Supplementary data for the article:

Zianna, A.; Ristović, M. Š.; Psomas, G.; Hatzidimitriou, A.; Coutouli-Argyropoulou, E.; Lalia-Kantouri, M. Cadmium(II) Complexes of 5-Bromo-Salicylaldehyde and α-Diimines: Synthesis, Structure and Interaction with Calf-Thymus DNA and Albumins. *Polyhedron* **2016**, *107*, 136–147. <u>https://doi.org/10.1016/j.poly.2016.01.020</u>

Cadmium(II) complexes of 5-bromo-salicylaldehyde and α -diimines: Synthesis, structure and interaction with calf-thymus DNA and albumins

Ariadni Zianna ^a, Maja Šumar Ristović ^{a, b}, George Psomas ^a, Antonis Hatzidimitriou ^a, Evdoxia Coutouli-Argyropoulou ^c and Maria Lalia-Kantouri ^{a *}

^a Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, GREECE

^b Faculty of Chemistry, University of Belgrade, Studenski trg 12-16, Belgrade, SERBIA

^c Department of Organic Chemistry and Biochemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, GREECE

Supplementary information

S1. Interaction with CT DNA

The binding constant, K_b , can be obtained by monitoring the changes in the absorbance at the corresponding λ_{max} with increasing concentrations of CT DNA and it is given by the ratio of slope

to the y intercept in plots $\frac{[DNA]}{(\epsilon_A - \epsilon_f)}$ versus [DNA], according to the Wolfe–Shimer equation: [1]

$$\frac{[DNA]}{(\varepsilon_{A} - \varepsilon_{f})} = \frac{[DNA]}{(\varepsilon_{b} - \varepsilon_{f})} + \frac{1}{K_{b}(\varepsilon_{b} - \varepsilon_{f})}$$
(eq. S1)

where [DNA] is the concentration of DNA in base pairs, $\varepsilon_A = A_{obsd}$ /[compound], ε_f = the extinction coefficient for the free compound and ε_b = the extinction coefficient for the compound in the fully bound form.

S2. Competitive studies with EB

The Stern–Volmer constant K_{SV} is used to evaluate the quenching efficiency for each compound according to the Stern–Volmer equation:

$$\frac{10}{1} = 1 + K_{SV}[Q] \qquad (eq. S2)$$

where Io and I are the emission intensities in the absence and the presence of the quencher, respectively, [Q] is the concentration of the quencher (i.e. complexes 1–5); K_{SV} is obtained from the Stern–Volmer plots by the slope of the diagram $\frac{Io}{I}$ vs [Q].

^{*} Corresponding author. Tel./fax: +30 2310 997844, E-mail address: lalia@chem.auth.gr

S3. Interaction with serum albumins

The extent of the inner-filter effect can be roughly estimated with the following formula:

$$\mathbf{I}_{\rm corr} = \mathbf{I}_{\rm meas} \times 10^{\frac{\epsilon(\lambda_{\rm exc})cd}{2}} \times 10^{\frac{\epsilon(\lambda_{\rm em})cd}{2}}$$
(eq. S3)

where I_{corr} = corrected intensity, I_{meas} = the measured intensity, c = the concentration of the quencher, d = the cuvette (1 cm), $\epsilon(\lambda_{exc})$ and $\epsilon(\lambda_{em})$ = the ϵ of the quencher at the excitation and the emission wavelength, respectively, as calculated from the UV–Vis spectra of the complexes [2].

The Stern–Volmer and Scatchard graphs are used in order to study the interaction of a quencher with serum albumins. According to Stern–Volmer quenching equation: ³

$$\frac{lo}{l} = 1 + k_q \tau_0[Q] = 1 + K_{SV}[Q]$$
(eq. S4),

where Io = the initial tryptophan fluorescence intensity of SA, I = the tryptophan fluorescence intensity of SA after the addition of the quencher, k_q = the quenching rate constants of SA, K_{SV} = the dynamic quenching constant, τ_o = the average lifetime of SA without the quencher, [Q] = the concentration of the quencher, the dynamic quenching constant (K_{SV} , M^{-1}) can be obtained by the slope of the diagram $\frac{Io}{I}$ vs [Q]. From the equation:

$$\mathbf{K}_{SV} = \mathbf{k}_{q} \boldsymbol{\tau}_{o} \tag{eq. S5}$$

and taking $\tau_o = 10^{-8}$ s as fluorescence lifetime of tryptophan in SA, the approximate quenching constant (k_q, $M^{-1}s^{-1}$) is calculated.

From the Scatchard equation: [3]

AT /

$$\frac{\Delta I}{[Q]} = nK - K \frac{\Delta I}{I_0}$$
 (eq. S6)

where n is the number of binding sites per albumin and K is the association binding constant, K (in

 M^{-1}) is calculated from the slope in plots $\frac{\Delta I}{[Q]}$ versus $\frac{\Delta I}{I_0}$ and n is given by the ratio of y intercept to the slope [3].

References

- [1] A. Wolfe, G. Shimer and T. Meehan, *Biochemistry*, 1987, **26**, 6392–6396.
- [2] L. Stella, A.L. Capodilupo and M. Bietti, *Chem. Commun.*, 2008, 4744–4746.
- [3] Y. Wang, H. Zhang, G. Zhang, W. Tao and S. Tang, J. Luminescence, 2007, 126, 211–218.

Compound	Ksv (M ⁻¹)	$k_q (M^{-1} s^{-1})$	K (M ⁻¹)	n
[Cd(5–Br–salo) ₂ (CH ₃ OH)] ₂ , (1)	$1.47(\pm 0.12) \times 10^4$	$1.47(\pm 0.12) \times 10^{12}$	$1.06(\pm 0.08) \times 10^5$	0.35
$[Cd(5-Br-salo)_2(bipy)]_2,(2)$	$4.11(\pm 0.26) \times 10^4$	4.11(±0.26)×10 ¹²	$1.74(\pm 0.15) \times 10^5$	0.60
$[Cd(5-Br-salo)_2(phen)]_{2,}(3)$	$9.72(\pm 0.29) \times 10^4$	$9.72(\pm 0.29) \times 10^{12}$	$1.60(\pm 0.07) \times 10^5$	0.86
$[Cd(5-Br-salo)(neoc)(NO_3)]_{2,}(4)$	$1.03(\pm 0.46) \times 10^5$	1.03(±0.46)×10 ¹³	$1.35(\pm 0.12) \times 10^5$	0.90
[Cd(5–Br–salo) ₂ (dpamH)], (5)	$5.40(\pm 0.21) \times 10^4$	$5.40(\pm 0.21) \times 10^{12}$	9.10(±0.43)×10 ⁴	0.79

Table S1. The HSA constants derived for complexes 1–5.

 Table S2. The BSA constants derived for complexes 1–5.

Compound	Ksv (M ⁻¹)	$k_q (M^{-1} s^{-1})$	K (M ⁻¹)	n
[Cd(5–Br–salo) ₂ (CH ₃ OH)] ₂ , (1)	$3.40(\pm 0.21) \times 10^4$	$3.40(\pm 0.21) \times 10^{12}$	$4.07(\pm 0.32) \times 10^4$	1.00
[Cd(5–Br–salo) ₂ (bipy)] ₂ ,(2)	$8.82(\pm 0.35) \times 10^4$	$8.82(\pm 0.35) \times 10^{12}$	$5.85(\pm 0.35) \times 10^4$	1.23
$[Cd(5-Br-salo)_2(phen)]_{2,}(3)$	$6.16(\pm 0.34) \times 10^5$	6.16(±0.34)×10 ¹³	$2.42(\pm 0.12) \times 10^5$	1.13
$[Cd(5-Br-salo)(neoc)(NO_3)]_{2,}(4)$	$2.46(\pm 0.13) \times 10^5$	$2.46(\pm 0.13) \times 10^{13}$	$1.17(\pm 0.09) \times 10^5$	1.29
[Cd(5–Br–salo) ₂ (dpamH)], (5)	$9.37(\pm 0.29) \times 10^4$	9.37(±0.29)×10 ¹²	$1.10(\pm 0.06) \times 10^5$	0.94

Figure S1. Hydrogen bonds between two adjacent molecules in (**5**) (symmetry 1-x, 1-y, 1-z). Cd atoms are in yellow, O atoms in red, N atoms in light blue, Br atoms in orange, C atoms in grey and H atoms in white.

Figure S2. (A) – (E) Plot of $\frac{[DNA]}{(\epsilon_A - \epsilon_f)}$ vs [DNA] for complexes **1–5**, respectively.

Figure S3. (A) – (E) Stern–Volmer quenching plot of EB bound to CT DNA for complexes 1-5, respectively.

Figure S4. (A) – (E) Stern–Volmer quenching plot of BSA for complexes 1–5, respectively.

Figure S5. (A) – (E) Stern–Volmer quenching plot of HSA for complexes 1–5, respectively.

Figure S6. (A) – (E) Scatchard plot of BSA for complexes 1–5, respectively.

Figure S7. (A) – (E) Scatchard plot of HSA for complexes 1–5, respectively.