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Abstract

We consider an obstacle problem for (possibly non-local) wave equations, and
we prove existence of weak solutions through a convex minimization approach
based on a time discrete approximation scheme. We provide the corresponding
numerical implementation and raise some open questions.

1 Introduction

Obstacle type problems are nowadays a well established subject with many
dedicated contributions in the recent literature. Obstacle problems for the minimizers
of classical energies and regularity of the arising free boundary have been extensively
studied, both for local operators (see, e.g. [8, 24] and references therein) and non-local
fractional type operators (see, e.g. [31] and the review [24]). The corresponding
evolutive equations have also been considered, mainly in the parabolic context
[7, 6, 20, 4]. What seems to be missing in the picture is the hyperbolic scenario
which, despite being in some cases as natural as the previous ones, has received little
attention so far.

Among the available results for hyperbolic obstacle problems there is a series
of works by Schatzman and collaborators [26, 27, 28, 23], where the existence of
a solution is proved via penalty methods and, furthermore, existence of energy
preserving solutions are proved in dimension 1 whenever the obstacle is concave [27].
The problem is also considered in [18], where the author proves the existence of a
(possibly dissipative) solution within a more general framework but under technical
hypotheses. More recently the 1d situation has been investigated in [17] through
a minimization approach based on time discretization, see also [15, 22, 32, 11] for
contributions on related problems using the same point of view. Another variational
approach to hyperbolic problems, through an elliptic regularization suggested by
De Giorgi, is given in [29, 30] and subsequent papers (see for instance [10] for time
dependent domains).

In this paper we use a convex minimization approach, relying on a semi-discrete
approximation scheme (as in [17, 15, 11]), to deal with more general situations so
as to include also non-local hyperbolic problems in the presence of obstacles, in
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arbitrary dimension. As main results we prove existence of a suitably defined weak
solution to the wave equation involving the fractional Laplacian with or without
an obstacle, together with the corresponding energy estimates. Those results are
summarized in Theorem 3 and Theorem 9 (see Section 3 and 4). The approximating
scheme allows to perform numerical simulations which give quite precise evidence of
dynamical effects. In particular, based on our numerical experiments for the obstacle
problem, we conjecture that this method is able to select, in cases of nonuniqueness,
the most dissipative solution, that is to say the one losing the maximum amount of
energy at contact times.

Eventually, we remark that this approach is quite robust and can be extended
for instance to the case of adhesive phenomena: in these situations an elastic string
interacts with a rigid substrate through an adhesive layer [9] and the potential energy
governing the interaction can be easily incorporated in our variational scheme.

The paper is organized as follows. We first recall the main properties of the
fractional Laplace operator and fractional Sobolev spaces in Section 2 and then, in
Section 3, we introduce the time-disretized variational scheme and apply it to the
non-local wave equation (with the fractional Laplacian), proving Theorem 3. In
Section 4 we adapt the scheme so as to include the obstacle problem, proving existence
of weak solutions in Theorem 9. In the last section we describe the corresponding
numerical implementation providing some examples and we conclude with some
remarks and open questions.

2 Fractional Sobolev spaces and the fractional Laplacian
operator

In this section we briefly review the main definitions and properties of the
fractional setting and we fix the notation used in the rest of the paper. For a more
complete introduction to fractional Sobolev spaces we point to [13, 19] and references
therein.

Fractional Sobolev spaces. Let Ω ⊂ Rd be an open set. For s ∈ R, we define
the Sobolev spaces Hs(Ω) as follows:

• for s = 0 we set H0(Ω) = L2(Ω);

• for s ∈ (0, 1) and u ∈ L2(Ω), define the Gagliardo semi-norm of u as

[u]Hs(Ω) =

(∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|d+2s
dxdy

) 1
2

.

The fractional Sobolev space Hs(Ω) is then defined as

Hs(Ω) =
{
u ∈ L2(Ω) : [u]Hs(Ω) <∞

}
,

with norm ||u||Hs(Ω) = (||u||2L2(Ω) + [u]2Hs(Ω))
1/2;

• for s ≥ 1 let us write s = [s] + {s}, with [s] integer and 0 ≤ {s} < 1. The
space Hs(Ω) is then defined as

Hs(Ω) = {u ∈ H [s](Ω) : Dαu ∈ H{s}(Ω) for any α s.t. |α| = [s]},
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with norm ||u||Hs(Ω) = (||u||2
H[s](Ω)

+
∑
|α|=[s] ||Dαu||2

H{s}(Ω)
)1/2;

• for s < 0 we define Hs(Ω) = (H−s0 (Ω))∗, where as usual the space Hs
0(Ω) is

obtained as the closure of C∞c (Ω) in the || · ||Hs(Ω) norm.

Fractional Laplacian. For any s > 0, denote by (−∆)s the fractional Laplace
operator, which (up to normalization factors) can be defined as follows:

• for s ∈ (0, 1), we set

−(−∆)su(x) =

∫
Rd

u(x+ y)− 2u(x) + u(x− y)

|y|d+2s
dy, x ∈ Rd;

• for s ≥ 1, s = [s] + {s}, we set (−∆)s = (−∆){s} ◦ (−∆)[s].

Let us define, for any u, v ∈ Hs(Rd), the bilinear form

[u, v]s =

∫
Rd

(−∆)s/2u(x) · (−∆)s/2v(x) dx

and the corresponding semi-norm [u]s =
√

[u, u]s = ||(−∆)s/2u||L2(Rd). Define on
Hs(Rd) the norm ||u||s = (||u||2

L2(Rd)
+ [u]2s)

1/2, which in turn is equivalent to the
norm || · ||Hs(Rd).

The spaces H̃s(Ω). Let s > 0 and fix Ω to be an open bounded set with
Lipschitz boundary. The space we are going to work with throughout this paper is

H̃s(Ω) = {u ∈ Hs(Rd) : u = 0 a.e. in Rd \ Ω},

endowed with the || · ||s norm. This space corresponds to the closure of C∞c (Ω) with
respect to the || · ||s norm. We have also (H̃s(Ω))∗ = H−s(Ω), see [19, Theorem 3.30].

We finally recall the following embedding results (see [13]).

Theorem 1. Let s > 0. The following holds:

• if 2s < d, then H̃s(Ω) embeds in Lq(Ω) continuously for any q ∈ [1, 2∗] and
compactly for any q ∈ [1, 2∗), with 2∗ = 2d/(d− 2s);

• if 2s = d, then H̃s(Ω) embeds in Lq(Ω) continuously for any q ∈ [1,∞) and
compactly for any q ∈ [1, 2];

• if 2s > d, then H̃s(Ω) embeds continuously in C0,α(Ω) with α = (2s− d)/2.

3 A variational scheme for the fractional wave equation

In this section, as a first step towards obstacle problems, we extend to the
fractional wave equation a time-disretized variational scheme which traces back to
Rothe [25] and since then has been extensively applied to many different hyperbolic
type problems, see e.g. [32, 21, 33, 11].
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Let Ω ⊂ Rd be an open bounded domain with Lipschitz boundary. Given
u0 ∈ H̃s(Ω) and v0 ∈ L2(Ω), the problem we are interested in is the following: find
u = u(t, x) such that

utt + (−∆)su = 0 in (0, T )× Ω

u(t, x) = 0 in [0, T ]× (Rd \ Ω)

u(0, x) = u0(x) in Ω

ut(0, x) = v0(x) in Ω

(1)

where the “boundary” condition is imposed on the complement of Ω due to the
non-local nature of the fractional operator. In particular, we look for weak type
solutions of (1).

Definition 2. Let T > 0. We say a function

u ∈ L∞(0, T ; H̃s(Ω)) ∩W 1,∞(0, T ;L2(Ω)), utt ∈ L∞(0, T ;H−s(Ω)),

is a weak solution of (1) in (0, T ) if∫ T

0

∫
Ω
utt(t)ϕ(t) dxdt+

∫ T

0
[u(t), ϕ(t)]s dt = 0 (2)

for all ϕ ∈ L1(0, T ; H̃s(Ω)) and the initial conditions are satisfied in the following
sense:

lim
h→0+

1

h

∫ h

0

(
||u(t)− u0||2L2(Ω) + [u(t)− u0]2s

)
dt = 0 (3)

and

lim
h→0+

1

h

∫ h

0
||ut(t)− v0||2L2(Ω) dt = 0. (4)

The aim of this section is then to prove the next theorem.

Theorem 3. There exists a weak solution of the fractional wave equation (1).

The existence of a such a weak solution will be proved by means of an implicit
variational scheme based on the idea of minimizing movements [3] introduced by De
Giorgi, elsewhere known also as the discrete Morse semiflow approach or Rothe’s
scheme [25]. We also point out that existence of a weak solution for Ω = Rd is proved
in [29] via elliptic regularization techniques.

3.1 Approximating scheme

For any n > 0 let τn = T/n, un−1 = u0 − τnv0, and un0 = u0 (conventionally we
intend v0(x) = 0 for x ∈ Rd \ Ω). For any 0 < i ≤ n, given uni−2 and uni−1, define

uni = arg min
u∈H̃s(Ω)

Jni (u) = arg min
u∈H̃s(Ω)

[∫
Ω

|u− 2uni−1 + uni−2|
2

2τ2
n

dx+
1

2
[u]2s

]
. (5)

Each uin is well defined: indeed, existence of a minimizer can be obtained via the
direct method of the calculus of variations while uniqueness follows from the strict
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convexity of the functional Jni . Each minimizer uni can be characterized in the
following way: take any test function ϕ ∈ H̃s(Ω), then, by minimality of uni in
H̃s(Ω), one has

d

dε
Jni (uni + εϕ)|ε=0 = 0,

which rewrites as∫
Ω

uni − 2uni−1 + uni−2

τ2
n

ϕdx+ [uni , ϕ]s = 0 for all ϕ ∈ H̃s(Ω). (6)

We define the piecewise constant and piecewise linear interpolation in time of the
sequence {uni }i over [−τn, T ] as follows: let tni = iτn, then the piecewise constant
interpolant is given by

ūn(t, x) =

{
un−1(x) t = −τn
uni (x) t ∈ (tni−1, t

n
i ],

(7)

and the piecewise linear one by

un(t, x) =


un−1(x) t = −τn
t− tni−1

τn
uni (x) +

tni − t
τn

uni−1(x) t ∈ (tni−1, t
n
i ].

(8)

Define vni = (uni −uni−1)/τn, 0 ≤ i ≤ n, and let vn be the piecewise linear interpolation
over [0, T ] of the family {vni }ni=0, defined similarly to (8). Taking the variational
characterization (6) and integrating over [0, T ] we obtain∫ T

0

∫
Ω

(
unt (t)− unt (t− τn)

τn

)
ϕ(t) dxdt+

∫ T

0
[ūn(t), ϕ(t)]s dt = 0

for all ϕ ∈ L1(0, T ; H̃s(Ω)), or equivalently∫ T

0

∫
Ω
vnt (t)ϕ(t) dxdt+

∫ T

0
[ūn(t), ϕ(t)]s dt = 0. (9)

The idea is now to pass to the limit as n → ∞ and prove, using (9), that the
approximations un and ūn converge to a weak solution u of (1). For doing so the
main tool is the following estimate.

Proposition 4 (Key estimate). The approximate solutions ūn and un satisfy

‖unt (t)‖2L2(Ω) + [ūn(t)]2s ≤ C(u0, v0)

for all t ∈ [0, T ], with C(u0, v0) a constant independent of n.

Proof. For each fixed i ∈ {1, . . . , n} consider equation (6) with ϕ = uni−1 − uni , so
that we have

0 =

∫
Ω

(uni − 2uni−1 + uni−2)(uni−1 − uni )

τ2
n

dx+ [uni , u
n
i−1 − uni ]s

≤ 1

2τ2
n

∫
Ω

(uni−1 − uni−2)2 − (uni − uni−1)2 dx+
1

2
([uni−1]2s − [uni ]2s),
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where we use the fact that b(a − b) ≤ 1
2(a2 − b2). Summing for i = 1, . . . , k, with

1 ≤ k ≤ n, we get∥∥∥∥unk − unk−1

τn

∥∥∥∥2

L2(Ω)

+ [unk ]2s ≤
1

τ2
n

‖u0 − un−1‖
2
L2(Ω) + [u0]2s

= ||v0||2L2(Ω) + [u0]2s.

The result follows by the very definition of un and ūn.

Remark 5. Given a weak solution u of (1) we can speak of the energy quantity

E(t) = ||ut(t)||2L2(Ω) + [u(t)]2s.

One can easily see by an approximation argument that E is conserved throughout
the evolution and, as a by-product of the last proof, we see that also the energy
of our approximations is at least non-increasing, i.e. Eni ≤ Eni−1, where Eni =
E(un(tni )) = ||vni ||2L2(Ω) + [uni ]2s. Furthermore we also remark that we cannot improve
this estimate, meaning that generally speaking the given approximations un are not
energy preserving.

Thanks to Proposition 4, we can now prove convergence of the un.

Proposition 6 (Convergence of un). There exist a subsequence of steps τn → 0 and
a function u ∈ L∞(0, T ; H̃s(Ω)) ∩W 1,∞(0, T ;L2(Ω)), with utt ∈ L∞(0, T ;H−s(Ω)),
such that

un → u in C0([0, T ];L2(Ω))

unt ⇀
∗ ut in L∞(0, T ;L2(Ω))

un(t) ⇀ u(t) in H̃s(Ω) for any t ∈ [0, T ].

Moreover, vnt ⇀∗ utt in L∞(0, T ;H−s(Ω)).

Proof. From Proposition 4 it follows that

unt (t) and vn(t) are bounded in L2(Ω) uniformly in t and n, (10)

un(t) is bounded in the [·]s semi-norm uniformly in t and n. (11)

Observe now that un(·, x) is absolutely continuous on [0, T ]; thus, for all t1, t2 ∈ [0, T ]
with t1 < t2, we have

||un(t2, ·)− un(t1, ·)||L2(Ω) =

(∫
Ω

(∫ t2

t1

unt (t, x) dt

)2

dx

) 1
2

≤
(∫ t2

t1

||unt (t, ·)||2L2(Ω) dt

) 1
2

(t2 − t1)
1
2 ≤ C(t2 − t1)

1
2 ,

where we made use of the Hölder’s inequality and of Fubini’s Theorem. This estimate
yields

un(t) is bounded in L2(Ω) uniformly in t and n, (12)

un is equicontinuous in C0([0, T ];L2(Ω)). (13)
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From (9), using (12) and (11), we can also deduce that vnt (t) is bounded in H−s(Ω)
uniformly in t and n. All together we have

un is bounded in W 1,∞(0, T ;L2(Ω)) and in L∞(0, T ; H̃s(Ω)), (14)

vn is bounded in L∞(0, T ;L2(Ω)) and in W 1,∞(0, T ;H−s(Ω)). (15)

Thanks to (13), (14) and (15) there exists a function u ∈ L∞(0, T ; H̃s(Ω)) ∩
W 1,∞(0, T ;L2(Ω)) ∩ C0([0, T ];L2(Ω)) such that

un → u in C0([0, T ];L2(Ω))

unt ⇀
∗ ut in L∞(0, T ;L2(Ω))

un(t) ⇀ u(t) in H̃s(Ω) for any t ∈ [0, T ]

and there exists v ∈W 1,∞(0, T ;H−s(Ω)) such that

vn ⇀∗ v in L∞(0, T ;L2(Ω)) and vn ⇀∗ v in W 1,∞(0, T ;H−s(Ω)).

As one would expect v(t) = ut(t) as elements of L2(Ω) for a.e. t ∈ [0, T ]: indeed,
for t ∈ (tni−1, t

n
i ] and ϕ ∈ H̃s(Ω), we have by construction unt (t) = vn(tni ), and so∫

Ω
(unt (t)− vn(t))ϕdx =

∫
Ω

(vn(tni )− vn(t))ϕdx =

∫
Ω

(∫ tni

t
vnt (s) ds

)
ϕdx

≤ τn||vnt ||L∞(0,T ;H−s(Ω))||ϕ||Hs(Rd)

which implies, for any ψ(t, x) = ϕ(x)η(t) with ϕ ∈ H̃s(Ω) and η ∈ C1
0 ([0, T ]), that∫ T

0

[∫
Ω

(ut(t)− v(t))ϕdx

]
η(t) dt =

∫ T

0

∫
Ω

(ut(t)− v(t))ψ dxdt

= lim
n→∞

∫ T

0

∫
Ω

(unt (t)− vn(t))ψ dxdt = lim
n→∞

∫ T

0

[∫
Ω

(unt (t)− vn(t))ϕdx

]
η(t) dt

≤ lim
n→∞

τnT ||vnt ||L∞(0,T ;H−s(Ω))||ϕ||Hs(Rd)||η||∞ = 0.

Hence we have∫
Ω

(ut(t)− v(t))ϕdx = 0 for all ϕ ∈ H̃s(Ω) and a.e. t ∈ [0, T ],

which yields the sought for conclusion. Thus, vt = utt and utt ∈ L∞(0, T ;H−s(Ω)).

Proposition 7 (Convergence of ūn). Let u be the limit function obtained in Propo-
sition 6, then

ūn ⇀∗ u in L∞(0, T ; H̃s(Ω)).

Proof. By definition we have

sup
t∈[0,T ]

∫
Ω
|un(t, x)− ūn(t, x)|2 dx =

n∑
i=1

sup
t∈[tni−1,t

n
i ]

(t− tni )2

∫
Ω

(vni )2 dx

≤ τ2
n

n∑
i=1

||vni ||2L2(Ω) ≤ Cτn
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which implies ūn → u in L∞(0, T ;L2(Ω)). Furthermore, taking into account Propo-
sition 4, ūn(t) is bounded in H̃s(Ω) uniformly in t and n, so that we have ūn ⇀∗ u
in L∞(0, T ; H̃s(Ω)) and, as it happens for un, ūn(t) ⇀ u(t) in H̃s(Ω) for any
t ∈ [0, T ].

We can now pass to the limit in (9) to prove u to be a weak solution, thus proving
Theorem 3.

Proof of Theorem 3. The limit function u obtained in Proposition 6 is a weak solution
of (1). Indeed, for each n > 0, by (9) one has∫ T

0

∫
Ω
vnt (t)ϕ(t) dxdt+

∫ T

0
[ūn(t), ϕ(t)]s dt = 0

for any ϕ ∈ L1(0, T ; H̃s(Ω)). Passing to the limit as n→∞, using Propositions 6
and 7, we immediately get∫ T

0

∫
Ω
utt(t)ϕ(t) dxdt+

∫ T

0
[u(t), ϕ(t)]s dt = 0.

Regarding the initial conditions (3) and (4) it suffices to prove that, if tk → 0 are
Lebesgue points for both t 7→ ||ut(t)||2L2(Ω) and t 7→ [u(t)]2s, then

[u(tk)]
2
s → [u0]2s and ||ut(tk)||2L2(Ω) → ||v0||2L2(Ω). (16)

From the fact that ut ∈ W 1,∞(0, T ;H−s(Ω)) we have ut(tk) → v0 in H−s(Ω)
and, since ut(tk) is bounded in L2(Ω) and H̃s(Ω) ⊂ L2(Ω) is dense, we also have
ut(tk) ⇀ v0 in L2(Ω). On the other hand u(tk) → u(0) = u0 strongly in L2(Ω)
because u ∈ C0([0, T ];L2(Ω)) and, being u(tk) bounded in H̃s(Ω), u(tk) ⇀ u(0) in
H̃s(Ω) and [u0]s ≤ lim infk[u(tk)]s. To prove (16) it suffices to observe that

lim sup
k→∞

(
[u(tk)]

2
s + ||ut(tk)||2L2(Ω)

)
≤ [u0]2s + ||v0||2L2(Ω)

by energy conservation.

4 The obstacle problem

In this section we switch our focus to hyperbolic obstacle problems for the
fractional Laplacian. We will see how a weak solution can be obtained by means of a
slight modification of the previously presented scheme, whose core idea has already
been used in other obstacle type problems (for example in [17, 20]).

As above, let Ω ⊂ Rd be an open bounded domain with Lipschitz boundary and
consider g : Ω→ R, with

g ∈ C0(Ω̄), g < 0 on ∂Ω.

We are still interested in a non-local wave type dynamic like the one of equation (1),
where now we require the solution u to lay above g: this way g can be interpreted
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as a physical obstacle that our solution cannot go below. Consider then an initial
datum

u0 ∈ H̃s(Ω), u0 ≥ g a.e. in Ω,

and v0 ∈ L2(Ω). Equation (1), with the addition of the obstacle g, reads as follows:
find a function u = u(t, x) such that

utt + (−∆)su ≥ 0 in (0, T )× Ω

u(t, ·) ≥ g in [0, T ]× Ω

(utt + (−∆)su)(u− g) = 0 in (0, T )× Ω

u(t, x) = 0 in [0, T ]× (Rd \ Ω)

u(0, x) = u0(x) in Ω

ut(0, x) = v0(x) in Ω

(17)

In this system the function u is required to be an obstacle-free solution whenever
away from the obstacle, where u−g > 0, while we only require a variational inequality
(first line) when u touches g. The main difficulty in (17) is the treatment of contact
times: the previous system does not specify what kind of behavior arises at contact
times, leaving us free to choose between “bouncing” solutions, i.e. the profile hits the
obstacle and bounces back with a fraction of the previous velocity (see, e.g., [23]),
and an “adherent” solution, i.e. the profile hits the obstacle and stops (this way we
dissipate energy). The definition of weak solution we are going to consider includes
both of these cases.

Definition 8. Let T > 0. We say a function u = u(t, x) is a weak solution of (17)
in (0, T ) if

1. u ∈ L∞(0, T ; H̃s(Ω)) ∩W 1,∞(0, T ;L2(Ω)) and u(t, x) ≥ g(x) for a.e. (t, x) ∈
(0, T )× Ω;

2. there exist weak left and right derivatives u±t on [0, T ] (with appropriate modifi-
cations at endpoints);

3. for all ϕ ∈W 1,∞(0, T ;L2(Ω)) ∩ L1(0, T ; H̃s(Ω)) with ϕ ≥ 0, sptϕ ⊂ [0, T ), we
have

−
∫ T

0

∫
Ω
utϕt dxdt+

∫ T

0
[u, ϕ]s dt−

∫
Ω
v0 ϕ(0) dx ≥ 0

4. the initial conditions are satisfied in the following sense

u(0, ·) = u0,

∫
Ω

(u+
t (0)− v0)(ϕ− u0) dx ≥ 0 ∀ϕ ∈ H̃s(Ω), ϕ ≥ g.

Within this framework we can partially extend the construction presented in the
previous section so as to prove existence of a weak solution.

Theorem 9. There exists a weak solution u of the hyperbolic obstacle problem (17),
and u satisfies the energy inequality

||u±t (t)||2L2(Ω) + [u(t)]2s ≤ ||v0||2L2(Ω) + [u0]2s for a.e. t ∈ [0, T ]. (18)
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We remark here that this definition of weak solution is weaker than the one
proposed in [18, 14], in which the authors construct a solution to (17) as a limit of
(energy preserving) solutions un of regularized systems, where the constraint un ≥ g
is turned into a penalization term in the equation. Furthermore, up to our knowledge,
the problem of the existence of an energy preserving weak solution to (17) is still
open: one would expect the limit function in [18, 14] to be the best known candidate,
while a partial result for concave obstacles in 1d was provided by Schatzman in [27].

4.1 Approximating scheme

The idea is to replicate the scheme presented in Section 3 for the obstacle-free
dynamic: define

Kg = {u ∈ H̃s(Ω) |u ≥ g a.e. in Ω}

and, for any n > 0, let τn = T/n. Define un−1 = u0−τnv0 and un0 = u0, and construct
recursively the family of functions {uni }ni=1 ⊂ H̃s(Ω) as

uni = arg min
u∈Kg

Jni (u),

with Jni defined as in (5). Notice how the minimization is now over functions u ≥ g
in Ω so that to respect the additional constraint introduced by the obstacle. Since
Kg ⊂ H̃s(Ω) is convex, existence and uniqueness of each uni can be proved by means
of standard arguments. Regarding the variational characterization of each minimizer
uni , we cannot take arbitrary variations ϕ ∈ H̃s(Ω) (we may end up exiting the
feasible set Kg), and so we need to be more careful: we take any test ϕ ∈ Kg and
consider the function (1− ε)uni + εϕ, which belongs to Kg for any sufficiently small
positive ε. Thus, since uni minimizes Jni , we have the following inequality

d

dε
Jni (uni + ε(ϕ− uni ))|ε=0 ≥ 0,

which rewrites as∫
Ω

uni − 2uni−1 + uni−2

τ2
n

(ϕ− uni ) dx+ [uni , ϕ− uni ]s ≥ 0 for all ϕ ∈ Kg. (19)

In particular, since every ϕ ≥ uni is an admissible test function, we also have∫
Ω

uni − 2uni−1 + uni−2

τ2
n

ϕdx+ [uni , ϕ]s ≥ 0 for all ϕ ∈ H̃s(Ω), ϕ ≥ 0. (20)

We define ūn and un as, respectively, the piecewise constant and the piecewise
linear interpolation in time of {uni }i (as in (8), (7)), and vn as the piecewise linear
interpolant of velocities vni = (uni − uni−1)/τn, 0 ≤ i ≤ n. Using (20), the analogue of
(6) takes the following form∫ T

0

∫
Ω

(
unt (t)− unt (t− τn)

τn

)
ϕ(t) dxdt+

∫ T

0
[ūn(t), ϕ(t)]s dt ≥ 0

for all ϕ ∈ L1(0, T ; H̃s(Ω)), ϕ(t, x) ≥ 0 for a.e. (t, x) ∈ (0, T )× Ω.
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In view of a convergence result, we observe that the same energy estimate of
Proposition 4 extends to this new context: for any n > 0, we have

‖unt (t)‖2L2(Ω) + [ūn(t)]2s ≤ C(u0, v0)

for all t ∈ [0, T ], with C(u0, v0) a constant independent of n. The exact same proof
of Proposition 4 applies: just observe that, taking ϕ = uni−1 in (19), one gets

0 ≤
∫

Ω

(uni − 2uni−1 + uni−2)(uni−1 − uni )

τ2
n

dx+ [uni , u
n
i−1 − uni ]s

and then the rest follows. Convergence of the interpolants is then a direct consequence.

Proposition 10 (Convergence of un and ūn, obstacle case). There exists a subse-
quence of steps τn → 0 and a function u ∈ L∞(0, T ; H̃s(Ω)) ∩W 1,∞(0, T ;L2(Ω))
such that

un → u in C0([0, T ];L2(Ω)), ūn ⇀∗ u in L∞(0, T ; H̃s(Ω)),

unt ⇀
∗ ut in L∞(0, T ;L2(Ω)), un(t) ⇀ u(t) in H̃s(Ω) for any t ∈ [0, T ],

and furthermore u(t, x) ≥ g(x) for a.e. (t, x) ∈ [0, T ]× Ω.

Proof. To obtain the existence of u and all the convergences we can repeat the first
half of the proof of Proposition 6 and the proof of Proposition 7. The fact that
u(t, x) ≥ g(x) for a.e. (t, x) ∈ [0, T ] × Ω is a direct consequence of the fact that
uni ∈ Kg for all n and 0 ≤ i ≤ n.

The missing step with respect to the obstacle-free dynamic is that generally
speaking utt /∈ L∞(0, T ;H−s(Ω)). The cause of such a behavior is clear already
in 1d: suppose the obstacle to be g = 0 and imagine a flat region of u moving
downwards at a constant speed; when this region reaches the obstacle the motion
cannot continue its way down (we need to stay above g) and so the velocity must
display an instantaneous and sudden change in a region of non-zero measure (within
our scheme the motion stops on the obstacle and velocity drops to 0 on the whole
contact region). Due to this possible behavior of ut, we cannot expect utt to possess
the same regularity as in the obstacle-free case. Nevertheless, such discontinuities in
time of ut are somehow controllable and we can still provide some sort of regularity
results, which are collected in the following propositions.

Proposition 11. Let u be the weak limit obtained in Proposition 10 and, for any
fixed 0 ≤ ϕ ∈ H̃s(Ω), let F : [0, T ]→ R be defined as

F (t) =

∫
Ω
ut(t)ϕdx. (21)

Then F ∈ BV (0, T ) and, in particular, unt (t) ⇀ ut(t) in L2(Ω) for a.e. t ∈ [0, T ].

Proof. Let us fix ϕ ∈ H̃s(Ω) with ϕ ≥ 0, and consider the functions Fn : [0, T ]→ R
defined as

Fn(t) =

∫
Ω
unt (t)ϕdx. (22)

11



Observe that ||Fn||L1(0,T ) is uniformly bounded because unt is bounded in L2(Ω)
uniformly in n and t. Furthermore, for every fixed n > 0 and 0 ≤ i ≤ n, we deduce
from (20) that∣∣∣∣∣

∫
Ω

(vni − vni−1)ϕdx

∣∣∣∣∣−
∫

Ω
(vni − vni−1)ϕdx ≤ 2τn|[uni , ϕ]s|. (23)

Summing over i = 1, . . . , n and using Proposition 4, we get

n∑
i=1

∣∣∣∣∣
∫

Ω
(vni − vni−1)ϕdx

∣∣∣∣∣ ≤
∫

Ω
vnnϕdx−

∫
Ω
v0ϕdx+

n∑
i=1

2τn|[uni , ϕ]s|

≤ ||vnn||L2(Ω)||ϕ||L2(Ω) + ||v0||L2(Ω)||ϕ||L2(Ω) + 2τn

n∑
i=1

|[uni , ϕ]s|

≤ ||vnn||L2(Ω)||ϕ||L2(Ω) + ||v0||L2(Ω)||ϕ||L2(Ω) + 2τn

n∑
i=1

[uni ]s[ϕ]s

≤ C||ϕ||Hs(Rd)

with C independent of n. Thus, {Fn}n is uniformly bounded in BV (0, T ) and by
Helly’s selection theorem there exists a function F̄ of bounded variation such that
Fn(t)→ F̄ (t) for every t ∈ (0, T ).

Take now ψ(t, x) = ϕ(x)η(t) for η ∈ C∞c (0, T ), using that unt ⇀∗ ut in L∞(0, T ;L2(Ω)),
one has∫ T

0

∫
Ω
ut(t)ψ dxdt = lim

n→∞

∫ T

0

∫
Ω
unt (t)ψ dxdt = lim

n→∞

∫ T

0

∫
Ω
unt (t)ϕdx η(t)dt

=

∫ T

0
lim
n→∞

∫
Ω
unt (t)ϕdx η(t) dt =

∫ T

0
F̄ (t)η(t) dt

where the passage to the limit under the sign of integral is possible due to the pointwise
convergence of Fn to F̄ combined with the dominated convergence theorem. We
conclude ∫ T

0

(∫
Ω
ut(t)ϕdx− F̄ (t)

)
η(t) dt = 0

and, by the arbitrariness of η, we have F = F̄ for a.e. t ∈ (0, T ), which is to say
F ∈ BV (0, T ). In particular,∫

Ω
ut(t)ϕdx = F (t) = lim

n→∞

∫
Ω
unt (t)ϕdx for a.e. t ∈ (0, T ),

meaning unt (t) ⇀ ut(t) in L2(Ω) for almost every t ∈ (0, T ): indeed the last equality
can first be extended to every ϕ ∈ H̃s(Ω) (just decomposing ϕ = ϕ+ − ϕ− in its
positive and negative parts) and then to every ϕ ∈ L2(Ω) being H̃s(Ω) ⊂ L2(Ω)
dense.

Remark 12. In the rest of this section we choose to use the “precise representative”
of ut given by ut(t) = weak-L2 limit of unt (t), which is then defined for all t ∈ [0, T ].

12



Proposition 13. Fix 0 ≤ ϕ ∈ H̃s(Ω) and let F de defined as in (21). Then, for
any t ∈ (0, T ), we have

lim
r→t−

F (r) ≤ lim
s→t+

F (s).

Proof. First of all we observe that the limits we are interested in exist because
F ∈ BV (0, T ). Fix then t ∈ (0, T ) and let 0 < r < t < s < T . For each n define rn
and sn such that r ∈ (tnrn−1, t

n
rn ] and s ∈ (tnsn−1, t

n
sn ]. If we consider the functions Fn

defined in (22) and take into account (23), one can see that

Fn(s)− Fn(r) =

∫
Ω

(unt (s)− unt (r))ϕdx =

∫
Ω

(vnsn − v
n
rn)ϕdx

=

sn∑
i=rn+1

∫
Ω

(vni − vni−1)ϕdx ≥ −2τn

sn∑
i=rn+1

|[uni , ϕ]s|

≥ −2Cτn(sn − rn)||ϕ||Hs(Rd)

for some positive constant C independent of n. Since |s − r| ≥ |tnsn−1 − tnrn | =
τn(sn − 1− rn) we can conclude

Fn(s)− Fn(r) ≥ −2C|s− r| · ||ϕ||Hs(Rd) − 2Cτn||ϕ||Hs(Rd).

Passing to the limit n→∞ we get F (s)− F (r) ≥ −2C|s− r| · ||ϕ||Hs(Rd), which in
turn implies the conclusion.

The last result tells us that the velocity ut does not present sudden changes
in regions where it is positive, accordingly with the fact that whenever we move
upwards there are no obstacles to the dynamic and ut is expected to have, at least
locally in time and space, the same regularity it has in the obstacle-free case.

We eventually switch to prove conditions 2, 3 and 4 of our definition of weak
solution, thus proving Theorem 9.

Proof of Theorem 9. Let u be the limit function obtained in Proposition 10. We
verify one by one the four conditions required in Definition 8.

(1.) The first condition is verified thanks to Proposition 10.
(2.) Existence of weak left and right derivatives u±t on [0, T ] follows from

Proposition 11: just observe that, for any fixed ϕ ∈ H̃s(Ω), the function

F (t) =

∫
Ω
ut(t)ϕdx

is BV (0, T ) and thus left and right limits of F are well defined for any t ∈ [0, T ].
This, in turn, implies condition 2. in our definition of weak solution.

(3.) For n > 0 and any test function ϕ ∈W 1,∞(0, T ;L2(Ω)) ∩ L1(0, T ; H̃s(Ω)),
with ϕ ≥ 0, sptϕ ⊂ [0, T ), we recall that∫ T

0

∫
Ω

(
unt (t)− unt (t− τn)

τn

)
ϕ(t) dxdt+

∫ T

0
[ūn(t), ϕ(t)]s dt ≥ 0.

Thanks to Proposition 10, we have∫ T

0
[ūn(t), ϕ(t)]s dt→

∫ T

0
[u(t), ϕ(t)]s dt as n→∞

13



while, on the other hand, we also have∫ T

0

∫
Ω

unt (t)− unt (t− τn)

τn
ϕ(t) dxdt =

∫ T−τn

0

∫
Ω
unt (t)

(
ϕ(t)− ϕ(t+ τn)

τn

)
dxdt

−
∫ τn

0

∫
Ω

v0

τn
ϕ(t) dxdt+

∫ T

T−τn

∫
Ω

unt (t)

τn
ϕ(t) dxdt

→
∫ T

0

∫
Ω
ut(t)(−ϕt(t)) dxdt−

∫
Ω
v0 ϕ(0) dx+ 0 as n→∞.

This proves condition 3. for weak solutions.
(4.) The fact that u(0) = u0 is a direct consequence of un(0) = u0 and of the

convergence of un to u in C0([0, T ];L2(Ω)). We are left to check the initial condition
on velocity. Suppose, without loss of generality, that the sequence un is constructed
by taking n ∈ {2m : m > 0} (each successive time grid is obtained dividing the
previous one). Fix then n and ϕ ∈ Kg, let T ∗ = mτn for 0 ≤ m ≤ n (i.e. T ∗ is a
“grid point”). Let us evaluate∫ T ∗

0

∫
Ω

unt (t)− unt (t− τn)

τn
(ϕ− ūn(t)) =

m∑
i=1

∫ tni

tni−1

∫
Ω

uni − 2uni−1 + uni−2

τ2
n

(ϕ− uni )

=

∫
Ω

m∑
i=1

uni − 2uni−1 + uni−2

τn
(ϕ− uni ) =

∫
Ω

m∑
i=1

(vni − vni−1)(ϕ− uni )

= −
∫

Ω
vn0 (ϕ− un1 ) dx+

∫
Ω
vnm(ϕ− unm) dx+ τn

m−1∑
i=1

∫
Ω
vni v

n
i−1 dx

= −
∫

Ω
v0(ϕ− un(τn)) dx+

∫
Ω
unt (T ∗)(ϕ− un(T ∗)) dx+ τn

m−1∑
i=1

∫
Ω
vni v

n
i−1 dx.

Using (19) we observe that∫ T ∗

0

∫
Ω

unt (t)− unt (t− τn)

τn
(ϕ− ūn(t)) dxdt+

∫ T ∗

0
[ūn(t), ϕ− ūn(t)]s dt ≥ 0,

which combined with the above expression and previous estimates on uni and vni
leads to

−
∫

Ω
v0(ϕ− un(τn)) dx+

∫
Ω
unt (T ∗)(ϕ− un(T ∗)) dx ≥

− τn
m−1∑
i=1

∫
Ω
vni v

n
i−1 dx− τn

m∑
i=1

[uni , ϕ− uni ]s ≥ −CT ∗ − CT ∗||ϕ||Hs(Rd).

Passing to the limit as n→∞, using un(τn)→ u(0) and unt (T ∗) ⇀ ut(T
∗) (due to

the use of the precise representative), we get

−
∫

Ω
v0(ϕ− u(0)) dx+

∫
Ω
ut(T

∗)(ϕ− u(T ∗)) dx ≥ −CT ∗ − C||ϕ||Hs(Rd)T
∗.

Taking now T ∗ → 0 along a sequence of “grid points” we have∫
Ω

(u+
t (0)− v0)(ϕ− u(0)) dx ≥ 0.
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And this completes the first part of the proof. We are left to prove the energy
inequality (18). For this, recall that from Remark 5 it follows that, for all n > 0,

||vn(t)||2L2(Ω) + [un(t)]2s ≤ ||v0||2L2(Ω) + [u0]2s for all t ∈ [0, T ].

Passing to the limit as n→∞ we immediately get (18).

We conclude this section with some remarks and observations about the solution
u obtained through the proposed semi-discrete convex minimization scheme in the
scenario s = 1. First of all we identify the weak solution u obtained above to be a
more regular solution whenever approximations un stay strictly above g.

Proposition 14 (Regions without contact). Let s = 1 and, for δ > 0, suppose there
exists an open set Aδ ⊂ Ω such that un(t, x) > g(x) + δ for a.e. (t, x) ∈ (0, T )× Ω
and for all n > 0. Then utt ∈ L∞(0, T ;H−1(Aδ)) and u satisfies (2) for all ϕ ∈
L1(0, T ;H1

0 (Aδ)).

Proof. Take ϕ ∈ H1
0 (Ω) with sptϕ ⊂ Aδ. Then, for every n and 0 ≤ i ≤ n, the

function uni + εϕ belongs to Kg for ε sufficiently small: indeed, for x ∈ Aδ, we have
uni (x) + εϕ(x) ≥ g(x) + δ + εϕ(x) ≥ g(x) for small ε, regardless of the sign of ϕ(x).
In particular, equation (20) can be written as∫

Ω

uni − 2uni−1 + uni−2

τ2
n

ϕdx+

∫
Ω
∇uni · ∇ϕdx = 0 for all ϕ ∈ H1

0 (Ω), sptϕ ⊂ Aδ.

This equality allows us to carry out the second part of the proof of Proposition 6, so
that, in the same notation, we can prove vnt (t) to be bounded in H−1(Aδ) uniformly
in t and n. Thus, v ∈W 1,∞(0, T ;H−1(Aδ)) and

vn ⇀∗ v in L∞(0, T ;L2(Aδ)) and vn ⇀∗ v in W 1,∞(0, T ;H−1(Aδ)).

Localizing everything on Aδ, we can prove vt = utt in Aδ so that

utt ∈ L∞(0, T ;H−1(Aδ)),

and equation (2) follows by passing to the limit as done in the proof of Theorem 3
(cf. [33, 11]).

Remark 15 (One dimensional case with s = 1). In the one dimensional case and
for s = 1 the analysis boils down to the problem considered by Kikuchi in [17].
In this particular situation a stronger version of Proposition 14 holds: suppose
that Ω = [0, 1], then for any ϕ ∈ C0

0([0, T ), L2(0, 1)) ∩W 1,2
0 ((0, T ) × (0, 1)) with

sptϕ ⊂ {(t, x) : u(t, x) > 0},

−
∫ T

0

∫ 1

0
utϕt dxdt+

∫ T

0

∫ 1

0
uxϕx dxdt−

∫ 1

0
v0 ϕ(0) dx = 0.

15



5 Numerical implementation and open questions

The constructive scheme presented in the previous sections can be easily used to
provide a numerical simulation of the relevant dynamic, at least in the case s = 1
where we can employ a classical finite element discretization. However, we observe
that a similar finite element approach can be extended to the fractional setting s < 1
following for example the pipeline described in [2, 1].

Minimization of energies Jni can be carried out by means of a piecewise linear
finite element approximation in space: given a triangulation Th of the domain Ω we
introduce the classical space

X1
h = {uh ∈ C0(Ω̄) : uh|K ∈ P1(K), for all K ∈ Th}.

For n > 1, 0 < i ≤ n, and given uni−1, u
n
i−2 ∈ X1

h, we optimize Jni among functions in
X1
h respecting the prescribed Dirichlet boundary conditions (which are local because

s = 1). We get this way a finite dimensional optimization problem for the degrees
of freedom of uni and we solve it by a gradient descent method combined with a
dynamic adaptation of the descend step size.

Figure 1: Time evolution of the solution till t = 1.5 (left) and space-time depiction
of the same evolution till T = 10 (right).

In the simulation in figure 1 we take Ω = (0, 2π) and u0(x) = sin(x) + 1.2, with
a constant initial velocity of −2 which pushes the string towards the obstacle g = 0.
The boundary conditions are set to be u(t, 0) = u(t, 2π) = 1.2 and the simulation
is performed up to T = 10 using a uniform grid with h = 2π/200 and a time step
τ = 1/100. We can see how the profile stops on the obstacle after impact (blue region
in the right picture of figure 1) and how the impact causes the velocity to drop to 0
and thus a loss of energy (as displayed in figure 2). As soon as the profile leaves the
obstacle the dynamic goes back to a classical wave dynamic and energy somehow
stabilizes even if, as expected, it is not fully conserved from a discrete point of view.
Due to energy dissipation at impact times, in the long run we expect the solution to
never hit the obstacle again because the residual energy will only allow the profile to
meet again the obstacle at 0 speed, i.e. without any loss of energy. Thus, also in
higher dimension, we expect the solution u obtained through the proposed scheme
to become an obstacle-free solution of the wave equation as soon as the energy of
the system drops below a certain value, preventing this way future collisions. This
can be roughly summarized in the following conjecture.
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Figure 2: Time evolution of the velocity up to t = 2 (left) and energy (right).

Conjecture 1 (Long time behavior). Let s > 0 and, given an obstacle problem in
the form of equation (17), let u be the weak solution obtained through the convex
minimization approach of Section 4.1. Then, at least for sufficiently regular obstacles
g, there exists t̄ > 0 such that E(u(t)) is constant for any t > t̄.

Alongside the previous conjecture, we observe that the solution u obtained here
seems to be, among all possible weak solutions, the one dissipating its kinetic energy
at highest rate, when colliding with the obstacle g, and so the one realizing the
“adherent” behavior we mentioned before. At the same time, from the complete
opposite perspective, one could ask if it is possible to revise the scheme so that to
obtain energy preserving approximations un, and try to use these approximations
to provide an energy preserving weak solution (maybe under suitable additional
hypothesis on the obstacle).

As already observed in the introduction, the proposed method can be extended
to the case of semi-linear wave equations of the type

utt + (−∆)su+ f(u) = 0

with f a suitable function, possibly non-smooth. For example, one can consider f to
be the (scaled) derivative of a balanced, double-well potential, e.g. f(u) = 1

ε2
(u3− u)

for ε > 0: certain solutions of that equation are intimately related to timelike
minimal hypersurfaces, i.e. with vanishing mean curvature with respect to Minkowski
space-time metric [12, 16, 5]. On the other hand, as we said in the introduction,
one could also manage adhesive type dynamics assuming f to be the (non-smooth)
derivative of a smooth potential Φ, as it is done in [9].

We eventually observe that the proposed approximations un can be constructed,
theoretically and numerically, also for a double obstacle problem, i.e. g(x) ≤ u(t, x) ≤
f(x) for a suitable lower obstacle g and upper obstacle f . However, in this new
context, the previous convergence analysis cannot be replicated because even the
basic variational characterization (20) is generally false and a more localized analysis
would be necessary. Anyhow, also in this situation one would expect the solution to
behave like an obstacle-free solution after some time, as suggested in Conjecture 1.
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