Supplementary data for article:
Peschel, L. M.; Holzer, C.; Mihajlovic-Lalic, L.; Belaj, F.; Mösch-Zanetti, N. C. Coordinative Flexibility of a Thiophenolate Oxazoline Ligand in Nickel(II), Palladium(II), and Platinum(II) Complexes. European Journal of Inorganic Chemistry 2015, 2015 (9), 1569-1578. https://doi.org/10.1002/ejic. 201403108

SUPPORTING INFORMATION

DOI: 10.1002/ejic. 201403108
Title: Coordinative Flexibility of a Thiophenolate Oxazoline Ligand in Nickel(II), Palladium(II), and Platinum(II) Complexes
Author(s): Lydia M. Peschel, Christof Holzer, Ljiljana Mihajlović-Lalić, Ferdinand Belaj, Nadia C. Mösch-Zanetti*

This supporting information contains further details on the calculation of the number of unpaired electrons of 2 and the X-ray structure determinations of all compounds (1a,1b, 2, $\mathbf{3 a}, \mathbf{3 b}, 4,5$). In addition, compounds $\mathbf{3 a}, \mathbf{3 b}$ and 5 were found to crystallize in a second conformation. Crystallographic data of these structure determinations are described.
Calculation of the number of unpaired electrons 2
Crystallographic Data and Structure Refinement Details 3
[Pt(S-Phoz) ${ }_{2}$] (1a) 6
[Pd(S-Phoz) ${ }_{2}$] (1b) 6
[$\mathrm{Ni}(\mathrm{S}-\mathrm{Phoz})_{2}$] (2) 7
[Pt(k $\left.\left.{ }^{2}-S-P h o z\right)\left(\kappa^{1}-S-P h o z\right)\left(\mathrm{PPh}_{3}\right)\right]$ (3a)- Modification A 8
$\left[P t\left(\kappa^{2}-S-P h o z\right)\left(\kappa^{1}-S-P h o z\right)\left(\mathrm{PPh}_{3}\right)\right]$ (3a)- Modification B 8
$\left[P d\left(\kappa^{2}-S-P h o z\right)\left(\kappa^{1}-S-P h o z\right)\left(\mathrm{PPh}_{3}\right)\right](3 b)-$ Modification A 9
$\left[P d\left(\kappa^{2}-S-P h o z\right)\left(\kappa^{1}-S-P h o z\right)\left(\mathrm{PPh}_{3}\right)\right](3 b)-$ Modification B 10
[\{PdCl(S-Phoz) $\left.\}_{2}\right]$ (4) 11
$\left[\mathrm{PdCl}(\mathrm{S}-\mathrm{Phoz})\left(\mathrm{PPh}_{3}\right)\right]$ (5) 12
$\left[\mathrm{PdCl}(\mathrm{S}-\mathrm{Phoz})\left(\mathrm{PPh}_{3}\right)\right] \cdot \mathrm{ACN}(5)$ 12

Calculation of the number of unpaired electrons

The balance was calibrated against $\left[\mathrm{HgCo}(\mathrm{SCN})_{4}\right]$ and the volume susceptibility χ^{\vee} of the sample was measured. From χ^{V} and the density of the solid the mass susceptibility χ_{g} can be calculated according to Equation 1. The the molar susceptibility χ_{m} in SI units is calculated from χ_{g} and the molecular weight of the sample using Equation 2. The molar susceptibility χ_{m} could then be corrected from all diamagnetic contributions using Equation 3. With the corrected molar susceptibility $\chi_{\text {corr }}$ the effective magnetic moment $\mu_{\text {eff }}$ can be obtained using Equation 4, which can then be simplified according to Equation 5. From the effective magnetic moment $\mu_{\text {eff }}$ the number of unpaired electrons n is finally obtained via Equation 6.
Three measurements were performed and their mean value is presented in the publication.

$$
\begin{array}{ll}
\chi_{\mathrm{g}}=\frac{\chi_{\mathrm{v}}}{d} & \text { Equation } 1 . \\
\chi_{\mathrm{m}}=\chi_{\mathrm{g}} \cdot M_{w} \cdot \frac{4 \pi}{1 \cdot 10^{6}} & \text { Equation } 2 . \\
\chi_{\text {corr }}=\chi_{\mathrm{m}}-\chi_{\text {dia }} \frac{4 \pi}{1 \cdot 10^{6}} & \text { Equation } 3 . \\
\mu_{\text {eff }}=\sqrt{\frac{3 k}{N_{A} \cdot \mu 0 \cdot \mu^{2}} \cdot \sqrt{\chi_{\text {corr }} \cdot T}} \frac{4 \pi}{1 \cdot 10^{6}} & \text { Equation } 4 . \\
\mu_{\text {eff }}=797.5 \cdot \sqrt{\chi_{\text {corr }} \cdot T} \frac{4 \pi}{1 \cdot 10^{6}} & \text { Equation 5. } \\
n=\sqrt{\mu_{\text {eff }}^{2}+1}-1 \frac{4 \pi}{1 \cdot 10^{6}} & \text { Equation 6. }
\end{array}
$$

Crystallographic Data and Structure Refinement Details

Table S1. Crystallographic Data and Structure Refinement for Complexes trans-[Pt(S-Phoz) $\left.{ }_{2}\right]$ (1a), trans-$\left[\mathrm{Pd}(\mathrm{S}-\mathrm{Phoz})_{2}\right](1 \mathbf{b})$ and $\left[\mathrm{Ni}(\mathrm{S}-\mathrm{Phoz})_{2}\right](\mathbf{2})$.

	1a	1 b	2
Empirical formula	$\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PtS} 2$	$\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PdS}_{2}$	$\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NiO}_{2} \mathrm{~S}_{2}$
Formula weight	607.64	518.95	471.26
Crystal description	block, yellow	needle, orange	plate, black
Crystal size	$0.27 \times 0.17 \times 0.12 \mathrm{~mm}$	$0.28 \times 0.07 \times 0.06 \mathrm{~mm}$	$0.32 \times 0.28 \times 0.06 \mathrm{~mm}$
Crystal system, space group	monoclinic, $\mathrm{P} 2_{1} / \mathrm{n}$	monoclinic, $\mathrm{P} 2_{1} / \mathrm{n}$	orthorhombic, P b c a
Unit cell dimensions	$a=18.2384(7) \AA$	$a=9.6915(5) \AA$	$a=9.4137(4) \AA$
	$b=11.0364(4) \AA$	$b=10.9547(5) \AA$	$\mathrm{b}=20.0986$ (9) \AA
	$\mathrm{c}=22.0408(8) \AA$	$c=20.6209(10) \AA$	$\mathrm{c}=22.8459(9) \AA$
	$\beta=106.8150(10)^{\circ}$	$\beta=90.443(2)^{\circ}$	
Volume	4246.8(3) A 3	2189.20(18) A 3	4322.5(3) A 3
Z	8	4	8
Calculated density	$1.901 \mathrm{Mg} / \mathrm{m}^{3}$	$1.575 \mathrm{Mg} / \mathrm{m}^{3}$	$1.448 \mathrm{Mg} / \mathrm{m}^{3}$
F(000)	2368	1056	1968
Linear absorption coefficient μ	$6.826 \mathrm{~mm}^{-1}$	$1.059 \mathrm{~mm}^{-1}$	$1.112 \mathrm{~mm}^{-1}$
Max. and min. transmission	0.7461 and 0.3697	1.0000 and 0.7760	0.9657 and 0.8183
Θ range for data collection	2.18 to 30.00°	2.32 to 27.00°	2.21 to 30.00°
Index ranges	-25 $\leq \mathrm{h} \leq 20,-15 \leq \mathrm{k} \leq 14,-29$	$-12 \leq h \leq 11,-13 \leq k \leq 13,-20$	$-13 \leq h \leq 13,-25 \leq k \leq 28,-32$
	$\leq \mathrm{l} \leq 31$	$\leq \mathrm{l} \leq 26$	$\leq \mathrm{l} \leq 26$
Reflections collected/ unique	35116/ 12365	13570/4757	74158/6302
Significant unique reflections	10781 with I > 2\%(I)	4361 with I > 2\%(l)	5565 with I > 2σ (I$)$
R(int), R(sigma)	0.0308, 0.0335	0.0352, 0.0401	0.0276, 0.0128
Completeness to $\Theta=30.0^{\circ}$	99.9\%	99.5\%	100.0\%
Data/ parameters/ restraints	12365/547/ 0	4757/303/ 43	6302/274/ 0
Goodness-of-fit on F^{2}	1.094	1.168	1.074
Final R indices [$1>2 \sigma(1)$]	$R 1=0.0382, w R 2=0.0894$	$R 1=0.0502, w R 2=0.1070$	$R 1=0.0228, w R 2=0.0609$
R indices (all data)	$\mathrm{R} 1=0.0470, w R 2=0.0931$	$\mathrm{R} 1=0.0562, \mathrm{wR} 2=0.1099$	$\mathrm{R} 1=0.0292, \mathrm{wR} 2=0.0654$
Weighting scheme	$\begin{aligned} & w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(a P)^{2}+b P\right] \\ & \text { where } P=\left(F_{0}^{2}+2 F_{c}^{2}\right) / 3 \end{aligned}$	$\begin{aligned} & \mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{0}^{2}\right)+(\mathrm{aP})^{2}+\mathrm{bP}\right] \\ & \text { where } \mathrm{P}=\left(\mathrm{F}_{0}^{2}+2 \mathrm{~F}_{\mathrm{c}}^{2}\right) / 3 \end{aligned}$	$\begin{aligned} & \mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{0}^{2}\right)+(a P)^{2}+\mathrm{bP}\right] \\ & \text { where } \mathrm{P}=\left(\mathrm{F}_{0}^{2}+2 \mathrm{~F}_{\mathrm{c}}^{2}\right) / 3 \end{aligned}$
Largest difference peak and hole	6.745 and -2.509e/ ${ }^{3}$	1.427 and -1.012e/Ă ${ }^{3}$	0.438 and -0.237e/Ă ${ }^{3}$
CCDC deposition number	1015350	1015351	1015352

Table S2. Crystallographic Data and Structure Refinement Details for $\left[\mathrm{Pt}\left(\eta^{2}-S-P h o z\right)\left(\eta^{1}-S-\operatorname{Phoz}\right)\left(\mathrm{PPh}_{3}\right)\right]$ (3a) and $\left[\mathrm{Pd}\left(\mathrm{\eta}^{2}-\mathrm{S}-\mathrm{Phoz}\right)\left(\eta^{1}-\mathrm{S}-\mathrm{Phoz}\right)\left(\mathrm{PPh}_{3}\right)\right]$ (3b).

	3a		3b		
Empirical formula	$\mathrm{C}_{40} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PPtS} 2$		$\mathrm{C}_{40} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PPdS}_{2}$		
Formula weight	869.91		781.22		
Crystal description	block, orange		block, red		
Crystal size	$0.33 \times 0.31 \times 0.28 \mathrm{~mm}$		$0.26 \times 0.21 \times 0.16 \mathrm{~mm}$		
Crystal system, space group	monoclinic, $\mathrm{P} 2_{1} / \mathrm{n}$		monoclinic, $\mathrm{P} 2_{1} / \mathrm{n}$		
Unit cell dimensions:	$\mathrm{a}=19.1704$ (9) A		$a=19.1853(6) A$ A		
	$b=8.6867(4) \AA$		$\mathrm{b}=8.6988$ (3) A		
	$\mathrm{c}=22.8310$ (11) A		$\mathrm{c}=22.8924(8) \mathrm{A}$		
	$\beta=111.3460(10)^{\circ}$		$\beta=111.5480(10)^{\circ}$		
Volume	3541.2(3) \AA^{3}		3553.5(2) \AA^{3}		
Z	4		4		
Calculated density	$1.632 \mathrm{Mg} / \mathrm{m}^{3}$		$1.460 \mathrm{Mg} / \mathrm{m}^{3}$		
F(000)	1736		1608		
Linear absorption coefficient μ	$4.164 \mathrm{~mm}^{-1}$		$0.723 \mathrm{~mm}^{-1}$		
Max. and min. transmission	0.2611 and 0.1571		0.7461 and 0.5794		
Θ range for data collection	2.53 to 30.00°		2.38 to 30.00°		
Index ranges	$-26 \leq h \leq 25,-12 \leq \mathrm{k} \leq 10,-30 \leq \mathrm{l} \leq 32$		$-26 \leq h \leq 26,-9 \leq \mathrm{k} \leq 12,-16 \leq \mathrm{l} \leq 32$		
Reflections collected/ unique	53067/ 10337		25656/10368		
Significant unique reflections	9350 with $\mathrm{I}>2 \sigma(\mathrm{l})$		8853 with $\mathrm{I}>2 \sigma(\mathrm{l})$		
R (int), R(sigma)	0.0359, 0.0271		0.0299, 0.0385		
Completeness to $\Theta=30.0^{\circ}$	99.9\%		99.9\%		
Data/ parameters/ restraints	10337/448/ 0		10368/448/ 0		
Goodness-of-fit on F^{2}	1.038		1.035		
Final R indices [$1>2 \sigma(1)$]	$R 1=0.0200, w R 2=0.0445$		$\mathrm{R} 1=0.0281, w R 2=0.0721$		
R indices (all data)	$R 1=0.0237, w R 2=0.0453$		$R 1=0.0354, w R 2=0.0753$		
Weighting scheme	$\begin{aligned} & \mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{0}^{2}\right)+(\mathrm{aP})^{2}+\mathrm{bP}\right] \quad \text { where } \\ & \left(\mathrm{F}_{0}^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3 \end{aligned}$	$P=$	$\begin{aligned} & \mathrm{w}=1 /[\sigma 2(\mathrm{Fo} 2)+(\mathrm{aP}) 2+\mathrm{bP}] \quad \text { where } \\ & (\text { Fo2 } 2+2 \mathrm{Fc} 2) / 3 \end{aligned}$	P	$=$
Largest difference peak and hole	1.190 and -1.325e/Ă ${ }^{3}$		0.927 and -0.916e/Ă ${ }^{3}$		
CCDC deposition number	1015354		1015356		

Table S3. Crystallographic Data and Structure Refinement Details for [\{PdCl(S-Phoz) $\left.\}_{2}\right]$ (4) and $[\mathrm{PdCl}(\mathrm{S}-$ Phoz) $\left.\left(\mathrm{PPh}_{3}\right)\right]$ (5).

Figure S 1. Stereoscopic ORTEP plot of 1a showing the atomic numbering scheme. The probability ellipsoids are drawn at the 50% probability level. The H atoms were omitted for clarity reasons.

The non-hydrogen atoms were refined with anisotropic displacement parameters without any constraints. The H atoms of the CH_{2} groups were refined with common isotropic displacement parameters for the H atoms of the same group and idealized geometry with approximately tetrahedral angles and $\mathrm{C}-\mathrm{H}$ distances of $0.99 \AA \AA$. The H atoms of the phenyl rings were put at the external bisectors of the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles at $\mathrm{C}-\mathrm{H}$ distances of $0.95 \AA$ and common isotropic displacement parameters were refined for the H atoms of the same phenyl group. The H atoms of the methyl groups were refined with common isotropic displacement parameters for the H atoms of the same group and idealized geometries with tetrahedral angles, enabling rotation around the $\mathrm{C}-\mathrm{C}$ bond, and $\mathrm{C}-\mathrm{H}$ distances of $0.98 \AA$.

Figure S 2. View of 1a showing the acute angle between the two planes spanned by the ligands.
[Pd(S-Phoz) ${ }_{2}$ (1b)

Figure S 3. Stereoscopic ORTEP plot of 1b showing the atomic numbering scheme. The probability ellipsoids are drawn at the 50% probability level. The H atoms were omitted for clarity reasons. The disordered 1,3-oxazole ring was plotted with full, open, and dashed bonds for the parts with site occupation factors of $0.4066(3), \quad 0.3625(10), \quad$ and $\quad 0.2309(11)$, respectively.

Since racemic twinning was detected a twin matrix ($-100 / 0-10 / 00-1$) was applied and a scale factor was refined [0.2182(11)] between the two unequal components lowering the R factor from 0.156 to 0.050 . One of the 1,3 -oxazole rings was disordered over three orientations and refined with site occupation factors of $0.4066(3), 0.3625(10)$, and $0.2309(11)$, respectively. The equivalent bonds in these fragments were restrained to have the same lengths and the same anisotropic displacement parameters were used for equivalent atoms. The disordered atoms were restrained to have similar U_{ij} components. The other nonhydrogen atoms were refined with anisotropic displacement parameters without any constraints. The H atoms of the phenyl rings were put at the external bisectors of the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles at $\mathrm{C}-\mathrm{H}$ distances of $0.95 \AA$ and common isotropic displacement parameters were refined for the H atoms of the same phenyl group. The H atoms of the ordered CH_{2} group were refined with a common isotropic displacement parameter and an idealized geometry with approximately tetrahedral angles and C-H distances of $0.99 \AA$. The H atoms of the disordered CH_{2} group were included at calculated positions with their isotropic displacement parameters
fixed to 1.2 times $U_{\text {eq }}$ of the C atom they are bonded to. The H atoms of the ordered methyl groups were refined with common isotropic displacement parameters for the H atoms of the same group and idealized geometries with tetrahedral angles, enabling rotation around the $\mathrm{C}-\mathrm{C}$ bond, and $\mathrm{C}-\mathrm{H}$ distances of $0.98 \AA$. The H atoms of the disordered methyl groups were included with idealized geometries with tetrahedral angles, staggered conformations, and $\mathrm{C}-\mathrm{H}$ distances of $0.98 \AA$ with their isotropic displacement parameters fixed to 1.3 times $U_{\text {eq }}$ of the C atom they are bonded to
$\left[\mathrm{Ni}(\mathrm{S}-\mathrm{Phoz})_{2}\right]$ (2)

Figure S 4. Stereoscopic ORTEP plot of 2 showing the atomic numbering scheme. The probability ellipsoids are drawn at the 50% probability level. The H atoms are drawn with arbitrary radii.
The non-hydrogen atoms were refined with anisotropic displacement parameters without any constraints. The H atoms of the CH_{2} groups were refined with common isotropic displacement parameters for the H atoms of the same group and idealized geometry with approximately tetrahedral angles and $\mathrm{C}-\mathrm{H}$ distances of $0.99 \AA$. The H atoms of the phenyl rings were put at the external bisectors of the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles at $\mathrm{C}-\mathrm{H}$ distances of $0.95 \AA$ and common isotropic displacement parameters were refined for the H atoms of the same phenyl group. The H atoms of the methyl groups were refined with common isotropic displacement parameters for the H atoms of the same group and idealized geometries with tetrahedral angles, enabling rotation around the $\mathrm{C}-\mathrm{C}$ bond, and $\mathrm{C}-\mathrm{H}$ distances of $0.98 \AA$.
[Pt($\left.\left.\mathrm{K}^{2}-\mathrm{S}-\mathrm{Phoz}\right)\left(\mathrm{K}^{1}-\mathrm{S}-\mathrm{Phoz}\right)\left(\mathrm{PPh}_{3}\right)\right]$ (3a)

modification A:crystallized from acetonitrile
modification B:crystallized from diethyl ether
Figure S 5. ORTEP plots of two modifications of $\left[\mathrm{Pt}\left(\mathrm{k}^{2}-\mathrm{S}-\mathrm{Phoz}\right)\left(\mathrm{k}^{1}-\mathrm{S}-\mathrm{Phoz}\right)\left(\mathrm{PPh}_{3}\right)\right]$ (3a) showing the atomic numbering schemes. The probability ellipsoids are drawn at the 50% probability level. Left: modification A, crystallized from acetonitrile (described in the manuscript). Right: modification B, crystallized from diethyl ether. The major difference between the two identified modifications is the orientation of the dangling oxazoline ring being in plane with the aromatic ring (right) or perpendicular to it (left).

[Pt($\left.\left.\mathrm{k}^{2}-\mathrm{S}-\mathrm{Phoz}\right)\left(\mathrm{k}^{1}-\mathrm{S}-\mathrm{Phoz}\right)\left(\mathrm{PPh}_{3}\right)\right]$ (3a)- Modification A

Figure S 6. Stereoscopic ORTEP plot of 3amodification A.

The non-hydrogen atoms were refined with anisotropic displacement parameters without any constraints. The H atoms of the CH_{2} groups were refined with common isotropic displacement parameters for the H atoms of the same group and idealized geometry with approximately tetrahedral angles and $\mathrm{C}-\mathrm{H}$ distances of $0.99 \AA$. The H atoms of the phenyl rings were put at the external bisectors of the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles at $\mathrm{C}-\mathrm{H}$ distances of $0.95 \AA$ and common isotropic displacement parameters were refined for the H atoms of the same phenyl group. The H atoms of the methyl groups were refined with common isotropic displacement parameters for the H atoms of the same group and idealized geometries with tetrahedral angles, enabling rotation around the $\mathrm{C}-\mathrm{C}$ bond, and $\mathrm{C}-\mathrm{H}$ distances of $0.98 \AA$.

[Pt(k^{2}-S-Phoz)($\left.\left.\mathrm{k}^{1}-\mathrm{S}-\mathrm{Phoz}\right)\left(\mathrm{PPh}_{3}\right)\right]$ (3a)- Modification B

Figure S 7. Stereoscopic ORTEP plot of 3a-modification B.

The non-hydrogen atoms were refined with anisotropic displacement parameters without any constraints. The H atoms of the CH_{2} groups were refined with common isotropic displacement parameters for the H atoms of the same group and idealized geometry with approximately tetrahedral angles and $\mathrm{C}-\mathrm{H}$ distances of $0.99 \AA$. The H atoms of the methyl groups were refined with common isotropic displacement parameters for the H atoms of the same group and idealized geometries with tetrahedral angles, enabling rotation around the $\mathrm{C}-\mathrm{C}$ bond (or with staggered conformations for the ether molecule), and C-H distances of $0.98 \AA$. The H atoms of the phenyl rings were put at the external bisectors of the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles at $\mathrm{C}-\mathrm{H}$ distances of $0.95 \AA$ and common isotropic displacement parameters were refined for the H atoms of the same phenyl group.
$\left[\mathrm{Pd}\left(\mathrm{k}^{2}-\mathrm{S}-\mathrm{Phoz}\right)\left(\mathrm{k}^{1}-\mathrm{S}-\mathrm{Phoz}\right)\left(\mathrm{PPh}_{3}\right)\right](3 \mathrm{~b})$

modification A:crystallized from acetonitrile
modification B:crystallized from acetone
Figure S 8. ORTEP plot of two modifications of $\left[\mathrm{Pd}\left(\kappa^{2}-S-P h o z\right)\left(\kappa^{1}-S-P h o z\right)\left(\mathrm{PPh}_{3}\right)\right](\mathbf{3 b})$ showing the atomic numbering schemes. The probability ellipsoids are drawn at the 50% probability level. Left: crystallized from acetonitrile (described in the manuscript). Right: crystallized from acetone. In the conformation on the left side the dangling 1,3-oxazoline ring is disordered indicating the presence of the conformation on the right side, which was refined with a site occupation factor of $0.163(3)$.

[Pd(κ^{2}-S-Phoz)(${ }^{1}$-S-Phoz) $\left.\left(\mathrm{PPh}_{3}\right)\right](3 b)$ - Modification A

Figure S 9. Stereoscopic ORTEP plot of 3bmodification A . The H atoms as well as the solvent molecule were omitted for clarity reasons. The bonds to atoms with site occupation factors less than 0.5 are plotted with open bonds.

The 1,3-oxazole ring not coordinating to Pd is disordered over two orientations which were refined with site occupation factors of $0.837(3)$ and $0.163(3)$, respectively. The equivalent bonds in this part were restrained to have the same lengths and the atoms with low site occupation factors were refined with the same displacement parameters of appropriate atoms. The other non-hydrogen atoms were refined with anisotropic displacement parameters without any constraints. The H atoms of the CH_{2} groups were refined with common isotropic displacement parameters for the H atoms of the same group and idealized geometry with approximately tetrahedral angles and $\mathrm{C}-\mathrm{H}$ distances of $0.99 \AA$. The H atoms of the phenyl rings were put at the external bisectors of the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles at $\mathrm{C}-\mathrm{H}$ distances of $0.95 \AA$ and common isotropic displacement parameters were refined for the H atoms of the same phenyl group. The H atoms of the methyl groups were refined with common isotropic displacement parameters for the H atoms of the same group and idealized geometries with tetrahedral angles, enabling rotation around the $\mathrm{C}-\mathrm{C}$ bond, and $\mathrm{C}-\mathrm{H}$ distances of $0.98 \AA$.
[Pd(k ${ }^{2}$-S-Phoz)(${ }^{1}$-S-Phoz) $\left.\left(\mathrm{PPh}_{3}\right)\right](3 b)$ - Modification B

Figure S 10. Stereoscopic ORTEP plot of 1bmodification B.

The non-hydrogen atoms were refined with anisotropic displacement parameters without any constraints. The H atoms of the CH_{2} groups were refined with common isotropic displacement parameters for the H atoms of the same group and idealized geometry with approximately tetrahedral angles and $\mathrm{C}-\mathrm{H}$ distances of $0.99 \AA$. The H atoms of the phenyl rings were put at the external bisectors of the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles at $\mathrm{C}-\mathrm{H}$ distances of $0.95 \AA$ and common isotropic displacement parameters were refined for the H atoms of the same phenyl group. The H atoms of the methyl groups were refined with common isotropic displacement parameters for the H atoms of the same group and idealized geometries with tetrahedral angles, enabling rotation around the $\mathrm{C}-\mathrm{C}$ bond, and $\mathrm{C}-\mathrm{H}$ distances of $0.98 \AA$.

Table S4. Selected Bond Lengths [Å] and Angles [${ }^{\circ}$] for[$\left.\mathrm{Pd}\left(\mathrm{k}^{2}-\mathrm{S}-\mathrm{Phoz}\right)\left(\mathrm{K}^{1}-\mathrm{S}-\mathrm{Phoz}\right)\left(\mathrm{PPh}_{3}\right)\right]$ (3b)- Modification B and $\left[P d\left(\kappa^{2}-S-P h o z\right)\left(\kappa^{1}-S-P h o z\right)\left(P P h_{3}\right)\right]$ (3b)-Modification B

Crystal data		
Identification	3a-modification B crystallized from diethyl ether	3b-modification B crystallized from acetone
Empirical formula	$\mathrm{C}_{44} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PPtS}_{2}$	$\mathrm{C}_{40} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PPdS} 2 \cdot \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$
Formula weight	944.03	839.30
Crystal description	block, yellow	block, red
Crystal size	$0.15 \times 0.15 \times 0.12 \mathrm{~mm}$	$0.30 \times 0.26 \times 0.21 \mathrm{~mm}$
Crystal system, space group	triclinic, P-1	triclinic, P-1
Unit cell dimensions: a	11.2715(4) ${ }^{\text {A }}$	11.2363(3) ${ }^{\text {A }}$
b	13.1029(5) ${ }^{\text {A }}$	12.9101(4) A
c	14.2801(5) A	14.3306(5) A
α	73.9838(14) ${ }^{\circ}$	75.2998(14) ${ }^{\circ}$
β	82.3007(13) ${ }^{\circ}$	80.5655(12) ${ }^{\circ}$
γ	87.9455(13) ${ }^{\circ}$	88.1908(12) ${ }^{\circ}$
Volume	2008.88(13) \AA^{3}	1983.47(11) \AA^{3}
Z	2	2
Calculated density	$1.561 \mathrm{Mg} / \mathrm{m}^{3}$	$1.405 \mathrm{Mg} / \mathrm{m}^{3}$
F(000)	952	868
Linear absorp. coefficient μ	$3.678 \mathrm{~mm}^{-1}$	$0.655 \mathrm{~mm}^{-1}$
Max. and min. transmission	0.7461 and 0.5944	0.7461 and 0.6068
Θ range for data collection	2.44 to 30.00°	2.44 to 30.00°
Index ranges	$\begin{aligned} & -15 \leq h \leq 15,-18 \leq k \leq 16,-19 \leq 1 \\ & \leq 20 \end{aligned}$	$\begin{aligned} & -15 \leq h \leq 15,-15 \leq k \leq 18,- \\ & 20 \leq \mathrm{l} \leq 20 \end{aligned}$
Reflections collected/ unique	26716/11670	23428/11496
Significant unique reflections	11018 with I > 2\%(I)	10075 with I $>2 \sigma(\mathrm{I})$
R (int), R(sigma)	0.0231, 0.0292	0.0221, 0.0324
Completeness to $\Theta=30.0^{\circ}$	99.6\%	99.3\%
Data/ parameters/ restraints	11670/495/ 0	11496/516/ 7
Goodness-of-fit on F^{2}	1.045	1.029
Final R indices [$1>2 \sigma(1)$]	$\mathrm{R} 1=0.0240, \mathrm{wR} 2=0.0609$	$\mathrm{R} 1=0.0277, \mathrm{wR} 2=0.0691$
R indices (all data)	$\mathrm{R} 1=0.0262, \mathrm{wR} 2=0.0620$	$\mathrm{R} 1=0.0345, \mathrm{wR} 2=0.0728$
Weighting scheme	$\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{0}^{2}\right)+(\mathrm{aP})^{2}+\mathrm{bP}\right]$ where	$\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{0}{ }^{2}\right)+(a P)^{2}+\mathrm{bP}\right]$

	$\mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$	where $\mathrm{P}=\left(\mathrm{F}_{0}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$
Largest diff. peak and hole	2.520 and $-1.259 \mathrm{e} / \AA^{3}$	1.190 and $-1.325 \mathrm{e} / \AA^{3}$
CCDC deposition number	1015353	1015355

Table S5. Selected Bond Lengths [A] and Angles $\left[^{\circ}\right]$ for $\left[\operatorname{Pt}\left(\kappa^{2}-S-P h o z\right)\left(\kappa^{1}-S-P h o z\right)\left(\mathrm{PPh}_{3}\right)\right](\mathbf{3 a})$

Bond length/ distances [Å]	3a-Mod. A	3a-Mod. B	Angles [${ }^{\circ}$]	3a-Mod. A	3a-Mod. B
Pt1-N13	$2.104(2)$	$2.1078(16)$	N13-Pt1-P1	$173.51(5)$	$171.33(5)$
Pt1-P1	$2.2337(6)$	$2.2204(5)$	S2-Pt1-S4	$169.56(2)$	$168.67(2)$
Pt1-S2	$2.2886(5)$	$2.3198(5)$	N13-Pt1-S2	$92.49(5)$	$86.49(5)$
Pt1-S4	$2.3624(5)$	$2.3409(5)$	P1-Pt1-S2	$91.76(2)$	$87.497(18)$
Pt1-O312	5.015	5.638	N13-Pt1-S4	$97.33(5)$	$96.49(5)$
Pt1-N334	6.687	5.788	P1-Pt1-S4	$78.78(2)$	$90.612(18)$
			O31-Pt1-N33	15.04	22.81

Table S6. Selected Bond Lengths $[A ̊]$ and Angles [$\left.{ }^{\circ}\right]$ for $\left[\operatorname{Pd}\left(\kappa^{2}-S-\operatorname{Phoz}\right)\left(\mathrm{K}^{1}-\mathrm{S}-\mathrm{Phoz}\right)\left(\mathrm{PPh}_{3}\right)\right]$ (3b).

Bond length/ distances $[\AA \AA]$	3b-Mod. A	3b-Mod. B	Angles [${ }^{\circ}$]	3b-Mod. A	3b-Mod. B
Pd1-N13	$2.1153(13)$	$2.1168(13)$	N13-Pd1-P1	$172.62(4)$	$170.46(4)$
Pd1-P1	$2.2466(4)$	$2.2343(4)$	S2-Pd1-S4	$168.626(15)$	$167.092(16)$
Pd1-S2	$2.2934(4)$	$2.3228(4)$	N13-Pd1-S2	$92.47(4)$	$87.36(4)$
Pd1-S4	$2.3651(4)$	$2.3497(4)$	P1-Pd1-S2	$91.587(14)$	$86.274(15)$
Pd1-O312	5.015	5.619	N13-Pd1-S4	$98.33(4)$	$97.83(4)$
Pd1-N334	6.687	5.792	P1-Pd1-S4	$78.065(14)$	$89.876(15)$
			O31-Pd1-N33	15.04	22.87

[\{PdCl(S-Phoz) $\left.\}_{2}\right]$ (4)

Figure S 2. Stereoscopic ORTEP plot of 4 showing the atomic numbering scheme. The probability ellipsoids are drawn at the 50% probability level. The H atoms are drawn with arbitrary radii. The disordered solvent molecule is omitted for clarity reasons.

The crystal structure contains voids of approx. $200 \AA^{3}$ that are partially occupied by solvent molecules disordered over two orientations around two-fold rotation axes. Their site occupation factor refined to $0.295(4)$. The non-hydrogen atoms including those of the solvent molecule were refined with anisotropic displacement parameters without any constraints. The H atoms of the CH_{2} group of the ligand were refined with common isotropic displacement parameters and idealized geometry with approximately tetrahedral angles and $\mathrm{C}-\mathrm{H}$ distances of $0.99 \AA$. The H atoms of the CH_{2} groups of the solvent were included at calculated positions with their isotropic displacement parameters fixed to 1.2 times $U_{\text {eq }}$ of the C atom they are bonded to. The H atoms of the phenyl ring were put at the external bisectors of the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles at $\mathrm{C}-$ H distances of $0.95 \AA$ and a common isotropic displacement parameter was refined. The H atoms of the methyl groups were refined with common isotropic displacement parameters for the H atoms of the same group and idealized geometries with tetrahedral angles, enabling rotation around the $\mathrm{C}-\mathrm{C}$ bond, and $\mathrm{C}-\mathrm{H}$ distances of $0.98 \AA$.

Figure S 3. Stereoscopic ORTEP plot of 5 showing the atomic numbering scheme. The probability ellipsoids are drawn at the 50% probability level. The H atoms were omitted for clarity reasons.

The non-hydrogen atoms were refined with anisotropic displacement parameters without any constraints. The H atoms of the CH_{2} groups were refined with common isotropic displacement parameters for the H atoms of the same group and idealized geometry with approximately tetrahedral angles and $\mathrm{C}-\mathrm{H}$ distances of $0.99 \AA \AA$. The H atoms of the methyl groups were refined with common isotropic displacement parameters for the H atoms of the same group and idealized geometries with tetrahedral angles, enabling rotation around the $\mathrm{C}-\mathrm{C}$ bond, and $\mathrm{C}-\mathrm{H}$ distances of $0.98 \AA \AA$. The H atoms of the phenyl rings were put at the external bisectors of the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles at $\mathrm{C}-\mathrm{H}$ distances of $0.95 \AA$ and common isotropic displacement parameters were refined for the H atoms of the same phenyl group.

[$\left.\mathrm{PdCl}(\mathrm{S}-\mathrm{Phoz})\left(\mathrm{PPh}_{3}\right)\right] \cdot \mathrm{ACN}(5)$

Figure S 4. Stereoscopic ORTEP plot of $5 \cdot$ ACN showing the atomic numbering scheme. The probability ellipsoids are drawn at the 50% probability level. The H atoms were omitted for clarity reasons.

The non-hydrogen atoms were refined with anisotropic displacement parameters without any constraints. The H atoms of the CH_{2} groups were refined with common isotropic displacement parameters for the H atoms of the same group and idealized geometry with approximately tetrahedral angles and $\mathrm{C}-\mathrm{H}$ distances of $0.99 \AA$. The H atoms of the methyl groups were refined with common isotropic displacement parameters for the H atoms of the same group and idealized geometries with tetrahedral angles, enabling rotation around the $\mathrm{C}-\mathrm{C}$ bond, and $\mathrm{C}-\mathrm{H}$ distances of $0.98 \AA$. The H atoms of the phenyl rings were put at the external bisectors of the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles at $\mathrm{C}-\mathrm{H}$ distances of $0.95 \AA$ and common isotropic displacement parameters were refined for the H atoms of the same phenyl group.

Crystal data	$\mathbf{5} \cdot \mathrm{ACN}$
Identification	$\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{CINOPPdS} \cdot \mathrm{CH}_{3} \mathrm{CN}$
Empirical formula	651.45
Formula weight	plate, orange
Crystal description	$0.17 \times 0.14 \times 0.06 \mathrm{~mm}$
Crystal size	monoclinic, $\mathrm{P} 2_{1} / \mathrm{c}$
Crystal system, space group	$16.1253(12) \AA$
Unit cell dimensions: a	$9.7152(7) \AA$
b	$19.3494(13) \AA$
c	$111.930(2)^{\circ}$
β	$2811.9(3) \AA^{\circ}$
Volume	4
Z	$1.539 \mathrm{Mg} / \mathrm{m}^{3}$
Calculated density	1328
F(000)	0.914 mm
Linear absorption coefficient μ	

Θ range for data collection Index ranges
Reflections collected/ unique Significant unique reflections R(int), R(sigma)
Completeness to $\Theta=30.0^{\circ}$
Data/ parameters/ restraints Goodness-of-fit on F^{2}
Final R indices [l>2 $\mathbf{~} \sigma(\mathrm{I})$]
R indices (all data)
Weighting scheme
Largest difference peak and hole
CCDC deposition number
2.38 to 26.00°
$-14 \leq h \leq 19,-10 \leq k \leq 11,-23 \leq \mathrm{l} \leq 22$
11075/5475
4648 with $\mathrm{I}>2 \sigma(\mathrm{I})$
0.0265, 0.0389
99.3\%

5475/354/ 0

1.072

$R 1=0.0395, w R 2=0.0951$
$R 1=0.0497, w R 2=0.1009$
$\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{0}{ }^{2}\right)+(\mathrm{aP})^{2}+\mathrm{bP}\right]$ where $\mathrm{P}=\left(\mathrm{F}_{0}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$
0.923 and $-0.764 \mathrm{e} / \AA^{3}$

1015359

