlapped. After histogram is 

calculated, all local maximums of the histogram are considered as possible roof segments. 

Then, all local maximums that their value is smaller than threshold α are ignored. α is the 

minimum number of points that represent one roof segment. The minimum size of the 

detectable roof is the main factor for defining α. By multiplying the size of the minimum 

detectable roof s (m2) with d, the density of the scan per m2, the minimum number of 

points α can be calculated. In our method, the minimum size of the detectable roof is 

defined as 50m2, d is around 7 pts/m2 and therefore α is calculated as 350 points. 
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After defining all local maximums more than α, all consequent local maximums 

that the local minimums between them are more than threshold β are marked as unique 

roof segment. Usually, flat roofs have a border belt called parapet which it is slightly 

higher than the roof itself. This structure usually makes such consequent local maximums. 

In our method, roof and parapet are reconstructed as a single roof. In this case, the height 

 
 

Figure 5-3. Workflow of the roof segmentation 
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of roof will be equal to the height of the parapet. In the final step, each of the remaining 

local maximums will be considered as a unique roof segment. For each roof, maximum z 

value between all its points is assigned as the height of the roof. 

 

5.3.3. Roof shape reconstruction 

The third step is roof shape reconstruction from a set of roof points. Roof shape 

reconstruction consists of 4 sub-steps: 1) filtering outlier points; 2) extraction of boundary 

points; 3) extraction of roof edges; 4) reconstruction of roof polygon. 

1) In order to keep only the points that are representing the roof surface, outlier 

points should be filtered. For this purpose, radius outlier removal filter is used 

which removes all points from input cloud that don’t have at least pre-defined 

number of neighbors within a certain range. The number of neighbors depends 

on the density of input point cloud. 

2) Next step is extracting the set of points that represents the outer boundary of each 

 

Figure 5-4. Roof segment detection using z-coordinate histogram. Red circles are possible roof 

segments. 
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roof. The shape of a roof is not necessarily convex. Therefore, we use the α-shape 

algorithm for defining this set of points. Given a set of points, the α-shape is 

essentially defined as the subset of the Delaunay triangulation of the points where 

the Delaunay cells’ radius is below positive real number α. 

3) In the third step, roof edges should be defined using boundary points. α-shape of 

each roof segment consists of less than few hundreds of points. Therefore, Hough 

Transform is suitable for feature extraction and edge detection. Consider that in 

the α-shape, points are sorted in order. Defining all possible roof edges consists 

of the following steps: 

1. Define the best fitting line using Hough Transform. 

2. Stop when the number of points on the detected line is less than n. 

3. Remove all consequent points that their distance to the line is less than d 

from α-shape excluding the first and last point of each sequence. 

4. Store the first and last points from the Step 3 for the detected line.  

5. Go back to Step 1. 

As mentioned before, the number of points in α-shape of a roof is limited, and 

sometimes an edge is represented by only 5 or 6 points. Also, a corner point can 

represent two different edges of a roof. In this case, if in previous iterations of 

the algorithm a corner point was removed because of being close to one the lines, 

then the quality of the other line of that corner will be decreased in Hough 

Transform. In order to overcome this problem in Step 3, first and last points of 

each sequence are excluded since they can be a corner point with a high 

possibility. The reason which only consequent points are removed is that non-
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consequent points are possibly not on edge but it is close to a detected line just 

by chance. 

4) In the previous step, all detected lines in addition to first and last points of a 

corresponding line are stored in an array. In the last step, a closed polygon that 

represents the roof boundary should be reconstructed using lines and their first 

and last points. Roof shape reconstruction is consisting following steps: 

 

1. Start from the first detected line l0.  

2. Add the first point of l0 to roof_polygon. 

3. If the last point of current_line is same with the first point of another line, 

select that line as next_line. If not go to Step 5. 

4. Add the last point of current_line to roof_polygon and Go to Step 8. 

5. Search a line with a closest first point to the last point of current_line and 

set it as next_line. 

6. Add the perpendicular image of the last point of current_line to 

roof_polygon. 

7. Add perpendicular image of the first point of next_line to roof_polygon. 

8. Set current_line as next_line. 

9. Go back to Step 3. 

10. Stop when no line remains. 
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There are two cases in roof polygon reconstruction. In the first case, the last point 

of a detected edge is same with the first point of another detected edge. In this case, roof 

polygon is simply reconstructed by connecting these two lines (Steps 3 and 4). In the 

second case, the last point of a detected edge is not matching with the first point of its 

consequent edge. Figure 5-5(left) shows this phenomenon. In this case, roof polygon is 

reconstructed by connecting the perpendicular image of those points to each 

corresponding line (Steps 5-7) as shown in Figure 5-5(right). Figure 5-6 illustrates the 

flow of roof shape reconstruction step by step. 

5.3.4. 3D building model reconstruction 

After completing roof shape reconstruction for all roof segments, 3D model of 

the target building can be reconstructed by connecting roof polygons in their 

corresponding heights together. By repeating previous steps for all buildings in 2D map 

 
 

Figure 5-5. Roof polygon reconstruction when neither first nor last point of two consequent lines 

are matching. Black points are points in the α-shape of the roof. Dashed lines are detected lines 

by Hough Transform. Red points are first and last points of each line. Green points are 

perpendicular image of the first or las point on the corresponding line. Red line is a part of 

reconstructed roof polygon. 
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of GSI, 3D building map of the city can be reconstructed in a short time. 

 Experimental results 

For evaluation of the proposed method, Shinjuku area in Tokyo, where is one of 

the urban canyons of Japan is considered.  

5.4.1. Specification of the inputs 

Proposed framework receives two input: ALS point cloud data and 2D boundary 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Figure 5-6. Roof polygon reconstruction result. Black points are points in the α-shape of the roof. 

Dashed lines are detected lines by Hough Transform. Red points are first and last points of each 

line. Green points are perpendicular image of the first or las point on the corresponding line. Red 

line is a part of reconstructed roof polygon. 
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map. For ALS, point cloud data provided by ATEC Company is used. This is data is 

acquired by an airplane equipped with ALS70 LiDAR scanner and GNSS/IMU system. 

The density of point cloud is around 7 pts/m2. For the second input, 2D map, boundary 

map provided by The Geospatial Information Authority of Japan (GSI) is considered. 

5.4.2. Parameters 

The minimum size of each detectable roof is defined 50 m2. By multiplying the 

size of minimum detectable roof s (m2) with the d, density of the scan per m2 minimum 

number of points α will be equal to 350 points. 

 Challenges  

Besides benefits there are also pitfalls for 3D map reconstruction using ALS. 

Since in cities such as Tokyo, limitations of lowest safe altitude for flight are strict, the 

density of ALS point cloud is less than 10 pts/m2. In this case reconstruction of small 

roofs and edges in complex buildings are quite challenging. On the other hand, ALS point 

cloud of an area is usually acquired by a single straight scan. In such a scans, there is a 

high possibility that some edges of the building are perpendicular to the flying direction. 

For scans that flight direction of the airplane is almost perpendicular to some edges of a 

building, only limited points can represent corresponding edge, and therefore 

reconstructed edge will not be a straight line. Figure 5-8 shows such a situation. 

In order to overcome these challenges, different methods can be suggested. The 

first suggestion is using scan data of Mobile Mapping Systems (MMS) which acquires 

dense point cloud. Another suggestion is to scan an area multiple times, each time 

perpendicular to the previous scans, like a grid. 

Another drawback of the proposed framework is that it cannot reconstruct 
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buildings with curved shapes. Polygonal mesh-based 3D building modeling is able to 

cover this problem. However, the map size would again increase.  

 

 

 
Figure 5-7. 3D reconstruction steps for Shinjuku L Tower in Shinjuku, Tokyo. 
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 Building wall adjustment utilizing GPS raytracing   

As mentioned in the introduction accuracy of building wall can cause an 

undesired situation in various application. For example, for the Autonomous vehicle self-

localization application, the error of the position of the wall can directly cause an error on 

the positioning. One of the applications of this map is autonomous vehicle self-

localization. Other Applications can be affected by the accuracy of the building position 

as well. 

One of the challenges for making accurate wall position of the wall is parapet. In 

this case, the wall generated by the proposed method is based on the parapet and has error 

around 1 meter. So after making 3D building model we need to adjust the wall more 

accurately. To do this, we used the method proposed in [108] this method uses the GPS 

signal and reflection pass of the signal to rectify the position of the wall. This is shown in 

 
(a) 

 

 
(b) 

Figure 5-8. ALS point cloud for scans that its direction is perpendicular to some building edge; 

(a) Scanned building and flying direction; (b) Top view of ALS point cloud and reconstructed 

roof shape in red. 
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Figure 5-9. 

 3D building reconstruction using MMS and ALS 

In this section, we focus on making 3D building model from both ALS and MMS. 

MMS data is good for the reconstruction of the bottom part of the building, and ALS data 

is suitable for the upper part. Figure 5-10 shows both MMS and ALS data of a building. 

As shown in this figure, the ALS covers the roof and upper part of the building and the 

MMS data covers the lower building walls. For reconstructing building walls, first, we 

segment out the MMS walls from roofs based on the point cloud normal. Then, we Filter-

out outliers using statistical outlier removal. Later, a general segmentation method is used 

to segment the remaining points. Finally, the concave hall algorithm is applied to the 

remaining points and the contours are generated for each segment. This work flow is 

shown in Figure 5-11.  

 

Figure 5-9. Building adjustment using GPS signal and ray-tracing technique 
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We use MMS data only for the point between ground and a specified height 

(20m), and the 3D building model of the points higher than the specified height is 

 

Figure 5-11. Make 3D building model utilizing ALS data and MMS data sources. In the right 

figure, the green part shows the MMS data and the red part shows the ALS data. 

 

Figure 5-10. Workflow of the MMS 3D model reconstruction. 
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reconstructed utilizing the ALS data. Then we easily combine these two data together. 

The result of combination of these two building are shown in Figure 5-12. 

It is difficult to reconstruct some complex buildings using only the straight lines. 

In this case we can use more flexible structures like 2.5 D meshes. The 2.5 D meshes for 

 
Figure 5-12. 3D map reconstruction by fusing MMS and ALS point clouds 

 

Figure 5-13. 2.5D mesh generated from the ALS point cloud for a building in Hitotsubashi area  
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the one building in Hitotsubashi area is shown in Figure 5-13.  

 

. 
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Chapter 6.  

Conclusion and Future Work 

 

 

 Conclusion 

In this dissertation, we proposed a thorough framework for the urban mapping 

which fused aerial surveillance data and mobile mapping data to perform high-definition, 

high-accuracy and high-precision 3D mapping and modeling of the urban areas. In the 

proposed framework the aerial data was taken into account for acquiring the global 

accuracy and the 3D geometry of the structures such as buildings, and MMS was 

considered for the high-definition data acquisition of the urban area from street view. 

Aerial and ground-based surveillance platforms have complementary features which were 

considered effectively in the proposed framework. Finally, the GNSS measurements were 

employed to analyze and optimize the 3D position of the walls in the generated building 

models.  

In the second part of the dissertation, we proposed a novel framework to generate 

high-definition mobile mapping data which met the requirements. The proposed system 

contained these steps: 1) Acquiring aerial data consisting of high-resolution aerial image 

and aerial laser scanning (ALS) with the fusion of high-end RTK-GPS and IMU; 2) 

Generating high-resolution mobile mapping surveys containing camera and LiDAR point 

cloud using high-end RTK GPS, IMU and odometer; 3) Calibration of the aerial data with 

few number of ground control points (GCPs); 4) Filtering the buildings and their relief 
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displacement in the aerial image using building occlusion map generated by perspective 

projection of digital surface model (DSM) made from ALS; 5) Filtering moving vehicles 

from the aerial image using multiple aerial images; 6) Extracting road markings from the 

aerial image utilizing adaptive thresholding; 7) Generating normal distribution map from 

aerial road markings which was considered as the reference for the matching; 8) 

Subdividing each MMS survey into small patches; 9) defining a dynamic sliding window 

over patches to register the target patch in the middle of the window; 10) Register the 

dynamic window to the aerial reference using normal distribution transform (NDT); 11) 

Adjust the MMS trajectory and regenerate the MMS data. This method can achieve high 

accuracy and precision without performing labor-intensive and costly landmark update 

technique which requires field survey for hundreds of GCP acquisition and manually 

picking the points in the point cloud. In most of the cases, the accuracy of the output 

generated using our proposed method can even outperform the traditional landmark 

updating.  

The experimental results from the several surveys in one of the dense urban areas 

in Tokyo were employed to assess the performance of the proposed MMS registration 

method. In total, the proposed method could decrease the average MMS data error from 

99.7cm to 12.6cm, while the maximum error was limited from more than two meters to 

around half-meter. The results proved that the performance of the proposed method was 

even better than the labor-intensive and time-consuming landmark update method, 

without requiring the field survey for acquiring the ground control points (GCPs) and 

manually picking the points in the point cloud data.  

In order to make the large size point clouds of the city with billions of points 

applicable for a variety of applications, an automatic 3D building modeling approach is 
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proposed in the third part of this dissertation. The proposed method takes the combined 

ALS and MMS point cloud as input and generates vector based 3D building models with 

much less information. To generate these three-dimensional models, first the buildings 

segmentation is performed utilizing the 2D boundary map provided by governments. 

Then, a method based on the z-coordinate histogram is proposed to segment the roofs of 

each building. Later, the 3D shape of each roof is reconstructed by feature detection using 

RANSAC and the proposed roof reconstruction algorithm. Finally, reconstructed 

buildings are put in the corresponding height to generate the 3D model of each building. 

3D building map of the Shinjuku area was reconstructed point cloud data to evaluate the 

proposed 3D modeling framework. The results showed that the proposed method is able 

to reconstruct the 3D model of the buildings in a fast and accurate manner. 

 Future work 

The proposed MMS registration method was limited to the road markings and 

therefore in the areas without road markings it could not achieve the required accuracy. 

In the future we will extend this method to more general feature matching framework 

which uses other features such as building edges. In this case the relief displacement of 

the buildings in the aerial image should be considered. Also we should consider the 2.5D 

characteristics of the aerial data where the MMS can acquire 3D street view information. 

If these differences are not taken into account, the registration quality will be significantly 

affected. Furthermore,  

In this dissertation, the final reconstruction step was limited to the 3D building 

generation. In the future we will extend this for other objects such as traffic signs, traffic 

light, guard rails, etc. In addition, we will work on the reconstruction of the vector based 

road markings from point cloud to be able to use the output directly for the ADAS map.  
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Another future direction is applying the reconstructed maps for the localization 

and navigation of the intelligent vehicles and see how they can assist the precision and 

computation time, and finally generate the localization accuracy map which defines the 

quality of map in different areas for the vehicle localization. This will be obtained by 

simulating different map matching based localization techniques such as ICP and NDT to 

define the registration quality. In addition, we can consider the satellite visibility to define 

the quality of sensor fusion for the localization.  
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Appendix. 

GCL Social Project: Autonomous Vehicle 

Platform for Smart Society 

 

 

Project description 

Autonomous vehicles (AV) are an upcoming technology that redefines our 

society. Automakers are announcing that they are rolling out the AV technology over the 

next couple of years, and we have to prepare for this significant change in mobility and 

transportation of our cities. Although AVs can provide a significant comfort and solve or 

alleviate many social challenges by introducing increased safety, higher efficiency, less 

energy consumption, and more productivity, they will also introduce new concerns to our 

society. In this project, we will take steps toward designing a safe and reliable autonomous 

vehicle platform which enhances the possible benefits of this technology. This platform 

will be employed by other GCL students to implement their social innovation project and 

make our society a better place to live. The members of this project are Mahdi Javanmardi 

and Ehsan Javanmardi who worked together during their Ph.D. program as a group, from 

the learnings and discussions about different aspects of AVs and their social impacts to 

the development and implementation of the essentials of the AV such as localization, 

mapping, and obstacle detection frameworks. The output of this project will be partially 

implemented on the GCL MUSCAT (Mobile Unit for Smart Campus Transportations) 

platform under the supervision of professor Tsukada and accessible for all GCL students 

who are interested.  
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This project is contained four main stages: (1) learning; (2) design; (3) 

implementation; and (4) social reflection. The first stage, the learning, means acquiring 

knowledge about different aspects of AVs, such as business model, social benefits, social 

concerns, becoming aware of the state-of-the-art research, and touch on the promising 

technologies under development by the pioneer companies in this field. The next is the 

design, which is to understand the requirements of an AV and propose a novel and 

innovative framework which is able to accurately localize itself, map the surrounding 

environment, and detect and avoid the obstacles along its trajectory. After designing the 

framework, each module should be carefully implemented. In this stage, the best fitting 

platforms are chosen to develop and implement the framework. After the implementation, 

our platform is ready for the test. Since our platform is designed for solving different 

social problems, it should be introduced to the GCL students to boost their social 

innovation project and get their feedback to define the platform improvement priorities. 

To achieve this, a global design workshop was planned to experience and discuss a safe 

AV experiment design, practically.  

Definitely, to be able to design and implement a platform that can be used by a 

variety of people in our society, the first stage which is learning the essentials, benefits, 

and concerns is critical. For designing a successful platform, only a high-end technology 

is not enough. We have to know about the government strategies, business models, 

investments, and development challenges. To gain this valuable knowledge, I have 

attended several meeting of the ITS Japan, which enjoys the full backing of the Japanese 

government and national agencies. In the sub-working group of “Added values of map,” 

I could learn the government strategies, business models, investment problems, and 

development challenges from the frontier companies in the field of mapping for 
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autonomous driving and discuss with them face-to-face. Moreover, I have intensively 

communicated with the big mapping companies working on the AV applications such as 

ATEC and AISAN TECHNOLOGY to touch on the state-of-the-art technology and learn 

the existing challenges. Furthermore, communicating with different key persons in 

companies such as ZMP, U’s factory, and Tier IV increased my knowledge toward the 

primary goal of this project. 

To improve the research and communication skills, gain a comprehensive 

international research experience, and work with the pioneer research groups in the 

autonomous vehicle field, I have visited U.C. Berkeley as a visiting research scholar for 

a half-year. During that period, I worked with PATH project under the supervision of 

professor Wei-bin Zhang to design a Lidar-based obstacle detection framework and 

develop a data collection platform for the AV research. Also, I worked with the Berkeley 

DeepDrive project to generate a dataset for the obstacle detection1, motion generation, 

and comprehension with social interaction2. Moreover, I had an opportunity to share ideas 

and learn from companies such as Honda, Valeo, and Velodyne during different meetings 

and discussions. 

In this project, two stages of design and implementation were tightly connected. 

The developed framework consists of three main components: (1) mapping; (2) 

localization; and (3) obstacle detection. The design and implementation of the first 

component, the mapping, was mainly done by me during this dissertation. The second 

component, the localization, was designed and developed by Ehsan Javanmardi. Finally, 

the obstacle detection component was designed and developed by a mutual effort between 

                                                        

 
1 https://deepdrive.berkeley.edu/project/3d-object-detection-based-lidar-and-camera-fusion 

2 https://deepdrive.berkeley.edu/project/generic-motion-generation-and-comprehension-social-interactions 
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Ehsan Javanmardi and me during the visit at U.C. Berkeley. These components will be 

partially implemented on the GCL MUSCAT platform and can be used in the social 

innovation projects. 

In order to understand the impact of the AVs for the society, I had an opportunity 

to organize a group discussion between GCL students during the course “Practical English 

for GCL students” with the title of “How Autonomous Cars Will Change Our Society and 

Economy —— Think Like a Government and Set Strategies!". In this lecture, different 

groups had to put themselves in the position of the Japanese government and set strategies 

to highlight the benefits of the emerging AV technologies to the society, but limit the 

negative impacts and the concerns at the same time. 

Finally, I have designed a GCL global design workshop (GDWS) titled “Safe and 

Effective AV experiment Design” using the MUSCAT platform. The purpose of this 

workshop is to strengthen the participants' knowledge about the key AV components and 

increase their skills in designing a safe and effective autonomous driving experiment. In 

the following section, details of the workshop will be introduced. 

GCL Workshop: Safe and effective AV experiment design 

Concept, objectives and methodology of the workshop 

“Self-driving cars” are a promising future technology that brings significant 

impacts and changes to our society. A smooth and automated mobility platform can help 

many GCL students to boost their social projects. However, the implementation of a safe 

and effective autonomous driving experiment requires knowledge and experience. This 

workshop aims to introduce the MUSCAT platform to those students and strengthen their 

skills in designing a safe and effective autonomous driving experiment. By attending this 

workshop, attendees will become familiar with key requirements of the driverless cars 



Appendix. GCL Social Project: Autonomous Vehicle Platform for Smart Society 
 

 

 
108 

and have a self-driving experience. During the self-driving experience, they will learn the 

basics of the safe AV experiment design consisting the experiment planning, required 

check lists, safety considerations, dealing with emergency cases, and reporting. Moreover, 

this workshop will be an opportunity for them to think how MUSCAT can assist their 

projects, and provide us with feedbacks to defined development priorities. 

Objectives of the workshop are as follows: 

 Learn about the concept of the self-driving cars and basic localization and mapping 

 Learn about possible social benefits and concerns related to AVs 

 Strengthen the skills of safe and effective AV experiment design 

 Experience a self-driving car in the campus 

 Make a group discussion to improve the “MUSCAT safe experiment manual” 

 Get feedbacks to define the future development priorities 

In this workshop, we expect from students to learn basics of the autonomous 

driving experiment and experience the self-driving in the campus. Then, make a group 

work to improve the existing manual for the in-campus experiments “MUSCAT safe 

experiment manual.” To do this, the workshop will start with a lecture on the driverless 

cars. This lecture includes the basics of the driverless cars and their two key requirements: 

localization and mapping. After learning these concepts, the students are invited to have 

a real self-driving experience using MUSCAT platform. Then after a short coffee break, 

students are encouraged to discuss the potential requirements for a safe in-campus 

experiment. As a result, they should make suggestions to improve the experiment manual. 

Their reflections will be employed to redefine the manual and future development 

priorities of the MUSCAT project. 
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Program of workshop 

Program of the workshop is as follows: 

1. Lecture on “Self-Driving Cars: Basics of Localization and Mapping” 

2. Workshop introduction (Explain the overall flow of the workshop) 

3. Self-driving experience using MUSCAT platform 

4. Group discussion about potentials requirements for a safe in-campus experiment 

5. Reflection 

6. Wrap up 

Time table of the workshop is as follows: 

Time Description Attendees’ role 

10:00 Start     (Self-introduction)  

10:15 
Lecture on “Self-driving cars: Localization 

and Mappings” 

Learning the concept of 

driverless car and how it 

works. 

11:15 Workshop introduction  

11:30 
Self-driving demonstration by 

instructors 

Become familiar with the 

platform and methodology 

12:00 Lunch time  

1:00 

(2.5hr) 

Self-driving experience by 

students 

Experience real self-driving as a 

final user to be able to 

understand the feeling of 

passengers. Learn how to 

design a safe and effective 

autonomous driving 

experiments and what the 

existing challenges are. 

3:30 Coffee break  

3:45 Group discussion description  

4:00 

(1.5hr) 
Group discussion 

Discuss about how to achieve 

a safe and effective in-campus 

experiments. Provide 

suggestions to improve the 

MUSCAT experiment manual.  
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5:30 Reflection 

Each person gives 3~5mins 

speech about his/her 

conclusions. 

6:00 Wrap up 
Learn about development 

priorities of the MUSCAT 

6:30 End  

Required human resource: 

 Photographer for archive (1 person) 

 Lecturer for the introduction (2 persons) 

 Safety staffs for the self-driving experience (3 persons) 

Other resources: 

 MUSCAT (Brain computer, LiDAR, Stereo camera, and IMU)  

 Microsoft Surface for visualizing the data on the MUSCAT 

 Computer for the simulation of self-driving (1 system) 

 Camera for archive 

 Traffic cone for limiting part of the campus 

 

Candidate place to hold the lectures and discussions: GCL Lab 
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Candidate routes for the AV experiment (Google earth) 
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