Supplementary data for the article:

Zianna, A.; Ristović, M. Š.; Psomas, G.; Hatzidimitriou, A.; Coutouli-Argyropoulou, E.; Lalia-Kantouri, M. Cadmium(II) Complexes of 5-Bromo-Salicylaldehyde and α-Diimines: Synthesis, Structure and Interaction with Calf-Thymus DNA and Albumins. Polyhedron 2016, 107, 136-147. https://doi.org/10.1016/j.poly.2016.01.020

Cadmium(II) complexes of $\mathbf{5}$-bromo-salicylaldehyde and α-diimines: Synthesis, structure and interaction with calf-thymus DNA and albumins

Ariadni Zianna ${ }^{\text {a }}$, Maja Šumar Ristović ${ }^{\text {a, }}{ }^{\text {b }}$, George Psomas ${ }^{\text {a }}$, Antonis Hatzidimitriou ${ }^{\text {a }}$, Evdoxia Coutouli-Argyropoulou ${ }^{c}$ and Maria Lalia-Kantouri ${ }^{\text {a * }}$

${ }^{a}$ Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, GREECE
${ }^{b}$ Faculty of Chemistry, University of Belgrade, Studenski trg 12-16, Belgrade, SERBIA
${ }^{c}$ Department of Organic Chemistry and Biochemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, GREECE

Supplementary information

S1. Interaction with CT DNA

The binding constant, K_{b}, can be obtained by monitoring the changes in the absorbance at the corresponding $\lambda_{\max }$ with increasing concentrations of CT DNA and it is given by the ratio of slope to the y intercept in plots $\frac{[D N A]}{\left(\varepsilon_{\mathrm{A}}-\varepsilon_{\mathrm{f}}\right)}$ versus [DNA], according to the Wolfe-Shimer equation: [1]

$$
\begin{equation*}
\frac{[D N A]}{\left(\varepsilon_{\mathrm{A}}-\varepsilon_{\mathrm{f}}\right)}=\frac{[\mathrm{DNA}]}{\left(\varepsilon_{\mathrm{b}}-\varepsilon_{\mathrm{f}}\right)}+\frac{1}{\mathrm{~K}_{\mathrm{b}}\left(\varepsilon_{\mathrm{b}}-\varepsilon_{\mathrm{f}}\right)} \tag{eq.S1}
\end{equation*}
$$

where [DNA] is the concentration of DNA in base pairs, $\varepsilon_{\mathrm{A}}=\mathrm{A}_{\mathrm{obsd}} /[$ compound $], \varepsilon_{\mathrm{f}}=$ the extinction coefficient for the free compound and $\varepsilon_{b}=$ the extinction coefficient for the compound in the fully bound form.

S2. Competitive studies with EB

The Stern-Volmer constant K_{SV} is used to evaluate the quenching efficiency for each compound according to the Stern-Volmer equation:

$$
\begin{equation*}
\frac{\text { Io }}{\mathrm{I}}=1+\mathrm{K}_{\mathrm{sv}}[\mathrm{Q}] \tag{eq.S2}
\end{equation*}
$$

where Io and I are the emission intensities in the absence and the presence of the quencher, respectively, [Q] is the concentration of the quencher (i.e. complexes $\mathbf{1 - 5}$); K_{SV} is obtained from the Stern-Volmer plots by the slope of the diagram $\frac{\mathrm{Io}}{\mathrm{I}}$ vs [Q].

[^0]
S3. Interaction with serum albumins

The extent of the inner-filter effect can be roughly estimated with the following formula:

$$
\begin{equation*}
I_{\text {corr }}=I_{\text {meas }} \times 10^{\frac{\varepsilon\left(\lambda_{\text {ece }}\right) c d}{2}} \times 10^{\frac{\varepsilon\left(\lambda_{\text {en }}\right) \text { cd }}{2}} \tag{eq.S3}
\end{equation*}
$$

where $\mathrm{I}_{\text {corr }}=$ corrected intensity, $\mathrm{I}_{\text {meas }}=$ the measured intensity, $\mathrm{c}=$ the concentration of the quencher, $\mathrm{d}=$ the cuvette $(1 \mathrm{~cm}), \varepsilon\left(\lambda_{\text {exc }}\right)$ and $\varepsilon\left(\lambda_{\text {em }}\right)=$ the ε of the quencher at the excitation and the emission wavelength, respectively, as calculated from the UV-Vis spectra of the complexes [2].

The Stern-Volmer and Scatchard graphs are used in order to study the interaction of a quencher with serum albumins. According to Stern-Volmer quenching equation: ${ }^{3}$

$$
\begin{equation*}
\frac{\mathrm{Io}}{\mathrm{I}}=1+\mathrm{k}_{\mathrm{q}} \tau_{0}[\mathrm{Q}]=1+\mathrm{K}_{\mathrm{sv}}[\mathrm{Q}] \tag{eq.S4}
\end{equation*}
$$

where $\mathrm{Io}=$ the initial tryptophan fluorescence intensity of SA, $\mathrm{I}=$ the tryptophan fluorescence intensity of SA after the addition of the quencher, $\mathrm{k}_{\mathrm{q}}=$ the quenching rate constants of $\mathrm{SA}, \mathrm{K}_{\text {SV }}=$ the dynamic quenching constant, $\tau_{0}=$ the average lifetime of SA without the quencher, $[\mathrm{Q}]=$ the concentration of the quencher, the dynamic quenching constant $\left(\mathrm{K}_{\mathrm{SV}}, \mathrm{M}^{-1}\right)$ can be obtained by the slope of the diagram $\frac{\text { Io }}{\mathrm{I}}$ vs $[Q]$. From the equation:

$$
\begin{equation*}
\mathrm{K}_{\mathrm{SV}}=\mathrm{k}_{\mathrm{q}} \tau_{\mathrm{o}} \tag{eq.S5}
\end{equation*}
$$

and taking $\tau_{0}=10^{-8} \mathrm{~s}$ as fluorescence lifetime of tryptophan in SA, the approximate quenching constant $\left(\mathrm{k}_{\mathrm{q}}, \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ is calculated.

From the Scatchard equation: [3]

$$
\begin{equation*}
\frac{\Delta \mathrm{I} / \mathrm{IO}}{[\mathrm{Q}]}=\mathrm{nK}-\mathrm{K} \frac{\Delta \mathrm{I}}{\mathrm{Io}} \tag{eq.S6}
\end{equation*}
$$

where n is the number of binding sites per albumin and K is the association binding constant, K (in M^{-1}) is calculated from the slope in plots $\frac{\Delta \mathrm{I} / \mathrm{Io}}{[\mathrm{Q}]}$ versus $\frac{\Delta \mathrm{I}}{\text { Io }}$ and n is given by the ratio of y intercept to the slope [3].

References

[1] A. Wolfe, G. Shimer and T. Meehan, Biochemistry, 1987, 26, 6392-6396.
[2] L. Stella, A.L. Capodilupo and M. Bietti, Chem. Commun., 2008, 4744-4746.
[3] Y. Wang, H. Zhang, G. Zhang, W. Tao and S. Tang, J. Luminescence, 2007, 126, 211-218.

Table S1. The HSA constants derived for complexes 1-5.

Compound	$\mathbf{K s v}\left(\mathbf{M}^{-1}\right)$	$\mathbf{k}_{\mathbf{q}}\left(\mathbf{M}^{-1} \mathbf{s}^{-1}\right)$	$\mathbf{K}\left(\mathbf{M}^{-1}\right)$	\mathbf{n}
$\left[\mathrm{Cd}(5-\mathrm{Br}-\text { salo })_{2}\left(\mathrm{CH} \mathrm{H}_{3} \mathrm{OH}\right)\right]_{2},(\mathbf{1})$	$1.47(\pm 0.12) \times 10^{4}$	$1.47(\pm 0.12) \times 10^{12}$	$1.06(\pm 0.08) \times 10^{5}$	0.35
$\left[\mathrm{Cd}(5-\mathrm{Br}-\text { salo })_{2}(\text { bipy })\right]_{2},(\mathbf{2})$	$4.11(\pm 0.26) \times 10^{4}$	$4.11(\pm 0.26) \times 10^{12}$	$1.74(\pm 0.15) \times 10^{5}$	0.60
$\left[\mathrm{Cd}(5-\mathrm{Br}-\text { salo })_{2}(\text { phen })\right]_{2,(}(\mathbf{3})$	$9.72(\pm 0.29) \times 10^{4}$	$9.72(\pm 0.29) \times 10^{12}$	$1.60(\pm 0.07) \times 10^{5}$	0.86
$\left[\mathrm{Cd}(5-\mathrm{Br}-\text { salo })(\text { neoc })\left(\mathrm{NO}_{3}\right)\right]_{2,(}(\mathbf{4})$	$1.03(\pm 0.46) \times 10^{5}$	$1.03(\pm 0.46) \times 10^{13}$	$1.35(\pm 0.12) \times 10^{5}$	0.90
$\left[\mathrm{Cd}(5-\mathrm{Br}-\text { salo })_{2}(\right.$ dpamH $\left.)\right],(\mathbf{5})$	$5.40(\pm 0.21) \times 10^{4}$	$5.40(\pm 0.21) \times 10^{12}$	$9.10(\pm 0.43) \times 10^{4}$	0.79

Table S2. The BSA constants derived for complexes 1-5.

Compound	$\mathbf{K s v}\left(\mathbf{M}^{-1}\right)$	$\mathbf{k}_{\mathbf{q}}\left(\mathbf{M}^{-1} \mathbf{s}^{-1}\right)$	$\mathbf{K}\left(\mathbf{M}^{-1}\right)$	\mathbf{n}
$\left[\mathrm{Cd}(5-\mathrm{Br}-\text { salo })_{2}\left(\mathrm{CH} \mathrm{H}_{3} \mathrm{OH}\right)\right]_{2},(\mathbf{1})$	$3.40(\pm 0.21) \times 10^{4}$	$3.40(\pm 0.21) \times 10^{12}$	$4.07(\pm 0.32) \times 10^{4}$	1.00
$\left[\mathrm{Cd}(5-\mathrm{Br}-\text { salo })_{2}(\text { bipy })\right]_{2},(\mathbf{2})$	$8.82(\pm 0.35) \times 10^{4}$	$8.82(\pm 0.35) \times 10^{12}$	$5.85(\pm 0.35) \times 10^{4}$	1.23
$\left[\mathrm{Cd}(5-\mathrm{Br}-\text { salo })_{2}(\text { phen })\right]_{2,(}(\mathbf{3})$	$6.16(\pm 0.34) \times 10^{5}$	$6.16(\pm 0.34) \times 10^{13}$	$2.42(\pm 0.12) \times 10^{5}$	1.13
$\left[\mathrm{Cd}(5-\mathrm{Br}-\text { salo })(\text { neoc })\left(\mathrm{NO}_{3}\right)\right]_{2,(}(\mathbf{4})$	$2.46(\pm 0.13) \times 10^{5}$	$2.46(\pm 0.13) \times 10^{13}$	$1.17(\pm 0.09) \times 10^{5}$	1.29
$\left[\mathrm{Cd}(5-\mathrm{Br}-\text { salo })_{2}(\right.$ dpamH $\left.)\right],(\mathbf{5})$	$9.37(\pm 0.29) \times 10^{4}$	$9.37(\pm 0.29) \times 10^{12}$	$1.10(\pm 0.06) \times 10^{5}$	0.94

Figure S1. Hydrogen bonds between two adjacent molecules in (5) (symmetry 1-x, 1-y, 1-z). Cd atoms are in yellow, O atoms in red, N atoms in light blue, Br atoms in orange, C atoms in grey and H atoms in white.

Figure S2. (A) - (E) Plot of $\frac{[D N A]}{\left(\varepsilon_{A}-\varepsilon_{f}\right)}$ vs [DNA] for complexes $\mathbf{1}-\mathbf{5}$, respectively.

Figure S3. (A) - (E) Stern-Volmer quenching plot of EB bound to CT DNA for complexes 1-5, respectively.

Figure S4. (A) - (E) Stern-Volmer quenching plot of BSA for complexes 1-5, respectively.

Figure S5. (A) - (E) Stern-Volmer quenching plot of HSA for complexes $\mathbf{1 - 5}$, respectively.

Figure S6. (A) - (E) Scatchard plot of BSA for complexes 1-5, respectively.

Figure S7. (A) - (E) Scatchard plot of HSA for complexes 1-5, respectively.

[^0]: * Corresponding author. Tel./fax: +30 2310 997844, E-mail address: lalia@chem.auth.gr

