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Preface

The 11th Conference of PhD Students in Computer Science (CSCS) was organized
by the Institute of Informatics of the University of Szeged (SZTE) and held in
Szeged, Hungary, between June 25–27, 2018.

The members of the Scientific Committee were the following representatives
of the Hungarian doctoral schools in computer science: János Csirik (Co-Chair,
SZTE), Lajos Rónyai (Co-Chair, SZTAKI, BME), Péter Baranyi (SZE), András
Benczúr (ELTE), András Benczúr (SZTAKI), Hassan Charaf (BME), Tibor Csendes
(SZTE), László Cser (BCE), Erzsébet Csuhaj-Varjú (ELTE), József Dombi (SZTE),
István Fazekas (DE), Zoltán Fülöp (SZTE), Aurél Galántai (ÓE), Zoltán Gingl
(SZTE), Tibor Gyimóthy (SZTE), Katalin Hangos (PE), Zoltán Horváth (ELTE),
Márk Jelasity (SZTE), Zoltán Kása (Sapientia EMTE), László Kóczy (SZE), János
Levendovszki (BME), Gyöngyvér Márton (Sapientia EMTE), Branko Milosavljevic
(UNS), Valerie Novitzka (TUKE), László Nyúl (SZTE), Marius Otesteanu (UPT),
Attila Pethő (DE), Vlado Stankovski (UNILJ), Tamás Szirányi (SZTAKI), Péter
Szolgay (PPKE), János Sztrik (DE), János Tapolcai (BME), János Végh (ME), and
Daniela Zaharie (UVT). The members of the Organizing Committee were: Attila
Kertész (Chair), Balázs Bánhelyi, Tamás Gergely, and Zoltán Kincses.

There were more than 55 participants and 52 talks in several fields of com-
puter science and its applications (13 sessions). The talks were going in sections in
Artificial Intelligence, Static Analysis, Cloud Computing I., Testing, Cloud Com-
puting II., Image Processing I., Education, Image Processing II., Optimization,
Algorithms, Programming Languages, Evaluation, Business Process. The talks of
the students were completed by 3 plenary talks of leading scientists: Bálint Daróczy
(MTA SZTAKI, Hungary), Michael C. Mackey (McGill University, Canada), and
Massimiliano Di Penta (University of Sannio, Italy).

The open-access scientific journal Acta Cybernetica offered PhD students to
publish the paper version of their presentations after a careful selection and review
process. Altogether 24 manuscripts were submitted for review, out of which 10
were accepted for publication in the present special issue of Acta Cybernetica. 2
papers were published in the previous issue, and 2 additional papers are planned
to be published in a future issue.

The full program of the conference, the collection of the abstracts and further
information can be found at http://www.inf.u-szeged.hu/~cscs.

On the basis of our repeated positive experiences, the conference will be orga-
nized in the future, too. According to the present plans, the next meeting will be
held around the end of June 2020 in Szeged.

Attila Kertész
Guest Editor

3



Acta Cybernetica 24 (2019) 5–16.

Towards a Classification-Based Systematic

Approach to Facilitate the Design of

Domain-Specific Visual Languages∗

Sándor Bácsia and Gergely Mezeib

Abstract

Domain-specific visual languages (DSVLs) are specialized modeling lan-
guages that allow the effective management of the behavior and the structure
of software programs and systems in a specific domain. Each DSVL has its
specific structural and graphical characteristics depending on the problem
domain. In the recent decade, a wide range of tools and methodologies have
been introduced to support the design of DSVLs for various domains, there-
fore it can be a challenging task to choose the most appropriate technique
for the design process. Our research aims to present a classification-based
systematic approach to guide the identification of the most relevant and ap-
propriate methodologies in the given scenario. The approach can be capable
enough to provide a clear and precise understanding of the main aspects that
can facilitate the design of DSVLs.

Keywords: domain-specific visual languages, modeling, classification

1 Introduction

In software development, there has always been a big demand for improving the
productivity and the speed of the development process by increasing abstraction.
This is the main reason why model-driven software development [1] has become a
promising paradigm among software developers and researchers in the past decades.
Software models are mainly used for designing complex structures or systems in
order to be able to specify the requirements on a higher abstraction level. Thus,
the model can give a better overview of the system and help to understand the
concepts of the targeted domain.
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Domain-specific languages (DSLs) [10] are specialized modeling languages that
can efficiently raise the level of abstraction by using the concepts and the charac-
teristics of the specific problem domain. DSLs are in a contrast to general-purpose
languages like C, Python or Haskell that are designed to let developers write any
sort of program with any sort of logic broadly applicable across domains. DSLs
allow the effective management of the behavior and the structure of software pro-
grams and systems. Domain-specific visual languages (DSVLs) [15], compared to
textual DSLs, can further improve the expressiveness and the usability of the given
model. As a well-designed DSVL raises the level of abstraction, it also helps in
hiding irrelevant, technical details and in emphasizing the domain-related parts in
the models. In order to achieve this, it is essential to find the best visualization in
design-time in order to satisfy the needs of the targeted domain.

There are several advantages of using a DSVL. The richness of the visual rep-
resentation can simplify the modeling process and increase flexibility, thus DSVLs
can be intuitively usable. As most of the people tend to associate a visualization
for their problems, visual models can facilitate to understand the concepts and
the main relations in the targeted domain. It can be easier to explain the main
characteristics of a domain problem by using visual notations.

Compared to textual languages, DSVLs may have their drawbacks. DSVLs can
be restrictive, since they may limit the freedom of creating complex language con-
structs. The visual entities representing a complex code can be hard or impossible
to grasp in one glance. It can be challenging to find the effective visual way of ex-
pressing some advanced concepts, such as type systems, that can be found in most
of the general-purpose textual programming languages. If DSVL is badly designed
and it is used in a particular situation, the advantages may easily turn into disad-
vantages, thus it is essential to avoid counter-productive decisions by choosing the
most appropriate representational concepts in design-time. A guideline can help in
providing a clear and precise understanding of the main aspects to design the most
suitable DSVL.

The high level of customization possibilities has its price: unlike in UML, each
problem domain requires a custom, different visual representation to meet the re-
quirements of the targeted domain. The exactness of the choice depends on how
expressively the chosen concepts describe the DSVL and on the specific needs of
the targeted domain.

In this paper, we present the main results of our classification methodology
for visual domain-specific languages. We analyzed a wide range of existing DSVL
methodologies and also created several illustrating examples for different domains to
exemplify the most relevant graphical and structural characteristics. We used two
metamodeling frameworks (Eclipse Modelling Framework [6] and Visual Modeling
and Transformation System [18]) and a visual programming editor builder (Google
Blockly [2], [7], [12]) to examine the most applicable methodologies.

The paper is organized as follows: Section 2 presents the background and the
related work. Section 3 introduces our approach in order to give an understanding
of the main concepts. Section 4 presents some of the illustrating examples which
we elaborated, while concluding remarks are outlined in Section 5.
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2 Related work

Various kinds of classifications have been created in the past to support the design
process of DSVLs. However, most of these approaches are quite old, there is no
relevant publication in the field for more than ten years. Due to the increasing use of
DSVLs, a wide range of new tools and methodologies have been introduced recently
based on completely new ideas. Our research aims to analyze and compare the
most relevant methodologies on a larger scope which can support the design of new
domain-specific visual languages with the new technologies. Different classifications
of DSVLs have been presented in the literature. Basically, these classifications serve
a completely different purpose than the one introduced in this research.

The principles in [9] are aimed at creating a hierarchy for visual languages which
is based on the constraint multiset grammar formalism. The approach also takes
into consideration the expressiveness and the cost of parsing for different classes.
This approach is mainly based on formalism, rather than on the pragmatic use of
DSVLs.

Myers [11] discusses programming systems and it is divided into categories us-
ing the orthogonal criteria of being visual programming or not, example-based
programming or not, and interpretive or compiled. Similarly, in another paper [5]
the authors presented a classification system, in which visual languages are catego-
rized based on the visual programming paradigm they express and different visual
representations.

There is another classification approach [3] which presents a suite of metamodels
as a basis for a classification of visual languages. This approach introduces general
metamodel patterns which can serve as a basis for different aspects that can facili-
tate the design of DSVLs. However, the approach does not take into consideration
the possible non-metamodeling concepts and the pragmatic use of DSVLs.

There is a wide range of existing professional general-purpose modeling lan-
guages in the field of software engineering. For example, UML [17] and SysML
[16] are intended to provide a standard way to visualize the design of different sys-
tems. Here, it is important to emphasize that our research focuses on creating new
domain-specific visual languages considering the requirements of a certain domain,
thus universal, standardized visual languages are not taken into account.

Our classification-based approach is not intended to be superior to other classifi-
cation-based methodologies, it serves supplementary purposes. Our approach is
mainly based on the nature of the graphical objects that compose the visual lan-
guage, the connection types among the graphical objects, the composition rules
and the visual representations. We also consider non-metamodeling approaches
and compare them to metamodeling methodologies. In this way, we can provide a
clear and precise understanding of the main aspects that can facilitate the design of
DSVLs. We introduce a step-by-step guide on how to use our systematic approach
in different design scenarios.
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3 Classification-Based Systematic Approach

In this section, we present the steps of our classification-based systematic approach.
Each subsection represents a step of our methodology. It is important to emphasize
that not all of the steps can be used directly in all possible design scenarios. Some
of the steps ( Section 3.1, Section 3.2 and 3.3) are meant to decide between a couple
of mutually exclusive choices, while others (Section 3.4 and Section 3.5) are used
only as a supporting step helping to fine-tune previous decisions.

3.1 Step 1: Flow type

Based on the flow type, domain-specific visual languages can be grouped into three
subclasses: data flow languages, control flow languages and languages with no flow.

Data flow languages visualize the steps of data processing. Data flow concepts
are based on the idea of disconnecting computational actors into stages that can
execute concurrently. Data flow DSVLs visualize the processes that are undertaken,
the data produced and consumed by each process, and the accumulative graphical
objects needed to hold the data. It is possible to visualize what the system will
accomplish by the flow of data.

Control flow visual languages visualize the logic of computation by describing
its control flow. Control flow DSVLs graphically express the order in which in-
structions or statements are executed or evaluated. The graphical objects mainly
represent the control structures and conditional expressions of the language, thus
it is possible to visualize how the system will operate by the flow of control.

There are DSVLs which are neither data flow nor control flow because they
target a static domain problem. These languages are used mainly to represent the
structure of a system or a program, therefore no flow has to be described. A widely
used example of no-flow graphical modeling languages is the UML class diagram,
in which the structure of the system is described by the classes and the connections
among them.

3.2 Step 2: Relation type

Based on the relation type, domain-specific visual languages can be grouped into
two subclasses: containment-based and connection-based subclasses.

In the case of containment-based languages, entities are limited to embed in
each other to express sentences of the targeted domain, no other types of connec-
tions (e.g. association, or inheritance) are supported. As the customization of
embedding, graphical entities may be attached to other entities (e.g. represent-
ing methods and their parameters) and chained together (as in a call stack). To
support this behavior, a predefined set of containment rules or constraints have
to be specified to restrict the way of embedding, attaching and chaining. Blockly
and Scratch [13] are widely used examples of containment-based languages, both
support building blocks that can be connected like puzzle pieces in order to create
easy-to-understand visual sentences.
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Connection-based languages consist of two different kinds of building elements:
entities and connections, i.e. nodes and edges. While data is usually expressed
by entities, the flow of the model and the relations among entities are defined by
connections. Connections may also have properties to ensure the customization of
the relations among entities. Moreover, connections may also interpret containment
as the container and the contained elements can be connected by a specialized
containment-typed edge. This means that this category is more general, however
its complexity is not needed in many practical cases.

3.3 Step 3: Methods of the abstract syntax definition

There are two key methods for the abstract syntax definition of a DSVL: metamo-
deling-, and non-metamodeling approaches.

Metamodeling methodologies provide methods for defining DSVLs based on the
abstract notion of visual entities and of relations among them. These frameworks
are capable of specifying the abstract syntax of a DSVL and expressing the addi-
tional semantics of existing information. The metamodel can expressively define
the structure, semantics, and constraints for a family of graphical models. On the
other hand, when a metamodel is instantiated, its elements become types, which
can be instantiated in the instance models. Hence, complex structures and relations
can be described in a flexible way by the usage of metamodeling concepts.

While metamodeling methodologies are based on various kinds of instantiation
techniques, non-metamodeling approaches provide a somewhat simpler, template-
based structure for creating visual entities. The main characteristic of non-metamo-
deling approaches is that they have a limited set of features which can be used on the
different abstraction levels, thus complex structures cannot be visualized flexibly
and expressively. One of the newest non-metamodeling approaches is Blockly. It
supports a large set of features for different domains. In Blockly, the graphical
objects are called blocks which can be customized as the basic building elements
of the language. However, due to the template-based and weakly typed structure,
complex type constraints cannot be applied.

3.4 Step 4: The way of the problem description

This is a fine-tuning step, since this step rather depends on the specific nature of
the problem domain and also on the needs and preferences of the users. Based
on the way of the problem description, domain-specific visual languages can be
grouped into two subclasses: imperative and declarative languages.

Declarative visual languages describe the logic of computation. For example,
SparqlBlocks [4] is a declarative DSVL developed in Blockly. Declarative languages
visualize sets of declarations or declarative statements. Each of these visual decla-
rations has a meaning depending on the targeted domain and may be understood
independently. A declarative style of visualization helps to understand the prob-
lems of the targeted domain and the approach that the system takes towards the
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solution of the problem, but is less expressive on the matter of mechanics which
describe the flow of the system.

Imperative visual languages consist of visual statements that change the state
of a program or a system. For example, Scratch is an imperative visual program-
ming language. The visualized statements express the way of execution of which
results in a decision being made as to which of two or more visualized paths to
follow. In imperative languages, the visual sentences can be created by sequences
of commands, each of which performs some action. These actions may or may not
have a dedicated meaning in the targeted problem domain.

3.5 Step 5: Visual representation

This is also a fine-tuning step, since it is related the concrete syntax of the lan-
guage and it strongly depends on the needs and preferences of the users. DSVLs
have a visual concrete syntax used for the representation of graphical elements and
connections. Based on the visual representation, there are two key design aspects:
iconic and diagrammatic visual representation.

In the case of iconic languages, entities are visualized by icons. For example,
Lego Wedo 2.0 Software [8] provides an iconic visual language for educational pur-
poses. The iconic language is a structured set of related icons. An icon can be
attached to or composed of other icons, thus expressing a more complex visual
concept.

Diagrammatic languages are mainly composed of elements with a pre-defined
symbolic representation of information. The building blocks of diagrammatic lan-
guages such as geometric shapes are often connected by lines, arrows, or other
visual links. Chart-like, schematic-like and graph-based visual languages are the
most widely used examples.

The most important difference between iconic and diagrammatic languages is
that icons are pre-defined and they have limited flexibility, while graphical building
blocks of diagrammatic languages can be calculated and customized freely.

4 Illustrating examples

We can investigate some advantages and disadvantages of different approaches by
solving various domain problems. In this section, we introduce two illustrating
examples to present different design scenarios built upon the classification-based
approach presented. Through the examples we only investigate the mutually exclu-
sive steps from Step 1 to Step 3 because they specify the structural characteristics
of the DSVL.

4.1 Logic gates

The first illustrating example demonstrates the domain of logic gates. In this
domain, logic gates can perform logical operations on one or more binary inputs
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and produce a single binary output. For the sake of simplicity, we can use AND,
OR and NOT gates. There are visual entities which can only transmit a binary
signal, while other visual entities can only receive the signals, therefore it is possible
to create entities with a single input or output.

Step 1: We have to make our first design decision based upon the first step of
the systematic approach. It is certain that we have to design a control flow language,
because logic gates can be cascaded in the same way that Boolean functions can be
composed, allowing the construction and transmission of all of Boolean logic, and
therefore, all of the mathematics and algorithms that can be described.

Step 2: The next question is whether the DSVL fits the connection-based or
the containment-based approach. The answer is not that simple as it seems at first
glance. If we choose the connection-based option, logic gates can be represented as
nodes that can be connected with edges, creating thus a connection-based language.
Node-like model elements can be connected to each other, where we use ports
instead to define the interface of a node. For example, a logic gate OR can have
two input ports for the operands and a single output port, for its result. If we
choose the containment-based option, it is very difficult to express the connection
among logic gates, since no edges can be used. On the other hand, it can be hard
to customize the interface of logic gates. In conclusion, the DSVL fits better the
connection-based approach.

Step 3: In this step, we have to make our decision regarding the abstract-syntax
definition. It is clear that complex structures and relations can be described in a
flexible way by the usage of metamodeling concepts. Taken the previous structural
decisions into account, it can be more effective to use a metamodeling methodology.
We used VMTS to define the abstract syntax of the language and to set up custom
visualization for the graphical editing. To support this behavior, VMTS allows to
define the so-called meta ports on nodes. Figure 1 shows a half adder model as an
example in VMTS. Here, it is important to emphasize that due to the connection-
based nature the output result of the given node can be used for more inputs,
therefore particular nodes with the same logic do not have to be duplicated.

Alternative solution: For the sake of completeness, we tried a different design
scenario in our classification-based approach to prove the importance of the appro-
priate design decisions. Let us assume the following design scenario: Unlike the
previous design scenario, after Step 1, we can make a different decision. In Step 2
we choose the containment-based approach even if we are aware of the fact that this
is not the better option. In Step 3 we decide to use a non-metamodeling approach.
We used Blockly to create the containment-based variant of this example. While it
is easy to define the blocks themselves, it is very difficult to express the connection
among logic gates, since no edges can be used. Blocks have to be duplicated and
there can only be one output on a block - the left output. Figure 2 shows the
same model as in the connection-based example, but visualized in Blockly. In this
example, the AND logic has to be used twice from input A and B to be able to
implement the half adder logic. Even the input A and B visual entities have to be
duplicated.

As the illustrating example shows, dealing with multiple connections in a control
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Figure 1: Half adder example in VMTS

flow domain may have its drawbacks in the containment-based approach. It is more
expressive to use the principles of the connection-based approach to graphically
express the order in which instructions or statements are executed or evaluated.

Figure 2: Half adder example in Blockly

4.2 Departments of a company

In this illustrating example, we present a simple DSVL for modeling the depart-
ments of a company. Let us assume the following specification: A company has
different departments. Employees work in departments. Employees may have a
principal and every department has exactly one director.

Step 1: At first, we have to make our first design decisions to identify the
flow type of the domain. It is certain that we have to design a no-flow language,
because no flow has to be described, only the static relations among entities are to
be modeled.
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Step 2: The next question is whether the DSVL will be connection-based or
containment-based. If we choose the connection-based option we can definitely
visualize the employee - principal relationship with some kind of visual links. On
the other hand, it can be difficult to visualize the employee - department relation,
because after a certain amount of employees the visual entities can be hard or
impossible to grasp in one glance. In conclusion, besides the connection-based
approach it would be advantageous to use additional containment-based nature for
the employee - department relation.

Step 3: It can be easier to express the aforementioned structural characteristics
by using a metamodeling methodology. We used EMF to create the connection-
based variant of the DSVL. EMF provides effective features to express the basic
relations among entities in order to define the abstract syntax of the DSVL. Based
on EMF, Sirius [14] provides useful features for the customization of concrete syn-
tax. Figure 3 shows a visualized model as an example. In this simple demonstration,

Figure 3: Departments example in Sirius

we used a rectangular box notation for the departments. Arrow notations are used
to express the employee-principal relationship and a circle notation is used to visu-
alize the head of the given department. Beside the connection-based patterns, this
example has containment-based nature since employee notations can be embedded
in departments. Here, it is worth to emphasize that due to the connection-based
structure no entity has to be duplicated visually, because they can be connected
with the arrow notations to express the employee-principal relationship.

Alternative solution: As the second solution, we elaborated a different design
scenario. After Step 1, we can make a different decision. In Step 2 we choose the
pure containment-based approach even if we know that it will be hard to express
every relation by using just only the principles of the containment-based approach.
In Step 3 we decide to use a non-metamodeling approach, Blockly to create the
pure containment-based variant of this illustrating example. We used a container
block to express the department relationship. The head of the department can be
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connected to the department block. Person-principal blocks can be embedded into
the department block to express which employees work in the given department.
Person-principal blocks can express the hierarchical relationship among employees
and principals, however it is more inconvenient and less expressive than in the
connection-based approach because blocks have to be duplicated. Figure 4 shows
the same model as in the previous example visualized by the principles of the
containment-based approach.

In general, for a no-flow domain it is not recommended to use exclusively the
concepts of the containment-based approach. On the other hand, in some cases it
can be advantageous to let embedding of visual entities even for connection-based
languages.

Figure 4: Departments example in Blockly

5 Conclusions

In this paper, we presented several aspects of the classification-based systematic
approach for domain-specific visual languages. We believe that the approach can
be used as a guide while designing DSVLs. With the help of these guidelines it is
now easier to analyze the characteristics of the language and to associate it to an
appropriate solution.

We also analyzed the features of Eclipse Modeling Framework, VMTS and
Blockly based on different illustrating examples that we created for our classifi-
cation methodology. We realized that due to the limitations of Blockly, many
complex problems cannot be described expressively because aggregations, refer-
ences and composition rules are missing from its developer framework. Despite the
limitations of Blockly, it provides a flexible and easy way to learn to design DSVLs
based on containment-based aspects. Unlike Blockly, both EMF and VMTS provide
a large feature set for the abstract syntax definition, but they are not as effective
and intuitive as Blockly in the definition of containment-based languages.
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Further investigations are necessary to validate the kinds of conclusions that
can be drawn from this paper. In the future, we aim to create a framework to sup-
port the design of visual-domain specific languages based on a questionnaire built
upon the methodology presented. It would be beneficial to capture a description
of a DSVL from an end-user perspective and give recommendation based on the
specification and the specific needs of the targeted domain. The framework should
also support an intuitively usable way of designing DSVLs even for complex lan-
guage constructs and it could assist to align the design of DSVLs to best practices
and also benchmark and analyze different design processes. Further studies should
investigate how to consider the extensions of existing languages (e.g UML profiles)
in the context of our methodology. Therefore, we are also working on new illus-
trative examples and analyzing other existing approaches to create a more detailed
classification-based systematic approach.
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Operations on Signed Distance Functionsa

Csaba Bálintb, Gábor Valasekb, and Lajos Gergób

Abstract

We present a theoretical overview of signed distance functions and ana-
lyze how this representation changes when applying an offset transformation.
First, we analyze the properties of signed distance and the sets they describe.

Second, we introduce our main theorem regarding the distance to an offset
set in (X, || · ||) strictly normed Banach spaces. An offset set of D ⊆ X is the
set of points equidistant to D. We show when such a set can be represented
by f(x) − c = 0, where c 6= 0 denotes the radius of the offset. Finally, we
apply these results to gain a deeper insight into offsetting surfaces defined by
signed distance functions.

Keywords: signed distance functions, sphere tracing, computer graphics

1 Introduction

Surface representations for real-time graphics rely on linear approximations. With
the advent of hardware accelerated tessellation units, parametric surfaces gained
momentum in real-time computer graphics; however, implicit mappings are still
considered infeasible for high-performance applications [2, 4, 6, 7, 9, 13].

Nevertheless, implicit functions simplify some otherwise challenging operations.
For example, blending between different shapes does not necessitate the explicit
representation of the target topologies when both objects are represented implic-
itly [3, 19]. Similarly, the result of set operations on these objects can be trivially
computed [7, 12, 14, 15].

Our paper focuses on a particular class of implicit representations, signed dis-
tance functions (SDFs). Hart noted in [10] that SDFs could be rendered efficiently
using a technique called sphere tracing [2, 9, 16]. This algorithm and the constant
evolution of GPUs opened up the possibility of incorporating implicit representa-
tions into real-time applications, as exemplified by [1, 6, 18] more recently.

We discuss this class of functions and highlight their theoretical aspects that
have practical consequences in rendering. In particular, we focus on offsetting
SDF representations. Although both offsets and SDFs are simple concepts, their

aThe project has been supported by the European Union, co-financed by the European Social
Fund (EFOP-3.6.3-VEKOP-16-2017-00001).

bEötvös Loránd University, E-mail: {csabix,valasek,gergo}@inf.elte.hu

DOI: 10.14232/actacyb.24.1.2019.3
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Figure 1: A scene modeled with and rendered using signed distance functions.

combination does not always yield the expected simplicity when one tries to find a
representation for the result, as highlighted in Section 6. Our paper begins with a
set-theoretic overview in Section 2. We base our theorems upon these results.

Section 3 present a general algorithm for displaying surfaces defined by implicit
functions, whereas Section 4 demonstrates the power SDFs provide in speeding up
such tasks and their practical importance.

In Section 5, we propose a slightly different definition for signed distance func-
tion than seen in [10]. We show that the two definitions are equivalent.

We present our main result in Section 6. We show that it is possible to represent
the radius c 6= 0 offset of f(x) = 0 by f(x)− c = 0; however, f − c only produces

a signed distance function on the subset of R3 for which f(x)
c ≥ 1.

It has been observed that adding a constant value to a signed distance function
produces a function that defines the offset set of the original surface [8, 10, 17].
In this paper, we analyze this operation mathematically and explain the reasons
behind the effectiveness and limitations of the practical solutions.

2 Set-theoretic basics

This section reviews the definitions and results from the literature our paper relies
on. Dyer et al. explain the topic in more detail in [5]. Let (X, d) denote a metric
space. We also use d : X ×X → [0,+∞] to denote the distance to a set.

Definition 1 (Distance to set). Let A ⊆ X,p ∈ X. Then

d(p, A) := inf
a∈A

d(p,a)
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denotes the distance of p from the set A. Let inf ∅ := +∞.

Definition 2 (Neighborhood). Let us denote the r > 0 radius neighborhood of an
element p ∈ X by

Sr(p) := {x ∈ X : d(x,p) < r} .

A ⊆ X is open if ∀a ∈ A, ∃ ε > 0 : Sε(a) ⊆ A. The set B ⊆ X is closed if
X \B is open. Note that ∅ and X are both closed and open.

C ⊆ X is compact if every open covering of it can be reduced to be of finite
cardinality. A compact set is closed and bounded, i.e. ∃R > 0 such that C ⊆ SR(0).
A bounded and closed set is compact if X is a finite dimensional metric space, for
example X = R3.

Lemma 1 (Existence of extremal element). Suppose A ⊆ Xis closed and x ∈ X
where (X, d) is a complete metric space. Then

∃a ∈ A : d(x, A) = d(x,a)

The proof for Lemma 1 can be found in [11] on page 102 for Rn, the proof is
analogous for this case [11, 5].

Furthermore, we denote the interior of the set A ⊆ X as

intA := {a ∈ A | ∃ ε > 0 : Sε(a) ⊆ A }

The closure of A ⊆ X is

A := {a ∈ X | ∀ ε > 0 : Sε(a) ∩A 6= ∅}

The boundary of A is denoted by ∂A := A \ intA. For any set A ⊆ X it follows
from the definitions that intA is open, A and ∂A are closed sets.

3 Raymarching

From now on, let us consider surfaces defined by an f : R3 → R implicit function,
such that the surface is the {f ≡ 0} := {x ∈ R3 | f(x) = 0} level-set. For example,
the characteristic function 1−XD = XR3\D : R3 → {0, 1} is an implicit function of
any D ⊆ R3 set.

A ray is a half line originating from a particular point, for example, the camera.
Let us represent rays by their origin p ∈ R3 and unit length direction vector
v ∈ R3, ‖v‖2 = 1. Then a ray is written as

s(t) := sp,v(t) := p + t · v ∈ R3 (t ≥ 0) .

Therefore, the ray-surface intersection problem can be expressed as a root finding
problem. We need to find the smallest positive root of the

f ◦ s : [0,+∞)→ R
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Algorithm 1 Raymarching a continuous implicit surface

Input: Ray defined by ppp and vvv ∈ R3, where ‖vvv‖2 = 1

Input: Continuous implicit function f : R3→R
Input: ∆t > 0 step size

Output: t ∈ [0,+∞) distance traveled along the ray

1: t := 0; f0 := f(s(0)); f1 := f(s(∆t))
2: for t < tmax and f0 · f1 > 0 do
3: t := t+ ∆t; Raymarch cycle – the bottleneck
4: f0 := f1;
5: f1 := f(s(t));
6: end for
7: t := RefineSolution

(
f ◦ s, [t−∆t, t]

)
; For example, using secant method

8: return t

composite function. Usually, one can infer that f is continuous in which case
raymarching that is shown in Algorithm 1 can be used to find an approximate
solution. The method takes ∆t sized steps along the ray looking for two consecutive
values of different signs.

Despite being a popular algorithm for implicit surface rendering, raymarching
is expensive, and it may even skip over solutions, causing visible artifacts. To
provide a better ray tracing algorithm, f needs to be restricted even further which
is explained in the next section.

4 Sphere Tracing

Throughout this section, we adapt the definitions from Hart [10]. Let us consider
the Banach-space (R3, ‖.‖2) where we denote the induced metric as d(x,y) :=
‖y − x‖2 (x,y ∈ R3).

Definition 3 (Distance function). f : R3 → [0,+∞) is a distance function if

f(p) = d(p, {f ≡ 0}) (∀p ∈ R3) .

Example. The distance function of the unit sphere is

fsphere(p) = d
(
p,S1(0)

)
= max

(
‖p‖2 − 1, 0

)
(p ∈ R3) .

Definition 4 (Unbounding sphere). The unbounding sphere for the distance func-
tion f : R3 → [0,+∞) at p ∈ R3 is the open neighbourhood Sf(p)(p).

It follows from Definition 3 that there are no surface points closer to p than
f(p), i.e. Sf(p)(p) ∩ {f ≡ 0} = ∅ .
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Figure 2: The sphere tracing algorithm takes distance sized steps, thereby it does
not overstep a solution, yet it converges quickly. Each step defines an unbounding
sphere that is disjoint from the surface.

Algorithm 2 Sphere tracing a surface defined by a distance function

Input: Ray defined by ppp and vvv ∈ R3, where ‖vvv‖2 = 1

Input: Distance function f : R3→R
Output: t ∈ [0,+∞) distance traveled along the ray

1: t := 0; i := 0;
2: for i < imax and f(p + t · v) > ε do
3: t := t+ f(p + t · v);
4: i := i+ 1;
5: end for

This property shows that sphere tracing shown in Algorithm 2 can be used
to find the first ray-surface intersection robustly. The algorithm iteratively takes
distance-sized steps along the ray; thus no ray-surface intersection is skipped while
large empty spaces are traversed quickly.

As a consequence of the above, as we approach the surface along the ray, the
distance to the surface cannot change more than what we have travelled. We
generalize this using the Lemma 2 and Corollary 1 below.

Lemma 2. Let the set A ⊆ Rn be a closed set and x,y ∈ Rn. Then∣∣d(x, A)− d(y, A)
∣∣ ≤ d(x,y) .

Proof. Since A is a closed set, there exist x′,y′ ∈ A such that d(x,x′) = d(x, A)
and d(y,y′) = d(y, A) according to Lemma 1. Using the definition of the distance,
we provide a lower bound to d(x,y′) and d(y,x′) respectively. The upper bound
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is given by the triangle inequality in the xyy′ and yxx′ triangles, respectively:

d(x,x′) ≤ d(x,y′) ≤ d(x,y) + d(y,y′) , (1)

d(y,y′) ≤ d(y,x′) ≤ d(x,y) + d(x,x′) . (2)

Using (1) for the upper bound and (2) for the lower bound of d(x,x′) we have:

d(y,y′)− d(x,y) ≤ d(x,x′) ≤ d(y,y′) + d(x,y) .

This proves Lemma 2.

Definition 5 (Lipschitz constant). Let the function f : R3 → R be arbitrary, we
define the set of Lipschitz constants as

Lip f :=
{
L > 0 : ∀x,y ∈ R3 : |f(x)− f(y)| ≤ L · d(x,y)

}
. (3)

The function f is Lipschitz continuous if Lip f 6= ∅.

Figure 3: A visualization for the proof of Lemma 2 and Proposition 1.

Corollary 1. Every signed distance function is Lipschitz continuous and their
smallest Lipschitz constant is 1. Formally:

∀ f : R3 → R SDF : inf Lip f = min Lip f = 1 .

Proof. First, the Lemma 2 above implies that Lip f ≥ 1 element-wise with D := A.
Second 1 ∈ Lip f , because if y := x′, then y = x′ = y′ ∈ A in the proof, then
inequalities turn to equities in Equation 1.
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5 Signed Distance Functions

Definition 6 (SDF). If f : R3 → R is continuous and |f | is a distance function,
then f is a signed distance function.

Signed distance functions (SDFs) can represent an entire volume by classifying
the points of R3 belonging to its ’interior’ ({f < 0}), ’exterior’ ({f > 0}), or to
the surface ({f ≡ 0}). For example, R3 3 p → ‖p‖2 − 1 ∈ [−1,+∞) is a signed
distance function of the unit sphere.

Note that distance functions are a subset of SDFs, but they cannot differentiate
between interior and surface points. For signed distance functions, we give the
following equivalent definition:

Proposition 1 (SDF equivalence). The function f : R3 → R is a signed distance
function if, and only if there exists a ∅ 6= D ⊆ R3 set for which

f(p) =

{
d(p, ∂D) if p 6∈ D
−d(p, ∂D) if p ∈ D . (4)

Proof. First, let us assume that f is defined according to equation (4). In this case,
it follows that |f | is a distance function of the ∂D = {f ≡ 0} set. Using Lemma 2
with A := ∂D, with x,y ∈ {f ≥ 0} ⊆ R3 we know that∣∣f(x)− f(y)

∣∣ =
∣∣d(x, ∂D)− d(y, ∂D)

∣∣ ≤ d(x,y),

and therefore, f is uniformly continuous function on the set {f ≥ 0}. One can
analogously show that f is continuous on the set {f ≤ 0}.

Assuming that |f | is a distance function where f : R3 → R is a continuous
function, we have to show that the D := {f ≤ 0} set satisfy equation (4). It indeed
does, because ∂D = {f ≡ 0}, and |f(p)| = d

(
p, {f ≡ 0}

)
, and if, for example,

f(p) > 0, then f(p) = d(p, ∂D) and p 6∈ D.

Hart [10] defined signed distance functions that are distance functions in ab-
solute value. Definition 1 is similar to that of Hart, but the represented object
D appears in it. Moreover, the sign is not allowed to jump on the same side of
the surface, so there is a distinct ”inside” and ”outside” region associated with the
surface. However, this intuitive definition lacks the simplicity of the original, hence
the need for Definition 6.

6 Offset theorem

Let us investigate the geometric operation of offsetting on SDF representations.

Definition 7 (Offset surface). The offset surface at signed distance c ∈ R of the
surface defined by the SDF f : R3 → R is the {f ≡ c} (level-)set.
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Intuitively, offsets are obtained by inflating or deflating an initial volume by
some fixed radius c ∈ R. Contrary to the naive assumption, however, offsets cannot
be represented by f(x) − c = 0 in general, see the counterexample on Figure 5.
Nevertheless, there’s a subset of R3 where the SDF of the offset can be written this
way, as shown in Theorem 1.

First, we define strict convexity. Strictly convex Banach spaces include Rn, Cn,
and Lp spaces with p-norms, if 1 < p < +∞.

Definition 8 (Strictly convex normal space). The (X, ‖·‖) normal space is strictly
convex, if for all x,y, z ∈ X, the following holds:

d(x, z) + d(z,y) = d(x,y) ⇐⇒ ∃λ ∈ [0, 1] : z = (1− λ) · x + λ · y ,

where d(x,y) denotes the induced metric, i.e. d(x,y) := ‖y − x‖ (x,y ∈ X).

Second, the definition of the open offset set follows, which is a generalization of
neighborhood in Definition 2.

Definition 9 (Offset set). For any D ⊆ X in the metric space (X, d), one can
define an open offset set from D with r ≥ 0 range, as

Sr(D) := {x ∈ X : d(x, D) < r} .

Finally, we present the main contribution of this paper in the following

Theorem 1 (Offset theorem). Let (X, ‖ · ‖) be a strictly convex Banach space and
D ⊆ X closed. Then for any c ≥ 0,

∀p ∈ X\Sc(D) : d(p, D)− c = d
(
p,Sc(D)

)
. (5)

(a) Proof of d(p, D)− c ≥ d
(
p,Sc(D)

)
(b) Proof of d(p, D)− c ≤ d

(
p,Sc(D)

)
Figure 4: A visualization of the proof for the offset theorem.
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Proof. Since the set containing the single element {p} ⊂ R3 is compact and D is
closed, the extremal points exist between the two sets according to Lemma 1:

∃p0 ∈ D : d(p, D) = d(p,p0) .

The e(t) := (1 − t) · p0 + t · p ∈ X, (t ∈ [0, 1]) is the parametric form of the p0p
line segment. First we show that

∀x ∈ p0p : d(x,p0) = d(x, D) .

Let us prove this by contradiction: let x0 ∈ D such that d(x,x0) < d(x,p0). Using
the definition of distance to the set, the triangle inequality in xx0p0, the indirect
assumption, and the strict concavity, in order, we have the following:

d(p, D) ≤ d(p,x0) ≤ d(p,x) + d(x,x0)

< d(p,x) + d(x,p0) = d(p,p0) = d(p, D)

Which is a contradiction, so all x ∈ p0p, the p0 is a closest point in D. When
x = e(t), one can deduce that the distance from D along e is linear:

d(e(t), D) = d(e(t),p0) = t · d(p,p0) (t ∈ [0, 1]) . (6)

Because 0 ≤ c ≤ d(p, D), pc := e

(
c

d(p,p0)

)
∈ p0p. Then

{pc} = ∂Sc(D) ∩ p0p

because the offset surface ∂Sc(D) = {x ∈ X : d(x, D) = c} contains pc since
d(pc, D) = c; moreover, [0, 1] 3 t→ d(e(t), D) function is strictly increasing, so the
intersection is unique. This implies half of the proposed equality (5), because

d
(
p,Sc(D)

)
= d
(
p, ∂Sc(D)

)
≤ d(p,pc) = d(p,p0)− d(p0,pc) = d(p, D)− c .

For the other direction, let us assume indirectly that d(p,Sc(D)) < d(p,pc), so
there exist an yc ∈ Sc(D) such that d(p,yc) < d(p,pc) as it is shown on Figure 4b.
Since D is a closed set, yc also has a closest point in D that we denote y0 ∈ D.
Using the definition for the distance, the triangle inequality in ycy0p, the indirect
assumption, and that

d(yc, D) = d(yc,y0) ≤ c ,

we arrive at a contradiction:

d(p, D) ≤ d(p,y0) ≤ d(p,yc) + d(yc,y0)

< d(p,pc) + c = d(p,p0) = d(p, D) .

Remark. i). Because equation (6) is generally false for t 6∈ [0, 1], p must not be
inside Sc(D).
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ii). Note that the proof does not require that the closest point p0 to be unique,
any one of them will suffice.

iii). Consider the signed distance function form of this theorem, Corollary 2. Be-
cause of equation (6), if f is differentiable at point x ∈ pp0 ⊆ R3, then
∇f(x) = p−p0

‖p−p0‖2 .

We can now state the theorem on offsetting SDFs:

Corollary 2 (Offset of an SDF). If f : R3 → R is an SDF, then for any 0 6= c ∈ R
offset, the function f − c is an SDF on the set

{
f
c ≥ 1

}
.

Figure 5: A counterexample for Corollary 2, when the condition does not hold.

Remark. i).
{
f
c ≥ 1

}
=

{
{f ≤ c} if c < 0
{f ≥ c} if c > 0

.

ii). The theorem is untrue for other points, as a counterexample is demonstrates
this on Figure 5. Let c < 0, and p be a point on a highly convex point on the
surface as seen on the figure, so {f ≡ 0} 3 p 6∈

{
f
c ≥ 0

}
. Then, let p0 be a

closest point to p on the original surface {f ≡ 0}, and pc be the closest point
on offset surface {f ≡ c}. Clearly p = p0, but because of the said convexity,
|c| < d(p0,pc) = d(p, {f ≡ c}); and therefore, d(p, {f ≡ 0}) − c = −c 6=
d(p, {f ≡ c}).

7 Conclusion

This paper presented a theoretical overview of surfaces defined by signed distance
functions. We formulated equivalent definitions to emphasize the geometric prop-
erties of this implicit representation.

We defined an abstract offset set of an arbitrary set in Banach spaces. Our
main theoretical contribution is a theorem stating a distance equivalence for points
outside of the offset set.
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Most importantly, Theorem 1 exposes a way to compute a signed distance func-
tion of an offset surface defined by an SDF by merely subtracting the offset radius
from the function. However, this formulation is limited to the exterior of the offset
volume, and the error can be arbitrarily large as we demonstrated on Figure 5.

The simple subtraction formula for offsetting a signed distance function was
often used in practice, but it was only validated empirically. Our paper gave this
missing guarantee and explained when this formula does not work.
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Multi Party Computation Motivated by the

Birthday Problem∗

Péter Hudobaa and Péter Burcsib

Abstract

Suppose there are n people in a classroom and we want to decide if there
are two of them who were born on the same day of the year. The well-
known birthday paradox is concerned with the probability of this event and
is discussed in many textbooks on probability. In this paper we focus on
cryptographic aspects of the problem: how can we decide if there is a colli-
sion of birthdays without the participants disclosing their respective date of
birth. We propose several procedures for solving this generally in a privacy-
preserving way and compare them according to their computational and com-
munication complexity.

Keywords: secure multi-party computation, birthday paradox,
privacy-preserving, communication complexity

1 Introduction

1.1 Description of the problem

The birthday paradox or birthday problem [14, 18, 1] investigates the following
question: n people are selected at random from a large population. What is the
probability that at least r people share the same birthday? It’s usually referred to
as a paradox because of the unintuitively large probability of over 50% already for
the relatively small value of n = 23 and r = 2.

In the present paper we focus on cryptographic aspects of the problem. We
examine whether and how the n participants can decide if r of them share the
same date of birth without any of them publicly announcing his or her birthday,
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using secure communication. This is a so-called multi-party computation, see e.g.
Chapter 7 of [9] or [10].

The n = 2 case is well-known and named Tiercé or socialist millionaires’ prob-
lem. This is similar to Yao’s millionaires’ problem originally introduced in [19, 20]
where the two participants want to compare their secrets (decide which one is
larger). Later, other solutions were proposed, e.g. [5],[13],[16], [15] but all of them
consider the case of 2 participants.

A first idea would be to use pairwise socialist millionaires’ protocols for the
general n-participant version. However, in case of equality the two participants
involved would instantly learn each other’s secrets which we want to avoid when
n ≥ 3. In what follows, we deal with the r = 2 case but general n.

More generally and formally we have a finite but possibly large set of possible
values V (corresponding to possible birthdays) and each of n participants holding
a secret value xi ∈ V (their respective birthdays). We want to compute, using a
secure multi-party computation, the following function:

f(x1, . . . , xn) =

{
1, if ∃i, j ∈ {1, . . . , n} : i 6= j ∧ xi = xj

0, otherwise
(1)

1.2 Security assumptions and comparison of protocols

In this paper we make the assumption on the participants’ behavior called honest
but courious or semi-honest. The participants are honest in following the protocol
which means they do not poison or dilate the data, but if they can gain information
without poisoning the algorithm, they will do it. With these conditions we want
to make sure no one learns any other participant’s secret.

We can characterize the level of privacy of a secure multi-party scheme with
numbers adva (respectively advp) corresponding to the minimal number of active
(resp. passive) coordinated adversary participants who are able to gain access to
secrets of the others, while still following the protocol. Below, when we call a
scheme ”adv out of n” scheme, we’ll always mean adva = adv.

At the end of each section, we briefly discuss the running time and communi-
cation complexity of the scheme. We always consider only the slowest participant,
unless the others are idle. We also restrict our attention to data sending (rather
than receiving), because all communication is symmetric in all of the described
algorithms.

We will express the running time in terms of basic operations, using the following
notations. T (M, l) and T (A, l) are the running time in order of the multiplication
and the adding for l-word unsigned integers. T (C, l) is the running time of sending a
l-word message, T (R, l) is the running time of generating a l-word random number.
As a shorthand for integers that fit in one word we write: T (M) = T (M, 1),
T (C) = T (C, 1), T (R) = T (R, 1). Finally, W is the number of bits in one word.
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2 Multi-party protocols for the birthday problem

2.1 Voting based

Below, by voting protocol we mean a multi-party computation where each partici-
pant casts a ’yes’ or ’no’ vote, and the protocol computes the number of ’yes’ and
’no’ votes. The birthday problem can be solved using voting protocols [6]. In a
näıve approach, we perform a voting for all possible values in V . Whenever a value
receives more than one vote, we know there is a collision. Unfortunately, this is
unfeasible when |V | is large (for birthdays it could still work).

In order to improve the efficiency of the approach, we can partition the set V
of possible values into subsets Si, which we call slots. First we perform the votes
for the subsets and then focus on values from those subsets Si that have received
at least two votes. This approach can reduce the number of the required voting
rounds. Clearly, if the number of slots is too small, then there might be a lot of
slots with at least two values and we have to test all values in these slots. On the
other hand, if the slots are two small, then the number of slots is not much smaller
than the number of possible values.

In the following we analyze the possible slot numbers in worst and average cases.
We denote the number of possible values by k ∈ Z+, the number of participants by
n ∈ Z+ and the number of slots by q ∈ Z+. We try to distribute the possible values
among the slots as equally as possible and analyze the optimal choice of parameter
q.

WorstCase If we distribute the participant values equally to the slots, each slot

will contain
⌈
k
q

⌉
or
⌊
k
q

⌋
values. Let’s call the slots that have

⌈
k
q

⌉
values “full”

slots. Denote the number of full slots by T . Then

T =

{
q, if q | k
k − q

⌊
k
q

⌋
, otherwise

The maximal number of slots with at least 2 participant values is
r = min{

⌊
n
2

⌋
, q}. Denote the maximal number of full slots with at least

2 participant values by Tr = min {r, T}. The number of necessary voting

rounds in the worst case is q + Tr

⌈
k
q

⌉
+ (r − Tr) ·

⌊
k
q

⌋
.

In the case when q | k, we have T = q, so Tr = min{r, q} =
min{min{

⌊
n
2

⌋
, q}, q} = min{

⌊
n
2

⌋
, q}. We get r − Tr = 0, so the number of

voting rounds is q + min{
⌊
n
2

⌋
, q}kq = q + k ·min{

⌊
n
2

⌋
1
q , 1}. The derivative

w.r.t. q is 1 + k ·min{
⌊
n
2

⌋
(− 1

q2 ), 0} showing that in case of
⌊
n
2

⌋
≥ q we do

not have an optimal value of q. If
⌊
n
2

⌋
≤ q, then we have a minimum at

q =
√
k ·
⌊
n
2

⌋
.
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If we assume that q - k, then T = k− q
⌊
k
q

⌋
, so Tr = min{r, T} = min{r, k−

q
⌊
k
q

⌋
} = min{min{

⌊
n
2

⌋
, q}, k − q

⌊
k
q

⌋
} = min{

⌊
n
2

⌋
, k − q

⌊
k
q

⌋
}. In this case

the formula for the rounds gives q + Tr

⌈
k
q

⌉
+ (r − Tr) ·

⌊
k
q

⌋
= q + Tr(

⌈
k
q

⌉
−⌊

k
q

⌋
)+r ·

⌊
k
q

⌋
= q+Tr+r ·

⌊
k
q

⌋
= q+min{

⌊
n
2

⌋
, k−q

⌊
k
q

⌋
}+min{

⌊
n
2

⌋
, q}·

⌊
k
q

⌋
.

Below we approximate q +
⌊
k
q

⌋
by q + k

q in order to simplify the calculation.

• If
⌊
n
2

⌋
≥ q, then q + min{

⌊
n
2

⌋
, k − q

⌊
k
q

⌋
} + q ·

⌊
k
q

⌋
. If we remove the

floor functions then the derivative is 1 so the minimum is at one of the
boundaries.

• If
⌊
n
2

⌋
≤ q, then q + min{

⌊
n
2

⌋
, k − q

⌊
k
q

⌋
} +

⌊
n
2

⌋
·
⌊
k
q

⌋
. The derivative

after removing floor functions is 1+min{0, 0}−
⌊
n
2

⌋
· kq2 , so the minimum

is at q =
√
k ·
⌊
n
2

⌋
which is usually better than the first case.

Average case We compute the expected number of slots with at least two par-
ticipant values. This can be formulated as follows. Let f : A → B where
|A| = n, |B| = q, q < n, f chosen uniformly among all such functions.
We are interested in E(#{b ∈ B|

∣∣f−1(b)
∣∣ > 1}) =

∑
b∈B P (

∣∣f−1(b)
∣∣ >

1) = |B| · P
(∣∣f−1(b1)

∣∣), where b1 denotes the first slot. P
(∣∣f−1(b1)

∣∣) =

1 − P (
∣∣f−1(b0)

∣∣ = 1) − P (
∣∣f−1(b0)

∣∣ = 0) = 1 − n
(

q−1
q

)n−1
1
q −

(
q−1
q

)n
.

We approximate this by 1 − n
q

(
1
e

)n
q −

(
1
e

)n
q = 1 − n+q

q

(
1
e

)n
q . So the esti-

mated expected number of slots with at least 2 values is: q
(

1− n+q
q e−

n
q

)
=

q − (n + q)e−
n
q . The number of voting rounds is q + k/q

(
q − (n + q)e−

n
q

)
.

Deriving and solving for zero we get n2/q3 = ken/q and thus we can compute
the optimal choice for q.

If we assume that
⌊
n
2

⌋
≤ q and q | k, then the worst case needs q +

⌊
n
2

⌋
k
q

voting rounds. Since we assumed semi-honest behavior, we can use a simple vot-
ing algorithm with leader (we show runtime in parenthesis): every participant
sends a fragment to two others (2T (C)), everyone receives two shares and adds
to their remaining share (2T (A)) and sends the fragment of the solution to the
leader node (T (C)) who combines all received values (nT (A)). The running time

is
(
q +

⌊
n
2

⌋
k
q

)
(3T (C) + 2T (A) + nT (A)).

Remark 1. We can use a multiple hashing (several orthogonal sets of slots) too,
if k is small relative to n.

Remark 2. If user behavior is more complicated and we insist on more privacy,
there are several voting protocols to be considered, e.g. [3, 6].
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2.2 Pots

A folklore method for privately computing the average age of participants is the
following. Start with one of the participants, called the seeder, putting a piece of
paper containing a secret random value, the seed, into a pot. The seed could be
chosen e.g. uniformly among the first one thousand positive integers. Then the
participants secretly increment the value by their respective ages, one-by-one. At
the end the seeder subtracts the seed and we get the sum of the ages.

We adapt this method for the birthday problem: let there be n participants, m
seeders (m ≤ n), and k pots, initially containing 0. We start by every seeder getting
the pots and adding some random number to the number found in it (independently
for every pot). They remember that number for later. To each participant, we
assign a pot that will be responsible for taking into account the participant’s value
(birthday). When inserting their seed into the pots, the seeders also increment by
1 the value in the pot holding their secret.

Next, all non-seeder participants take the pots and add 1 to the pot assigned
to their secret, and 0 to the other pots. Finally, the seeders subtract the random
numbers they added at the beginning. The order in which the seeders perform
the final phase is shuffled compared to the initial phase in order to have different
predecessors and successors for extra privacy. We can always achieve this when
n ≥ 5 (we can find two disjoint Hamiltonian cycles in the complete graph with at
least 5 vertices).

The adding/subtracting functions can come from an arbitrary Abelian group,
e.g. exclusive or operation on a fixed length word, or a simple unsigned integer
addition/subtraction in a Zm. In order to detect collisions for values from a set of
size k, we could use a bit vector of length k. Adding a secret value of m to the pot
means flipping the mth bit of the bit vector. If all values of the participants are
distinct, then the number of the 1 bits in the final result is exactly n, otherwise we
have flipped at least one bit back to 0, reducing the number of 1 bits.

To illustrate this method with an example, imagine that 3 people want to know
if any two of them share the same favourite Star Wars movie from the original
trilogy. To indicate which movie they prefer, everyone sets a bit vector of length
three: 100 corresponds to the first movie, 010 to the second and 001 to the third
one. The bitwise XOR of the three vectors reveals whether there is a collision: a
necessary and sufficient condition for this is that the number of 1 bits is smaller
than the number of participants (colliding 1s puts out each other). In order to do
this with privacy preserved, everyone adds a random mask to the vectors which are
then subtracted at the end.

The security level of the scheme depends on the number of seeders. If not all
participants are seeders, all of the non-seeders’ values can be claimed by the two
neighboring participants, since they can simply calculate the difference. So this
scheme is 2 out of n if m < n. If all of the participants are seeders, but we do not
use the shuffling, we get 2 out of n again: in this case the neighbors can calculate
the difference of the differences and get the secret. If we do use shuffling, we get a
4 out of n scheme. Below, when the m = n case is considered, we always mean the
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shuffled version, and the non-shuffled version if m < n.
For the runtime analysis, observe that in the seeder phase we have to generate

one random number, perform two additions (add 1 or 0 to the random number and
add to the pot) and send the pot to the next seeder. This is done in max{k,m}
rounds, so the time needed is: max{k,m}(T (C)+2T (A)+T (R)). The next phase is
the value filling for non-seeders: max{k, (n−m)}(T (C) +T (A)). Finally removing
seeds: max{k,m}(T (C) + T (A)). The overall complexity is: max{k,m}(T (C) +
2T (A) + T (R)) + max{k, (n −m)}(T (C) + T (A)) + max{k,m}(T (C) + T (A)) =
max{k,m}(2T (C) + 3T (A) + T (R)) + max{k, (n−m)}(T (C) + T (A)).

2.3 Big Pot

We consider the special case where we only have one pot (unsigned integer), with k
bits, initiated by the seeders (with random numbers). After seeding, every partici-
pant flips one bit of the pot corresponding to his or her secret. Finally the seeders
remove their random numbers. If the number of one bits is not equal to the number
of participants, we found a collision. In order to avoid the attack by the neighbors,
it is also necessary to use n seeders.

The complexity of the algorithm is the following: m(T (C,
⌈

k
W

⌉
)+2T (A,

⌈
k
W

⌉
)+

T (R,
⌈

k
W

⌉
)) + (n−m)(T (C,

⌈
k
W

⌉
) + T (A,

⌈
k
W

⌉
)) + m(T (C,

⌈
k
W

⌉
) + T (A,

⌈
k
W

⌉
)) =

(m + n)T (C,
⌈

k
W

⌉
) + (2m + n)T (A,

⌈
k
W

⌉
) + mT (R).

2.4 Additive secret sharing based

In this section we consider schemes that are based on additive secret sharing.
W.l.o.g, we assume secret values are from a finite field. The secret pieces of in-
formation are split into multiple fragments and shared in the following way: every
participant holding secret xi chooses 2 random numbers xi,1, xi,2 ∈ Fpq (Fpq is a
finite field with pq element, where p is a prime, using the ordinary + operator) and
then calculates xi,3 = xi − xi,1 − xi,2. Clearly xi = xi,1 + xi,2 + xi,3.

The problem statement (1) can be reformulated into an algebraic form (2) to
better fit secret sharing.

f = sgn

∣∣∣∣∣∣
n∏

i=1

n∏
j=i+1

(xi − xj)

∣∣∣∣∣∣
 (2)

Clearly, the product vanishes if and only if there is a collision of values.
In the following assume that there are n participants and denote the ith

participant’s secret by xi = xi,1 + xi,2 + xi,3, i = 1, . . . , n. Two of the three
shares can be distributed, because without the third share it does not give
any information for an adversary. In our approach, if q participants perform
part of the protocol, we allow the ith participant to have access to shares
{xj,k | ∀j ∈ {1..q},∀k ∈ {1, 2, 3} : i 6≡ k mod 3}.

Expanding the product in (2) gives an exponentially growing formula w.r.t. n, so
we will relax privacy conditions and perform multiple collision-detection protocols
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for smaller subsets of participants. We will consider the general collision detection
protocol where collisions to be detected are given by a graph. For example, with
people seated in a circle, we might only be interested in two neighbors having the
same birthday, which corresponds to the collision-detection graph being a cycle.

If we cover all edges of the n-vertex complete graph by smaller collision-detection
graphs (possibly redundantly), then we can detect all collisions, using several iter-
ations on a more friendly version of (2).

We consider only simple finite and undirected graphs and will use standard
graph-theoretical concepts (see e.g. [4] for graph concepts used). As usual, Kt

denotes a complete graph with t vertices, Kt,u denotes the complete bipartite graphs
with t and u sized parts, Pt denotes a vertex disjoint path of length t − 1, and
St denotes the ”star” graph with t edges (K1,t−1). Below we focus on how the
generalized version of the socialist millionaires’ protocol can be performed on small
collision-detection graphs.

2.4.1 SMP (K3)

In the 3-participant case we want to find sgn (|(x1 − x2)(x1 − x2)(x2 − x3)|). In
Table 1 we show which shares are made available to which participant in an en-
crypted way (one-to-one communication).

Table 1: Shares that one participant holds

1. participant

x1,1 x1,2 x1,3

x2,2 x2,3

x3,2 x3,3

2. participant

x1,1 x1,3

x2,1 x2,2 x2,3

x3,1 x3,3

3. participant

x1,1 x1,2

x2,1 x2,2

x3,1 x3,2 x3,3

Expanding the product, one finds that most terms can be computed by at least
one participant individually. The part of the formula missing is (3).

2x12x13x21−2x12x13x31−2x12x21x23 +2x13x31x32 +2x21x23x32−2x23x31x32 (3)

With the help of a 4th participant, we can compute each of the summands
because the necessary fragments can be sent to the helper without revealing any of
the secrets. The fourth participant does not share a secret in this part.

Covering Kn by copies of K3 graphs is not entirely trivial. The number of
copies of K3 needed is trivially between

(
n
2

)
and

(
n
2

)
/3. The latter value is obtained

by disjoint copies in the case of some special values of n using finite geometries.
The overlapping decomposition a graph into the minimum number of complete
subgraphs is NP-complete in general [11, 7]. There are polynomial time algorithms
that creates cover by trees, K1,k or P4 with overlap 2 [2]. In [17] it is proved that
optimal covering is polynomial with Sk and Pk graphs. Covering a graph with
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complete bipartite subgraphs, but not with a fixed size is discussed in [12]. The
hardness of lane covering is discussed in [8]. Note that non-disjoint covers by small
collision-detection graphs can leak information: if e.g. two participants detect a
collision in two distinct 3-tuples with both of them involved in the collisions, the a
posteriori probability of the two of them colliding increases largely.

Overall the collision detection protocol with SMP (K3) gives us an extra level
of privacy compared to the pairwise socialist millionaires’ protocol without adding
to much computational overhead.

2.4.2 SMP (P3)

Another approach computes only (x1 − x2)(x2 − x3) for three participants, mean-
ing we cover our complete graph with P3 graphs. There is no need for a helper
participant to do this type of sub protocol. The formulas for the participants can
be seen in (4).

f1 =x11x23 − x11x32 + x12x23 − x12x33+

x13x22 + x13x23 − x2
22 − x13x32 + x22x32 + x23x32 + x23x33

f2 =x11x22 − x11x31 + x13x21 − x13x31−
x13x33 − 2x21x23 − x2

23 + x21x31 − 2x22x23 + x22x31 + x23x31

f3 =x11x21 − x11x33 + x12x21 + x12x22−
x12x31 − x12x32 − x2

21 − 2x21x22 + x21x32 + x21x33 + x22x33

(4)

Theorem 1 (Theorem B. from [17]). Let p and q nonnegative integers, let n and k
be positive integers such that n ≥ 4k and k(p+q) =

(
n
2

)
, and let one of the following

conditions hold:
(1) k is even and p ≥ k

2 ,
(2) k is odd and p ≥ k.
Then there exists a decomposition of Kn into p copies of Pk+1 and q copies of Sk+1.

By Theorem 1, we can prove that we can decompose a complete subgraph with
at least 4 vertices into P3 graphs if 4 | n or 4 | (n − 1). The theorem gives the

number of covering graphs p = n(n−1)
4 .

If 4 | n, then every participant in one round generates two random num-
ber (2T (R)) subtracts two to achieve the secret fragmenting (2T (A)), sends two
fragments (4T (C)) to the other participants (2-2 share to each), has 11 multi-
plications (11T (M)) and additions (11T (A)) and finally they share the fi part
of the solution to a leader in the group (T (C)). We have n

2 rounds, so we get
n
2 (11T (M) + 13T (A) + 5T (C) + 2T (R)) for the overall running time.

2.5 SMP (2K2)

A 4-participant approach that performs subprotocol based on 2K2 graphs (see
Figure 1 (c)) can also solve the problem without a helper. The fourth participant’s
fragments can be seen in Table 2.



Multi Party Computation Motivated by the Birthday Problem 37

Table 2: Shares that one participant holds in 4 participant case

4. participant

x1,2 x1,3

x2,2 x2,3

x3,2 x3,3

x4,1 x4,2 x4,3

If we substitute the fragments and expand the (x1 − x2)(x3 − x4) we get the
participants formulas (5). Trivially a disjoint cover can be built up of the complete
graph by two lines if 4 | n or 4 | n− 1. If 4 | n, then in each round, no participant
is idle.

f1 =x11x32 − x11x42 − x11x43 + x12x32 − x12x42

− x22x33 + x22x42 − x23x32 − x23x33

f2 =x13x31 + x13x33 − x21x31 − x21x33 + x21x43

+ x22x41 + x22x43 − x23x31 + x23x43

f3 =x11x31 + x11x33 − x11x41 + x12x31 − x12x41

− x21x32 + x21x41 + x21x42 − x22x31

f4 =x12x33 − x12x43 + x13x32 − x13x41 − x13x42

− x13x43 + x23x41 + x23x42 − x22x32

(5)

The complexity is as follows: every participant in one round generates the shares
(2T (R) + 2T (A)), sends two fragments (6T (C)) for all of the other participants,
and does 9 multiplications (9T (M)) and additions (9T (A)) and finally shares the
fi part of the solution with a leader in the group (T (C)). We have n

2 rounds, so
we get n

2 (9T (M) + 11T (A) + 7T (C) + 2T (R)).

2.6 Other collision-detection graphs

We also experimented with other collision-detection graphs. We expanded the
formulas for different graphs and distributed the fragments by a randomized greedy
algorithm. Figure 1 shows how many participants are needed for the different
graphs used.

3 Comparison and conclusion

Some algorithms have some restrictions on the number of participants for which
they can be applied. Leakage means some information that is unavoidably leaked
in case of collisions. In Table 3, we compare the algorithms by the level of privacy,
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(a) P3(3) (b) K3(4) (c) 2K2(4) (d) P4(5) (e) K1,3(5)

(f)C4(14) (g) paw(14) (h) diamond(59) (i) K4(253)

(j)P2 ∪ P3(6) (k) 3K2(7)

Figure 1: Graphs with number of necessary participants
Source: http://www.graphclasses.org/smallgraphs.html (reach: 2018-09-05)

the restrictions and show how many active adversaries in the system can claim any
information of any other participant in the worst case. In Table 4 the runtimes can
be seen.

Table 3: Adversary tolerance, most important information leakage and restrictions
of the algorithms

Method name Adversary Leaked information Restriction

Voting based 2
What is the

duplicated value

Pots (m = 1) 2
What is the

duplicated value

Pots (m = n) 4
What is the

duplicated value
n ≥ 5

Big pot (m = 1) 2
How many

collisions exist

Big pot (m = n) 4
How many

collisions exist
n ≥ 5

SMP (P3) 2
Equality guess with

1
2 probability

4 | n ∧ n ≥ 8

SMP (2K2) 2
Equality guess with

1
2 probability

4 | n ∨ 4 | n− 1
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Table 4: Estimated runtime of algorithms based on base functions (addition, mul-
tiplication, random number generation and communication)

Method name Runtime

Voting based
(
q +

⌊
n
2

⌋
k
q

)
(3T (C) + 2T (A) + nT (A))

Pots (m = 1)
k(2T (C) + 3T (A) + T (R))+

max{k, (n− 1)}(T (C) + T (A))
Pots (m = n) max{k, n}(2T (C) + 3T (A) + T (R)) + k(T (C) + T (A))

Big pot (m = 1) (n + 1)T (C,
⌈

k
W

⌉
) + (n + 2)T (A,

⌈
k
W

⌉
) + T (R)

Big pot (m = n) 2nT (C,
⌈

k
W

⌉
) + 3nT (A,

⌈
k
W

⌉
) + nT (R)

SMP (P3) n
2 (11T (M) + 13T (A) + 5T (C) + 2T (R))

SMP (2K2) n
2 (9T (M) + 11T (A) + 7T (C) + 2T (R))

Let us estimate the runtime functions in the following way T (M) = A · T (A) =
R ·T (R), T (C) = C ·T (M) and let T (A, r) = r ·T (A), T (R, r) = r ·T (R), T (C, r) =
r · T (C) and let W = 64 (the number of bits in one number). This is a reasonable
approximation on modern architectures and software.

Table 5: Comparing runtimes of algorithms in T (M) with multiple parametrizations

Parameters
k 30 365 365 365 100
n 30 30 30 30 1000
C 5 5 20 2 5
A 1/3 1/3 1/3 1/3 1/3
R 1 1 1 1 1

Method estimations
Voting based 1089 3798 10458 2466 156078
Pots (m = 1) 520 6327 22752 3042 6528
Pots (m = n) 520 6327 22752 3042 12533

Big pot (m = 1) 167 1000 3790 442 10680
Big pot (m = n) 360 2160 7560 1080 24000

SMP (P3) 595 595 1720 370 19833
SMP (2K2) 705 705 2280 390 23500

The SMP (P3) is worse than SMP (2K2) only if 1 + A > C, which is a really
unlikely case. Clearly the pitfall of the pot algorithms is the big k value.

When k and n are small, the big pot seems the most reasonable choice, but
as k gets bigger, it becomes infeasible. The graph-based approaches have strong
restrictions 4 | n∨4 | n−1. It can be seen in Table 5 that the simple pots algorithm
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becomes the best when n is large but k remains small.
In future work we plan to create a scheme based on multiple different graphs to

avoid restrictions and achieve the best performance at the same time.
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Benchmarking Graph Database Backends —

What Works Well with Wikidata?

Tibor Kovács, Gábor Simon, and Gergely Mezei

Abstract

Knowledge bases often utilize graphs as logical model. RDF-based knowl-
edge bases (KB) are prime examples, as RDF (Resource Description Frame-
work) uses graph as logical model. Graph databases are an emerging breed of
NoSQL-type databases, offering graph operations to process and manipulate
data. Although there are specialized databases, the so-called triple stores,
for storing RDF data, graph databases can also be promising candidates for
storing knowledge. In this paper, we benchmark different graph database im-
plementations loaded with Wikidata, a real-life, large-scale knowledge base.
Graph databases come in all shapes and sizes, offer different APIs and graph
models. Hence we used a measurement system, that can abstract away the
API differences. For the modeling aspect, we made measurements with differ-
ent graph encodings previously suggested in the literature, in order to observe
the impact of the encoding aspect on the overall performance.

Keywords: graph database, knowledge base, Wikidata, benchmark

1 Introduction

Representing knowledge as a graph seems to be a natural choice from several as-
pects. People even without any specialized technical or natural science knowledge
often organize concepts and relations between the concepts as nodes connected by
edges. Some knowledge representation techniques also embraced this abstraction:
RDF [21] represents metadata as a graph. Even the concept of knowledge graph
has been floating around in recent years, without a clear definition [23]. We use
this concept aligned with [26]: an RDF graph encoding a set of knowledge. A set
of standards and technologies are built around the RDF concept. The so-called
triple stores [15] emerged, a form of storage engines optimized to store a massive
amount of RDF-modelled data. SPARQL standard [27] was also introduced as a
query language to roam the RDF graphs.

In the DBMS world, graph as a data model is used since the dawn of database
systems. As the NoSQL movement gained traction and as problem spaces with
large-scale highly interconnected schemas—such as network simulation and social
networks—demanded, a new family of NoSQL databases emerged, replacing the
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key-value and the document concepts with graphs. The landscape of NoSQL graph
databases (GDBs) is in flux even today, with various graph models, e.g., property
graphs, hypergraphs, RDF graphs [42, 19], without standardized APIs, and even
without a clear definition of a native graph database [41]. In our research, we fo-
cused on GDBs offering property graph model through Apache Tinkerpop API [13],
a widespread property graph framework.

While connecting the dots above, storing knowledge represented as a graph in a
database specialized to store graphs also seems a natural choice. However, one has
to choose a graph database implementation first, that in turn determines the graph
model and the API. Another decisive aspect is the graph encoding method. The
RDF model gives a straightforward encoding for basic knowledge structures, how-
ever, there are different encoding models for reification [29], i.e., statements about
statements. Reification is extensively used in KBs with reference management,
where every statement should be backed up by external sources.

In order to help with these decisions, we selected a few graph database imple-
mentations and loaded with the same real-life, large-scale dataset, then queried
with the same set of queries randomly generated from predefined query patterns.
We run different measurements with different reification strategies. From the tim-
ing result of the query runs, we were able to construct the performance profile of
each database—encoding strategy combination.

Our research aims to determine the performance characteristics of utilizing
graph databases in various problem spaces. For the field of KBs, in the early phase,
we worked with an algorithm-generated graph. Our initial results [34] showed
counter-intuitive performance trends where more selective queries run slower than
queries with more unbound values. In [30] the authors also encountered similar
phenomena with a real-life dataset.

In this phase of our research, we also used Wikidata data, but we chose the
databases exclusively from the family of NoSQL graph databases.

In this paper, we review the most important results connected to the research
area. In Section Related Work, we present other’s work related to this paper: bench-
marks using Wikidata in which graph databases are involved and possible modeling
solutions to the problem of reification. In Section Background, we describe the rel-
evant part of the previous phase of the research: we give a short description of the
already existing measurement system and how it is used to measure the performance
of different DBMSs. After that, we give a detailed description of the measurement
process in Section Experimental Settings: we introduce the dataset we used in the
measurements, define the unified workflow of the benchmarking process, introduce
the investigated database implementations, reification models and query patterns,
and present the physical infrastructure on which the benchmarks were executed.
Then we describe and analyze the results we got from the measurements in the
Results section. Finally, we summarize our work, make some conclusions based on
the results and present some of our plans for further enhancements.
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2 Related Work

As performance is a key factor in the field of databases, several benchmarks have
been conducted on graph databases. These measurements usually differ in the
dataset used, in the query workloads, and in the benchmarked systems. In [32]
several GDBs were loaded with the same generated graph and evaluated using a
workload of loading, primitive graph operations, and traversals. Social networking
is one of the primary problem spaces for GDBs. In [20] Angles et al. generated
a synthetic graph with similar characteristics as a real-life social network, then
executed a workload typical to this problem space (common friends, path search,
etc.) on selected graph databases, triple stores, and relational engines. They have
found that graph databases are more scalable in compute intensive graph problems
than the concurrents.

The Linked Data Benchmark Council (LDBC)[9] is an independent authority
”responsible for specifying benchmarks [...] for software systems designed to man-
age graph and RDF data.” LDBC is continuously widening its benchmark port-
folio: it has a framework for graph analytic tasks (breadth-first search, page rank,
etc.)[31], social networking [24] and linked data (RDF)[33]. In [38] the authors
run the LDBC social network benchmark against graph databases, triple stores
and relational engines. They have found that more mature systems with heavily
optimized query execution pipelines have the advantage over the more innovative
newcomers—regardless of the database model type.

Meanwhile, the Linked Data community is looking for efficient storage solutions
for RDF data. The LDBC’s Semantic Publishing Benchmark [33] offers a measure-
ment specification for comparing the performance of RDF engines. Recently, Pan
et al.[39] surveyed the contemporary RDF benchmarks and management solutions.
Moreover, the authors run the benchmarks against distributed RDF systems. In
the end, they could not announce a clear winner, the performance depended heavily
on the type of the query workload.

One of the key aspects of the benchmark dataset, that whether is it synthetic or
real-life. Although synthetic datasets are trying to mimic some characteristics of a
real-life dataset, Duan et al.[22] pointed out that benchmark datasets are tend to
differ significantly in performance impacting metrics. In [35] Morsey et al. proposed
a benchmark dataset and workload based on a real-life knowledge base. They also
concluded that measurement results of a real-world dataset can be substantially
different from the results of a synthetic dataset.

In [29] Hernández et al. compared the performance of several triple store
databases on the same reified KB dataset. Later, as a follow-up, also Hernández
et al.[30] compared the performance of DBMS’s with different data models. They
evaluated databases from different families, including relational, graph, triplestore,
and used the publicly available and collaboratively edited knowledge base Wikidata
[21] as the dataset. Due to the diverse data models, they had to use various en-
coding strategies for different database implementations. In [34] we loaded several
graph databases with the same generated reified dataset, i.e., with an abstract, ar-
tificial knowledge base. As a natural next step, in the current phase of our research,
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we replaced the generated data with a real-life knowledge base.

3 Background

Modeling reification

The quasi-standardized way of reification was introduced in the early stages of the
RDF specification [12]. It introduces a special vocabulary and a new node for every
statement. The parts of the original statements are connected to this node with sep-
arate statements through to meta-predicates (rdf:subject, rdf:property, rdf:object)
of the special vocabulary. Then, the meta-statements can use the intermediate node
as the subject. We will be referring to this approach as standard reification. Stan-
dard reification is considered cumbersome and unnecessarily verbose. A somewhat
leaner approach is proposed by implementing n-ary relations over the RDF model
in [37]. Similarly, an intermediate node is introduced, connecting the object as well
as other claim metadata to the subject. Hartig et al.[28] introduced an extension
to the original RDF notation called RDF* by enabling using a whole statement
as the subject, resulting a much shorter and clearer notation (Figure 2). Other
reification modes like n-ary [25], singleton property [36] and named graph [29] were
also proposed in the literature.

Graph databases usually offer more elaborate graph models than the basic RDF
graph model. It seems promising that one can take advantage of these advanced
constructs throughout the modeling of the reification. In [30] the authors mapped
reified data to edge properties of the property graph model. At load time it worked,
but typical queries involved edge properties had such a poor support, that they
dropped this model. As a fallback, a form of standard reification model was imple-
mented.

Previous work

In [34], we created an easy-to-extend system for benchmarking graph DBMSs that
we enhanced in the next phase of the research. The framework can be structured
into several layers: the data source layer, the 1st conversion layer, the intermediate
representation layer, the 2nd conversion layer, and the concrete implementation
layer.

The data source layer is only responsible for providing the dataset for the mea-
surement system so that it can be any kind of information source, like a Wikidata
JSON dump or the output of a generator tool. As the experimental dataset is
quite large, the loading process can be done efficiently using the DBMSs’ bulk
loader tools. As every inspected importer tool has a different input format, we
defined an intermediate format so in case of n different input type and m different
DBMS, one had to implement only n+m converters instead of n*m, which is one
of the key factors in extensibility. The responsibility of the 1st conversion layer is
to convert the dataset from the data source layer to the defined intermediate for-
mat while the 2nd conversion layer is responsible for converting the intermediate
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format dataset to the format expected by the DBMS specific import tool. When
the dataset is loaded to a system, it goes into the concrete implementation layer.

For this infrastructure, we defined a unified measurement workflow in [34] for
every DBMS-model pair: (i) every data from previous measurement (if any) must
be deleted (ii) the source data must be converted to the intermediate format (iii)
the data in intermediate format must be converted to the concrete loader format
(iv) the dataset must be loaded into the DBMS (v) the queries must be converted
to the current language-reification model representation (vi) the queries must be
executed, measured and the results must be collected.

4 Experimental Setting

Dataset

As we wanted to compare our results with the ones in [30], we used the same Wiki-
data JSON dump from January 2016. This dataset holds a massive knowledge
base with 67 million statements. Wikidata highly encourages to back up the state-
ments with references, hence reification is used extensively. As of December 2018,
Wikidata holds 1.48 billion references for 654 million statements [18].

Workload

For the same comparability reasons, we similarly generated the so-called atomic-
lookup queries as in [30]. This simple query generation technique is based on the
atomic parts of a single reified statement: the three parts of the base statement,
with the property and the object of the metastatement. We generate a query by
for each statement part either fill it with a fixed value or define it as a variable to
project. As a result, we get 32 different query patterns. One of these patterns is
explained in Figure 1.

Reification models

Throughout our research, we examined three different reification techniques: (i)
the property graph representation which encodes the qualifiers as edge properties,
(ii) the standard reification, and (iii) the n-ary relation models which introduce a
new node per each statement. Figure 2 depicts these models.

As opposed to [30], we did measurements using the property graph model since
we wanted to compare the level of support between different graph database imple-
mentations. Edge properties look like a straightforward way to encode the reified
claims. However, a reification claim referring to a resource would be an edge be-
tween an edge and a node resulting in an invalid graph model. One has to encode
this kind of reference as an edge property with simple literal value referencing the
identifier of the resource. Additionally, reification claims can reference multiple
objects, e.g., a statement can be backed up by multiple sources. In that case, the
edge property value would be a collection of identifiers.
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Q123 (sub.) ? (obj.)
P394 (pred.)

? (qual. v.)

P16 (qual. t.)

Figure 1: A reified statement has five parts: subject (sub.), predicate (pred.),
object (obj.), qualifier type (qual. t.) and qualifier value (qual. v.), therefore
the variability of this kind of statements can be described with five digit binary
patterns, like 11010, where the first digit represents whether the subject part has
a concrete value (1) or it is a variable (0), the second digit represents the same
for the predicate part etc. in the previous exact order. This figure demonstrates
the pattern 11010. The second and fourth numbers are 1, as they are bound to
concrete values: the subject is a resource with id Q123, the predicate is P394, and
the qualifier type is P16. The object and the qualifier value parts are variables.
The example can be interpreted as follows: What values have the resource Q123
for property P394 and what values have these claims for property P16?

Database implementations

In the current phase of the research, we selected three systems for the following
reasons:

(i) We have chosen Blazegraph [1] database engine as a measurement subject,
as its customized version currently serves [17] as a backend for Wikidata Query
Service (WDQS)[16]. The primary model of Blazegraph is RDF, while SPARQL
endpoint is offered for query purposes. These features make Blazegraph closely
related to triple stores. However, the RDF model can be viewed and queried as
property graph through Blazegraph’s Apache Tinkerpop implementation [2].

(ii) The open source GDB called Titan [14] was the first pick for the WDQS
backend role, but was dropped eventually due to governance changes and the high
risk of abandonment. Later, the source code of Titan was forked, and JanusGraph
[7] was born. This database implements almost all of its functionalities through
the integration of other technologies; it supports various storage options [8] (e.g.,
BerkeleyDB, Apache Cassandra, Apache HBase) while utilizing Apache Tinkerpop
as property graph engine.

(iii) Neo4j [40] was chosen, as it is currently considered one of the most popular
graph database [3]. It is based upon the property graph model and supports the
Tinkerpop stack and its Gremlin query language. Besides Gremlin, it defines its
own declarative query language, called Cypher.

We did not examine every implementation-reification model pair for our ex-
periments. We did not apply the property graph model on Blazegraph, as its
primary model is RDF, it would map the edge properties (only available through
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subject object
predicate

qualifier: qualifier value

subject predicate object

rdf:predicate
rdf:subject rdf:object

qualifier value

qualifier

subject object

predicate predicate

qualifier value

qualifier

Figure 2: Visual representation of the different reification models. The first one
is the property graph model, below that the standard model and finally the n-ary
reification model.

the Tinkerpop interface) to RDF constructs. We did not utilize the RDF* nota-
tion support of Blazegraph. Moreover, the standard model was not measured on
JanusGraph due to the extremely slow loading process. Table 1 summarizes the
implementation-dependent measurement configurations.

We have investigated other GDBs as well, such as Grakn [4], OrientDB [10] and
Gremlin API of Azure Cosmos DB [6], but we encountered a few difficulties during
the modeling and loading phase. The primary cause of the problems was that
these systems hardly support having multiple different values of the same property
in a node or we did not find any available documentation on how to bulk load
them into a database. OrientDB is a multi-model database; its earlier version was
benchmarked as a GDB, e.g., in [32], but not with a real-life KB workload. Grakn
and Cosmos DB’s Gremlin are quite newcomers without any previous involvement
in a significant benchmark effort in the academic literature.
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Table 1: Overview of database configurations

Impl. Version Model Reification modes Query language
Neo4j 3.3.3 Prop. graph Prop. graph Cypher

Standard
N-ary

Blazegraph 2.1.4 RDF (primary) Standard SPARQL
TinkerPop N-ary

JanusGraph 0.2.0 TinkerPop Prop. graph Gremlin
N-ary

In order to ensure the correctness of the results, the dataset is converted to the
natively supported graph format of a system during the conversion processes, for
example, we introduced edge and node properties in case of Neo4j and JanusGraph,
RDF triples in case of Blazegraph. This means that every database worked with its
native graph format, so the source of the dataset (a knowledge graph) is basically
irrelevant.

Installation environment

We provisioned separate virtual machine (VM) instances in the Azure public cloud
for every GDB implementation. All VMs had a size of Linux E4s v3. They were
configured with Intel XEON E5-2673 v4 processor containing 4 virtual CPU cores
that support Intel Hyper-Threading Technology and 32 GiB of memory. A 64
GiB SSD was used as storage for the Ubuntu 16.04 LTS operating system and the
particular DBMS. As the dataset had to be stored more times simultaneously—for
example, during the conversions the source and the result dataset existed together
at the same time—we added another SSD with 512 GiB capacity to store the dataset
and the temporary files.

Besides the concrete DBMS implementation, we installed the Java and .NET
Core runtime environments on all VMs. Even though the hosting environment is
the same for the different DBMSs, the configuration of the systems can have a
massive impact on their performance. As every investigated system is Java-based,
we specified a uniform 20 GiB heap size for each system. On any other settings,
we used their default configurations like [30] did.
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Measurement workflow

In this benchmark, we basically used the same measurement workflow described
previously. The initial step was to delete all data that remained after the previ-
ous run. In the first phase, we transformed the decompressed JSON data to the
import format of the concrete DBMS’s import tool. After the transformation, we
loaded the newly created dataset into the database. Finally, our tool inserted the
previously random selected variable bindings into the query templates, measured
the execution times and collected the mean query times. This workflow is depicted
in Figure 3.

Wikidata JSON dump Query template

Intermediate format

Data loader
Query executor

DBMS

Converter

Converter
Binder

Converter

Load Measure

Figure 3: Overview of the measurement workflow

While in [34] we used a custom dataset generator to artificially create the dataset
for our benchmarks, in this paper we replaced this component with a Wikidata
JSON dump. For that reason, the 1st conversion layer had to be reimplemented as
well, as the conversion between the data source and the intermediate representation
is the responsibility of this layer.

In this paper, we present the measurements of a DBMS that we did not bench-
mark in [34], so we added a new component to the 2nd conversion layer that converts
the dataset from intermediate representation to the format expected by the new
DBMS’s data loader tool. With the help of the intermediate representation layer,
every other component could be reused in our new benchmark without nearly any
modification.

Every query pattern (except the one without any variable) was run with ten
different variable bindings. The nth query pattern (qn) supplied with the mth
variable binding for it (bn,m) forms the runnable query qbn,m. The values of the
variables were randomly selected from the dataset in such a way that every query



52 Tibor Kovács, Gábor Simon, and Gergely Mezei

would have a non-empty result set. To avoid first-time run transient phenomena,
we ran all of the queries two times on every DBMS-encoding pair. In the beginning,
we did not apply any time limit during the measurements, the first queries run by
Neo4j were manually terminated after more than 15 minutes as the two runs would
have taken more than a week continuous execution time based on our estimations.
Afterwards, we set a query time limit to one minute, just like in [30] and in [34].

The workflow of the measurement phase consisted of the following steps (in this
order): we applied the first bindings to the 32 query patterns {q1, ...q32}, then run
the set runnable queries of {qb1,1, qb2,1, ...qb32,1}, limiting each query separately to
one minute. Then, we proceeded the same way with the remaining nine variable
sets {qb1,2, qb2,2, ...qb32,2, qb1,3, ...qb1,10, ...qb32,10}. When the execution of all the
runnable queries completed, the DBMSs were restarted to remove every memory
content that could distort the results for the later runs. Finally, we made a second
run by repeating the whole process with exactly the same pattern-binding com-
binations. The average response time values on the figures are calculated as the
average of the twenty results for a given query pattern: the response times of the
ten different variable bindings, i.e., the results from {qbi,1, qbi,2, ...qbi,10} for query
pattern i—from the two separate runs. When a query had to be terminated because
of the time limit, it was counted as 60 sec (actual time limit) in the average.

5 Results

Despite its popularity, Neo4j was the least performant system—in lots of cases by
far compared to the other systems, as every query must have been terminated due
to the time limit. We got these timeouts irrespective of the reification model. This
experience is in line with [30] and [34].

We examined some of the query plans, and we found that the main reason for the
poor performance is the lack of proper optimization. In some cases, we experienced
that even though there were concrete nodes in the graph pattern to match, the
pattern matching and the graph traversal started from variable nodes and the
concrete information was used only in later phases. We investigated the usage
of so-called planner hints [11]—adding explicit directions to the query optimizer
into the query—but it resulted in performance improvements only in some cases.
Furthermore, even the official documentation does not consider it as a general
optimization technique [11].

The diagrams in Figure 4 show the results we got after measuring the per-
formance of the Blazegraph. In contrast with Neo4j, most of the queries termi-
nated before the time limit; only the most general patterns reached the one-minute
timeout—the ones with only the qualifier part bound.

As can be seen in the diagram, there is no significant difference between the
performance of the standard and the n-ary reification models. The results show
that the two models do not just perform similarly, but they react almost the same
way to the changes in the query patterns as it can be seen between 00100 and 00110
and in 01100.
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Figure 4: Blazegraph query mean response times for the standard (solid) and n-ary
(dashed) models.

Even though the performance of the two models was quite similar, the n-ary
model has an advantage against the standard model: it requires one less node to
represent a statement, so on more massive datasets (like Wikidata), it requires
significantly less storage space than the standard model.

Looking at the figure, it is quite conspicuous that there is a significant break
in the middle of the graph. We have found that—in case of using Blazegraph—the
most important factor that affects the elapsed time of an atomic-lookup is whether
the subject (the starting point of the traversal) is concrete or not. Concretizing
the subject means a significant performance boost, which suggests that Blazegraph
pattern matching engine can perform reasonably well only if the graph traversal
and the edge are pointing to the same direction.

One can see that the execution times continuously decreased before and after
this gap as well. This constant performance improvement can be the result of the
declarative nature of the SPARQL language, whose execution can be optimized
using the up-to-date DB statistics in the more and more concrete queries.

Figure 5 shows the mean query response times of JanusGraph. One can see
that there are fewer patterns in the diagrams, the ones ending with 01 are missing.
That is because we encountered some difficulties in translating these queries into
Gremlin queries. We tried using the proper Gremlin Has step variant in a couple
of ways to filter the traversal according to the *01 patterns, but all of these queries
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Figure 5: JanusGraph query mean response times for the n-ary (solid) and property
graph (dashed) models.

returned with an empty result set. As we could not figure out why did this happen,
eventually we removed these patterns from the measurement of JanusGraph.

This system also performs much better than Neo4j in most cases, but its query
characteristic for atomic-lookups shows some similarities but also some fundamental
differences with Blazegraph’s. In case of both of these systems, the queries had to be
terminated because of reaching the timeout only in the most general query patterns.
While the n-ary model on JanusGraph timeouts on the patterns containing only
qualifier information—like Blazegraph—, the queries with property graph model
terminated before the time limit only when the query presented any type of concrete
node information.

One can see that both systems have notable performance steps, but it emerges
in a much more visible way in the case of JanusGraph. The n-ary model has a
significant step at 00100 and two more small steps at 01000 and 11000. From
that result, we concluded that the key factors that determine the performance of
JanusGraph and n-ary model are the existence of concrete nodes but in contrast
with Blazegraph, binding a concrete value to the predicate can result in much
shorter response times. This DBMS-model pair can be ideal for queries containing
edge information only, where it outperformed any other investigated system-model
pairs.

The property graph model has a similar query characteristic to Blazegraph, as
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it has its large performance step, where any kind of node information is presented
in the query. In these cases, even though it performs significantly better than
the n-ary model, it is much slower than Blazegraph. As the Blazergaph queries
performed better for every query pattern than JanusGraph with property edge, we
do not recommend using this pair in a real-life application.

Another interesting phenomenon is that the performance is almost constant
between the steps on both models. This can be explained by the imperative kind
of the Gremlin query language, as it gives a relatively small space to the optimizer
to improve the query plans.
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Figure 6: Comparing the results of the three investigated DBMSs in case of n-ary
model: Neo4j (dotted), Blazegraph (dashed), JanusGraph (solid).

Based on the comparison of three measured systems on the only common reifi-
cation model (Figure 6), one can come to the conclusion that Blazegraph offer the
lowest response times if the subject part of the query is specified, otherwise Janus-
Graph outperforms all its competitors. Furthermore, neither of the systems could
efficiently answer the questions that contain only qualifier information.

6 Conclusions and Future Work

In our work, we examined the performance of several graph database implementa-
tion — reification model pairs. We used a real-life knowledge base as dataset and
simple atomic lookup queries as workload. Although the graph models offered by
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GDBs seem rather suitable for knowledge graphs at first, one can hit quite a few
limitations with datasets utilizing reification heavily. The direct, straightforward
encoding of reified claims often resulted in a subpar performance as they relied
on unoptimized features. In that manner, databases specialized to store knowl-
edge models (e.g., RDF-based stores) and with the dedicated support of modeling
reification clearly have advantage over general-purpose GDBs.

We concluded that the execution times depend heavily on both the query pat-
tern and the system-encoding pair. The general tendency is that the less node
variable a query has, the faster its execution is. Event though as the results show,
the execution times slightly depend on the selected representation model, its impact
is far less than the DBMS implementation used.

Based on the overall average query times measured, the best performance for
this kind of workload can be reached by using Blazegraph with either n-ary or
standard encoding. Considering other factors than performance, our choice would
be Blazegraph with n-ary representation, as this representation has lower storage
footprint.

As every benchmark, our work has its limitations. In the current phase, we
had to apply several constraints, for example on the workflow, on the measured
configurations or on the used query languages. Currently, we are working on re-
laxing these constraints. Our measurements were limited to atomic-lookup queries,
but in the future, we plan to investigate the performance of the DBMS’s on a more
real-life workload. To achieve this, we are analyzing the most frequently used query
patterns provided by the Wikidata query service. Once we get these statistics, we
can compose a query set that can simulate nearly real-life questions. Using these
queries, we can measure the performance of the implementation-model pairs on a
realistic load, which will give a better view on when and how to use these systems.

In the current phase of our work, we analyzed the query execution results and
some of the obtained query plans to find out why does a query run slowly while
others are fast. In the future, we are planning to make some deeper analysis, even
at the implementation level, as most of these systems are open-sources.

As we introduced the use of an intermediate representation in the conversion
phase, the measurement system can be extended effortlessly. Thus, we are planning
to involve other databases, like Grakn [4], Azure CosmosDB [6] or HypergraphDB
[5]. We are also planning the investigate other (even system specific) reification
techniques such as the general singleton property [29] approach or the RDF* mode
of Blazegraph [28].

Furthermore, we are planning to introduce the query language as a new di-
mension in the future. Until now, we investigated only the ”native” language of a
DBMS, even though they usually support more than one, for example, Blazegraph
supports Gremlin. We are planning to measure the same database with different
languages (if possible) to determine how much influence does it have on the perfor-
mance. This may answer a couple of open questions, like whether the declarativity
of a language or the language itself has any impact on the performance of these
systems.
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daram, Narayanan, Anderson, Michael, Tănase, Ilie Gabriel, Xia, Yinglong,
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Keeping P4 Switches Fast and Fault-free through

Automatic Verification∗

Dániel Lukácsa, Gergely Pongráczb, and Máté Tejfela

Abstract

The networking dataplane is going through a paradigm shift as softwariza-
tion of switches sees an increased pull from the market. Yet, software tooling
to support development with these new technologies is still in its infancy. In
this work, we introduce a framework for verifying performance requirement
conformance of data plane protocols defined in the P4 language . We present
a framework that transforms a P4 program in a versatile symbolic formula
which can be utilized to answer various performance queries. We represented
the system using denotational semantics and it can be easily extended with
low-level target-dependent information. We demonstrate the operation of this
system on a toy specification.

Keywords: P4, network verification, data plane, performance modeling, cost
analysis

1 Introduction

Currently in the networking industry, network devices are being commoditized fast
and software gets more and more market share as consumers want scalable and
easily replaceable devices, while vendors want to keep development costs low. For
example, software-defined networking (SDN) and Network function virtualization
(NFV) technologies address this need by allowing network administrators to dy-
namically control network topology, configurations, and protocols.

New languages are emerging, aiming to assist network engineers to define the
functioning of switches or network functions in the forwarding plane. Among them,
P4 [7, 15] intends to keep the best aspects of both hardware and software by en-
abling network engineers to communicate their intent in a general high-level lan-
guage, while the task of compiling high-level protocol description to low-level target
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architectures is delegated to the backend software. The hybrid approach is highly
effective, but burdens backends, static analyzers, and verification frameworks, as
now these also have to take into account low-level targets. We recommend [13]
and [7] on the transpiring software revolution in networking, the growing empow-
erment of network operators at the expense of switch vendors, and the question
whether P4 will free the network from fixed-function switching interfaces (e. g.
OpenFlow) by making protocol-inpedendent packet processing possible.

In this work, we present the first iteration of a framework for verifying func-
tional requirements and non-functional requirements of network protocols in P4.
Our focus in this paper is checking whether P4 programs satisfy performance re-
quirements using cost analysis methodologies. In Section 1.1, we show that in
networked environments, conformance to performance requirements determines if
the switch can serve its purpose or instead it will get overflowed with packets and
introduce network-wide anomalies.

1.1 Motivation

The goal of cost analysis is to approximate the execution cost of a program using
the program code, without executing the program itself. A cost analysis system
that is capable of giving exact execution costs for any problem is also capable
of solving the halting problem. This implies that we have to stay content with
approximations.

While it is always nice to have an idea about the costs of executing the programs
we develop, this issue is more pressing with packet processing programs (such as
P4) running on networked software switches. In any network – with or without P4
–, the number of packets processed in a unit of time (or energy used) correlates
strongly with the unit of service prodvided (or rate of profit produced) by the
network. Specifically for P4, one of the big promises of the language is that switches
executing P4 protocols can combine the generality of NVFs software switches with
the speed of earlier SDN switches (such as OpenFlow) that were closer to hardware,
but only supported a fixed amount of protocols.

Moreover, beyond ”more is better” being a desirable non-functional require-
ment, an easily overlooked fact is that the performance of a switch program is
actually an important factor in the functional correctness and usability of that
program, similarly to real time systems. In short, unless the switch is performant
enough to serve all incoming requests in time, the packets will start accumulating
in the packet buffers (installed for load balancing the temporary increases in de-
mand), and upon buffer overflow, packets start getting lost, producing unexpected
network behaviors.

To demonstrate a realistic requirement, let us examine switches in a 10 Giga-
bit Ethernet network. In such a network, the maximum incoming throughput is
10Gbps = 1.25GBps = 1250MBps. Assuming somewhat pessimistically that only
minimal Ethernet frames with no payload are transferred, the size of the packets
will be the size of the Ethernet frames, that is 8B + 64B + 12B = 84B . From
this, the incoming packet rate measured in Mpps (Million Packets Per Second) is
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1250MBps/84 ≈ 14.88Mpps. This means that a latency of 1/14.88s ≈ 0.067s is
allowed for 1 million packets, which is a latency of 109 ∗ 1/(14.88 ∗ 106)ns ≈ 67ns
for 1 packet. Assuming a modern CPU with 4.3GHz = 4.3 cycles/ns clock speed
(such as the one alluded by Figure 13 in Section 4), we can conclude that at most
4.3 cycles/ns · 67ns ≈ 288 cycles can be spent for processing a packet to stay safe
from buffer overflows.

One observation regarding this calculation can be that performance require-
ments towards switches turn out be quite strict. Another observation is that veri-
fication of such small boundaries will inherently require factoring in machine-level
operations, such as the execution costs of various CPU instructions and accessing
caches and main memory.

Yet another promising feature of P4 over earlier NFV and SDN approaches is
that it is a well-designed high-level programming language with standardised syntax
and semantics, enabling formal, well-generalisable analysis of switch and network
behavior.

In this work, we present a formal system capable of taking into account the
aforementioned low-level operations and statically deriving strict cost estimates
from a represenation of P4 program semantics.

1.2 About P4

P4 programs describe the control flow of packet processing network devices, com-
monly called switches. One peculiarity of P4 is that certain control structures are
intentionally left unspecified by the designers. Implementation questions are left to
the compilers targeting different platforms: this way compiler designers can choose
the most efficient solutions for their target platform. Moreover, the lack of super-
flous restrictions will enable more platforms to adopt the language. The price of
this feature is that P4 programs cannot be generally analyzed without sufficient,
low-level knowledge about the selected platforms. One of our goals in this work was
to design a system that analyzes and verifies P4 independently of any platforms as
deep as possible, and can be easily extended with platform specific information to
achieve completeness.

Figure 1 depicts a P4 program. Here, the call to V1Switch lists the arguments
(similar to function pointers) of a P4 pipeline. The implementation of V1Switch

is unspecified, but from the interface description we can find out that incoming
packets will be first processed by a parser, called ParserImpl. After the parsing
phase, V1Switch will continue with following phases, each operating on the data
structure containing the parsed packet (headers).

The parser is defined in P4, using state transitions. The parser control flow is
illustrated by the state machine diagram in Figure 2 (side effects were abstracted
away). Starting from state start, state parse eth is immediately reached, and
then, if the packet header signifies that the packet is an IPv4 packet (field ethType

equals to 2048 in decimal), the next state is parse ipv4. In both cases, the state
machine goes in the accepting state, accept. Whether a packet is an IPv4 packet
or not only makes a difference in side effects.
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1 // ”basic routing−bmv2.p4”
2 V1Switch(ParserImpl(),
3 ingress (),
4 verifyChecksum(),
5 egress (),
6 computeChecksum(),
7 DeparserImpl()) main;
8
9 parser ParserImpl(packet in packet,

10 out headers hdr,
11 inout metadata meta,
12 inout standard metadata t stmeta){
13
14 state start {
15 transition parse eth;
16 }
17
18 state parse eth {
19 packet.extract(hdr = hdr.eth);
20
21 transition select(hdr.eth.ethType) {
22 16w0x800: parse ipv4;
23 default: accept;
24 }
25 }
26
27 state parse ipv4 {
28 packet.extract(hdr = hdr.ipv4);
29 transition accept;
30 }
31 }
32 ....

34 ....
35
36 header ethernet t {
37 bit<48> dstAddr;
38 bit<48> srcAddr;
39 bit<16> ethType;
40 }
41
42 header ipv4 t { ... }
43
44 struct headers {
45 ethernet t eth;
46 ipv4 t ipv4;
47 }
48
49 ....
50
51 // ”core.p4”
52 extern packet in {
53
54 void extract<T>(
55 out T hdr);
56
57 void advance(
58 in bit<32> size);
59
60 bit<32> length();
61 }
62
63 // ”v1model.p4”
64 ...
65

Figure 1: Excerpt of a P4 program.

start parse_eth parse_ipv4  ethType == 2048  

Figure 2: An automaton illustrating the parser in Figure 1.

In certain states the parser reads parts of the packet into the P4 program mem-
ory space. The memory space storing the packet, and the related method reading
from this storage is declared by the data structure called packet in. Extern data
structures – such as packet in – and methods are also unspecified. On the other
hand, data structures such as headers, and ethernet t are completely defined
by the P4 code, which means we can work with these inside most P4 function
constructs. For brevity, we included only the parts related to the parser that we
analyze in this work. We believe the procedure intrduced in this paper can be
effectively generalized for other control structures in the language – such as match-
action tables – but we deem the validation of this claim as future research topic.
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1.3 Contributions

Earlier, we enumerated our current research goals and some of the related analysis
problems posed by P4. In this section, we intend to highlight specifically those prob-
lems we address in the current paper. We also showed earlier that in networked
environments it is critical for switches to conform to specific time requirements,
otherwise they cannot reliably provide the expected functionality. In this work,
we outline a system that, given switch programs in a subset of P4 and adequate
platform specifications, infers performance information that can be utilized to au-
tomatically verify whether given program satisifes given performance requirements
on the given platform (see Section 2). This language subset was selected in hope
that it covers a wide-enough range of challenges (such as target-dependence and
low-level semantics) posed by P4, so that our system can be extended for the whole
language.

For analyzing the cost of P4 programs, we adapted cost analysis approaches in
existing literature [3, 16, 5] to P4. Our approach utilizes program transformations
over formal representations of P4 program semantics (see Section 3). Advantages
of the denotational approach is that it enables formal reasoning about its correct-
ness, and its compositionality makes it easy to plug in target-specific information.
Disadvantages are mostly related to efficiency: to increase precision we need to
lower the level of abstraction we work on, and we can expect the amount of in-
formation on each abstraction level to grow exponentially (e. g. interfacing with
the NIC, memory access, caching, cost of CPU instructions must all be carefully
considered). To keep the rules simple, we utilize A-Normal form [9] that immensely
simplifies function call evaluation semantics. Size and time efficiency of cost for-
mula evaluation is assured by the introduction of let expressions (or alternatively
nested lambda expressions) that can be used to eliminate redundant expressions
and memoize intermediate results.

Various queries answering various performance questions can be created simply
by parameterizing the symbolic formula resulting from the above process. As giving
estimations with industrial-level precision for one or more platforms is out of the
scope of this paper, we demonstrate the operation and application of the presented
system using a toy specification of a fictional target in Section 4.

Our reference implementation is realized as a backend for the P4C compiler [1]
and it heavily utilizes the Pure term rewriting system [6].

2 Cost analysis framework for P4

A challenge specific to P4 (although also occurring in other languages, such as C)
is the handling of terms undefined by the specification, hereinafter referred to as
unspecified terms to avoid confusion with theoretically undefined terms (such as
division by zero, and the value of infinite recursion). It is the job of the compiler,
to link unspecified structures – such as the extern object packet in or the pipeline
V1Switch in Figure 1 – to definitions that can be executed efficiently on the plat-
form. Figure 3 depicts the data flow model we defined to address the challenge of
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Figure 3: The complete architecture of the cost analysis framework

analyzing and verifying target-dependent P4 code.
The P4 program is first parsed into an intermediate representation (IR) called

state semantics, maybe utilizing IRs in existing P4 compiler solutions, such as
P4C [1] or T4P4S [1]. This represents the program as mapping between explicit
memory states before and after program execution. This representation is then
transformed to two kinds of abstract semantics used specifically to analyze exe-
cution cost. One we will refer to as time semantics, as it maps meaningful size
abstractions of input states to a numeric value characterizing program execution
cost, such as CPU cycles. The other we will refer to as size semantics, as it maps
meaningful size abstractions of input states to meaningful size abstractions of out-
put states. We detail these representations and the transformation between them
in Section 3.

As these transformations depend only on the P4 code, they are insufficient
in themselves for completely deriving the cost of P4 programs, as this requires
target-specific information. Our system expects this in the form of target-specific
time semantics and size semantics rules. These rules either have to be delivered
manually by developers employed by the target vendor, or it may be possible to
automatically infer them, given a sufficiently formal specification describing the
behavior of the target. We should note that such automatic inference from arbitrary
target-dependent state semantics (or some other representation) requires further
research efforts as it may introduce unexpected problems: on the target level we
lose the comfortable guarantees provided by P4, such as upper-bounded loops or no
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loops at all, compile-time known memory sizes, structured control flow expressions
and high-level data structures.

As it is common in static analysis, considering all possible program states (or
even program inputs) would be unfeasible, and through abstraction we can acquire
feasibility by trading away precision. In cost analysis, the problem manifests it-
self when we are dealing with conditional control flow. As predicates cannot be
evaluated without the input, we either have to represent the costs of conditional
execution paths as dependent on an unevaluated predicate, or – by further ab-
straction – we can treat the predicate as a random variable and apply statistical
functions to these costs to produce performance information that is imprecise but
useful in practice.

Figure 3 also includes these required statistical functions and informations in the
architecture. As some of the predefined statistics (such as the average cost) require
knowledge about the probability distribution of the predicates, this information is
also required to perform the analysis. The two kinds of probability distributions
in the figure relate to a distinction between predicates appearing in the semantics:
some predicates are introduced in the target semantics (such as checking for cache
hits), while others are dependent on program input and program context (such as
deciding whether a given header can be parsed from a packet in a given parser
state, or whether a packet matches any entry in the match-action table).

Given all these informations and a target-dependent abstract initial program
memory state, we can finally evaluate the abstract call to the program entry point
with any or all of the predefined statistics to acquire performance information about
the P4 program and verify whether or in what circumstances does it conforms to
the performance requirements.

In Section 4, we also go through the most important steps of this process with
illustrations.

3 Transforming programs to program costs

In this section, we present the program transformation system used to derive time
and size semantics from the state semantics of a P4 program. We realized the
transformation as a term rewriting system containing reduction rules, analogous
to function definitions in the lambda calculus. An advantage of functional style
beyond formality is that it automatically guarantees confluence as per the Church-
Rosser theorem.

For the ease of reproducibility, the examples in this paper were formalized in the
executable term rewriting language, Pure [6]. Pure mostly follows the notational
naming conventions of ML-style functional languages. We give basic description
for less familiar syntax elements in Pure, but ultimately we have to refer the reader
to the Pure language manual. To separate the meta-syntax (i. e. the syntax of
Pure) from the concrete syntax of the semantics (defined by EBNF grammars in
this paper), we typeset meta-syntactical symbols in bold, meta-syntactical variables
using normal fonts, and typeset all concrete symbolic values in italic. In Figure 4
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〈App〉 ::= 〈Name〉 〈State〉 〈Scope〉

〈TimeCost〉 ::= ‘TIME’ 〈Expr〉 〈SizeCost〉 〈Scope〉
| 〈TimeCost〉 ‘+’ 〈TimeCost〉
| 〈ProbDist〉 ‘*’ 〈TimeCost〉
| 〈Number〉 ‘*’ 〈TimeCost〉
| ...

〈SizeCost〉 ::= ‘SIZE’ 〈Expr〉 〈SizeCost〉 〈Scope〉
| ...

〈Reference〉 ::= 〈State〉 [‘�! ’ 〈Scope〉] {‘!’ 〈Name〉}

〈RndReference〉 ::= ‘R’ [‘�! ’ 〈Scope〉] {‘!’ 〈Name〉}

〈ProbDist〉 ::= ‘P’ 〈Predicate〉

Figure 4: EBNF syntax for the most frequent expressions used in this paper.

we find mixed rules from the EBNF noindent grammars describing the languages
we are using for expressing state, time and size semantics of P4 programs.

Function applications in the state semantics apply the definition referred by the
given name, to the argument which is a program state. Note that the grammar
enforces A-normal form (ANF) [9]: applications are only allowed to have variable
symbols and concrete states as arguments. The state semantics syntax exclusively
uses lexical scoping (instead of the mixed lexical-dynamical approach of P4): a
mapping of names are passed to called functions. The names in the scope are used
in function definitions to resolve references pointing to the state. The exclamation
mark (!) is Pure syntax for record field access while �! was defined by us to handle
sequences of field accesses, since ! is left-associative in Pure. We represent concrete
(i. e. transformable) let expressions and case analyses in Pure’s built-in syntax
(with when and case respectively).

Time and size costs of function definitions are denoted with the TIME and SIZE

expressions: these work similarly to applications, but they evaluate to time and
size costs instead of program states. We also include expressions required for prob-
abilistic handling of case analyses, and a few target-defined constants appearing in
Section 4.

Next, we present the rules §3.1–§3.4 forming the transformation system (a meta
term rewriting system) between state semantics and time semantics. We expect
that only only one system is loaded in the rewriting environment at a time, so the
only subexpressions expanded are those appearing on the left sides. We will assume,

that term rewriting rules – represented here with an arrow (
·

=⇒
·

) between the two

sides – are also part of the concrete syntax: they can be created, transformed, and
added to programs during runtime.

Rules §3.1 and §3.2 apply the time cost function to both sides of a state rule
(similarly to how we usually do this to equations). The former one is an excep-
tion for program entry, mapping a concrete input state to its size concrete size
abstraction.

Rule §3.3 formulates the cost of an application of a function f to argument
x given a size cost n, which we expect (and guarantee by the other rules) to be
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main x s1
·

=⇒
·

f y s2

TIME main
·

=⇒
·

TIME f (SIZE y {} {}) s2
§3.1

f x s1
·

=⇒
·

rhs
f 6= main

TIME (f x s1) n s
·

=⇒
·

TIME rhs n s
§3.2

TIME (f x s1) n s2

TIME f n s1
§3.3

TIME ( when args) n s

(foldl1 (+) times) when sizes

where
sizes = ...;
times = ...;

§3.4

TIME ( case ( �! fields) cs) n s2

TIME cacheIn n { ref ⇒ fields }
+ case (R �! fields) tcs

where
tcs = ...;

§3.5

Figure 5: Program transformation rules mapping state semantics to time semantics.

the size abstraction of x. Note that while the various call semantics would require
inclusion of different costs in this rule, we solved this problem by enforcing ANF:
as function compositions are disallowed we now know that function arguments are
evaluated (analyzed) at a separate program point. Without ANF this rule would
have to be more complex. The size argument is only used in loop analysis: while
do not perform loops analysis in this paper as it is currently not relevant for P4,
we prepared the notation in preparation for future research.

Rule §3.4 transforms let expressions in the state semantics for let expressions in
the time semantics. Let expressions assure size and time efficiency of cost formula
evaluation as they can be used to eliminate redundant expressions and memoize
intermediate results. While nested lambda expressions can be used for the same
purpose, let expressions proved to be a far more human-readable alternative. ANF
is a must in both cases. To aid readability, we omitted implementation details of
the body of this rule, and instead recommend the reader to look at the input-output
chart in Figure 6. The rule will bind the size abstraction of the program state after
each operation in a sequence to variables in the let expressions. These variables
are then utilized in the summation of the time costs of these operations that is
returned by the expression. Rule §3.4 requires that bodies of let expressions in
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the state semantics refer to a single bound variable of their parent let expressions
(non-conforming let expressions can be easily translated to conforming ones). On
Figure 6, we can observe the effect of the required changes: instead of featuring a
sum of time costs in the body of the let expression, we only feature the size cost
of the last application, which depends on the size cost of the expression before the
last one, and so on.

Rule §3.5 rewrites a case analysis returning a state, to a case analysis returning
a time expression. To aid readability, we omitted implementation details of the
body of this rule, and instead recommend the reader to look at the input-output
chart in Figure 6: Here, we first add the (target-dependent) potential cost (c) of
caching the head value (i. e. reading from main memory to CPU cache), followed by
conditionally adding the execution of executing the matching case body (bi), plus
the cost of the comparison between the head and the case pattern (ci) (also taking
into account the costs of all preceding matches). As the time semantics abstracted
away program state information, we cannot precisely evaluate the case analysis
anymore. Yet, we can still extract valuable information by applying statistical
transformations, such as taking the maximum or the average of the case costs. We
signified this by transforming the case head into a random variable (R).

For brevity, we do not include the system transforming state semantics to size
semantics, as it is mostly analogous to the system in Figure 5, but without the
requirement to sum up the sizes of the sizes of intermediate operations.

TIME (x3

when
[ x1 99K f x0 sf
, x2 99K g x1 sg
, x3 99K h x2 sh
]) n s

(a)

(TIME f nx sf + TIME g ny sg + TIME h nz sh)
when
[ nx 99K SIZE x n s
, ny 99K SIZE f nx sf
, nz 99K SIZE g ny sg
]

(b)

SIZE (x3

when
[ x1 99K f x0 sf
, x2 99K g x1 sg
, x3 99K h x2 sh
]) n s

(c)

SIZE h nz sh
when
[ nx 99K n
, ny 99K SIZE f nx sf
, nz 99K SIZE g ny sg
]

(d)

Figure 6: Example of time and size cost reductions of a let expression.

Finally in Figure 8, we present examples of two families of statistical rules. Such
rules can be used to handle conditional control flows in partially reduced time cost
expressions. For example, when applied to branching expressions §3.6 will return
the cost of the most expensive branch (deriving the worst case execution time),
while §3.7 will weigh the cost of each branch with the probability of the branch
being executed times the probability that non of the preceding branches are being
executed (deriving the mean execution time). All statistical rules behave as identity
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TIME ( case (x �! fields)
[ patt1 99K b1

, patt2 99K b2

, 99K b3

]) n s

(a)

c +
case (R �! fields )
[ patt1 99K c1 + TIME b1 n s
, patt2 99K c1 + c2 + TIME b2 n s
, 99K c1 + c2 + TIME b3 n s
]

where
c = TIME cacheIn n { ref ⇒ s ! fields};
c1 = TIME cmp n { ref ⇒fields

, const ⇒ patt1};
c2 = TIME cmp n { ref ⇒fields

, const ⇒ patt2};

(b)

Figure 7: Time cost reduction of a case analysis expression.

for non-branching expressions, as these are corresponding to one-element samples.
Further statistics such as best case execution time and variance can be realized as
similar rules.

MAX ( ifelse t1 t2)

max t1 t2
§3.6

AVG ( ifelse c t1 t2)

(P c)∗t1 + (1 − (P c))∗t2
§3.7

Figure 8: Statistics rules for handling conditional control flow

4 Case study

In this section, we illustrate the system presented in the previous sections by going
through the intermediate representations and target-dependent components used
in the analysis of the parser in the small P4 program in Figure 1. To assist with this
demonstration and keep this paper concise at the same time, we also provide a toy-
sized target-dependent specification that can be substituted in the partial formula
to obtain the final performance formula. In Figure 15, we illustrate a possible
application of this performance formula to show how the estimated performance
of this program on the specified platform changes w. r. t. the (application-
dependent) probability of the transmitted packet being an IPv4 packet, and the
(target-dependent) probability of cache misses.

4.1 State semantics transformation

In the first step of the analysis the P4 program is transformed to state semantics
representation: a system of reduction rules describing the program as a composition
of functions over the program state. We expect that production of such a repre-
sentation is relatively straightforward after the P4 program was parsed into an IR,
such as the one used by the P4C compiler [1]. Figure 9 depicts the reduction rules
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start x s

x2

when
[ x1 99K

extract
x
{ hdr ⇒ s !hdr!eth
, packet ⇒ s !packet}

, x2 99K
case
(x1 �! (s !hdr)!eth!ethType)
[ 2048 99K parse ipv4 x1 s
, 99K accept x1 s
]

]

(a)

parse ipv4 x s

x2

when
[ x1 99K

extract
x
{ hdr ⇒ s !hdr!ipv4
, packet ⇒ s !packet}

, x2 99K accept x1 s
]

(b)

Figure 9: Formal semantics of start and parse ipv4 generated from P4 program

corresponding to the start and parse ipv4 state transitions. Here, the input
program state x is modified by copying the bits at the current cursor position of
packet to the memory segment specified by the s!hdr!eth field of the scope. Then,
a value by the name in the s!hdr!eth!ethType variable is read from the resulting
program state and is pattern matched to select the transition to the next parser
state (formalized as a function application). The program state after executing the
selected transition will be returned. We should note that the extract method in
the packet in extern is not defined in the P4 program (as it is target-dependent).
If the state semantics is intended for execution, then an evaluation rule must be
defined for this method. For cost analysis this is not required.

We may also note that transition parse eth was eliminated in a compiler op-
timization step. As P4C was designed to separate target-independent P4 code
optimizations from target-dependent ones into parts called frontend and backend
respectively, we are free to rely on optimizations in the frontend, but are required
to steer clear of those in the backends. This way, our cost estimations will always
assume that any P4 compiler it is used with generates at least as efficient interme-
diate code as the P4C frontend. This assumption is automatically satisfied for P4
compilers realized as P4C backends, such as T4P4S [11].

In the next analysis step, the state semantics in Figure 9 is abstracted into time
and size semantics using the program transformation system presented in Section 3.
Figure 10 depicts the time semantics rule corresponding the start transition of the
parser. We first calculate the n1 size abstraction (a structure) of the program state
after extract based on the size abstraction of the input program state n, and
then the n2 one after the case analysis (not depicted) based on n1. Using these
size abstractions, we can return the sum describing the execution costs of each
operations and also the additional costs of the program control flow.

We defined the transformation rules so that the time cost semantics of a func-
tion call such as parameter passing (defined to be copy-in/copy-out by the P416

specification [15]) are included in the rule describing the function definition. This
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TIME start n s

TIME extract n0 { ... }

+ TIME cacheIn n1 { ... }
+ case (R �! (s!hdr)!eth!ethType)
[ 2048 99K TIME cmp n1 { ... } + TIME parse ipv4 n2 s

, 99K TIME cmp n1 { ... } + TIME accept n2 s
]
when
[ n0 99K n
, n1 99K SIZE extract n0 { ... }
, n2 99K case

...
]

Figure 10: Time cost semantics of start derived using the system in Figure 5.

is the reason why the costs of the function do not appear in any of the applica-
tions (transitions do not require parameter passing). At this point, to represent the
costs of the program control flow we also include the costs of reading an operand
from memory into the cache, and the costs of performing the comparisons in the
branches (the default case does not require a comparison, so in this case, only the
preceding comparisons are counted).

4.2 Target dependent semantics

We utilize the semantic rules by applying them to concrete terms, i. e. function
calls parameterized by a concrete program state. A model program state is depicted
by Figure 11a, while the transformed size abstraction of this state is depicted by
Figure 11b.

Conceptually, the concrete state is partially defined by the target, as it also de-
scribes the memory allocation scheme as prescribed by the target-specific compiler
backend. For example, a backend implementing copy-in/copy-out semantics will al-
locate data-size memory for every function arguments, while another backend may
choose to depart from the language specification and implement call-by-reference
semantics with stacks to save both time and space. Moreover, parts of the concrete
state may be explicitly target-dependent, such as the memory reserved for externs,
and the formal representations of related storages (such as I/O buffers, L1, L2,
L3 caches, NUMA memories). Figure 11a describes a program state in which the
extern memory (called packet in) reserved for storing a raw incoming packet is
a 1 KB buffer and a pointer points to the position of the last parsed byte. As
extern memory is ultimately target-dependent, we modeled this structure after the
identically named C structure in Figure 12a.

It also includes the header structure declared in the original P4 program code
with fields having the respective sizes. For simplicity, we omitted more intricate
details, such as copy-in/copy-out semantics for this model. The state also includes
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{ headers ⇒
{ eth ⇒

{ ethType ⇒ mkarray 0 2
, dstAddr ⇒ mkarray 0 6
, srcAddr ⇒ mkarray 0 6
}

, ipv4 ⇒
{

...
}

}
, packet in ⇒

{ cursor ⇒ 0
, buffer ⇒ mkarray 0 1000
}

, cacheLineSize ⇒ 64
, cpuWordLength ⇒ 8
, cache ⇒ mkarray 0 32000
, mem ⇒ ...
, nic ⇒ ...
, ...
}

(a) A simplified model of a concrete P4 pro-
gram memory state. Sizes are given in bytes.

{ headers ⇒
{ eth ⇒

{ ethType ⇒ 2
, dstAddr ⇒ 6
, srcAddr ⇒ 6
, sizeof ⇒ 14
}

, ipv4 ⇒
{ ...

sizeof ⇒ 20
}

, sizeof ⇒ 34
}

, packet in ⇒
{ ...

sizeof ⇒ 1000
}

, cacheLineSize ⇒ 64
, cpuWordLength ⇒ 8
, cache ⇒ 32000

, ...
, sizeof = ...
}

(b) Size abstraction of the P4 program
state in Figure 11a.

Figure 11

explicitly target-dependent segments such as the 32 KB sized L1 cache field. Since
we are working with small packets, we may assume infinite RAM memory without
losing practical soundness.

Unless we want to execute the state semantics, we do not need the concrete
program state. We described it to make it easier to understand its size abstraction.
Figure 11b depicts this size abstraction. Abstracting the concrete state is usually
non-trivial: P4 structures get a special field (denoted here as sizeof) storing its
aggregated sizes, target-dependent constants are kept as is, and – to enable loop
analysis in the packet parser – the size abstraction of packet in is the size of the
yet unprocessed part of the packet. As we do not yet perform loop analysis that
would require intricate size abstractions, we left answering the questions of state
abstraction for future research.

Any cost semantics derived from P4 code only cannot be a complete description
of program behavior: as unspecified P4 constructs are defined by targets, we require
target-specific information about how this target implements the unspecified P4
constructs (such as the pipeline and externs, as seen before). Figure 12b provides
a partial example that formally specifies such target-specific information.

Note that we devised the target model in this section manually: while we sus-
pect it to be reasonable, it is far too simplistic to be used for predicting real targets
with common but advanced low-level features (such as NUMA, DMA, multiple
cores, etc.).
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typedef unsigned char byte;

typedef struct packet in {
byte buffer [1024];
byte∗ cursor;
} packet in;

void extract(packet in∗ packet,
void∗ hdr,
unsigned long hdrLen) {

memcpy(hdr, packet−>cursor, hdrLen);

packet−>cursor = packet−>cursor + hdrLen;

}

(a) An implementation of the P4 extern
method extract in C.

TIME extract n s

TIME cacheIn
n
{ ref ⇒ s !packet }

+ TIME memcpy
n
{ src ⇒ s !packet
, dst ⇒ s !hdr }

+ CPU ADD

§4.2.1

TIME memcpy n s

ceil (d/l)
∗

(L1 TO CPU
+ CPU MOV
+ L1 FROM CPU)

where
d = n�! (s!dst);
l = n�! cpuWordLength;

§4.2.2

(b) Cost model based on 12a.

Figure 12

Target-dependent time semantics may be delivered automatically from a sufficiently
formal target specification, but – due to the lack of various invariants guaranteed
by P4, such as compile-time known memory requirements and no loops or upper-
bounded loops only – we deem this problem to be non-trivial and out of the scope
of this paper.

In Rule §4.2.1 of Figure 12b, we model the unspecified extract operation that
attempts to parse a packet header (i. e. copies bits of the incoming packet to a
memory segment representing a header), as a call to a system-level copy opera-
tion such as C’s memcpy, followed by incrementing the counter by the size of the
parsed data (see Figure 12a). As a simplification, we assume that only valid (as in,
parseable) packets arrive: if this were not the case (as usually), the rule would have
to be extended with the cost of checking for input end and also the early return
should be calculated in.

Our cost model of memcpy in Rule §4.2.2 assumes that the part of packet under
operation is already cached (and fits entirely in the cache, which is reasonable for
32k cache size), and then read its 64 bit size chunks (size of the CPU registers) into
the CPU registers with the aim of performing the CPU-level copy instruction. The
size of part is the compile-time known destination size, i. e. the size the header we
want to parse from the raw packet. Note that we may model the cost of comparison
(used in calculating the cost of case analysis) very similarly, with the only difference
that we need to read two words into the CPU registers instead of one, and perform
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the CPU-level comparison operation instead of copying.

Description LHS RHS (cycles)

Cost of comparing the con-
tents of two CPU registers. CPU CMP 1

Cost of copying data be-
tween CPU registers. CPU MOV 2

Cost of addition with a con-
stant number. CPU ADD 5

Cost of copying a word from
L1 to a CPU register. L1 TO CPU 5

Cost of copying a word from
a CPU register back to L1. L1 FROM CPU 5

Cost of copying a cache line
from memory to L1 cache. MEM TO CACHE 79 + 200

Figure 13: CPU architecture model1 specifying CPU instruction execution costs.

In Figure 13, we defined all cost constants required for completely reducing
the preceding formulae, based on external specifications and benchmarks of the
respective operations of the selected CPU architecture.

As expected, the costs are seemingly dominated by the reads from memory to
caches, but we should note that this operation handles cache lines (64 byte in in
our example), while the others handle register-sized data (64 bit in our example)
and thus will be repeated in succession for larger data (so if copying 8 byte from
cache to CPU registers requires 5 cycles, the same operation for 64 byte will require
40 cycles in this model).

4.3 Symbolic time cost formula and applications

At this point, we introduced most of the basic components required for evaluating
the time cost of start, given the abstracted state in Figure 11b. We merge the cost
semantics generated from P4 with the target-specific cost semantics to derive an
intermediate formula (not depicted here because of its size) from the cost expression
of start, and finally apply our chosen statistics transformation.

Figure 14 depicts the worst case execution time of start we derived using
Rule §3.6. This approximates the execution time of start when every incoming
packet is an IPv4 packet (i. e. ethType is 2048) and the cache misses in each
attempt.

The best case execution time of start is the formula: 8 * (L1 TO CPU +
CPU MOV + L1 FROM CPU) + CPU ADD + 1 * (2* L1 TO CPU + CPU CMP +
L1 FROM CPU). This is the execution time when no incoming packets are IPv4
packets, and the cache hits in each attempt.

We can derive the average case similarly, but instead of taking each member for
granted, we appropriately have to weigh costs corresponding to parts of the code
with with the probabilities of that part being executed. For example, the costs of

1Based on Intel Skylake X (4.3 GHz, 32KB L1) [4, 2]. MEM TO CACHE value was adapted
assuming 0.25ns per cycle.
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TIME extract n0 { ... }

• Cost of reading the packet into cache MEM TO CACHE

• Cost of extracting the header
+ 8 ∗ (L1 TO CPU

+ CPU MOV
+ L1 FROM CPU)

• Cost of incrementing the cursor + CPU ADD

Case analysis (WCET)

• Cost of reading the case head into cache + MEM TO CACHE

• Cost of comparing the case head with the pattern of
the most expensive case (i. e. the first one).

+ 1 ∗ (2∗L1 TO CPU
+ CPU CMP
+ L1 FROM CPU)

TIME parse ipv4 n2 s

+ MEM TO CACHE
+ 8 ∗ (L1 TO CPU

+ CPU MOV
+ L1 FROM CPU)

+ CPU ADD

Figure 14: The WCET of state start.

the parse ipv4 state transition is weighed with the probability of the ethType

field of the header being the value 2048. For conciseness, we omit the resulting
expected value formula from this paper, and instead show only the final values in
Figure 15, given various probability distributions.

Using the constants in Figure 13, we can finally evaluate the partially evaluated
formulas to a single numeric value characterizing the performance. In Figure 15, we
depicted three constants and the average cost computed over various probabilities.
The constant values marked with BCET and WCET denote the best and worst case
execution times of start as we discussed earlier. TOL was introduced in Section 1.1
as the maximum number of cycles that can be spent for processing a packet without
causing buffer overflow in the long run by a switch residing in a 10 Gigabit Ethernet
network and implemented on the CPU architecture in Figure 13. Note that TOL

encompasses the entirety of the packet processing process starting with packet
arrival on the NIC, while the rest of the numbers only characterize the costs of
packet parsing starting from start. To derive a more meaningful chart, we would
need to reduce the time cost formula for the program entry point instead of start,
or set TOL lower.

Instead of deriving the average execution time with arbitrary probability distri-
butions, we plotted the average (measured in cycles) over several different distri-
butions. Because of the case analysis and the possible need of caching, the average
depends on the probability of the packet being an IPv4 packet, and the probability
of cache misses. This means that we are working with pairs of probability dis-
tributions, each defined over two values (the predicate in question being true and
false). Two keep the plot in 2 dimensions, we only used two probabilities of packets
having IPv4 types (0 meaning no IPv4 packets arrive at all, and 1 meaning only
IPv4 packets arrive), each represented by two different lines. We keep track of the
cache miss probabilities on the x-axis.
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BCET 117

TOL 288

WCET 1055
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Figure 15: Latency characteristics of start over IPv4 and cache miss probabilities.

By looking at the plot, we can conclude that a cache miss ratio of 0.08 and
below will guarantee that the examined P4 function call will not take longer than
the allowable limit even if we have to process all packets as IPv4 packets. On
the other hand, ratios above 0.31 are clearly dangerous: if cache the misses that
frequently, buffer overflows cannot be avoided even if no IPv4 packets arrive at
all. As these extremities rarely occur in practice, cache miss ratios between 0.08
and 0.31 can be candidates for further testing (or cost analyses with more precise
estimations) to find the highest cache miss ratio with which the switch can still
run sustainably (i. e. without causing buffer overflows) in a given application
environment.

5 Related work

In this paper, we presented a system for verifying conformance of P416 programs
to performance requirements. Our long term goal is to innovate a framework that
is capable of verifying both functional and non-functional requirements using the
same base representation. To handle cost analysis methodically, we utilized the
seminal work of Wegbreit [16] and the idea of cost relation systems (CRS) [5].

Verification of functional correctness of P4 programs seems to be hot topic
lately in the switching industry and the field of network languages, although most
works we found were targeting P414 the previous, still maintained version of the
language. P4V [12] verifies various properties – such that no headers are used
unless they were extracted from a packet beforehand – by extending the language
with assertion statements, transforming the program code including assertions to
predicate transformer semantics, and then applying the Z3 SMT solver to prove
theorems. Vera [14] follows a different route, and uses symbolic execution and
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computation tree logic over an intermediate representation to find or prove non-
existence of bugs in P4 programs, delivering also an input configuration producing
the fault. P4K [10] is a formal semantics for P4, written in the K framework. Using
reachability logic in K, the authors automatically prove Hoare-style assertions for
P4 involving stateful data plane elements and unbounded streams of packets.

Both in correctness and performance verification a core concern is efficiency:
for deriving the execution cost of a program statically, analysis of all execution
paths is unavoidable. This means that the complexity of the analysis is at best
exponential. To offset the costs of path analysis, we borrowed a simple divide and
conquer idea from [8] to utilize the highly decomposable nature of network pro-
gramming languages in verification: instead of analysing paths in the full program,
we first analyze just the components, and only perform those transformations on
the full program that actually require the full program. Thanks to our symbolic and
compositional denotation, we can choose an arbitrary small segments for analysis
instead of analyzing the full pipeline.

Our work can be considered an automatization of the approach following [3].
Here, the authors manually analyze the Ethernet protocol and a specific hardware
architecture, then synthesize the information into a sequence of primitive packet
processing actions called elementary operations (EOs) in order to quantify perfor-
mance.

6 Conclusion and Future Work

We conclude this paper by first enumerating problems and opportunities to extend
the presented framework in future research, and then summarizing the contributions
of this work.

In the current paper, we only analyzed the parser of a P4 program. One im-
portant step for full language coverage will be the analysis of match-action tables:
match probabilities can be computed from given match-action tables, and low-level
costs of matching and actions can be inferred using the presented procedure. On
the other hand, the number of branches in the control flow will be equal to the
number of distinct actions that can be performed by the table, so to avoid com-
binatorial explosion with nested branches, it is important to analyse match-action
tables separately.

In this paper, we demonstrated the operation of our system on a toy example.
It will be an important and useful research task to apply the procedure to real
and complex targets, such as the P4C reference switch [1] and the DPDK switch
generated by T4P4S [11]. First, to validate the presented system in real environ-
ment, and second to use the retrieved performance information to improve the
aforementioned targets.

By introducing random variables in time cost formulas, we effectively mod-
elled P4 programs as memoryless Markov-chains. Feasibility of providing condi-
tional probability distributions for more precise models involving Markov-chains
with longer memory may also worth further investigation.
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At the time of writing, state-of-art compilers such as the official P4C compiler [1]
as well as the P4C-based T4P4S reject all P4 programs containing loops in the
parser, and the language specification [15] disallows loops everywhere else. For the
lack of support in the software ecosphere and a seeming lack of use cases for loops in
P4, we decided not to implement cost analysis of loops in the current work, but we
intentionally choose a representation that can be extended for this purpose applying
approaches involving e. g. generating functions [16], or cost relation systems [5],
and also see loop analysis a possible direction towards system completeness.

With this, we conclude our paper. We showed that networked switches have to
comply with strict performance requirements, and also observed that unspecified
constructs in P4 require low-level, target-dependent information. We outlined the
architecture of a cost analysis framework for addressing both problems. We pre-
sented a program transformation system based on term rewriting, that is used to
derive a symbolic formula, in which the symbols can be substituted in with numeric
constants by various queries to deliver the requested performance information. We
went through the main steps of this process using a toy example, and showcased
a possible application of the symbolic formula to find ideal cache miss ratios for
the aforementioned target. We also situated our paper among works related to the
verification of P4, and network function cost analysis. Finally, we marked possible
directions to improve this work in order to provide a practical solution for analysis
and verification of high-efficiency network platfroms.
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and Tejfel, Máté. High speed packet forwarding compiled from protocol inde-
pendent data plane specifications. In Proceedings of the 2016 ACM SIGCOMM
Conference, SIGCOMM ’16, pages 629–630, New York, NY, USA, 2016. ACM.
DOI: 10.1145/2934872.2959080.

[12] Liu, et al. P4V: Practical Verification for Programmable Data Planes. In
Proceedings of the 2018 Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM ’18, pages 490–503, New York, NY, USA,
2018. ACM. DOI: 10.1145/3230543.3230582.

[13] Sivaraman, Anirudh, Kim, Changhoon, Krishnamoorthy, Ramkumar, Dixit,
Advait, and Budiu, Mihai. Dc.p4: Programming the forwarding plane of a
data-center switch. In Proceedings of the 1st ACM SIGCOMM Symposium on
Software Defined Networking Research, SOSR ’15, pages 2:1–2:8, New York,
NY, USA, 2015. ACM. DOI: 10.1145/2774993.2775007.

[14] Stoenescu, et. al. Debugging p4 programs with vera. In Proceedings of the
2018 Conference of the ACM Special Interest Group on Data Communication,
SIGCOMM ’18, pages 518–532, New York, NY, USA, 2018. ACM. DOI:
10.1145/3230543.3230548.

[15] The P4 Language Consortium. P416 Language Specification.
https://p4.org/specs/, 2017. [Online; accessed 30-September-2018].

[16] Wegbreit, Ben. Mechanical program analysis. Commun. ACM, 18(9):528–539,
September 1975. DOI: 10.1145/361002.361016.



Acta Cybernetica 24 (2019) 83–103.

Multi-Cloud Management Strategies for Simulating

IoT Applications

Andras Markusa and Jozsef Daniel Dombib

Abstract

The Internet of Things (IoT) paradigm is closely coupled with cloud tech-
nologies, and the support for managing sensor data is one of the primary
concerns of Cloud Computing. IoT-Cloud systems are widely used to man-
age sensors and different smart devices connected to the cloud, hence a large
amount of data is generated by these things that need to be efficiently stored
and processed. Simulation platforms have the advantage of enabling the in-
vestigation of complex systems without the need of purchasing and installing
physical resources. In our previous work, we chose the DISSECT-CF simu-
lator to model IoT-Cloud systems, and we also introduced provider pricing
models to enable cost-aware policies for experimentation. The aim of this
paper is to further extend the simulation capabilities of this tool by enabling
multi-cloud resource management. In this paper we introduce four cloud se-
lection strategies aimed to reduce application execution time and utilization
costs. We detail our proposed method towards multi-cloud extension, and
evaluate the defined strategies through scenarios of a meteorological applica-
tion.

Keywords: cloud computing, internet of things, simulation, Pliant system

1 Introduction

In the paradigm of the Internet of Things (IoT), sensors and smart devices are
connected to the Internet giving way to many opportunities to use cloud and IoT
services together [1]. Since more and more devices enter the network to form IoT
systems, the dataflow and the workload of the supporting services are increasing,
which also raise open issues such as resource usage and cost reduction or legal
compliance [5]. Hiring physical machines from virtual server parks fitting various
IoT scenarios could be very expensive, and the investigation of IoT-enabled cloud
service compositions is not always possible with real cloud providers. As a result, in
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many cases cloud simulators are applied to address the evaluation of such complex
environments.

While network simulators could be too complex to simulate IoT and cloud
systems together, due to detailed network configurations, special purpose cloud
simulators may be over-tailored to cloud-specific details making it hard to express
IoT needs. The number of IoT devices and usage areas are constantly growing,
and some cases require immediate intervention after data processing, such as heart
monitoring in smart homes, or traffic control in smart cities. This means we need
new solutions and techniques for data storage, access and processing, which can
be designed and evaluated in infrastructure cloud simulators extended with IoT
simulation capabilities. Therefore we have chosen DISSECT-CF to perform our
investigations [2].

In our earlier works we introduced IoT modeling to a traditionally cloud sim-
ulator, then combined provider pricing schemes with IoT cloud management in
DISSECT-CF [3] to enable cost-aware investigations. Since cloud federations [4]
provide a wider range of capabilities to users, the next step in our research was to
enable the usage of multiple cloud datacenters to serve certain IoT scenarios.

In this paper we introduce four cloud selection strategies aimed to reduce ap-
plication execution time and utilization costs. The default strategy uses random
cloud selection for the managed IoT devices, and we also propose a load balancing
and a cost minimizing strategy. Finally, for a more sophisticated strategy we apply
a fuzzy-based approach. We also evaluate our proposal through scenarios derived
from a real-life weather forecasting service.

The remainder of this paper is as follows: Section 2 discusses related approaches
in this field, and Section 3 summarizes relevant previous works of the authors.
Section 4 introduces our proposed cloud selection strategies, which are evaluated
in Section 5. Finally, we conclude the paper in Section 6.

2 Related work

In the field of cloud and IoT simulations, CloudSim [6] is one of the most widespread
solutions for modeling cloud system components including data centers and virtual
machines, as well as investigating cloud resource provisioning policies. When IoT
started to emerge, CloudSim has been extended to provide modeling capabilities
for IoT system components. Khan et al. [7] proposed an infrastructure coordina-
tion technique for large scale IoT systems built on top of CloudSim. It provides
customization for specific home automation scenarios, which limits the applicabil-
ity of their extensions. The iFogSim [8] also extends CloudSim to simulate IoT
and fog environments by measuring resource management techniques with several
metrics including latency, network congestion, energy consumption and cost. They
presented two case studies to demonstrate IoT modeling and resource management
policies: latency-sensitive online gaming, and an intelligent surveillance application
using distributed camera networks.

Besides CloudSim, we can find similar simulation approaches tailored to specific
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needs. Zeng et al. [13] proposed IOTSim that supports the simulation of big
data processing with the MapReduce model exemplified with a real case study.
SimIoT [9] is based on the SimIC simulation framework [10], and it proposes several
techniques to simulate the communication possibilities between IoT sensors and
cloud components, but it is limited to compute activity modeling.

MobIoTSim [14] proposes a semi-simulated environment for investigating IoT
cloud systems. It aims at mimicking the behavior of IoT sensors and devices with
a mobile simulation environment. Sensor data management and system scalability
can be investigated with real interconnected gateway services.

Concerning IoT management algorithms, Moschakis and Karatza [11] intro-
duced workload models with interfacing various cloud providers and IoT systems,
enabling the investigation of the behavior of cloud systems that support the pro-
cessing of data originated from the IoT system. Silva et al. [12] focused on the
dynamic nature of IoT systems, therefore they investigated fault behaviors with
specific fault models. Unfortunately, the scalability of the introduced fault behav-
ior concepts are insufficient for large scale systems.

Several providers offer PaaS-level cloud services with the possibility of connect-
ing and managing IoT devices, we can find a detailed comparison of them in [15].
These solutions are usually tightly coupled for certain providers, and hide low-level
details of utilization, which is an advantage for end-users, but they are not suit-
able for modeling low-level infrastructure operations, and developing multi-provider
IoT-Cloud applications.

From these related works we can see that IoT-Cloud systems can be exam-
ined with several simulation tools, and supporting environments already exist for
investigating specific behavioral methods, such as resource selection, sensor com-
munication, big data management, energy efficiency and cost savings. Nevertheless,
the combination of these aims and closer relation to real world utilization patterns
still represent open issues. Our approach combines cost reduction based on real
world provider pricing and multi-cloud resource selection, applied in a real-world
usage scenario.

3 IoT-Cloud Simulation in DISSECT-CF

One of our main goals for choosing the DISSECT-CF cloud simulator for our inves-
tigations was its unified resource sharing mechanism. Timed events are the basic
elements of this simulator, which can be recurrent time-dependent events that have
a frequency value (e.g. 10 ms), which calls their methods regularly in every moment
based on the given value. There are non-recurrent time-dependent events as well,
that have only a delay value (e.g. 5 ms) denoting the time to be elapsed before its
function has to be called. Both type of events are controlled by the inside clock of
the simulator. With these build-in events we can simulate the management of IoT
systems including sensors and smart devices. The configuration of IoT system prop-
erties in the simulator can be done through an XML description file. We can set
the following attributes: network bandwidth, local repository size, operating time,
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Figure 1: Architecture of the IoT-extended DISSECT-CF simulator

number of sensors and frequencies of the data generating, storing and sending, and
the size of the generated files.

Two additional XML descriptions can be used to set provider pricing proper-
ties. Usually the cloud side pricing is used to calculate the costs of virtual ma-
chines (VMs) used to run an IoT application. It defines a fixed monthly cost per
VM instance, but some providers charge the hour per price for every instance an
application needs. To manage data coming from IoT devices and sensors, we need
to calculate the IoT side costs, that can also be set based on real provider pricing
schemes (e.g. Amazon, Azure, IBM and Oracle). In general, the IoT prices are
calculated after the generated data traffic in MB following the ”pay as you go” ap-
proach, while some providers charge after the number of messages exchanged in a
month, or set a monthly device per price or messages sent in a day. All these three
XML description formats and possible parameters are presented and discussed in
our previous work [3].

In general, a simulation is performed by executing the following steps: first,
a cloud is set up using an XML description (we used the model of a Hungarian
private cloud infrastructure called the LPDS Cloud of MTA SZTAKI [24]), then
the necessary amount of stations are initialized and the VM parameters are loaded
from additional XML files, which also describe the cloud and IoT costs. Next,
the IoT application is started with the deployment of an initial VM in the defined
cloud, followed by the start of metering and data generation processes of device
stations. IoT and cloud operations are continuously monitored to calculate the
resource consumption costs. During execution, a broker service checks if the cloud
repository received a scenario-specific amount of data, if so, then a compute task
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will be generated and deployed in a VM for data processing.
Finally, sensor data generation, compute task creation and execution are re-

peated till the end of the simulation, with possible starting and stopping of VMs.
At the end of the simulation we can retrieve information about end user costs
concerning the utilization of IoT and cloud resource consumption.

Virtual machines

Applications 

Repository 

Cloud broker 

IoT devices

Figure 2: Application execution in the extended DISSECT-CF simulator

4 The proposed cloud selection strategies

The main research question of this paper is how we can influence the behavior of an
IoT application, if the sensors can have different allocation strategies for multiple
clouds. In the earlier version of the extended DISSECT-CF we could exploit only
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one cloud datacenter to start VMs, therefore all sensors and smart devices were
connected to this specific cloud, and all the generated data of the sensors were
processed by virtual machines running in the same cloud (as we summarized in
the previous section). In this single cloud setup, a cloud can have a preloaded cost
calculation policy with a single pricing scheme. Smart devices usually have different
sensors and usage frequencies affecting data generation methods that can influence
cloud service operation and also the provider pricing. As a result, a single cloud
could be easily overloaded, and the unprocessed data could hinder the operation
of the IoT application causing longer response times, even service unavailability in
real-world services.

The formerly added components of the simulator by our previous work towards
IoT extension can be seen in Figure 1 denoted by grey background. Our current
contribution targets the top levels of the simulator architecture, and aims to enable
the use of multiple IoT Controllers and pricing schemes.

In this work we introduce the possibility of multi-cloud management for IoT
cloud simulations in DISSECT-CF. During the start of the simulation we can set up
different clouds using extended XML descriptions denoting sets of physical machines
and repositories with various properties. Another improvement is the introduction
of a cloud broker, which can manage different VM queues. These queues may
have virtual machines with different pricing policies, and within a simulation the
broker can decide, to which cloud (and to which VM queue) the IoT devices should
be connected, thus where the generated data should be sent and processed in an
application. This revised IoT Cloud management architecture is depicted in Figure
2, showing one cloud with three different applications mapped to three different
VM queues. These extensions make the simulator more flexible and capable of
performing scalability experiments involving multiple cloud providers.

In order to enable easy and repeatable system configuration, we defined a new
XML format to configure VM flavors with prices for the applications. An example
of this XML structure can be seen in Figure 3, which defines two flavors. With
this flavor model we can specify the required VM resources (cpu-cores, ram), the
cost of the VM (price-per-tick), the number of boot instructions affecting the boot
time (startup-process), the network traffic (network-load) and the local disk size
requirement (req-disk) of the new instance. Flavors can be identified by the name
attribute, and they must be unique in the configuration. In this example we defined
two different clouds (4 CPU cores with 4 GB RAM, and 2 CPU cores with 2 GB
RAM), which allocate almost 10 GBs of the local disc.

An example XML with two application descriptions is presented in Figure 4.
We defined a daemon service frequency (freq) to regularly check the repository for
unprocessed data. The tasksize attribute tells the highest amount of unprocessed
data that can packaged in one compute task to be executed by virtual machines.
The selected computing infrastructure is identified by the cloud tag, and finally,
the VM flavor to be used for executing the compute tasks can be specified in the
instance tag (by referring to the name attribute of the flavor model).

In this example both defined applications use the formerly defined flavors and
two different clouds (identified by ’Cloud1’ and ’Cloud2’ unique name). The fre-
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<?xml version="1.0"?>

<flavors>

<flavor name="amazon-large">

<ram>4294967296</ram>

<cpu-cores>4</cpu-cores>

<price-per-tick>0.000015</price-per-tick>

<core-processing-power>0.001</core-processing-power>

<startup-process>100</startup-process>

<network-load>0</network-load>

<req-disk>10000000000</req-disk>

</flavor>

<flavor name="azure-small">

<ram>2147483648</ram>

<cpu-cores>2</cpu-cores>

<price-per-tick>0.000001</price-per-tick>

<core-processing-power>0.001</core-processing-power>

<startup-process>100</startup-process>

<network-load>0</network-load>

<req-disk>10000000000</req-disk>

</flavor>

</flavors>

Figure 3: Sample description using the flavor XML model

quency value defines that the daemon service should repeat the virtual machine
handling functions (generate, shutdown and reboot the VM based on the actual
load of unprocessed data) every 5 minutes.

In the IoT paradigm the sensors are passive entities of the systems, thus their
performance is limited by the operation frequency (i.e., data generation, storing,
transfer to the cloud), up-time and network connection. Usually, large amounts
of sensor data are sent from the smart devices to cloud resources for further com-
putation and analysis. Since resource consumption can be costly, IoT application
owners can reduce their expenses by selecting a provider having a suitable pricing
scheme.

In this paper we defined four different strategies to perform cloud provider se-
lection (to be done during each IoT device (or sensor) start-up), which can be
denoted by setting the strategy field of the XML description of each device partic-
ipating in the simulation. The strategy for a smart device is defined in the device
XML description format presented in Figure 5 with the strategy tag. Also the
network settings (maxinbw, maxoutbw, diskbw) of the local repository (reposize)
are set with data caching function (data-ratio). We can configure the life time of
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<?xml version="1.0"?>

<applications>

<application tasksize="2500000">

<name>Weather-1</name>

<freq>300000</freq>

<cloud>cloud1</cloud>

<instance>azure-small</instance>

</application>

<application tasksize="2500000">

<name>Weather-2</name>

<freq>400000</freq>

<cloud>cloud2</cloud>

<instance>amazon-large</instance>

</application>

</applications>

Figure 4: Sample description using the application XML model

the device (starttime, stoptime), the number of sensors it has (sensor), the size of
the generated data (filesize) and the generation and sending frequency (freq). The
device settings can be applied for a group of devices using the number attribute.
In this example (Figure 5) the configuration file defines 487 devices running for 6
hours and each device generates 50 bytes of data by its 8 sensors. Detailed XML
samples and schemes can be found in [20].

We propose four different strategies for multi-cloud management: (i) random,
(ii) cost-aware, (iii) runtime-aware and (iv) Pliant. In the next subsections we
introduce these strategies.

4.1 Basic strategies

With the random strategy the cloud broker chooses one of the available applica-
tions running in the simulated clouds randomly for an actual IoT device (sensor or
station).

The cost-aware strategy looks for the cheapest available VM in a cloud (based
on their static pricing properties), thus it compares the prices of the required VM
flavors for a given device. Its algorithm orders the VMs by their price-per-tick
value. This solution may be more suitable for IoT applications having relatively
small data processing needs or less susceptible for the processing time, because
cloud providers usually offer lower resource capacities for less costs.

In the runtime-aware strategy, the corresponding algorithm ranks the available
VMs (residing in different clouds) by a specific value defined by the ratio of the
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<?xml version="1.0" encoding="UTF-8"?>

<devices>

<device starttime="0" stoptime="21600000"

number="487" filesize="50">

<name>test1</name>

<freq>60000</freq>

<sensor>8</sensor>

<maxinbw>1000</maxinbw>

<maxoutbw>1000</maxoutbw>

<diskbw>1000</diskbw>

<reposize>60000</reposize>

<data-ratio>1</data-ratio>

<strategy>random</strategy>

</device>

</devices>

Figure 5: Sample description using the device XML model

number of already connected devices and the number of the available physical
machines of the hosting cloud. This is a dynamic strategy taking into account
the actual load of the available clouds. Applications having longer data processing
needs may prefer this strategy.

4.2 The Pliant strategy

Fuzzy sets were introduced in 1965 with the aim of reconciling mathematical mod-
eling and human knowledge in the engineering sciences. Fuzzy logic means that we
can not decide whether the value is true or not. The true lies between the true and
false value. Fuzzy logic offers a very valuable flexibility for reasoning [17]. Most of
the building blocks of the theory of fuzzy sets were proposed by Zadeh, especially
fuzzy extensions of classical basic mathematical notions like logical connectives,
rules, relations and quantifiers. Over the last century, fuzzy sets and fuzzy logic
[16] have become more popular areas for research, and they are being applied in
fields such as computer science, mathematics and engineering. This has led to a
truly enormous literature, where there are presently over thirty thousand published
papers dealing with fuzzy logic, and several hundreds books have appeared on the
various facets of the theory and the methodology. However, there is not a sin-
gle, superior fuzzy logic or fuzzy reasoning method available, although there are
numerous competing theories.

The Pliant system is a kind of fuzzy theory that is similar to a fuzzy system [18].
The difference between the two systems lies in the choice of operators. In fuzzy
theory the membership function plays an important role, but the exact definition



92 Andras Markus and Jozsef Daniel Dombi

of this function is often unclear. In Pliant systems we use a so-called distending
function, which represents a soft inequality. In the Pliant system the various oper-
ators, which are called the conjunction, disjunction and aggregative operators, are
closely related to each other. In the Pliant system we have a generator function
and using this function we can create aggregation operator, conjunctive operator
or disjunctive operator. In the Pliant systems the corresponding aggregative oper-
ators of the strict t-norm and strict t-conorm are equivalent, and DeMorgans law
is obeyed with the corresponding strong negation of the strict t-norm or t-conorm.

The Pliant system has a strict, monotonously increasing t-norm and t-conorm,
and the following expression is valid for the generator function:

fc(x)fd(x) = 1, (1)

where fc(x) and fd(x) are the generator functions for the conjunctive and disjunc-
tive logical operators, respectively. This system is defined in the [0,1] interval.

The operators of the Pliant system are
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where α > 0.
The operators c, d and n fulfill the DeMorgan identity for all ν, a and n fulfill

the self-DeMorgan identity for all ν, and the aggregative operator is distributive
with the strict t-norm or t-conorm. The ν value express the expected value of the
given context. This means that if the given x value is greater than ν, then the
operators increase the value of x. The opposite is true when x is smaller than ν.
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Table 1: Normalization parameters

Parameter Lambda Shift

General VM cost -1.0/96.0 15
Cost of the application -1.0 (maxPrice-minPrice)/2
Workload -1.0 maxWorkload
Number of VM -1.0/8.0 3
Number of stations -0.125 sumStations/appSize
Number of active stations -0.125 sumStation/activeStation
VM memory size 1.0/256 350
VM CPU 1.0/32 3

These algorithms calculate a score for each cloud using the environment prop-
erties. The calculation step includes a normalization step, where we apply the
Sigmoid function. In the normalization step it should be mentioned that if the
normalized value is close to one, it means it is a more valuable property, and if
the normalized value is close to zero, it means it is a less prioritized property. For
example, if the CPU utilization of the VM is high, the normalization algorithm
should give a value close to zero.

In a previous work [19], we used the Pliant system approach to schedule applica-
tions to VMs in a cloud by minimizing energy consumption. There we experienced
that uncertainty could be well tolerated with this approach, and better results can
be achieved with this model than traditional approaches.

In this work we create a new algorithm that can predict, which cloud could
be the best for managing a given IoT device. This algorithm is also based on
the Pliant logic, therefore for each cloud (i.e. for each VM queue in a cloud) it
calculates a score number. The first step of the algorithm is to normalize the
data into the [0,1] interval. We apply a Sigmoid function for this purpose. We
define the following properties for each cloud VM: general VM cost, current cost
of application, workload, number of running VMs in the hosting cloud, number of
devices that are already connected to a cloud, memory size and number of CPUs.
In Table 1 we can see the exact values of the normalization functions.

After the normalization step we modify the normalized value to emphasize the
importance of the result. This means that if the given x value is greater than our
expectation (ν) than we will increase the value of x. the opposite is true when the
given x is smaller than ν. To achieve this we will modify the normalized value by
using the Kappa function shown in Figure 6 with ν = 0.4 and λ = 3.0 parameters:

κλν (x) =
1

1 +
(

ν
1−ν

1−x
x

)λ (7)

Finally, to calculate a cloud score number for the given application. For this
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Figure 6: The Kappa function

manner we can use conjunction, disjunction or aggregation operator. The conjunc-
tive operator is similar as the and operator. This means that if one of the value
is small, then the result will be also small. The opposite is true for disjunctive
operator, that is similar to or operator. If on of the value is large, the result will
be also large. The aggregation operator lies between the disjunctive or conjunctive
operator, that is why we use this operator:

aν,ν0(x1, · · · , xn) =
1

1 + 1−ν0
ν0

ν
1−ν

∏n
i=1

1−xi

xi

, (8)

where ν is the neutral value and ν0 is the threshold value of the corresponding
negation. Here we don’t want to threshold the result so both parameters have the
same value 0.5. The result of the calculation is always a real number that lies in
the [0,1] interval. So we calculate the score for all clouds (i.e. VM queues of clouds)
to find which one is the most suitable for a given device.

5 Evaluation with weather forecasting scenarios

One of the earliest examples of sensor networks comes from the field of weather
prediction, therefore we chose to model meteorological services based on available
public information. Not only the managing architecture, but the generated sensor
data is also modeled, which are in most cases: temperature, humidity, barometric
pressure, rainfall and wind properties. In our model the weather conditions are
regularly refreshed by the service websites in every 5 minutes, but the sensors are
able to generate data in every minute, which needs caching not to overload the
service. In this paper our proposed algorithms address the optimization of cloud
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Table 2: Detailed Bluemix, Azure and Amazon pricing-based private cloud config-
urations used in the evaluations

Cloud Bluemix

Flavor Small Medium Large
Hourly price (Euro) 0.0378 0.149 0.295

CPU (Cores)/RAM (GB) 1/1 4/2 8/4

Cloud Azure

Flavor Small Medium Large
Hourly price (Euro) 0.019 0.0579 0.297

CPU (Cores)/RAM (GB) 1/1.75 2/3.5 8/14

Cloud Amazon

Flavor Small Medium Large
Hourly price (Euro) 0.0229 0.0415 0.3327

CPU (Cores)/RAM (GB) 1/2 2/4 8/32

Table 3: Detailed multi-cloud configuration for the evaluations

Cloud Physical machines

LPDS-1 1 PM - 32 cores, 128 GB RAM
4 PMs - 8 cores, 12 GB RAM

LPDS-2 1 PM - 64 cores, 128 GB RAM
1 PMs - 48 cores, 128 GB RAM
1 PMs - 32 cores, 128 GB RAM
9 PMs - 8 cores, 12 GB RAM

LPDS-3 2 PM - 64 cores, 128 GB RAM
2 PMs - 48 cores, 128 GB RAM
2 PMs - 32 cores, 128 GB RAM
18 PMs - 8 cores, 12 GB RAM

side costs with enhanced allocation of the stations (i.e. devices). Which means we
can define more cloud providers with their own pricing schemes, but we use only
one IoT provider (therefore the IoT side cost cannot be optimized).

5.1 Scenario No1

In the first scenario we chose to model the crowd-sourced meteorological service of
Hungary called Idokep.hu [21]. In this scenario we aimed to model its real-world
operation: all stations have 8 sensors (represented by a device in our model), the
message size of the sensors can be set up to 0.05 KBs, and the sensors generate
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Table 4: Evaluation results of the scenario No1

Strategies Cost-aware Random Runtime-Aware Pliant

App-1 cost 0 1.119 1.119 1.119
App-2 cost 0 2.027 2.027 2.027
App-3 cost 0 16.167 16.223 16.223
App-4 cost 0 1.842 1.842 1.842
App-5 cost 0 7.300 7.300 7.300
App-6 cost 0 14.426 14.426 14.426
App-7 cost 1.769 0.974 0.972 0.974
App-8 cost 0 2.827 2.822 2.82 7
App-9 cost 0 14.478 14.454 14.478

Total cost (Euro) 1.769 61.164 61.188 61.219
No. of used VMs 5 9 9 9

Total tasks 227 2619 2616 2619
Timeout (min) 1.76 4.01 4.05 2.06

data in every minute. The start-up period of the stations were selected randomly
between 0 and 20 min. In order to exemplify the usage of different cloud selection
strategies, we defined periodic start-up and shut-down dates for certain stations
(e.g. to represent malfunctions or failures). We simulate a whole day of operation
(from 0:00 a.m. to 24:00 a.m.), and we start the simulation by setting up 200
stations at 0:00 a.m. At 2:00 a.m. we start 100 more, and at 10:00 a.m. 200 more
to scale the total number of operated stations up to 500. At 2.00 p.m. we shut
down 200 stations to scale down the number of running station to 300 by 10 p.m.
At the end of the day the total number of running stations return to 200. This
means the total number of operated meteorological stations in this scenario are 500
(which denotes a relatively small scale, nation-wide system).

With these station management timings we run four different test cases: (i) all
stations use the random strategy, (ii) all stations use the cost-aware strategy, then
(iii) all stations use the runtime-aware strategy. Finally, (iv) we used the Pliant
strategy in the last experiment. For this evaluation we configured three clouds
based on the LPDS-1 cloud description from Table 3, and every cloud can run
application instances (to execute compute tasks) in three VM flavors defined in
Table 2 (that makes 9 possible application instances in total).

We executed the formerly defined scenario with the four test cases. The results
of the experiments can be seen in Table 4. After executing this scenario the ap-
plications processed 173.75 MBs of data. The so-called timeout parameter denotes
how much time it took for the application to terminate (i.e. to perform all remain-
ing data processing operations) after the last station stopped working (at 24:00
a.m.). As we can see from these results, the cheapest solution is the cost-aware
strategy (1.769 Euros) with these simulation parameters, it also has the shortest
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Figure 7: Timeline comparing task allocations of pliant and cost-aware strategies
in Scenario No1

timeout (1.76 minutes) and it utilized the least virtual machines. This strategy
only used 5 instances of the cheapest VM while the other strategies used 1 VM
instance in every running application. Since the stronger virtual machines (having
higher costs) processed the tasks faster than the weaker ones (as expected), they
had to generate tasks more frequently. In general, choosing the cheapest VM for
an application may result in serious delay in real time systems, but in this case our
simulated system can operate with weaker resources in real time due to the small
amount of sensor data to be processed. The beginning of the simulation there is
no virtual machine running, which can serve any task execution request, thus each
simulation has to wait at most 5 minutes to deploy one and allocate tasks, which
means all timeout values of the strategies are acceptable.

The random, runtime-aware and Pliant strategies use unnecessarily more ex-
pensive virtual machines, which results in more than 60 Euros of cost in every case,
but we can see the advantage of the pliant strategy: it tries to minimize the timeout
value. In this case, it achieved a timeout of 2.06 minutes, which is the second best
result. It shows that our Pliant strategy focused more on execution time reduction
than cost savings.

Figure 7 shows the allocated tasks of an application running in the simulation
with the pliant and cost-aware strategies for the first 12 hours. Every box denotes
a different task and boxes having the same color were processed by the same virtual
machine. The lengths of the tasks refers to their execution time. We can see that
the tasks of the cost-aware strategy processed relatively medium amount of data
resulting in many, not too narrow boxes on the timeline. In case the amount of
unprocessed data was growing, the system started to scale up the number of utilized
virtual machines. Meanwhile the pliant strategy worked with stronger and faster
virtual machines, which resulted also in many tasks with small amount of data, but
using only the same, best fit VM. This explains the difference between the number
of total tasks of these strategies. Next we investigate a scenario of a higher scale.
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Table 5: Evaluation results of the scenario No2

Strategies Cost-aware Random Runtime-Aware Pliant

App-1 cost 0 3.563 3.544 3.542
App-2 cost 0 3.745 3.707 3.721
App-3 cost 0 12.396 12.451 12.451
App-4 cost 0 5.799 5.796 5.783
App-5 cost 0 9.384 8.324 8.748
App-6 cost 0 12.157 12.132 12.034
App-7 cost 26.419 3.061 3.063 3.090
App-8 cost 0 5.156 5.243 5.166
App-9 cost 0 11.261 11.187 11.112

Total cost (Euro) 26.419 66.527 65.451 65.651
No. of used VMs 109 180 170 173

Total tasks 1722 1830 1819 1838
Timeout (min) 631 86 86 71

5.2 Scenario No2

In the second scenario we aimed to simulate a larger, world-wide system. An
international meteorological service called OpenWeatherMap [22] is operated by the
Openweather IT company [23], which was established in 2014 by a group of experts
in Big Data and image processing. As their website suggests, they manage over
40000 meteorological stations all over the world. Our goal with this scenario is to
investigate how IoT applications behave in such large-scale environments. Similarly
to the first scenario, we used three clouds configured with Amazon, Azure and IBM
Bluemix cloud provider pricing defined in Table 2, but we modified the physical
parameters of the simulated private clouds (to be able to cope with the higher
number of stations) as defined by LPDS-2 in Table 3. The number of running
weather stations has been increased to 40000, each of them works with 8 sensors
and generate 50 bytes of data every minute. We run this scenario to simulate 6
working hours. In the beginning we started 10000 stations, then we added 10000
stations more in the next hours to reach 40000 stations by the fourth hour.

The results of the second scenario is shown in Table 5. After executing this
scenario the applications processed 4.008 GBs of data. In the previous scenario
the cost-aware strategy was good choice both cost and runtime, but problems may
occur for systems with higher scale. In this case the cheapest schedule was pro-
vided by the cost-aware strategy with 26.419 Euros, but it had 631 minutes (∼10.51
hours) timeout, which is almost twice longer than the simulated working time (i.e. 6
hours). For applications which are not sensitive to low latency, the cost-aware strat-
egy can be still an acceptable opportunity to decrease costs, but for time-dependent
applications (e.g. smart systems, weather forecasting systems) other strategies are
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Table 6: Evaluation results of the scenario No3

Strategies Cost-aware Random Runtime-Aware Pliant

App-1 cost 0 3.512 3.552 3.552
App-2 cost 0 3.724 3.731 3.804
App-3 cost 0 13.283 12.479 12.451
App-4 cost 0 6.233 5.830 5.824
App-5 cost 0 9.197 8.523 8.386
App-6 cost 0 12.428 12.157 11.960
App-7 cost 26.489 3.085 3.071 3.070
App-8 cost 0 5.224 5.185 5.195
App-9 cost 0 11.904 12.251 12.152

Total cost (Euro) 26.489 66.429 66.784 66.397
Used VMs 172 183 184 185
Total tasks 1722 1905 1889 1893

Timeout (min) 526 36 36 36

needed. Nevertheless, the cost-aware strategy utilized the lowest number of VMs,
too. The random and the runtime-aware strategies have the same timeout (with
86 minutes), but the runtime-aware approach operated with less virtual machines
(with 10 VMs) and saved around one Euro compared to the random one. The
pliant strategy was even better with almost the same price, since it reached the
most favorable timeout (with 71 minutes).

5.3 Scenario No3

In the third scenario we configured our private cloud to be the strongest, having
twice as many resources as in the second scenario (detailed in the LPDS-3 parameter
setup of Table 3), while the rest of the configuration (the applications and the
stations) remained untouched, thus the final amount of generated (and processed)
data was the same as in the previous scenario.

Table 6 shows the results of the third scenario. With the increased physical
resources the running time have decreased, but the cost-aware strategy still required
526 minutes (∼8.76 hours) timeout, after the last station stopped working.

If we take a look at the figures, we can see that most strategies benefited from
the stronger clouds: they all managed to reduce the timeout significantly. The
cost-aware strategy remained the cheapest one, but the number of used virtual
machines increased the most against the other strategies compared with the second
scenario. The amount of unprocessed data grew faster, than the number of available
virtual machines, thus when the application operated with the maximum number
of stations the stronger resources could provide more virtual machines to reduce
timeout. Comparing the other three strategies, it shows minimal deviation in the
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Table 7: Evaluation results of the scenario No4

Strategies Cost-aware Runtime-Aware Pliant

Total cost (Euro) 10.442 41.765 38.84
Used VMs 81 51 51
Total tasks 685 1384 1242

Timeout (min) 41 31 24.9

used virtual machines or the costs. The pliant approach uses the most virtual
machines (185), but it was the cheapest with 66.397 Euros, but all strategies has
the same timeout value with 36 minutes. This means that by increasing the number
of resources, the strategies behave differently.

5.4 Scenario No4

In the previous scenarios the station allocation strategies had to choose only 2-4
times to select VM-queues for the applications processing sensor data of the sta-
tions. One of advantages of the pliant approach is that it is able to take into account
more features of the underlying systems, but for this strategy these scenarios were
too static, having only a small number of decision points. Thus in the last, fourth
scenario we defined a more dynamic scenario, where we managed 11500 stations
in the following way. Every half an hour, 500 stations were started to operate
and the whole simulation run for 12 hours. The pliant algorithm had to decide
more often than in the former cases. Our aim with this scenario is to prove that
this sophisticated algorithm is able to decrease both the costs and the runtime at
the same time. The results can be seen in Figure 7. The processed data for the
whole experiment is 1.54 GBs. For this scenario we used a different cloud setup as
well. We configured three clouds based on the LPDS-1, LPDS-2 and LPDS-3 cloud
description of Table 3, respectively.

As expected the cheapest solution is the Cost-aware algorithm with 10.442 Eu-
ros, which also has the highest timeout with 41 minutes. This strategy used the
highest number of virtual machines, which is also a disadvantage, if the cloud
provider calculates the cost based on the number of VMs. Comparing the other
strategies (here we neglected the random approach), the pliant and the runtime-
aware strategies used the same number of virtual machines, but the Pliant algorithm
managed to reduce both the cost and the runtime most effectively.

6 Conclusion

Cloud Computing solutions act as supporting services for the IoT world. Applica-
tions in this newly emerged field are continuously growing, and further research is
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still needed to resolve open issues, to optimize system management and to reduce
utilization costs for both providers and end-users.

In this paper we introduced four cloud selection strategies aimed to reduce
IoT application execution time and usage costs. We evaluated these strategies
through scenarios derived from a real-life weather forecasting service. The results
have shown that we can achieve significant cost savings or makespan reduction in
multi-cloud systems by using one of our proposed strategies.

Our investigations showed that if the components of IoT-Cloud systems (includ-
ing sensors, smart devices and virtual resources) change often, a static scheduling
and placement algorithm (ignoring the actual load, the type of virtual machines
and the number of physical resources) can provide increased latencies and costs.
Our presented a dynamic approach based on the Pliant method can adapt to the
actual state of the underlying, possibly multi-cloud systems, therefore it can find
better placement of devices resulting in lower costs and response times.

Our future work will address IoT scenarios from other smart domains (e.g.
smart farming), as well as the modeling of additional sensor and device types. We
also plan to extend our cloud selections algorithms to minimize IoT side costs, and
to introduce energy-aware algorithms for smart device management. We also plan
to perform experiments with models of recent infrastructures (e.g. Agrodat [25],
MTA Cloud [26] or the Cloud for Education [27]).

The presented scenarios and the source code of the IoT extended DISSECT-CF
with the mentioned XML description formats and the XML Schema Document files
are available at [20].
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Abstract

Based on the available information in many cases, it can happen that two
objects cannot be distinguished. If a set of data is given and in this set two
objects have the same attribute values, then these two objects are called in-
discernible. This indiscernibility has an effect on the membership relation
because in some cases it makes our judgment uncertain about a given ob-
ject. The uncertainty appears because if something about an object needs to
be stated, then all the objects that are indiscernible from the given object
must be taken into consideration. The indiscernibility relation is an equiv-
alence relation which represents the background knowledge embedded in an
information system. In a Pawlakian system this relation is used in set ap-
proximation. Correlation clustering is a clustering technique which generates
a partition. In the authors’ previous research, (see in [10, 11, 9]) the possible
usage of correlation clustering in rough set theory was investigated. In this
paper, the authors show how different types of search algorithms can affect
the set approximation.

Keywords: rough set theory, set approximation, data mining

1 Introduction

Pawlak's indiscernibility relation (which is an equivalence relation) represents a
limit of our knowledge embedded in an information system. This relation defines
the base sets. They contain objects that are indiscernible from each other. In
many applications, it is common to replace the equivalence relation with tolerance
relation. In our previous study, we examined whether the clusters, generated by
correlation clustering, can be understood as a system of base sets. Correlation
clustering is a clustering method in data mining which creates a partition based
on a tolerance relation. The groups, defined by this partition, contain similar
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objects. In our previous papers, we showed that it is worth to generate the system
of base sets from the partition. This way, the base sets contain objects that are
typically similar to each other and they are pairwise disjoint. To find the partition
in reasonable time, search algorithms must be used. So the system of base sets
is highly dependent on the used search algorithm. The structure of the paper is
the following: A theoretical background about the classical rough set theory comes
first. In section 3 we define correlation clustering mathematically. In section 4 we
present our previous work. In section 5 we present the search algorithm used in
our experiments. In section 6 we show a way to compare the algorithms. Finally
we conclude the results.

2 Theoretical Background

In practice, a set is a collection of objects that are similar in some sense. A set
is uniquely identified by its members. It means that if we would like to decide,
whether an object belongs to this set, then we can give a precise answer which is
yes or no. For instance, the set of even numbers is a crisp set because it can be
decided if an arbitrary number is even or odd. However, in some computer science
applications, researchers are interested in vague concepts. The notion of a brave
warrior is vague because we cannot give two disjoint classes: brave and not brave
warriors. One can consider a person brave due to their actions, but maybe someone
else would consider this person as not brave. So bravery is a vague concept.

Rough set theory was proposed by professor Pawlak in 1982 (see in [12]). The
theory offers a way to handle vague concepts. Each object of a universe can be de-
scribed by a set of attribute values. If two objects have the same known attribute
values, then these objects cannot distinguished. The indiscernibility relation gen-
erated in this way is the mathematical basis of rough set theory.

If we want to decide, whether an object belongs to an arbitrary set, based on
the available data, then our decision affects the decision about all the objects that
are indiscernible from the given object.

In this case, if we would like to check, whether an object is in an arbitrary set,
then the following three possibilities appear:

• it is sure that the object is in the set if all the objects, that are indiscernible
from the given object, are in the set;

• the object may be in the set if there some objects that are in the set and are
indiscernible from the given object;

• it is sure that the object is not in the set if all the objects, that are indiscernible
from the given object, are not in the set.

So the indiscernibility makes a set vague.
From the theoretical point of view, a Pawlakian approximation space (see in [12,

13, 14]) can be characterized by an ordered pair 〈U,R〉 where U is a nonempty set
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of objects and R is an equivalence relation on U . In order to approximate an
arbitrary subset S of U the following tools have to be introduced:

• the set of base sets: B = {B | B ⊆ U, and x, y ∈ B if xRy}, the partition of
U generated by the equivalence relation R;

• the set of definable sets: DB is an extension of B, and it is given by the
following inductive definition:

1. B ⊆ DB;

2. ∅ ∈ DB;

3. if D1, D2 ∈ DB, then D1 ∪D2 ∈ DB.

• the functions l, u form a Pawlakian approximation pair 〈l, u〉, i.e.

1. Dom(l) = Dom(u) = 2U

2. l(S) =
⋃
{B | B ∈ B and B ⊆ S};

3. u(S) =
⋃
{B | B ∈ B and B ∩ S 6= ∅}.

U is the set of objects. B is the system of base sets which represents the
background knowledge. DB is the set of definable sets which defines how the base
sets can be used in the set approximation. The functions l and u give the lower
and upper approximation of a set. The lower approximation contains objects that
surely belong to the set, and the upper approximation contains objects that possibly
belong to the set. The set BN(S) = u(S) \ l(S) is called the boundary region of
the set S. If BN(S) = ∅ then S is crisp, otherwise it is rough.

Table 1 shows a very simple table containing 8 rows. Each of them represents
a patient and each has 3 attributes: headache, body temperature and muscle pain.
The base sets contain patients with the same symptoms (which means they are
indiscernible from each other) and it is the following:

B = {{u1} , {u2} , {u3} , {u4} , {u5, u7} , {u6, u8}}

Let us suppose that based on some background knowledge we know that the
patients u1, u2 and u5 have the flu. Let S be the following set of these patients:
{u1, u2, u5}. The approximation of the set S is the following:

• l(S) = {{u1} ; {u2}}

• u(S) = {{u1} ; {u2} ; {u5, u7}}

• BN(S) = {{u5, u7}}

Here, l(S) contains those patients that surely have the flu. Patient u5 is not in
the lower approximation because there is one other patient, u7, who is indiscernible
from u5, and we do not have information about, whether u7 has the flu or not. So
the base set {u5, u7} can only be in the upper approximation.
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Table 1: Information System

Object Headache Body Temp. Muscle Pain
u1 YES Normal NO
u2 YES High YES
u3 YES Very high YES
u4 NO Normal NO
u5 NO High YES
u6 NO Very high YES
u7 NO High YES
u8 NO Very High YES

3 Correlation Clustering

Data mining is the process of discovering patterns and hidden information in large
data sets. The goal of a data mining process is to extract information from a data
set and transform it into an understandable structure for further use. Clustering is
a data mining technique in which the goal is to group objects, so that the objects
in the same group are more similar to each other than to those in other groups. In
many cases, the similarity is based on the attribute values of the objects. In most
of them, some kind of distance is used to define the similarity. However, sometimes
only nominal data are given. In this particular case, distance can be meaningless.
For example, what is the distance between a male and a female? In this case, a
similarity relation can be used which is a tolerance relation. If this relation holds
for two objects, we can say that they are similar. If this relation does not hold, then
they are dissimilar. It is easy to prove that this relation is reflexive and symmetric.
The transitivity; however, does not hold necessarily. Correlation clustering is a
clustering technique based on a tolerance relation (see in [3, 4, 17]).

Let V a set of objects and T the similarity relation. The task is to find an
R ⊆ V × V equivalence relation which is closest to the tolerance relation.

A (partial) tolerance relation T (see in [15, 8]) can be represented by a matrix
M . Let matrix M = (mij) be the matrix of the partial relation T of similarity:

mij =


1 i and j are similar

−1 i and j are different

0 otherwise

A relation is called partial if there exist two elements (i, j) such that mij = 0.
It means that if we have an arbitrary relation R ⊂ V ×V we have two sets of pairs.
Let Rtrue be the set of those pairs of elements for which the R holds and Rfalse be
the one for which R does not hold. If R is partial, then Rtrue ∪Rfalse ⊂ V × V . If
R is total, then Rtrue ∪Rfalse = V × V .
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A partition of a set S is a function p : S → N. Objects x, y ∈ S are in the same
cluster at partitioning p, if p(x) = p(y). We treat the following two cases conflicts
for any x, y ∈ V :

• (x, y) ∈ T but p(x) 6= p(y)

• (x, y) /∈ T but p(x) = p(y)

The goal is to minimize the number of these conflicts. If their number is 0, the
partition is called perfect. Given the T and R, we call the number of conflicts the
distance of the two relations. The partition given this way, generates an equivalence
relation. This relation can be considered as the closest to the tolerance relation.

The number of partitions can be given by the Bell number (see in [1]) which
grows exponentially. For more than 15 objects, we cannot achieve the optimal
partition by exhaustive search in reasonable time. In a practical case, a search
algorithm can be used which can give a quasi-optimal partition.

4 Similarity based rough sets

In practical applications, indiscernibility relation is too strong. Therefore, Pawlakian
approximation spaces have been generalized using tolerance relations (symmetric
and reflexive) which are similarity relations. Covering-based approximation spaces
(see [16]) generalize Pawlakian approximation spaces in two points:

1. R is a tolerance relation;

2. B = {[x] | [x] ⊆ U, x ∈ U and y ∈ [x] if xRy}, where [x] = {y | y ∈ U, xRy}.
The definitions of definable sets and approximation pairs are the same as before.
In these covering systems, each object generates a base set.

Correlation clustering defines a partition. The clusters contain objects that
are typically similar to each other. In our previous work ([10]), we showed that
this partition can be understood as the system of base sets which results in a
completely new approximation space. The approximation space also has several
good properties. The most important one is that it focuses on the similarity (the
tolerance relation) itself, and it is different from the covering type approximation
space relying on the tolerance relation.

Singleton clusters represent very little information because the system could not
consider its member similar to any other objects without increasing the number of
conflicts. As they mean little information, we can leave them out. If we do not
consider the singleton clusters, then we can generate a partial system of base sets
from this partition where singleton clusters are not base sets (see in [11, 9]).

In reasonable time, correlation clustering can only be solved by using search
algorithms. However, each algorithm can provide different clusters. So the system
of base sets can also be different. It is a natural question to ask, how the search
algorithms can affect the structure of the base sets. As the approximation based on
correlation clustering is a completely new way of approximating sets, it is crucial
to use the best possible search algorithm.
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5 Algorithms

Between 2006 and 2016, Advanced Search Methods was a compulsory subject for
some Computer Science master students. Initially, students learned about the well
known NP-hard problems (SAT, NLP, TSP, etc.) and various popular optimization
methods. Later, to help some physicists from University Babes-Bolyai in Cluj, one
co-author began to research the problem of correlation clustering. This problem
can easily be formulated (which equivalence relation is the closest to a given toler-
ance relation?), can be quickly understood, is freely scalable, but NP-hard, and if
we have more than 15 objects in a general case we can only provide an approximate
solution. That is why this problem got central role from 2010. In this year, the
students with the co-author’s lead implemented the learned algorithms, and used
correlation clustering to test and compare them. There were several didactic goals
of this development: they worked as a team, where the leader changed from algo-
rithm to algorithm, whose duty was to distribute the subtasks among the others
and compose/finalize their work. The implementations together gave thousand of
LOCs, so the students got experience with a real-life size problem. When designing
this system as a framework, the OOP principles were of principal importance, to be
able to apply it for other optimization problems. The system was completed with
several refactorisations and extended with methods developed directly for correla-
tion clustering, and several special data structures which allowed to run programs
several magnitudes faster. Finally the full source of the whole system with detailed
explanations was published at the Hungarian Digital Textbook Repository [2]. Ac-
cording to the students’ request the system was written in Java. Jason Brownlee
published a similar book using Ruby [5].

The following list shows the used algorithms in our experiments. Each of them
can be downloaded from [2]:

• Hill Climbing Algorithm

• Stochastic Hill Climbing Algorithm

• Tabu Search

• Simulated Annealing

• Parallel Tempering

• Genetic Algorithm

• Bees Algorithm

• Particle Swarm Optimization

• Firefly Algorithm

In the next subsections, there are some brief information about the used algo-
rithms and their parameters. The whole descriptions can also be seen in [2].
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5.1 Hill Climbing Algorithm

This method is very well-known. Each state in the search plane represents a parti-
tion. A state is considered better than another state if its number of conflicts is less
than that of the other state. In each step it is checked, whether there is a better
state in the neighborhood of the actual state. If there is not, then the algorithm
stops. If there is, then the next step goes from this point.

5.2 Stochastic Hill Climbing Algorithm

The original hill climbing search is greedy, it always moves to the best neighbor.
Stochastic hill climbing is a variant, where the algorithm chooses from the neighbors
in proportion to their goodness, allowing the algorithm to move in a worse direction
as well.

5.3 Tabu Search

Each state in the search plane represents a partition like in the previous algorithms.
The tabu search defines a list of banned states or directions to where it cannot move
at a time. This is called a tabu list or memory. There are many types of memories.
In our experiments, we used a short-term memory with the size of 50.

The neighborhood of the actual state consists of banned and permitted states.
In each step, there are two possibilities:

• If one of the neighbors is so good that it is better than the best state so
far, then it should go there even if it is banned. This is called the aspirant
condition.

• The algorithm moves to the best permitted neighbor of the actual state.

If the new state is better than the best state so far, then this state will be the
new best. The previous state will also be added to the tabu list, so the algorithm
could not go backwards immediately. If the list is full, then the last state will be
deleted. The algorithm stops if it reaches 1000th step and it returns the best state.

5.4 Simulated Annealing

Each state in the search plane represents a partition. In each step, the algorithm
chooses a neighbor of the actual state. Let f denote the number of conflicts in
the actual state and f ′ denote the number of conflicts in the neighbor. If f ′ < f ,
then the algorithm moves to the neighbor. If not, then it chooses this state with

the probability of ef−f′

T . The value T is the temperature value which is a crucial
parameter. It should decrease in each step. Determining the starting tempera-
ture value is a hard task. The common method for the issue is heating. In each
temperature (starting from 1), 500 attempts are made to move to a neighbor, and
the number of successful movements are counted. If the ratio of the number of
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successful movements and the number of attempts reaches 0.99, then the heating
procedure stops, otherwise the temperature value is increased. After the heating,
the annealing (search) step comes. It is important that, how much time the algo-
rithm spends in each temperature value. A minimal step count were defined and it
increases each time the temperature is decreased, until it reaches a maximal value
when the algorithm stops and returns the best state. The minimal step count was
set to 100 and the maximal was set to 1000. The temperature values are always
decreased by 97%.

5.5 Parallel Tempering

The simulated annealing runs on a single thread. This is parallelized version, where
threads can cooperate with each other. In this method, we used 3 threads.

5.6 Genetic Algorithm

In this algorithm, each partition is represented by an entity. In each search step,
there is a population of entities with the size of 100. In the beginning, each entity
represents a random partition. This population contains the actual generation of
entities and best entities from the old generation. In each step, the best 25 entities
stay in the population. The rest of the spaces are filled with the descendants of the
entities of the old generation. In step 1, the algorithm defines the new generation.
Step 2 is the reproduction step. A descendant is created in this step with the
crossover of 2 parent entities. In this paper, we have used one-point crossover. For
the crossover, not a random or the best element is chosen but an element from a set
defined by a parameter. The size of this set was 4. After step 2, each child entity
goes through a mutation phase (step 3) whose probability was 2/3. After each child
entity is created, the actual generation is overwritten by the new generation, and
the algorithm goes back to the step 1. The algorithm stops when it reaches the
2000th generation and returns the best entity of the population.

5.7 Bees Algorithm

This algorithm is based on the society of honey bees. Each partition is represented
by a ”bee”. There are two types of bees: scout bees and recruit bees. Scout bees
scout the area and they report back to the hive about their findings. Then the
necessary number (in proportion to the goodness of the finding) of recruit bees go
to the area to forage. In our case, the scouts are scattered across the search plane
and recruit bees were assigned only to the best of them. These bees are called elites.
The rest of the scout bees wander in the plane. It changes dynamically which scout
bees are considered as elite and how many recruits are assigned to them. The
recruits search around the elite bee to which they were assigned, and if they find
a better state, then the scout bees move to that position. In our experiments,
the number of scout bees was set to 50 and the number of elites was 5 and 1000
recruit bees follow the elites. In the beginning, the scout bees start from a random
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position. The algorithm stops when it reaches the 2000th step and it returns the
partition represented by the best bee.

5.8 Particle Swarm Optimization

In this algorithm, each partition is represented by an insect (particle). Each insect
knows its best position and the best position of the swarm. The size of the swarm
was set to 50. In each step, each insect moves in the search plane. In the beginning,
the insects start from a random position. There are 3 possibilities for them to move:

• Randomly move

• Move towards its best position

• Move toward the best position of the swarm

The possibilities of the moves was set to 0.2, 0.3, 0.5 respectively. After reaching
the 6000th step, the algorithm stops and returns the insect with the best position.

5.9 Firefly Algorithm

In this algorithm, each partition is represented by a firefly. The fireflies are unisex
and their brightnesses are proportionate to the goodness of the partition they rep-
resent. In the beginning, the fireflies start from a random position, and in each step
each firefly moves to its brightest neighbor. If the brightest neighbor of a firefly
is itself, then it moves randomly. Brightness is dependent on the distance of the
insects. The intensity of a firefly is defined by the following formula: Id = I0

1+γd2 ,

where I0 denotes the starting intensity, γ is the absorption coefficient (was set to
0.03) and d is the distance between the two fireflies. After 10000 steps the algo-
rithm stops, and the result is the partition which is represented by the brightest
firefly. The number of fireflies was set to 50.

6 Comparing Algorithms

To compare the algorithms, we calculated the following values:

• Number of singleton clusters

• Standard deviation of the base set sizes

• Interquartile range of the base set sizes

• Execution time of the algorithm

In this paper, the authors refer to the cardinality of a base set as its size. As
previously mentioned, singleton clusters mean little information. The greater their
number is, the more unclear our knowledge becomes. For a search algorithm, the
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most optimal is, if it provides the least number of these clusters in order to have a
precise knowledge of the system.

The sizes of the base sets are also worth to be checked. For set approximations
it is more suitable, if the sizes do not vary much. So the standard deviation of the
base set sizes should be minimized as well as the interquartile range of the base set
sizes.

An important parameter is the execution time of the search algorithms. It is
especially crucial when there are a huge number of objects.

Most of the algorithms have many parameters, and changing them can result
in different outputs. Many possible combinations were tried during our research.
Dozens of tables were generated and these tables are not present in this paper, but
they can be downloaded from the following link: https://bit.ly/2sO4UoD

For comparing the parameters, the same graph (with 100 points, q = 0.6) were
used for each algorithm. Each algorithm was run three times to exclude the ran-
domness. In each case, the optimal parameter combination was the one which
minimized the above mentioned 4 values. If the differences between the standard
deviations, the interquartile ranges and the numbers of singletons were not signifi-
cant, then the judgment was made by the execution time.

7 Results

7.1 Erdős-Rényi graphs

Algorithm 1 Erdős-Rényi random graph generating method

Procedure ER(N, p)

1: for i = 1, . . . , N do
2: for j = 1, . . . , N do
3: Generate a random x value between 0 and 1
4: if x < p then
5: There is an edge between objects i and j
6: end if
7: end for
8: end for

In this part our experiments, we used Erdős-Rényi graphs (see in [7, 6]). This
random graph generating method is very simple. Its pseudo-code can be seen in
Algorithm 1. In our experiments, we used p = 0.5 , p = 0.6 and p = 0.7. Half of the
generated edges denoted the similarity between the two objects and half of them
the difference. The graphs are only used for defining a similarity relation. Any
other kinds of graphs can be used. 100, 200, 300 and 400 points were generated.
For each test case, each algorithm was run 3 times on the same graphs, then the
averages of the values, described in section 6, were determined. The results can
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Table 2: Average standard deviations of the base set sizes for Erdős-Rényi graphs

Points HC SHC TABU SA PT GE BEE PSO FF
200
q=0.5

37 31 32 13 12 40 15 34 27

400
q=0.5

63 61 51 15 24 82 21 66 49

200
q=0.6

37 35 37 18 19 39 15 35 31

400
q=0.6

69 63 61 21 23 83 26 65 49

200
q=0.7

37 31 26 18 20 38 15 39 30

400
q=0.7

68 61 66 14 19 78 18 63 55

be seen in the following tables and can be downloaded from the following link:
https://bit.ly/2sOqMA6.

From Table 2 the average standard deviations of the base set sizes can be read.
Even for a small number of points, the differences are apparent. The simulated
annealing provided the best result in most cases. Its parallel version has almost
the same output. The bees algorithm also returned a rather acceptable result.

In Table 3 the distance of the sizes of the biggest and the smallest base sets
can be seen. The values show almost the same tendency as in the last table. The
simulated annealing, the parallel tempering and the bees algorithm proved to be
the most acceptable. For 400 points, the other the algorithms provided twice or
three times as large values as the other 3 which is not suitable.

In Table 4 the average numbers of singletons are listed. Here, the differences
are not so significant as before. The number of points does not affect it very much.

In Table 5 the average run-time of the algorithms can be seen in seconds. The
values here vary the most. It is obvious that the simulated annealing was the
least affected by the increasing number of points. For 200 points, the hill climbing
algorithm and its stochastic version provided the fastest output. Although, as soon
as the number of points was increased, they could not compete with the simulated
annealing. For 400 points, the simulated annealing was more than 20-35 times
faster than the other two. The particle swarm optimization was the slowest of all
the algorithms. For a huge number of points, it is basically pointless to be used.

7.2 Random two-dimensional points

In this part of our experiments, random two-dimensional points were generated.
The base of the tolerance relation was the Euclidean distance of these objects (d).
We defined a similarity (S) and a dissimilarity threshold (D). S was set to 50 and
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Table 3: Average interquartile ranges of the base set sizes for Erdős-Rényi graphs

Points HC SHC TABU SA PT GE BEE PSO FF
200
q=0.5

105 92 80 48 45 98 49 92 82

400
q=0.5

176 189 144 57 78 213 65 186 193

200
q=0.6

105 94 97 46 46 98 47 89 92

400
q=0.6

192 173 178 87 62 209 81 193 197

200
q=0.7

104 94 74 52 64 104 49 104 88

400
q=0.7

198 179 191 50 53 228 81 186 210

Table 4: Average numbers of singletons for Erdős-Rényi graphs

Points HC SHC TABU SA PT GE BEE PSO FF
200
q=0.5

0 0 0 1 0 1 0 1 1

400
q=0.5

0 0 0 2 2 2 0 2 7

200
q=0.6

1 1 1 1 1 1 0 1 2

400
q=0.6

0 0 0 3 3 1 1 1 3

200
q=0.7

1 0 0 1 1 1 0 1 2

400
q=0.7

0 1 0 2 3 1 1 1 4
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Table 5: Average execution time for Erdős-Rényi graphs

Points HC SHC TABU SA PT GE BEE PSO FF
200
q=0.5

5 7 163 3 16 82 53 569 274

400
q=0.5

142 181 1549 6 39 360 247 7971 1167

200
q=0.6

4 6 170 3 17 91 66 734 317

400
q=0.6

156 248 1665 6 40 457 274 8611 1287

200
q=0.7

3 8 156 3 17 87 59 818 283

400
q=0.7

138 256 1652 7 43 404 284 9878 1336

D was set to 90. The tolerance relation R can be given this way for any objects
A,B:

ARB =


+1 d(A,B) ≤ S
−1 d(A,B) > D

0 otherwise

We generated 100, 150, 200, 300, 500 points and each algorithm was run 3 times
for each point set and calculated the averages of the values described in section 6.
In the following tables, we can see the results.

In Table 6 the average standard deviations of the base set sizes can be seen.
In case of a small number of points, the difference was not so considerable, but it
became larger as the number of points was increased. In every case, the simulated
annealing provided the most acceptable result. It is interesting that the parallel
tempering fell short against the simulated annealing for a small number of points.
However, in the 500 points test case the difference was negligible. Local search
algorithms (hill climbing, its variant, tabu search) were rather good for a small
number of points. In almost every situation, the firefly algorithm, genetic algorithm
and particle swarm optimization provided the worst result.

Table 7 shows the interquartile ranges of the base set sizes. The outcome was
quite similar as in the previous table. For a small number of points, the difference
was not so high. For 500 points, it can be more noticeable. Like before, the firefly
algorithm, genetic algorithm and particle swarm optimization ended up in the last
places, and simulated annealing proved to be the most optimal.

Table 8 shows how many singleton clusters appeared. The results were quite the
same in all cases. In is interesting that most of the algorithms were not affected by
the increasing number of points. In the 500 points test case, some differences can
be observed. In this case, the simulated annealing and its parallel version provided
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Table 6: Average standard deviations of the base set sizes

Points HC SHC TABU SA PT GE BEE PSO FF
100 7.6 8.1 7.5 7.1 7.6 8.9 7.6 7.7 7.6
150 11.8 10.2 10.4 7 11 14.5 8.7 12.2 11.5
200 13.1 16.2 12.8 10.3 13.2 17.8 12.7 13.8 13.3
300 25.7 28.9 27.2 17.1 18.4 31.4 23 29.1 28.9
500 46.6 34.4 39.4 26.5 27 51.4 34.2 47.8 48.4

Table 7: Average interquartile ranges of the base set sizes

Points HC SHC TABU SA PT GE BEE PSO FF
100 23 24 22 21 26 23 23 26 23
150 27 25 35 20 31 37 21 37 33
200 38 38 38 30 41 47 37 40 35
300 67 68 70 48 61 74 64 71 68
500 111 94 99 73 81 119 103 117 116

a rather inadequate result compared to the others. However, this difference was
not so high.

In Table 9 the average execution time is listed in seconds. As expected, these
values were the most dependent on the number of points. For less than 200 points,
the hill climbing algorithm and its stochastic variant provided the fastest run-time.
However, after 200 points they could not compete with the simulated annealing
which could find the quasi-optimal partition in less than 5 seconds for each test
case. The parallel tempering also proved to be quite fast, but not as fast as its
single-threaded variant. The other algorithms executed in an unreasonable time
which is unacceptable for a great number of points. Especially the particle swarm
optimization proved to be very slow, it finished running after 3.5 hours for 500

Table 8: Average numbers of singletons

Points HC SHC TABU SA PT GE BEE PSO FF
100 1 1 0 0 0 0 0 0 1
150 1 1 2 0 1 2 0 2 2
200 1 1 0 0 0 1 0 1 2
300 0 1 1 2 1 0 0 1 3
500 2 1 0 5 4 1 3 1 5
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Table 9: Average execution time

Points HC SHC TABU SA PT GE BEE PSO FF
100 0.2 0.3 15.6 1.1 5.4 15.7 15.5 32.5 54.1
150 0.5 0.4 43.5 0.7 7.3 14.5 11.9 130.8 58.3
200 6.4 9.5 172.4 3 16.8 92.7 66.3 564 281.1
300 40.1 43.5 647.4 4.7 25.2 207 161.1 1937.8 579.6
500 69.4 108.5 3550 3 50.8 207.4 135.9 13251 612.3

points.

8 Conclusion

In [10] the authors introduced a partial approximation space relying on a similarity
relation (a tolerance relation technically). The genuine novelty of approximation
spaces is the systems of base sets: it is the result of correlation clustering, and
so similarity is taken into consideration generally. Singleton clusters have no real
information in approximation process, these clusters cannot be taken as base sets,
therefore the approximation spaces are partial in general cases (the unions of base
sets are proper subsets of the universes.) The partition, and so the system of base
sets, gained from correlation clustering depends on the used search algorithm. In
the present paper, we used several algorithms and we showed a way to compare
them. In our experiments, we used two different types of random graphs. For
these types of graphs, the simulated annealing proved to be best choice. In almost
every test case, it provided the most suitable result. However, its most important
property is that it was the least affected by the increasing number of points, so it
can also finish in reasonable time even for large amounts of points.
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LZ based Compression Benchmark on PE Files

Zsombor Paróczia

Abstract

The key element in runtime compression is the compression algorithm
itself, that is used during processing. It has to be small in enough in decom-
pression bytecode size to fit in the final executable, yet have to provide the
best possible compression ratio. In our work we benchmark the top LZ based
compression methods on Windows PE (both EXE and DLL) files, and present
the results including the decompression overhead and the compression rates.

Keywords: lz based compression, compression benchmark, PE benchmark

1 Introduction

During runtime executable compression an already compiled executable is modified
in ways, that it still retains the ability to execute, yet the transformation produces
smaller file size. The transformations usually exists from multiple steps, changing
the structure of the executable by removing unused bytes, adding a compression
layer or modifying the code itself. During the code modifications the actual byte-
code can change, or remain the same depending on the modification.

In the world of x86 (or even x86-64) PE compression there are only a few
benchmarks, since the ever growing storage capacity makes this field less important.
Yet in new fields, like IOT and wearable electronics every application uses some kind
of compression, Android apk-s are always compressed by a simple gzip compression.
There are two mayor benchmarks for PE compression available today, the Maximum
Compression benchmark collection [1] includes two PE files, one DLL and one EXE,
and the PE Compression Test [2] has four EXE files. We will use the 5 EXE files
PE files during our benchmark, referred as small corpus. For more detailed results
we have a self-collected corpus of 200 PE files, referred to as large corpus.

When approaching a new way to create executable compression, one should con-
sider three main factors. The first is the actual compression rate of the algorithms,
since it will have the biggest effect on larger files. The second is the overhead in
terms of extra bytecode within the executable, since the decompression algorithm
have to be included in the newly generated file, using large pre-generated dictio-
nary is usually not an option. This is especially important for small (less than

aBudapest University of Technology and Economics, E-mail: paroczi@tmit.bme.hu
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100kb) executables. The third factor has the lowest priority, but still important:
the decompression speed. The decompression method should not require a lot of
time to run, even on a resource limited machine. This eliminates whole families of
compression methods, like neural network based (PAQ family) compressions.

Figure 1: Annotated asm code

Split-stream methods are well-know in the executable compression world, these
algorithms take advantage of the structural information of the bytecode itself, sep-
arating the opcode from all the modification flags. Each x86 instruction can be
separated into multiple parts, prefix, opcode, mod r/m, etc., an annotated asm
snippet can be seen on Figure 1. The idea behind split-stream is to annotate each
byte by these parts, and collect them into one chunk. By doing this, each chunk
can be compressed better due to local redundancies. During decompression the
original bytecode is reconstructed using a small compiler. We used a reference
implementation from the packer kkrunchy [6].

2 LZ based compression methods

LZ based compression methods (LZ77/LZSS/LZMA families) are well fitted for
this compression task, since they usually have relatively small memory require-
ment (less than 64 Mb), they use Lempel-Ziv compression methods [3] and maybe
some Huffman tables or hidden Markov model based approaches. These methods
are simple algorithms, resulting in small size in terms of decompression bytecode.
During the last few years there are a lot of new LZ based compression methods,
the mayor ones are Zstandard (zstd) from Facebook and Zopfli from Google. The
selected libraries can be seen on Table 1, these are the top LZ familly libraries for
generic purpose compression regarding an extensive LZ benchmark [4,5].

The compression rates on generic dataset (non-code section of an executable)
can be seen on Figure 2 and Table 2. All of these tests and results are in sync with
the LZ benchmark mentioned previously, the only exception is Brotli which worked
quite well on our dataset. Brotli, Lzlib and LZMA have the best compression ratio
on average, followed by CSC, Zopfli and zstd. aPlib has the worst compression
ratio, since it only implements a very simple LZ77 variant.

3 Decompression code

For each compression method the related library also supplies the decompression
method as well. In most cases it’s tightly coupled with the compression code, so
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Table 1: Libraries used in the benchmark

Compression method Version Source

aPlib 1.1.1 http://ibsensoftware.com/products aPLib.html

Lzlib 1.10 https://www.nongnu.org/lzip/lzlib.html

LZMA 9.35 https://www.7-zip.org/sdk.html

Zopfli 2017-07-07 https://github.com/google/zopfli

Zstandard 1.3.3 https://facebook.github.io/zstd/

CSC 2016-10-13 https://github.com/fusiyuan2010/CSC

Brotli 1.0.3 https://github.com/google/brotli
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Figure 2: Compression rates on non-code section by input size

Table 2: Compression rates on non-code section

Method aPlib Zopfli Lzlib LZMA zstd CSC Brotli
Rate 40.2% 37.2% 34.7% 34.2% 38.3% 34.6% 33.4%

in the first step we separated the compression method from the decompression one
and created small executables which included only the decompression method and
a sample from the compressed data, so we can verify that the decompression still
works. All these LZ based compression libraries are written in C / C++, during
this step we used GCC for ease of debugging. The aPlib library includes an ASM
written decompression method which is already small enough, so we didn’t do any
modification on it. Lzlib, LZMA, zlib, zstd, CSC and Brotli are at some point use
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dynamic memory allocation, Brotli and CSC has some other external dependencies.
We opted to remove (or inline) all dependencies, since loading external DLLs or
extra functions takes up more space than an inlined function. We managed to fully
remove memory allocation from LZMA and Lzlib by simply creating a large chunk
of zerofilled memory at the end of the executable, and absolutely referencing those
with some pointers. In the other libraries we could inline some trivial functions
(zerofill, memcpy) but due to the nature of those algorithms there are a lot of dy-
namic allocations that require external libraries. We also remove all error reporting
functionality from the code, these are designed to detect if the compressed data is
damaged in any way. All of the modifications were tested with multiple samples to
retain the ability of decompressing compressed data.

Table 3: Decompression bytecode size

Compression method Bytecode size Compressed with aPlib

aPlib 150 -
Lzlib 7.168 3.943

LZMA 8.602 3.155
Zopfli 14.351 8.173

Zstandard 106.525 26.632
CSC 23.714 10.671
Brotli 215.665 92.736

GCC has several flags for optimizing for space, speed and even some internal
optimization options are available, but after several failed attempts to make the
pure decompression bytecode smaller, we started to experiment with other compil-
ers. Clang and Microsoft Visual C++ compiler produced almost the same bytecode
size, even with extra optimization options, but Watcom Compiler (Open Watcom
1.9) managed to create 10%-15% smaller bytecode than any of the other compilers
(second best was gcc with size optimization flags). This is due to the fact that
generic registers (registers storing and passing variables between functions) can be
fine-tuned in Watcom, using esi, edi, ebp registers in the produced binaries. Af-
ter several iterations of modifying the code, testing and compiling we managed to
create really small sized decompression code for each library. We also noticed that
compressing the various decompressing bytecodes with aPlib and decompressing
them during runtime is a great way to create smaller sized binaries. The aPlib
decompression bytecode is 150 bytes after all. Table 3 contains the bytecode size
on both the decompression code bytesize as is, and the compressed decompression
bytecode size. Also worth noting that Brotli can be compiled without the built-
in dictionary, which results in 66.930 bytes (and 23.425 bytes compressed with
aPlib), but the dictionary has huge benefits during compression / decompression.
Any data compressed with Brotli with dictionary can only be decompressed, if the
decompressor code also has the dictionary.
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4 Benchmark

During the benchmark we constructed a system, which is capable of extracting dif-
ferent sections from the executables, apply split-stream and a compression method
on it to create a well detailed benchmark result. During the benchmark we run
each compression method on each section, then run each compression method with
split-stream on executable sections. The benchmark system was created using C++
and Node.js, the Node.js part was responsible for the instrumentation of the com-
pressions, the C++ part was responsible for extracting the section and verifying
the modified decompression method we created. If there is any side effect from the
decompression code modification explained in the third section, we are not seeing
it.

5 Results: compression ratio

The detailed results for each test case on the small corpus can be seen on Figure
3. As you can see applying split-stream before the compression is useful in most
of the cases (except for the smallest executable, which suffered from the overhead
of this method - splitting 1 byte instructions into base instruction + mod flags).
The rates for each compression varies between test cases, but Lzlib, LZMA, Brotli
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Figure 3: Resulting section size compered to the original on the small corpus files
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are clearly the best for the small corpus, followed by zstd, CSC, Zopfli and aPlib.
There is a constant improvement when using split-stream. Only for really small
executable aPlib is the best, due to the simplicity of the algorithm itself. All of
these results were verified during our large corpus benchmark.

The actual compression rates on the large corpus can be seen on Table 2 and 4
(split-stream is annotated as s). As you can see the ratio between each compression
rate on average is really small, for code sections split-stream really helps. For code
section LZMA, Lzlib and Brotli are the best, followed by Zopfli and CSC. For
non-code section we had a larger variety of results, since the non-code sections can
contain any datatype. The non-code section has a more loose structure and less
density, the compression rates are higher. It is interesting, that Brotli is the winner
in these tests, but as it turned out Brotli has a large dictionary prebuilt into the

Table 4: Average compression rates on code section

Compression method compression rate

aPlib 47.0%
LZMA 42.1%

s + aPlib 44.3%
s + Zopfli 41.3%
s + Lzlib 39.6%

s + LZMA 39.5%
s + zstd 42.4%
s + CSC 42.0%
s + Brotli 40.0%
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algorithm, that helps with compressing text. LZMA, Lzlib, CSC produced just
1-2% lower rates, followed by zstd and Zopfli. Obviously aPlib was the worst in
both tests, since it contains the most simple algorithm for compression. PE sections
tend to be less then 3 Mb, the larger the section the more compression rate we can
achieve.

6 Results: final file size with decompression byte-
code

Since the decompression code has to be included in the final executable, we also
benchmarked how the decompression overhead code effects the final file size. As you
can see on Figure 4 for smaller executables the overhead is what really defines the
final result. All of the decompression methods were packed with aPlib, since aPlib
has a decompression code size of 150 bytes, and above 1.000 bytes it is better to
compress the decompression code with aPlib. Some of the more complex methods
(namely zstd, Brotli, CSC) has relatively large data tables in the decompression
code. Same goes for the split-stream code, which is above 1kByte uncompressed,
and 540 byte compressed with aPlib.

Our final results suggest, that there is no ”golden” LZ based compression with
split-stream method for all the executables.

You can see the best performing algorithm on Figure 6 for the large corpus. For
smaller files a more detailed result of this can be seen on Figure 5. There is a clear

Figure 5: Raw and compressed file size using the best method on smaller files
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Figure 6: Raw and compressed file size using the best method on larger files

tendency, that some algorithms perform better on smaller files, partly due to the
fact that the decompression code is small, and others perform well on larger files.
Since smaller files tend to be more code section heavy, and larger files are more like
a generic datafile (much more strings, xml, images within the sections), there is an
interesting trend how each compression method behaves on different sized binaries.

We consider 3 categories based on the executable size: for small files (less than
50kB) size aPlib is the clear winner with 150 byte decompression code, maybe with
split-stream if the executable section is large. For medium size (less than 500 kB)
split-stream with aPlib or split-stream with LZMA (aPlib compressed) should be
used. For larger files split-stream with LZMA (aPlib compressed) or split-stream
with Lzlib (aPlib compressed) should be used.

For some special cases any combination can be the winner in the final com-
pression size. CSC (without split-stream), Lzlib (without split-stream) and LZMA
(without split-stream) can outperform the others in some cases.

7 Summary

By providing a good ruleset for choosing the right compression method or methods
based on file size, we hope that future executable compression authors can improve
the compression rate of their tools. Besides that we see a clear trend, that even LZ
based compression libraries are getting more complex (dynamic memory allocations,
large dictionary size, etc.), making small size, compact decompression bytecode
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creation a lot harder. We provided our insights of how to make small decompression
bytecode by simply modifying the decompression method in different ways, using
different compilers and compressing the bytecode itself.
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A Preparation Guide for Java Call Graph
Comparison: Finding a Match for Your Methods∗

Zoltán Ságodia and Edit Pengőa

Abstract

Call graphs provide a basis for numerous interprocedural analyzers and
tools, therefore it is crucial how precisely they are constructed. Develop-
ers need to know the features of a call graph builder before applying it to
subsequent algorithms. The characteristics of call graph builders are best
understood by comparing the generated call graphs themselves. The com-
parison can be done by matching the corresponding nodes in each graph and
then analyzing the found methods and calls.

In this paper, we developed a process for pairing the nodes of multiple call
graphs produced for the same source code. As the six static analyzers that we
collected for call graph building handles Java language elements differently,
it was necessary to refine the basic name-wise pairing mechanism in several
steps. Two language elements, the anonymous and generic methods, needed
extra consideration. We describe the steps of improvement and our final
solution to achieve the best possible pairing we are able to provide, through
the analysis of the Apache Commons-Math project.

Keywords: call graph, Java, static analysis

1 Introduction
Static source code analyzers play an important role in producing high-quality soft-
ware that satisfies the requirements of today’s industrial development. They help
programmers eliminate flaws and rule violations early on by automatically analyz-
ing the subject system and highlighting its potentially erroneous parts. Usually, the
source code is converted into an Abstract Syntax Tree1 (AST) - like representation,
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which is the basis for further transformations, optimizations, and operations, for
example, call graph creation. The capabilities of such analyzer tools depend on the
complexity of the internal representations and algorithms they use.

Call graphs are directed graphs representing control flow relationships among
the methods of a program. The nodes of the graph denote the methods, while an
edge from node a to node b indicates that method a invokes method b. Call graphs
are essential building blocks of interprocedural control and data flow modeling.
They can be used during control flow analysis, program slicing, program compre-
hension, bug prediction, refactoring, bug-finding, verification, security analysis, and
whole-program optimization [8, 13, 35, 37]. The accuracy of call graphs influences
the results of the subsequent analyses, consequently, careful consideration is needed
during the selection of the construction method. The most obvious difficulty that a
static call graph builder has to face is the handling of polymorphic calls and other
cases when the target of a call depends on the runtime behavior of the program.
There are plenty of call graph builder algorithms that address this challenge and
try to make assumptions about what methods could be called. They have extensive
literature, including detailed comparisons [14, 15, 20, 21, 24, 32]. There are other
factors that can cause differences in the output of two call graph creator tools, for
example, the handling of different kinds of initializations or anonymous classes.

In the future, we plan to compare and characterize call graph builders based
on how they handle such factors. However, the first step towards this goal is to
make the produced call graphs comparable. To compare the call graphs that were
generated by different tools for the same source code, we have to match the nodes
– i.e. the methods – that correspond to each other and then evaluate what types of
methods and calls were found by each tool. However, matching the methods to each
other is challenging, since it is not certain that all tools will find the same methods
or they might name them differently. Using the line information for refining the
pairing mechanism can also cause difficulties. Although node pairing is the basis
of call graph comparison, we found no satisfactory description about it in previous
works. Therefore, we decided to summarize the problems we encountered and our
attempts at solving them. Section 2 provides the related work, whilst Section 3
introduces the investigated call graph builders. Section 4 illustrates the obstacles
of the method pairing mechanism and our step-by-step improvements with results.
In Section 5, our approach is compared with a topology based solution. Finally, we
draw our conclusions and outline future work in Section 6.

2 Related work

The way to compare the capabilities of call graph builder tools is through com-
paring the call graphs they generate. Due to the increasing number of extremely
large graphs and their wide area of usability, there are many algorithms and met-
rics available for comparing general directed and undirected graphs [19, 22, 34].
However, these methods cannot be directly applied to call graphs, especially if they
were produced by different analyzer tools. Call graphs are directed graphs whose
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nodes correspond to the methods in the source code. Even if the structure of two
call graphs is isomorphic, they can be considered entirely different because of the
labeling of the nodes. Therefore, to make them comparable, first we have to find a
mapping, which is the aim of this paper.

There are several proposals for comparing labeled graphs if a mapping is already
present. Champin and Solnon defined a similarity with respect to a given mapping
between two graphs that have multiple labels both on their nodes and edges [7].
A graph is described by the set of all of its features, e.g. the set of node-label
and edge-label pairs. The similarity measure is calculated based on a simplified
version of Tversky’s formula [33]. They also proposed an algorithm for finding the
best mapping for reaching the maximum similarity, which provides a qualitative
description of the differences between the two graphs.

There are algorithms available exactly for comparing labeled graphs that share
the same node set [38]. In case of call graphs that were produced by different tools
and algorithms this condition cannot be ensured. The simplest way to compare
graphs with the same node set is to handle the adjacency matrices as vectors and
calculate an edit distance, in other words, the number of different edges [12, 30].
Wicker et al. introduced a dissimilarity measure for graphs like these based on
their eigenvalues and eigenvectors [38], which takes into account the global graph
structures as well.

The precision and structure of the call graphs greatly depends on the algorithms
that the builder tools used. If several call targets are possible for a given call site,
more examination is needed to determine which edges should be connected. There
are context-dependent and context-independent solutions; naturally, the choice in-
fluences the result. Context-dependent methods are more accurate, but in return
they use more resources. To mitigate the resource demands of such methods, the
analysis of the programs often starts only from the main method or a few entry
points instead of starting from every method of the analyzed source code. This,
however, will likely lower the accuracy of the method. Context-independent meth-
ods for object oriented languages can be improved with the following algorithms:
CHA [9], RTA [4], XTA[32], VTA [31]. In case of the comparing these call graph
building strategies [1, 14, 15], node matching is usually not an issue because the
algorithms are implemented in the same environment and language elements are
handled similarly. The nodes of the produced call graphs are the subset of each
other’s node set with the same naming convention, therefore, the main difference
comes from the number of edges.

In this paper, we considered the results of static analyzer tools, meaning that
we worked with the so called static call graphs. However, call graphs can be com-
posed with dynamic tools as well from actual executions of the analyzed program.
Lhoták [20] compared static call graphs generated by Soot [29] and dynamic call
graphs created with the help of the *J [28] dynamic analyzer. He built a framework
to compare call graphs, discussed the challenges of the comparisons, and presented
an algorithm to find the causes of the potential differences in call graphs. The pa-
per does not describe the difficulties of matching the nodes of the call graphs that
were provided by different sources. The reason could be that Soot is a bytecode
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analyzer, therefore its output is close to the output of a dynamic analyzer. This
also means that our work could be easily extended by including such dynamic call
graphs.

Murphy et al. [24] carried out a study about the comparison of five static call
graph creators for C in 1996. The outputs of the analyzers were compared to a
baseline call graph created by the GCT test coverage tool, which was based on the
GNU C compiler. They identified significant differences in how the tools handled
typical C constructs, like macros. Mapping the graphs was made more complicated
depending on which files were involved in the analysis. They applied a filtering
mechanism to solve this. Other difficulties of the matching mechanism were not
discussed, although C functions are clearly identified by their name only.

Naturally, it is possible to compare two graphs by considering only the struc-
ture of the graph without label information. Many similarity measures are based
on iterative calculations. These methods repeatedly refine an estimated initial sim-
ilarity value of the graph nodes by using an update formula. The update formulas
consider the similarity of the edges and the neighboring nodes. When a termination
condition is met the iteration finishes and a similarity matrix is produced. Nikolič
proposed an iterative solution [25] called neighbor matching that addresses the in-
sufficiencies of the previously existing approaches [5, 23, 39, 16]. An in - and out -
similarity is defined for the update formula. To determine the in-similarity an op-
timal matching of in-neighbors has to be constructed. The calculation is analogous
in case of the out-similarity. The introduced node similarity calculation was eval-
uated on isomorphic subgraph matching and on a social network, and concluded
that it is more accurate than the previous approaches. Nikolič provided a C++
implementation of the proposed method. In Section 5 we compare the results of
this topology based graph similarity tool with our pairing mechanism.

3 Analyzed tools

We studied numerous static analyzer tools for Java to decide whether they could
generate – or could be easily modified to generate – call graphs. We aimed for widely
available, open-source programs from recent years, which could analyze complex,
real-life Java systems. The diversity of the tools was another important aspect
of our selection criteria. We involved tools that provide a direct interface for call
graph creation, whilst, in other cases, the graph had to be extracted directly from
the inner representation of the analyzer. The investigated analyzers can also be
categorized by whether they work on source or byte code, which, of course, affects
their results. Most of the tools are command line based, although an Eclipse plug-
in based solution was also examined. The selected analyzers support several call
graph-creation algorithms, which greatly influences the characteristics, the accuracy
and the size of the generated graph. It is the application that determines what type
of call graph is the most useful, sometimes a small and less accurate call graph is
better, while, in other cases, a large and precise one is needed. The goal of this
paper is not to compare the output of these call graph-builder algorithms, but to
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pair the corresponding graph sections, which is the basis for further comparative
studies. Therefore, we considered the algorithm only as an attribute of the given
tool.

Table 1 summarizes the most important properties of the examined call graph
builder tools. The grey lines correspond to two of the discarded tools that we
tested in more detail. In both cases, the reason for the exclusion was their lack
of robustness. For example, JavaParser [18] did not give enough information to
reconstruct the caller-callee relationships between compilation units without ma-
jor development. Call Hierarchy Printer[6] (CHP) failed to finish the analysis of
projects larger than a few thousands lines of code. The selected tools, the analyzed
sources, and the results are available as an online appendix2.

The description of the six tools that were selected for the comparison is presented
below.

Table 1: Summary of examined call graph creator tools

version maintained input robustness
built-in

call-graph
construction

multiple
algorithms
available

JCG commit da81eeb
on Oct 24 2018 3 byte code 3 3 5

SPOON 7.0.0 3 source code 3 5 5

WALA 1.5.1 3 byte code 3 3 3

OSA 1.0.0 3 source code 3 5 5

Soot 3.2.0 3 byte code 3 3 3

JDT Eclipse Oxygen.2
(4.7.2) 3 source code 3 5 5

CHP commit 3316b4a
on Mar 26 2015 5 both 5 5 5

JavaParser 3.5.16 3 source code 5 5 5

3.1 Java Call Graph
The Java Call Graph (JCG) [17] is an Apache BCEL [3] based utility for construct-
ing static and dynamic call graphs. It can be considered a small project as it only
has one major contributor, Georgios Gousios, whose last commit (at the time of
this writing) is from October, 2018. It supports the analysis of Java 8 features and
requires a jar file as an input. A special feature of the analyzer is the detection
of unreachable3 code. As a result, the call graph does not include calls from code
segments that are never executed.

3.2 SPOON
SPOON [27] is an open-source, feature-rich Java analyzer and transformation tool
for research and industrial purposes. It is actively maintained, supports Java up

2http://www.inf.u-szeged.hu/~pengoe/research/StaticJavaCallGraphs/
3Unreachable code will never be executed as there is no control flow path to it from the entry

point of the program.
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to version 9, and while several higher-level concepts (e.g., reachability) are not
provided "out of the box", the necessary infrastructure is accessible for users to
develop their own. SPOON performs a directory analysis4 of the source code and
builds an AST-like metamodel, which is the basis for these further analyses and
transformations. We extracted the call graph of our project by traversing this
internal representation and collecting every available invocation information. The
library is well-documented and provides a visual representation of its metamodel,
which helped us in thoroughly studying its structure.

3.3 WALA

WALA [36] is a static and dynamic analyzer for Java bytecode (supporting syntactic
elements up to Java 8) and JavaScript. Originally, it was developed by the IBM
T.J. Watson’s Research Center; now it is actively developed as an open-source
project. WALA has a built-in call graph generation feature with a wide range
of graph building algorithms. We used the ZeroOneContainerCFA graph builder
for our experiments, as it performs the most complex analysis. It provides an
approximation of the Andersen-style pointer analysis [2] with unlimited object-
sensitivity for collection objects. The generator has to be parameterized with the
entry points from which the call graphs would be built. To make the results similar
to the results of the other tools, we treated all the methods as entry points (instead
of just the main methods). For other configuration options, we used the default
settings provided in the documentation and example source codes.

3.4 OpenStaticAnalyzer

OpenStaticAnalyzer (OSA) [26] is an actively maintained, multi-language static
analyzer framework developed by the Department of Software Engineering at the
University of Szeged. It calculates source code metrics, detects code clones, per-
forms reachability analysis, and finds coding rule violations up to Java 8. Other
languages such as Python and C# are supported as well. Besides the directory
analysis of the source code, OSA is also capable of wrapping the build system
(maven or ant) of the project under examination. This can make the analysis more
precise as generated files will be handled too. Similarly to the above mentioned
SPOON implementation, we extracted the call graphs by processing the AST-like
inner representation of OSA.

3.5 Soot

Soot [29] is a widely used language manipulation and optimization framework de-
veloped by the Sable Research Group at the McGill University. It supports analysis
up to Java 9 and works on the compiled binaries. Although its official website5 has

4The static analyser processes recursively every Java file in a given root folder
5https://www.sable.mcgill.ca/soot/soot_download.html
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the latest release from 2012, the project is active on GitHub, from where we ac-
quired the 3.2.0 release, which was the latest version then. Like WALA, Soot also
has a built-in call graph creator functionality. For the analysis of library projects
the CHA algorithm was used for call-graph construction, while in case of standalone
projects we used the SPARK framework, which employs a points-to analysis algo-
rithm.

3.6 Eclipse JDT

The Eclipse Java development tools (JDT) [10] is one of the main components of
the Eclipse SDK [11]. It provides a built-in Java compiler and a full model for
Java sources. We created a JDT based plugin for Eclipse Oxygen that supports
even Java 10 code, to extract the call graph from the extensive, AST-like inner
representation.

4 Refining the pairing mechanism

There are numerous elements that could cause differences in call graphs, as tools
process language elements differently. In this section, we discuss what attempts we
made to handle these differences and what were the benefits and downsides to each
approach. In this article, the pairing mechanism is illustrated through the Apache
Commons Math 3.6.16 project (208,876 KLOC). We are only using one project
as an example, since our aim is to showcase the process itself, not to compare
data. More analyzed projects are presented in the online appendix mentioned in
Section 3.

4.1 Overview of process

The following four subsections correspond to the process of developing a unified
representation for Java method names. Figure 1 provides an overview of this devel-
opment process. It was previously stated that the call graph creator tools produce
the graphs in slightly different formats. Therefore, we had to implement a specific
graph loader for each tool to handle the aspects of its method naming convention.
A basic name pairing (1.) was introduced to treat the fundamental differences of
the representations. However, anonymous language elements needed extra consid-
eration for which the anonymous transformation method (2.) was developed. As
the figure indicates this heuristical approach is not part of the final approach. We
found that the anonymous transformation method could be improved by using line
information (3.). This introduced a challenge in the handling of generic source code
elements which had to be dealt with (4.). No other Java language elements were
identified that impaired the pairing mechanism.

6http://commons.apache.org/proper/commons-math/
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No unification

1. Basic name pairing

2. Anonymous transformation

3. Handling anonymous elements
with line information

4. Handling generic elements

Final approach

Figure 1: Development process

4.2 Basic name pairing

In Java, methods can be distinguished by fully qualified names, which include
the package name, the class name, the name of the method, and the list of the
parameter types. The return value is not required for the identification, however,
we encountered one case where it is indeed needed. According to the Java standard,
overridden methods can differ in return type if the return-type-substitutability is
satisfied, for example, the child class specializes the return type to a subtype.
Some tools represent both the specialized and the not-specialized methods for a
child class, although they only connect edges to one of them. Therefore, these rare
cases could be easily detected.

Call graph comparison is based on identifying and matching the corresponding
methods in each graph regardless of their representation. At first, we only used
the method names produced by the static analyzers as basis of the method pairing.
However, this was not enough because some fundamental features are represented
differently, for example, some of the tools denote constructor methods with the class
name, whilst others tag them with the name <init>. Therefore, we developed a
common representation for the Java methods and as a first step of the comparison
we transformed every call graph to this unified representation. Only the constructor
methods, initializer blocks and other not-so-significant representational differences
were subject to the name unification process. Instance initializer blocks are exe-
cuted every time an instance of that class is created. They can be used to initialize
class members. The Java compiler copies initializer blocks into every constructor.
Therefore, initializer blocks can be used to share a block of code between multi-
ple constructors. Byte code analyzer tools, such as WALA, represent initializer
blocks as part of the constructor methods. However, source code analyzers such
as SPOON represent the initialization blocks and the constructor methods with



A preparation guide for Java call graph comparison 139

separate nodes for the given class. Our basic name pairing method aggregates the
nodes of initializers blocks with every constructor of that class, making it pairable
with the constructor methods found in the compared graph. This functionality can
be turned off with a command line option, if the user wishes.

Figure 2 - 4 help in understanding the process of basic name pairing. Figure 2
shows a sample code containing constructors and initializer blocks. The reason we
only included these two language elements in the sample code is because during
basic name pairing only they require special consideration. The call graphs of
the sample code are portrayed in Figure 3. These are produced by two of the
tools, SPOON and WALA. The grey nodes belong to SPOON’s graphs, the white
ones belong to WALA’s graph. As described in the previous paragraph, SPOON
represents initializer blocks with separate nodes, while WALA treats them as part
of the constructor methods, which causes a slight discrepancy between the two
graphs. For this reason, during our pairing mechanism we aggregate the nodes of
the initializer blocks with constructor nodes to ensure that none of them remain
without a pair. A method name unification is also performed on each of the nodes.
The results of the aggregation and the unification process can be seen in Figure 4.
The borders of the rectangles indicate which nodes are paired between the two
graphs. Two nodes are paired if their names match character by character.

class Test {
Integer i;
public Test(){}
public Test(String s){}
{

i = new Integer (89);
}

}

Figure 2: The basic name pairing in action: sample code

Test.Test()

Test.Test(java.lang.String)

Test.<initblock>()

java.lang.Integer.Integer(int)

Test.<init>()

Test.<init>(Ljava/lang/String)

java.lang.Integer.<init>(I)

Figure 3: The basic name pairing in action: input graphs

Table 2 summarizes the results of this initial attempt on the Commons Math
project. The diagonal elements in bold show the number of different methods found
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Test.<init>()
Test.<initblock>()

Test.<init>(java.lang.String)
Test.<initblock>()

java.lang.Integer.Integer(int)

Test.<init>()

Test.<init>(java.lang.String)

java.lang.Integer.<init>(int)

Figure 4: The basic name pairing in action: produced pairings

by each static analyzer tool. Every other cell in a row is a percentage that displays
what percentage of the given tool’s methods was found by the tool in the column.

Table 2: Results of the basic name pairing

Soot OSA SPOON JCG WALA JDT
Soot 4,022 51.24% 52.76% 57.46% 57.36% 50.97%
OSA 24.4% 8,446 100,00% 96.39% 80.88% 91.13%
SPOON 24.77% 98.5% 8,551 96.55% 81.24% 89.81%
JCG 23.22% 81.81% 83.24% 9,951 75.82% 75.98%
WALA 27.47% 81.33% 83.02% 89.83% 8,399 83.09%
JDT 21.41% 80.37% 80.43% 78.95% 72.87% 9,577

Looking at the table, it becomes apparent that the column of Soot contains
quite low values. Soot found half of the methods compared to the other analyzers,
therefore, its highest possible percentage is at about 50% - 60%. The reason for this
discrepancy lies in the algorithmic differences between the tools, however, analyzing
this is not the subject of the current paper.

4.3 Anonymous transformation
The basic name pairing cannot handle every Java language feature. One of them
is the anonymous source code elements.

An anonymous class is an inner class without a name. It is useful when the
programmer needs one instance of a class or interface with only certain overridden
methods, so the actual subclass creation can be avoided. Lambda methods can
be considered anonymous, however, most analyzers denote them with their inter-
face name. Anonymous source code elements have a non-standardized, compiler
generated name, meaning that static analyzers can name the same code element
differently. Inner classes have a ’$’ sign in their name appended right after the
name of the outer class. The ’$’ sign is followed by the name of the inner class.
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In case of anonymous classes, a number is present after the ’$’ sign, however, the
numbering is not consistent among the compilers and analyzer tools. Both global,
project-wise numbering, and class level numbering is possible. The order of the
numbering can also make a difference in the output of the tools. It is clear that
our basic pairing approach that was introduced in the previous subsection is not
sufficient for pairing anonymous code elements.

The transformation simply means that during the name unification process we
replace the varying number after the ’$’ sign with a constant string. This means
that multiple anonymous elements in a class will be aggregated into one, which is
the explanation of smaller method numbers in the diagonal of Table 3. For example,
if a class has multiple anonymous classes, all of them will be transformed for the
unified anonymous class, causing a loss in the accuracy of the pairing. For projects
that do not rely on anonymous classes very much - i.e. in a class there is at most
one anonymous element - this heuristical approach is acceptable.

class AnonymousTest{
public void print (){

//...
}

}

class Test{
public stat ic void main(String args []){

AnonymousTest t1 = new AnonymousTest (){
@Override
public void print (){

//...
}};

AnonymousTest t2 = new AnonymousTest (){
@Override
public void print (){

//...
}};

}
}

Figure 5: Sample code containing two anonymous classes

Figure 5 shows an example code containing two anonymous classes. Figure 6
portrays a call graph constructed from this code (left side) and the class-level
aggregation of anonymous code elements after the anonymous transformation (right
side). If this code snippet is part of a larger project, then the two anonymous classes
may not have the same numbering in all of the produced call graphs. However, after
the aggregation the unified anonymous nodes can be paired.

Table 3, that is constructed similarly to Table 2, shows the results of the method
pairing improved with anonymous transformation. The green cells highlight those
percentages that are higher compared to Table 2.
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Test.main(java.lang.String[])

Test$1.<init>() Test$2.<init>()

AnonymousTest.<init>()

Test.main(java.lang.String[])

Test$UNIFIED.<init>()

AnonymousTest.<init>()

Figure 6: The process of anonymous transformation. The original graph is on the
left, the transformed version is on the right side

Table 3: Results of the anonymous transformation

Soot OSA SPOON JCG WALA JDT
Soot 3897 51.78% 53.09% 56.58% 56.38% 54.68%
OSA 24.23% 8329 100,00% 96.96% 81.23% 94.38%
SPOON 24.54% 98.81% 8406 97.25% 81.68% 93.42%
JCG 22.56% 82.61% 83.94% 9776 75.39% 78.71%
WALA 26.75% 82.39% 83.97% 89.75% 8212 86.79%
JDT 22.58% 83.3% 83.46% 81.54% 75.52% 9437

4.4 Employing line information

We concluded that the previous heuristical solution should and could be improved,
so that anonymous source code elements could be paired independently. It was a
self-evident idea to include the line information in order to improve the accuracy of
the method matching. However, we soon found out that the line information does
not provide a perfect solution for the problems of method pairing because it is not
as consistent among static analyzers as it was expected.

One obvious difficulty is that some of the tools process the source files them-
selves, while others work on the already compiled class files. Source code analyzers
provide line information to the beginning and end of the method declaration. Byte
code analyzers give the line information for the first statement of the method in
question. In case of an empty method, the line information of the ending of the
method declaration is present. This difference can be overcome by interval test-
ing. Moreover, not every method has line information because they are compiler
generated or they are part of the Java library. In other cases, only some of the
tools can provide line information for a method. In addition to these difficulties,
we realized that in a few cases tools provide the line information of the beginning
of the class definition for some methods. These are inherited methods, whose re-
turn type was specialized by the child class (as it was described in the beginning of
Section 4.2). As a consequence, some methods that certainly differ have the same
line information.

Seeing these difficulties, it is clear that we cannot rely on line information
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blindly, because it would misguide the pairing mechanism. Therefore, the usage
of line information was restricted only for anonymous and generic source code el-
ements, whilst, for traditional methods, the name-wise pairing was used. The
challenge of anonymous elements has already been discussed. In their case, we
used only the line information for matchmaking. Generic elements raised a new
type of issue that is introduced in the next section.

Figure 7 depicts the pseudocode of the line information based anonymous pair-
ing. The condition on line 23 is true if the package names of the two methods are
equal, and the class and method names only differ after the $ sign (anonymous

1 /*
2 The method returns true if two nodes (methods) considered equal

according to their line information
3 */
4 func checkLineInfo(m1,m2)
5 i f m1.endLine NOT valid
6 m1.endLine=m1.startLine
7 end
8
9 i f m2.endLine NOT valid

10 m2.endLine=m2.startLine
11 end
12
13 return (m1.startLine <= m2.startLine AND m1.endLine >= m2.endLine

) OR (m1.startLine >= m2.startLine AND m1.endLine <= m2.
endLine)

14 end
15
16 /*
17 This method returns true if the given nodes (methods) are

considered equal otherwise false
18 */
19 func anonymousPairing(m1, m2) //m1 and m2 are anonymous methods
20 begin
21 isEqual= fa l se
22 i f line -info available
23 i f m1 differs m2 only in anonymous names
24 i f checkLineInfo(m1, m2)
25 for i in m1.parameterCount
26 i f m1.param[i] NOT equals m2.param[i]
27 return fa lse
28 end
29 end
30 isEqual=true
31 end
32 end
33 end
34 return isEqual
35 end

Figure 7: The pseudocode of the line information based anonymous pairing
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part). On line 24 we check if the two methods are the same according to the line
information. Byte code analyzers provide the line information of the first statement
of the examined method, while source code analyzers detect the method declara-
tion. Moreover, some tools consider the comment in front of a method as part of its
declaration, making the line-information of a method even more diverse. Method
checkLineInfo depicts how the interval checking of the line information of two
methods is done. If a tool does not provide end line number for the methods it will
be initialized with the number of the start line. The equality of the parameter lists
is examined on line 25-29, although, it is not necessary if we consider the provided
line information valid.

Table 4 shows the improvement of results compared to the basic name-wise
pairing that is summarized in Table 2. In case of Soot and WALA we can see a
slight decrease in the number of methods. It is because these tools - erroneously -
provided the same line information for some anonymous methods, therefore, they
could not be handled separately. The approach best improved the pairing of the
JDT as this is the most reliable tool for providing line information.

Table 4: Results of the transformation based on line information (anonymous)

Soot OSA SPOON JCG WALA JDT
Soot 3,976 51.84% 53.37% 56.97% 56.87% 54.83%
OSA 24.4% 8,446 100,00% 96.39% 80.88% 93.27%
SPOON 24.77% 98.5% 8,551 96.55% 81.24% 92.13%
JCG 22.76% 81.81% 83.24% 9,951 75.19% 77.96%
WALA 27.12% 81.95% 83.65% 89.76% 8,336 86.32%
JDT 22.76% 82.26% 82.5% 81.01% 75.14% 9,577

4.5 Strategy for handling generic elements

As the previous subsection indicated, generic source code elements need extra con-
sideration during the pairing mechanism. Java generic classes and methods were
introduced in JDK 5.0. They allow programmers to specify a set of methods and
a set of types with only one method and class declaration, respectively. A single
generic method can be called with arguments of various types. One important trait
of generic classes is that they can be parameterized differently during instantiation.
Generic type parameters can be bounded, which restricts the types that are allowed
to be passed.

Static analyzers represent generic elements in the call graph in various ways.
Table 5 shows the diversity of representations after the method name unification. It
can be seen that the tools represent them with varying accuracy. Sometimes generic
parameters are represented by the prototype that is present in the declaration,
optionally involving the type restriction too (e.g., SOOT). In other cases, the type
of the actual parameter is used, that is, the tool represents the same generic method
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with multiple nodes but with differing generic parameters.

Table 5: Various representations of a generic method

Declared
method

<T, K extends Child2> Generic2<Child2, Generic1<Child2> >
methodGen(K c, Generic1<K> g, Class<?>...objects)

Usage methodGen(new Child2(), new Generic1<Child2>(), Integer.class)
Representations

JCG methodGen(Child2,Generic1,java.lang.Class[])
WALA Generic2 methodGen(Child2,Generic1,java.lang.Class)
OSA Generic2 methodGen(Child2,Generic1,java.lang.Class)
Soot Generic2 methodGen(Child2,Generic1,java.lang.Class[])
SPOON methodGen(K extends Child2,Generic1,java.lang.Class[])

JDT Generic2<Interface,Generic1>
methodGen(K,Generic1<Interface>, java.lang.Class<?>[])

The ideal solution would be to pair the corresponding generic methods to each
other, but because of the variety of the notations, matching them only through
the basic pairing process caused inaccuracies. Although the package, class, and
method names are the same, even the number of parameters are the same, the type
of the parameters can differ. Unlike in the case of anonymous methods, it is not
always possible to decide whether a generic method is generic or not, based on its
name alone. Therefore, the line information is needed to decide if two methods
with the same name and number of parameters correspond to the same generic
method. If the line information is the same as well, then the two nodes apply to
the same generic method. This heuristical assumption has a threat to validity if
the tool provides false line information. What is more, the pairing is not possible
if no line information is given. The pseudocode of the pairing algorithm for generic
elements is shown in Figure 8. The checkLineInfo method is the same as in
Figure 7. The heuristical method for matching the generic parameters is on line
11-15. As our pairing approach currently does not utilize the class hierarchy of the
analyzed project, only a conservative matching is allowed with generic wildcards
such as K,T,E... and with java.lang.Object, which is a base class for every other
class. The reason for this conservative solution is that we want to avoid accidental
matching of overridden methods. The manual validation proved this approach to
be sufficient. Combining line information with generic elements caused another
type of problem, which is summarized in Figure 9.

Figure 9 shows two static analyzers, Tool 1 and Tool 2 (denoted by grey ellipses)
and methods they detected during analysis (denoted by white ellipses). The ana-
lyzed source code contains a generic method, <T> void goo(T t) and two normal
methods, void foo(int a, int b) and void foo(int a). Tool 1 represents goo
in the call graph only with one node. As there is no restriction on the type, the tool
denotes the parameter type as an Object. In contrast to this, Tool 2 associates
three nodes to method goo based on the type of the actual parameters it was called
with. All goo nodes have the same line information. The matching of the foo
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1
2 /*
3 This method returns true if the given nodes (methods) are

considered equal otherwise false
4 */
5 func anonymousPairing(m1, m2)
6 begin
7 isEqual= fa l se
8 i f line -info available
9 i f checkLineInfo(m1, m2)

10 for i in m1.parameterCount
11 i f (m1.param[i] equals m2.param[i] OR
12 m1.param[i] is java.lang.Object OR
13 m2.param[i] is java.lang.Object OR
14 m1.param[i] is GENERIC_WILDCARD OR
15 m2.param[i] is GENERIC_WILDCARD)
16 isEquals=true
17 else
18 isEquals= fa l se
19 break
20 end
21 end
22 end
23 end
24 return isEqual
25 end

Figure 8: The pseudocode of the line information based generic pairing

methods is obvious, as both of them are represented with one node each. This is
not the case with the pairing of method goo. The left side of the figure shows a
possible matching of the nodes of Tool 1 to the nodes of Tool 2. The pairing of
goo is denoted with a dashed line, as other matches would be possible if it was
allowed to pair one method to multiple others. The right side of the figure shows
the opposite direction: the matching of the nodes of Tool 2 to the nodes of Tool 1.
It can be seen that all goo nodes will be paired to the same node in the graph of
Tool 1, because there is no other option. As a consequence, there is asymmetry in
the results depending on the direction from which we start pairing the nodes.

This described pairing anomaly can be resolved in multiple ways. One solution
is to use the results as they are, without any further modifications. This approach
emphasizes the differences between the tools’ capabilities. Another option is to keep
only those node-matchings that can be found from both directions. Finally, we can
collect every possible pairing from both directions and put them into a union. The
union pairing was the solution we decided to use. Table 6 summarizes the results
of this approach. The structure of the table is similar as before, the green cells
highlight the higher percentages compared to Table 4. There is a decrease in the
number of methods because we counted the corresponding generic methods as one.
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Tool 1

foo(int)

foo(int, int)

goo(Object)

Tool 2

foo(int)

foo(int, int)

goo(String)

goo(Array)

goo(int)

Tool 1

foo(int)

foo(int, int)

goo(Object)

Tool 2

foo(int)

foo(int, int)

goo(String)

goo(Array)

goo(int)

Figure 9: Pairing anomaly

Table 6: Results of the transformation based on line information (anonymous and
generic elements)

Soot OSA SPOON JCG WALA JDT
Soot 3,969 51.85% 53.39% 56.97% 56.97% 55.1%
OSA 24.38% 8,441 100,00% 96.39% 80.9% 95.53%
SPOON 24.75% 98.5% 8,545 96.55% 81.26% 94.36%
JCG 22.76% 81.93% 83.36% 9,928 75.18% 79.97%
WALA 27.16% 81.99% 83.69% 89.74% 8,332 88.02%
JDT 23.1% 85.83% 86.07% 84.52% 77.05% 9,547

4.6 Remaining differences

Table 6 shows that we could not achieve 100% pairing for the tools, a significant
number of nodes remained unmatched. We manually investigated the root causes
for this, in order to find possible ways to improve our pairing mechanism. However,
our in-depth examination revealed that most of the unmatchings cannot be resolved.
The reasons for the differences can be categorized as follows:

• A tool detects a method type that other tools do not represent, therefore
some nodes will not have images in the other tools’ graph.

– Soot represents much more static initializer nodes then other tools.

– WALA places more Java library nodes and calls into the generated call
graphs.

– SPOON represents Java static field initialization with a unique node.

• The methods that can be found in the bytecode slightly differ from the meth-
ods of the source code.
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– Bytecode analyzers (JCG, WALA, Soot) find compiler generated acc-
ess$XXX methods, which cannot be paired with improper line informa-
tion.

– Source code analyzers detect only default constructors for Enum classes.
Byte code analyzer tools represent the valid constructors with an Inte-
ger and a String parameter.

– In the compiled sources, the methods of inner classes have an extra
parameter, a reference to the outer class. This parameter is missing
from the findings of the source code analyers.

• There are algorithmic differences in the handling polymorphic calls.

– Tools that employ less accurate analysis techniques represent more in-
terface and base class methods instead of the methods of the subclasses.

– JCG represents inherited methods as the method of the child class, while
other tools represent them as part of the base class.

• Methods that do not have at least one method call are excluded. OSA and
SPOON have this feature.

• Line information for anonymous and generic methods is missing.

We concluded from our findings that our pairing mechanism could only be improved
with more reliable line information.

4.7 Edge similarity
Based on the implemented node pairing mechanisms, the pairing of the edges was
also performed. Two edges are considered to be a pair if their endpoints are matched
with each other. If one or both nodes of an edge are unmatched, then the edge itself
is considered to be pairless too. This subsection discusses how the improvement of
the node pairing affects the number of edges that can be paired with each other.

Table 7 and Table 8 present the call edge comparison results of the Commons
Math project. Their structure is similar to the previous tables’: the diagonal
elements contain the number of calls detected by each tool, while every other cell
in a row shows how many percent of the tool’s calls were found by the tools in the
columns. Table 7 corresponds to the basic name pairing mechanism and Table 8
shows the results achieved by using our final approach. Higher percentages are
highlighted with green. A slight decrease can be observed in the number of call
edges. As Table 2 and Table 6 show, some of the nodes were aggregated, and,
because of this, a few duplicated edges were eliminated.

As expected, there are improvements in the number of successfully paired call
edges, although the change is not really significant. Even if we take into account
that there are possibly pairable methods, there are considerably low pairing ratios.
This suggests that there are vital differences in the topology of the call graphs as
well. The sampling of the unmatched call edges supports this assumption, however,
a more in depth examination is needed to make further conclusions.
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Table 7: Edge similarity using the basic name pairing method

Soot OSA SPOON JCG WALA JDT
Soot 28,542 12.46% 12.72% 14.01% 13.39% 11.57%
OSA 17.73% 20,059 99.83% 88.92% 58.03% 83.25%
SPOON 17.71% 97.67% 20,501 87.70% 57.98% 82.28%
JCG 17.52% 78.14% 78.77% 22,826 53.18% 66.94%
WALA 23.36% 71.14% 72.65% 74.19% 16,363 62.08%
JDT 17.1% 86.52% 87.4% 79.16% 52.63% 19,302

Table 8: Edge similarity using the final approach

Soot0 OSA0 SPOON0 JCG0 WALA0 JDT0
Soot0 28,485 12.48% 12.74% 13.72% 13.28% 12.14%
OSA0 17.72% 20,057 99.83% 88.9% 58.03% 90.78%
SPOON0 17.7% 97.67% 20,499 87.68% 57.98% 89.82%
JCG0 17.13% 78.14% 78.77% 22,817 52.83% 72.29%
WALA0 23.18% 71.33% 72.84% 73.86% 16,319 65.23%
JDT0 17.92% 94.4% 95.46% 85.51% 55.19% 19,288

5 Comparison with a topology-based algorithm

In this Section we describe a comparison with the neighbor matching algorithm
introduced in Section 2. Our goal was to study how a neighborhood-based algorithm
performs in terms of accuracy and computational time compared to our approach.

5.1 Utilizing the topology-based method

We downloaded the C++ implementation 7 of Nikolič’s work [25]. Only output
formatting modifications were applied. We transformed the call graphs that were
built by the six call graph creator tools so the iterative tool could take them as an
input. The iterative tool requires only the call edge information, no node labeling
is needed.

Like other iterative graph similarity algorithms, this one also produces a sim-
ilarity matrix over the nodes of the compared graphs. Nikolič’s innovation was
the normalization of the similarity values between 0-1, so that the higher values
indicate greater similarity. We computed and processed the similarity matrices of
the examined projects for each call graph creator tool pair.

7http://www.matf.bg.ac.rs/~nikolic/software.html
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5.2 Evaluation of results

To interpret the similarity values as pairings of nodes we searched for the maxi-
mum values in each row and column. Although this seems like a straightforward
solution the similarity values were rather noisy, meaning that in many cases there
were multiple similarity values around the maximum of a row or a column. Let us
consider the similarity matrix of Soot and SPOON produced from their call graphs
for the Commons Math project. If we pick a method by random there is a high
chance that its pair defined by the maximum will be a noisy result. For exam-
ple, in case of the org.apache.commons.math3.util.FastMathLiteralArrays.
loadExpFracB() method which was detected by SPOON and has valid line infor-
mation the highest similarity value is around 0.6. This corresponds to the follow-
ing method: org.apache.commons.math3.transform.FastFourierTransformer
$MultiDimensionalComplexMatrix.<init>(java.lang.Object). It is clear that
this pairing is invalid. To reduce the tremendous noise, we decided to take a pair-
ing into consideration only when it is supported by both the column and row point
of view, meaning that the value is both a column and a row maximum (ceratin
matchings). If we examine the previous Soot-SPOON comparison this way we re-
duced the number of pairings reported only by the iterative approach from 12255
to 252. As it can be calculated from Table 6, our attempt detects 2120 pairings in
the SPOON - Soot call graph comparison. There are 77 matches of the iterative
tool for the SPOON - Soot comparison, which were also detected by our algorithm.
If we consider the uncertain maximums as well, this number is 239. These matches
were found valid, meaning that out of the 252 certain pairs of the Soot - SPOON
comparison about 30% is valid.

Our main interest was to analyze the validity of pairings detected only by the
iterative method. There were 2100 unique pairings out of the 15 pairwise com-
parisons of the 6 call graphs created for the Commons Math project. The manual
investigation showed that 2036 of them were invalid, whilst 64 were valid, which
is about 3%. The valid matchings had a specific characteristic. All of them were
generated constructors of anonymous classes. Byte code analyzer tools represent
these constructors with precise parameter lists containing references to the outer
class and to the local fields used in the body of the anonymous class as well, while
source code analyzers detect only the parameters that can be found in the sources.
Naturally, without proper line information and with differing parameter lists, our
node pairing mechanism is doomed to fail on these type of methods. The error
could be resolved if the source code position of these constructor methods would be
associated at least with the declarataion of the anonymous class, and by loosening
our requirement for entirely equal parameter lists. It has to be noted that even the
manual validation failed in a very few cases, when there was no line information for
one member of the pair and the outer class contained multiple anonymous classes.
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5.3 Summarization

The manual investigation showed that the results are similar for the other projects
as well. In case of the Joda-Time project8, only 3 pairings were valid out of 754.
We concluded from our findings that on average the validity of the pairings that are
found only by the iterative method less than 10%. Section 4.7 indicates that there
are significant differences in the number and type of detected call edges, which can
be a reason for the noisiness of this topology-based method.

The comparison with a topology-based method revealed a very specific weak
point of our pairing mechanism. Although the problem is limited to a little subset
of the nodes, it still has to be addressed in the future. If the static analyzer
tools would provide line information for these anonymous initializers, for instance
by associating them with the position of the declaration of the anonymous class,
our approach could pair them. It would be a straightforward idea to combine our
approach with this iterative method to resolve the described problem. However, the
expansion would not be trivial, especially if we consider that our pairing mechanism
took 12 minutes, while the iterative algorithm finished the Commons Math project
over 17 hours.

Despite the problems of anonymous constructors, this comparison assured us
that we find no matches that a neighbor-based algorithm would not and we miss
a high percentage of noisy results that the iterative method reports. Moreover,
the computation time of our pairing mechanism does not scale with the size of the
input graphs as badly as that of the iterative method. On small sample graphs
both implementations finish within seconds, however in case of projects with a few
thousands lines of code the iterative method needs hours compared to the couple
of minutes that our approach requires.

6 Conclusions

In the future, we plan to compare the capabilities of static call graph creator tools.
This could be done by comparing what methods and calls are present in the gener-
ated call graphs. If the nodes of the call graphs are matched, then comparing the
calls is a straightforward task. That is the reason why we paid so much attention
to the unifying process of the methods. This paper was a necessary preliminary
work for the upcoming quality comparison of the tools.

We collected and, where necessary, modified six Java static analyzer tools to
generate call graphs for multiple large projects. By investigating the resulting
graphs, we realized that the unification of method names is needed, in order to be
able to match the corresponding nodes to each other. The unification process - and
hence the pairing mechanism - has been refined in several steps. We highlighted
two common language elements, the anonymous and generic methods that needed
careful consideration and made the improvement of the process necessary. Multi-
ple solutions were proposed. One heuristical - but less accurate - approach for

8https://github.com/JodaOrg/joda-time
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anonymous elements is the anonymous transformation. However, with line infor-
mation they could be handled better, along with the generic code elements. We
performed a manual validation of the different pairing strategies on a sample code,
containing all features of Java 8. The source and the results are available in the
online appendix. The results of the large projects were also manually investigated.
Our solution was compared to a topology based node pairing algorithm as well.

In our final solution, we used the basic name-wise pairing for normal methods,
line information-based pairing for anonymous methods and a combined solution for
generic methods. In this combined solution, if two methods have the same package,
class and method name, have the same number of parameters and have the same
line information, it is assumed that they correspond to the same generic method
declaration. The analyzers may represent the same generic method with different
number of nodes in their call graphs. This asymmetry was solved by collecting
every possible pairing between these nodes.

The manual validation proved that better pairing could be achieved if we could
acquire more accurate line information of the methods. However, the reason for
matchless nodes lies in the differences of the static call graph creators themselves,
therefore, the matching of some nodes is impossible.
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Abstract

Automatic situation understanding in videos has improved remarkably in
recent years. However, state-of-the-art image processing methods still have
considerable shortcomings: they usually require training data for each object
class present and may have high false positive or false negative rates, making
them impractical for general applications. We study a case that has a lim-
ited goal in a narrow context and argue about the complexity of the general
problem. We suggest to solve this problem by including common sense rules
and by exploiting various state-of-the art deep neural networks (DNNs) as
the detectors of the conditions of those rules.

We want to deal with the manipulation of unknown objects at a remote
table. We have two action types to be detected: ‘picking up an object from the
table’ and ‘putting an object onto the table’ and due to remote monitoring, we
consider monocular observation. We quantitatively evaluate the performance
of the system on manually annotated video segments, present precision and
recall scores. We also discuss issues on machine reasoning. We conclude
that the proposed neural-symbolic approach a) diminishes the required size of
training data and b) enables new applications where labeled data are difficult
or expensive to get.

Keywords: situation understanding, event recognition, computer vision

1 Introduction

When we talk about situation understanding in AI, we usually imagine a scenario
with people acting in front of a camera and the task of the computer system is to
assign categories to the ongoing events. Our work presented in this paper is about
detecting one particular example of such events: an object being lifted up from or
put down on a table. In most cases the need to recognize such a scenario does not
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stand alone, rather it comes from a higher level goal or some kind of application
logic. Looking at this problem from a top-down perspective, it is generally true
that fulfilling one such higher level goal requires multiple lower level recognition
tasks to be solved and this hierarchy can go multiple levels.

We start from the concept of spatio-temporal pattern recognition that we will
use to conceptualize the complexity of such tasks. Pattern recognition in general,
is the process of analyzing data and making a decision, such as classifying a sample
to different categories, with the help of known regularities in the data [5]. In our
case, pattern recognition concerns spatio-temporal ones that we shall call event
recognition in the following.

In the case of classification we expect the data space to have 2 properties: 1)
the data points corresponding to a category are confined to a region of the space
possibly having lower effective dimensionality 2) the data space is locally smooth
around these confined regions, meaning that data points close to each other usually
belong to the same category. These concepts are analogous to the generalization
property. However the data space that we work in not necessarily holds these
properties but with the help of highly nonlinear transformations such a space can
be constructed. This is especially true in real-world applications where data comes
from sensors and it is represented in high dimensional space, like images.

Known regularities encoded in the machine can have two sources: a) human
knowledge about the data and b) a model trained by data with an algorithm. Hu-
mans can comprehend and give rules for categories for a data space of maximum
2-3 effective dimensions if it has the confinement and smoothness properties. Unsu-
pervised machine learning algorithms can perform nonlinear dimension reduction,
but for most real world problems supervised methods are needed, which require
training labels. (Also high dimensional data requires more advanced algorithms.)

Annotated training data is the most expensive component of the pattern recog-
nition process and its size rests on two main factors. First, high dimensionality
of the input exponentially increases the required training data, also known as the
curse of dimensionality [4].

Secondly, special target categories are less frequent in real life therefore collect-
ing the necessary amount of data requires more resources (time, money). Besides,
finding the regularities that characterize a special category in comparison to a more
general one from the same input requires more training data.

Consequently end-to-end machine learning from high dimensional data to very
special categories requires the most expensive kind of data, and the most advanced
algorithms.

Our scenario, and other examples of situation understanding, fit the description
above: the video recordings we work with, consisting of ≥1 million 3-channel pixels
for 25 fps, make a very high dimensional input. Collecting appropriate training
data that contains the variance of the possible samples requires many subjects in
many different scenarios from different viewpoints.

In our scenario the scene is recorded by a monocular RGB camera. Algorithm
development for such devices is motivated by the inexpensiveness and commonness
of them and it opens a path for a wide range of applications.
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Lifting up or putting down an object viewed from an arbitrary (but not mali-
ciously) placed camera is exposed to ambiguity even for human viewers of the scene
because of a) occlusion of body parts and objects (to add to the confusion occlusion
is caused by other body parts and objects) b) other type of hand movements simi-
larly executed c) illusory perceptions caused by the information loss of the camera
projection. So as data is the biggest obstacle how can we save on the costs of data
acquisition?

We propose a process of breaking down a difficult event recognition task, which
is only solvable with very expensive data, into smaller problems that we can solve
with less resource such as freely available data and human knowledge. To the best
of our knowledge, this work is the first one that offers a non-obtrusive automated
solution to the quantification of picking up and putting down objects.

We describe our approach and the actual recognition pipeline implemented in
this paper in Section 2. We compared our method to ground truth annotations
on videos provided by Rush University Medical Center showing Autism Diagnostic
Observation Schedule, Second Edition (ADOS-2) sessions with different patients.
We report the results of our evaluation in Section 3. We discuss the results and
provide possible improvements for future work in Section 4.

2 Method

In this section we describe our methodology for designing our pattern recognition
pipeline. We refer to the related work Section 2.1. We outline the theoretical
approach in Section 2.2. We used multiple machine learning models, algorithms
and data trained or developed by other researchers, we describe these in Section
2.3. Our event recognition pipeline is depicted in Section 2.5.

2.1 Related work

There have been many advances in situation understanding and activity recognition
in recent years and many datasets have been created for sets of action categories
that can be used as benchmarks. In the early days the task was set as a classification
task [9] but it moved to a detection task as methods evolved [18]. Recently most
methods first extract sparse or dense timestamps and represent events by various
descriptors, then use these to recognize similar space-time intervals. Some use
strong video features such as histogram of gradients (HOG), motion history images
(MHI) [2], others utilize pose estimation [18] or object detection [21]. There are
supervised [8] and self-organizing solutions [3] as well, also wide usage of deep
learning methods [19]. It is common in them that they use training data and they
learn from samples of the event classes they aim to detect.

In contrast, our approach combines several detectors, put together by exploiting
human knowledge and it doesn’t require samples of the target event class, making
it a viable alternative.
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2.2 Approach

Our key idea is to transform our pattern recognition task to the composition of
multiple “smaller” tasks. With the help of our human intuition we include a more
general concept between the input data and our special category. The training data
for this general concept is cheaper to manufacture than what we would have needed
for our original task. The representation of this general concept has significantly
less dimensions than the dimensionality of the original input data, lowering the
required training data size for the second recognition task, which is identifying the
special concept in the general one.

For example our recognizable action, lifting up an object, is a special case of a
pose time series data of a person, so by utilizing a pose estimation algorithm like
the convolutional PoseMachine [23], we include a general concept, Pose series, and
we can define a new pattern recognition task where the input is the representation
for this new concept and our target category is our original target category. Pose
series will be represented by 17 joints, each with 2 dimensions multiplied by the
length of the series in image frames which is an enormous decrease compared to
the dimensionality of the original video data space.

This decomposition can be done arbitrary number of times introducing multiple
intermediate concepts. Each decomposition replaces a pattern recognition task with
two easier one in terms of data acquisition. Since information is lost when adding
an intermediate concept, “sibling” concepts that are between the same input- and
target data representations are necessary components. Eventually intermediate
concepts will comply to the important factors for the original recognition task.

Each recognition task can be solved in any possible way outlined previously: a)
supervised machine learning b) unsupervised dimension reduction c) human rules
to assign set of data to a target category. Only a) requires training data where
a very beneficial possibility is to use off-the-shelf data (or even trained models)
created by others for a general concept that can be used for one’s target category
as well. From the perspective of expensive data acquisition the coupling of b) and
c) can turn the tide from impossible to possible.

We stated previously that humans can formulate rules for comprehensible 2-3d
spaces and this knowledge acquisition can save the collection of training data. Di-
mension reduction on its own can’t really solve pattern recognition but can produce
the representation that is usable for human rule creation. If we can decompose the
original task in a way that such intermediate recognition task that is solvable with
dimension reduction and human rules emerges, we can omit a data acquisition step.

The development of such a pipeline is an evolutionary process: we investigate
the effect of including and excluding components through quantified metrics and
qualitative analysis of samples of false positive and false negative recognitions.
Consequently our pipeline have many other variations with other intuitive ideas.
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2.3 External components

We briefly list the algorithmic components used in our pipeline. For further details
please refer to the literature:

• Convolutional Pose Machine[23]: A deep learning method for human pose
estimation. It provides estimation for key anatomical points of the human
body. We use this method mainly to extract elbow and wrist coordinates so
that we can further analyze the lower arm movement of the subject.

• Mask-RCNN[11]: A variant of the popular Faster-RCNN[17] object detec-
tion method. Other than providing bounding boxes for many object cate-
gories it also provides fine-grained instance segmentation of the underlying
object.

• Hand detector: We used an R-FCN[6] based hand detector trained on a
hand dataset [16].

• Optical flow: We used FlowNet2.0[12] as optical flow algorithm.

2.4 Target event description

We consider a scenario where a person interacts with objects on a flat surface, most
likely a table viewed from a stationary camera. We decompose the event into three
required subevents.

Putting down an object:

1. the person holds an object in her hand away from the future release location

2. the person puts it down on the surface

3. the person releases the object and moves her hand away from the release
location

Picking up an object:

1. the object is on the table, and the person’s hand is away from the object
location

2. the person moves her hand towards the object and grabs it

3. the person takes the object away from its original position on the table

We introduced some limitations with these event definitions. We add three more
to the list:

1. only events shorter than 10 seconds are taken into consideration

2. the object needs to be visible in the video for at least a few frames at the
appropriate step (Put down 3., Pick up 1.)
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3. the location of the object (without the object being there) needs to be visible
for at least for a few frames at the appropriate step (Put down 1., Pick up 3.)

4. the required distance of the hand from the object location (pixel-wise on the
video) is approximately the same size as a hand.

These limitations makes our task more special which means that there will be
events that would fall into the category of picking up an object to a human observer
but we don’t consider the recognition of those.

2.5 Pipeline

As we described in Section 2.2 our goal is to build a pattern recognition pipeline
that minimizes data acquisition which is extremely expensive in the case of a very
special target category. We relied on our human intuition to decompose the original
task and developed it in an evolutionary fashion.

Our main idea is twofold: when an object is moved there are two frames from the
video of the stationary camera where the only difference of these images relevant
parts determine the object’s pixel representation; it ”appears” or ”disappears”.
We also note that grabbing or releasing an object involves a temporary stop of
the hand’s movement. We combine these two ideas to an algorithm where we first
search for points in time when the hand is stopped, select these as candidates,
then search one frame preceding and one following the candidate point, where the
difference of the two frames shows the (dis)appearing object.

If a candidate is false, for example the person just rested her hand on the table
for a second without moving any object, then the difference of the retrieved images
will be zero, as both images show the part of the table unchanged.

We specify common sense assumptions and derive algorithmic components to:

1. select candidate positions

2. refine candidate positions by hand detection

3. select the two relevant frames

4. process the images to neglect irrelevant differences caused by interfering ac-
tions in the scene

5. take the image difference

In the following sections we describe each step in detail.

2.5.1 Candidate selection

We find timestamps of object grabbing by assuming that this action requires that
the hand stops for at least an instant. Thus we look for such changes in the speed
of the forearm which we measure by optical flow at regions estimated from elbow
and wrist joint coordinates. If the magnitude of average velocity in that region
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is at a local minima, then the timestamp is selected as a candidate for change
detection. The local minimas are found by using gaussian filter on the velocity
magnitude signal and then using a peak finding algorithm[7]. For each of the
candidate position we assume that the appearing/disappearing object is occluded
by the hand in the instant of releasing/grabbing.

2.5.2 Candidate refinement

We refine the candidates obtained in the previous step by using an R-FCN based
hand detection algorithm[6]. If the hand detection fails, meaning the hand cannot
be find where the movement stopped then we discard this candidate position. A
possible situation where this can happen is that the hand is under the table. We
are using the bounding boxes obtained here as a RoI (region of interest) in the
following steps.

2.5.3 Image selection

In this step we select two frames, It1 and It2 , that will be used at the image
differencing step. We search backwards and forward in time to find frames where
the object is not occluded by the hand, to find It1 and It2 . This is done by simply
checking if the bounding boxes of the hand moved significantly since the frame
in which the object was grabbed. The search has a max duration parameter in
both directions, if the hand doesn’t leave the RoI in that time span, the candidate
position is discarded. This parameter is set to 120 frames (4.8 seconds for a 25 fps
video).

2.5.4 Interference removal

We found that the selected frames and RoI given by previous steps contains dif-
ferences other than the object we were looking for. These differences come from
different sources: effect of actors interfering in the RoI (e.g. body parts, shadow,
other manipulated object). To neutralize these effects we create a binary mask on
the RoI that neglects pixels that belongs to these phenomena. In fact we estimate
multiple binary masks with different strategies and take the union of the relevant
pixels found by each method. These are the following:

2.5.5 Interference removal - Body occlusion

We found that in many cases there were body parts inside the RoI which accounted
for many of the changes that could be found between the two frames. We used
Mask-RCNN[1][11] for filtering out pixels corresponding these parts.

2.5.6 Interference removal - Long-term optical flow

There are changes between It1 and It2 that correspond to small movements over a
longer period of time. A possible example is when the edge of the paper moved on
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which the object was placed. To account for these differences we use optical flow
between It1 and It2 .

2.5.7 Interference removal - Short-term optical flow

There can be ongoing actions inside RoI in It1 and It2 which we would also like
to filter out. These events are typically hand movements or some other object
movement. The optical flow between a frame at time instant t and t − 1 helps in
removing any these effects inside the RoI (e.g. hand is still there but moving). This
could be done for any t and t − k time instants, however we found k = 1 to be
sufficient.

2.5.8 Image difference

We combine the binary masks obtained from previous steps to It1 and It2 then
taking their difference as follows [13]:

Ifinal(x, y) = ‖It1(x, y)−
(
σ1
σ2

(It2(x, y)− µ2) + µ1

)
‖2

where µ1, σ1 and µ2, σ2 are the mean and standard deviation of It1 and It2 respec-
tively.

After calculating the difference image, we perform the following steps to produce
the final mask:

1. threshold Ifinal to keep changed part of the images

2. drop small continuous blobs of the difference image for noise reduction

If the remaining covered area of the final mask is larger than 1% of the image
area then we keep the difference as the object threshold, otherwise we discard the
candidate position.

3 Evaluation

3.1 Data

We evaluated our pattern recognition pipeline on video segments that show a child
taking part in an ADOS-2 diagnostic interview. This test includes different types of
playful activities conducted by a clinician who is also present in the same room. The
clinician interacts with the child during these games. Some of these tests contain
objects that are moved from one place to another. We selected two activities
”Puzzle game” and ”Storytelling with toys” from three subjects. Segments for
these games lasts 2-3 minutes and 10 minutes respectively. The dimensions of
the puzzle pieces are around 5 cm x 3cm x 0.5cm colored blue and purple. The
toys used for storytelling are dolls, plastic animals and tools of various sizes, their
largest dimension ranges from 5 cm to 25 cm and colored diversely (examples can
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(a) Selected image
It1

(b) Selected image
It2

(c) Final mask ap-
plied to It1

Figure 1: A few examples from our evaluations. The algorithm starts by finding
instants when a hand stops , see, column (b). Frames selected before and after
the time instants of the hand stops are shown in columns (a) and (c), respectively.
Column (d): masked images after applying the derived filters and taking the image
differences. (See text for more information).

be seen on Figure 1). The room (size: 2.5 m x 2.5 m) has the same layout in all
recordings with a single table, two chairs and optionally some cabinets holding the
different tools for the different tasks. A single light source illuminates the room to
standard indoor lighting.

Videos were recorded with a resolution of 1920x1080 pixels. Ground truth
annotations of the precise temporal extent of the events were created with our own
video annotator tool. Annotations were created and verified by our colleagues using
a detailed description (Section 2.4), basically a set of rules about the relevant events,
i.e. ”picking objects up” and ”putting objects down”. We would like to emphasize
that the ADOS-2 interviews were designed, conducted and recorded independently
from our work, meaning that the properties of our proposed system had no effect
on how the data was collected.

Statistics of each video segment’s length and ground truth coverage is on Table
1.
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Table 1: Length of input videos and coverage of ground truth annotations in our
data

Subject 1 2 3 All

Puzzle
Length (s) 150 120 120 390

Ground Truth
coverage

31.7% 53.6% 39.3% 40.8%

Storytelling with toys
Length (s) 640 540 615 1795

Ground Truth
coverage

6.9% 20.1% 14.4% 13.4%

3.2 Methodology

We report the performance of our pipeline on these videos with precision and recall
metric scores. We show each component’s added value for the pipeline with metrics
to justify its need in the pipeline by running different versions of our pipeline that
include different combinations of components. We name and describe them as
follows:

1. P1: Each handstop candidate is considered a positive detection (Section 2.5.1)

2. P2: The candidates of P1 are filtered by candidate refinement (Section 2.5.2)

3. P3: Before and after image is retrieved. The remaining candidates are con-
sidered a positive detection (Section 2.5.3).

4. P4a: Filter the candidates of P3 by the image difference of It1 and It2 (Section
2.5.8)

5. P4b: Only apply long-term optical flow filtering described in (Section 2.5.6)
and image difference (Section 2.5.8)

6. P4c: Only apply short-term optical flow filtering described in (Section 2.5.7)
and image difference (Section 2.5.8)

7. P4d: Only apply body-occlusion filtering described (Section 2.5.5) and image
difference (Section 2.5.8)

8. P4: Apply all inference removing filters and image difference utilizing the full
pipeline.

P1 selects candidate time instances from the video and all other pipeline ver-
sions filter these initial candidates. Each pipeline’s output is a list of candidate
time instance that can be compared to the ground truth annotations with pattern
recognition metrics, like precision and recall.

Since certain pairs of pipeline versions differ only in one algorithmic component
(P1-P2, P2-P3, P3-P4a, P3-P4b, P3-P4c, P3-P4d, P3-P4) the difference in their
performance shows the effect of adding said component to the pipeline. Each
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Figure 2: Overview of the stages described in Section 3.2. The stages until P3
are built linearly. Stages after this correspond to the different inference removal
algorithms and are considered to be run in parallel. Finally the results are combined
and image difference is taken in P4.

components filters the output of the previous one and we can treat it and evaluate
it as a binary classification tasks.

The pipeline versions P1-P3 are built linearly by adding components, P4a-P4
are combinations of the 3 inference removal methods (Section 2.5.4).

3.3 Results

We report precision and recall scores for our evaluations (Table 2). Since taking
an object happens over time, the ground truth annotations consist of intervals. We
do not differentiate between left and right hand events, but we consider parallel
annotations. On the other hand our method detects time instants.

We consider all positive predictions that fall into a ground truth interval to be
true positives, and all ground truth interval that contain a positive prediction is
handled as recalled.

P1 starts with a large number of candidate points measuring in good recall but
poor precision scores. Progressing to P3, the candidates are filtered and we can see
that precision increases and recall decreases. Comparing P4a-P4 we can see that
the combinations of the 3 interference removal components has the best precision
and precision and recall values vary when we remove only one type of inference
(P4b-P4d).

Our full pipeline (P4) shows reasonable recognition capability when the dataset
of the two activities are aggregated (precision 0.51, recall 0.49). When we consider
the datasets separately, the ”Puzzle” activity dataset has 0.7 precision with 0.68
recall, and ”Storytelling with toys” has 0.41 precision with 0.41 recall.
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Table 2: Precision and recall scores for each of pipeline variations for our datasets.
The pipelines differ on which algorithmic components they contain, explained in
Section 3.2.

ADOS-2
activity

Metric Evaluation pipelines

P1 P2 P3 P4a P4b P4c P4d P4

Puzzle
Precision 0.45 0.62 0.60 0.61 0.65 0.61 0.68 0.70
Recall 0.95 0.92 0.77 0.77 0.75 0.75 0.71 0.68

Storytelling
with toys

Precision 0.16 0.19 0.21 0.22 0.26 0.22 0.38 0.41
Recall 0.92 0.87 0.62 0.62 0.56 0.62 0.41 0.41

All
Precision 0.20 0.25 0.28 0.29 0.35 0.29 0.49 0.51
Recall 0.93 0.89 0.67 0.67 0.62 0.67 0.51 0.49

(a) It1 (b) It2 (c) Finals mask applied to
It1

Figure 3: A semi-failure case from our evaluations. (a) and (b) shows the images
selected before and after the hand stop time instant respectively. (c) shows the
masked image after applying our filters. The object is correctly discovered, but
also many other area are also segmented, most of them corresponding to shadow.

Furthermore, we carried out an analysis of the performance of each component
by estimating their ability to correctly classify candidates as true or false positives
in their respective place in the pipeline.

4 Discussion and outlook

For any ‘detector ’, low precision and high recall means that it is more general than
intended, covering other events as well, while high precision and low recall means
that it is too specific, covering only a subset of the targeted events. In the first
case, one needs to integrate more knowledge into the pipeline. In the high precision
case semi-supervised machine learning, where the annotated samples are collected
with the help of the high precision detector on available non-annotated data, may
become feasible. This made possible by tuning the individual deep neural network
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components providing lower scores with the samples gained via consistence seeking
[14].

We can see from the results that our pipeline’s intermediate and final perfor-
mance has higher metric values on the ”Puzzle” dataset. We must take into account
the ground truth to video length ratio (Table 1) for the two dataset. On ”Puzzle”
one has 40.8% chance with a random time instance to find a ground truth interval
while the same chance is 13.4% for the other dataset. Thus the detection of our
target events in the ”Puzzle” scenario are easier.

We emphasize that adding each component increases precision, conclusively we
are successful in adding knowledge to our pipeline by combining rules and trained
deep neural networks. Our components still have shortcomings which we analyzed
qualitatively. First, one of the limitations for our method is how we deal with
shadows. See the example in Figure 3. This case is not covered by any of our
filters at this point. Secondly, we found that there are multiple cases when the
detected time instance of hand stop (interpreted as grabbing or releasing) is very
close to a ground truth interval but outside of it. In future we consider representing
the machine detections as intervals between the before-after images instead of time
instances, and use IoU (Intersection-over-Union) measure for evaluations. This
would make the detections easier to cluster or drop unlikely ones resulting in less
false positives and less multiple detections of the same ground truth interval.

We also minimize the collection of new training samples as proposed in [14].
Our example is the monitoring of the manipulation of unknown objects and detect-
ing ”picking up” and ”putting down” these objects. In turn the problem treated
belongs to the family of ‘zero-shot learning ’ tasks. First, we considered the general
driving principles of the process and transformed them into concrete rules by taking
into account trained deep neural networks dealing with hand detection, body pose
estimation and motion information extracted from optical flow estimation.

We carried out a detailed analysis of the proposed method on real world scenar-
ios. We found that considerable complexity arises in this relatively simple problem
and that it can be overcome by applying rules. We also note that information
pieces, e.g., information about depth are missing and could be included. Due to
novel developments in deep learning technologies, such as

1. the estimation of 3D distance of objects [10] and that of

2. 3D body configurations [15, 22], as well as the

3. precise estimation of hand configurations from monocamera recordings [20]

our approach on zero shot learning guided by neural-symbolic approach and the
belonging self-training capabilities will become more precise and fit the stringent
requirements of remote monitoring in the near future.

We plan to conduct a larger scale experiment in the future where we can address
the mentioned issues and analyze the algorithm further on more data. We will also
try to improve our pipeline by adding depth information estimated from RGB
recordings using the listed deep learning algorithms.
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