
博士論文

Representation Learning for Program
Analysis, Testing and Repair

(プププロロログググラララムムムののの解解解析析析、、、テテテススストトト、、、修修修復復復のののたたた
めめめののの表表表現現現学学学習習習)

[指指指導導導教教教員員員　　　松松松尾尾尾 豊豊豊 准准准教教教授授授]

東東東京京京大大大学学学大大大学学学院院院 工工工学学学系系系研研研究究究科科科
技技技術術術経経経営営営戦戦戦略略略学学学専専専攻攻攻

ロロロヨヨヨラララ　　　ハハハイイイフフフマママンンン　　　パパパブブブロロロ　　　サササルルルヴヴヴァァァ
ドドドーーールルル

Contents
1 Introduction

1.1 Motivation .
1.2 Structure and Contributions .

2 Human Factors
2.1 Learning Socio-Technical Representations for Improving Defect Prediction .

2.1.1 Introduction .
2.1.2 Related Work .
2.1.3 Background .
2.1.4 Proposed Approaches .
2.1.5 Empirical Study .
2.1.6 Results and Discussion .
2.1.7 Effect of Dimensionality .
2.1.8 Effect of Sampling Frequency .
2.1.9 Conclusions and Future Work .

2.2 Visualizing Code Ownership Trajectories in Vector Space
2.2.1 Introduction .
2.2.2 Related Work .
2.2.3 Proposed Approach .
2.2.4 Results and Discussion .

2.3 Conclusion and Future Work .

3 Automated Testing
3.1 Test Case Prioritization Through Neural Language Modeling

3.1.1 Introduction .
3.1.2 Background .
3.1.3 Proposed Approach .
3.1.4 Evaluation .
3.1.5 Threats to Validity .
3.1.6 Results and Analysis .
3.1.7 Related Work .
3.1.8 Conclusion and Future Work .

4 Naturalness of Code
4.1 Generating Natural Descriptions from Source Code Changes

4.1.1 Introduction .
4.1.2 Related Work .
4.1.3 Proposed Model .
4.1.4 Empirical Study .
4.1.5 Conclusion and Future work .

5 Automatic Repair
5.1 Learning Fixing Trajectory Policies .

5.1.1 Introduction .
5.1.2 Related Work .
5.1.3 Proposed Approach .

5.1.4 Empirical Study .
5.1.5 Conclusion and Future Work .

6 Discussion
6.1 General Discussion .

6.1.1 Hyperparameter Optimization .
6.1.2 Interpretability and Accountability of the Learned Representations .
6.1.3 Real Applicability in a Software Development Scenario
6.1.4 Transfer Learning Capabilities .

7 Conclusion
7.1 General Conclusions .
7.2 Future Work .

List of Figures

2.1 Example of a code genealogy. Successive changes that share actions over com-
mon methods are related with directed edges.

2.2 Continuous Bag of Words model. .
2.3 Skipgram model. .
2.4 Diagram of a proposed approach. The representation for each code change is

influenced by its structural properties and also by the semantics of the code
it is modifying. .

2.5 Changes per project .
2.6 Files modified per change .
2.7 Example of the extract of the real change genealogy and the resulting vector

representations visualized through t-SNE.
2.8 Performance of the classifiers across different sizes of the vector representation.
2.9 Performance of the classifiers across different random walk configurations. . .
2.10 Diagram of the proposed approach for visualizing code ownership trajectories.
2.11 Example of a visualization for a anonymized user (red) trajectories over the

space of program artifacts (blue) over time. The 2D representation of the
vectors was done using t-SNE. .

3.1 Continuous Bag of Words model (CBOW). In this case, we try to estimate a
word in terms of its context. .

3.2 Skipgram model. In this case, we use the representation of a given word to
estimate the likelihood context is predicted based on a target word.

3.3 We propose to enrich the context by appending a vector representation of the
associated document (a test case of a version difference) to the original set of
elements .

3.4 Proposed prioritization model: Both test cases and program version differ-
ences are passed through a neural embedding module that learns continuous
feature vector representation for each of them. Then, a ranking module takes
a the vector associated to each program difference and query the set of vec-
tors associated to the test cases, computing the cosine similarity. Finally, the
system returns the ordered list. .

3.5 Results for Ant .
3.6 Results for Commons Lang .
3.7 Results for Jaxen .
3.8 Results for Joda Time .
3.9 Results for Mime4J .
3.10 Results for Time and Money .
3.11 Results for XML Security .
3.12 Results for XStream .

4.1 Heatmaps of attention weights αi,j. .

5.1 Proposed approach. The agents iteratively generate candidate solutions in
terms of source code modifications, which lead to further states. The goal of
the agent is to reach an optimal program state.

List of Tables

2.1 Average Micro-F1 and Macro-F1 for the comparison between SGE and hand
crafted features .

2.2 F1 scores for the prediction task comparing SGE and SSGE over the STRUCT-
CODE dataset .

2.3 Projects selected for the analysis. .
2.4 Correlation factor between code ownership scores computed with the original

version and the proposed approach. .

3.1 Proposed ways to compute the version changes.
3.2 Subject and program versions collected. .

4.1 Summary of our collected data. .
4.2 Examples of generated natural language passages v/s original ones taken from

the test set. .
4.3 Results on the atomic and full datasets. .

5.1 Statistics about the dataset from Hour of Code
5.2 Accuracy reported on the Hour of Code dataset for problems PA and PB . .

Chapter 1

Introduction

Software represents one of the most important aspects of our lives [26]. It is pervasive
across all the processes and activities we perform on a daily basis and it is responsible of
shaping our lifestyles and interaction with the world [8]. Moreover, software is at the core
of all socio-economic processes, as an enabling framework that empower human behavior at
planetary scale [81].

Software complexity has evolved exponentially over the years [12, 174]. From the early
days where systems were only able to handle basic arithmetic operations to our present days,
where the level of automation and autonomy has led to huge advances in space exploration,
transportation, among others.

Software development is a human activity, therefore it is natural to be prone to er-
rors [1, 41]. Moreover, they way in which software is crafted has evolved over the years,
from a lone wolf paradigm, where a single developer worked in isolation and was entirely
responsible for all the process, to a new paradigm that privileged team work and the sharing
of diverse range of tasks among groups of developers from a diverse socio technical back-
ground [37,65,99]. Additionally, the emergence of web based systems and versioning systems
such as Git has allowed a geographically distributed setting, where people from around the
world can collaborate simultaneously to accomplish a task [52,93]. While this new paradigm
provides several advantages, mainly associated to the concept of diversity, where developers
from difference cultural backgrounds and skills can collaborate to find creative solutions to
challenging problems, it is also known that it adds a new layer of complexity to the develop-
ment process [22].

Given this natural error proneness, continuous efforts have been directed towards the
improving quality assessment tasks, until present day where software has been accepted
as part of our lives because it had achieved over the years a feasible degree of reliability,
ie, we have the notion that software can reach a level of maturity on which we can rely and
delegate most of our activities [80,149]. Both industry and academia have spent large amount
of resources over the years to design and implement methods to detect and repair failures,
to improve engineering processes and to assist program understanding [18,76].

While these efforts have generated important progress over the years, the emergence of
failures at every level is still a threat hard to weaken. It is estimated that software failures cost
US economy 60 billion annually. Moreover, The cost of a bug found after release is 30x higher
than if it is found during test time. Additionally, indirect costs are also a matter of concern,
for example the damage on the reputation of a company that has reported a security or
quality incident has a considerable impact on its value, as has been reported that on average,
a company loses 3.75% of shareholder value just on the day of the announcement [36,77].

Examples of this can be seen in the spacecraft and avionics industry, where projects such
as the Mariner 1, by NASA suffered from a faulty operation in the guidance system, which led
to order a destructive abort 300 seconds after launch [46,90]. This episode was so iconic that
the famous author Arthur C. Clarke described the failure as ”the most expensive hyphen in
history.” The Ariane 5 mission, from the European Space Agency (ESA), is another example.
In this case, a faulty conversion from a 64-bit floating point number to a 16-bit signed integer
value to overflow and cause a hardware exception. Pre-flight tests had never been performed
on the inertial platform under simulated Ariane 5 flight conditions so the error was not
discovered before launch [38,74,85]. More recently, the Hitomi mission from JAXA failed to
reach the desired orbit given a defect in the inertial reference unit [13,164].

Examples in other fields are reported cases of Knight Capital, which trading algorithm
defectively cost over 440 million in just 45 minutes [143]. More critical was the case of
the Therac-25 radiation therapy machine, where a high-powered electron beam struck the
patients with approximately 100 times the intended dose of radiation, delivering a potentially
lethal dose of beta radiation [28,88].

Besides the economic and inherently deadly consequences that defective software could
produce, it has also a dimension associated with the innovation cycles in software engineering
[49,130]. These days companies compete to transform novel ideas into products, in a natural
race to capture audience and position as market leaders [44]. This is specially relevant in
highly disruptive fields where usually companies have such an enormous pressure to deliver
a product that quality assessment tasks, such as testing, are not considered as a priority.
For example, in 2011 Sony suffered a huge data breach on its gaming network, PSNetwork,
which compromised 77 million user accounts [142]. Post mortem analysis suggested that the
system was not tested comprehensively before release. While asked about this case, security
expert Allan Paller said: ”They have to innovate rapidly. That’s the business model. New
software has errors in it. So they expose code with errors to large numbers of people, which
is a catastrophe in the making.” [11] In that sense, the rush for getting innovative products
into market takes security and quality aspects to a second place, which may results in huge
losses, from a business perspective.

Therefore, we consider that software quality needs to be also understood as an enabling
factor for innovation. Standard testing processes are extremely expensive, both in terms of
resources and time, and in most cases are seen as a burden. Existing literature reports that
executing a test suite in an industrial scenario could easily take two to three weeks [14, 47].
A more general statistic says that testing account for more than 50 % of the development
time [79]. Moreover, even comprehensive testing criteria, such as method or branch coverage,
can not guarantee full defect detection [112].

If software quality assessments tasks could be designed to be applied in a more natural
way into the development process, innovators could have the peace of mind to prioritize their
efforts towards improving other aspects of the product.

Given the above, we consider it is necessary to improve software quality assessment tasks
in order to come up the increasing complexity of software systems. This advance needs
to take into consideration the trade off between exhaustiveness and flexibility: while it is
primordial to generate methods that detect and repair failures in a comprehensive way, at
the same time it is necessary that those methods do not interfere with the creative processes
of software crafting.

While software complexity and size are increasing, the same has happened to the amount
of data we are collecting about it [30, 139]. During the years, several logging and storing
infrastructures has been implemented in order to track every single detail from the software
development process. In the first place, the adoption of subversion systems such as Git 1,
has allowed the recording and tracking of all the changes in a codebase, allowing developers
to manage the engineering aspects in a secure way by means of branching, reversing actions
and coordinating code contributions in an asynchronous way.

Moreover, the emerging role of the Web in terms of supporting collaborative work, has
had an enormous impact on the visibility and verification of software , specially in the case
of Open Source [150, 157]. Platforms such as Sourceforge2 and Github3 cannot be seen as
just a rigid code repositories, but as sociotechnical ecosystems where both end-users and
contributors interact in a distributed and transparent way, through the use of social enabling
artifacts such as forums, bug trackers and a series of reputation based constructs, originally
from social networks, such as the ability to follow or like like a project or even a developer [35].
With this, the data that can be obtained from a project is not only related to the functional
properties of the system or the contribution events, but also but also the complete interaction
history between developers and the code base [144].

This increasing amount of data has allowed the exploration of developer behavior in a
more fine grained way. For example, in the past, researchers tried to identify the motivations
of developers to join Open source project, despite the fact that they cannot received any
monetary incentive for their contributions. At that time large amounts of data were not
available, therefore the conclusions they reached were based on small surveys along with the
use of economic models [70, 86]. In contrast, in recent years researchers have been able to
undercover more specific explanatory factors related to the participation pattern by mining
publicly available datasets. The depth of the analysis has also been greatly benefited. While
in the past most of the studies that focused on human factors to explain software quality
aspects were only able to capture high level features, such as graph metrics from co-editing
developer networks [71,104], recent work has pushed the limits as to try to decode the internal
cognitive state the developers, from extracting mood and emotion state of developers by
mining their messages on bug trackers [59, 121], to directly using neurophysiological devices
such as eye tracking and electroencephalography (EEG) to decode brain activity while writing

1git-scm.com
2sourceforge.net
3github.com

git-scm.com
sourceforge.net
github.com

or reading code [111,114,145].

1.1 Motivation

Empirical software engineering is the discipline that has embraced this big data paradigm
in recent years. Most of the work on this area has been focused on finding causal relationships
between diverse aspects involved in the development process, commonly relying on tools
from data mining and machine learning domains [51,147]. Despite the relevant insights that
these approaches have generated, little attention has given to the generation of more general
models or theoretical frameworks to understand the software engineering process from a more
comprehensive way [33,75]. Nevertheless, after a exhaustive literature review from this field,
we conclude that the main lines that influence the outcome of software development from a
quality perspective are i) humans aspects, mainly through social network analysis, primarily
used for extracting features to feed defect prediction models ii) source code understanding,
as a proxy to estimate program complexity and debugging, and, iii) program behavior, in the
form the study of execution traces and coverage information to define testing configurations.
We consider that moving in those three directions is the correct way, in the sense that we
could eventually find insights on how to improve software quality in a broader way. However,
as we deepen our understanding on the state of the art, we found out a sharing element
across all of them: the data representations were inherently crafted manually. While these
approaches in general have been a contribution to the software development process, our
concern is related to the fact that the performance of any predictive model depends heavily
on the representation of the data used, and that different data representations can entangle
and hide different explanatory factors. Furthermore, the decisions related to how to compute
these hand crafted features may incorporate bias and, in some cases, could not be weighted
effectively given their complexity [15,45,58] .

We consider this as a relevant problem in software engineering, given the heterogeneity
of the data sources involved, their modalities and types. In that sense, we hypothesize that
if we were able to design methods less dependent on feature engineering and hand crafted
features, we could improve the effectiveness of quality assessment tasks. Moreover, if we
are able to abstract software data to more tractable and flexible representations, we could
eventually find more natural ways to combine several aspects of development, which at the
end could provide a more holistic perspective on the analysis.

To this end, we rely on the representation learning paradigm, which encompasses a set
methods whose objective is to automatically learn feature representations from the data.
These representations comply with certain characteristics such as smothness expresiveness
and temporal and spatial coherence. Moreover, they privilege the emergence of multiple
explanatory factors with a hierarchical configuration and the ability to be distributed. This
perspective fits our goal in the sense of providing both theoretical and technical frameworks
to structure and construct our study. Therefore, in this thesis we explore methods based on
representation learning and design empirical studies intended to answer the main research
question :

To what extent building methods based on representation learning can help

to assess software quality ?

With this, we envision methods and tools that support developers and that are able to
seamlessly aggregate diverse sources of data to provide rich explanatory factors derived from
automatically learned feature representations. In that sense, in this thesis we embark in a
quest to revisit several and important methods used in software engineering in the light of
a representation learning paradigm. For each of them, we explore ways to extend or create
representation learning based alternatives to compare against the state of the art. Therefore,
we could be able to conclude on the pros and cons that the proposed methods could provide.
At the core of our research is the concept of program change, as we believe it encodes the
temporal and functional characteristics most related to quality.

1.2 Structure and Contributions

As we are attacking a broad problem, we decided to follow a divide-and-conquer approach.
In that sense, we structure the study in several research modules, each of them focused on an
specific aspect of software quality and encapsulated into a chapter. Additionally, we designed
the flow of the analysis in a way it naturally follows the characteristics of the software
development process in terms of temporal and complexity aspects. Moreover, it allows us
seamlessly connect the ideas, allowing the reader to better comprehend the contributions in
a more clear way.

We begin this work with the topic of human factors and defect prediction on Chapter
2, which means the analysis of any social aspect of the development process to estimate
the likelihood of a fault. We chose this topic to be the first as it has a proactive nature:
the quality issues are not explicitly present in system, but they are likely to exist and their
probability resides on the people that modify the code. To this end, we propose a method that
learns unified feature representation from both human and program dimensions. Therefore,
we propose the concept of structural semantic genealogies as a construct to automatically
represent the dependencies between code changes, and from them, predict the emergence of
defects. Additionally, we present a novel visualization method to explore software evolution
from a contributional perspective. Our approach is able to represent users and source code
modules over time on a single coordinate system, which allows us to study the contribution
trajectories over time.

Subsequently, we put now in the position that faults are already part of our system, and
therefore we need effectively to detect them. To study such a task, we devote Chapter 3 to the
topic of automated testing. In this case, we propose a method whose goal is to improve the
effectiveness of the detection of faults, while explicitly taking into consideration the scalability
and time overheads. Our approach deals with the concept of test case prioritization, which
is the task of finding a optimal reordering of test cases in a test suite to maximize the fault
detection rate. Our model learn continuous vector representations for both code changes
and test cases, transforming the problem in a information retrieval task, without the need to
actually execute the test cases. We comprehensively evaluated our approach on a set pf real
world software artifacts comparing against state of the art methods.

In Chapter 4, our main goal is to find ways to represent programs in a way we can support
developers comprehension. To this end, we designed and implemented a neural language
model aimed to map relationships between source code and natural language. Our approach,
CommitGen, uses an encoder decoder architecture to automatically generate natural language
descriptions from source code changes. In that sense, the model tries to explain a source
code level change by generating a small description. In that sense, we envision the use of
representation learning could ease program understanding, summarizing code change activity,
usually represented as code commits, into a natural language description, which could be used
for both automatic documentation or debugging tasks.

Chapter 5 serves as a unification point of the work presented on the previous chapters. The
core unifying element resides in the concept of automatic repair, in the sense of challenging
a program to find a fix for its own defects. To this end, we propose a method based on
reinforcement learning that learns to represent a state (program version) and from it select
the action (a source code modification) that maximizes the expected utility, based on a defined
reward signal associated to the correctness of the code (both syntactic and functional). At
converge time, the program is able to learn fixing policies. With this, we envision a line of
research where programs could learn from its creators and anticipate fixing tasks by both
proactive detection and fixing candidate recommendation.

Chapter 6 is devoted to the discussion in terms of contrasting our main hypothesis with
the actual results we obtained across the previous chapters. In that sense, we put emphasis
on the advantages and disadvantages of our proposed approaches, the scale of our studies
and the threats to validity. Moreover we define a set of guidelines intended to support the
design of representation learning based models for software engineering.

Finally, in Chapter 7 we draw our main conclusion, after carefully reviewing the whole
study. Additionally, we state the main lines of extension and future work.

Chapter 2

Human Factors

Preface

Considering the human dimension of software engineering has been one of the most im-
portant advances in software engineering research in recent years, as it has enabled a broader
understanding of the development process. At the same time, this addition represents new
challenges, as the data modalities increase in number and complexity. That motivated us
to explore ways to support the extraction of expressive representations based on human
interaction that could allows to study the emerge of defects.

2.1 Learning Socio-Technical Representations for Im-

proving Defect Prediction

2.1.1 Introduction

Software development can be seen as a continuous stream of heterogeneous activities
[113], where a community of contributors interact by committing changes to the code base,
improving the overall quality or adding new functionalities. These changes differ in their
nature, but commonly consist of bug fixes, new feature additions and tests suites.

In recent years, the Web and subversion systems have converged into collaborative plat-
forms such as Github and SourceForge. These systems have boosted the participation levels
in Open Source projects to the point that collaboratively generated programs are sometimes
the first choice in several domains. Likewise, even private companies are opening their code
bases in search for feedback, following a win-win schema [4].

The key element that these systems provide is a social layer, which acts as a catalyst for
discussion and collaboration. Each proposed change is discussed transparently and the deci-
sions can be seamlessly propagated to the community. On top of that, reputation artifacts,
commonly seen in social networks, such as followers and favorites, are used as incentives for

participation.

This social component can be seen as an advantage, in the sense of boosting innovation
and visibility, but at the same time it increases the complexity of the development process,
which could eventually make the code more prone to errors. For instance, sudden bursts
in contributions which the core team, usually a very reduced number of participants with
code committing privileges, cannot review properly could cause a decrease in the overall
quality [113].

One way to proactively handle these threats is to rely on defect prediction models to
understand the dynamics of contributions and estimate which sections of the system under
development are more prone to allocate bugs. This information could represent a huge help
for assigning and prioritizing human resources in maintenance and code reviewing tasks.

Defect prediction is an active field in the research community, and given the high hetero-
geneity of the data available, both at source code level and in the version history, a large num-
ber of approaches from different nature have been proposed during the past years [19,115,171].
Commonly, defect prediction methods consist of three defined steps. In the first place, a data
source from a chosen dimension of the software development process is selected, along with its
granularity. For example, literature shows defect prediction studies using data from sources
such as source code, module dependencies or developer interaction history, among others.
This data source will be used as the independent, explanatory variable during the prediction
task. The second step consists of the construction of features from the data, a process that
is usually carried out manually and that is inherently ad-hoc to the nature of the data under
study. For example, if the study is focusing on source code, then code complexity metrics
are usually computed. If it is focusing on developer interactions, network metrics, such as
node centrality or degree, are obtained. Finally, in the last step, the set of features and the
corresponding labels associated to real defects serve as training set for a classifier, and a
standard prediction task is carried out.

While this setting have generated remarkable progress over the years, our concern is
directly related to the second stage presented above, the feature generation, as little attention
has been given to the fact that the performance of any predictive model depends heavily on
the representation of the data, and different representations can entangle and hide different
explanatory factors of variation behind the data [15]. Furthermore, the decisions related to
how to compute hand crafted features may incorporate bias and in some cases could not be
weighted effectively given their complexity. Therefore, in order to expand the scope and ease
of applicability of defect prediction models, it would be convenient to design methods less
dependent on feature engineering and hand crafted features.

Specifically, we are interested in analyzing the mentioned issue on defect prediction mod-
els that incorporate human activity as explanatory variable, because historically they have
suffered from the sparsity issues derived from computing graph related metrics. Additionally,
it allows us to visualize software development as sequence of dependent changes on the code,
which eventually opens the door to understand the causal factors that could drive developers
to introduce faulty code.

Given the above, we propose to study the impact of the representation of the data in
defect prediction models that incorporate human factors. Then, instead of manually con-
structing features, we propose two methods inspired in recent advances in Representation
Learning [15] which are able to automatically learn representations from the data. These
new representations are subsequently compared against manually crafted features for defect
prediction in real world software projects.

The first step consists of processing development activity logs and identifying the depen-
dencies between code changes. To this end, we rely on the concept of code change genealogies,
proposed by Brudaru and Zeller in [27], which allows us to transform code commit history
into a dependency graph. Under this configuration, code changes are represented by nodes,
and edges between them are dependency relationships computed based on the amount com-
mon code they are modifying. The resulting structure is a directed acyclic graph that allows
us to identify the impact (both direct and indirect) of a change over the subsequent changes.
See Section 2.1.3 for a detailed review on code change genealogies.

After the data has been processed and structured through code change genealogies, the
second step consists of extracting features from each node, which will characterize each code
change. Existing studies manually compute families of graph-based metrics, such as node
centrality or degree [66, 173]. We explore a completely different approach, and instead of
choosing and computing features manually, we propose two methods to automatically learn
feature representations. These methods are inspired by the family of neural word embeddings,
which have had a significant impact in Natural Language Processing in recent years [16,106],
and also by novel methods that discover latent representations of nodes in graphs, such as
the work by Perozzi et al. [125].

The first approach, Structural Genealogy Embeddings (SGE) tries to learn representations
directly from the structural properties of the change genealogies. This method works by firstly
generating truncated random walks from each node. Then, the resulting paths, which are
actually node sequences, are used to learn representations by maximizing the likelihood of a
node given its context.

The second approach, Structural and Semantic Genealogy Embeddings (SSGE) not only
considers structural properties of the change genealogy, but also the characteristics of the
source code that was modified on each change. With this dual input configuration, we can
explicitly relate the behavioral and semantic components behind a code change.

Subsequently, we direct our study towards answering the following research question: To
what extend the representation of the data impact on the performance of a defect
prediction model?

We performed an empirical evaluation comparing our proposed methods to several families
of standard handcrafted network features. Our baseline is the work conducted by Herzig et
al in [66], on which a defect prediction model based on handcrafted features extracted from
code change genealogies is proposed. This setting allows us to compare directly handcrafted
and automatically learned features. For our experiments, we collected version history data
from a large number of projects from Github and SourceForge using the BOA repository

mining framework [39] and also utilized the publicly available dataset provided by [167].

Our results show that, across several classifiers, learned representations outperforms the
set of graph metrics, reaching up to a 13% of increment in prediction accuracy. Moreover,
we empirically found two positive characteristics of the learned representations. In the first
place, as each code change can be represented as a vector in a continuous space, we were
able to avoid the sparsity issues that commonly emerge when working with graph data.
This advantage was evident when we performed a deeper analysis that involved cross-project
prediction. In this case, the learned representations allowed increments up to 18% in some
cases.

Additionally, the flexibility of these new learned representations allowed to explicitly
relate change dynamics with the fault probability, characterizing the sequences of changes in
the form of trajectories, that lead to faulty behavior.

In summary, the contributions of the present study can be summarized as:

• We proposed to study the impact of the representation of the data on the performance
of defect prediction models and performed a empirical study on real world software sys-
tems to provide strong evidence that it actually it is a factor that should be considered
when designing defect prediction models.

• We propose two methods that are able to automatically learn meaningful representa-
tions from developer activity. This methods are highly adaptable and extensible.

These results open several opportunities for improvement by exploring other represen-
tations and by studying how to unify the diverse nature of software development data into
meaningful and flexible representations to cope up with the increasing complexity of software
development. We provide full access to the code and data used in this study for replication
and extension purposes1.

2.1.2 Related Work

Defect Prediction

Defect prediction is an active field in Software Engineering research. Given the richness
of the data that can be extracted from the software development process, a large number of
methods have been proposed. There are clearly two main categories in terms of the nature
of the data used.

In the first place, we can identify source code based features, which usually take into
account the complexity of the system under development. Examples of this are Halstead [61]
and McCabe [102] features, which are used to map defects in a prediction setting [105]. Graph
representations of software components have also been used for defect prediction, such as the
work of Zimmermann et al in [173].

1Available after publication

In the second place, and given the relevance that human factors have gained into the
software development analysis, several approaches have focused on how interactions and
organizational dynamics could contribute to predict defects in the code. Examples of this
paradigm are the seminal work by Weyuker et al [159] which uses developer features and the
approaches by Pinzer et al [128] and Meneely et al [104], both using a graph representation
to form relationships between developers and the modules they build, which are used to
support defect prediction tasks. More recently, Bird et al [20] used the concept of socio-
technical networks to predict bugs in both Windows Vista and Eclipse. The same author
proposed in [21] the use of code ownership, defined as the amount of expertise a developer has
over a module, as a explanatory variable for defect prediction. That work has been followed
by replication studies such as [53] and [42].

Another relevant line of research is related to cross-project defect prediction to alleviate
the problem of the lack of training data, specially for new projects. While historically the
performance has not been solid, given the complexity of the problem, several approaches has
put attention on the representation of the data. For example, Nam et al proposed the use of
transfer learning in [116].

The problem of the representation of the data has been present in the literature, with
recent focus on the aggregation effects [170] and model validation [153]. Additional stud-
ies can be found on the issue of the noise present on the data and how it affects model
performance [78]

Moreover, the use of representation learning for defect prediction has started to get trac-
tion on the software engineering community, such as the work of Wang et al [158] use Deep
Belief Networks [69] to automatically learn semantic features from abstract syntax trees
(ASTs) extracted from source code. The obtained features are used in a defect predic-
tion setting, with emphasis in cross-project defect prediction, outperforming state of art
approaches. Yang et al [166] uses a similar approach but based on the problem of just tin
time defect prediction. While we took inspiration on those approaches, they work at source
code level. In our case, the goal resides on trying to learn representations by unifying two or
more aspects of the development process.

Graph Embeddings

The success that approaches based on Representation Learning achieved in Computer
Vision and Natural Language Processing was rapidly adapted to model graph data. Perozzi
et al proposed DeepWalk in [125], a method that provides a vector representation for each
vertex on a graph by using Skipgram model on sequences of nodes generated through random
walks. In [126], the same author extends the approach to tackle the problem of representing
the membership of an individual in all the communities he participate. The idea of using
random walks as sequences for encoding node context has been shared by other methods
such as Grover et al [54] and Cao et al [32]. Tackling the specific problem of representing sub
structures in graphs, Yanardag et al proposed Deep Graph Kernels in [165]. Another element
of interest is the scope used in the graph to learn the representations, where approaches such
as [152] and [31] have explored different configurations, specifically the definition of the loss
function during training. Li et al [89], extended the concept of Graph Neural Networks

defined by Gori et al [89] to propose a model to assists tasks in graphs that output sequences
instead of a individual value, for example, paths within the graph. A recent approach is
proposed by Niepert et al [119], where convolutional neural networks are adapted to discover
features from connected regions from graphs.

Bourigault et al [24] presented a method for modeling diffusion cascades in social networks
using representation learning. In this case, the diffusion is transferred into a continuous latent
space and then the transmission probability is computed base on the relative position of the
entities in this new representation.

Applications of these techniques have also been studied. One example is the work by Ni
et al in [118], where they tackled the problem of measuring the similarity between documents.
In this case, authors firstly leveraged the an initial linking structure from a defined knowledge
base and from that learn to represent latent embeddings for each document.

Representation Learning in Software Engineering

Representation Learning and more commonly deep learning techniques have been intro-
duced into the Software Engineering research community in the recent years, focusing on
several aspects of the development process and providing a new set of tools to improve the
analysis. From a source code level perspective, neural language models have been adapted to
perform a diverse rage of analysis tasks [163], from program classification by learning features
from the Abstract Syntax Tree (AST) [108] to source code summarization using attention
models [3] and clone detection [162].

More recently, Gu et al [55] proposed a deep learning based approach to generate API
usage sequences for a given natural language query. Similarly, Ye et al [168], propose the
use of neural word embeddings to support the text retrieval task, trying to find a common
ground between natural language and source code, which results increasingly useful in tasks
such as bug localization, where it is necessary to locate a fault in source code based on a
report generated in natural language.

2.1.3 Background

Code Change Genealogies

Our ultimate goal in this work is to build a model that learns to represent code changes
and then use these learned features to predict defects in the source code. In that sense, the
use of a graph approach to structure developer activity appears as a natural decision, as it
has shown potential to capture structural and temporal dependencies at different levels in the
software development process, such as between packages, modules or even code changes [173].

We built our approach on top of the concept of code change genealogies, introduced by
Brudaru and Zeller in [27]. A code change genealogy is a graph representation of the code
changes introduced to a software system during a defined period of time. This idea was
shared by other approaches such as [2,48,67] in the sense of capturing the underlying factors

that induce dependencies between changes in the code.

In the original formulation, the nodes in a code change genealogy represent change sets
and the edges represent dependencies between them, computed based on a set of rules that
consider the addition or modification of method calls between changes. To better understand
this concept, let us illustrate it with an example, shown in Figure 2.1. In this case, let c0
be the initial implementation of a portion of source code, which consists of the addition of
two functions, foo() and bar(). Subsequently, a new change ci is performed, which consisted
of a modification of the function bar() (the addition of a new parameter). As the function
bar() is shared among both changes, a link is generated between them. Following that, we
have the change cj, where the function foo() is called. Consequently, we construct an edge
between c0 and cj as the latter is explicitly using a function defined in c0. Finally, we have
the case of ck, a change that is calling the method bar(), which last modification resides in
the change ci, therefore, we generate an edge between ci and ck.

c0 ci cj ck

t

def foo (x) :
. . .

de f bar (y) :
. . .

de f foo (x) :
. . .

de f bar (y) :
+ def bar (y , z) :

. . .

. . .
b = foo (0)
. . .

. . .
b = bar (0 , 1)
. . .

Figure 2.1: Example of a code genealogy. Successive changes that share actions over common methods are
related with directed edges.

As we can see, as we traverse in time the project activity, a directed graph structure can
be generated. The introduction of edges depends on the criteria used to relate changes, and
while several options could be considered, we follow the set of rules proposed by Herzig et
al [66], which uses a method level to compare between changes.

Code genealogies, unlike other graph structures adopted in the literature, has the ad-
vantage to encode a temporal dimension, which makes it an interesting candidate for defect
prediction.

Neural Language Models

The key idea behind these models resides on casting the feature generation as a prediction
problem, taking into account the order of the words in a sentence and leverage a model based
on the inherent language regularities, under the assumption that closer words in sentence
have a higher statistical dependency.

More formally, given a word wt in a sentence and a defined context of length c, the
Continuous Bag of Words (CBOW) model to learn the probability distribution of wt, as seen

in Figure 2.2, using the sub sequence (wt−c, . . . , wt+c), maximizing the corresponding log
likelihood:

L =
T∑
t=1

logP(wt|wt−c : wt+c) (2.1)

where the probability P(wt|wt−c : wt+c) is computed using the softmax function :

P(wt|wt−c : wt+c) =
exp(v̄Tv′wt)∑W
w=1 exp(v̄Tv′w)

(2.2)

with W the size of the vocabulary, vw and v′wt the input and output representation of the
word w respectively. v̄ is the average of the context, computed as v̄ = 1/2

∑
−c≤j≤c vwt+j

.

tm

projection

tm−c . . . tm−1 tm+1 . . . tt+c

Figure 2.2: Continuous Bag of Words model.

tm

projection

tm−c . . . tm−1 tm+1 . . . tt+c

Figure 2.3: Skipgram model.

Recent advances in language models are mainly focused on the Skipgram model, which
switch the definition of the problem, as seen in Figure 2.3, and then predict the context based
on a specific word, transforming the objective function to:

L =
T∑
t=1

logP(wt−c : wt+c|wt) (2.3)

The probability of the context given a specific word assumes independence between the

context and the word, and is computed by:

P(wt−c : wt+c|wt) =
∏
−c≤j≤c

P(wt+j|wt) (2.4)

Finally,

P(wt+j|wt) =
exp(vTwt

v
′
wt+j

)∑W
w=1 exp(vTwt

v′
w)

(2.5)

with vw and v′w the input and output vector representations of the word w.

What we have just described is a summary of main mechanisms behind a neural language
model. We recommend the interested reader to review the works by Goldberg and Rong
[50,136] that presents a more detailed overview.

2.1.4 Proposed Approaches

Structural Genealogy Embeddings

While structural data from the code change genealogy represents by itself a rich source
of data to learn change representations, as we are dealing with source code, it is natural to
try to incorporate it into the analysis.

Therefore, for this second approach, we try to explicitly relate the dependency of the
human activity and the artifact been modified. To achieve that, we treat each code change
as a sequential document, conforming a change context. This allows to learn representations
for both changes and its content in a shared, low dimensional embedding space.

We assume the availability of project version history, compressing changes on a code base
during a defined period of time. From that, the commit activity is structured as a directed
graph using the definition of code change genealogy, following the definition presented in the
previous section.

We begin from a similar scenario to the one proposed in the previous approach: A change
genealogy graph G consisting of N nodes from which a set of random walks are generated
from each node. We assume a set of truncated random walks extracted from a code change
genealogy G, with each sequence consisting of a variable number of changes.

Additionally, let us assume that each change can be represented as a portion of source
code that was modified, therefore, we can express a change ci also as a sequence of source code
tokens ti = {ti1, . . . , tin}. The changed code can be obtained by computing the difference
between sequential changes, commonly by use of the diff command in Unix platforms.

Our idea consists of embed two embedding models that work together in a synergistic
way, allowing to represent simultaneously both the change (in a structural way) and also its
content. Figure 2.4 presents a diagram of the proposed architecture.

We start with an upper layer that is focused on the structural characteristics of the
change sequence. This layer follows the standard configuration of the Skipgram model: given
a sequence of changes coming from a random walk, we select one change, ci and from it we try
to estimate the probability of its context (the nodes surrounding it). In this case, we follow
the assumption that closer nodes (code changes) have a stronger statistically dependency.
This assumption is based on the nature of the graph, which was constructed setting edges
between changes which explicitly share portions of code.

In the second place, we have a bottom layer, which tries to exploit the content within
the changes, learning form the regularities exposed in the source code that was modified.
This layer uses a CBOW configuration, which learns a representation of a token based on its
context.

Finally, we propose a way to combine both layers. Initially, given a change node ci, the
upper layer generates a representation for it. On the other hand, the bottom layer does not
explicitly learn a representation for ci, but only for the tokens of the modified source code
associated to it. To connect them, we pass the unique identifier of the ci as an additional
token to the vocabulary used in the bottom layer. Then, at training time, the bottom layer
also generates a vector representation for ci, which is trained jointly with the tokens belonging
to the source code it modifies. This joint training can be done by simply concatenating both
change and token vectors, following the same line of existing methods such as Paragraph
Vector [84].

Given that, we will obtain a vector representations for ci coming from both the upper
and bottom layers, which can be then combined. In this sense, the representation we obtain
for ci is both influenced by its structural context (position in the sequence) and also by the
content it contains, in the form of the source code it modifies.

More formally, given a code change genealogy G and a set of S paths extracted as random
walks, our model is trained to maximize a log likelihood conformed by three components.

The first component given a sequence s and a node ci ∈ s is related to the probability of
observing the surrounding changes based on ci, which can be described as:

L1 =
∑
s∈S

∑
ci∈s

logP (ci−b : ci+b|ci) (2.6)

=
∑
s∈S

∑
ci∈s

∑
−b≤j≤b

logP (ci+j|ci) (2.7)

with b the size of the context. The expression for P (ci + j|ci) follows a softmax form:

P (ci+j|ci) =
exp(v>civ

′
ci+j

)∑N
c=1 exp(v>civ

′
c)

(2.8)

with vc and v′c the input and output representation of a change c.

The second component deals with the probability of observing a source code token based
on its context. Given the encapsulation present in current program systems, we consider that
it is important to consider the change itself, as a source of global context. Therefore, this
component of the likelihood can be expressed by:

L2 =
∑
s∈S

∑
ci∈s

∑
tim∈ci

logP (tim|tm−c : tm+c, ci) (2.9)

As we can see, we incorporate explicitly ci as part of the context. The expression for this
probability will be:

P (tim|tm−c : tm+c, ci) =
exp(v̄>v′tim)∑W
w=1 exp(v̄>v′w)

(2.10)

with W the total set of source code tokens, v′tim the output representation for the to-
ken tim and v̄ represents the average of the associated context, which includes the vector
representation of the change ci.

Finally, the third component reflects the probability of observing a change ci based only
the set of source code token within it:

L3 =
∑
s∈S

∑
ci∈s

logP (ci|ti1 : tiT) (2.11)

Once again, the expression for P (ci|ti1 : tiT) follows a softmax form:

P (ci|ti1 : tiT) =
exp(v̄>v′ci)∑

exp(v̄>vc)
(2.12)

Therefore, the likelihood we need to maximize is simply L = L1 +L2 +L3. This optimiza-
tion is carried out using standard stochastic gradient descent [23] on the complete training
set for each project. One aspect that must be noticed is that computing the conditional
probabilities from the expressions above could be really expensive if the number of nodes
or tokens is considerable. One option available is to use Hierarchical softmax [107], which
consists of assigning each node to the leaf of a binary tree, transforming the problem into
the maximization of a specific path in the tree.

So far, we have presented two methods to represent code changes in a continuous feature
space. These methods take as main input a primitive graph structure based on the definition
of code change genealogies. From this graph, these methods are able to learn a continuous
representation for each node, which considers its structural context (position and neighbor-
hood) as well as the content of the code change itself. In the next section we explore how
these representations perform in a defect prediction task, comparing them to hand crafted
features.

ci−b . . . ci−1 ci+1 . . . ci+b

projection

ci

ti,m

projection

ti,m−c . . . ti,m−1 ti,m+1 . . . ti,t+c

Figure 2.4: Diagram of a proposed approach. The representation for each code change is influenced by its
structural properties and also by the semantics of the code it is modifying.

2.1.5 Empirical Study

We designed and implemented an empirical study in which we compare the proposed
approach for feature learning to a family of handcrafted features extracted from version
history data.

Data

For the first step, we collected historical data from Github2 and Sourceforge3, two of
the most relevant platforms for collaborative software development. To this end, we rely on
the BOA mining infrastructure [39] to gather the development activity data. We collected
activity from a total of 470 Java projects stored in Github. In the case of Sourceforge, we
collected activity from 173 Java projects. For each project we computed the code change
genealogy following the approach presented in citeherzig2013predicting. This dataset only
contains structural information and will serve to compare SGE to families of handcrafted
graph features. We called this dataset STRUCT.

When exploring the distributional regularities of the activity, we found that Power Law
distributions are present in several levels of aggregation over the STRUCT dataset, as shown
on Figures 2.5 and 2.6. This finding supports our assumption of the feasibility of adapting
language models, as this kind of distribution is one of the main characteristics of a natural
language.

We built a second dataset for comparing SGE against SSGE. As the main goal is to obtain
not only structure but also the source code associated to the changes in the genealogy, we
chose to process the dataset provided by Ye et al [167], which contains activity from six
Java projects and has already the bugs mapped: Tomcat, AspectJ, Birt, Eclipse, JDT and
SWT. From each project we obtained the code genealogy after processing the commit history.
Given the available data, for each change, we label it as bug inducing and also obtained the
source code. We called this data set STRUCT-CODE.

Data Labeling: As the problem we want to solve is to predict defects in software

2http://github.com
3http://sourceforge.net

Figure 2.5: Changes per project

Figure 2.6: Files modified per change

components, we need to explicitly identify the changes that introduced and fixed faulty code,
to label them accordingly and obtain our independent variable. To achieve that, we rely on
the heuristic proposed by Zimmermann et al. This method start by examining the comments
associated to each change looking for references to fixing actions4. Then the set of candidates
are manually mapped with bug tracker information to make sure of the bug fixing. After
that, we can label a change as a fixing change and all the files it modifies are assumed as
defective.

For the STRUCT-CODE dataset the label are already given and therefore not further
action was needed.

Experiment Design Overview

For each project, we collect the activity data and generate a code genealogy graph, from
which random walks are obtained and used as inputs for the proposed approach. As output
we obtain a representation for each node, which is associated to all the files included in that
change.

4BOA provides a specific function for this purpose. See http://boa.cs.iastate.edu/docs/dsl-functions.php

At the same time, we computed families of hand crafted metrics shown in Herzig el al [66]5,
namely, global network metrics, structural holes metrics and dependency network metrics,
for each node. Most of the metrics were computed using the Networkx Python library 6 and
also ad-hoc implementations.

We implemented our approach on top of the Gensim python library 7, which provides a
fast implementation of the Skipgram and CBOW models. For both cases, we used a neural
network to parametrize the feature learning. Hierarchical softmax was used to compute the
output probabilities.

After we obtained the feature representations for with each approach, we feed each of
them them to three standard machine learning classifiers: Logistic Regression (LR), Support
Vector Machines (SVM) and Neural Networks (NN). In all methods we used regularization
to avoid overfitting. For the NN, we use a single hidden layer of 128 units. All the classifiers
were implemented on top of the sklearn python library 8.

For each project, we split the data into training and testing as 80-20 ratio. The training
was done following a k-fold cross validation. We computed a series of metrics to characterize
the performance of the prediction, and we are reporting micro and macro F1 scores.

Threads to Validity

Internal Validity: Our approach takes as backbone the concept of change genealogies to
formalize the dependencies between code contributions. The rationale behind that decision
is that a code genealogy not only provide a dependency measurement between code changes,
but also a temporal component, based of the directness of the resulting graph, which we
consider critical for inferring a degree of causality. However, it could be the case that other
ways to structure the dependencies could lead to different results. For example, bipartite
graphs that involves developers and modules have been also used for defect prediction in the
past [128]. Nevertheless, we consider these developer-module networks static models, which
can only encode atemporal dependencies.

Another element to consider as an internal threat is how the labeling of the data was
performed. As stated before, we used a set of regular expressions to look for changes descrip-
tions that contains patterns commonly used when reporting bug fixes. While one can argue
that this method presents several flaws, we consider that the set of regular expressions are
able to cover the majority of the common terms used. Moreover, while still not exhaustive,
we performed a manual sampling of changes to verify if the labeling was correct.

External Validity: Our study is limited to Open Source projects from Github and
SourceForge, which represent a particular case of software development. The voluntary and
self-organized nature of the Open Source paradigm may differ from the traditional ways
used in industry, therefore we cannot directly generalize our results to a setting where other

5See Section 3 of Herzig’s paper [66] for details
6https://networkx.github.io/
7https://radimrehurek.com/gensim/
8http://scikit-learn.org/

https://networkx.github.io/
https://radimrehurek.com/gensim/
http://scikit-learn.org/

Figure 2.7: Example of the extract of the real change genealogy and the resulting vector representations
visualized through t-SNE.

incentives or project management prevail. Nevertheless, we consider that the scale of the data
utilized in this work, at least allows us to find robust patterns in terms of the dependencies
and practices involved on code changes.

2.1.6 Results and Discussion

In this section we report the comparison of the performances of the different type of fea-
tures across different classifiers. Given the space constraints, we only show aggregated results.
Nevertheless, we found no considerable variance on the results (less than 5%), therefore we
could that results are consistent across datasets.

To have an idea of the output of the feature learning process, in Figure 2.7 we show on
the left the extract of a real code change genealogy (we cannot display the full graph as the
amount of edges make the figure not understandable) and on the right a two dimensional
representation of the feature vectors learned using t-SNE, which is a technique for dimen-
sionality reduction [98]. We pointed a node to its learning representation for visualization.
A deeper analysis, using clustering to perform community detection among nodes, reported
that the relative distances at graph level can be preserved in the new feature space which we
consider a desirable factor.

For the first experiment, on which we compare SGE against set family of handcrafted
graph features proposed by [66], Table 2.1 shows the Micro (upper) and Macro (lower) F1
scores for each family of features across three classifiers, for both Github (GH) and Source-
forge (SF). From the results we can see that our representations are consistently better than
hand crafted features across all the classifiers, reaching an increment up to 13% on average
in the case of a Neural Network, with respect to the closest family of hand crafted features.

For the second experiment, which compares SGE and SSGE on the STRUCT-CODE
dataset, Table 2.2. From these results, we can see that the addition of data related to the
source code changed impacts positively on the performance, obtaining better results across
projects and classifiers. Why hypothesize that each vector representation is learned from a
more global context and that allows to obtain obtain more expressive feature configurations.

Interestingly, for the case SGE, there cases where varying the classifier does not affect the
performance (for example in Birt), while in the case of SSGE, therefore are always increments
when using Neural Networks over other model. We consider that this is because. Another
interesting result can be seen in the case of Eclipse UI where, for the LR and SVM classifier

Table 2.1: Average Micro-F1 and Macro-F1 for the comparison between SGE and hand crafted features

LR SVM NN LR SVM NN
GH GH GH SF SF SF

Global Network 0.34 0.26 0.41 0.39 0.51 0.35
Features 0.31 0.17 0.38 0.37 0.48 0.32
Structural Holes 0.53 0.24 0.45 0.42 0.35 0.59
Features 0.44 0.22 0.41 0.30 0.28 0.54
Dependency Network 0.73 0.56 0.69 0.67 0.56 0.76
Features 0.71 0.52 0.65 0.61 0.52 0.70
SGE 0.79 0.76 0.87 0.74 0.69 0.77

0.66 0.59 0.81 0.66 0.63 0.74

SGE perform equal or slightly better than SSGE. When we inspected the data, we found
that the source code associated to the changes were minimal, and in most cases related to
the code comments included in the code. Therefore, only a more complex classifier such as
the Neural Network was able to produce better results.

Table 2.2: F1 scores for the prediction task comparing SGE and SSGE over the STRUCT-CODE dataset

AspectJ Birt Eclipse UI JDT SWT Tomcat
SGE - LR 0.66 0.59 0.64 0.71 0.61 0.67
SSGE - LR 0.67 0.62 0.65 0.763 0.65 0.698
SGE - SVM 0.677 059 0.64 0.76 0.67 0.73
SSGE - SVM 0.71 0.64 0.63 0.751 0.81 0.78
SGE - NN 0.73 0.7 0.62 0.73 0.77 0.84
SSGE - NN 0.89 0.75 0.68 0.79 0.87 0.88

To test the flexibility and robustness of the representations, we decided to try a more
difficult setting, where a classifier is trained on a subset of projects and is used to predict
the defect on a completely unseen project. This is a relevant problem in software engineering
research, as sometimes version data is available, but bug reports are difficult to obtain or
process, therefore it is not possible to perform a labeling required for obtaining a training set.
To this end we divided the STRUCT dataset in 70% and 30% proportion and trained the
classifiers on the obtained representations. Then, we passed data from the unseen projects
and let the models perform a prediction over the changes. In this case, the results obtained
show that the learned representations show a higher level of adaptation, reaching an increment
up to 18 % and average gaining over 7% over the sets of hand crafted features. Specifically,
the best results are again obtained using a neural network, which provides on average a
Micro-F1 of 0.66 and a Macro F1 of 0.61. We hypothesize that as the learned features are
real valued vectors, they are able to abstract in a more broad way and also they are able to
capture the regularities of code changes in a more effective way.

2.1.7 Effect of Dimensionality

One of the parameters we need to define when training embedding models is the length of
the resulting vector representation. Therefore we studied how this value impact the perfor-
mance of the prediction task on the STRUCT dataset. We experimented several combinations

and our conclusion is that best results are obtained when the size is in the interval between
100 and 120. We also noted that the performance did not improve as we kept increasing the
value. We tried these configurations with a neural network and a support vector machine,
as seen in Figure 2.8. Interestingly, a neural network is more sensitive in the sense of the
emergence of gaps in the performance, while the support vector machine experience a more
linear increment.

Figure 2.8: Performance of the classifiers across different sizes of the vector representation.

2.1.8 Effect of Sampling Frequency

Another parameter that needs to fixed before the feature learning begins is to define the
maximum length of the random walks that will serve as sequences. This is a key element, as
although can be parallelized, it indeed impact in the time required for running the approach
in a considerable way.

We tested several combinations, and Figure 2.9 shows, the longer the random walks , the
better is the performance of the model, even at different vector sizes. We hypothesize that
this is because longer walks provide a richer context for the Skipgram model. But while
adding more data to the model seems to contribute, it must be noted that it comes with a
time overhead.

Figure 2.9: Performance of the classifiers across different random walk configurations.

2.1.9 Conclusions and Future Work

In this work, we proposed a new way to unify socio technical aspects of software develop-
ment to support the feature generation in defect prediction tasks . Our method tries to learn
continuous representations for each node in the code change dependency graph, which can be
subsequently used in any standard machine learning method. The novelty of our approach
is that during learning it combines information from the structure of the graph and

We evaluate our learned representation against an approach the uses hand crafted net-
work metrics as features. The results shows our approach is competitive, reaching up to 16%
of increment in performance, on average. We believe these results suggest that the represen-
tation of the data greatly influences the performance of defect prediction, and it is a topic
the should be taken into consideration in the software engineering research community, given
the diverse nature of the data modalities involved.

We propose to divide the future work into two main areas. Firstly, as network-based
defect prediction are just a subset of whole defect prediction methods, we consider necessary
to perform a more global comparison with the rest of defect prediction approaches to realize
the real impact of the discovered representation and also try to find ways to combine features
used in other approaches with the one proposed in this work. In the second place, with the
aim of provide a reasonable level of interpretation to the learned feature space, we propose to
study their relationship to other types of latent features in graphs, such as spectral clustering
or modularity. We consider this a relevant issue as understandable features can be translated
into actions to improve the software development process.

2.2 Visualizing Code Ownership Trajectories in Vector

Space

2.2.1 Introduction

The crafting of a software system is usually the result of the joint effort of a group of
dedicated contributors. The success of this task depends heavily on the level of coordination
achieved among these members, which is not a trivial thing, specially in the case of open
source software projects, where the heterogeneity of the participants, in terms of skills and
incentives, is usually high. Therefore, the coordination and the distribution of work among
the team directly impacts the quality of the resulting artifact. The use of developer centric
metrics to support quality is a relevant field within software engineering research [101], and
has attracted attention as a way to complement standard code based metrics to perform a
more holistic analysis.

From a more systemic perspective, contributing to a software project can be seen as a
relationship between a developer and the set of source code artifacts. This relationship evolves
over time, usually in a symbiotic way, as the artifacts get benefited by the changes that the
developer introduces, and at the same time, the developer can perceive a benefit in terms of
her reputation or skills obtained. The key to the success in this relationship is strongly related
to the ability of the developer to acquire a full comprehension of the functional characteristics
of the source code artifact. Given the limited resources, both technical and cognitive, that
the developer can offer, eventually she may tend to select and prioritize the artifacts she will
work on. What we see in practice is that usually, even if the developer has to her disposition
all the code base to work on, she selects just a subset of modules and files, with which she
specialize and actively maintain.

This phenomenon has been studied in the past in the form of code ownership, defined as

the proportion of the contributions a developer assign to a defined source code artifact. More
formally, given a developer d and a software artifact a (selected based on a defined level of
granularity), the code ownership that d has over a is defined by

Oda = Cd(a)/Ca (2.13)

where Cd(a) represents the number of changes that d generated on a and Ca the total
number of changes on a.

This metric has served as one of the main proxy to characterize the distribution of the
workload across development teams and their organizational structure. Moreover, several
studies has related this metric with software quality, showing evidence that a source code
artifacts which lacks proper code ownership are more prone to manifest faults, at different
levels of granularity.

While code ownership has provided relevant insights and it is easy to compute, its nature
is inherently rigid. Its value only provides discrete value which can only be interpreted on the
specific context of the project under development . This is specially an issue when we want
to generate analytic tools based on machine learning, a field on which empirical software
engineering is increasingly relying on, where the degree of expressiveness and flexibility of
the feature representations impact on the predictive performance of the models. Moreover,
it is known that using sparse data can make it difficult to generalize in a statistical learning
setting.

In this work we propose to enrich the definition of code ownership and present a method
to compute it based in two main requirements: its representation should be a continuous
vector, and it should encode a temporal dimension of the relationship between a developer
and a code artifact.

To this end, we rely on representation learning, from which we design a method to that
receives as input code commit activity and from that, learn to represent both users and
source code artifacts as a continuous vector representation. As we also aim at obtaining a
estimation of how the relationship between code and, we divide commit activity into defined
time intervals, from which we obtain set of vector representations for each time interval. As
we want an unified view, we then aligned the vector representations obtained on each time
interval into one coordinate system. With this, we are able to visualize the relationship of a
developer with the code base in just one feature space.

We performed an empirical study on real world open source projects in order to test our
approach. We selected project with both long as also a short history in order to see if the
quality of the representations and visualizations we obtain are dependent on the amount of
data and the underlying distributional characteristics of the developer contributions. Our
results show that it is possible to visualize the dynamics of contribution in a clear way. More-
over, while the main objective was to generate a visualization tool, the system is able to store
the vector representations over time, opening the door the generate a more comprehensive
metric for relating sociotechnical artifacts.

2.2.2 Related Work

Code ownership has been extensively studied over the years. It has been one the most
accessible and easy to understand metrics, and it is usually used as way to estimate the chain
of responsibility among users regarding the module development.

There have been several ways to operationalize the idea of characterizing the relationship
between developers and modules that we can associate with ownership. For example, Pinzer
et al [128] make use of developer-module networks to compute centrality metrics. While not
talking explicitly about ownership, Weyuker et al in [160] incorporate the number developers
working on a given module as impact the quality. Later, Rahman et al [131] relate the
proportion of work on fix-inducing fragments of code with the quality of the resulting program
version.

One of the most direct applications of code ownership is its use as explanatory variable for
defect prediction. In this line we can mention the work by Bird et al, [21], where they extract
the proportion of changes the developers performed on the code base of both Windows Vista
and 7 and then fed them into a predictive model. The main results of that work stated that
a higher the level of ownership is associated with fewer post release bugs.

While the work of Bird et al provided relevant insights about the impact of code ownership
on quality, its scope was only restricted to private development ecosystem, where there
could be additional constraints and rules that influence that how the teams distribute their
workload. This naturally led to question what could the impact of code ownership in a
more self organized ecosystem such as open source projects. To this end Foucault et al
[43] conducted an empirical study on seven open source projects to test is the conclusions
from the Bird et al hold on a more flexible setting. The results show that there were little
correlation between weak ownership and and the post release bugs, controlling by granularity
(file vs package) and size. While both studies are difficult to compare, it seems that inherent
voluntary nature of open source development challenges the core assumptions of work sharing
in software development .

Following that line of research, recently, Greiler et al [53] tried to replicate Bird et al
study in the light of Foucault et al new evidence. In this new study, conducted on four major
Microsoft products, they were able to replicate the results of the original Bird et al study.

Moreover, code ownership has been enriched in its definition by not only incorporating
actual code modifications on a given artifact, but also considering other ways of developer
contribution, such as code review. That is the case of the approach proposed by the work
of Thongtanunam et al [155], where, where the ownership metric is explicitly extended by
including the proportion of code reviews associated with a module.

More related with our work, Muller et al [110] proposed a way to quality and visualize
code ownership over time. In this case, the authors develop a plugin for Visual Studio 2013
that is able to identify the responsible for each line of code on a system.

2.2.3 Proposed Approach

We propose a methodology to quantify the relationships between developers and source
code artifacts in a way we can visualize them over time. Our goal is to design a method
that help us to identify the shifts on developer attention among the set of available modules
in a continuous way, allowing us to visually obtain trajectories. To this end, we relay on
learning shared representations for both users and modules from the code commit activity.
Our approach takes as inspiration recent approaches that adapt neural word embeddings,
initially designed to find representation of words, to model social structures.

One of the main building blocks of word embeddings methods resides on the distributional
hypothesis, which states that words that appear together along a corpus, should have also a
closeness in semantic terms. We consider that such hypothesis also holds when we want to
analyze commit activity in software development: If we study a dataset of historic commits,
we can see that each instance is composed by the set of files and the were modified and the
information about the user associated to that commit. Having a corpus of such instances,
naturally makes us wonder if the co occurrence of user-modules can be modeled in a word
embedding fashion. In that sense, what we hope to train a model in such a way that vector
representations that can be learned encode that closeness. For instance, if in a given dataset
that user u usually committed changes to a file f , then if we compute a similarity metric
between the vector representations learned by the model of u and f , we expect to find a
coherent level of closeness. Therefore, we propose to treat each instance of the commit
history as a set of token which represents both files and users, and make an analogy with
word embedding modeling. In that sense, in our case we will learn distributed representations
of the files and users which should follow the distributional regularities of the contribution
dynamics seen in the commit history.

Our approach consists of three main parts. In the first one, we generate embeddings for
segments of the developer history, for example each month or year of development. Having
obtained embeddings from each time period, the second step consists of aligning the em-
bedding dimensions into one unified coordinate system, which will allow us to project the
representations learned for each element at different times. Finally, the last step generates
a decomposition of the vector representations to a two-dimensional space, which allows us
to graph the results and easy visualize the trajectories the users follow. Figure 2.10 shows a
diagram of the whole process.

Figure 2.10: Diagram of the proposed approach for visualizing code ownership trajectories.

Generating Developer-Artifact Embeddings

We assume the availability of the contribution activity from a software project in the form
of a list of code commits. Each commit is composed of at least four elements. The id of the
user the is submitting the commit, the time associated to the commit, the list of files that
were added/modified /removed from the codebase by the commit and the message the user
provides as way to explain the his contribution. ci = (u, t, Fi,m).

As we want to explore the trajectories of the users over time, we start by selecting a time
interval from which we will divide the entire history of contribution activity. Let us assume
we have T periods of developer activity.

From each period t ∈ T , we obtain the commits and treat each of this instances as a set
of tokens, each one composed by the user id , along with the set of files that were modified.
Therefore, we will be able to represent each commit as a sentence, where the tokens are in the
form: (userid, file1, . . . , f ilen). Derived from this process, we can also obtain a vocabulary
Vt, ie, the set of all user ids and file names the appear during t. Each set is used to train
a neural embedding model Et, therefore , our goal is to maximize the probability of the
elements appearing in the context of a given a defined element ei. We make no distinction
at training time regarding the nature of ei , therefore, it could represent the name of a file or
the user identification. Following the standard configuration of a word embeddings model,
the probability we want to maximize is:

P (ej|ei) =
exp(ej>ei)∑

wk∈Vt exp(ek>ei)
(2.14)

Therefore, in each epoch and for each time period, what we want to do is to minimize
the negative log likelihood of the elements surrounding (SUei) a given element ei.

J =
∑
ei∈t

∑
ejinSUei

−logP (ej|ei) (2.15)

The model parameters are optimized through gradient descent,

Et(ei) = Et(ei)− α×
∂J

∂Et(ei)
(2.16)

where the corresponding derivatives are computed using backpropagation and the specific
values for α are obtained through a small validation set. We tested several heuristics such
as hierarchical softmax and negative sampling to speed up the overall process, taking into
account that we need to perform feature learning not only in one dataset but in all the periods
on which the activity was divided.

At the end of this process, we obtain a trained model (and their learned representations)
for each time period t.

Embedding Alignment

Having obtained a developer-artifact embedding for each period of time in T , the next
step consists of align them into a single coordinate system. With this, the representations for
each entity across time will be projected in a single vector, allowing us to directly perform
similarity analysis, and more importantly, allowing us to compute the position of each entity
(developer or module) over time, conforming a trajectory we can visualize.

There are several ways to normalize and merge the set of embeddings, but we must take
into account the feature learning was performed in a totally independent way. Therefore we
opted by setting one embedding as a point of reference, and from it, transform the vector
representations of all the rest. In that sense, what we are looking is to normalize the vectors
associated to a given element across all the embeddings for all time periods.

The method we selected is based on the use of a pairwise linear regression between a em-
bedding space that we use a reference and the rest. Conveniently, we selected the embedding
space associated to the last time period, ET . Therefore, what we want in this case is to learn
a linear transformation LEt→ET

from a embedding space Et to ET by solving the following
optimization:

L(ei)Et→ET
= argmin

∑
ej∈S(Et(ei))

||Et(ej)L− ET (ej)||22 (2.17)

where S(Et(ei)) represents the set of n elements closer to ei in the embedding space Et.

After this process, we are able to unify embedding into one coordinate system. It must be
noted that we are explicitly making a linear assumption between embedding spaces, which,
given certain data, could not hold. Nevertheless, our initial experiments show the feasibility
of assuming such characteristic.

2.2.4 Results and Discussion

We implemented our approach on seven six world open source projects from Github, from
which we captured the commit activity, shown in Table 2.3. We tested several granularities
in terms of how to divide the commit history in order to visualize meaningful trajectories. In
that sense, selecting one day as time limit resulted in too abnormal results, leading to erratic
and difficult to interpret results. This is mainly because users do not contribute on a daily
basis. We found the dividing the commit history on a weekly basis had the best results.

Figure ?? shows an example of the resulting visualizations obtained by our method for the
Spring framework open source project. As it can be seen, we are able to visualize, for a given
user, depicted by red points, the variation in contributions on the available modules over
time. We can see the in the first time period, t1 the user was focused on a program artifact
that was not as close with the rest of artifacts the user focused in the following periods. This
led us to think that the user had a considerable shift on his contribution, as for time periods
t2 to t5 the artifacts he worked on appear to be considerable closed between each other.

Table 2.3: Projects selected for the analysis.

Project Name N selected commits N selected files N selected users
core-nlp 13.000 542 65
elastic-search 26.000 544 104
guava 3.500 291 75
spring-framework 14.000 501 88
youtube-dl 12.000 107 62
tensorflow 12.000 359 201

Figure 2.11: Example of a visualization for a anonymized user (red) trajectories over the space of program
artifacts (blue) over time. The 2D representation of the vectors was done using t-SNE.

One element to consider deals with the relationship between standard metric, such as code
ownership, and any similarity metric we can obtain from comparing the vector representations
of users and software modules. We performed a validation comparing two metrics. Given a
developer d and a software module a:

• Code Ownership of a with respect to d, computed as the proportion of changes that d
performed over a from the total of changes performed over a, in a given period of time
t.

• Cosine Similarity between the vector representations learned for a and d by the em-
bedding model Et.

We performed a correlation analysis for all projects, including all the feasible combination
between users and software modules. The results are shown in Table 2.4 For the majority
of the cases, there is a strong positive correlation between both metrics. With this, we
hypothesize that the embedding models are able to capture the dynamics of contributions,
showing a expressive power to model the proportion of change activity in a continuous and
vector way.

Table 2.4: Correlation factor between code ownership scores computed with the original version and the
proposed approach.

Project Name R2

core-nlp 0.89
elastic-search 0.91
guava 0.83
spring-framework 0.86
youtube-dl 0.9
tensorflow 0.83

2.3 Conclusion and Future Work

In this work, we proposed a new methodology to visualize the relationships between
developers and the software artifacts they modify over time. We took inspiration on the
concept of code ownership, in the sense of accounting for the proportion of changes a developer
generates over a defined artifact, but we took a completely different way to compute such a
metric. In our case, we make use of word embeddings as a more generic tool to obtain feature
representations of entities based on their co-occurrences in a dataset.

This approach allowed us to not only obtain a more flexible metric than the standard
code ownership, but also, by aligning the representations over time, we were able to visualize
the trajectories that users follow when they edit elements of a code based. We consider this
tool can have several applications in software project management, as it allows to have a
more intuitive of the contribution dynamics, and at the same time provides a more natural
way to acknowledge the chain of responsibility in terms of changes in the code.

For future work we want to extend the computation of our metric. Currently, we train the
embedding models on a intra project fashion, which means we only care about the files a user
interact that are part of a defined project. While this configuration is feasible, we consider
is still simplistic, as there is evidence that in open source software users work in more than
one project at a time. To model that we will have to come up with ways to compress commit
activity from different projects, forming a small ecosystem of evolving and multi project-user
relationships.

Chapter 3

Automated Testing

Preface

Testing is one of the most used ways to assess the quality of a software system. While the
task appears to be simple, checking if a set of defined test cases passes its execution on the
system, in reality it represents one of the most expensive task during the software engineering
process. Therefore, our motivation in this chapter is to explore if representation learning can
help to alleviate the its cost, both in terms of time and resources.

3.1 Test Case Prioritization Through Neural Language

Modeling

3.1.1 Introduction

The current complexity of software systems has increased the need for automating and
improving the quality assessment techniques. Regression testing is one of the most used
techniques to evaluate changes in software systems. Commonly, this process consists of,
given a test suite which is known to pass on the previous version of the system, it is now
executed on the new version. Any fault introduced in this new version is expected to manifest
by not passing one or more of the existing test cases in the test suite. Although effective, this
method could result extremely expensive. Literature reports that at industry level, a suite
of functional tests could require several weeks to execute [40, 148]. The restrictive nature of
regression testing has led to the development of several prioritization techniques, where the
main idea is to reorder the test cases such they that meet testing goals earlier, i.e., finding
new faults executing just a subset of the entire suite [40].

Most prioritization techniques consider code coverage as main input to decide the ordering
the test cases, either branch or method level, among others. That information can be obtained
by instrumenting the code [148] or by adapting a dynamic analysis tool such as a bytecode
analyzer [124]. Having the coverage information, test cases can be ordered following a total-

coverage or an additional-block-coverage [62].

While current dynamic prioritization techniques have produced satisfactory results in both
academia and industry, there is a explicit time overhead as it is usually required to execute
the test cases to obtain a measurement of their coverage [64]. While this configuration can
work well for small systems, in the practice, re-running test suites is not scalable, even more in
a constantly evolving scenario, where both the system under test and the test suites changes
rapidly over time [95].

An alternative line of research has tried to exploit static information to reorder the test
cases, transforming the prioritization problem into an information retrieval task, where the
goal is to find the subset of test cases that better match a defined criteria at source code level.
Examples from this area include the use of call-graphs, topic models and the computation of
distance metrics between test cases and between test cases and code change [95].

Casting the prioritization as a information retrieval task is an interesting paradigm that
could open the door to the incorporation of several methods and theories from natural lan-
guage processing into a software engineering task. Additionally, this convergence is supported
by recent evidence about the naturalness of code [68], which means that source code, as a
human made form of communication, follows similar syntactic distributional regularities as
natural language.

Currently, most of these static approaches compute similarities considering only the fre-
quencies of the source code tokens as features, something that resembles the concept of bag
of words. Therefore, they are ignoring the syntactic dependencies and ordering on which
the tokens are arranged, a factor that encode rich information about program characteristics
and functionalities. Additionally, as these features are handcrafted, the decisions related to
how to compute them may incorporate bias and in some cases could not be weighted ef-
fectively given their complexity. This concern is of high relevance, as it is known that the
performance of any information retrieval task depends heavily on the representation of the
data used. Likewise, different representations can entangle and hide different explanatory
factors of variation behind the data [15]. Therefore, in order to expand the scope and ease of
applicability of static test case prioritization, it would be convenient to design methods less
dependent on feature engineering and hand crafted features.

Taking the above as our main motivation, in this paper we propose a novel approach for
prioritizing test cases using static information but considering the syntactic and semantic
characteristics of the programming language in use. To this end, we construct a neural lan-
guage model that is able to learn distributed and continuous representations of any portion of
the source code. Neural language modeling is part of a more broader field usually representa-
tion learning, which has had enormous success in recent years in disciplines such as computer
vision and natural language processing. While our primary goal is to obtain an increment in
the fault detection rate with a better reordering of the test cases, we are also interested on
studying the impact of the representation of the data used in test case prioritization.

Our approach begins by firstly identifying difference between release versions of the system
under testing, which are computed at both file and class level. Similarly to the recent work

by Saha et al [140], our goal is to find the most suitable test cases that maximize the fault
detection rate based on program differences.

Both the set of program changes C and the test suite T we want to order are pieces of
source code that share a context given by the system under test. Therefore, we treat each
piece of source in C and T as a document that is fed to a neural language model.

In general terms, a neural language model tries to represent each word in a sentence by
means of prediction prediction task that consists of estimating the given word based on its
context. We provide a detailed explanation in the next section.

While generating a model for each system under testing could provide the specificity
necessary to learn good representations, it could be the case that a system could not have
enough data, in terms of version differences. To explore a solution to that issue, we also
implemented a aggregated model, which takes as input all the data from all the systems in
the empirical study simultaneously. This aggregated model then generates representations
that are cross project aware, and that allow us to study to what extend we can transfer
knowledge from one project to another.

We performed an empirical study considering real word open source Java systems, which
we used to compare our approach against both static and dynamic test case prioritization
states of the art. Our results show that the proposed approach is competitive in terms of
finding orderings with high fault detection rate, and, because it does not require explicit
test case execution, it is much faster than the standard dynamic test case prioritization
techniques.

The results obtained represent a relevant opportunity in the sense considering static
information to perform the prioritization. It must be noted that we cannot underestimate the
importance of the dynamic methods for prioritization, as they encode the actual functional
behavior triggered by input data. Therefore our conclusion is that we should work towards
combining both static and dynamic nature of the prioritization.

3.1.2 Background

In this section, we define the relevant concepts needed to understand our approach, from
the definition of test case prioritization to the the concept of neural language model.

Test Case Prioritization

Following the definition by Rothermel et al [137], given a test suite T , and a set of
permutations PT of T , and f a function that allows to rank the permutations, assigning
each permutation a numeric reward, the problem of test case prioritization can be modeled
as finding T

′ ∈ PT such that ∀T ′′ ∈ PT, T ′′ 6= T
′
, f(T

′
) ≥ f(T

′′
).

The reward function f can encode any aspects concerning testing that we consider rele-
vant, such as execution time, code coverage, among others. Then, by ordering the test cases

by a defined criteria, a tester can execute the subset of what can be considered as more
important test cases, meeting the execution constraints without sacrificing the performance
on fault detecting.

Neural Language Models

Contrary to data modalities which manifest a continuous nature, such as image and
audio, when working with language, we face the problem that words are discrete, atomic
symbols. This characteristic usually leads to sparsity, which makes it more difficult to reach
generalization in a statistical learning setting. Therefore, it has been historically a goal to
find ways to represent text in a continuous way.

A neural language model tries to learn feature representations for each word in a defined
vocabulary in order to capture the distributional regularities of the associated natural lan-
guage. The key idea is try to map a each word with a feature vector of continuous values.
In that sense, each word could be represented as a point the feature space. The goal is
that words that are functionally and semantically close should be also close in this space.
For example the word car should be closer to truck than it is to dog. The underlying as-
sumption is that closer words in a sentence are more likely to to have a higher statistical
dependency [141].

Neural language models use as a main component a neural network to learn the feature
representations from the data. This learning process is cast as an optimization, were the
goal is trying maximize the likelihood of a word given its context, ie, its surrounding words.
For example, in the sentence The lion ... meat , the probability that a verb like eats appear
is higher than, lets say, the verb cooks. We would like to learn feature representations that
capture such dependencies.

Formally, lets assume the existence of a set of sentences S, which will be used as training
set. Given a sentence si = {w0, . . . , wn}, and wt a word in the position t, we define a neigh-
borhood C conformed by c words to both right and left of wt, (wt−c, . . . , wt+c). Therefore,
what we want to do is to maximize the probability of a word given its context, ie,

maxP (wt|wt−c, . . . , wt+c) (3.1)

and because we want to do that for all words and all the possible co-locations of target-
context, the general function to maximize can be represented as :

L =
T∑
t=1

P (wt|wt−c, . . . , wt+c) (3.2)

The most natural way to model that scenario is known Continuous Bag of Words model
(CBOW). The neural architecture can be seen in Figure 3.1. In this case, the input layer
receives the C words appearing in the context of the target word wk.

Figure 3.1: Continuous Bag of Words model (CBOW). In this case, we try to estimate a word in terms of
its context.

Each word in this context is firstly transformed into a one-hot vector representation,
which means a vector of size V on which only the index associated to a word has the value of
1 and the rest is 0. For example, if our vocabulary was composed of only three words, (cat,
dog, rat), we can represent each of them as [1, 0, 0], [0, 1, 0], [0, 0, 1], respectively.

The first learnable module of the network is W , the matrix of weights between the input
and hidden layer. If we assume the hidden layer of length N , then this matrix will have
dimensions V ×N and each row will serve as the input vector representation of an associated
word. For example, if row i is associated to the word w , them row i of W will be vTw.

The second matrix, W ′, of size N × V connects the hidden and the output layer. From
this matrix, the j-th column, represents the output vector representation v′wj

.

So far, we are able to obtain both an input and output representations for a given word.

In the first place, as seen in Figure, we need to aggregate the the context into one
representation. CBOW model just assumes we can average their input vectors:

v̂ =
1

|C|
∑

vwt+j
(3.3)

Finally, the prediction of the network consists of finding, for a given context, which word
as the highest probability of appear. To this end, the softmax [] function is used :

P (wt|wt−c : wt+c) =
exp (v̂Tv′wt

)∑W
w=1 exp (v̂Tv′w)

(3.4)

The Skipgram model switches the completely the formulation of the problem. Instead
of predicting the a word based on its context, now the goal is to predict the context based

Figure 3.2: Skipgram model. In this case, we use the representation of a given word to estimate the
likelihood context is predicted based on a target word.

on the a given word. The diagram for this model can be seen in Figure 3.2. Naturally, the
function we want to maximize changes to:

L =
T∑
t=1

P (wt−c, . . . , wt+c|wt) (3.5)

Additionally, this model assumes that words in the context are independent from each
other, allowing us to formulate the prediction as follows:

P (wt−c : wt+cwt|) =
∏

P (wt+j|wt) (3.6)

The main difference is in the output layer, where we need to output C predictions, one
per each word in the context.

3.1.3 Proposed Approach

Overview

Our approach considers the availability of several consecutive versions of the system under
testing (SUT), V = {v0, v1, . . . , vN} . Additionally, let us assume the existence of a test suite
T , composed by m tests.

Regression testing assumes that at time t, a program version vt passes the execution of
test suite T and then, if T is executed on the next release of the system, vt+1, any fault
introduced in this new version is expected to manifest by not passing one or more of the
existing test cases.

Following the recent work of Saha [140], we can extract differences between consecutive

versions of the program, ∆vi,vi+1. These differences can be computed in different ways and
in different levels of granularity.

Once the version differences have been computed, it necessary to map them to a shared
feature space along with the test cases, to allow them to be comparable using a standard
metric, such as cosine similarity. This mapping can be done in several ways. Here is where we
depart from the state of art, and specifically from the of Saha et al [140], which manually con-
struct frequency-based metrics based on tf- idf for this purpose. TF-idf metrics only consider
the co-occurrence between tokens, weighting accordingly. In our case, our feature learning
process inherently considers the co-occurrence, but at the same time put emphasis in the
order and the semantic structure of the content by learning the distributional dependencies
through neural language modeling.

After we generated a continuous vector representation for each program difference and
for each test case, we perform a ranking task, which consists of using the program change to
query the set of test cases. This is done by computing, for each program difference, the cosine
similarity between its feature representation that the representations for all the test cases,
and then selecting the test case with the highest similarity. The overall process is shown in
Figure 3.4.

Generating Program Version Differences

We need to explicitly characterize the changes between consecutive versions. To that end,
we rely on the diff command to obtain an initial set of additions, deletions and modifications.
From that set , we reproduce the methods proposed by Saha et al, along with our own
approach:

• Low Level Diff (LDiff) : This set can be obtained just applying the diff command,
therefore it retrieves the changes at line level.

• High Level Diff (HDiff): A variation of LDiff, where we ignore formatting differences
and only consider specific atomic changes. To this end we rely on the tool Fault Tracer.
The list of changes can be seen in Table 3.1.

• Compact Diff (CDiff) : Refers to LDiff or HDiff but removing duplicate changes.

• Method Encapsulation Diff (MEDiff): The previous definitions of differences tended
to be too sparse in our exploratory experiments. Additionally, they do not consider
the context of the token. Therefore, we hypothesize that a more local way to compare
could improve the results. To this end, we proposed to first lock consecutive versions
at method level and then, compute the differences.

Generating Source Code Representations

Our assumption is that source code, as a construct of human-machine communication,
should manifest the same distributional regularities as any other natural language. This

Table 3.1: Proposed ways to compute the version changes.

Change in Method
Addition of Method
Deletion of Method
Addition of Field
Deletion of Field
Change in Instance of Field Intializer
Change in Static Field Initializer
Look-up Change due to Method Changes
Look-up Change due to Field Changes

assumption is supported by recent work exploring the concept of naturalness of code [68].
In that sense, our goal is to find an efficient way to adapt a standard neural language model
to a testing scenario, where we need to learn to represent sequences of source code tokens
instead of words.

The neural language models presented in the previous section are able to learn feature
representations at word (token) level. While we could use that configuration indirectly to
represent both test cases and the differences between versions, we might end up averaging
the vectors of each token present on each instance. This could represent a step back, as the
idea is to learn a representation directly at a higher level. By simply averaging, we could lose
some of the learned compositionality derived from the token based models.

In order to alleviate that issue, we consider extending the standard model to learn not
only representations for the tokens, but also a vector representation of the the structure that
encapsulates them, ie, learn simultaneously a vector representation for a test case and a
version difference. To this end, we associate each document, be it a test case or a computed
difference between version, with an unique identifier, which works are an additional token in
the overall vocabulary.

Figure 3.3: We propose to enrich the context by appending a vector representation of the associated
document (a test case of a version difference) to the original set of elements

Training

Lets assume Spd = x1, . . . , xC a sequence of tokens corresponding to a defined portion of
source code (a test case for example) pd. From each token xi in the sequence, we iteratively

extract its context, defined through a fixed window parameter. The vector representation for
each element in the context is also extracted and concatenated to form the input iSpd

to the
neural network the learns the embedding. But just before that action, we also concatenate
the current vector representation of the pd, as shown in Figure 3.3. With this, at training
time, the errors are backpropagated to pd, learning a vector representation for both the the
elements conforming pd and for pd itself. As the co occurrence of pd is higher, compared to
the rest of the elements that conform Spd , the learned representation for pd servers a global
context for all the elements in Spd .

We repeat this process for all the test cases available and also for all the program changes
computed (at a defined granularity) using the same embedding model for all the instances,
with the goal of learning shared representation for both sources. At the end of the training
phase, we obtain a vector representation for all the source code tokens that appear in the
vocabulary resulting of merging both test case and version differences sources. Additionally,
we obtained the set of vector representations for the tokens representing both the test cases
and program version differences. This set will be used in the next section to perform the
prioritization task.

Ranking task

Once the representations for both test cases and program version differences have been
computed, it is time to use them to generate reordering on the test cases. The key idea is
to cast the this task as a information retrieval problem, where we have a query, represented
by a the program version difference vector and a set of possible matches, represented by the
test cases. Therefore, by iteratively computing a similarity metric between the query with
each match, we will obtain set of scores that represent the degree of closeness between the
given program version difference and the set of test cases.

As we assume we are in a regression testing setting, when we prioritize the test cases, we
want to make sure the we execute firstly the test cases that are closer the version change.
Therefore, we need to return the set of test cases ordered by the similarity scores in a
decreasing fashion.

As we obtained vector representations from a shared embedding model, these represen-
tations also share the same dimensionality, therefore, a simple similarity we can compute is
the cosine similarity, defined as follows for two vectors A,B:

sim(A,B) =
AB

||A|||B|||
(3.7)

3.1.4 Evaluation

We had two main goals when evaluating the proposed approach. The first one, naturally,
to explore how our model behaves when compared to other prioritization methods in terms
of fault detection rate. In the second place, we were also interested in study the feature
learning process, in the sense of analysis the transformation from source code segments to a

Figure 3.4: Proposed prioritization model: Both test cases and program version differences are passed
through a neural embedding module that learns continuous feature vector representation for each of them.

Then, a ranking module takes a the vector associated to each program difference and query the set of
vectors associated to the test cases, computing the cosine similarity. Finally, the system returns the ordered

list.

continuous vector representations. We designed an empirical study to explore the following
research questions:

• RQ 1: Is the proposed approach more effective than a random ordering?

• RQ 2: How does the proposed approach compare to prioritization technique based on
topic models?

• RQ 3: How does the proposed approach compare to the work of Saha et al [140] REPiR?

• RQ 4: How does the proposed approach compare to a dynamic prioritization technique?

• RQ 5: How do the hyper parameters of the model impact on the prioritization perfor-
mance?

The first two research questions were chosen to serve as baselines. We estimate any
prioritization method should be at least better than a random ordering, therefore is it critical
to have it checked in that aspect. In the case of the second question, we propose to compare
against a straightforward implementation of a topic model method. Topic model have been
used previously and represent a more probabilistic way to obtain feature representations in
terms of topic distributions.

In the case of the third and fourth questions, we directly compare against what we consider
the state of the art method that considers a information retrieval to prioritize the test cases.
Additionally, we wanted to replicate the results against a dynamic prioritization technique
, as we consider that the emergence of methods the do not consider explicitly test case
execution is a direct consequence of the cost of capturing coverage data.

Finally, the fifth question allows to explore and perform a sensitivity analysis on the
parameter of the proposed model.

Table 3.2: Subject and program versions collected.

Project Version Pair
Time and Money 3.0 - 4.0
Time and Money 4.0 - 5.0
Mime4J 0.5 - 0.6
Mime4J 0.61 - 0.68
Jaxen 1.0b7 - 1.0b9
Jaxen 1.1b6 - 1.1b7
Jaxen 1.0b9 - 1.0b11
Xml-Security 1.0 - 1.1
XStream 1.20-1.21
XStream 1.21-1.22
XStream 1.22-1.30
XStream 1.30-1.31
XStream 1.31-1.41
XStream 1.41-1.42
Commons Lang 3.02 - 3.03
Commons Lang 3.03 - 3.04
Joda Time 0.90 - 0.95
Joda Time 0.98 - 0.99
Joda Time 1.10 - 1.20
Joda Time 1.20 - 1.30
Apache Ant 0.0 - 1.0
Apache Ant 3.0 - 4.0
Apache Ant 4.0 - 5.0
Apache Ant 6.0 - 7.0

Case Examples

In the first place, we tried to replicate the same dataset presented in [140], as we con-
sider the correct way to perform a fair comparison. Therefore, we obtained Xml-Security
and Apache Ant from the SIR repository, while the rest was available from their respective
websites. For each subject system, we first extract all the major releases with their test
cases and consider each consecutive versions as a version-pair. For each pair, we run the old
regression test suite on new version to find possible regression test failures. Then, we treat
the changes causing those test failures as the regression faults. In this way, we were able to
identify 24 version-pairs with regression faults, which are all used in our study and are shown
on Table 3.2

Experimental Design Overview

In this study, we investigate the impact of one independent variable, the prioritization
technique applied, on one dependent variable, the rate of fault detection, using randomization
to control for several factors.

Independent Variable For this experimental setup, we consider four prioritization tech-

niques. In the first place, we implemented random prioritization, where we randomly order
the test suite. We expect this to be, on average, the most ineffective method for ordering
test cases, and thus it serves as a useful baseline for understanding the effectiveness of our
approach. In the second place, we implemented Repir, the approach proposed by Saha et
al [140], which we consider to date the state of the art for test case prioritization that is based
on information retrieval using syntactic data. In the third place, we implemented coverage
based prioritization techniques, both branch and block level that we describe as dynamic
prioritization. In the fourth place, we implemented a basic prioritization technique based
on topic models. In this case, the mechanics of the approach are similar to the proposed
approach, in the sense that the prioritization is cast also as a information retrieval, but dif-
fer in the sense that the feature vector representation for each entities come a probabilistic
model such as Latent Dirichlet Allocation (LDA) which learns the distribution of latent topics
associated to each token. Finally, we presented our approach.

Dependent Variable The most widely used metric for evaluating test case prioritization
is the Average Percentage of Fault Detected (APFD), which takes into account the rate of
fault detection for a given permutation of the test suite under study. Given a test suite T
with n test cases that is used to test a system which contains a set F of m faults revealed by
T . Let TFi be the index of the first test case in ordering TO of T that reveals fault i. Then
the score associated to the ordering TO will be given by:

APFD = 1−
∑m

i=1 TFi
nm

+
1

2n
(3.8)

The APFD takes values from 0 to 100, where a high scores imply faster fault detection
rates.

3.1.5 Threats to Validity

External: Our work is limited to the domain of Open Source source, which may not be
representative of the whole software development ecosystem. Nevertheless, the subjects we
used in this work has been used in a variety of scenarios by a large community.

Internal: The core of our methodology resides on representations that the neural lan-
guage model is able to learn from both the program changes and the test cases. If those
representations are not expressive enough or are not able to converge, the rankings obtained
from the similarity computation will not be robust. To alleviate that issue, we conducted a
series of preliminary experiments to test in distributional terms the resulting feature vectors.
Moreover, we carried out an exhaustive hyper parameter search process, where we systemat-
ically analyzed the sensitivity of each model parameter and contrasted then with the Finally,
in order to keep a safety check, we sampled groups of change -test pairs to analyze visually
their similarity as a way to provide manual validation.

Additionally, one of our main concerns is related to implementation issues. In the case of
our method, we built our codebase on top of existing libraries for natural language processing,
such as Gensim.

Construct: The APFD metric has been systematically used for evaluating test case
prioritization techniques. While it provides a quantitative measurement of the rate at which
a given permutation could detect a set of faults, it does not consider other aspects, such as
the time and effort necessary to compute the reordering. In that sense, when comparing test
case prioritization techniques it is necessary to enrich the analysis by means of adding other
dimensions, such as time and resources used.

3.1.6 Results and Analysis

Figure 3.5: Results for Ant

Figure 3.6: Results for Commons Lang

Figure 3.7: Results for Jaxen

We now discuss the results of our study in the context of our two research questions
1 to 4. We plot the computed APFD values for each subject and prioritization technique
combination as a boxplot.

Figure 3.8: Results for Joda Time

Figure 3.9: Results for Mime4J

Figure 3.10: Results for Time and Money

As the results show, on average, our prioritization approach outperforms both random
and topic model prioritization for each case example, with improvements ranging from 5.10%
to 9.52%. When comparing against dynamic and Repir, our approach shows competitive
results, taking the lead in most cases. In that sense, the results suggest that, for the systems
considered, the our approach can be a generally preferable method for prioritizing test cases.
However there are some cases that present a slightly fair amount of overlap exists in the APFD
distribution between out prioritization method and Repir. We thus wished to determine
whether our results were statistically significant, i.e., if our results were likely due to chance.
To achieve that, we carried out a statistical tests by restating the research questions as pairs
of null and valid hypothesis, from which we computed a hypothesis test with confidence α at

Figure 3.11: Results for XML Security

Figure 3.12: Results for XStream

0.05. The results of that tests shows that in over 95% of the configuration pairs studied, we
can reject the null hypothesis with p < 0.05, supporting the assertion that our approach is ,
with respect to the APFD scores, more effective than the rest of approaches.

Another element to take into consideration is the time consumption associated to the
prioritization methods. the fastest methods are random and topic model based prioritiza-
tion, but the drawback associated to their performance makes us doubt about their real
effectiveness. Interestingly, when we compare the time taken by the dynamic , Repir and our
proposed approach, we can see that Repir is faster on average only 4% faster than dynamic
prioritization, while our approach reaches improvements up to 22% in some cases.

Impact of Embedding Parameters

One the most relevant parameters that needs to be defined in our model is the length
of the resulting vector representations. This value not only affect the time involved on
the computation of the learning process, but also could impact on the expressiveness and
robustness of the models, as the same information can be encoded into different dimensions.

Additionally, when we train our model, we define, for each token, a context, which means
a set of surrounding tokens. The length of this set is also a matter of study as it is closely
associated with the capacity of the embedding to encode long term relationships between the
tokens, which in the case of a programming language is a relevant factor as it could allow us

to obtain a notion of the dependency of the instructions.

Vector Size In this case we performed a sensibility analysis of the parameter, ranging
from d = 50 to d = 150. We chose this interval as literature has empirically found that
across several natural language tasks, a vector dimension of d = 100 provides the best cost-
effectiveness in terms of training time and model performance. It must be noted that around
d = 150, the time needed to obtain the features vectors start to increase substantially, and
that increment is not correlated with the performance we saw on APFD scores.

Context Size The context size, i.e. the window of tokens selected for prediction in the
language model, was also studied. This parameter is relevant, as it controls the amount the
length of the dependencies that the model needs consider. We performed a search procedure,
ranging the context size from 2 to 20. The results across projects shows that on average, a
window of 5 produced the best results.

3.1.7 Related Work

Test Case Prioritization

Test case prioritization has received a vast amount of attention during the years, with
a wide range of of proposed techniques. Naturally, code coverage data was used in the
beginning as the main criteria for reordering [40].

Dataflow information has also been studied, beginning with the work of Rummel et al.
[138] which used def-use pairs to rank test cases, and also the work by Staats et al [148],
which uses dataflow information to define a metric related to the test oracle.

In terms of approaches that do not consider explicitly dynamic information, we can iden-
tify firstly the use of expert information such as requirements and system knowledge to
support the prioritiation. In this case, the works by Srikanth [146] and also Tonella [156]. A
step further can be seen in Ma et al. [97] where expert knowledge is combined with program
structure. Additionally, we can find some approaches that try to automate the extraction
of insights from requirements by using natural language processing techniques. Such is the
case of Arafeen et al. [5] which uses clustering of requirements and Nguyen [117] for test case
prioritization of web services based on analyzing the changes in the service descriptions.

Moving to prioritization techniques that rely only on static program information, the
works of Zhang et al [172] and then Mei et al [103] make use of the static call graph to

Regarding prioritization techniques based on source code changes, which are the closer to
our approach, we can find the work of Thomas [154] which uses topic models. More recently,
the work by Saha et al [140], REPiR, find representation of program changes and test cases
based on vector space model and rank test cases based on a similarity metric.

3.1.8 Conclusion and Future Work

In this work, we presented a novel approach to prioritize test cases based on static in-
formation. We focused on automatically learning feature representations of both the source
code and the test cases instead of manually computing frequency based metrics. Our results
on a set of real world open source programs shows that these learned representations are
expressive and allows to perform a reordering that , on average, are competitive with stan-
dard dynamic analysis based approaches and are able to outperform the state of the art in
the use of information retrieval for test case prioritization, the approach proposed by Saha
et al [140]. We consider that these results suggest that i) the use of static information as
criteria for prioritizing test cases is a valid research line, given the competitive results and
the evident saving in time and resources , and ii) the design of methods that are able to learn
feature representations directly from the data is a promising.

As a future work, our goal is to explore ways to combine both dynamic and static test
case data. Our hypothesis is that the flexibility of the representations obtained with the
proposed method could ease its combination with dynamic data, such as execution traces.

Chapter 4

Naturalness of Code

Preface

In order to find ways to represent programs in a tractable way, we rely on the assumption
that both source code and natural languages follow similar distributional characteristics, and
therefore, is it possible to transfer knowledge from one modality to the other. In this chapter,
we challenge that assumption attacking two relevant problems for developers. First, under-
standing changes in the code, for which we develop a encoder decoder method to translate
code commits into natural language descriptions, and in the second place, bug localization,
which is the process of understanding a report written by end user and then locate the portion
of the code which is responsible from that misbehavior.

4.1 Generating Natural Descriptions from Source Code

Changes

4.1.1 Introduction

Source code, while conceived as a set of structured and sequential instructions, inherently
reflects human intent: it encodes the way we command a machine to perform a task. In that
sense, it is expected that it follows to some extent the same distributional regularities that a
proper natural language manifests [68]. Moreover, the unambiguous nature of source code,
comprised in plain and human-readable format, allows an indirect way of communication
between developers, a phenomenon boosted in recent years given the current software devel-
opment paradigm, where billions of lines code are written in a distributed and asynchronous
way [52].

The scale and complexity of software systems these days has naturally led to explore
automated ways to support developers’ code comprehension [87] from a linguistic perspec-
tive. One of these attempts is automatic summarization, which aims to generate a compact
representation of the source code in a portion of natural language [60].

While existing code summarization methods are able to provide relevant insights about
the purpose and functional features of the code, their scope is inherently static. In contrast,
software development can be seen as a sequence of incremental changes, intended to either
generate a new functionality or to repair an existing one. Source code changes are critical for
understanding program evolution, which motivated us to explore if it is possible to extend the
notion of summarization to encode code changes into natural language representations, i.e.,
develop a model able to explain a source code level modification. With this, we envision a tool
for developers that is able to i) ease the comprehension of the dynamics of the system, which
could be useful for debugging and repairing purposes and ii) automate the documentation
of source code changes.

To this end, we rely on the concept of code commit, the standard contribution procedure
implemented in modern subversion systems [52], which provides both the actual change and
a short explanatory paragraph. Our model consists of an encoder-decoder architecture which
is trained on a set of triples conformed by the version of a system before and after the
change, along with the comment. Given the high heterogeneity of the modalities involved,
we rely on an attention mechanism to efficiently learn the parts of the sequences that are
more expressive and have more explanatory power.

We performed an empirical study on twelve real world software systems, from which we
obtained the commit activity to evaluate our model. Our experiments explored in-project and
cross-project scenarios, and our results showed that the proposed model is able to consistently
generate semantically sound descriptions.

4.1.2 Related Work

The use natural language processing to support software engineering tasks has increased
consistently over the years, mainly in terms of source code search, traceability and program
feature location [9, 122].

The emergence of unifying paradigms that explicitly relate programming and natural
languages in distributional terms [68] and the availability of large corpus mainly from open
source software opened the door for the use of language modeling for several tasks [132].
Examples of this are approaches for learning program representations [109], bug localization
[72], API suggestion [56] and code completion [133].

Source code summarization has received special attention, ranging from the use of in-
formation retrieval techniques to the addition of physiological features such as eye track-
ing [135]. In recent years several representation learning approaches have been proposed,
such as [3], where the authors employ a convolutional architecture embedded inside an at-
tention mechanism to learn an efficient mapping between source code tokens and natural
language keywords.

More recently, [73] proposed a encoder-decoder model that learns to summarize from
Stackoverflow data, which contains snippet of code along with descriptions. Both approaches
share the use of attention mechanisms [10] to overcome the natural disparity between the

modalities when finding relevant token alignments. Although we also use an attention mech-
anism, we differ from them in the sense we are targeting the changes in the code rather than
the description of a file.

In terms of specifically working on code change summarization, [34,91] propose a method
based on a set of rules that considers the type and impact of the changes, and [29] com-
bines summarization with symbolic execution. To the best of our knowledge, our approach
represents the first attempt to generate natural language descriptions from code changes
without the use of hand-crafted features, a desirable setting given the heterogeneity of the
data involved.

4.1.3 Proposed Model

Our model assumes the existence of T versions of a given project {v1, . . . , vT}. Given a pair
of consecutive versions (vt−1, vt), we define the tuple (Ct, Nt), where Ct = ∆t

t−1(v) represents
a code snippet associated to changes over v in time t and Nt represents its corresponding
natural language (NL) description. Let C be the set of all source code snippets and N be
the set of all descriptions in NL. We consider a training corpus with T code snippets and
summary pairs (Ct, Nt), 1 ≤ t ≤ T , Ct ∈ C , Nt ∈ N. Then, for a given code snippet Ck ∈ C,
the goal of our model is to produce the most likely NL description N?.

Concretely, similarly to [73], we use an attention-augmented encoder-decoder architec-
ture. The encoder can be seen as a lookup layer, which simply reads through the source
input sequence and returns the embedded tokens. The decoder is a RNN that reads this
representation and generates NL words one at a time based on its current hidden state and
guided by a global attention model [96]. We model the probability of a description as a
product of the conditional next-word probabilities. More formally, for each NL token ni ∈ Nt

we define,

hi = f(ni−1E, hi−1) (4.1)

p(ni|n1, ..., ni−1) ∝ W tanh(W1hi +W2ai) (4.2)

where E is the embedding matrix for NL tokens, ∝ denotes a softmax operation, hi
represents the hidden state and ai is the contribution from the attention model on the source
code. W , W1 and W2 are trainable combination matrices. The decoder repeats the recurrence
until a fixed number of words or a special END token is generated. The attention contribution
ai is defined as ai =

∑k
j=1 αi,j · cjF , where cj ∈ Ct is a source code token, F is the source

code token embedding matrix and αi,j is:

αi,j =
exp (h>i cjF)∑

cj∈Ct
exp (h>i cjF)

(4.3)

We use a dropout-regularized LSTM cell for the decoder [169] and also add dropout
at the NL embeddings and at the output softmax layer, to prevent over-fitting. We added
special START and END tokens to our training sequences and replaced all tokens and output

words occurring less than 2 and 3 times, respectively, with a special UNK token. We set
the maximum code and NL length to be 100 tokens. For decoding, we approximate N? by
performing a beam search on the space of all possible summaries using the model output,
with a beam size of 10 and a maximum summary length of 20 words.

To evaluate the quality of our generated descriptions we use both METEOR [83] and
sentence level BLEU-4 [123]. Since the training objective does not directly optimize for
these scores, we compute METEOR on our validation set after every epoch and save the
intermediate model that gives the maximum score as the final model. For evaluation on our
test set we used the BLEU-4 score.

4.1.4 Empirical Study

Data and pre-processing: We captured historical data from twelve open source projects
hosted on Github based on their popularity and maturity, selecting 3 projects for each of the
following languages: python, java, javascript and c++. For each project, we downloaded diff
files and metadata of the full commit history. Diff files encode per-line differences between
two files or sets of files in a standard format, allowing us to recover source code changes in
each commit at the line level. On the other hand, medatada allows us to recover information
such as the author and message of each commit.

The extracted commit messages were processed using the Penn Treebank tokenizer [100],
which nicely deals with punctuation and other text marks. To obtain a source code represen-
tation of each commit, we parsed the diff files and used a lexer [25] to tokenize their contents
in a per-line fashion allowing us to maximize the amount of source code recovered from the
diff files.

Experimental Setup: Given the flat structure of the diff file, source code in contiguous
lines might not necessarily correspond to originally neighboring code lines. Moreover, they
might come from different files in the project. To deal with this issue, we first worked
only with those commits that modify a single file in the project; we call this the atomicity
assumption. By using only atomic commits we reduced our training data by an average of
roughly 50%, but in exchange we made sure all the extracted code lines came from the same
file. At the same time, we expect to maximize the likelihood of observing a direct relation
between the commit message and the source code lines altered.

We then relaxed our atomicity assumption and experimented with the full commit history.
Given our maximum sequence length constrain of 100 tokens, we only observed an average
of 1,97% extra data on each project. Since source code lines may come from different files,
we added a delimiting token NEW FILE when corresponding.

We were also interested in studying the performance of the model in a cross-project
setting. Given the additional challenges that this involves, we designed a more controlled
experiment. Starting from the atomic dataset, we selected commits that only add or only
remove code lines, conforming a derived dataset that we call uni-action. We chose the python
language to maximize the available data. See Table 4.1.

Language Project Full Atomic Added Rem.

python
Theano 24,200 65.40% 11.43% 2,83%
keras 2,855 66.02% 11.07% 3,01%

youtube-dl 13,968 74.49% 11.52% 2,59%

javascript
node 15,811 53.17% 11.87% 3,21%

angular 6,204 32.90% 5.59% 1,72%
react 7,806 53.29% 12.67% 2,72%

c++
opencv 20,480 50.08% 8.83% 1,66%
CNTK 10,792 38.36% 6.00% 2,23%
bitcoin 12,596 48.11% 9.84% 2,56%

java
CoreNLP 9,149 42.77% 7.84% 1,98%

elasticsearch 25,764 43.77% 9.02% 2,61%
guava 3,821 38.63% 8.90% 2,64%

Average 12,787 50.58% 9.55% 2,48%

Table 4.1: Summary of our collected data.

Results and Discussion: We begin by training our model on the atomic dataset.
As baseline we used MOSES [82] which although is designed as a phrase-based machine
translation system, was previously used by [73] to generate text from source code. Concretely,
we treated the tokenized code snippet as the source language and the NL description as the
target. We trained a 3-gram language model using KenLM [63] and used mGiza to obtain
alignments. For validation, we use minimum error rate training [17, 120] in our validation
set.

As Table 4.3 shows, our model trained on atomic data outperforms the baseline in all
but one project with an average gain of 5 BLEU points. In particular, we observe bigger
gains for java projects such as CoreNLP and guava. We hypothesize this is because program
differences in Java tend to be longer than the rest. While this impacts on training time, at
the same time it allows the model to work with a larger vocabulary space. On the other hand,
our model performs similarly to MOSES for the node and slightly worse for the youtube-dl.
A detailed inspection of the NL messages for node showed that many of them exhibit a fixed
pattern in their structure. We believe this rigidity restrains the generation capabilities of the
decoder, making it more prone to memorization.

Table 4.2 shows examples of generated descriptions for real changes and their references.
Results suggest that our model is able to generate semantically sound descriptions for the
changes. We can also visualize the summarizing power of the model, as seen in the Theano and
bitcoin examples. We observe a tendency to choose more general terms over too specific ones
meanwhile also avoiding irrelevant words such as numbers or names. Results also suggest
the emergence of rephrasing capabilities, specifically in the second example from Theano.
Finally, our generated descriptions are, in most cases, semantically well correlated to the
reference descriptions. We also report not so successful results, such as case of youtube-dl,
where we can see signs of memorization on the generated descriptions.

Regarding the cross-project setting experiments on python, we obtained BLEU scores
of 14.6 and 18.9 for only-adding and only-removing instances in the uni-action dataset,

respectively. We also obtained validation accuracies up to 43.94%, suggesting feasibility
in this more challenging scenario. Moreover, as the generated descriptions from the keras
project in Table 4.2 show, the model is still able to generate semantically sound descriptions.

Figure 4.1: Heatmaps of attention weights αi,j .

Despite the small data increase, we also trained our model on full datasets as a way to
confirm the generative power of our model. In particular, we wanted to test the model is
able leverage on atomic data to also capture and compress multi-file changes. As shown in
Table 4.3, results in terms of BLEU and validation accuracy manifest reasonable consistency,
despite the higher disparity between source code and natural language on this dataset, which
means the model was able to learn representations with more compressive power.

Soft alignments derived from Figure 4.1, which shows examples of attention heatmaps,
illustrate how the model effectively associates source code tokens with meaningful words.

4.1.5 Conclusion and Future work

We proposed an encoder-decoder model for automatically generating natural descriptions
from source code changes. We believe our current results suggest that the idea is feasible and,
if improved, could represent a contribution for the understanding of software evolution from
a linguistic perspective. As future work, we will consider improving the model by allowing
feature learning from richer inputs, such as abstract syntax trees and also functional data,
such as execution traces.

Reference Generated

keras
Fix image resizing in
preprocessing/image

Fixed image preprocessing .

Fix test flakes Fix flaky test

Theano

fix crash in the new
warning message .

Better warning message .

remove var not used . remove not used code .
Better error msg better error message .

bitcoin

Merge pull request 4486
45abeb2 Update Debian
packaging description for

new bitcoin-cli (Johnathan
Corgan)

Update Debian packaging
description for new bitcoin-
cli

Add two unittest-related
files to .gitignore

Add : Minor files to .gitig-
nore

CoreNLP

Add a bunch of verbs
which are more likely to be

xcomp than vmod

Add a bunch of verbs which
are more to be xcomp than
vmod

Add a brief test for
optional nodes

make this test do something

youtube-dl

[crunchyroll] Fix uploader
and upload date extraction

[crunchyroll] Fix uploader
extraction

[extractor/common]
Improve base url

construction

[extractor/common] Im-
prove extraction

[mixcloud] Use
unicode literals

[common] Use uni-
code literals

opencv
fixed gcc compilation fixed compile under linux

remove unused variables in
OCL PERF TEST P ()

remove unused variable in
the module

Table 4.2: Examples of generated natural language passages v/s original ones taken from the test set.

Dataset
atomic full

Val. acc BLEU Moses Val. acc BLEU
Theano 36.81% 9.5 7.1 39.88% 10.9
keras 45.76% 13.7 7.8 59.30% 8.8

youtube-dl 50.84% 16.4 17.5 53.65% 17.7
node 52.46% 7.8 7.7 53.70% 7.2

angular 44.39% 13.9 11.7 45.06% 15.3
react 49.44% 11.4 10.7 48.61% 12.1

opencv 50.77% 11.2 9.0 49.00% 8.4
CNTK 48.88% 17.9 11.8 44.85% 9.3
bitcoin 50.04% 17.9 13.0 55.03% 15.1

CoreNLP 63.20% 28.5 10.1 62.25% 26.7
elasticsearch 36.53% 11.8 5.2 35.98% 6.4

guava 65.52% 29.8 19.5 67.15% 34.3

Table 4.3: Results on the atomic and full datasets.

Chapter 5

Automatic Repair

Preface

While predicting and detecting defects is a relevant part of any quality assessment pipeline
in software development, the remaining part is actually taking the defects identified and fix
them.

Fixing a bug requires a set of skills from the side of the developer. In the first place, the
bug requires an understanding, in the sense of knowing why it is a bug. This information can
be obtained through the output of a test case execution. In the second place, after identifying
the dissonance between expected and real program behavior, along with the location of the
source of the fault, there is a set of decision to be taken in order to modify the code to
produce a fix. Given the flexibility that source code provides, there are several ways to fix a
given defect.

In this chapter, we explore a learning approach for bug fixing. While repair can be seen
as an optimization problem, in the sense of finding a code modification that maximizes that
probability of passing a test suite execution, we are more interesting in finding repairing
policies instead of particular solutions. In that sense, this represents a problem on which we
can reuse and combine all the techniques and insights obtained in the previous chapters.

5.1 Learning Fixing Trajectory Policies

5.1.1 Introduction

Repairing a bug is essentially a search problem. At source code level, it is necessary to
find the combination of structural and semantic changes that lead us obtain a version of the
code on which the reported fault is not present anymore. Therefore, the code needs to be
transformed, from a defective state to a healthy one. We assume this transformation can be
achieved by adding, modifying or even deleting portions of the code.

Existing techniques for repair take the problem only from the source code perspective,
and therefore, only consider that syntactic aspects of the program. While this configuration
appears as the most natural approach, we want to explore a more top-down way, in the sense
of explicitly consider how humans find their way to fix a bug.

Therefore, we propose to model the bug fixing dynamics as a sequence of progressive
modifications that conform a trajectory across the space of feasible solutions followed by a
human when trying to repair a program. Our goal is to understand the transitions between
code level changes that lead to reliable and effective solution.

In that sense, we firstly need to let a program observe how real faults are fixed by humans,
by means of observing editing activity. After capturing this transitions, our model could be
able to extract the distributional patterns of necessary to carry out a new fix.

Therefore, instead of using supervised learning approach, where we assume the existence
of a training set of the form (X, y), where X represents a set of features and y a defined label
associated to the instance, here we are more interested on obtaining sequential data, in the
form of chain of consecutive changes from which we can learn how the trajectory of partial
changes impact the overall solution.

In terms of how to model the problem, we consider that reinforcement learning fits well
our requirement: instead of learning from a fixed mapping between the dependent variable
feature representations and a label, the learning process in this case is cast as sequential
decision making, where the learner understand its current state and choose the action that
will most likely maximize the future rewards [151].

Therefore, the first step is to obtain data that represents real transitions developers follow
when they build or modify a program. To this end, we rely on data from Massive Open Online
Courses (MOOCs).

MOOCs represent one of the most interesting initiatives aimed at spreading high quality
education content, with the goal of democratizing education. As the impact of that goal
could be huge, the amount of complexity involved is also considerable, in both social and
technical dimensions.

One the key elements that a massive online system needs to address is related to the
diversity of students. Contrary to a standard teaching setting, where we can expect certain
level of homogeneity of skills and cultural background, the openness and accessibility of
massive online classes is characterized by the diversity of the participants. Given the low
entry barriers, we can expect users coming from the most diverse cultural backgrounds,
geographical locations, etc. While diversity represents a positive aspect, as it is in fact one
of the desired elements these systems seek, at the same time it represents challenge, in terms
of the volume and the variability of the content that students generate.

In terms of understanding participants, literature has focused on several aspects, such
as motivations, incentives, among others, which are key to optimize the user experience and
retention rate, similarly to the research in other collaborative systems such as Open Source

software development [92].

One specific element that has attracted attention is how can we track and understand
users learning ability. This is of high relevance , as it touches the core of the platform and
impacts directly on the the success of the initiative: If we cannot understand users learning
ability and design or adapt tools to optimize their performance, the degree of engagement
will drop naturally. One way to explore this problem is to analyze the students solutions to
the assignments. Recently, a online learning initiative called One Hour Code1, which tries
to teach programming skills released a public dataset consisting on the sequences of partial
solutions users submit in order to complete a programming assignment. The interesting part
of this dataset is that it contains additionally a hint for a given partial state contributed by
experts. This hints are aimed at improving the task solving process when the user get stuck.
Moreover, as we can see the full set of trajectories that each user follow on each assignment,
we can capture the transitions (code changes) that were most effective, which means, that
led to reach a correct solution in the shortest way.

Therefore, the above dataset can be used for our purpose of learning bug fixing policies:
We are in the presence of an agent whose goal is to write a correct solution for a given
programming task. This agent start in a initial state and perform a move, in the sense of
writing an initial partial solution. From that point, he immerses in a sequential decision
making process that consists of, given a current status on his assignment, select one of the
feasible code modifications in order to maximize a expected reward, which can be computing
as a function of how far the partial solution is from the ideal and correct one. In that sense,
for us the fixing action is actually a source code modification that takes a partial solution
to a correct solution.

One of the key elements in any reinforcement learning scenario is the representation of
the states. As in the current configuration we are in the presence of source code, we need to
find a way to obtain a flexible representation. If we work at token level, we may encounter
sparsity issues, and given the usually small vocabulary of source code tokens , compared to
a natural language setting, it could be difficult to differentiate partial states. To overcome
that issue, we defined a method to learn feature learning representations from the abstract
syntax trees of each partial solution.

We performed an empirical study comparing our reinforcement learning approach against
two methods proposed in the literature, namely Desirable Path , Independent Probable Path
and Rivers Policy, showing that the proposed approach is competitive, outperforming in
terms of final accuracy.

5.1.2 Related Work

Automatic repair has been one of the most desired goals in software engineering research.
Historically, the problem has been attacked as a search task, where , given a defined defect,
the system need to generate strategies to find candidate patches. This process is iterative
and several heuristics have been used, such as genetic algorithms [161], where the goal is to

1https://code.org/research

https://code.org/research

construct better candidates y maximizing a fitness function based on a set of test cases [6,7].

Another line of research deals with using human generated patches , available in open
source software to train a discriminative model over a set of features computed from the
patch, such as the work of Long et al [94].

The use of representation learning has recently attacked attention in the automatic repair
community. The flexibility of these tools may allow to generate end-to end solution, which do
not need to rely heavily on feature engineering. An example of this new familiy of methods
is DeepFix, by Gupta et el [57], where they implement an encoder decoder architecture
to generate patches based on a training set obtained from student assignments. A similar
approach is followed by Pu et al [129].

5.1.3 Proposed Approach

Our approach consists of modeling the sequential process of fixing , or more generally,
the trajectory of source code changes from an initial (partial or incomplete) state to a final
(complete) state with an reinforcement learning agent. Figure 5.1 shows a diagram of the
proposed approach.

Contrary to Supervised Learning, Reinforcement learning is a goal directed learning
paradigm that focuses on the interaction between a learning agent and its environment.
In that sense, there no explicit class or label upon which we can compute a loss function in
order perform learning. The key element in reinforcement learning lies on the existence of a
reward function, which acknowledge that actions taken given a specific state [?] .

Therefore, we begin by assuming an agent capable of modifying a program, which we
associate as the environment ξ. At each step t, the agent selects an action at, in our a source
code level modification, from a valid set of modifications A = 1, . . . , K. The modification
is applied to the program, which reach a state xt, which is a new version of the system.
The agent also receives a reward rt which is associated to the quality of the modification.
For example, we could construct an evaluation function that associates positive scores if the
resulting program passes a set of units test, or is syntactically valid. In this case, the feedback
that the user receives will immediate. But that could be not the case, for example, we could
select a configuration on which the reward is a signal that the agent receives only at the end
of a sequence of steps, for instance, of the program reaches an optimal state.

Based on this configuration, we are in the presence of a Markov decision process, where we
consider the sequences of actions and observations, st = x1, a1, x2, a2, . . . , at−1, xt the agent
follows as the state representation at time t.

As in any reinforcement learning scenario, the goal of the agent is to continuously interacts
with the environment, the program in our case, the choosing the actions in a way that
future rewards are maximized. We follow the standard assumption that future rewards are
discounted, defining the return at time t as:

Rt =
T∑
t′=t

γt
′−trr′ (5.1)

where γ is the discount factor per time step and T the time step at which the task ends
(assuming a finite number of steps).

To relate both states and actions, an action-value function Q∗(s, a) is defined as the
maximum expected return the agent can obtain, following any feasible strategy, after seeing
the sequence s and, because of that state, having chose to perform the action a:

Q∗ = maxπE(Rt|st = s, at = a, π) (5.2)

where π is the policy the agent learns in order to map states (sequence of actions) to
actions. The optimal action-state function must follow the Bellman equation:

Q∗(s, a) = Es′∼ξ[r + γmaxa′Q
∗(s′, a′)|s, a] (5.3)

Then, the main idea is trying to estimate the action-value function, using the recursiveness
of the Bellman equation:

Qi+1(s, a) = E[r + γmaxa′Q
∗
i (s
′, a′)|s, a] (5.4)

This configuration reaches convergence, Qi → Q∗, when i → ∞. One common way to
avoid this is to use a function approximator to estimate the action-value function, in a way
we can assume Q(s, a, θ) = Q(s, a). In our case, we parametrize it with a neural network,
which in literature is usually refereed as the Q-network. This network can be trained by
minimizing the sequence of loss functions Li(θi) at each iteration i :

Li(θi) = Es,a∼ρ[(yi −Q(s, a, θi))
2] (5.5)

where
yi = Es′∼ξ[r + γmaxa′Q

∗(s′, a′, θi−1)|s, a)] (5.6)

At training time, the gradients we need to compute with respect to the weights can be
computed as:

∇θiLi(θi) = Es,ρ()̇,s′∼ξ[(r + γmaxa′Q
∗(s′, a′, θi−1)|s, a)−Q(s, a, θi))∇θiQ(s, a, θi)] (5.7)

Figure 5.1: Proposed approach. The agents iteratively generate candidate solutions in terms of source code
modifications, which lead to further states. The goal of the agent is to reach an optimal program state.

State Representation

As we are dealing with consecutive source code versions form the program, we should not
represent the each version just a as a sequence of atomic tokens, as it inherently has sparsity
problems. Therefore, we need to find a way to obtain richer representations that could more
expressive for the network.

State Representation through Embeddings : One initial and simple way is to, for a
given token in the current version of the program, map it to a pre-trained continuous vector
representation. Then, a final representation can be obtained by appending or concatenating
the associated vectors. This method is easy to compute, but the program structure could
not be retained efficiently. Therefore, depending on the change performed on the program,
several states at different times could be represented by very similar vectors, when in reality
there is considerable difference between them. We abbreviate this approach as token-based
state. Another option is to take the abstract syntax tree associated to the version at time t,
and from it learn feature representations using a graph embedding method, such as the ones
we proposed in Chapter 2. From this, each node from the abstract syntax tree will have a
continuous vector representation , based on the iterative generation of random walks starting
at each node, which serve as sequences for a Skipgram-like model. Then, a representation for
the full abstract syntax tree, and therefore for the program at a given state, can be computed
by aggregating the vectors, for examples, through average of concatenation. This method
requires more computational resources than the previous one, but it is able to capture the
structure of the resulting version of the program. We abbreviate this approach as node-based
state.

While node-based state representation can encode program structure, it lacks a description
of the type of the node, which is associated to the token. Therefore, we try a third approach
that consist of combining , for each token in the program version under study, its token-based
state and node-based state representation.

State representation through Tree-based Convolutional Filters : In this case,
we inspired on recent work in natural language processing to represent sentences through
analyzing the parse tree and from them, build a method to obtain continuous representation
for the whole abstract syntax tree of a program version. We begin by capturing information
from each node, in the form of a vector representation. For each node p and its directed
children nodes c1, . . . , cn we state the following methodology:

vec(p) ∼ tanh(
∑

lWcode,i
∗ vec(ci) + bcode) (5.8)

where Wcode,i is a weight matrix associated to node ci, bi is the bias and li is the coefficient
of the weight. Then, the distance between vec(p) and the trained vector can be defined as:

d = ||vec(p)− tanh(
∑

lWcode,i
∗ vec(ci) + bcode)|| (5.9)

with this distance, we can set a training objective that consists of minimizing the distance
between the instance and a set of negative examples (for simplicity could be any random
token), which we denote as dc.

minWcode,vec()max0,∆ + d− dc (5.10)

The reward is a key element in any reinforcement learning task, as it provides the signal
for the boosting the actual learning of the system. We selected two ways to encode such
feedback, in order to explore how the system could learn better.

The first reward configuration follows a standard setting, where the value of the reward
is given to the agent at the end of the path. In this case, the value is related to how far the
last state, in the sense of the last program version generated is from an ideal or correct state.

The second reward configuration we follow make use of a suite of test cases we auto-
matically generated for each problem. On each instance, based on the program difference
observed, we first prioritize the test suite, following the approach proposed on Chapter 3.
Then, the test suite is executed in order to find ant fault in the resulting program. The value
of the reward depend on the number of test cases passed successfully.

5.1.4 Empirical Study

We designed an empirical study to test the feasibility of the proposed approach, comparing
it against other relevant techniques on the data from Hour of Code.

Data

The richness of the data from Hour of Code resides in that, for each users that attempts
to solve an assignment, a version of the current work is saved automatically on the system
every time the user perform a change. Therefore, we are able to capture the sequences of
steps that user conducted from the beginning until he reaches to a final solution.

The dataset comprises user activity from December 2013 to March 2014, conformed by
more than 137 million partial solutions for two defined coding problems, PA and PB. PA
requires the users to string together a series of moves and turns, which is a problem of
medium difficulty. PB required users to efficiently make use of a if-else condition inside a
loop, which we can consider a more challenging problem. Table 5.1 shows statistics about
the users and submissions. A unique submission means that its has a unique abstract syntax
tree.

In addition to the partial solution transitions, this dataset contains a goal standard for
both PA and PB that consists of a manually labeled, for each partial state, which next state
the user should follow, based on the expert knowledge of a group of experts.

Table 5.1: Statistics about the dataset from Hour of Code

Statistic PA PB
users 509.405 263.569
submissions 1.138.506 1.263.360
unique submissions 10.293 79.553

Alternative Methods

In order to test the performance of the proposed approach, we implemented a series of
alternative methods present in the literature to generate viable comparison.

Poisson Path : Proposed by Piech et al [127], it assumes that a path from a partial
solution s to a perfect solution that takes the smallest amount of time follows a Poisson
process, whose rate parameter can be estimated based on the aggregated user data. Therefore,
the Poisson Path for a partial solution s is defined as :

γ(s) = argminp∈Z(s)
∑
x∈p

1

λx
(5.11)

where Z(s) are all the paths to solution from s and λx is the frequency the solution x is
seen in successful paths.

To compute this Poisson Path, it is necessary to generate a reduction to a Dijkstra shortest
path algorithm, by generating a graph from all legal transition, where the edges have a weight
1
λb

for any transition between solutions a→ b.

Independent Probable Path: Also proposed in [127]. In this case, the idea is to find
the path to the solution state from a given partial solution s that would have been that most

probable in on average for all the population of users. Therefore it is firstly assumed that the
probability of reaching a partial solution s for an average user is proportional to the frequency
that s appear in the complete set of all registered paths. Therefore, the Independent Probable
Path can be computed as:

γ(s) = argmaxp∈Z(s)
∏
x∈p

p(ψt = x) (5.12)

where Z(s) are the set of all paths from s to the solution state, λx is the frequency of
users that submitted the solution x.

γ(s) = argmaxp∈Z(s)
∑
x∈p

log(
λx
k

) (5.13)

γ(s) = argminp∈Z(s)
∑
x∈p

−log(
λx
k

) (5.14)

where k is the number of available submissions. This configuration can also be transformed
and reduced to a instance of Dijkstra short path problem.

Rivers Policy: Proposed in [134], this method takes a partial solution and computes a
score of all potential next partial solutions, and then select the one with a highest score. For
computing the score, the model capture a set of features, which in our case will associated
to the set of all legal transitions between partial solutions. We follow the re implementation
by Piech et al [127], where the policy function is expressed as:

π(x) = argmaxn∈N(x)θ0λn + θ1(1− γ(n, g)) + θ2v(n) (5.15)

where N(x) is the set of direct neighbors of x in the graph of legal moves, λn is the
popularity of the partial solution, γ(n, g) is the minimum abstract syntax tree edit distance
between a neighbor n and correct solution g, and v(n) is the unit test score of the neighbor.
The values for the θi are found through hyper parameter search.

Results

We implemented the alternative methods, and then we run the experiments using the
complete dataset from Hour of Code. The main results can be seen on Table 5.2 where
w can see that our method outperforms the baselines, specially the variation the uses a
convolutional filter to learn a state representation.

One additional aspect to consider is related to the execution time associated with each
approach. In this case, the approach based on reinforcement learning has a clear overhead as

it needs to obtain a representation of the state. We observed that our approach, while more
effective in terms of accuracy and overall performance, takes up to 24% more time in the case
of PA and 25% more in the case of PB. The differences in time with the proposed variations
of state representations are not relevant. Just the method that uses a convolutional filter ,
on average, is 10 % slower. Therefore, we can see that there is indeed a trade off in terms of
time vs accuracy.

Table 5.2: Accuracy reported on the Hour of Code dataset for problems PA and PB

Method PA PB
Possion Path 0.930 0.791
Independent Probable Path 0.912 0.805
Rivers Policy 0.632 0.669
Ours (token-based) 0.811 0.78
Ours (node-based) 0.958 0.812
Ours (node-token-based) 0.959 0.889
Ours (tree-conv-based) 0.971 0.93

5.1.5 Conclusion and Future Work

In this work, we have presented the first attempt to model program repair as reinforcement
learning task. To do that we took inspiration of the current research conducted on MOOCs,
specifically the methods related to automatically generating hints for students. In that sense,
we combined a Q-learning agent, whose ultimate goal is to achieve a complete solution for a
specific programming task, which means, traverse the space of possible partial solutions until
reach the state the represents a fully compilable and functionally correct code. We made an
explicit analogy between that search task and the problem of automatic repair, in the sense
that

As for future work, we will explore the feasibility of the proposed model in a more realistic
setting. The experiments presented in this work are limited as they come from programming
assignments, whose goal is to serve a pedagogic material for leaning to program, and they
cannot be considered a fully realistic piece of code.

Additionally, we consider necessary to advance in topic of the representation of the states.
In a more realistic scenario, the set of possible states that can be reached could be too large
for any standard computational method, therefore it should be necessary to generate methods
that learn a more compressed or hierarchical feature representation of both the bug that need
to be fixed, as well as the states on which the program enters as it is being repaired.

The use reinforcement learning represents a new alternative, which has the inherent ad-
vantage of not need a strict mapping between explanatory feature and dependent variable.
But on the other hand, this apparent sense of freedom usually comes with cost, which is the
large amount of time required for achieving convergence. Other recent alternatives, mainly
based on recurrent models, do require a labeled dataset, which somehow restricts the amount
generalization the can be obtain, but at least are able to come up with a feasible set of fix
candidates in a reasonable amount of time. Therefore, the main vision for future work could
be the design of a model that could combine both paradigms in an efficient way. From one

side, the use of a supervised dataset that could serve a ground truth and from which a genera-
tive model could be trained in order to obtain fixing candidates that follow the distributional
regularities from real data. And then, from the set of candidates, a reinforcement learning
module that could generate the fixes, in the of learning effective policies of code change.

Chapter 6

Discussion

6.1 General Discussion

During all the course of this thesis work, our main theme has been the feature represen-
tation of the diverse elements that conform the software engineering process. The pattern
we followed on each chapter was simple: propose a method or model which is capable to
automatically generate feature representations for a given software artifact, and then, based
on a specific task, estimate if these learned features are competitive with traditional metrics
or handcrafted features.

Behind this approach relies the assumption that software engineering research, to some
extend, can be transformed into a data problem. From a pure software engineering perspec-
tive, that assumption can be seen as reductionist, as software by itself keeps several aspects
that cannot be modeled in a black-box fashion.

Therefore, we should not seek for a total replacement of the standard program analysis
disciplines with a data driven approach. Indeed, our results suggest that while representation
learning appears as a promising tool in the software engineering research space, it is far from
perfect. Designing and deploying the methods proposed in this thesis required to overcome
a series of technical and conceptual obstacles.

In this chapter we analyze in depth those concerns and evaluate then in terms of how
they impact in the overall goal.

6.1.1 Hyperparameter Optimization

While representation learning approaches tend to pose the feature learning process from
raw data as a seamlessly task, in reality for these methods to work require a set of parameter
tuning steps.

As the revival of representation learning is relatively new, there is no underlying theory

that can be used as backbone when we design the feature learning architecture and their and
select its respective parameters. Indeed, this process is carried out using heuristic methods
combined with researcher intuition and expert knowledge. Moreover, the decisions taken
when designing and implementing these methods are conditioned to the relative success they
obtain on a validation set. Therefore, currently, if we change our architecture from one to
another configuration, the rationale and justification of that change is based purely on the
empirical results and not on any theoretical background.

Additionally, as there is little invariance of these models with respect to the data, a given
architecture that could be performing well on defined data set, could dramatically decrease
its performance if the the data suffer a sudden shift in distributional terms. Of course, this
could be an indicator of poor generalization power from the perspective of the model, but
could also be the result of a poor parameter setting.

Searching for hyperparameters is usually carried out by grid search, which means to per-
form an exhaustive search over a defined search space of combinations of defined parameters,
or, more recently, by means of Bayesian optimization, where the search is cast as a sequential
strategy. We tested both methods, and while we were able to obtain parameter configura-
tions that greatly improved the model, the time associated to the search was considerable.
Therefore, there is trade off that needs to be considered.

Moreover, out take on this issue is more conceptual: While representation learning promise
ways to learn representations from the data directly, avoiding hand crafted feature engineer-
ing, we are still forced to make rigid decisions the architectures that learn those features.

In that sense, we consider that problem has only moved, passing from handcraft features
to handcraft architectures.

In concrete terms, we had to perform hyper parameter search across all the tasks involved
in this thesis. This process was specially complex for the case of defect prediction, in which
case initial experiments presented considerable instability. We consider this process to be
unavoidable and it must be considered as part of the development and deployment pipeline
associated to our approaches. While we were able to converge in all cases to a set of effective
hyper parameters, we consider there is still room for improvement and work to be done.

6.1.2 Interpretability and Accountability of the Learned Repre-
sentations

One of the main drawbacks that we envision for the application of representation learning
in software engineering is the current difficulty that emerges when we try to understand the
learned representations from the data.

To visualize this problem, let us set an standard scenario for standard defect prediction
using hand crafted features: In the first step, the engineer select and compute a set of hand
crafted features, which could come from any data source. This features are fed into a standard
classifier, along with the class label associated to each instance. A standard classifier will

then be able to map each instance to a label by associating a specific weight for each feature.
After a successful training, we can easily explore the weight distribution over the set of
features and conclude , based on their magnitude, which is the set that influence then most
the predictive task, ie, which feature has more explanatory power. This process is inherently
actionable, as the developer can make sense of the features he engineered and, based on that,
take decisions to modify the software task under study. For example, let us imagine a defect
prediction task, on which the most explanatory feature was the number of the modules a
developer work simultaneously, a concept that is usually called ownership. If lower levels
of ownership are associated to a higher probability of defects, then this information can be
used by the managing team in order to optimize and re distribute the work load among the
developer team.

Something different happens when we let the model learn the feature representation by
itself. If we inspect them afterwards, the chance that we can associate them to a real
characteristic of the software related task we are studying is low. Usually, we will be in the
presence of a vector of real values which encodes the entity we are studying, but a priori, we
are not able to tell anything about each component of this vector.

We had the chance to experience from first hand this, when we showed our initial results
to real software engineers. We performed an informal interview, trying to capture their
impressions in terms of the results obtained. While they praised the increase in performance
and the replacement of tedious feature learning engineering, they criticized that lack of control
and understanding on the resulting learned features.

There are ways to narrow the dimensionality of the feature representations in order to
be visualized, such as PCA or T-SNE, which area able to provide a two dimensional repre-
sentation of the vectors, allowing us to compare and relate them in terms of a distance in a
standard coordinate system. But still no way to obtain reliable insights about the meaning
of each component.

This topic is currently of high relevance in the research community, specially in the natural
language processing field, where representations are expected to encode a semantic meaning,
a goal that could enable natural language understanding.

6.1.3 Real Applicability in a Software Development Scenario

Software engineering research is characterized by a rigorous evaluation process. Research
papers coming from that area usually show strong empirical studies, most of the times fol-
lowing a standard structure that explicitly requires to identify controlled factors, threats to
validity. This approach is understandable, as the a big factors that drive the progress in the
field is the reliability of the results.

Machine Learning, specially the connectionist paradigm, is inherently stochastic, which
lead to solutions the are usually approximated and with an unavoidable margin of error.
Moreover, recent evidence shows the representation learning methods can be easily fooled by
adversarial attacks, which undermines their applicability in a real world context.

Therefore, it is important to weight the need for deterministic or stochastic solutions in
software engineering research when using representation learning. For example, one could say
these machine learning techniques are more suitable for analysis that can tolerate a higher
error rate, or when analyzing systems that are also stochastic in nature. On the other hand, if
we are working with critical systems, were the error tolerance should be minimized, machine
learning could be used only as a supporting tool rather than that at the core of the decision
making.

6.1.4 Transfer Learning Capabilities

In tasks such as defect prediction or source code summarization, we assume the existence
of a reliable training set, whose size is large enough to provide a good level of generalization
to the model.

In practice, that configuration is realistic in real world projects. For example, if we want to
provide estimations of quality aspects on newly software projects, we will find that the amount
of data available is not enough to provide results with a reasonable level of significance. This
issue is widespread along machine learning, for example, one of the most studied issues comes
from the field of recommender Systems, where the goal is to provide customers a product
or service recommendation that could maximize the likelihood of purchase. In this setting,
when there is not enough data to characterize the user, we are in the presence of a cold
start problem, a topic which has been attacked over the years through a large number of
approaches.

Similarly, if we want to study software development processes in a more realistic way, we
should not assume the existence of a large training set for each software artifact under study.
One alternative is to take an holistic approach, for example, the idea of including developers
and projects as part of an ecosystem and from that generate a network framework that allow
us to relate them. Unfortunately, those approaches, while comprehensive, are most of the
time impractical to deploy, given their scale and complexity.

Another alternative is to rely on transfer leaning techniques, which learn to construct
representation bridges between datasets in order to transfer the knowledge that a model
learned on a large system to make prediction on a small, unknown one.

The main assumption behind this approach is that different datasets from the same field
should share distributional similarities. Evidence from literature shows that machine learning
models are able to achieve a reasonable level of transfer learning, given specific conditions.

We explored that setting across our experiments and we could not obtain conclusive
results. In the first place, for defect prediction, we found that when implementing transfer
learning between projects that are developed using the same programming language, there
is a visible success. One can argue that this is expected as the vocabularies are limited
and structural and syntactic aspects are shared, despite the that functional aspects could
be different. When we tried to transfer from knowledge from projects that did not share
the programming language, we encountered several technical issues, primary related to the

asymmetry between the vocabularies from each side. Along with that, we reported that the
increments in terms of accuracy were minor, and in some cases not statistically significant.

In the case of our experiments on test case prioritization, we observed considerable incre-
ments in all configurations. This could be explained by the fact the task in different and it
is based on a matching given a specific query, rather than a generation process.

Chapter 7

Conclusion

7.1 General Conclusions

In this work, we conducted a comprehensive study on the role of the representation of the
data when building analytic models to understand software engineering processes. Specifi-
cally, we focused on the quality aspects, as we consider an essential factor that condition the
role of software as enabler of human endeavour.

Based on the empirical evidence collected along the several experiments, ranging from
defect prediction to software repair, and considering both the technical and human aspects,
our main concluding remarks can be summarized as follows:

1. It is possible to unify features from different modalities: One of the main issues
we faced when trying to develop models to understand software processes in a more
holistic was the large amount of data modalities present. Each of then with data from
a specific nature and in a particular format. Literature showed attempts to combine
then, but the concerns related to sparsity and rigidness represented a real threat. Along
this thesis work, we empirically demonstrated the feasibility of finding efficient mapping
functions to i) transfer from one modality to another , and ii) unify different modalities
into a shared feature space. While the degree of success depends on the specific task,
in general we believe the results suggests a positive contribution.

2. Expressive power of learned representations: Depending of the problem we faced
, and the specific technique or model we use to learn representations from the data, we
found that in general the obtained representation are expressive and flexible enough
to improve task performance, when compared to standard metrics. This was specially
evident in prediction of defects and also in bug localization tasks.

3. Support rather than replacement: While the contribution of representation Learn-
ing cannot be denied, we consider that this methods should be used along with standard
techniques from program analysis and testing. In that sense, we do not argue that tak-
ing solely a machine learning approach could be a replacement for standard program

analysis methods. We showed evidence that the representation learning techniques we
designed required several parameter tunning and should not be seen as fully automated
tools.

In our opinion, the introduction of these techniques needs to be done in a sequential
and incremental way, taking into consideration the particularities of the problem we
need to attack, the nature of the available data and the requirements of the solution.
This will serve as a way to evaluate the real contribution.

Of course, our dream is that in the future we could design software capable of full
autonomy, in these of advancing artificial intelligence to naturally merge with software
development, and ultimately removing the need of human intervention.

7.2 Future Work

As for future work, our goal is to naturally move to an unification scenario. In this work
we have explored several ways to represent software engineering data, but a more challenging
task is to combine them into a single pipeline that could allow to represent the development
process in a holistic and more comprehensive way.

We structured this work from the point of view of a developer and his concerns about
the quality aspects of the software he is currently building. Therefore, we can a natural
transition between the actions taken against the defects:

prediction → detection → understanding → repair

The, we envision future approaches that are based on the combination of two or more of
these actions:

• detection ↔ understanding : In this case, the goal is to unify testing and code com-
prehension tasks to improve program understanding. For one side, testing provides a
functional description of the behavior of the program, as it is encoded in the execution
traces that can be obtained from the test cases. On the other hand, the neural models
we proposed can be re used to obtain a characterization of the program in syntactic
ways. Finally, both functional and syntactic representations can be combined.

• detection ↔ repair: This combination has as main goal to explore an scenario where a
system is required to have a higher level of autonomy, for example, space exploration ,
where human intervention is not feasible. In that sense, a program needs to be able to
both detects its own bugs and also generate strategies for fixing them. While we could
see both tasks as non overlapping and sequential, we consider relevant to explore ways
on which both activities can share representations and also be trained jointly.

• prediction ↔ detection: One of the main issues in when designing testing strategies is
that the resulting test cases need to cover a reasonable portion of the code. Moreover,
it is not only relevant that the only achieve high coverage, but also they should be
efficient in that task, as testing is expensive. Therefore, we propose to unify defect

prediction and test case generation: Instead of focusing on general coverage, we could
direct the test case generation to cover parts of the code that are more likely to contain
a defect, based on the estimation provided by a defect prediction model.

Besides those direct ideas, we also envision other extensions, which consider a more global
approach:

• Recommender Systems for Human-Program Interaction: If we are able to map both
user activity and software artifacts in a shared feature space, naturally we could be
able to find the most suitable developers in that should accomplish a certain task. For
example, we could be able to answer questions such as: Which developer should fix a
specific bug?

• Test Oracle Generation: A test case is composed by two main elements: The test input,
and the test oracle. The former allows us to explore program states with following a
defined execution path, therefore it is critical to trigger any abnormal behavior that
could exist. The oracle, on the other hand, is responsible for comparing the observed
behavior with the expected value. In that sense, we think that the expresiveness of
the learned representations could be very useful for assisting in the construction of
test oracles. Concretely, if we are able to generate program systhesis through a neural
architecture, we could, for a given input, estimate the corresponding output, which can
be used as oracle.

Bibliography

[1] S. T. Acuna, N. Juristo, and A. M. Moreno. Emphasizing human capabilities in software
development. IEEE software, 23(2):94–101, 2006.

[2] O. Alam, B. Adams, and A. E. Hassan. A study of the time dependence of code changes.
In Reverse Engineering, 2009. WCRE’09. 16th Working Conference on, pages 21–30.
IEEE, 2009.

[3] M. Allamanis, H. Peng, and C. Sutton. A convolutional attention network for ex-
treme summarization of source code. In International Conference on Machine Learning
(ICML), 2016.

[4] M. Andersen-Gott, G. Ghinea, and B. Bygstad. Why do commercial companies con-
tribute to open source software? International Journal of Information Management,
32(2):106–117, 2012.

[5] M. J. Arafeen and H. Do. Test case prioritization using requirements-based clustering.
In Software Testing, Verification and Validation (ICST), 2013 IEEE Sixth International
Conference on, pages 312–321. IEEE, 2013.

[6] A. Arcuri. On the automation of fixing software bugs. In Companion of the 30th
international conference on Software engineering, pages 1003–1006. ACM, 2008.

[7] A. Arcuri and X. Yao. A novel co-evolutionary approach to automatic software bug
fixing. In Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress on Com-
putational Intelligence). IEEE Congress on, pages 162–168. IEEE, 2008.

[8] R. S. Arnold. Software change impact analysis. IEEE Computer Society Press, 1996.

[9] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor. Software traceability with topic
modeling. In Proceedings of the 32Nd ACM/IEEE International Conference on Soft-
ware Engineering - Volume 1, ICSE ’10, pages 95–104, New York, NY, USA, 2010.
ACM.

[10] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[11] L. B. Baker and J. Finkle. Sony playstation suffers massive data breach. Reuters, April,
26, 2011.

[12] R. D. Banker, S. M. Datar, C. F. Kemerer, and D. Zweig. Software complexity and
maintenance costs. Communications of the ACM, 36(11):81–95, 1993.

[13] M. Banks. Exomars delayed by two years. Physics World, 29(6):12, 2016.

[14] V. R. Basili and R. W. Selby. Comparing the effectiveness of software testing strategies.
IEEE transactions on software engineering, (12):1278–1296, 1987.

[15] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and
new perspectives. IEEE transactions on pattern analysis and machine intelligence,
35(8):1798–1828, 2013.

[16] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural probabilistic language
model. The Journal of Machine Learning Research, 3:1137–1155, 2003.

[17] N. Bertoldi, H. Barry, and J.-B. Fouet. Improved minimum error rate training in moses.
The Prague Bulletin of Mathematical Linguistics, pages 1–11, 2009.

[18] A. Bertolino. Software testing research: Achievements, challenges, dreams. In 2007
Future of Software Engineering, pages 85–103. IEEE Computer Society, 2007.

[19] N. Bettenburg, M. Nagappan, and A. E. Hassan. Think locally, act globally: Improving
defect and effort prediction models. In Proceedings of the 9th IEEE Working Conference
on Mining Software Repositories, pages 60–69. IEEE Press, 2012.

[20] C. Bird, N. Nagappan, H. Gall, B. Murphy, and P. Devanbu. Putting it all together: Us-
ing socio-technical networks to predict failures. In 2009 20th International Symposium
on Software Reliability Engineering, pages 109–119. IEEE, 2009.

[21] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu. Don’t touch my code!:
examining the effects of ownership on software quality. In Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Foundations of software
engineering, pages 4–14. ACM, 2011.

[22] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and P. Devanbu. The
promises and perils of mining git. In Mining Software Repositories, 2009. MSR’09. 6th
IEEE International Working Conference on, pages 1–10. IEEE, 2009.

[23] L. Bottou. Large-scale machine learning with stochastic gradient descent. In Proceed-
ings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[24] S. Bourigault, S. Lamprier, and P. Gallinari. Representation learning for information
diffusion through social networks: An embedded cascade model. In Proceedings of the
Ninth ACM International Conference on Web Search and Data Mining, WSDM ’16,
pages 573–582, New York, NY, USA, 2016. ACM.

[25] G. Brandl. Pygments: Python syntax highlighter. http://pygments.org, 2016.

[26] P. Brereton, D. Budgen, K. Bennnett, M. Munro, P. Layzell, L. MaCaulay, D. Griffiths,
and C. Stannett. The future of software. Communications of the ACM, 42(12):78–84,
1999.

http://pygments.org

[27] I. I. Brudaru and A. Zeller. What is the long-term impact of changes? In Proceedings of
the 2008 international workshop on Recommendation systems for software engineering,
pages 30–32. ACM, 2008.

[28] A. Burns, M. E. Johnson, and P. Honeyman. A brief chronology of medical device
security. Communications of the ACM, 59(10):66–72, 2016.

[29] R. P. Buse and W. R. Weimer. Automatically documenting program changes. In
Proceedings of the IEEE/ACM International Conference on Automated Software Engi-
neering, ASE ’10, pages 33–42, New York, NY, USA, 2010. ACM.

[30] R. P. Buse and T. Zimmermann. Information needs for software development analytics.
In Proceedings of the 34th international conference on software engineering, pages 987–
996. IEEE Press, 2012.

[31] S. Cao, W. Lu, and Q. Xu. Grarep: Learning graph representations with global struc-
tural information. In Proceedings of the 24th ACM International on Conference on
Information and Knowledge Management, CIKM ’15, pages 891–900, New York, NY,
USA, 2015. ACM.

[32] S. Cao, W. Lu, and Q. Xu. Deep neural networks for learning graph representations,
2016.

[33] D. Clark, R. Feldt, S. Poulding, and S. Yoo. Information transformation: an under-
pinning theory for software engineering. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, volume 2, pages 599–602. IEEE, 2015.

[34] L. F. Cortés-Coy, M. L. Vásquez, J. Aponte, and D. Poshyvanyk. On automatically
generating commit messages via summarization of source code changes. In SCAM,
volume 14, pages 275–284, 2014.

[35] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social coding in github: transparency
and collaboration in an open software repository. In Proceedings of the ACM 2012
conference on Computer Supported Cooperative Work, pages 1277–1286. ACM, 2012.

[36] S. Das, A. Mukhopadhyay, and M. Anand. Stock market response to information
security breach: A study using firm and attack characteristics. Journal of Information
Privacy and Security, 8(4):27–55, 2012.

[37] C. R. de Souza, D. Redmiles, and P. Dourish. Breaking the code, moving between
private and public work in collaborative software development. In Proceedings of the
2003 International ACM SIGGROUP conference on Supporting group work, pages 105–
114. ACM, 2003.

[38] M. Dowson. The ariane 5 software failure. ACM SIGSOFT Software Engineering Notes,
22(2):84, 1997.

[39] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen. Boa: A language and infras-
tructure for analyzing ultra-large-scale software repositories. In Proceedings of the 2013
International Conference on Software Engineering, pages 422–431. IEEE Press, 2013.

[40] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case prioritization: A family
of empirical studies. IEEE transactions on software engineering, 28(2):159–182, 2002.

[41] G. Fischer. Desert island: software engineering—a human activity. Automated Software
Engineering, 10(2):233–237, 2003.

[42] M. Foucault, J.-R. Falleri, and X. Blanc. Code ownership in open-source software.
In Proceedings of the 18th International Conference on Evaluation and Assessment in
Software Engineering, page 39. ACM, 2014.

[43] M. Foucault, C. Teyton, D. Lo, X. Blanc, and J.-R. Falleri. On the usefulness of own-
ership metrics in open-source software projects. Information and Software Technology,
64:102–112, 2015.

[44] J. Freeman and J. S. Engel. Models of innovation: Startups and mature corporations.
California Management Review, 50(1):94–119, 2007.

[45] K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya. Choosing software metrics for
defect prediction: an investigation on feature selection techniques. Software: Practice
and Experience, 41(5):579–606, 2011.

[46] S. Garfinkel. History’s worst software bugs. Wired News, Nov, 2005.

[47] D. Gelperin and B. Hetzel. The growth of software testing. Communications of the
ACM, 31(6):687–695, 1988.

[48] D. M. German, A. E. Hassan, and G. Robles. Change impact graphs: Determining the
impact of prior codechanges. Information and Software Technology, 51(10):1394–1408,
2009.

[49] R. A. Ghosh. Economic impact of open source software on innovation and the com-
petitiveness of the information and communication technologies (ict) sector in the eu.
2007.

[50] Y. Goldberg. A primer on neural network models for natural language processing.
Journal of Artificial Intelligence Research, 57:345–420, 2016.

[51] I. Gondra. Applying machine learning to software fault-proneness prediction. Journal
of Systems and Software, 81(2):186–195, 2008.

[52] G. Gousios, M. Pinzger, and A. v. Deursen. An exploratory study of the pull-based
software development model. In Proceedings of the 36th International Conference on
Software Engineering, pages 345–355. ACM, 2014.

[53] M. Greiler, K. Herzig, and J. Czerwonka. Code ownership and software quality: a
replication study. In Proceedings of the 12th Working Conference on Mining Software
Repositories, pages 2–12. IEEE Press, 2015.

[54] A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. arXiv
preprint arXiv:1605.05273, 2016.

[55] X. Gu, H. Zhang, D. Zhang, and S. Kim. Deep api learning. arXiv preprint
arXiv:1605.08535, 2016.

[56] X. Gu, H. Zhang, D. Zhang, and S. Kim. Deep api learning. In Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing, FSE 2016, pages 631–642, New York, NY, USA, 2016. ACM.

[57] R. Gupta, S. Pal, A. Kanade, and S. Shevade. Deepfix: Fixing common c language
errors by deep learning. 2017.

[58] I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal
of machine learning research, 3(Mar):1157–1182, 2003.

[59] E. Guzman, D. Azócar, and Y. Li. Sentiment analysis of commit comments in github:
an empirical study. In Proceedings of the 11th Working Conference on Mining Software
Repositories, pages 352–355. ACM, 2014.

[60] S. Haiduc, J. Aponte, and A. Marcus. Supporting program comprehension with source
code summarization. In Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering-Volume 2, pages 223–226. ACM, 2010.

[61] M. H. Halstead. Elements of software science, volume 7. Elsevier New York, 1977.

[62] D. Hao, L. Zhang, L. Zhang, G. Rothermel, and H. Mei. A unified test case prioritization
approach. ACM Transactions on Software Engineering and Methodology (TOSEM),
24(2):10, 2014.

[63] K. Heafield, I. Pouzyrevsky, J. H. Clark, and P. Koehn. Scalable modified Kneser-Ney
language model estimation. In Proceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics, pages 690–696, Sofia, Bulgaria, August 2013.

[64] C. Henard, M. Papadakis, M. Harman, Y. Jia, and Y. Le Traon. Comparing white-box
and black-box test prioritization. In Proceedings of the 38th International Conference
on Software Engineering, pages 523–534. ACM, 2016.

[65] J. D. Herbsleb and D. Moitra. Global software development. IEEE software, 18(2):16–
20, 2001.

[66] K. Herzig, S. Just, A. Rau, and A. Zeller. Predicting defects using change genealogies.
In Software Reliability Engineering (ISSRE), 2013 IEEE 24th International Symposium
on, pages 118–127. IEEE, 2013.

[67] K. Herzig and A. Zeller. Mining cause-effect-chains from version histories. In Software
Reliability Engineering (ISSRE), 2011 IEEE 22nd International Symposium on, pages
60–69. IEEE, 2011.

[68] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software.
In 2012 34th International Conference on Software Engineering (ICSE), pages 837–847.
IEEE, 2012.

[69] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief
nets. Neural computation, 18(7):1527–1554, 2006.

[70] E. v. Hippel and G. v. Krogh. Open source software and the “private-collective” in-
novation model: Issues for organization science. Organization science, 14(2):209–223,
2003.

[71] Q. Hong, S. Kim, S. C. Cheung, and C. Bird. Understanding a developer social network
and its evolution. In Software Maintenance (ICSM), 2011 27th IEEE International
Conference on, pages 323–332. IEEE, 2011.

[72] X. Huo, M. Li, and Z.-H. Zhou. Learning unified features from natural and program-
ming languages for locating buggy source code.

[73] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer. Summarizing source code using
a neural attention model. In Proceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers), pages 2073–2083, Berlin,
Germany, August 2016. Association for Computational Linguistics.

[74] J.-M. Jazequel and B. Meyer. Design by contract: The lessons of ariane. Computer,
30(1):129–130, 1997.

[75] P. Johnson, M. Ekstedt, and I. Jacobson. Where’s the theory for software engineering?
IEEE software, 29(5):96–96, 2012.

[76] P. C. Jorgensen. Software testing: a craftsman’s approach. CRC press, 2016.

[77] K. Kannan, J. Rees, and S. Sridhar. Market reactions to information security breach
announcements: An empirical analysis. International Journal of Electronic Commerce,
12(1):69–91, 2007.

[78] S. Kim, H. Zhang, R. Wu, and L. Gong. Dealing with noise in defect prediction. In
Software Engineering (ICSE), 2011 33rd International Conference on, pages 481–490.
IEEE, 2011.

[79] E. Kit. Software testing in the real world. Addison-wesley, 1995.

[80] B. Kitchenham and S. L. Pfleeger. Software quality: the elusive target [special issues
section]. IEEE software, 13(1):12–21, 1996.

[81] R. Kitchin and M. Dodge. Code/space: Software and everyday life. Mit Press, 2011.

[82] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi, B. Cowan,
W. Shen, C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin, and E. Herbst. Moses:
Open source toolkit for statistical machine translation. In Proceedings of the 45th
Annual Meeting of the Association for Computational Linguistics Companion Volume
Proceedings of the Demo and Poster Sessions, pages 177–180, Prague, Czech Republic,
June 2007. Association for Computational Linguistics.

[83] A. Lavie and A. Agarwal. Meteor: An automatic metric for mt evaluation with high
levels of correlation with human judgments. In Proceedings of the Second Workshop on
Statistical Machine Translation, StatMT ’07, pages 228–231, Stroudsburg, PA, USA,
2007. Association for Computational Linguistics.

[84] Q. V. Le and T. Mikolov. Distributed representations of sentences and documents. In
ICML, volume 14, pages 1188–1196, 2014.

[85] G. Le Lann. An analysis of the ariane 5 flight 501 failure-a system engineering per-
spective. In Engineering of Computer-Based Systems, 1997. Proceedings., International
Conference and Workshop on, pages 339–346. IEEE, 1997.

[86] J. Lerner and J. Tirole. Some simple economics of open source. The journal of industrial
economics, 50(2):197–234, 2002.

[87] S. Letovsky. Cognitive processes in program comprehension. Journal of Systems and
software, 7(4):325–339, 1987.

[88] N. G. Leveson and C. S. Turner. An investigation of the therac-25 accidents. Computer,
26(7):18–41, 1993.

[89] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. Gated graph sequence neural
networks. In Proceedings of ICLR’16. arXiv, May 2016.

[90] H. Lieberman and C. Fry. Will software ever work? Communications of the ACM,
44(3):122–124, 2001.

[91] M. Linares-Vásquez, L. F. Cortés-Coy, J. Aponte, and D. Poshyvanyk. Changescribe:
A tool for automatically generating commit messages. In Proceedings of the 37th Inter-
national Conference on Software Engineering-Volume 2, pages 709–712. IEEE Press,
2015.

[92] T. R. Liyanagunawardena, A. A. Adams, and S. A. Williams. Moocs: A systematic
study of the published literature 2008-2012. The International Review of Research in
Open and Distributed Learning, 14(3):202–227, 2013.

[93] J. Loeliger and M. McCullough. Version Control with Git: Powerful tools and tech-
niques for collaborative software development. ” O’Reilly Media, Inc.”, 2012.

[94] F. Long and M. Rinard. Automatic patch generation by learning correct code. In ACM
SIGPLAN Notices, volume 51, pages 298–312. ACM, 2016.

[95] Q. Luo, K. Moran, and D. Poshyvanyk. A large-scale empirical comparison of static
and dynamic test case prioritization techniques. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pages
559–570. ACM, 2016.

[96] T. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-based neural
machine translation. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 1412–1421, Lisbon, Portugal, September 2015.
Association for Computational Linguistics.

[97] Z. Ma and J. Zhao. Test case prioritization based on analysis of program structure. In
Software Engineering Conference, 2008. APSEC’08. 15th Asia-Pacific, pages 471–478.
IEEE, 2008.

[98] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of Machine
Learning Research, 9(Nov):2579–2605, 2008.

[99] B. Magnusson, U. Asklund, and S. Minör. Fine-grained revision control for collaborative
software development. In ACM SIGSOFT Software Engineering Notes, volume 18,
pages 33–41. ACM, 1993.

[100] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. Building a large annotated
corpus of english: The penn treebank. Computational linguistics, 19(2):313–330, 1993.

[101] S. Matsumoto, Y. Kamei, A. Monden, K.-i. Matsumoto, and M. Nakamura. An anal-
ysis of developer metrics for fault prediction. In Proceedings of the 6th International
Conference on Predictive Models in Software Engineering, page 18. ACM, 2010.

[102] T. J. McCabe. A complexity measure. Software Engineering, IEEE Transactions on,
(4):308–320, 1976.

[103] H. Mei, D. Hao, L. Zhang, L. Zhang, J. Zhou, and G. Rothermel. A static approach to
prioritizing junit test cases. IEEE Transactions on Software Engineering, 38(6):1258–
1275, 2012.

[104] A. Meneely, L. Williams, W. Snipes, and J. Osborne. Predicting failures with developer
networks and social network analysis. In Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software engineering, pages 13–23. ACM,
2008.

[105] T. Menzies, J. Greenwald, and A. Frank. Data mining static code attributes to learn
defect predictors. Software Engineering, IEEE Transactions on, 33(1):2–13, 2007.

[106] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013.

[107] F. Morin and Y. Bengio. Hierarchical probabilistic neural network language model. In
Aistats, volume 5, pages 246–252. Citeseer, 2005.

[108] L. Mou, G. Li, Y. Liu, H. Peng, Z. Jin, Y. Xu, and L. Zhang. Building program vector
representations for deep learning. arXiv preprint arXiv:1409.3358, 2014.

[109] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin. Convolutional neural networks over
tree structures for programming language processing. In Proc. AAAI, pages 1287–1293.
AAAI Press, 2016.

[110] C. Müller, G. Reina, and T. Ertl. In-situ visualisation of fractional code ownership
over time. In Proceedings of the 8th International Symposium on Visual Information
Communication and Interaction, pages 13–20. ACM, 2015.

[111] S. C. Müller and T. Fritz. Using (bio) metrics to predict code quality online. In
Proceedings of the 38th International Conference on Software Engineering, pages 452–
463. ACM, 2016.

[112] G. J. Myers, C. Sandler, and T. Badgett. The art of software testing. John Wiley &
Sons, 2011.

[113] N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and B. Murphy. Change bursts
as defect predictors. In Software Reliability Engineering (ISSRE), 2010 IEEE 21st
International Symposium on, pages 309–318. IEEE, 2010.

[114] T. Nakagawa, Y. Kamei, H. Uwano, A. Monden, K. Matsumoto, and D. M. German.
Quantifying programmers’ mental workload during program comprehension based on
cerebral blood flow measurement: a controlled experiment. In Companion Proceedings
of the 36th International Conference on Software Engineering, pages 448–451. ACM,
2014.

[115] J. Nam and S. Kim. Heterogeneous defect prediction. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, pages
508–519, New York, NY, USA, 2015. ACM.

[116] J. Nam, S. J. Pan, and S. Kim. Transfer defect learning. In Proceedings of the 2013
International Conference on Software Engineering, pages 382–391. IEEE Press, 2013.

[117] C. D. Nguyen, A. Marchetto, and P. Tonella. Test case prioritization for audit testing of
evolving web services using information retrieval techniques. In Web Services (ICWS),
2011 IEEE International Conference on, pages 636–643. IEEE, 2011.

[118] Y. Ni, Q. K. Xu, F. Cao, Y. Mass, D. Sheinwald, H. J. Zhu, and S. S. Cao. Semantic
documents relatedness using concept graph representation. In Proceedings of the Ninth
ACM International Conference on Web Search and Data Mining, pages 635–644. ACM,
2016.

[119] M. Niepert, M. Ahmed, and K. Kutzkov. Learning convolutional neural networks for
graphs. arXiv preprint arXiv:1605.05273, 2016.

[120] F. J. Och. Minimum error rate training in statistical machine translation. In Proceedings
of the 41st Annual Meeting of the Association for Computational Linguistics, pages
160–167, Sapporo, Japan, July 2003. Association for Computational Linguistics.

[121] M. Ortu, A. Murgia, G. Destefanis, P. Tourani, R. Tonelli, M. Marchesi, and B. Adams.
The emotional side of software developers in jira. In Proceedings of the 13th Interna-
tional Conference on Mining Software Repositories, pages 480–483. ACM, 2016.

[122] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and A. De Lucia. How
to effectively use topic models for software engineering tasks? an approach based on
genetic algorithms. In Proceedings of the 2013 International Conference on Software
Engineering, ICSE ’13, pages 522–531, Piscataway, NJ, USA, 2013. IEEE Press.

[123] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of 40th Annual Meeting of the Association
for Computational Linguistics, pages 311–318, Philadelphia, Pennsylvania, USA, July
2002. Association for Computational Linguistics.

[124] C. S. Păsăreanu and N. Rungta. Symbolic pathfinder: symbolic execution of java
bytecode. In Proceedings of the IEEE/ACM international conference on Automated
software engineering, pages 179–180. ACM, 2010.

[125] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social representa-
tions. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 701–710. ACM, 2014.

[126] B. Perozzi, V. Kulkarni, and S. Skiena. Walklets: Multiscale graph embeddings for
interpretable network classification. arXiv preprint arXiv:1605.02115, 2016.

[127] C. Piech, M. Sahami, J. Huang, and L. Guibas. Autonomously generating hints by
inferring problem solving policies. In Proceedings of the Second (2015) ACM Conference
on Learning@ Scale, pages 195–204. ACM, 2015.

[128] M. Pinzger, N. Nagappan, and B. Murphy. Can developer-module networks predict
failures? In Proceedings of the 16th ACM SIGSOFT International Symposium on
Foundations of software engineering, pages 2–12. ACM, 2008.

[129] Y. Pu, K. Narasimhan, A. Solar-Lezama, and R. Barzilay. sk p: a neural program
corrector for moocs. In Companion Proceedings of the 2016 ACM SIGPLAN Inter-
national Conference on Systems, Programming, Languages and Applications: Software
for Humanity, pages 39–40. ACM, 2016.

[130] J. B. Quinn, J. J. Baruch, and K. A. Zien. Software-based innovation. Sloan Manage-
ment Review, 37(4):11, 1996.

[131] F. Rahman and P. Devanbu. Ownership, experience and defects: a fine-grained study
of authorship. In Proceedings of the 33rd International Conference on Software Engi-
neering, pages 491–500. ACM, 2011.

[132] V. Raychev, M. Vechev, and A. Krause. Predicting program properties from big code.
In ACM SIGPLAN Notices, volume 50, pages 111–124. ACM, 2015.

[133] V. Raychev, M. Vechev, and E. Yahav. Code completion with statistical language
models. In ACM SIGPLAN Notices, volume 49, pages 419–428. ACM, 2014.

[134] K. Rivers and K. R. Koedinger. Automating hint generation with solution space path
construction. In International Conference on Intelligent Tutoring Systems, pages 329–
339. Springer, 2014.

[135] P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch, and S. D’Mello. Improving
automated source code summarization via an eye-tracking study of programmers. In
Proceedings of the 36th International Conference on Software Engineering, pages 390–
401. ACM, 2014.

[136] X. Rong. word2vec parameter learning explained. arXiv preprint arXiv:1411.2738,
2014.

[137] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Prioritizing test cases for
regression testing. IEEE Transactions on software engineering, 27(10):929–948, 2001.

[138] M. J. Rummel, G. M. Kapfhammer, and A. Thall. Towards the prioritization of regres-
sion test suites with data flow information. In Proceedings of the 2005 ACM symposium
on Applied computing, pages 1499–1504. ACM, 2005.

[139] I. Rus and M. Lindvall. Knowledge management in software engineering. IEEE soft-
ware, 19(3):26, 2002.

[140] R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry. An information retrieval approach
for regression test prioritization based on program changes. In Software Engineering
(ICSE), 2015 IEEE/ACM 37th IEEE International Conference on, volume 1, pages
268–279. IEEE, 2015.

[141] M. Sahlgren. The distributional hypothesis. Italian Journal of Linguistics, 20(1):33–54,
2008.

[142] K. Sangani. Sony security laid bare. Engineering & Technology, 6(8):74–77, 2011.

[143] R. Seyfert. Bugs, predations or manipulations? incompatible epistemic regimes of
high-frequency trading. Economy and Society, 45(2):251–277, 2016.

[144] J. Sheoran, K. Blincoe, E. Kalliamvakou, D. Damian, and J. Ell. Understanding watch-
ers on github. In Proceedings of the 11th Working Conference on Mining Software
Repositories, pages 336–339. ACM, 2014.

[145] J. Siegmund. Program comprehension: Past, present, and future. In Software Analysis,
Evolution, and Reengineering (SANER), 2016 IEEE 23rd International Conference on,
volume 5, pages 13–20. IEEE, 2016.

[146] H. Srikanth and L. Williams. On the economics of requirements-based test case priori-
tization. In ACM SIGSOFT Software Engineering Notes, volume 30, pages 1–3. ACM,
2005.

[147] K. Srinivasan and D. Fisher. Machine learning approaches to estimating software
development effort. IEEE Transactions on Software Engineering, 21(2):126–137, 1995.

[148] M. Staats, P. Loyola, and G. Rothermel. Oracle-centric test case prioritization. In
Software Reliability Engineering (ISSRE), 2012 IEEE 23rd International Symposium
on, pages 311–320. IEEE, 2012.

[149] D. Stavrinoudis, M. Xenos, P. Peppas, and D. Christodoulakis. Early estimation of
users’ perception of software quality. Software Quality Journal, 13(2):155–175, 2005.

[150] M.-A. Storey, C. Treude, A. van Deursen, and L.-T. Cheng. The impact of social media
on software engineering practices and tools. In Proceedings of the FSE/SDP workshop
on Future of software engineering research, pages 359–364. ACM, 2010.

[151] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction, volume 1.
MIT press Cambridge, 1998.

[152] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. Line: Large-scale information
network embedding. In Proceedings of the 24th International Conference on World
Wide Web, WWW ’15, pages 1067–1077, New York, NY, USA, 2015. ACM.

[153] C. Tantithamthavorn, S. McIntosh, A. Hassan, and K. Matsumoto. An empirical com-
parison of model validation techniques for defect prediction models. IEEE Transactions
on Software Engineering, 2016.

[154] S. W. Thomas, H. Hemmati, A. E. Hassan, and D. Blostein. Static test case prioriti-
zation using topic models. Empirical Software Engineering, 19(1):182–212, 2014.

[155] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida. Revisiting code ownership
and its relationship with software quality in the scope of modern code review. In
Proceedings of the 38th International Conference on Software Engineering, pages 1039–
1050. ACM, 2016.

[156] P. Tonella, A. Susi, and F. Palma. Using interactive ga for requirements prioritization.
In Search Based Software Engineering (SSBSE), 2010 Second International Symposium
on, pages 57–66. IEEE, 2010.

[157] B. Vasilescu, V. Filkov, and A. Serebrenik. Stackoverflow and github: Associations
between software development and crowdsourced knowledge. In Social computing (So-
cialCom), 2013 international conference on, pages 188–195. IEEE, 2013.

[158] S. Wang, T. Liu, and L. Tan. Automatically learning semantic features for defect pre-
diction. In Proceedings of the 38th International Conference on Software Engineering,
pages 297–308. ACM, 2016.

[159] E. J. Weyuker, T. J. Ostrand, and R. M. Bell. Using developer information as a factor
for fault prediction. In Proceedings of the Third International Workshop on Predictor
Models in Software Engineering, page 8. IEEE Computer Society, 2007.

[160] E. J. Weyuker, T. J. Ostrand, and R. M. Bell. Do too many cooks spoil the broth?
using the number of developers to enhance defect prediction models. Empirical Software
Engineering, 13(5):539–559, 2008.

[161] D. R. White, A. Arcuri, and J. A. Clark. Evolutionary improvement of programs. IEEE
Transactions on Evolutionary Computation, 15(4):515–538, 2011.

[162] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk. Deep learning code frag-
ments for code clone detection. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, pages 87–98. ACM, 2016.

[163] M. White, C. Vendome, M. Linares-Vásquez, and D. Poshyvanyk. Toward deep learn-
ing software repositories. In Proceedings of the 12th Working Conference on Mining
Software Repositories, MSR ’15, pages 334–345, Piscataway, NJ, USA, 2015. IEEE
Press.

[164] A. Witze et al. Software error doomed japanese hitomi spacecraft. Nature,
533(7601):18–19, 2016.

[165] P. Yanardag and S. Vishwanathan. Deep graph kernels. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 1365–1374. ACM, 2015.

[166] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun. Deep learning for just-in-time defect pre-
diction. In Software Quality, Reliability and Security (QRS), 2015 IEEE International
Conference on, pages 17–26. IEEE, 2015.

[167] X. Ye, R. Bunescu, and C. Liu. Learning to rank relevant files for bug reports using do-
main knowledge. In Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pages 689–699. ACM, 2014.

[168] X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu. From word embeddings to document
similarities for improved information retrieval in software engineering. In Proceedings
of the 38th International Conference on Software Engineering, pages 404–415. ACM,
2016.

[169] W. Zaremba, I. Sutskever, and V. Oriol. Recurrent neural network regularization. In
Proceedings of the 3rd International Conference on Learning Representations, 2015.

[170] F. Zhang, A. E. Hassan, S. McIntosh, and Y. Zou. The use of summation to ag-
gregate software metrics hinders the performance of defect prediction models. IEEE
Transactions on Software Engineering, 2016.

[171] F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou. Towards building a universal defect
prediction model. In Proceedings of the 11th Working Conference on Mining Software
Repositories, pages 182–191. ACM, 2014.

[172] L. Zhang, J. Zhou, D. Hao, L. Zhang, and H. Mei. Prioritizing junit test cases in
absence of coverage information. In Software Maintenance, 2009. ICSM 2009. IEEE
International Conference on, pages 19–28. IEEE, 2009.

[173] T. Zimmermann and N. Nagappan. Predicting defects using network analysis on de-
pendency graphs. In Proceedings of the 30th international conference on Software en-
gineering, pages 531–540. ACM, 2008.

[174] H. Zuse. Software complexity. NY, USA: Walter de Cruyter, 1991.

	Introduction
	Motivation
	Structure and Contributions

	 Human Factors
	Learning Socio-Technical Representations for Improving Defect Prediction
	Introduction
	Related Work
	Background
	Proposed Approaches
	Empirical Study
	Results and Discussion
	Effect of Dimensionality
	Effect of Sampling Frequency
	Conclusions and Future Work

	Visualizing Code Ownership Trajectories in Vector Space
	Introduction
	Related Work
	Proposed Approach
	Results and Discussion

	Conclusion and Future Work

	Automated Testing
	Test Case Prioritization Through Neural Language Modeling
	Introduction
	Background
	Proposed Approach
	Evaluation
	Threats to Validity
	Results and Analysis
	Related Work
	Conclusion and Future Work

	Naturalness of Code
	Generating Natural Descriptions from Source Code Changes
	Introduction
	Related Work
	Proposed Model
	Empirical Study
	Conclusion and Future work

	Automatic Repair
	Learning Fixing Trajectory Policies
	Introduction
	Related Work
	Proposed Approach
	Empirical Study
	Conclusion and Future Work

	Discussion
	General Discussion
	Hyperparameter Optimization
	Interpretability and Accountability of the Learned Representations
	 Real Applicability in a Software Development Scenario
	Transfer Learning Capabilities

	Conclusion
	General Conclusions
	Future Work

