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Executive Summary  

Tropical montane cloud forests are unique habitats with great ecological and hydrological 

significance. In the Western Ghats, these upper montane forests (also known as sholas) and 

associated grassland habitats form approximately 1% of the land area but harbour 

disproportionately high numbers of endemic taxa. Despite their great conservation significance, 

little is known about how patterns of tree and shrub species composition vary across space, how 

environmental factors such as soil, climate and topography affect tree and shrub community 

composition, and how widespread conversion of surrounding grasslands to tea and exotic tree 

plantations has affected shola forest communities.  

 

The naturally fragmented nature of shola communities, which display patchiness at hierarchically 

nested scales, also makes them an ideal system in which to study metacommunity structure as 

species distributions, interactions and ecological processes, within and across fragments are 

likely to have equilibrated over many hundreds of generations (for trees). Hence the central 

underlying assumption of the species sorting perspective of the metacommunity framework, (i.e. 

that local community dynamics are at equilibrium) is more likely to be met in such a system.  

Further, recent conversion of the natural grassland matrix to exotic tree plantations and tea 

estates, is likely to have disrupted this equilibrium in complex and unpredictable ways, which 

can provide greater insights into mechanisms driving metacommunities dynamics in general and 

effects of landscape matrix conversion on plant communities in particular. 

 

In this thesis I attempt to understand the patterns of distribution and plant community 

composition of shola forests and their drivers at different spatial scales. I investigate the 

topographic and bioclimatic determinants of vegetation pattern within shola-grassland mosaics 

across their distribution in the central and southern Western Ghats. I then focus on studying the 

distribution and metacommunity patterns of shola tree and shrub species at the landscape scale in 

the southern and western Upper Nilgiris Plateau. I identify important environmental gradients 

structuring tree and shrub metacommunities, and determine the extent to which the latter are 

influenced by abiotic factors such as climate, topography and soil versus biotic factors such as 

dispersal. I also examine effects of grassland conversion to tea and exotic tree plantations on the 

structure, composition and regeneration of shola forest fragments. 



vi 
 

 

In order to fulfil these objectives, I use various analytic approaches including conditional 

inference classification trees, generalized linear models with an information theoretic framework, 

spatial eigenvectors and variation partitioning. I also develop a novel approach to modelling 

spatial connectivity created by dispersal processes in topographically heterogeneous terrain using 

a combination of spatial eigenvectors derived from a Circuit Theory approach. 

 

I find that both vegetation pattern within shola-grassland mosaics in general, and the shola tree 

and shrub metacommunity in particular, are strongly structured by the elevation gradient. In 

particular, above approximately 2000m elevation, there appear to be shifts in both the 

distribution of forest and grassland within these mosaics, as well as large changes in community 

composition within shola fragments. The shola metacommunity in the Upper Nilgiris primarily 

exhibits a Clemenstian pattern of species distribution along an elevation gradient with high 

turnover and significant clumping of range boundaries. Spatially structured environmental 

variability, accounts for much of the explained variation in shola tree and shrub abundances, 

while dispersal limitation accounts for about 10% of explained variation. Approximately half of 

the variation in tree and shrub communities remains unexplained by the environmental, historical 

and spatial predictors considered. Finally, sholas located within a landscape matrix of grassland 

differ significantly in terms of structure, composition as well as regeneration levels from those 

located within an altered landscape matrix of tea plantations and wattle (Acacia mearnsii), 

indicating that landscape matrix conversion has affected the structure and dynamics of vegetation 

in sholas. 

 

I present a synthesis of the main results and conclusions with a discussion of potential climate 

change impacts on shola forests and further research priorities. The specific conservation and 

management implications emerging from this study are also highlighted. 
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Chapter 1 

Introduction  
  

Tropical montane cloud forests (shola) in the Western Ghats, India 

 

Tropical montane cloud forests (TMCF) are defined as forests that are frequently immersed in 

mist (Hamilton et al. 1995). These ecologically unique and hydrologically important habitats 

(Bruijnzeel and Proctor 1995) are restricted to a mere 0.14% of earth’s land surface (Scatena et 

al. 2010). Found between 30oN and 30oS latitudes, they predominantly occur between 1200-

2800m in elevation with records as low as 400m and others as high as 3500m (Jarvis and 

Mulligan 2011). The largest existing area of TMCF is found in Asia, mainly in Indonesia and 

Papua New Guinea, followed by the Americas. In Asia TMCF constitutes only 5.9% of all 

tropical montane forests (Scatena et al. 2010).  

 

The large variation in elevation and latitude within which cloud forests occur is attributed to 

differences in the interaction between climate and topography, specifically height of the 

mountain range and its distance from the coast, which affects the incidence and frequency of 

ground level mist (Jarvis and Mulligan 2011). Mist provides these forests with an additional 

source of water through horizontal precipitation. Bruijnzeel and Proctor (1995) found that 

typically, horizontal precipitation inputs in these forests average 5-20% of rainfall. Recent 

ecophysiological studies from the Neotropics have shown that cloud forest tree species have the 

capacity to absorb water and nutrients directly through their leaves and are known to be very 

susceptible to drought (Goldsmith et al. 2013, Oliveira et al. 2014). This could explain why 

TMCF occur closer to the coast in topographically complex regions with higher rainfall and 

lower seasonality of precipitation than other tropical montane forest types (Jarvis and Mulligan 

2011).  

 

Apart from providing hydrological services such as increased throughfall and dry season 

streamflow (Bruijnzeel et al. 2010), this intriguing and heterogeneous biophysical context creates 

conditions for high levels of beta diversity and endemism across several taxa (Hamilton et al. 

1995, Nair et al. 2001, Bruijnzeel et al. 2010), with many new species still being discovered from 



2 
 

these habitats (Narayanan et al. 2013, Verma et al. 2013, Kumar et al. 2014). Recent 

international conservation initiatives (Bubb et al. 2004) have highlighted the ongoing threat to 

these rare and biologically rich habitats, which include conversion to agriculture and grazing, 

increased levels of invasion by exotics and increased frequency of fire (Scatena et al. 2010). 

Changing temperature and precipitation patterns have potentially serious implications for these 

mountain-top habitats (Sukumar et al. 1995, Foster 2010). However additional meteorological 

data of higher spatio-temporal resolution are needed to understand temporal and spatial variation 

in climate and address the questions of climate change impacts on these forests (Foster 2010).  

 

Current knowledge gaps for conservation and management include: lack of information on the 

spatial variation in species composition and richness at multiple scales, nutrient dynamics and 

carbon cycling, impacts of land use conversion on species and ecosystems and lack of 

information on conservation status and restoration potential (Scatena et al. 2010). In particular, 

researchers have identified a need for further studies on the above from Asia and Africa. Very 

few studies on TMCF in these continents exist and the current knowledge arises from only a few 

locations within these vast continents (Bruijnzeel et al. 2010). 

 

The cloud forests of the Western Ghats, also known as sholas, represent hotspots within a 

globally recognized biodiversity hotspot (Myers 2003) and have the potential to provide 

important ecological, evolutionary and management insights towards international efforts to 

conserve TMCF. The ecologically apt term shola, derived from the Tamil word ‘Cholai’ or 

‘Chola’ in Malayalam, refers to a shaded, wet grove and directly associates this vegetation type 

with a water source (Nair and Khanduri 2001). Some authors estimate that up to 50% of shola 

forests have been lost in the last century and a half (Sukumar et al. 1995). Unfortunately 

previous syntheses of work on TMCF (Hamilton et al. 1995, Bruijnzeel et al. 2010) have not 

sufficiently represented the existing information on shola forests of the Western Ghats (Bunyan 

et al. 2012).  

 

Status of research on plant communities of shola forests 

Recent reviews of literature on the shola ecosystem (Bunyan et al. 2012, Robin and Nandini 

2012) conclude that despite high levels of endemism and anthropogenic threat, this habitat and 
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the complex mosaic that it forms with natural grasslands, has received relatively little research 

attention. The highest proportion (39%) of the 279 studies reviewed were focussed on describing 

phytosociology and diversity of flora (Robin and Nandini 2012). Bunyan et al. (2012) found that 

these studies varied greatly in their estimates of alpha diversity and endemism (19.5 % to 

83.3%). A possible reason for this is that most studies are fairly restricted in spatial extent of 

sampling and inference, and apart from a few (Nair and Baburaj 2001, Nair and Menon 2001, 

Davidar et al. 2007a, Bunyan 2009, Mohandass and Davidar 2010), generally do not attempt 

comparisons across different regions or within larger landscapes. Even fewer studies have 

attempted to explore patterns of species abundance and turnover within this upper montane 

ecosystem at larger spatial scales (e.g. hundreds of square km) and how they relate to abiotic 

influences such as climate, topography, soil and biotic factors such as dispersal (but see Nair and 

Baburaj 2001, Swarupanandan et al. 2001, Joseph et al. 2012). There is however, plenty of 

evidence for the distribution of mid-elevation evergreen species in the Western Ghats being 

strongly influenced by both elevation and precipitation gradients at very large (ecoregional) 

spatial scales (Ramesh and Pascal 1997, Gimaret-Carpentier et al. 2003, Davidar et al. 2005, 

2007b, Ramesh et al. 2010). Owing to the lack of large scale studies in the upper montane 

region, elevation boundaries for the occurrence of shola forest in the Western Ghats are yet to be 

rationalized. Several different lower elevation limits for shola have been suggested in the 

literature, ranging from 1400-1800m (Nair et al. 2001, Bunyan et al. 2012, Joseph et al. 2012, 

Robin and Nandini 2012). Most are based on observations of structure and physiognomy of the 

forest stands, rather than correlations with bioclimate and elevation. Similarly, transitional zones 

along elevation and rainfall gradients between different types of shola communities need to be 

identified in order to better understand, monitor and manage this rare habitat. 

 

Finally, the impact of the extensive transformation over the last century and a half of natural 

grasslands to tea and exotic tree plantations on shola communities is largely unknown. For 

instance, the occurrence and spread of exotic invasives, recognized as a serious threat to the 

grasslands (Srivastava 2001, Seshan 2005, Zarri et al. 2006, Thomas and Palmer 2007), might 

well be aggravated by the interaction between land cover conversion and climate change. 
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Study area and landscape history 

The primary study area is located in the Upper Nilgiri Plateau in the Western Ghats. A detailed 

description of this landscape can be found in chapters 3 and 4. The western and southern parts of 

the Upper Nilgiris Plateau still hold large areas of natural shola grassland mosaic, which dates 

back to at least 40,000 years ago (Caner et al. 2007). Other predominant land cover types in the 

region have come into being relatively recently.  

 

Nomadic pastoralism, hunting, gathering and shifting agriculture were the predominant forms of 

subsistence on the plateau from about 2,000 years ago until the 15th century AD. The Badaga 

community settled in the northern and eastern parts of the Nilgiris plateau in the 15th century 

A.D. and converted large areas to permanent agriculture. Even more extensive land use change 

came much later with the advent of the British (1813-1818) who first envisioned the area as a 

potential location to set up a European colony (Prabhakar 1994). They encouraged the settlement 

and development of the plateau, introduced major infrastructural and development projects and 

market-based agriculture (Prabhakar 1994). Several exotic plants from temperate regions were 

also introduced into the area (Prabhakar 1994). This period was marked by an increasing 

exploitation of shola forests, especially around Ootacamund, primarily for fuelwood. In 1841, 

concerned about the felling of sholas, the British introduced a timber conservancy system, under 

which contracts were issued to bidders to fell wood from certain shola patches (Siddiqi 2005).  

 

By 1860, an increasing emphasis on linkage with the market economy of the plains, resulted in a 

net flow of resources out of the area, increased immigration of people, disruption of traditional 

cropping patterns and greater dependence on the market-based economy for livelihood 

(Prabhakar 1994). Shola grassland mosaics in the central and northern plateau were converted to 

commercial agriculture. The area under commercial vegetable cropping in the Nilgiris increased 

over 100-fold between 1847 and 1950 (Prabhakar 1994). Under the Waste Land Rules (1863), 

large transfers of land (~350 ha) to European cultivators were undertaken. Shola forests were 

cleared to make way for tea, coffee and cinchona plantations (Prabhakar 1994). By 1900 tea and 

coffee plantations occupied about 50% of the cultivated lands in the plateau, mostly in the central 

and eastern parts of the plateau (Prabhakar 1994).  
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In 1883, the passage of the Madras Forest Act, enabled the British to assume control of forest 

lands, declaring them to be Reserve Forests and abolishing local rights (Prabhakar 1994). While 

this limited conversion of natural forest and grassland to agriculture, it allowed the Forest 

Department to execute another major conversion of this ecosystem. Exotic tree plantations were 

introduced during the mid-1800’s on an experimental basis to meet fuelwood and timber needs. 

Australian wattles (Acacia sp.) were introduced first (1832), followed by Eucalyptus sp. (1847). 

By 1910, there were 635 ha of exotic tree plantations under the Forest Department and an 

additional 400 ha of private plantations to meet fuelwood demands (Prabhakar 1994). Acacia 

dealbata was planted in the Kundahs in 10-15 acre plots in order to fill the grasslands which 

were considered to be “wastelands” (Ranganathan 1938 Working Plan cited by Siddiqi 2005). 

 

Post-independence, the commercial exploitation of forest and water resources in the Nilgiris 

intensified tremendously, this time by the Indian State. Acacia mearnsii De Wild. (black wattle) 

had been recognized as a weedy invasive as early as 1856 and in the mid-1860’s Eucalyptus 

globulus was favoured over Acacia sp. as a plantation tree (Siddiqi 2005). However, with the 

cessation of trade relations with South Africa in 1940, A. mearnsii was cultivated over large 

areas of grassland for extraction of tannin from its bark. In 1953, Acacia plantations occupied 

995 ha of the plateau (Prabhakar 1994).  T. Jayadev’s Working Plan (1954-1964) was the first of 

a series of five-year plans that established large-scale plantations in the southern and western 

parts of the plateau (Jayadeva 1954 and Thyagarajan 1964 Working Plans for the Nilgiris 

Division cited by Sandilya 2005). By 1963, the area under A. mearnsii was reported to be 

12,140.59 ha. Therefore much of the wattle was introduced in the last 50 - 70 years. This species 

is an aggressive invasive that poses a major threat to the remaining grasslands of the plateau 

(Thomas and Palmer 2007). Ironically, following a growing realization of the conservation value 

of the grasslands, the Forest Department has been engaged in large-scale clearing of the wattle 

plantations in and around Mukurthi National Park over the last decade (Srivastava 2001). 

 

The radical transformation of the Upper Nilgiris over the past 200 years from rolling grasslands 

with pockets of shola forest in folds and swamps in valley bottoms to an intensively used 

patchwork of agriculture, commercial plantation, monoculture tree stands and settlements will 

have had a profound impact on the ecology of sholas that is yet to be uncovered. The need to 
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understand the impacts of landscape transformation on shola communities is urgent given 

climate change. Eventually, the ability of species in tropical montane forests to adapt and persist 

will depend largely on the quality and intensity of human land use in the surrounding matrix 

(Kupfer et al. 2006). In order to effectively maintain diversity and connectivity across shola 

forests in this landscape, it is imperative that conservation efforts first focus on understanding 

drivers of current patterns of species distributions at both local and landscape scales. 

 

The metacommunity framework and its relevance to shola forests 

Metacommunity theory and analysis provides an appropriate framework for understanding the 

structure of shola communities. A metacommunity is defined as a “set of local communities that 

are linked by dispersal of multiple potentially interacting species” (Leibold et al. 2004, p.602) 

The study of spatial patterns in species distributions over local and regional scales is therefore 

inherently important to such a framework (Holyoak et al. 2005). Understanding metacommunity 

structure at different spatial scales can give us insight into the relative importance of processes 

affecting community assembly such as dispersal, competition and niche-based species sorting 

(Holyoak et al. 2005). This is important both from an academic perspective as well as a more 

applied management perspective.The hierarchical framework suggested by metacommunity 

theory, which considers local and regional scales of organization is well suited to the shola 

grassland ecosystem as it is a naturally fragmented system which displays patchiness at 

hierarchically nested scales (Robin and Nandini 2012). Discrete forest patches occur in the midst 

of a matrix of grassland. Local communities are therefore easily defined and are linked to other 

local communities (or patches) by dispersal processes (Somasundaram and Vijayan 2010). At the 

landscape and then regional scales, groups of forest patches are separated from one another by 

increasingly impassable topographic barriers.  

 

In addition to this, naturally fragmented forest systems such as the sholas offer a unique 

opportunity to study the effects of anthropogenic matrix conversion on metacommunities in a 

context in which it is far less confounded by other aspects of anthropogenic fragmentation such 

as habitat loss or partitioning (Fahrig 2003, Ewers and Didham 2006). Here discrete patches of 

forest habitat are surrounded by a relatively homogenous and structurally distinct matrix of 

grasslands. Species distributions, interactions and ecological processes are likely to have 
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equilibrated within and across fragments in these systems over many hundreds of generations 

(for trees) (Núñez-Ávila et al. 2013). Hence a central underlying assumption of the species 

sorting perspective of the metacommunity framework (Leibold et al. 2004, Holyoak et al. 2005), 

(i.e. that local community dynamics are at an equilibrium condition) is more likely to be met in 

such a system. Further, recent conversion of the natural grassland matrix to exotic tree 

plantations and tea estates, is very likely to have disrupted this equilibrium in complex and 

unpredictable ways (Driscoll et al. 2013), which can now be studied to better understand 

mechanisms of metacommunities dynamics in general. 

 

Objectives of the study 

This study attempts to understand the patterns of distribution and community composition of 

shola forests at different spatial scales. In the second chapter I identify topographic and 

bioclimatic factors that predict occurrence of forest and grassland patches within tropical 

montane forest-grassland mosaics in central and southern regions of the Western Ghats. I further 

investigate whether interactions between topography and bioclimate are important in 

determining vegetation pattern at this ecoregional scale, and assess the role of measurement scale 

in determining the relative importance of specific topographic features. Finally, I examine 

whether the relative importance of these diverse explanatory factors changes with elevation 

across the latitudinal range of these mosaics. I assess prediction accuracy, predictor importance 

and potential interactions between predictors using two different analytic approaches: Random 

forests built on conditional inference classification trees (Hothorn et al. 2006), and generalized 

linear models (GLMs). 

 

In the third chapter, I examine species richness, diversity, composition and stand structure of the 

shola woody communities in the Upper Nilgiris (covering a study area of approximately 600 

km2) and compare the result on floristics to similar studies from other shola forests in the 

Western Ghats. Using species presence-absence data, I compare observed metacommunity 

pattern to idealized theoretical patterns of vegetation distribution, such as the Clementsian, 

Gleasonian, neutral, and random (Leibold and Mikkelson 2002). I then assess the correlation of 

the observed metacommunity pattern to elevation and precipitation gradients in the study area. I 

also use species abundance data to examine community similarity among plots and the 
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relationship with elevation. Finally, I attempt to identify a transition zone between lower and 

upper montane sholas by investigating the nature of floristic change along the elevation gradient 

at the Family and species- level and compare the results to existing knowledge of montane forest 

zonation in tropical Asia (Ohsawa 1991, Ashton 2003).  

 

The fourth chapter assesses the relative influence of abiotic factors (i.e. climate, topography, soil 

and habitat) and biotic factors such as dispersal limitation on the spatial abundance patterns of 

shola tree and shrub species. This is done by modelling environmental and spatial (dispersal) 

effects on shola species using canonical ordination, Moran’s Eigenvector Maps (MEMs) and 

variation partitioning (Dray et al. 2006). In a novel methodological application, MEMs (or 

spatial predictors) are built to explicitly test spatial hypotheses based on seed dispersal, including 

a new approach that models topographic resistance to disperser movement using a Circuit 

Theory (McRae et al. 2008). Each of the models is tested against observed species abundance 

data for the selection of the best environmental and spatial model. This analysis improves on 

previous variation partitioning studies of tropical forests by: a) including both topographic and 

edaphic predictors b) using MEMs to build and test specific spatial hypotheses representing 

dispersal processes in novel ways and c) testing the ‘pure space’ component of variation in the 

data for any unmeasured environmental drivers (Diniz-Filho et al. 2012), thereby strengthening 

the ability to attribute this component to dispersal limitation. 

 

Finally, in the fifth chapter, I examine differences in diversity, composition, stand structure and 

regeneration between shola forests located within a landscape of natural grassland and those 

located in a converted matrix of tea or wattle plantations. I also examine the relationship between 

distance to tea plantations and the presence of Cestrum sp. which appears to have invaded the 

shola understorey in some areas. I model Cestrum abundance as a function of various 

bioclimatic and habitat factors. Possible ecological mechanisms through which the conversion of 

the matrix could have caused the observed changes in shola communities are discussed. 

 

I conclude with a synthesis of the findings and a discussion on management implications from 

this study. 
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Chapter 2 

Topographic and bioclimatic determinants of the occurrence 

of forest and grassland in tropical montane forest-grassland 

mosaics of the Western Ghats, India 

  

Introduction  

Montane forest-grassland mosaics in the tropics form hotspots within hotspots of global 

biodiversity (Myers 2003; Bond and Parr 2010) supporting several endemic species (Ramesh and 

Pascal 1997) and are recognised centres of speciation for some taxa (Narayanan et al. 2013). 

Both forest and grassland communities are characterised by high spatial turnover in species 

composition (Nair et al. 2001, Sankaran 2009, Bond and Parr 2010). The complex and 

heterogeneous terrain on which they occur has the potential to provide important climatic 

microrefugia (Dobrowski 2011) for tropical biodiversity, especially under climate change. 

 

As in other forest-grassland mosaics (Behling and Pillar 2007, Silva and Anand 2011), there is 

evidence for climatic control on the distribution of forests and grasslands within mosaics in the 

Western Ghats. During the Pleistocene, forests spread over grasslands in warmer, wetter phases 

and contracted during cooler, dry periods (Sukumar et al. 1995, Caner et al. 2007). During 

episodes of past climate change, topography mediated the extent of change between grass and 

forest, with forest expansion limited to sheltered valleys, possibly due to the effect of strong 

winds on steeper slopes and more exposed sites (Caner et al. 2007). There appears to be a strong 

topographic effect on current vegetation pattern, with forest patches occurring in valleys, 

depressions and sheltered sites and grasslands occupying ridges, hill tops and exposed areas 

(Ranganathan 1938; Meher-Homji 1967).  

 

Topographic heterogeneity has complex effects on microclimate (Dobrowski 2011), impacting 

resource gradients for plants, such as sunlight, soil moisture and nutrients. At large spatial scales, 

elevation influences temperature and precipitation (Lauer 1981), while at finer scales, 

topographic position, terrain ruggedness and land surface curvature control the direction, rate and 

degree of convergence of flow of air and water, as well as mixing between the surface air and 
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free-atmosphere layers (Dobrowski 2011). Consequently, valleys are more weakly linked to 

regional temperature patterns and have greater diurnal temperature ranges than peaks or ridge 

tops (Dobrowski 2011). Depressions and valley bottoms are also more frost-prone than elevated 

areas due to the pooling of cold air (Bader and Ruijten 2008; Dobrowski 2011). Aspect and slope 

influence solar insolation, thereby affecting local air temperature and soil-water balance through 

evapotranspiration (Lookingbill and Urban 2004, Bennie et al. 2008). Mid-lower slope positions 

usually have greater surface soil moisture levels than upland plateaus (Daws et al. 2002, 

Lookingbill and Urban 2004). Topographically controlled hydrologic sorting of soil particles 

also affects soil texture, depth, pH and nutrient content at sites (Hook and Burke 2000, Cox et al. 

2002, Lippok et al. 2013). Cox et al. (Cox et al. 2002) and Lippok et al. (Lippok et al. 2013) 

found that levels of pH and exchangeable calcium and magnesium increased from ridge to 

valley. 

 

Elevation and topography affect the incidence, frequency and spread of disturbance processes 

such as fire (Geldenhuys 1994; Martin et al. 2007; Wood et al. 2011). Topographic orientation 

affects the flow of fire-bearing winds (Geldenhuys 1994), while topographic heterogeneity 

increases frictional drag on winds and creates discontinuities in fuel-load and soil moisture 

(Stambaugh and Guyette 2008). Wood et al. (Wood et al. 2011) found that after accounting for 

vegetation type, topographic position, elevation and aspect were important predictors of fire 

occurrence. Forests occurring in mosaics with more flammable vegetation types are often located 

in topographic positions that inhibit the spread of fire such as near rocky outcrops, in valleys, 

depressions and on aspects sheltered from fire-bearing winds (Geldenhuys 1994, Martin et al. 

2007, Coblentz and Keating 2008, Wood et al. 2011). 

 

Although many studies have examined the effects of climate on forest-grassland mosaics, there is 

no quantitative study on the effect of topography on vegetation pattern across the full range of 

bioclimatic conditions in which these mosaics are found. A better understanding of the 

importance of various topographic features, how they interact with bioclimate and the spatial 

measurement scale at which they influence vegetation pattern could provide insights into 

mechanistic processes maintaining grasses and trees in tropical montane forest-grassland 

mosaics. Such an analysis could also help inform the management and conservation of these 
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biologically important mosaics, especially in the face of climate change and other anthropogenic 

factors. 

 

The main objectives of this analysis were to answer the following questions: i) to what extent can 

topography and bioclimate predict the pattern of occurrence of grass and forest patches within 

forest-grassland mosaics of the Western Ghats? ii) how does the relative importance of 

topography and bioclimate vary at different elevations? iii) what are the important interactions 

between topography and bioclimate for vegetation patterns? iv) what are the relevant 

measurement scales for topographic predictors that affect vegetation pattern within mosaics? 

 

Materials and Methods  

Study Site  

The study area encompasses montane forest-grassland mosaics of the Western Ghats between 

8°22’-13°31’ latitude and 74°50’-77°30’ longitude (Fig. 2.1). These habitats occur at the tops of 

the range; the largest expanses occur on high plateaus in the Nilgiris and Anamalai hills. 

Elevation for the study mosaics varies from approximately 500m to 2695m above mean sea 

level, while mean annual temperatures vary between 13–25°C, maximum warm season 

temperatures between 19–33°C, and minimum cold season temperatures between 0–20.5°C. 

Ground frost occurs at elevations above 2000m between November and February. Mean annual 

precipitation across the study mosaics ranges from approximately 800mm to above 

6000mm.While most of the area receives rainfall primarily during the southwest monsoon (May–

September), the eastern mosaics receive an increased proportion of rainfall during the northeast 

monsoon (October–December).Duration of the dry season ranges from one month in the 

southernmost mosaics to 4 months in the northernmost ones, and amount of rainfall decreases 

rapidly from west to east, especially at higher latitudes (Ramesh and Pascal 1997). 

The mosaics consist of undulating grasslands interspersed with patches of stunted evergreen 

forests, locally known as shola. The boundary between forest and grassland is abrupt. Sholas 

have been classified as wet montane temperate forests (Champion and Seth 1968), and as 

tropical montane cloud forests (Bunyan et al. 2012). Trees are stunted (rarely above 15m tall), 

with relatively small, thick leaves, and trunks and branches covered with bryophytes and 

epiphytes (Meher-Homji 1967). Dominant families include Lauraceae, Rubiaceae, Myrtaceae   
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Figure 2.1. Map of the Western Ghats showing locations of montane forest-grassland mosaics 

and inset showing sampling points spaced 500m apart on one of the study mosaics 
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and Symplocaceae (Meher-Homji 1967; Nair et al. 2001). The grasslands, which have also been 

called ‘shrub-savanna’, consist of grass, herb and shrub species (Meher-Homji 1967). These 

mosaics cover approximately 1% of the Western Ghats but are rich in endemic species, some of 

which are extremely rare. Cattle grazing and fire are common disturbances across these mosaics 

and there is very limited understanding of their impact on vegetation dynamics. These mosaics 

face a number of threats, including large scale land-use conversion, invasion by exotics and 

climate change (Thomas and Palmer 2007, Bunyan et al. 2012).  

 

Sampling strategy  

Delineation of forest-grassland mosaics and extraction of sample points 

Mosaics were identified using high-resolution satellite imagery in Google Earth (Google Earth 

2013). Polygons were digitised using visual interpretation and their locations and borders refined 

in consultation with three field biologists who have worked extensively in this habitat across the 

Western Ghats, in addition to my own experience from previous fieldwork. This analysis 

represents the current extent of the mosaics and therefore underestimates the full range of 

topographic and bioclimatic conditions under which these mosaics naturally occur, for which 

there is insufficient data. In the Nilgiris and Anamalai hills, large areas of grassland, have been 

converted to exotic tree plantations (Prabhakar 1994). The boundaries of the mosaic on lower 

slopes where sholas merge into continuous forest, were necessarily subjective and were drawn 

conservatively to restrict the study area primarily to forests that occur within a matrix of 

grassland. Areas within and around Periyar Tiger Reserve were excluded because some of these 

grasslands appear qualitatively different from the grasslands in other mosaics (Personal 

observation). 

 

A systematic sample of point locations covering the study area was created in ArcGIS v.10.0 

(ESRI 2011), with a random start and spaced 500m apart (deemed adequate for spatial 

independence since habitat can change from grassland to forest several times over within this 

distance). The points were overlaid on high-resolution (~2.5m) imagery in Google Earth, and the 

habitat type of each point was classified as forest (“1”) or grassland (“0”). Points falling within 

30m of a forest-grassland edge (since the DEM has an average positional error of about 20m) 
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were eliminated, as were points located in areas concealed by cloud cover. Points falling on 

rocky outcrops, water bodies and exotic tree plantations were also eliminated.  

 

Extraction and computation of topographic and bioclimatic predictors 

A total of 1960 points of the original 2020 points were imported into ArcGIS 10.0 for analysis. A 

subset of points located in extreme topographic positions was used to confirm that spatial 

registration of imagery matched that of the DEM. Selection of putative predictors of occurrence 

of forest and grassland within the mosaic was based on available published literature on the 

determinants of these patterns in such mosaics globally (Meher-Homji 1967; Geldenhuys 1994; 

Sukumar et al. 1995; Caner et al. 2007; Martin et al. 2007; Bader and Ruijten 2008; Wood et al. 

2011).  

 

The ASTER Global Digital Elevation Model  (GDEM) v.2 tiles (30m contour interval) (NASA 

and METI 2011) for the study area were used to extract the following topographic predictors in 

ArcGIS using Spatial Analyst and Topography toolbox: elevation, slope, transformed aspect, 

solar radiation (McCune and Dylan 2002), topographic position index (Jenness 2006), 

topographic convergence index (Beven and Kirkby 1979), and surface curvature (Table 2.1). 

 

Table 2.1: Topographic and bioclimatic predictors used to predict vegetation pattern in forest-

grassland mosaics  

 

 

Name Code Range Description Reference 

Elevation elev 455 – 

2555m 

Elevation of 30m pixel (NASA 

and METI 

2011) 

Slope slope 0.75 - 

62.15 

degrees 

Local slope at 30m resolution (METI 

and NASA 

2011) 

Ruggedness 

Index 

rugged 4.24 - 

157.46m 

Terrain heterogeneity over a 3x3 

cell neighborhood using a 90m 

DEM 

(Riley et 

al. 1999) 

Sine Aspect/ 

Cosine  

Aspect 

sin.asp/ 

cos.asp 

-1.00 - 

1.00 

E-W and N-S transformation of 

aspect at 30m resolution 

(NASA 

and METI 

2011) 

Beers Aspect Beers 0 - 2.00 SW-NE transformation of aspect 

at 30m resolution 

NASA 

&METI 

2011) 
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Name Code Range Description Reference 

Curvature 

30m 

curve30 -7.9 - 8.45 Combined across and along 

slope curvature, using a 30m 

pixel and 3x3 cell window 

(NASA 

and METI 

2011) 

Curvature 

90m 

curve90 -3.3 - 4.04 Combined curvature, using a 

90m pixel and 3x3 cell window 

(NASA 

and METI 

2011) 

Local scale 

topographic 

position index 

tpi3.10 -90.93 - 

120.75m 

Average difference in elevation 

between a focal cell and 

neighborhood defined using an 

annulus of inner radius 90m and 

outer radius 300m 

(Jenness 

2006) 

Intermediate 

scale 

topographic 

position index 

tpi10.34 -271.77 - 

345.8 m 

TPI using an annulus of inner 

radius 300m and outer radius 

1020m 

(Jenness 

2006) 

Landscape 

scale 

topographic 

position index 

tpi10.67 -384.3 - 

508.76 m 

TPI using an annulus of inner 

radius 300m and outer radius 

2010m 

(Jenness 

2006) 

TCI 30m tci30 0 - 366 Topographic convergence index 

using a 30m pixel 

(Beven 

and 

Kirkby 

1979) 

TCI 60m tci60 -0.03 - 

13.21 

Topographic convergence index 

using a 60m pixel 

(Beven 

and 

Kirkby 

1979) 

TCI 90m tci90 -0.56 - 

11.02 

Topographic convergence index 

using a 90m pixel 

(Beven 

and 

Kirkby 

1979) 

Distance to 

coast 

coast.dist 25.27 - 

174.11 km 

Euclidean distance to coast line  

Solar 

radiation 

solar 0.15 - 0.44 

MJ/cm2/yr 

Potential annual direct solar 

radiation based on latitude, slope 

and aspect. 

(McCune 

and Dylan 

2002) 

Max. 

temperature 

warmest 

month 

max.tmp 19 – 33 oC  (Hijmans 

et al. 

2005) 

Min. 

temperature 

min.tmp 4.1 - 20.5 
oC 

Min. temperature in coldest 

month  

(Hijmans 

et al. 

2005) 
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Name Code Range Description Reference 

Annual 

temperature 

range 

anntmprng 10.5 - 18.2 
oC 

 (Hijmans 

et al. 

2005) 

Temperature 

seasonality 

tmp.seas 891 - 1783 Temperature seasonality 

(standard deviation  of 

temperature over the year*100) 

(Hijmans 

et al. 

2005) 

Mean 

temperature 

dry quarter 

meantmp.dr

y 

11.9 - 25.5 

oC 

Mean temp from Jan-Mar (Hijmans 

et al. 

2005) 

Mean 

temperature 

warm quarter 

meantmp.w

arm 

13.9 - 27.5 

oC 

Mean temp from Mar-May (Hijmans 

et al. 

2005) 

Mean 

temperature 

cold quarter 

meantmp.c

old 

11.2 -  

24.3 oC 

Mean temp from Nov-Jan (Hijmans 

et al. 

2005) 

Annual 

precipitation 

annprec 754 - 6080 

mm 

Mean annual precipitation (Hijmans 

et al. 

2005) 

Precipitation 

CV 

prec.cv 50 - 140 Precipitation seasonality 

(coefficient of variation based on 

monthly precipitation values) 

(Hijmans 

et al. 

2005) 

Warm quarter 

precipitation 

warm. prec 165 - 893 

mm 

Avg. precipitation from Mar-

May 

(Hijmans 

et al. 

2005) 

Dry quarter 

precipitation 

dry.prec 7 - 138 

mm 

Precipitation from Jan-Mar (Hijmans 

et al. 

2005) 

 

TPI was calculated at local, intermediate and landscape scales (Table 2.1), defined by field-based 

observations of approximate distances between local hilltops and depressions and also wider 

valleys and peaks within some of the mosaics. TCI and surface curvature values for each 

sampling point were also extracted at different scales, by resampling the DEM to 60m and 90m 

resolutions. TCI was used as a proxy for soil moisture as it incorporates the upslope flow area 

above a given cell, identifying convergent points in the landscape which water would flow to. It 

is also a proxy for areas that are prone to cold air pooling and therefore frost (Bader and Ruijten 

2008; Dobrowski 2011). Bioclimatic predictors (Table 2.1) were downloaded from the 

BIOCLIM global dataset, available at 1km resolution (Hijmans et al. 2005).  
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Statistical Analysis  

Classification trees and random forests 

As the dataset comprised several highly correlated predictors likely to have complex interactions, 

a classification tree (CT) approach (Breiman et al. 1984) was used to explore relationships 

between the response variable (forest or grass) and the predictors. CTs make no assumptions 

about underlying response functions and use recursive partitioning to split the data into 

increasingly homogenous subsets based on predictors. They are a powerful and intuitive method 

for visualising interactions between predictors (De’ath and Fabricius 2000; Cutler et al. 2007).  

 

CTs based on conditional inference (Hothorn et al. 2006) were constructed in R Statistical 

Software (R-Development-Core-Team 2013) package “party”. Conditional inference was chosen 

over the Gini index as a splitting criterion because the latter is biased towards predictors 

measured over larger scales or categorical predictors with many categories (Strobl et al. 2009). 

Conditional inference trees have a statistical stopping criterion, which prevents over fitting and 

eliminates the need for pruning (De’ath and Fabricius 2000). 

 

A single CT was found to be quite unstable, with small changes in the training data yielding a 

different tree. Hence random forests (Breiman 2001) was used to assess: a) relative importance 

of the topographic and bioclimatic predictors and b) their combined ability to predict where 

forest and grass occur. Random forests compare favourably in terms of prediction accuracy 

against other approaches such as GLMs, GAMs and neural networks (Prasad et al. 2006; Cutler 

et al. 2007). The CTs were built using two-thirds of the data and the remaining third “out-of-bag” 

data was used to assess prediction error for the random forest. Predictor importance was 

computed by randomly permuting values of each predictor in turn, thereby removing any 

association with the response, and then classifying “out-of-bag” samples using each CT and 

measuring the change in prediction accuracy after the permutation of that predictor (Cutler et al. 

2007; Strobl et al. 2009). This was then averaged across all CTs in the forest. 

 

A random forest of 1000 conditional inference CTs was grown using sub-samples of the data 

(Strobl et al. 2007). For any given node within a tree, a subset of 5 randomly selected predictors 

was selected for splitting that node (Hothorn et al. 2006). Prediction accuracy was assessed using 
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the “out-of-bag” subset of the data. This was repeated ten times using a different random seed 

each time, with overall prediction accuracy assessed as the average of ten runs. Predictors of 

very low importance (near 0) were removed from the data. The list of predictors was then refined 

by beginning with the most important predictor and eliminating highly correlated (Pearson’s r 

>0.7) predictors that were of lower importance. Random forests was then re-run with this smaller 

set of predictors and the cross-validated “out-of-bag” prediction accuracy reassessed as described 

above. Finally, to enhance our understanding of the effects and interactions between predictors, a 

conditional inference CT was built using the full dataset and the selected subset of predictors. 

 

Generalised linear modelling 

Generalised linear modelling (McCullagh and Nelder 1989) was used as a different way of 

assessing predictor importance based on a) summed Akaike weights (Burnham and Anderson 

2002) and b) model averaged, standardised beta coefficients (Zar 1999). GLMs were also used to 

assess importance of interactions between predictors, many of which were identified using the 

conditional inference CTs. 

 

To avoid the effects of collinearity and limit the number of predictors, and the number of models 

considered, we further eliminated predictors based on i) collinearity and ii) very low predictor 

importance (near 0) as demonstrated by the random forest analysis. Thus, the initial random 

forest analysis did feed into the GLMs, but not to the extent that it would seriously affect our 

final inference, since only obviously unimportant predictors were eliminated. Model-averaged 

estimates of each standardized beta coefficient were obtained as a weighted (using Akaike 

weights) average across all models containing that predictor. We also obtained unconditional 

standard errors (SE), which includes model selection uncertainty (Burnham and Anderson 2002). 

The 95% confidence intervals based on these SEs were examined to see if they straddled zero. 

Finally, Akaike weights were summed over all models containing a predictor as a measure of 

predictor importance. Because we required a balanced set of models where each predictor 

appeared in the same number of models (Doherty et al. 2010) we fitted all combinations of the 

predictors, capped at a maximum of 6 predictors per model, allowing us to assess the importance 

of each predictor based on the summed Akaike weights (Burnham and Anderson 2002). This 

analysis was implemented in R using the package “MuMIn”. 
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We note that neither the CT nor GLM approaches as used by us represent confirmatory analyses 

(Nichols et al. 2012) to test specific a priori hypotheses based on current understanding. While 

we did use available information to select putative predictors of the occurrence of forests or 

grasslands, the balanced set of models we assessed using GLMs is not a ‘candidate set’ (sensu 

Burnham and Anderson 2002) where each model represents a specific scientific hypothesis, but a 

way to assess the importance of different predictors while ensuring that our inferences are not 

influenced by variable representation of different predictors within the set. 

 

As the factors affecting vegetation pattern are likely to differ at low-medium versus high 

elevations (e.g. frost occurs only above a certain elevation), we assessed the change in the 

relative importance of topographic and bioclimatic predictors with elevation by repeating the 

above analyses for a subset of the data representing forest-grassland mosaics in the Nilgiris and 

Eravikulam plateaus above 1500m elevation (Fig. 2.1).  These high-elevation mosaics are also of 

particular conservation and management interest. 

  

Results  

Random Forests: Classification accuracy and predictor importance 

The sample points (grass n = 1000, forest n = 960) cover a wide range of topographic and 

bioclimatic conditions (Table 2.1). The results of the random forest runs with the full dataset 

indicated a mean overall prediction accuracy for the “out-of-bag” data of 68.6%, (mean 

prediction accuracy for grass = 69.7%, forest =67.6%). Random forest runs using only 

topographic predictors had lower mean prediction accuracy (66.5%; grass = 67.1%, forest = 

65.8%). 

 

Permutation variable importance values averaged over 20 random forests runs indicated that 

elevation was the most important predictor, followed by local-scale TPI (tpi3.10). Predictors 

with the lowest importance values were TCI (30m pixel), curvature (30m pixel), sine aspect, 

slope and Beers aspect (Fig. 2.2a). 
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Figure 2.2: Boxplots showing distribution of permutation-based variable importance measures 

for each predictor derived from multiple random forest runs for a) all mosaics b) Nilgiris and 

Eravikulam subregions. Please refer to Table 2.1 for explanation of predictor codes. 
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Based on collinearity and the results of the permutation variable importance, the following subset 

of 11 predictors was chosen: elevation, local-scale TPI (tpi3.10), dry quarter precipitation,  

curvature (90m pixel), landscape-scale TPI (tpi10.67), annual temperature range, TCI (90m 

pixel), annual precipitation, distance to coast, cosine aspect and ruggedness. A marginal  

improvement in mean prediction accuracy was achieved over ten random forest runs for the “out-

of-bag” data with this subset of predictors (69.2%; grass = 70.1%, forest = 68.3%). 

 

For the Nilgiris-Eravikulam subset, (n = 783; 43% forest, 57% grass), the full set of predictors 

had an overall mean prediction accuracy of 72.1% (grass = 80.3%, forest = 63.9%), with many 

forest points misclassified as grass. Elevation was the most important predictor, followed by 

maximum temperature of the warmest month (Fig. 1.2b). Predictors related to temperature (most 

of which were very highly correlated with elevation (Pearson’s r ≥ 0.95)), gained importance 

over local-scale TPI. Landscape-scale TPI was more important than local-scale TPI at high 

elevations (Fig. 1.2b). Cosine aspect, gained importance in the higher elevation dataset – and was 

negatively correlated with solar radiation (Pearson’s r = -0.67). Annual precipitation and dry 

quarter precipitation were less important at higher elevations (Fig. 1.2b). 

 

Based on collinearity and the results of the permutation variable importance measure, the 

following subset of 12 predictors was chosen for Nilgiris-Eravikulam mosaics: elevation, 

temperature seasonality, landscape-scale TPI (tpi10.67), annual temperature range, local-scale 

TPI (tpi3.10), dry quarter precipitation, curvature (90m pixel), cosine aspect, annual 

precipitation, distance to coast, TCI (90m pixel) and ruggedness. A higher overall mean 

prediction accuracy of 73.1% (grass = 81.4%, forest = 64.8%) was achieved with this subset of 

predictors and the “out-of-bag” data. 

 

Conditional inference classification trees: interpretation of predictor effects and possible 

interactions 

The conditional inference CT for the full dataset, using the subset of 11 predictors, indicated that 

local-scale TPI (tpi3.10) and elevation were important splitting variables followed by dry quarter 

precipitation and cosine aspect (Fig. 1.3). The initial split made on tpi3.10, indicates that 
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relatively small differences in local TPI are important. Another main split was based on elevation 

of about 2000m. The majority of points with higher tpi3.10 and elevations ≥ 2038m were 

classified as grass, with high node purity. Above 2000m, only 28% of the sample points were 

forest compared to about 50-60% in mosaics below 2000m. Slight, local topographic depressions 

(tpi3.10 ≤ -3.8m) below 2041m elevation were more likely to be identified as ‘forest’ compared 

to those above 2041m (Fig. 1.3, Nodes 4-7 vs. Nodes 9-12), indicating an interaction between 

elevation and tpi3.10. 

 

Figure 2.3. Conditional inference classification tree for forest and grassland points in forest-

grassland mosaics of the Western Ghats. Node purity of terminal nodes depicted in bar charts 

with dark grey assigned to “forest” and light grey to “grass”. Terminal node identity numbers are 

given below each bar chart. For geographic breakdown of data points in each terminal node see 

Appendix 1. Please refer to Table 2.1 for explanation of predictor codes. 

 

Sites between 1144–2038m elevation, with flat or elevated topographic positions and dry quarter 

precipitation ≤ 30mm,were predominantly grassland (Fig. 2.3, node 19), as were most sites with 

high landscape-scale TPI (e.g. hilltops; tpi10.67 > 142.6m), in areas with dry quarter 

precipitation >30mm. Below 1144m, points with dry quarter precipitation < 30mm, that had 

large positive differences in local-scale TPI (tpi3.10 > 18.5m) (e.g. local ridge) were more likely 
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to be grass. Therefore, where dry quarter precipitation was higher, landscape-scale TPI 

influenced whether a site held grassland or forest, whereas when dry quarter precipitation was 

low, differences in local-scale TPI had an impact on cover type (Fig. 2.3). 

 

There seemed to be complex interactions among topographic variables as well as between 

elevation and annual temperature range (Figs. 2.3 and 2.4). For higher elevation points, 

elevation, annual temperature range, cosine aspect, curvature (90m pixel) and landscape-scale 

TPI (tpi10.67) were important splitting variables. 

 

 

Figure 2.4. Conditional inference classification tree for forest and grass points in forest-

grassland mosaics of the Nilgiris and Eravikulam ( > 1500m elevation). Purity of terminal nodes 

depicted as a bar chart with dark grey assigned to “forest” and light grey to “grass”. Terminal 

node identity numbers are given below each bar chart. Please refer to Table 2.1 for explanation 

of predictor codes. 

 

The CT built from the subset of 12 predictors for Nilgiris-Eravikulam, showed that between 

1500–2555m, elevation was the most important splitting variable, followed by local-scale TPI at 

lower elevations and local curvature (curve90) at higher elevations (Fig. 2.4). Points between 
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1500m–2026m were mostly classified as forest, particularly when they had lower tpi3.10 values. 

Grasslands in this elevation band were not classified well, as shown by the high level of node 

impurity (Nodes 5 and 6 in Fig. 2.4). Points > 2026m elevation and with convex curvature (i.e. 

curve90 > 0.4) were classified as grass with high node purity (Node 21 in Fig. 2.4). Points > 

2026m elevation were classified as forest with high node purity only when they lay on flat or 

concave local curvature and at relatively low landscape-scale TPI, i.e. deeper valleys (Node 9 in 

Fig. 2.4). Above 2026m, forest points fell mostly on NE to NW aspects. More south-facing sites 

with annual temperature range >13.2oC, above 2224m elevation, were classified as grass with 

very high node purity (Node 15 in Fig. 2.4). 

 

Generalised linear models: predictor importance 

The analysis on the full dataset (n = 1960) using 11 predictors and interactions between some of 

the predictors, indicated that the two best models had the following predictors for occurrence of 

forest: elevation, dry quarter precipitation, local-scale TPI, annual temperature range, interaction 

between annual temperature range and dry quarter precipitation, curvature (90m pixel) and 

cosine aspect. Predictors with highest summed Akaike weights were: elevation, dry quarter 

precipitation, local-scale TPI, annual temperature range, an interaction between annual 

temperature range and dry quarter precipitation, curvature (90m pixel) and cosine aspect (Table 

2.2). Beta coefficients of the top three predictors supported their importance. 

 

Table 2.2: Importance of topographic and bioclimatic predictors used in GLM analysis of forest-

grassland mosaics in the Western Ghats. Columns show summed Akaike weights, standardized 

beta coefficients averaged across models and unconditional standard errors (SE) in parentheses 

and 95% confidence intervals (CI) based on the unconditional SEs. 

Predictora 

Summed 

Akaike 

weight 

Standardized, 

model-

averaged beta 

(SE) 

Model averaged 

95% CI 

elevation ~1 -1.014 (0.094) -1.199 : -0.829 

dry.prec ~1 0.92 (0.117) 0.69 : 1.15 

tpi3.10 0.999 -0.449 (0.085) -0.616 : -0.283 

anntmprng 0.999 0.36 (0.08) 0.204 : 0.516 
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Predictora 

Summed 

Akaike 

weight 

Standardized, 

model-

averaged beta 

(SE) 

Model averaged 

95% CI 

anntmprng:dry.pre 0.999 0.323 (0.056) 0.214 : 0.432 

curve90 0.579 -0.259 (0.063) -0.383 : -0.136 

cos.aspect 0.379 0.204 (0.05) 0.107 : 0.301 

elevation:tpi3.10 0.029 0.19 (0.055) 0.082 : 0.298 

annprec 0.008 -0.304 (0.099) -0.498 : -0.109 

coast.dist 0.002 0.202 (0.087) 0.031 : 0.372 

elevation:dry.prec 0.0009 -0.173 (0.077) -0.323 : -0.022 

tci90 0.0003 0.091 (0.056) -0.018 : 0.2 

tpi10.67 0.0002 -0.091 (0.062) -0.211 : 0.03 

dry.prec:tpi3.10 0.0001 0.061 (0.056) -0.05 : 0.171 

rugged 0.0001 0.003 (0.05) -0.096 : 0.102 

dist.coast:elevation 0.0001 -0.571 (0.113) -0.792 : -0.35 

cos.aspect:elevation ~0 0.163 (0.051) 0.063 : 0.263 

elevation:tci90 ~0 -0.209 (0.055) -0.318 : -0.1 

curve90:elevation ~0 0.051 (0.058) -0.063 : 0.165 

dry.prec:tci90 ~0 -0.108 (0.06) -0.226 : 0.01 

cos.aspect:coast.dist ~0 0.062 (0.052) -0.04 : 0.164 

aPlease refer to Table 2.1 for explanation of predictor codes 

Important bioclimatic predictors not highly correlated with elevation were dry quarter 

precipitation and annual temperature range (Table 2.2). Both show a strong latitudinal gradient, 

with dry season precipitation decreasing and annual temperature range increasing with latitude 

(Pearson’s r = -0.93 and 0.72, respectively).  

 

The analysis for the Nilgiris-Eravikulam mosaics (n = 783) indicated that the best model based 

on AIC had the following predictors: elevation, annual temperature range, curvature (90m pixel), 

cosine aspect, distance to coast, and an interaction between cosine aspect and distance to coast. 
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These predictors also had the highest summed Akaike weights (Table 2.3). Beta coefficients of 

the top five predictors supported their importance. Compared to the full data set, the importance 

of annual temperature range, cosine aspect, curvature (90m pixel) and distance to coast 

increased, while that of local-scale TPI, dry quarter precipitation and its interaction with annual 

temperature range decreased.  

 

Table 2.3: Importance of topographic and bioclimatic predictors used in GLM analysis of forest-

grassland mosaics above 1500m elevation in the Nilgiris & Eravikulam. Columns show summed 

Akaike weights, standardized beta coefficients averaged across models (unconditional standard 

errors SE in parentheses) and 95% confidence intervals (CI) based on the unconditional SEs. 

 

Predictora 

Summed 

Akaike 

weight 

Standardized, 

model-

averaged beta 

(SE) 

Model averaged 

95% CI 

elevation 1 -1.529 (0.14) -1.804 : -1.254 

anntmprng 0.999 0.819 (0.169) 0.489 : 1.15 

cos.aspect 0.999 0.42 (0.088) 0.247 : 0.592 

curve90 0.996 -0.489 (0.117) -0.718 : -0.259 

coast.dist 0.537 0.248 (0.112) 0.029 : 0.467 

cos.aspect:coast.dist 0.377 0.269 (0.091) 0.09 : 0.447 

tci90 0.223 -0.189 (0.106) -0.397 : 0.019 

tpi3.10 0.187 -0.214 (0.111) -0.433 : 0.004 

elevation:curve90 0.172 -0.191 (0.094) -0.375 : -0.006 

elevation:tci90 0.094 -0.319 (0.121) -0.557 : -0.082 

dry.prec 0.058 0.308 (0.233) -0.149 : 0.765 

anntmprng:curve90 0.057 -0.152 (0.111) -0.37 : 0.066 

tpi10.67 0.053 -0.14 (0.106) -0.349 : 0.068 

elevation:tpi3.10 0.039 0.227 (0.102) 0.026 : 0.428 

cos.aspect:elevation 0.035 0.098 (0.1) -0.098 : 0.294 

annprec 0.025 -0.043 (0.11) -0.259 : 0.173 
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Predictora 

Summed 

Akaike 

weight 

Standardized, 

model-

averaged beta 

(SE) 

Model averaged 

95% CI 

anntmprng:elevation 0.024 -0.054 (0.136) -0.321 : 0.213 

rugged 0.023 0.029 (0.093) -0.154 : 0.213 

coast.dist:elevation 0.014 0.182 (0.122) -0.057 : 0.422 

cos.aspect:tci90 0.010 -0.167 (0.087) -0.338 : 0.003 

cos.aspect:tpi3.10 0.009 0.13 (0.095) -0.056 : 0.316 

dry.pre:elevation 0.001 0.016 (0.134) -0.248 : 0.28 

anntmprng:dry.pre 0.001 0.025 (0.201) -0.371 : 0.42 

aPlease refer to Table 2.1 for explanation of predictor codes 

 

Interactions between topographic and bioclimatic predictors 

The conditional inference CTs indicated complex interactions between elevation, local-scale TPI, 

dry quarter precipitation and annual temperature range (Fig. 2.3); however the results of the 

GLM provided only limited support for this (Table 2.2), possibly due to the limited ability of 

GLMs to model the complex interactions indicated by the CTs. Other than the interaction 

between annual temperature range and dry quarter precipitation, none of the interaction terms 

tested on the full dataset was rated as important predictors by the GLMs. However, the 95% 

confidence intervals for standardised beta coefficients of the interactions between elevation and 

local-scale TPI, elevation and dry quarter precipitation and elevation and distance to coast did 

not straddle zero, indicating some support in the models (Table 2.2). 

 

For Nilgiris-Eravikulam mosaics, the interaction between distance to coast and cosine aspect was 

the most important of the interactions (Table 2.3), however this was not detected by the CT (Fig. 

2.4). There was some support for interactions between elevation and curvature (90m pixel) and 

elevation and TCI (90m pixel). The interaction between elevation and curvature (90m pixel) had 

a higher summed Akaike weight but a smaller beta co-efficient than the interaction between 

elevation and TCI (90m pixel) (Table 2.3).  
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Scale of topographic control on vegetation pattern 

The results indicated that topographic pattern within a 300m neighbourhood, was important for 

vegetation pattern, as measurement of topographic features at this scale (i.e. tpi3.10, curve90 and 

tci90) was the most relevant for prediction of forest and grassland patches (Fig. 2.2, Table 2.2). 

Local hills and depressions (tpi3.10) and surface curvature (curve90) seemed to be more 

influential than prominent peaks and valleys (tpi10.67), though importance of the latter increased 

in mosaics above 2000m (Fig. 2.2b, Table 2.3).  

 

Discussion  

Topography and bioclimate were able to predict the occurrence of grass and forest within forest-

grasslands mosaics of the Western Ghats with approximately 70% accuracy. Prediction 

accuracies were higher for grass compared to forest and for mosaics at higher elevations (1500–

2000m). Topography alone was able to predict forest and grassland pattern well, however 

inclusion of bioclimatic predictors that captured latitudinal gradients in climate improved 

predictive accuracy.  

 

The misclassification of high elevation forest points may be due to the fact that the predictors 

measured at the given scales were unable to correctly classify many of the smaller sized (< 2 ha) 

forest patches that occur in these mosaics. The inclusion of microclimatic data (Dobrowski 2011) 

could improve classification accuracy for forest patches at higher elevations. Classification 

accuracy was lower for the lower elevation mosaics between 12° to 13°12’ latitude that lie closer 

to the coast (Supporting Information S1), indicating that the predictors chosen for this study were 

unable to characterize vegetation pattern in these mosaics as well. 

 

Overall, the instability found in the CT analysis indicates regional differences in predictor effects 

and interactions between topography and bioclimate across the range of these mosaics. Hence the 

same pattern of grassland and forest seems to be generated by different sets of mechanisms 

across the Western Ghats. 
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Elevation and bioclimate 

Sankaran et al. (2005) demonstrated that mean annual precipitation is the main driver of tree 

cover in African savannas with low rainfall. In tropical montane forest-grassland mosaics with 

high mean annual precipitation, elevation is an important predictor of vegetation pattern. 

Specifically, in the Western Ghats, there seems to be a shift in pattern at about 2000m elevation, 

above which there is a much lower occurrence of forest. This indicates a climatic effect on 

tropical evergreen tree growth and survival (Ohsawa 1991). Since bioclimatic predictors related 

to temperature showed the strongest correlation with elevation, it seems that temperature, rather 

than precipitation, is the main proximate climatic driver of pattern in high elevation mosaics. The 

relative importance of elevation and correlated temperature variables increases with elevation, 

further supporting the view that temperature has an important influence on vegetation pattern in 

Nilgiris and Eravikulam (Caner et al. 2007).  

 

Temperature is the major limiting factor for tree growth at treelines (Körner 1998). While the 

mosaics of the Western Ghats are well below the climatically defined treeline in the tropics 

(Ohsawa 1991, Körner 1998), lower average air and soil temperatures above 2000m may limit 

most tropical tree species’ establishment and survival (Ohsawa 1991, Körner and Paulsen 2004). 

This is supported by the observation that tree species composition within shola patches in the 

Western Nilgiris shows high turnover between 1900-2000m (please see Chapter 3), with an 

increasing component of upper montane taxa and frost-resistant species above 2000m 

(Mohandass and Davidar 2010). Ohsawa (Ohsawa 1991) posits that the thermal limit for lower 

montane tropical trees occurs at 2,500m in equatorial mountains, with mean annual temperatures 

of 12°C and 10°C in the coldest month. Mosaics above 2000m have mean annual temperatures 

of 14.1°C and an average minimum temperature of 7.1°C in the coldest month. Caner et al. 

(Caner et al. 2007) report that temperatures during the Last Glacial Maximum were about 5°C 

lower than present day in the Nilgiris, with grassland probably covering most parts of the plateau 

above 1800m. 

 

The climate signal implied by this altitudinal shift in the occurrence of forest lends support to the 

role of frost in restricting forest above 2000m (Ranganathan 1938). It is unlikely that the 

predominance of grassland, noted in historical accounts and palaeoclimatic reconstructions 
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(Ranganathan 1938, Sukumar et al. 1995, Caner et al. 2007), can be explained solely by increase 

in the frequency of disturbance (Bor 1938) in these mosaics, when compared to those at lower 

elevations. Fire frequency in these mosaics over the last 30-40 years should be lower, as they are 

sparsely populated and have been managed as protected areas where fire suppression is practiced 

(Srivastava 2001).  

 

Mohandass and Davidar (2010) found evidence to suggest that sholas expand into grassland 

through succession beginning with establishment of frost-resistant woody species in grasslands, 

and subsequently creating suitable conditions for establishment of lower montane species. An 

analogous process of forest expansion occurs in subtropical forest-grassland mosaics of 

Southeastern Brazil, where fire has a major influence on vegetation pattern (Müller et al. 2012). 

 

In mosaics below 2000m, dry season precipitation is an important predictor of forest occurrence. 

There is some evidence that its influence is mediated by both topographic position and elevation 

(Fig. 2.3). This could imply a fire-related mechanism in maintaining grasslands at middle and 

lower elevations, where lower dry season precipitation allows for greater incidence and spread of 

fire (Bond and Parr 2010). This could prevent forests from establishing in topographic positions 

that they might otherwise occupy in mosaics with higher dry season rainfall. 

 

Finally, the importance of the interaction between dry quarter precipitation and annual 

temperature range on the presence of forest implies that forests at mid-elevation (approx. 1000–

2000m) areas of the central Western Ghats such as the Nilgiris plateau and the Siruveni hills 

could be more strongly influenced by these bioclimatic factors than elsewhere (Fig. 2.1). 

 

Topographic effects 

As expected, topographic position is an important predictor of vegetation pattern in these 

mosaics - certainly as a main effect, possibly also in interaction with elevation. Sites with lower 

topographic position were associated with forest. This could indicate an effect of soil moisture, 

especially in mid-lower elevation mosaics. Local depressions and valleys are likely to be wetter 

and therefore less vulnerable to fire (Wood et al. 2011). However, local topographic depressions 

above 2000m were more likely to contain grass than forest, possibly due to waterlogging and 
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frost (Bader and Ruijten 2008, Dobrowski 2011, Fletcher et al. 2014). At elevations above 

2000m, relative topographic position at the landscape scale (300-2010m neighbourhood) and 

concave surface curvature are more important predictors of forest than local topographic 

position, corroborating field observations. Larger patches of forest in these mosaics are often 

confined to sheltered valleys (pers. obs.). The greater importance of local curvature in high 

elevation mosaics could reflect the influence of concave depressions along hill slopes 

(Ranganathan 1938) that provide adequate soil moisture while allowing for drainage, thus 

preventing the negative effects of waterlogging or frost on tree growth (Bader and Ruijten 2008, 

Fletcher et al. 2014). 

 

It is interesting that local topographic position and surface curvature were more important 

predictors of vegetation pattern than topographic convergence, as previous studies have found 

topographic convergence to be an important predictor of forest occurrence (Bunyan et al. 2015, 

Bader and Ruijten 2008).  

 

Aspect, specifically northness, is an important predictor of forest in high elevation mosaics, 

which has been attributed to differences in radiation exposure (Bader and Ruijten 2008). The 

histogram of aspect values (cosine transformed) for the sample points indicates an equal 

representation of both northern and southern aspects in the dataset. Bunyan et al. (2015) find a 

similar result for these high elevation mosaics. The greater solar radiation received on south 

facing slopes could increase water stress or desiccation, thus limiting for tree growth (Dobrowski 

2011). Drier southern aspects could also be more prone to fire. Wood et al. (Wood et al. 2011) 

demonstrated that rainforests occurring in a matrix of moorland in Tasmania were restricted to 

southern aspects and topographic positions very similar to those found in this study, as these 

places formed fire refugia. Prevailing wind direction may be important as southern and western 

slopes are affected by strong monsoon winds, while northern and eastern aspects are more 

sheltered (Caner et al. 2007). The importance of northness and distance to coast in predicting 

forest at high elevations provides some support for this (Table 2.3). The role of aspect in these 

mosaics should be investigated further using field experiments and measurement of 

microclimatic conditions. 
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Fletcher et al. (2014) show that a transition from one vegetation state to another can be generated 

by one set of factors and regulated by another. The initial climatic constraint on forests in high-

elevation mosaics could be maintained under present climate by cumulative effects of low 

temperature, frost, fires and wind. Topographic heterogeneity can modulate the intensity and 

spread of each, possibly helping to create sharp boundaries (Geldenhuys 1994, Martin et al. 

2007, Wood et al. 2011). Vegetation pattern in these mosaics could be maintained by a group of 

interacting factors acting in a spatially heterogeneous manner- determined by topography- and in 

feedback with vegetation type (Martin et al. 2007), rather than by a single limiting mechanism - 

be it frost (Ranganathan 1938), fire, grazing (Bor 1938), wind (Caner et al. 2007) or soil (Jose et 

al. 1994). This analysis provides strong support for topographic control on processes maintaining 

vegetation pattern in these systems.  

 

The need for data 

A major limitation of this study is that it does not consider resource and disturbance gradients 

such as  soil characteristics, fire and grazing, that have been found to be critical in shaping 

vegetation pattern in other forest-grassland systems (Behling and Pillar 2007, Wood et al. 2011, 

Müller et al. 2012). Much of the misclassification of vegetation pattern, particularly at lower 

elevations, could be due to the effects of these factors. Lower elevation mosaics are more 

exposed to anthropogenic disturbance. At present the required data are not available at relevant 

scales across the study area.  

 

There is an urgent need for accurate, high resolution spatio-temporal datasets on disturbance, 

particularly fire, across the study area. We found that global satellite-derived burned area 

products largely underestimated fire frequency in several mosaics, precluding their use in this 

analysis. 

 

Implications for management and conservation  

The results indicate that ongoing shola restoration efforts by State Forest Departments in 

mosaics above 2000m, should be focused on north-western to north-eastern aspects. Given past 

conversion of large areas of grassland into exotic tree plantations, recent global trends of forest 

expansion into grasslands (Bond and Parr 2010, Silva and Anand 2011) and palaeoclimatic 
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trends of forest expansion during warming climates (Sukumar et al. 1995), it is important that 

restoration of shola does not take place at the expense of existing grasslands. 

 

As mosaics differ widely in the extent and manner in which topography and bioclimate influence 

vegetation pattern (Supporting Information S1), management plans should be tailored to the 

elevation and geographic position of individual mosaics, with different management guidelines 

for the more strongly climatically determined mosaics (above 2000m). A better understanding of 

the role of fire in the maintenance of grasslands is essential (Behling and Pillar 2007, Bond and 

Parr 2010). 

 

The importance of local topography indicates that microclimate (Dobrowski 2011) regulates 

vegetation pattern in these mosaics. Projections of vegetation range shifts for these habitats 

should therefore account for variation in topography and its interaction with changing regional 

climate and disturbance regimes (Dobrowski 2011, Lippok et al. 2013). The results support the 

potential role of topographic heterogeneity in creating climatic microrefugia for vegetation 

within these mosaics that may allow species and plant community types to persist for longer 

periods of time. Hence, it is important to continue to protect forest-grassland mosaics in the 

Western Ghats and to increase coordinated research, monitoring and conservation efforts in these 

habitats. 
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Chapter 3 
Tropical Montane Cloud Forest (Shola) Tree Species 

Diversity and Distribution at the Regional and 
Metacommunity Scales 

 

 

Introduction 
 

Tropical montane cloud forests (TMCF) are ecologically unique and hydrologically 

important (Bruijnzeel and Proctor 1995) habitats that are restricted to approximately 

0.14% of earth’s land surface (Scatena et al. 2010). Found between 30oN and 30oS 

latitudes in Africa, Asia, Northern Australia, Oceania and the Americas, they mostly 

occur between 1200-2800m in elevation with some records as low as 400m and others as 

high as 3500m, (Scatena et al. 2010, Jarvis and Mulligan 2011). Most TMCF are found 

north of the equator (Jarvis and Mulligan 2011).The largest existing area of TMCF is 

found in Asia (43.2%), mainly in Indonesia and Papua New Guinea, followed by the 

Americas (40.8%). In Asia TMCF constitutes only 5.9% of all tropical montane forests 

(Scatena et al. 2010). They are mostly found at higher altitudes, closer to the coast and in 

areas with higher rainfall and lower seasonality of precipitation than other tropical 

montane forest types (Jarvis and Mulligan 2011). 

 

Compared to lowland evergreen forests, TMCF largely lack an emergent tree layer in the 

canopy. There are also fewer species with buttressed trunks, compound leaves or 

cauliflory (Scatena et al. 2010). The density of woody climbers is lower, while that of 

non-vascular epiphytes such as mosses and liverworts is much higher (Ashton 2003, 

Scatena et al. 2010). The stand characteristics of TMCF vary with temperature and 

humidity along the elevation gradient, with decreasing canopy height and leaf size, 

increasing leaf thickness, simpler stand structure and increasing density of non-vascular 

epiphytes (Frahm and Gradstein 1991, Ashton 2003, Scatena et al. 2010). TMCF is 

therefore further divided into lower montane, upper montane based on these 

characteristics (Scatena et al. 2010). 
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The stunted evergreen forests, also called sholas (Schimper and Fisher 1902), found at 

higher elevations in the Western Ghats (WG) have been classified as TMCF (Bunyan et 

al. 2012)  and alternatively as wet montane temperate forests (Champion and Seth 1968) 

or southern wet temperate forests (Nair et al. 2001). These forest formations are 

characterized by stunted trees (rarely above 15m tall), with relatively small 

(microphyllous), thick leaves, dense crowns and trunks and branches covered with 

bryophytes and epiphytes (Meher-Homji 1967, Nair and Khanduri 2001). The stand 

structure of these forests closely fit the characteristics of lower and upper TMCF 

described above. Sholas often occur in a matrix of grassland and occupy valley slopes 

and concave depressions along hill sides (Ranganathan 1938, Nair and Khanduri 2001). 

The ecologically apt term shola, derived from the Tamil word ‘Cholai’ or ‘Chola’ in 

Malayalam, refers to a shaded, wet grove and directly associates this vegetation type with 

a water source (Nair and Khanduri 2001).  

 

Vegetation zonation along the elevation gradient and the transition from Lower-Upper 

tropical montane forests in South and East Asia  

The altitudinal boundaries of TMCF are determined by the interaction of landform with 

climate and are largely found to coincide with the upper and lower boundaries of cloud 

banks, (Grubb and Whitmore 1966, Bruijnzeel and Proctor 1995, Ashton 2003, Jarvis and 

Mulligan 2011). Cloud condensation and the temperature lapse rate vary with the size of 

a mountain range and its distance from the coast (Grubb and Whitmore 1966, Jarvis and 

Mulligan 2011). More humid air condenses at lower elevations while drier air masses 

require cooler temperatures and higher elevations to form clouds. Temperature lapse rates 

on smaller mountains may be steeper owing to the “Massenerhebung” effect (Jarvis and 

Mulligan 2011) which allows plants to extend their ranges upslope on larger mountains 

(Scatena et al. 2010, Jarvis and Mulligan 2011). Conversely, this also creates a lower 

cloud condensation level on smaller mountains than on larger ones, leading to a decrease 

in the lower elevation boundary for TMCF on smaller, isolated mountains, especially 

those closer to the coast (Grubb and Whitmore 1966). 
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The transition from lowland tropical forest to lower montane forest is found to occur 

consistently between 900-1300m elevation across south and east Asian mountains, while 

the transition from lower to upper montane occurs between 1400-2300m on equatorial 

mountains, depending on topography, site conditions and the definition of upper-montane 

formations adopted (Ohsawa 1991, Ashton 2003). According to Ohsawa (1991) subalpine 

vegetation occurs above 2800m on equatorial mountains. 

 

In his comparative studies of zonation of south and east Asian mountain flora, Ohsawa 

(1990, 1991) suggests that such zonation, “results from replacement of related taxa with 

altitude. This pattern is in tandem with a tendency of impoverishment of floristic diversity 

through elimination of accessory taxa in the forests at increasingly higher altitudes” 

(Ohsawa 1991, p. 5). This pattern is unlike that found in temperate mountains where each 

zone is “composed of different floristic elements having contrasting life-forms” and 

results from a series of “impoverishment processes” in both structure and diversity from 

low altitudes to higher ones. Ashton (2003), in his discussion of the boundary between 

lower and upper montane forests, further elucidates this observation by stating that upper 

montane formations are marked by, “the presence of taxa, generally recognised as 

species or subspecies, which form sister pairs with lowland taxa, in large genera 

including Syzygium (Myrtaceae), Memecylon (Melastomaceae), Rhododendron and 

Vaccinium (Ericaceae), Elaeocarpus (Elaeocarpaceae) and Ilex (Aquifoliaceae). 

Compared with lowland sister taxa they almost without exception share smaller concave 

leaves with revolute margins and obtuse or retuse apices, and shorter internodes 

including greatly shortened rachises.” (Ashton 2003, p. 98). 

 

The characteristics of the transition between lower and upper montane forests on Asian 

mountains therefore include a reduction in species richness and stand structure (Ohsawa 

1991), replacement of species by closely related congeners (Ohsawa 1991) with certain 

functional traits (Ashton 2003) and a change in the physiognomy of trees (Ohsawa 1991, 

Ashton 2003), as well as the increased density of epiphytes and bryophytes on trees 

(Frahm and Gradstein 1991, Ashton 2003). On tropical mountains below 20oN, lower 

montane forests are dominated by notophyllous, taller trees of Lauro-fagaceous affinity, 

whereas microphyllous, small trees of the genera Symplocos, Rapanea, Eurya and Ilex 
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that are common in East Asian subtropical and lowland warm temperate forests, are 

found at the tree line (3800m) and form an important part of upper montane forests 

(Ohsawa 1991, 1995).  

 

Tree and Shrub species of tropical montane cloud forests (shola) in Central and 

Southern Western Ghats: Biogeography and endemism 

The floristic composition of shola forests in the Central and Southern WG is relatively 

well studied. A compilation of species lists from 17 sources, including regional floras and 

field studies, reveals that there are at least 278 species of trees and shrubs that occur in 

these forests (Appendix 3.1). The biogeographic distributions of these species (Fig. 3.1) 

ranges from Pantropical (1 species) to those that are very narrowly restricted to only the 

southern WG (16 species). Eighty species (29%) are endemic to the central and southern 

WG alone, while approximately 65% of the species have ranges that are limited to 

peninsular India and Sri Lanka. A total of 48% (134 species) are endemic to the WG – Sri 

Lanka biodiversity hotspot (Myers et al. 2000). The assessment presented here indicates 

that an even larger component of the tree and shrub flora of sholas in the central and 

southern WG is endemic to peninsular India and Sri Lanka than previously thought by 

authors working in parts of the central WG (Suresh and Sukumar 1999). Rates of 

endemism reported in the literature on sholas vary widely according to study site and area 

sampled (Bunyan et al. 2012). The assessment presented here appears to be the first such 

regional assessment based on species lists compiled from several studies. 

 

The majority of the tree and shrub genera in sholas has an Indo-Malayan affinity (Meher-

Homji 1967, Suresh and Sukumar 1999). Lauraceae is the most species rich family (41 

species), followed by Rubiaceae (24 species) and Acanthaceae (18 species). Dominant 

genera include Litsea, Cinnamomum, Strobilanthes and Symplocos. There are also 

distinct Himalayan elements, as represented by the genera Berberis, Rhododendron, 

Celtis, Lonicera, Mahonia, Hypericum, Sarcococca and Viburnum (Meher-Homji 1967). 

These species are found mostly along the shola-grassland edge or in open areas (Meher-

Homji 1967, Suresh and Sukumar 1999). Further, a subtropical-warm temperate 

evergreen element is represented by genera such as Eurya, Rapanea, Daphiphyllum, Ilex, 

Symplocos, Ternstroemia, Vaccinium, Rubus. Ardisia and Hedyotis (Ohsawa 1991, 
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Figure 3.1: Bar chart showing the biogeographic affinities of the tree and shrub species 

recorded from sholas in the central and southern Western Ghats, from larger to smaller 

geographic areas. (WG = Western Ghats, SL= Sri Lanka). 

Suresh and Sukumar 1999, Ashton 2003). The highest levels of endemism are in the 

genera Strobilanthes, Cinnamomum, Actinodaphne, Litsea, Euonymus, Lasianthus and 

Hedyotis. 

 

 

The metacommunity framework and its relevance to sholas of Upper Nilgiri Plateau 

The recent extension of metapopulation theory to community ecology has provided 

useful heuristic tools to assess community level patterns at multiple scales (Leibold et al. 

2004). Liebold et al. (2004) define a metacommunity as a “set of local communities that 

are linked by dispersal of multiple potentially interacting species”. The study of 

metacommunities attempts to draw inferences about processes structuring communities at 

different spatial scales by studying variation in the pattern of species distributions from 

local to regional scales and the feedback between local and regional scale variation 

(Leibold et al. 2004). Hence two broad frameworks have been adopted for studying 

metacommunities: a process-based mechanistic framework (Leibold et al. 2004) and a 

pattern-based one (Leibold and Mikkelson 2002, Presley et al. 2010). Here I apply the 

pattern-based framework, which compares observed species occurrence patterns to 
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theoretical, idealized distribution patterns, especially in respect to environmental 

gradients, and tests this against null models (Presley et al. 2010).  

Six theoretical patterns of species distributions identified include (Leibold and Mikkelson 

2002, Presley et al. 2010): 

a) Clementsian (Clements 1916), where communities are well-defined cohesive 

units in which co-occurring species occupy similar ranges along an environmental 

gradient and range boundaries coincide. 

b) Gleasonian (Gleason 1926), where each species responds to environment 

differently. Communities lack distinct boundaries as cohesive units of co-

occurring species and co-existence is the result of overlapping species ranges 

along the gradient. 

c) Evenly-spaced (Tilman 1982), where strong interspecific competition gives rise to 

trade-offs that allow species co-existence in evenly-spaced distributions along a 

gradient. 

d) Checkerboard pattern (Diamond 1975), where strong pairwise inter-specific 

competition results in mutually exclusive species’ ranges along a gradient. Such 

mutually exclusive species pairs occur at random with respect to each other. 

e) Nested subsets (Patterson and Atmar 1986), where variation in species traits 

related to dispersal or competitive ability leads to patterns of species loss along a 

gradient and species-poor communities are constituted by a subset of species from 

more species-rich communities. 

f) Random patterns, where species co-occurrences are independent of one another 

and any gradients and cannot be distinguished from random simulations of 

species presences in the community. 

 

Three characteristics of species distribution patterns assessed are: coherence, turnover or 

nestedness and range boundary clumping (Leibold and Mikkelson 2002). The concept of 

coherence arises from the assumption that species are continuously and normally 

distributed through their range and with respect to an environmental gradient. At the 

metacommunity level, coherence emerges when most or all of the species in a community 

respond to the same environmental gradient (Presley et al. 2010). Only metacommunities 

exhibiting coherence can be meaningfully assessed for turnover and boundary clumping 
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(Presley et al. 2010). Most metacommunities do exhibit coherence (Leibold and 

Mikkelson 2002). Turnover is the replacement of species along an environmental 

gradient. High or positive values of turnover indicate the presence of Clementsian, 

Gleasonian or evenly-spaced structures. Low or negative turnover may indicate nested 

patterns where sites with low richness are composed of a subset of species found in richer 

sites (Presley et al. 2010). Finally, the aggregation of range boundaries is used to 

distinguish between Clementsian (highly aggregated boundaries), evenly-spaced 

(hyperdispersed boundaries) or Gleasonian (randomly distributed boundaries) structures 

(Leibold and Mikkelson 2002, Presley et al. 2010). 

 

The metacommunity framework applies well to the shola tree community of the Upper 

Nilgiris, as multiple tree species co-occur in discrete, stable, island-like patches of 

varying size and proximity that are set in a distinct habitat matrix of grassland, tea or 

exotic tree plantations. Most species are bird dispersed (Ganesh and Davidar 2001) and 

therefore likely to have dispersal distances that encompass one or more shola patches. 

Finally, there are important environmental gradients present in the study area such as 

elevation and rainfall. 

 

Objectives 

The objectives of the analysis in this chapter were to answer the following questions: 

i) What is the tree and shrub species diversity, distribution and species composition 

of the sholas in the Upper Nilgiris based on both presence-absence and abundance 

data? 

ii) What is the metacommunity structure of shola vegetation and how does it relate to 

large-scale environmental gradients? 

iii) What is the nature of community change with elevation and which are the 

dominant species associations in the study area? 

iv) Can a transitional ecotone between lower and upper montane shola forest 

communities be defined for the the study area based on species turnover and 

changes in floristic composition? 
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Methods 

Study Area 

The study area is located between 11.17oN, 76.77oE and 11.50oN, 76.43oE on the western 

Upper Nilgiri Plateau (1800-2630m elevation, average elevation 1980m). Most of the 

survey was conducted on the western and southern parts of the plateau that contain the 

largest stretches of intact shola grassland mosaics (Fig. 3.2). This region is rich in 

endemic plants. Blasco (1971) has recorded 223 plant species known only from the 

sholas and grasslands of the higher altitude ranges of the Western Ghats. The area is 

known for its extraordinary vertical and horizontal physiographic differentiation and has 

three main rainfall regimes (von Lengerke 1977, Caner et al. 2007). The western side of 

the plateau receives the highest rainfall (5000-2500mm) mainly from the southwest 

monsoon, the southern and eastern portions of the plateau receive 2000-1500mm 

annually from both the southwest and northeast monsoon and the central Nilgiris receive 

1200-900mm on average (Fig. 3.2). Caner et al. (2007) propose that this spatial variation 

in rainfall across the plateau has possibly existed since the Last Glacial Maximum (LGM; 

20,000 years BP) as it is largely controlled by orography. The dry season lasts for 3-4 

months mainly between December and March. Temperature ranges from a mean 

maximum of 24oC in April to a mean minimum of 5oC in December. Frost occurs 

between November and March and mainly in the valleys rather than the higher hill slopes 

(von Lengerke 1977, Caner et al. 2007). Ranganathan (1938) notes that shola habitat on 

the Nilgiri Plateau extends from 1500-2590m. The elevation range covered in this study 

extends from 1800-2400m. 

 

The major land cover types in this area are: agriculture, tea plantation, forest plantation 

(eucalyptus and black wattle Acacia mearnsii) and shola grassland (Prabhakar 1994). The 

landscape contexts within which natural shola forest is located are very varied.  

 

Sampling Protocol 

A stratified random sampling design was used to collect shola vegetation data from 

20x20 m plots, based on slope, aspect, and landscape context. A minimum of four plots 
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were placed within each combination of landscape context and topographic class, with 

the exact location of plots determined by accessibility and steepness of terrain. In large 

shola patches (> 60 ha), three transects of plots were placed at a minimum of 250 m 

apart, with a distance of at least 50m between each plot along the transect. All individuals 

> 0.5m in height were censused within the plots, with species name, diameter at breast 

height x,y location within the plot and height recorded. For individuals between 0.5-1.3m 

height, only height was recorded. In addition the distance to the nearest edge of the shola 

fragment was noted as well as the GPS location of the plot corner, elevation, slope and 

aspect. Two parallel seedling transects of four 1x1m plots were laid, perpendicular to the 

plot edge, within each plot to census tree seedlings. A total area of 3.48 ha (87 plots) was 

censused. 

 

Data Analysis 

Rarefaction, richness and diversity indices  

Species richness was estimated and diversity indices such as Shannon’s, Simpson’s and 

Fisher’s alpha (Magurran 2004) were calculated. A sample-based rarefaction curve with 

the x-axis standardized to number of individuals (Gotelli and Colwell 2001) was plotted 

using the Mao-Tau estimator as implemented in the software EstimateS (Colwell et al. 

2012, Colwell 2013). A number of complementary beta diversity indices were calculated 

to measure variation in community structure across the sample plots based on the species 

presence-absence matrix (Anderson et al. 2011). These included: Whittaker’s beta, 

Sorenson’s Index, Simpson’s Index, parameter z in Arrhenius species-area model (Koleff 

et al. 2003) and Raup-Crick Dissimilarity index. The latter represents the probability that 

two sampling units have dissimilar species composition. It is computed using a null 

modelling approach and accounts for differences in alpha diversity between samples 

(Anderson et al. 2011). 

 

Community compositional analysis: relative abundance, IVI, clustering analysis, spatial 

distribution of clusters and dominant species’ associations  

A ranked abundance curve (Whittaker 1965) was plotted to visualize the abundance 

distribution of species in the study area (Magurran 2004).  The observed distribution was 

tested against various theoretical models of species abundance (i.e. brokenstick or null 
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model, pre-emption, log-normal, Zipf and Zipf-Mandelbrot models of species 

abundance), using maximum likelihood estimation with a poisson error distribution. The 

model that best fit the observed rank-abundance distribution was selected using Akaike’s 

Information Criterion (AIC) values (Wilson 1991). 

 

Basal area, Relative density, Relative frequency, Relative Dominance and Importance  

Value Index (IVI) were calculated for each of the species across all the plots (Ganesh et 

al. 1996). The following formulae were used: 

 Basal area (m2) = 0.00007854 x dbh2 (where r is radius of the plant girth at breast 

height) Basal area represents dominance of a plant species. 

 Density = total number of plants of any species/ number of plots 

 Frequency = (number of plots with the presence of a species/number of plots) x 

100 

 Relative dominance = (dominance of a plant species/ total dominance of all plant 

species) x 100 

 Relative frequency = (frequency of a plant species/ total frequency of all plant 

species) x 100 

 Relative density = (density of a plant species/ total density of all plant species) x 

100 

 Importance Value Index (IVI) = Relative dominance+ Relative frequency+ 

Relative density 

 

Clustering analysis was conducted to examine groupings of plots based on species 

composition. Hellinger-transformed (square root of proportional abundance value of each 

species in a plot) tree species’ abundance data (Legendre and Gallagher 2001) was used 

in an agglomerative clustering framework (Legendre and Legendre 2012). This method 

hierarchically groups plots based on the similarity between plots in terms of species’ 

abundances. The performance of four clustering algorithms (Legendre and Legendre 

2012) was compared using the transformed abundance data: single linkage clustering 

(based on nearest neighbor distance), complete linkage clustering (maximizes differences 

among clusters and finds discontinuities in the dataset), Unweighted Pair-Group Method 
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using Arithmetic Averages (UPGMA) and Ward’s Minimum Variance Clustering (based 

on least squares). The clustering algorithm that performed the best was then chosen to 

develop a dendrogram of sites. A spatial plot of the final dendrogram was then produced 

to assess the grouping of sites spatially, based on their species abundances. 

 

 

 

Kendall’s W coefficient of concordance (Legendre 2005) was used with a parametric F-

test to identify dominant species’ assemblages using a k-means partitioning (Legendre 

and Legendre 2012) of the Hellinger-transformed tree abundance data. The number of 

partitions was determined using the results of the hierarchical clustering and field 

observations. 

The above analysis was conducted in Microsoft Excel and R software (R-Development-

Core-Team 2013) using the packages “vegan” (Oksanen 2013) and “cluster”. 

 

Figure 3.2: Map of the study area in Upper Nilgiris showing locations of surveyed and 

sampled sholas, major rainfall regimes (Caner et al. 2007) and landcover types (Ramesh et 

al. 2002) 
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Analysis of shola metacommunity patterns: coherence, turnover, boundary clumping 

In order to assess properties of the shola metacommunity, the “Elements of 

Metacommunity Structure” (Leibold and Mikkelson 2002, Presley et al. 2010, Dallas 

2014) or EMS framework was used. Three metrics (coherence, turnover, and boundary 

clumping) were calculated from the species presence – absence matrix, with sites as rows 

and species occurrences as columns (Leibold and Mikkelson 2002, Dallas 2014). The 

matrix was ordinated (to identify the major axis of variation) using reciprocal averaging 

(Gauch 1982), so that species with similar ranges and sites with similar species 

compositions were placed together. The statistical significance of these metrics was 

tested against randomized null matrices in which row and column totals were held 

constant (“fixed-fixed null” model of Ulrich and Gotelli 2013) using a z test.  

 

Relating metacommunity turnover to the elevation gradient and assessing species 

compositional changes with elevation 

The ordination scores from the EMS analysis were related to elevation and precipitation 

variables using a Spearman’s rank correlation test to assess whether these factors form 

structuring gradients (Presley and Willig 2010, Dallas 2014). In addition, Mantel’s tests 

(Legendre and Fortin 1989) were performed to assess whether Bray-Curtis distance 

among plots was correlated to difference in elevation and alternately geographic space. 

Partial mantel’s tests (Legendre and Legendre 2012) were then used to control for the 

effect of spatial distance and shola fragment area on the relationship between species 

composition and elevation. 

 

Finally, the nature of floristic compositional change across the elevation gradient was 

examined at the Family level, using the total basal area divided by the area sampled 

within 3 elevation zones, and at the species level using the presence-absence matrix with 

sites (rows) ordered by increasing elevation and species (columns) ordered by range 

extent at lower elevations. The elevation zone with highest level of turnover was verified 

by comparing the average values of three pair-wise dissimilarity indices (Bray-Curtis, 

Jaccard and Raup-Crick) for pairs of plots falling in different elevation zones. 
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Results 

 

Richness, diversity and endemism in the Tree and Shrub Community of the Western 

Upper Nilgiris 

A total of 95 tree and shrub species are recorded from the shola forests in the study area 

(combined results from this study and those by Suresh and Sukumar 1999 and 

Mohandass and Davidar 2009). These belong to 34 families and 61 genera (Appendix 

3.2). Approximately 53% of the species are endemic to the Western Ghats and Sri Lanka. 

The dominant families in terms of species number and basal area are: Lauraceae, 

Rubiaceae, Myrtaceae, followed by Symplocaceae, Acanthaceae, Celastraceae and 

Sapotaceae (Fig. 3.3). These are also among the families with the highest levels of 

endemism. Magnoliaceae and Ericaceae are interesting as they are represented by one 

and two species respectively which are entirely endemic to just the central and southern 

WG (Fig. 3.3). Elaeocarpaceae is also represented by endemic species. Cinnamomum was 

the most species-rich genus, followed by Syzygium then Litsea and Symplocos. The full 

list is presented in Appendix 3.2 and has been compiled from the results of the present 

survey as well as a recent vegetation study conducted by Mohandass & Davidar (2009) in 

the Upper Bhavani area.  

 

The vegetation plots yielded a count of 25,008 individuals which were identified to yield 

81 tree and shrub species (Fig. 3.4). Owing to the difficulties in identification to the 

species level within certain shrub genera (i.e. Psychotria, Strobilanthes and Lasianthus), 

these were clubbed together at the genus level during analysis of the plot data, overall 

richness is therefore underestimated in this study. However, the rarefaction curve for all 

samples pooled does reach an asymptote (Fig. 3.4), indicating that the sample size 

sufficiently captures the tree species’ richness of the study area.  

 

Based on the vegetation plots, the species diversity estimate for the study area according 

to various common diversity indices is: Fisher’s Alpha = 10.4, Shannon-Weiner Index 

(H′) = 3.46, Simpson’s (Inverse) Diversity Index = 21.6. 
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Beta diversity values measured using presence-absence data indicate that there is species 

turnover in the study area, possibly due to the effect of spatial or environmental gradients 

(Table 3.1). The high value for parameter z in Arrhenius species-area model (represents 

the steepness of the species area curve), in particular indicates the presence of a 

structuring gradient as the value for z in island systems is approximately 0.3 (Oksanen 

2013). 

 

Table 3.1: The value of beta-diversity indices calculated from vegetation plot data 

Index Estimate Reference 

Whittaker’s Beta (βw) 3.05 (Whittaker 1960) 

Pairwise Sørenson’s 

dissimilarity 

0.52 (mean) Sørensen (1948), Koleff 

et al. (2003) 

Pairwise Arrhenius 

species-area model 

(parameter z) 

0.59 (mean) Koleff et al. (2003) 

Pairwise Simpson’s Index 0.43 (mean) Simpson (1943) 

Pairwise Raup-Crick 

dissimilarity 

0.39 (mean) Raup-Crick (1979) 

 

Patterns of tree and shrub dominance and distribution in the shola community 

The average number of indviduals ≥ 1cm dbh per plot, was 190.5 ± 95.13SD, (minimum 

37, maximum 573).  This converts to a mean density of 4762.5 individuals/ha. The 

average stand basal area was 68.78 m2/ha ±19.4SD.  There is wide variation in the stem 

density and basal area across plots in the Upper Nilgiris sholas. Plots located in larger 

shola fragments were found to have a greater number of species per unit area (R2= 0.26, 

P < 0.001). 

 

While several species had intermediate abundances in the study area (Figs 3.5 and 3.6), 

many were locally distributed and rare and some were widespread but not very abundant 

(Figs 3.5 and 3.6). The rank-abundance curve for the data was best fit by a log-normal 

distribution (Fig. 3.5). The most abundant tree species were Symplocos foliosa Wight and 

Litsea wightiana (Nees) Hook. f., while some of the rarer species in the study plots were: 

Syzygium densiflorum Wall. ex Wight & Arn., Elaeocarpus recurvatus Corner, Isonandra 

montana (Thwaites) Gamble, Schefflera capitata (Wight & Arn.) Harms, Olea paniculata 

R.Br., Prunus ceylanica (Wight) Miq., Beilschmiedia wightii Benth. & Hook. and 
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Actinodaphne sp. Species such as Syzygium grande (Wight) Walp., Syzygium 

calophyllifolium (Wight) Walp., Litsea oleoides Hook.f., Cryptocarya lawsonii Gamble 

and Michelia nilagirica Zenker, are relatively widespread and represented by very large 

mature trees with high basal area and therefore high IVI (Table 3.2, Fig. 3.6). There is 

wide variation in the relative abundances and IVI of endemic species. The most dominant 

species are all endemic to the WG and Sri Lanka. While some endemics like Mahonia 

leschenaultii (Wall. ex Wight & Arn.) Takeda, Elaeocarpus recurvatus and Gordonia 

obtusa Wall. ex Wight have relatively lower abundances and importance values, there are 

several endemics that show greater abundances and IVIs compared to more cosmopolitan 

species such as Ilex denticulata Wall. ex Wight, Eurya nitida Korth. and Ternstroemia 

gymnanthera (Wight & Arn.) Sprague. 

 

Table 3.2: Species Importance Value, Relative Frequency and Relative Density 

calculated from vegetation plot data in Upper Nilgiris 

 

Genus Species Abundance 

Prop. 
plots 
present 

Rel. 
Dens 

Rel. 
Freq. 

Rel. 
Dom. IVI 

Psychotria  sp. 2186 0.79 14.06 3.82 1.84 19.72 

Symplocos foliosa 1551 0.90 9.97 4.32 5.39 19.68 

Syzygium grande 495 0.66 3.18 3.16 9.47 15.81 

Lasianthus sp. 1376 0.86 8.85 4.15 2.71 15.71 

Litsea wightiana 1203 0.90 7.74 4.32 2.90 14.95 

Syzygium calophyllifolium 237 0.52 1.52 2.49 9.23 13.24 

Cinnamomum sp. 610 0.82 3.92 3.93 3.68 11.54 

Cryptocarya  lawsonii 408 0.44 2.62 2.10 6.74 11.47 

Litsea oleiodes 255 0.63 1.64 3.05 5.23 9.92 

Meliosma simplicifolia 337 0.85 2.17 4.10 3.61 9.88 

Neolitsea cassia 606 0.59 3.90 2.82 2.40 9.12 

Michelia nilagirica 64 0.44 0.41 2.10 5.55 8.07 

Saprosma ceylanicum 464 0.56 2.98 2.71 1.76 7.45 

Cinnamomum macrocarpum 317 0.49 2.04 2.38 2.92 7.34 

Rapanea wightiana 273 0.75 1.76 3.60 1.67 7.02 

Ilex denticulata 65 0.43 0.42 2.05 4.43 6.90 

Daphniphyllum  neilgherrense 267 0.68 1.72 3.27 1.32 6.30 

Microtropis ramiflora 226 0.66 1.45 3.16 1.62 6.23 

Mahonia leschenaultii 373 0.60 2.40 2.88 0.71 5.99 

Casearia  thwaitesii 180 0.62 1.16 2.99 1.76 5.90 

Cinnamomum wightii 203 0.48 1.31 2.33 1.49 5.12 

Litsea floribunda 328 0.49 2.11 2.38 0.48 4.97 

Nothapodytes nimmoniana 299 0.41 1.92 1.99 0.49 4.41 

Syzygium  densiflorum 96 0.40 0.62 1.94 1.85 4.40 

Turpinia cochinchinensis 179 0.31 1.15 1.50 1.31 3.96 
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Genus Species Abundance 

Prop. 
plots 

present 
Rel. 

Dens 
Rel. 

Freq. 
Rel. 

Dom. IVI 

Symplocos macrophylla 197 0.47 1.27 2.27 0.30 3.84 

Isonandra perrottetiana 118 0.16 0.76 0.78 2.14 3.67 

Litsea stocksii 405 0.08 2.60 0.39 0.64 3.63 

Symplocos obtusa 275 0.30 1.77 1.44 0.36 3.57 

Vaccinium leschenaultii 80 0.34 0.51 1.66 1.13 3.31 

Cestrum aurantiacum 271 0.20 1.74 0.94 0.36 3.05 

Ilex wightiana 24 0.16 0.15 0.78 1.96 2.89 

Eurya nitida 118 0.33 0.76 1.61 0.37 2.73 

Elaeocarpus recurvatus 40 0.22 0.26 1.05 1.40 2.71 

Microtropis microcarpa 78 0.25 0.50 1.22 0.31 2.02 

Ternstroemia  gymnanthera 23 0.16 0.15 0.78 1.09 2.01 

Tarenna asiatica 109 0.14 0.70 0.66 0.24 1.61 

Neolitsea scrobiculata 118 0.13 0.76 0.61 0.18 1.55 

Excoecaria oppositifolia 182 0.03 1.17 0.17 0.10 1.43 

Glochidion  neilgherrense 23 0.17 0.15 0.83 0.44 1.41 

Cinnamomum sulphuratum 33 0.11 0.21 0.55 0.61 1.38 

Syzygium lanceolatum 52 0.06 0.33 0.28 0.67 1.28 

Olea paniculata 32 0.11 0.21 0.55 0.50 1.26 

Rhodomyrtus  tomentosa 43 0.16 0.28 0.78 0.17 1.23 

Photinia intergrifolia 12 0.10 0.08 0.50 0.62 1.19 

Actinodaphne bourdillonii 81 0.07 0.52 0.33 0.32 1.17 

Schefflera sp. 13 0.09 0.08 0.44 0.64 1.16 

Cryptocarya  neilgherrensis  108 0.07 0.69 0.33 0.12 1.15 

Euonymus crenulatus 20 0.17 0.13 0.83 0.17 1.13 

Sarcococca saligna 84 0.09 0.54 0.44 0.09 1.08 

Rhododendron arboreum 9 0.05 0.06 0.22 0.77 1.05 

Gordonia obtusa 7 0.02 0.05 0.11 0.87 1.03 

Prunus ceylanica 23 0.15 0.15 0.72 0.12 0.98 

Hedyotis articularis 33 0.15 0.21 0.72 0.03 0.96 

Isonandra montana 10 0.07 0.06 0.33 0.51 0.90 

Maesa Indica 28 0.08 0.18 0.39 0.33 0.90 

Celtis tetrandra 26 0.08 0.17 0.39 0.23 0.79 

Memecylon randeriana  33 0.08 0.21 0.39 0.04 0.64 

Acronychia pedunculata 57 0.05 0.37 0.22 0.02 0.61 

Symplocos cochinchinensis 29 0.05 0.19 0.22 0.13 0.54 

Canthium  dicoccum 35 0.02 0.23 0.11 0.19 0.53 

Isonandra lanceolata 7 0.03 0.05 0.17 0.31 0.52 

Phoebe paniculata 10 0.07 0.06 0.33 0.05 0.44 

Gomphandra  coriacea 7 0.06 0.05 0.28 0.11 0.44 

Actinodaphne sp. 9 0.02 0.06 0.11 0.22 0.39 

Unknown sp6 9 0.06 0.06 0.28 0.00 0.34 

Casearia  sp. 24 0.02 0.15 0.11 0.07 0.34 

Scolopia crenata 18 0.02 0.12 0.11 0.11 0.33 

Microtropis sp 7 0.06 0.05 0.28 0.00 0.32 

Unknown sp9 8 0.02 0.05 0.11 0.10 0.26 

Sideroxylon tomentosa 4 0.01 0.03 0.06 0.18 0.26 

Trichilia connaroides 3 0.03 0.02 0.17 0.05 0.24 
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Genus Species Abundance 

Prop. 
plots 

present 
Rel. 

Dens 
Rel. 

Freq. 
Rel. 

Dom. IVI 

Beilschmeida wightii 2 0.03 0.01 0.17 0.00 0.18 

Melicope lunu-ankenda 7 0.02 0.05 0.11 0.00 0.16 

Meliosma pinnata 1 0.01 0.01 0.06 0.09 0.15 

Unknown sp7 6 0.01 0.04 0.06 0.00 0.10 

Syzygium cumini 2 0.01 0.01 0.06 0.01 0.08 
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Figure 3.3: Number of tree and shrub species per family and levels of endemism in 

the tree community of Upper Nilgiri sholas (see Appendix 3.1 for details) 
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Figure 3.4: Sample-based rarefaction curve for Upper Nilgiri shola tree & shrub 

species with x-axis rescaled to number of individuals based on the avg. no. 

ind/sample. Gray lines represent 95% CI, blue solid line represents the sample-based 

rarefaction, while broken orange line represents extrapolation to double the sample 

size. 

Figure 3.5: Rank-abundance curves (log abundances against species rank order) for tree 

and shrub species in the Upper Nilgiris, fitted against different theoretical models. 

Lognormal model shows the best fit with the lowest AIC value. 
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Figure 3.6: Plot of shola species basal area by frequency (defined as % of samples in 

which species occurred) 
 

Clustering analysis of plots based on species abundance data 

The most effective clustering method was UPGMA, based on a comparison of Pearson’s 

r correlations between the original Hellinger distances and matrices of cophenetic 

distances (distance at which 2 sites become members of the same group) of the 

dendrograms produced by each of the four linkage methods (Fig. 3.7). The lower 

elevation plots (1700-1950m) were clearly separated out from the plots located at and 

above 2000m by the clustering analysis (Fig. 3.8). Further, plots located between 2000-

2150m also seemed to differ in their tree community from the plots at and above 2200m 

(Fig. 3.8). 
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Figure 3.7: Comparison of 4 hierarchical clustering methods using the cophenetic 

correlation. 
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2000-2190m 

Figure 3.9: Map of the locations of plots in UTM coordinates showing their 

membership across 9 clusters based on species abundance data using UPGMA 

clustering  

Figure 3.8: Dendrogram showing results of UPGMA clustering of vegetation plots based on 

Hellinger-transformed species abundance data; showing a clustering out of lower elevation 

plots and indicating an elevation gradient in community composition 
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Characterization of metacommunity patterns: coherence, turnover and boundary 

clumping 

The “Elements of Metacomunity Analysis” framework analysis run on the ordinated 

species presence-absence matrix (Fig. 3.10) indicates that the metacommunity contained 

fewer embedded absences than expected under null model simulations (z = 2.49, P = 

0.013). This implies positive coherence. There were also more species’ replacements than 

expected (z = -4.85, P < 0.001), implying significantly high turnover among sites. 

Finally, species range boundaries were highly clumped and significantly different from 

the null expectation (Morisita’s index = 3.52, P = 0). These results indicate that at the 

scale of the study area, the metacommunity exhibits a Clementsian structure possibly in 

response to one or more structuring environmental gradients. 

 

 

Elevation as a structuring gradient in sholas communities 

The site scores obtained from ordination (reciprocal averaging) of the presence-absence 

matrix (Fig. 3.10) were found to be significantly correlated with elevation values (Rs =   -

Figure 3.10: Matrix visualization of presence-absence data ordinated by reciprocal 

averaging, with numbered sites as rows and species as columns. Blue rectangles indicate a 

species occurrence at a site. 
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0.496, P < 0.001) and to a lesser degree with mean annual precipitation (Rs = -0.268, P = 

0.012).  

The presence of an elevation gradient was also supported by analysis of plot abundance 

data as indicated by the results of the clustering analysis (Fig. 3.8). Both field 

observations and plot data indicate a large and rather abrupt change in the shola tree 

community composition between 1900-2100m in the study area.  

Finally, the Bray-Curtis distance between pairs of plots was plotted against difference in 

elevation (Fig. 3.11a). The plot shows an increase in BC dissimilarity with increasing 

difference in elevation between plot pairs (Mantel’s RM = 0.5, P < 0.0001). Partial 

Mantel’s tests controlling for the effect of geographic distance (Fig. 3.11b) and shola 

fragment size also verified that greater differences in elevation were correlated with 

greater differences in species composition (Partial Mantel’s RM = 0.38, P < 0.001 for 

elevation and geographic distance, Partial Mantel’s RM = 0.5, P < 0.001 for elevation and 

patch area). 

 

Floristic change in shola communities along the elevation gradient 

The family-wise distribution of total basal area of tree and shrub species in the Upper Nilgiris 

indicates that dominant families such as Lauraceae, Myrtaceae and Symplocaceae, show changes 

with elevation. Lauraceae basal area increases between 2000-2200m and then decreases 

Figure 3.11: Scatter-plot of pairwise site values for Bray-Curtis dissimilarity plotted 

against pair-wise difference in elevation (left) and geographic space (right) 
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above 2200m. Basal area of Myrtaceae however shows an increase with elevation as does 

that of Symplocaceae, Magnoliaceae and Celastraceae. Ericaceae and Berberidaceae have 

low basal area in the study plots but do show an increase with elevation. Theaceae, 

Araliaceae, Oleaceae, Sapotaceae and Rutaceae show the largest declines in basal area 

with elevation (Fig. 3.12). 

 

 

 

Re-configuration of the presence-absence matrix with rows (sites) ordered by elevation 

and species (columns) ordered by lower elevation range extent, indicates that at least 12 

species are not detected in any of the plots above 2100m. These include: Litsea stocksii 

Hook.f., Canthium dicoccum (Gaertn.) Merr., Scolopia crenata Clos, Syzygium 

lanceolatum (Lam.) Wight & Arn., Isonandra lanceolata Wight, Syzygium cumini (L.) 

Skeels, Actinodaphne sp., Meliosma pinnata (Roxb.) Maxim. The first four species are 

both common and abundant in the plots between 1700-1800m and then completely absent 

above this elevation – indicating an altitudinal range boundary for these species (Fig. 

3.13). There are also several species that appear frequently in plots above 1900m that 

were not encountered below this elevation. These include: Litsea wightiana, Cryptocarya 

Figure 3.12: Bar chart showing tree and shrub basal area by Family across plots in each 

of three elevation zones in the Upper Nilgiris sholas. 
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lawsonii, Mahonia leschenaultii, Saprosma ceylanicum (Gardner) Bedd., Michelia 

nilagirica, Ilex wightiana Wall. ex Wight, Syzygium grande, S. calophyllifolium, 

Symplocos macrophylla Wall. and S. obtusa Wall. However it should be noted that far 

fewer plots fell below 2000m than above (Fig. 3.13). Seven species were only detected 

above 2100m elevation, constituting the highest elevation group: Microtropis ramiflora 

Wight, Vaccinium leschenaultii Wight, Elaeocarpus recurvatus, Sarcococca saligna 

Müll. Arg., Ternstroemia gymanthera, Hedyotis articularis R.Br. ex G.Don and 

Rhodomyrtus tomentosa (Aiton) Hask. Finally Rhododendron arboreum ssp. nilagiricum 

(Zenk.) was only detected above 2200m (Fig. 3.13). Some species such as Isonandra 

perrottetiana A.DC., I. montana (Thwaites) Gamble, Memecylon randerianum 

S.M.Almeida & M.R.Almeida and Neolitsea scrobiculata Gamble appear to have 

narrower elevation ranges between 1900 and 2200m in the study area. 

 

 

 

elev CADI CAES SCCR SYZY ISLA SYCU ACLA MEPI BEWI ACTI UNK7 LIST UNK4 SYCO MICR OLPA CELT TAAS LIFL SCHE NONI PRCE CEAU RAWI MESI NEOL DANI SYFO LASI GLHE GOOB CATH LIOL CIMA ILDE PHWI MAIN MALE SYDE EUNI EUCR LIWI PSYC SACE SYMO SYMA CRLA NESC ISPE MEME UNK8 ISMO UNK3 UNK6 SAPR MINI ILWI CIWI SYCA SYOB MIMI PHOT TUCO GOCO RHTO MIRA ELRE VALE SASA TEGY HEAR CISU RHAR

1758 1 1 1 1 0 0 1 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1823 1 1 1 1 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1833 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 1 1 1 1 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1937 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1973 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1990 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 1 1 1 0 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1992 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2059 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 9 0 0 0 0 0 0 0 0 0 0 0 0 0

2064 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

2082 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 1 1 0 0 1 0 0 1 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

2098 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 1 0 0 0 0

2111 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0

2129 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1 0 0 1 0 1 1 0 1 1 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0

2132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

2139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

2143 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

2145 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 1 0 0 1 1 1 0 1 1 0 0 0 1 0 1 1 1 1 0 1 0 0 1 0 0 0

2149 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

2160 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

2161 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0

2162 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0

2165 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 0 0 0 0 0 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 1 0 1 0 1 0 0 0

2167 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 1 0 1 0 0 0 1 0 0

2175 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

2178 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

2181 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 1 1 1 0 1 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 1 0

2181 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2182 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0

2190 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 1 1 0 0 1 1 0 1 0 0 1 0 1 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 0 1 1 0 0 0 0 0 0

2192 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0

2193 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0 0

2201 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0

2202 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 0 1 0 0 0 1 0 0 0

2203 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0

2204 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 1 0 1 0 0 1 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 1 0 1 0 0 0 0 0

2206 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 1 1 0 0 0 1 0 0

2213 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2214 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 0 0 1 1 0 1 0 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0

2215 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2219 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0

2221 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 1 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0

2222 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0

2225 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0

2227 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0

2227 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 0 1

2237 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1 0 1 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 0 1 0 1 0

2238 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 1 1 0 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

2239 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0

2244 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0

2246 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0

2247 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2254 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 1 0 1 0 0 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

2254 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 1 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 1 0 1 1 0 1 0 1 1 0 0

2261 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0

2264 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0

2268 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0

2270 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 1 1 0 1 0 0 1 1 0

2271 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 1 1 0 0 0 0 1

2275 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0

2276 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0

2278 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

2292 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0

2292 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0

2293 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 1 0 1 0 0 0 1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 0

2295 0 0 0 0 0 0 0 0 0 0 0 0 0 9 9 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 1 1 1 0 1 9 9 0 0 0 0 9 9 1 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0

2295 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 0 1 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0

2302 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 1 0 0

2304 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 1 1 1 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0

2304 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 1 0 0 1 0 0

2304 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0

2305 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 1 0 1 1 0 0

2307 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0

2310 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0

2314 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 1 0 1 0 0 1 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0

2321 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 0 1 0 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0

2321 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0 1 1 1 0 1 0 1 1

2324 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0

2328 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 9 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

2329 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0

2330 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

2336 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2339 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 0 0

2341 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0

2345 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2351 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 0 1 0 0

2354 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 0 1 0 0 0 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 0 0 0 1 0 0 1

2355 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

1900-1999

2000-2099

2100-2199

1800-1899m

Figure 3.13: Species presence absence matrix with species in columns, arranged by 

range extent, and plots in rows, arranged in ascending order of elevation value (red-blue). 

Black squares indicate presence and light grey squares indicate an embedded absence in 

the species range as indicated by the plot data. Blue horizontal lines indicate 100m 

elevation intervals, starting at 1800m. 
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The highest turnover in species composition occurs in the 1900-2100m elevation zone 

(Fig. 3.13) especially in the genera Syzygium (Myrtaceae), Litsea (Lauraceae) and 

Symplocos (Symplocaceae). This is supported by a comparison of average values for three 

pairwise dissimilarity indices across groups of plots in each of three elevation zones. On 

average, there is greater dissimilarity in species composition between plots at 1800-

1999m and those at 2000-2199m than there is between plots at 2000-2199m and those 

between 2200-2400m, across all three dissimilarity indices (Fig. 3.14). The difference is 

particularly obvious in the case of the Raup-Crick dissimilarity index which accounts for 

differences in alpha diversity between plots. 

 

 

 

The number of species encountered is highest between 2100-2200m (62 species). Beyond 

this elevation zone the number of species recorded in the plots declines with elevation 

with the plots in the highest elevation zone (>2300 m) having a subset of the species 

present in the 2200-2300m elevation zone (Fig. 3.13). 
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Figure 3.14: Bar chart showing average pair-wise dissimilarities between plots in 

elevation zones 1 (1800-1999m) and 2 (2000-2199m) and zones 2 and 3 (2200-2400m) 

according to the Jaccard, Bray-Curtis and Raup-Crick dissimilarity measures. 
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Dominant community associations 

Four major species’ associations were identified based on the abundances of the 50 most 

abundant species, and the clustering analysis presented above. The assemblages for these 

associations were tested using Kendall’s W coefficient of concordance (Assemblage 1: 

F= 3.98, P < 0.001, Assemblage 2: F= 4.19, P < 0.001, Assemblage 3: F= 4.48, P < 

0.001, Assemblage 4: F= 3.16, P < 0.001).  

 

Assemblage 1 consisted of: Litsea floribunda Gamble, Cryptocarya lawsonii, Neolitsea 

scrobiculata, Isonandra perrottetiana, Memecylon randerianum. This association 

characterizes plots at about 2000m elevation in the Thia shola forest (Group 2 in Fig. 

3.9). 

 

Assemblage 2 consisted of: Psychotria sp., Lasianthus sp., Cinnamomum sp., Symplocos 

macrophylla, Symplocos obtusa, Turpinia cochinchinensis (Lour.) Merr., Syzygium 

calophyllifolium, Michelia nilagirica, Microtropis microcarpa Wight, Rhodomyrtus 

tomentosa. This association was primarily found at and above 2200m (Group 4 and 

Group 6 in Fig. 3.9). 

 

Assemblage 3 association consisted of: Litsea stocksii, Nothapodytes nimmoniana 

(J.Graham) Mabb., Actinodaphne sp., Canthium dicoccum, Scolopia crenata, Symplocos 

cochinchinensis and Syzygium lanceolatum. This species’ association was found in plots 

between 1700-1900m elevation in the Naduvattam area (Group 9 in Fig. 3.9). 

 

Assemblage 4 consisted of: Litsea wightiana, Symplocos foliosa, Syzygium grande, 

Meliosma simplicifolia (Roxb.) Walp., Mahonia leschenaultia, Sarcococca saligna. This 

association was relatively widespread in the study area above 2100m (Group 6 in Fig. 

3.9). 
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Discussion 

 

Comparison of Nilgiris shola diversity and composition with sholas in the Central and 

Southern WG 

The results fall within the range of values for alpha diversity, floristics and stand 

structure obtained by other researchers working on high elevation sholas in the central 

and southern WG (Table 3.3).  The species richness and β diversity reported here are 

higher than estimates of Jayakumar & Nair (2012) for sholas in the Nilgiris, possibly 

owing to the fact that their sampled area (3 ha) was concentrated in a much smaller 

geographic extent. Like this study, Mohandass & Davidar (2009) find a log-normal 

abundance distribution for the Upper Bhavani sholas, indicating that the abundance 

distribution pattern is constant across the larger geographic extent sampled here. Stem 

density and basal area reported from this study are on the higher side compared to other 

surveys, including that of Mohandass & Davidar (2009) (Table 3.3). Blasco (1971) 

reported a stem density of 2000 individuals per ha (>3.8 cm dbh) from the Nilgiris. A 

great deal of variation was observed across the study area in terms of stand structure, 

particularly so for the understorey. Sholas surrounded by a human-dominated landscape 

tended to have a dense shrub understorey compared to sholas set in grassland or 

plantation mosaics. Also the presence and abundance of Cestrum aurantiacum Lindl., an 

invasive exotic, was higher in these sholas (please see Chapter 5). 

 

At the family level, Lauraceae is consistently found to be dominant  (Nair and Menon 

2001, Sudhakara 2001, Swarupanandan et al. 2001, Davidar et al. 2007a, Mohandass and 

Davidar 2009) except in the case of Menon’s (2001) study of Eravikulam sholas, where 

he found Myrtaceae to be dominant. Rubiaceae is consistently dominant in the understory 

(Ashton 1988, Nair et al. 2001). The genus Cinnamomum seems to be among the 

dominants in sholas throughout the region (Table 3.3).  

 

Myrtaceae however, seems to be patchier in its dominance, being displaced in some 

regions by Rubiaceae, Euphorbiaceae or Flacourtiaceae (e.g. Pambadam shola) (Nair and 

Menon 2001, Sudhakara 2001, Swarupanandan et al. 2001, Davidar et al. 2007a). 
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Symplocaceae appears to be more consistently dominant in the Upper Nilgiris and the 

Wayanad region than it is further south (Nair and Menon 2001, Swarupanandan et al. 

2001, Vidyasagaran and Gopikumar 2001, Mohandass and Davidar 2009). Euphorbiaceae 

is the second-most dominant family in some sholas of the Anamalais but poorly 

represented in the Upper Nilgiris (Sudhakara 2001, Swarupanandan et al. 2001). 

Representation of Oleaceae is reported to be higher by at least one study in the southern 

WG (Swarupanandan et al. 2001) than it is in the central WG (Mohandass and Davidar 

2009, this study).  

 

Many of the same tree species are found in sholas in the Nilgiris and Eravikulam regions 

(Nair et al. 2001, Mohandass and Davidar 2009, and this study). Twenty-seven of the 29 

species reported from Eravikulam by Nair & Menon (2001) are also found in the Upper 

Nilgiris. Mohandass & Davidar (2009) report a 47% overlap in species between sholas in 

the Nilgiris and in the Palni hills.  

 

However, several authors have noted the remarkable turnover of dominant species in 

evergreen forests across different regions (Pascal 1988, Nair and Baburaj 2001, Nair and 

Menon 2001, Sudhakara 2001, Pascal et al. 2004, Jayakumar and Nair 2012). This is also 

true of shola forests (Table 3.3). At the regional scale in the WG, studies have shown that 

rates of species turnover and endemism in evergreen forests are largely determined by 

climatic factors such as variation in total annual rainfall, length of the dry season, and 

adiabatic lapse rate in temperature with increase in altitude (Ramesh and Pascal 1997, 

Gimaret-Carpentier et al. 2003, Davidar et al. 2007b). However, this and other such 

studies conducted over smaller geographic areas (Nair and Menon 2001, Swarupanandan 

et al. 2001, Vidyasagaran and Gopikumar 2001, Bunyan 2009) point to high turnover in 

dominance patterns even over short distances (5-10 km). In the Nilgiris, Beilschmeida 

wightii goes from being very rare in Upper Bhavani (Mohandass and Davidar 2009 and 

this study) and Bangitappal (this study) to being a frequent and even dominant species in 

Sispara (Nair and Menon 2001). Syzygium calophyllifolium is a dominant species in 

Bangitappal, with a stem density of 75 per ha, however Mohandass et al. (2009) list it as 

being less common than S. grande in Upper Bhavani and having a stem density of 46.7 

per ha. Another dominant from the Sispara area, Ardisia rhomboidea Wight, was not 
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reported from Upper Bhavani (Mohandass and Davidar 2009) and neither was it detected 

in any of the plots from this study. Ilex wightiana is reported to have much higher 

frequency in Sispara compared to Upper Bhavani (Nair and Menon 2001, Mohandass and 

Davidar 2009). While it was observed at the edges of several sholas and as solitary trees 

in the grasslands of Bangitappal, it was not recorded from most plots in this study. 

 

Nair and Menon (2001) report neither Syzygium calophyllifolium nor S. grande from any 

of their Sispara or Eravikulam plots. Instead, they report S. densifolium as one of the 

dominant species in Sispara. This species also appears to be dominant in the Eravikulam 

sholas (Menon 2001), which is not the case in the Upper Nilgiris. Conversely, Symplocos 

foliosa, dominant in the Upper Nilgiris, is reported as being rare in Eravikulam (Nair and 

Menon 2001). Ranganthan (1938) notes variation in species distributions across both the 

altitudinal and longitudinal gradient in the Upper Nilgiris, with Mahonia leschenaultii 

confined to the western plateau and Hydnocarpus alpina Wight restricted to the eastern 

plateau. 

 

The results also indicate strong spatial autocorrelation in species’ distributions across the 

study area. This could be due to topographically induced variation in meso-climate or 

edaphic conditions at a landscape scale or even dispersal limitation. Further, landscape 

context (as a proxy for disturbance) could potentially mediate processes such as dispersal 

(Kupfer et al. 2006), which in turn affect the degree of spatial autocorrelation in species’ 

distributions. The following chapters examine the influence of various environmental 

factors and those possibly related to dispersal in greater detail and in a spatially explicit 

manner. 

 

Metacommunity patterns in the Nilgiris: elevation as a structuring gradient  

Several authors have noted the existence of an altitudinal gradient in shola vegetation 

(Ranganathan 1938, Sudhakara 2001, Swarupanandan et al. 2001). However, the nature 

of the metacommunity response to this gradient has not been examined till now. At the 

scale of the study area, the shola tree metacommunity in the Upper Nilgiris appears to 

exhibit positive coherence, significant positive turnover along a gradient and highly 

significant clumping of species’ range boundaries. This coincides more with a  
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Table 3.3: Results from previous plot-based inventories of shola forests in high elevation 

S. Western Ghats 

 

Clemenstian distribution, with several non-overlapping range boundaries, than a 

Gleasonian one (Leibold and Mikkelson 2002). There appear to be distinct assemblages 

of species in the sholas of the western Upper Nilgiris which are distributed according to 

both altitudinal and rainfall gradients. The environmental gradient most strongly 

Site 

Area 
Sampl
ed (ha) 

Elevatio
n (m) 

No.
sp‡ 

α 
diversity 

Stem 
Dens 
(ind/ha) 

Basal 
Area 
(m2/ha) Dominant sp. Author(s) 

Brahmagiri 0.1 
approx.,
1600 56 5.45 (H′) 

2533 
(>3cm 
dbh) 73.55 

Cinnamom perrotettii, 
Actinodahne salicina, 
Microtropis stocksii, 
Ligustrum perrottetti 

Vidyasagaran & 
Gopikumar 2001 

Eravikulam 0.7 NR 49 NR 1268** 

25 (avg) 
range: 
14.17-
32.75 

Syzygium densiflorum,  Ixora 
nottoniana, Mahonia 
leschenaultii, Maesa indica 
Cinnamomum wightii, 
Microtropis ramiflora Menon 2001 

Eravikulam 
& 
Mannavan 1.25 

1750-
2100 112 

2.5-3.38 
(H′)*** 

18,100* 
(avg) 

74 
(avg): 
range 
17-89.2 

Mastixia arborea, Syzygium 
densiflorum, Hydnocarpus 
alpina, Isonandra 
candolleana, Turpinia 
cochinchinensis 

Swarupanandan 
et al. 2001 

Eravikulam 0.49 
1900-
2400 36 

3.24 
(H′)** NR NR 

Cinnamomum perrotettii, C. 
sulphuratum, Microtropis 
ramiflora, Ilex wightiana, 
I.denticulata, Elaeocarpus 
recurvatus 

Nair & Menon 
2001 

Pambadam 0.23 
1750-
1950 45 4.53 (H′) 21,894* 

114.94 
(total) 

Scolopia crenata, 
Actinodaphne bourdilloni, 
Psychotria nilgiriensis, 
Neolitsea fischeri Sudhakara 2001 

Sispara 0.49 
2000-
2400 37 

3.03 
(H′)** NR NR 

Ilex wightiana, C. perrotetti, 
S. densiflorum, Beilschmeida 
wightii, Michelia nilagirica,, 
Litsea floribunda,  

Nair & Menon 
2001 

Upper 
Bhavani 11.5 >2000 69 

9.03 
(Fisher’s 
α) 2540* 58.97 

Psychotria nilgirensis, 
Lasianthus venulosus, Litsea 
wightiana, Symplocos 
foliosa, Mahonia 
leschenaultii, Neolitsea 
cassia, Syzygium grande 

Mohandass & 
Davidar 2009 

BRT,  
Pambadam
Eravikulam 0.3 

<1500 
to 
2200m 77 

3.96 
(H′) 1711** 

15.5 - 
78.5 
(avg) NR Bunyan 2009 

Kukkal 
(Palnis) 1.08   67 

12.1 
(Fisher’s 
α) 1972* 62 

Psychotria nilgirensis, Maesa 
indica, Xantolis tometosa 

Davidar et al. 
2007 

* >1cm dbh, ** >5 cm dbh, ***>10cm dbh 
‡ trees and shrubs, NR- not reported    
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correlated with the main axis of variation is elevation. This is further supported by the 

conclusion that sites that differ more in terms of elevation tend to differ more in their 

species composition. 

 

Metacommunities can exhibit different structures at different spatial scales and in 

response to different gradients (Presley and Willig 2010, Presley et al. 2010). Indeed, 

Mohandass & Davidar (2010) find evidence that the shola community between 2200-

2400m in the Upper Bhavani landscape (a subset of the current study area) exhibits a 

pattern of nestedness along a patch-size gradient, where the species composition of 

smaller shola patches represent nested subsets of the larger patches. In this study, the 

plots above 2200m show a reduction in species richness and could be considered a nested 

subset of the elevation zone below (with the exception of Rhododendron). However, it is 

not possible to separate the effects of the elevation gradient from those of the patch-size 

gradient above 2200m as shola fragments show a decrease in size in the highest elevation 

zone (2300-2400m). It is possible to say that the clearest pattern emerging for the 

metacommunity at the scale of the study area, is a Clementsian structure along the 

elevation gradient (between 1800-2200m), with possible nestedness (Patterson and Atmar 

1986) at a smaller scale (especially above >2200m).  

 

Such a pattern points to niche-based processes driving turnover along the gradient. 

Gimaret-Carpentier et al. (2003) demonstrate that endemic species of the genus 

Syzygium, which are among the dominants in the study area, show much higher levels of 

niche separation along an elevation gradient in the WG compared to Litsea and 

Diospyros. This is supported by the present study, where S. cumini and S. lanceolatum 

are completely replaced above 2000m by S. calophyllifolium, S. densiflorum and S. 

grande. The increasing dominance of Syzygium sp. with elevation is also observed in the 

Anamalai hills (Swarupanandan et al. 2001), as is the peak in abundance and basal area 

for Isonandra sp. (Sapotaceae) that occurs between 1950 and 2100m (Sudhakara 2001, 

Swarupanandan et al. 2001), similar to the Upper Nilgiris. Endemic species of the genus 

Litsea show some niche separation along both altitudinal and rainfall seasonality 

gradients in the WG, though to a much lesser extent than those of Syzygium (Gimaret-

Carpentier et al. 2003). In the study area, L. stocksii does not occur above 2100m and 
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appears to be replaced by L. wightiana and L. oleiodes above 2000m. However L. 

floribunda is found throughout, even above 2300m. Similarly, Symplocos 

cochinchinensis appears to be replaced by S. obtusa and S. foliosa above 2000m.  

 

This broadly matches the pattern of zonation described for south and east Asian tropical 

mountains (Ohsawa 1991, Ashton 2003), where pairs of closely related congeneric taxa 

replace each other with increase in elevation. The species which replace their sister taxa 

tend to have smaller or thicker leaves with revolute margins (Ashton 2003).  

 

Finally, there are several narrowly endemic species that appear to be restricted to above 

2000m in the Upper Nilgiris. These include: Michelia nilagirica, Mahonia leschenaultii, 

Hedyotis sp., Cryptocarya lawsonii, Elaeocarpus recurvatus, Saprosma ceylanicum and 

Rhododendron arboreum spp. nilagiricum.  

 

Jayakumar and Nair (2012) recorded a decline in species richness in evergreen forests 

along the elevational gradient (400-2600m) in the Western Nilgiris. Swarupanandan et al. 

(2001) and Sudhakara (2001) observed a similar decline in tree species richness and 

increasing dominance above 1850m in the Anamalai hills. They also report a decline in 

plot basal area at higher elevations, which was not observed in this study. There is no 

significant decrease in tree height along the range of elevation gradient (1800-2400m) in 

this study. However Sudhakara (2001) and Swarupanandan et al. (2001) do report 

decreasing tree height and simplifying stand structure between 1500-2100m in the 

Anamalai hills. Their results are consistent with the structural transitions observed in 

other montane forests of tropical Asia (Ohsawa 1991, Ashton 2003). 

 

Ecotonal boundary between shola communities in the Upper Nilgiris 

While many authors have used various altitudinal thresholds to define the lower boundary 

of sholas in the WG (1500m in Ranganathan 1938 and Meher-Homji 1967, 1700m in 

Bunyan et al. 2012, 1800m in Nair & Khanduri 2001), vegetation zonation within shola 

habitats and specifically distribution of ecotonal boundaries between lower and upper 

montane shola formations are not well known.  
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The transition observed in the shola tree and shrub community of the Upper Nilgiri 

plateau has the floristic characteristics of an ecotonal transition between lower and upper 

montane shola communities as described by other authors (Ohsawa 1991, 1995, Werner 

1995, Ashton 2003).  Ohsawa (1991) associates the increased dominance of 

Symplocaceae and Ericaceae with upper montane formations. In this study, basal area of 

Symplocaceae and Ericaceae increases with elevation. Basal area of Aquifoliaceae (Ilex) 

is also higher at higher elevations (Ohsawa 1995). Finally, incidence and increased 

abundance of frost-tolerant genera with Himalayan affinities (Meher-Homji 1967) such 

as Mahonia, Berberis (Berberidaceae), Rhododendron (Ericaceae) and Rubus (Rosaceae) 

is observed above 2100m in the study area, but not below this elevation. Field 

observations indicate that structural characters such as tree height, size and thickness of 

leaves and density of non-vascular epiphytes also match those of upper montane cloud 

forests as described by Scatena et al. (2010).  

  

The elevation zone at which an ecotonal transition occurs in the Nilgiris is between 1900 

and 2100m. Therefore formations above 2100m could be considered to be upper montane 

shola communities that are structurally and floristically distinct from those below 1900m.  

Werner (1995) notes a similar ecotonal transition within the upper montane formations of 

Sri Lanka above 2,000-2,100m. However he locates the actual boundary between lower 

and upper montane forest at 1,500m, based on the lower limit of cloud cover. 

Interestingly, Jarvis and Mulligan (2011) in their global study of the climatic conditions 

under which TMCF occur, find that high cloud cover (> 60%) is frequent at more than 

80% of the sites (n = 526) in their study that lay above 2000m and within 100km from 

the coast. These conditions match those of the observed transition zone in the Upper 

Nilgiris. However, further ecophysiological and mechanistic studies are needed 

determine whether this transition is being driven by mist immersion or change in 

temperature, or both. In general, the mechanisms behind the transition from lower to 

upper montane forest types remain unresolved and poorly understood (Foster 2001, 

Ashton 2003). Another interesting observation is that the forest-grassland mosaic in 

which these sholas occur also shows a greater predominance of grassland to forest above 

the same altitudinal threshold of 2000m (please see results from Chapter 2). 
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The shola communities above 2000m  are of particular interest from a conservation and 

management perspective owing to the restricted area that they occupy in the WG, the 

high levels of endemism (particularly narrowly distributed endemics) and their critical 

hydrologic functions (Nair and Khanduri 2001). While species richness in these forests is 

lower than other tropical montane forests (Sudhakara 2001, Swarupanandan et al. 2001, 

Jayakumar and Nair 2012), rates of endemism are higher (Jayakumar and Nair 2012). 

This analysis provides insights into the spatial turnover in shola tree and shrub species 

along the elevation gradient that should be of use to forest managers and conservation 

planners. 
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Chapter 4 
Relative Influence of Environment and Dispersal on Plant 

Community Composition in Shola Forests 
 

Introduction 

The relative roles of niche and neutral processes in the assembly of tropical plant 

communities has received much attention in the ecological literature over the last two 

decades. Classical models have invoked deterministic processes in explaining community 

structure, such as resource competition (Tilman 1982) and abiotic physiological tolerance to 

the environment (Keddy 1992), which imply that differences in species’ niches influence 

distribution and abundance (Schwilk and Ackerly 2005). Neutral models on the other hand 

argue that species compositional differences among sites are unrelated to differences in the 

environment or to species interactions and that ecological drift coupled with speciation and 

dispersal limitation can alone explain patterns of species composition and turnover (Hubbell 

2001). The theory has drawn considerable attention (Condit et al. 2002, Dexter et al. 2012) 

and led to a proliferation of empirical studies aimed at testing hypotheses in different 

ecosystems (Rosindell et al. 2011). The debate over whether neutral or niche processes 

predominate has subsequently shifted towards a consensus that most communities are 

structured by both (Condit et al. 2002, Gravel et al. 2006, De Cáceres et al. 2012, Brown et 

al. 2013). Thus recent studies have focused on the relative roles of niche and neutral factors 

in community assembly. 

 

Environmental determinism has been the most widely investigated process structuring species 

composition and turnover in tropical forests. Several studies have demonstrated that 

topographical heterogeneity, soil properties, and successional history can explain differences 

in species composition and abundance in tropical forests to varying extents (Clark et al. 1998, 

Harms et al. 2001, Potts et al. 2002, Phillips et al. 2003, Paoli et al. 2006, Dexter et al. 2012, 

Baldeck et al. 2013). While a few environmental variables such as soil exchangeable 

phosphorus and moisture availability can play a dominant role in influencing species 

distributions (Engelbrecht et al. 2007), several environmental variables may have smaller but 

significant effects at a wide range of spatial scales (Phillips et al. 2003, Tuomisto and 

Ruokolainen 2006, John et al. 2007, Jones et al. 2008, Baldeck et al. 2013).  However, 
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observed spatial patterns in community composition are also influenced by dispersal 

limitation (Condit et al. 2002, Tuomisto et al. 2003) and biotic interactions (Pitman et al. 

1999, 2001), and the relative importance of these processes in driving species turnover is not 

well understood.  

 

The hypotheses and mechanisms of niche and neutral models predict distinct spatial patterns 

of species composition. For instance, in communities that are strongly influenced by biotic 

interactions, a few competitively superior species could dominate landscapes leading to more 

uniform species composition over large areas. Alternately, if dispersal limitation is strong in 

communities where species are competitively equivalent, species composition should vary 

random but in a spatially autocorrelated fashion that shows no trend. Finally, if 

environmental control is a dominant factor, species distributions in space should be strongly 

correlated to environmental conditions. 

 

Quantifying the importance of each process requires the use of methods which disentangle 

their contributions to spatial variance in community composition. The most widely used 

method is variation partitioning (Legendre et al. 2005, Peres-Neto et al. 2006), which is an 

extension of partial canonical ordination techniques (Rao 1964, Ter Braak 1986).   The power 

of variation partitioning methods to distinguish between environmental control of community 

composition and spatial autocorrelation arising from dispersal limitation has been widely 

discussed in the literature (Tuomisto and Ruokolainen 2006, Smith and Lundholm 2010, 

Gilbert and Bennett 2010). There are two broad approaches that have been used: (i) canonical 

analyses (e.g., RDA) using raw-data on species occurrence/abundance (Borcard et al. 1992) 

and (ii) univariate or multivariate regression analyses with distance data on species, 

environmental variables, and pure space (e.g., Mantel tests) (Duivenvoorden et al. 2002, 

Tuomisto and Ruokolainen 2006). These approaches test fundamentally different predictions 

of the ecological hypotheses on variation in species composition and abundance among sites 

(Tuomisto and Ruokolainen 2006).  The former tests the variation in community composition 

among sites as a function of variation in environmental conditions or neutral community 

dynamics, while the latter examines variation in the differences in community composition 

between two sites as a function of variation in the differences in environmental conditions or 

geographical distance. Empirical evidence from studies that use these approaches have shown 

a wide range of patterns, from strong environmental control on variance in community 

composition among sites (Phillips et al. 2003, Svenning et al. 2004, Paoli et al. 2006, Jones et 
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al. 2008, Baldeck et al. 2013) to a greater role for dispersal in determining variation in the 

differences in composition between sites at given distances (Condit et al. 2002, Vormisto et 

al. 2004, Chust et al. 2006).     

 

Despite the increase in studies using variation partitioning to test the relative importance of 

neutral and niche processes on the spatial variance in species composition, some important 

concerns regarding this approach remain. Firstly, the manner in which environment and space 

are modelled has a strong influence on the outcome of the analyses (Jones et al. 2008, Chang 

et al. 2013), where the effect of unmeasured environmental factors can manifest as the 

influence of pure space. For example, (Baldeck et al. 2013) show that the contribution of 

environmental factors almost doubled on including soil variables along with topographical 

variables, resulting in comparable decreases in the contribution of pure space. Most studies 

do not account for effects of soil characteristics and are therefore likely to underestimate the 

importance of environmental factors at fine and intermediate scales  (Chang et al. 2013). The 

confounding effect of unmeasured environmental factors on assessments of pure spatial 

effects, which are typically interpreted as dispersal related, poses a challenge for evaluating 

the roles of environment and dispersal on species turnover.  

 

Secondly, the spatial scale of analysis also influences these assessments (Legendre et al. 

2009, De Cáceres et al. 2012, Garzon-Lopez et al. 2014). DeCaceres et al. (2012) analysed 

beta diversity across a global network of forest plots and found that spatial factors, 

independent of spatially induced environmental effects, increase in importance at finer 

sampling scales (10 x 10m), while environmental factors (i.e. topographic heterogeneity) 

were more influential at larger observation scales (plot sizes ≥ 50 x 50m). Further, soil 

resource availability tends to increase in importance at fine spatial scales (~10m) while 

topographic heterogeneity usually matters at larger scales (>50m). On both counts, spatial 

scale appears to be critical in distinguishing the effects of niche and neutral processes 

(Garzon-Lopez et al. 2014). It is important that the approach used to model the influence of 

space allows for a multi-scale description of spatial pattern. 

 

Finally, the interpretation of any identified pure space component may be problematic unless 

the spatial weighting matrix is designed to test specific hypotheses. Even if the importance of 

unknown environmental effects is evaluated (Diniz-Filho et al. 2012), the specific 

environmental factors will still need to be identified. Thus, variation partitioning studies 
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would at least need to build and test multi-scale spatial models based on specific hypotheses 

(e.g., dispersal limitation), while also explicitly estimating the effect of unmeasured 

environmental variation on the component of variation attributed to spatial predictors. 

 

In order to address these shortcomings, variation partitioning studies should: 

a) include soil data to more comprehensively model the role of environmental factors 

at intermediate and fine scales (Chang et al. 2013).  

b) build and test multi-scale spatial models based on specific hypotheses so that these 

models constitute a direct test of specific spatial processes, such as dispersal, and; 

c) attempt to disentangle the effect of unmeasured environmental variation from the 

component of variation attributed to spatial predictors. 

 

The general framework of Moran’s Eigenvector Maps (MEMs) (Dray et al. 2006) provides 

complex, multi-scale spatial predictors, with the necessary flexibility to model specific spatial 

hypotheses (e.g. different dispersal scenarios). On the other hand, independent tests of the 

influence of any effects of unmeasured environmental variables can now also be carried out 

(Diniz-Filho et al. 2012). MEM consists in the diagonalization of a spatial weighting matrix 

and has the advantage of allowing for the spatial connectivity among sites to be defined in a 

variety of ways that would allow tests of competing hypotheses (Dray et al. 2006). For 

example, in topographically complex landscapes, Euclidean spatial distance may not 

accurately depict dispersal connectivity, or where sampling has to be perforce irregularly 

distributed, MEMs may provide the needed flexibility for proper spatial analyses. Further, 

they have been shown to outperform other approaches in modelling spatial relationships 

between sites (Jones et al. 2008, Gilbert and Bennett 2010). Surprisingly, despite the strength 

and flexibility of spatial connectivity matrices in testing specific dispersal processes, they 

have not been adequately used to study the role of dispersal in variation partitioning studies 

on plant communities 

 

The following study uses high elevation tropical montane cloud forests of the Western Ghats, 

India to address existing gaps in variation partitioning studies as stated above. These forests, 

also known as sholas, occur above 1500m elevation in island-like patches, within a mosaic of 

natural grassland (Meher-Homji 1967, Bunyan et al. 2012). The topographically complex 

terrain in which they occur creates greater environmental heterogeneity over shorter 

distances, which has been found to increase the influence of niche-based processes on 
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community assembly at intermediate and large spatial scales (Brown et al. 2013). Species 

composition and distributions have been described in earlier studies (Meher-Homji 1967, 

Jose et al. 1994, Suresh and Sukumar 1999, Mohandass and Davidar 2009) and by the same 

author in earlier chapters, but the relative role of environmental factors, such as climate, 

topography and soils, and of dispersal in structuring tree communities has not been 

investigated. Shola tree species appear to be strongly influenced by the elevation gradient 

(please see Chapter 3). Some species found in these forests are frost-adapted, while others 

show differences in distribution along edge-interior gradients (Meher-Homji 1967, Jose et al. 

1994). Related to this, forest fragment size also influences the composition of communities, 

with larger patches having greater representation of late-successional species (Mohandass and 

Davidar 2010). Together, these observations and the fact that tropical montane forest soils are 

known to be nutrient limited (Tanner et al. 1998, Fisher et al. 2013), indicate that 

environmental filtering should play a strong role in structuring shola plant communities. 

However, the role of dispersal limitation at the landscape scale in this naturally fragmented, 

patch-island habitat versus the effects of environmental filtering remains unresolved. 

 

In this study I carry out an extensive set of quadrat sampling of species composition, and 

environmental measurements, to evaluate the contribution of historical and environmental 

factors, and dispersal to the variation of tree and shrub species composition in this landscape. 

I evaluate the role of dispersal processes using different spatial connectivity models and 

employ a framework to simultaneously test dispersal and environment effects on plant 

community structure. Finally, I estimate what fractions of the variation in composition of 

shola tree and shrub communities can be accounted for by variation in environmental and 

historical factors relative to dispersal limitation. 

 

 

Methods 

Study area 

The study area of approximately 600km2, is located between latitudes 11.17oN and 11.50oN, 

and longitudes 76.43oE and 76.77oE on the Upper Nilgiri Plateau at elevations 1800-2630m 

above mean sea level (m.s.l.). Shola forests extend from 1500-2590m (Ranganathan 1938) 

and most of the survey was conducted on the western and south-western parts of the plateau 

that contain the largest stretches of intact shola-grassland mosaics (Fig. 4.1). Plant endemism 
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is high and Blasco (1971) recorded 223 plant species known only from this region. About 

53% of the tree and shrub species in the study area appear to be endemic to the Western 

Ghats and Sri Lanka (see Chapter 3).  

 

The plateau shows extraordinary vertical and horizontal physiographic differentiation and has 

three main rainfall regimes (von Lengerke 1977, Caner et al. 2007) - the highest level in the 

west (5000-2500 mm/yr), decreasing towards the south the east (2000-1500 mm/yr), and 

lowest in the central part (1200-900 mm/yr) (Fig. 4.1). The dry season lasts 3-4 months 

(December through March), and temperature ranges from a mean maximum of 24oC in April 

to a mean minimum of 5oC in December. Frost occurs between November and March and 

mainly in the valleys rather than the higher hill slopes (von Lengerke 1977, Caner et al. 

2007). Geologically, the plateau is made up of deeply weathered, ancient metamorphic rocks 

called charnockites and the soils are acidic (pH range 4.09-5.56) rich in organic matter. They 

were most recently classified as non-allophanic andisols (Caner et al. 2000) and earlier as 

Ultisols (Typic Haplohumults) and Inceptisols (Oxic Humitropepts) (Sehgal et al. 1996). Peat 

soils occur in swampy areas along valley bottoms. 

 

The area is sparsely populated, and falls under Reserved Forest and also a National Park. 

Major land cover types are shola-grassland mosaics, forestry plantations (Eucalyptus sp. and 

Acacia mearnsii), agriculture, and tea plantations. The grasslands pre-date human settlement 

and are not considered to be of anthropogenic origin (Sukumar et al. 1995, Caner et al. 2007). 

However, during the last 150 years, particularly the last 70 years, large stretches of grassland 

were planted with exotic tree species or converted to tea plantations (Prabhakar 1994). 

 

Vegetation sampling 

A stratified random sampling design was used to collect vegetation data from 20 x20 m plots, 

based on slope, aspect, and landscape context. A minimum of four plots were placed within 

each combination of landscape context and topographic class, with the exact location of plots 

determined by accessibility and steepness of terrain. In large shola patches (> 60 ha), three 

transects of plots were placed at a minimum of 250m apart, with a distance of at least 50m 

between each plot along the transect. Within each plot all individuals > 0.5m in height were 

identified to species, mapped and diameter at breast height measured for all individuals 

>1.3m in height. Species identities were confirmed using field guides, flora (Gamble 1923, 
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Ramesh et al. 2008) and the help of an experienced taxonomist.  Distance to the nearest edge 

of the shola fragment was noted as well as the GPS location of the plot corner, elevation, 

slope and aspect. A total area of 3.48 ha (87 plots) was measured. The minimum distance 

between plots was 24.4m and the maximum distance was 31km; 16 plots were separated by 

100m or less. Most plot pairs were at a distance of 5km apart, followed by 17km apart (Fig. 

4.2).  

 

Figure 4.1: Map showing locations of sampled sholas, major rainfall regimes (from Caner 

et al. 2007) and landcover types (Ramesh et al. 2002). Region I rainfall 5000-2500mm, 

mainly from the southwest monsoon, Region II rainfall 1200-900mm, Region III rainfall 

2000-1500mm from both the southwest and northeast monsoon.  
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Figure 4.2: Histogram showing distribution of pairwise plot distances 

 

Soil sampling and analysis 

Three surface soil samples were collected at regular intervals along the diagonal of each 

vegetation plot, using a 30cm long iron pipe. The litter layer was cleared and the top 20cm 

layer of soil was sampled at each point. After collection the samples were stored in airtight 

plastic containers for analyses in the lab.  

In the lab soil samples were processed and texture was measured using the hydrometer 

method (Sheldrick & Wang 1993; see Appendix 1 for protocol). Most of the plots had soil 

texture that varied from loamy sand to sandy loam. The mean sand content was 75.13% ± 

5.67, mean silt content was 16.75% ± 4.34 and mean clay content was 8.11% ± 2.95. The 

colour of the samples varied greatly from light brown to very dark brown (almost black). 

There was also high organic matter content consisting of fine roots or leaf and bark fragments 

in the samples. 

Total soil carbon and nitrogen was measured using a C/H/N analyzer (LECO). 

Approximately 10g of soil from each plot was first ground to pass through a fine mesh sieve 

(0.25mm). Approximately 0.15g of this was used for the LECO analysis. Each batch of 

samples was processed along with a blank as well as a set of known soil standards to calibrate 

the readings. The results show that the average percent carbon in the samples was 11.27% ± 

3.68 and the average percent nitrogen was 0.86 ± 0.22. 
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The Mehlich III extraction protocol (Trans and Simard 1993) was followed to measure 

exchangeable soil cation concentrations. The Mehlich extracts were analysed using ICP-

Optical Emission Spectrometry (Thermo Fischer ICAP 6000 series). Mehlich extraction was 

conducted on the dried archived soil samples rather than fresh soil as I did not have access to 

lab facilities during field sampling. However, after drying and preparation the soil samples 

set aside for nutrient analysis were kept refrigerated. The readings for potassium were 

unusually high for several plots and further investigation indicated an error in the ICP 

readings for potassium in two batches of sample runs. Therefore potassium data was not used 

in further analysis. 

 

A summary and results of the exploratory analysis with soil predictors are presented in 

Appendix 2. Except for Cu, which was significantly negatively correlated with elevation 

(Pearson’s r = -0.32), none of the other soil nutrient concentrations showed a significant 

correlation with elevation. This could be because all of the sites are above 1500m elevation 

(Tanner et al. 1998, Fisher et al. 2013). 

 

Environmental Data collection 

Environmental variables describing plot characteristics (habitat, topography, climate) were 

extracted using ArcGIS v.10.0 (ESRI 2011) and Google Earth (Google Earth 2013). 

Variables were plotted to check their distribution and transformed as necessary. Pearson’s r 

was also calculated to assess which of the variables were highly correlated. 

 

The ASTER Global Digital Elevation Model (GDEM) v.2 tiles (30m contour interval) (METI 

and NASA 2011) for the study area were used to extract the following topographic predictors 

in ArcGIS using Spatial Analyst and Topography toolbox: elevation, slope, cosine aspect and 

solar radiation (McCune and Dylan 2002), topographic position index (TPI), (Jenness 2006), 

topographic convergence index (TCI), (Beven and Kirkby 1979), and surface curvature 

(Table 4.1). TPI was calculated at the local scale (Table 4.1). TCI and surface curvature 

values for each sampling point were also extracted at the local scale, by resampling the DEM 

to 60m resolution. TCI was used as a proxy for soil moisture as it incorporates the upslope 

flow area above a given cell, identifying convergent points in the landscape which water 

would flow to. It is also a proxy for areas that are prone to cold air pooling and therefore frost 
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(Dobrowski 2011). Bioclimatic predictors (Table 4.1) were downloaded from the BIOCLIM 

global dataset, available at 1km resolution (Hijmans et al. 2005). 

 

Soil data was not collected in 9 of the vegetation plots. For 7 of these plots, inverse-distance 

interpolation was used to estimate soil texture values and kriging was used to estimate soil 

cation concentrations. As the remaining 2 sites were located far apart from the rest of the 

sites, it was not possible to get good estimates for soil predictors for these sites. They were 

therefore dropped from the dataset and not used in further analysis. This analysis was done in 

R statistical software v.3.0.2 (R-Development-Core-Team 2013) using the ‘GeoR’ package. 

 

Table 4.1: Environmental variables used in canonical ordination analysis of shola tree and 

shrub species abundance data 

 

Variable Code Description Units Source/Reference 

Local Habitat    

Ln.area Shola fragment area calculated from 
polygons digitized in Google Earth – 
log transformed 

m2 Google Earth imagery 

LS.context Landscape context, categorical 
variable: 1-grass, 2-tea, 3-wattle 

 Field data 

Plot.BA Basal area per unit area of plot m2ha Field data 

Dist.edge Distance from nearest edge of shola m Field data 

Dist.stream Measured using Google Earth imagery 
with a DEM-derived stream layer 
overlaid and using along ground 
distance. 

m Google Earth imagery, 
ASTER DEM 

Climate    

coldest.min Minimum temp of coldest month 1km 
grid 

oC BIOCLIM, Hijmans et al. 
2005 

temp.seas Temperature Seasonality (standard 
deviation *100) 1km grid 

 BIOCLIM, Hijmans et al. 
2005 

ann.prec Annual precipitation 1km grid mm BIOCLIM, Hijmans et al. 
2005 

prec.cv Precipitation Seasonality (Coefficient 
of Variation) 1km grid 

 BIOCLIM, Hijmans et al. 
2005 

prec.warmqtr Warm quarter precipitation 1km grid mm BIOCLIM, Hijmans et al. 
2005 

prec.dryqtr Dry quarter precipitation 1km grid mm BIOCLIM, Hijmans et al. 
2005 

prec.coldqtr Cold quarter precipitation 1km grid mm BIOCLIM, Hijmans et al. 
2005 
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Soil    

Perc.sand Percent sand in soil % Field data & lab analysis 

Perc.silt Percent silt in soil % Field data & lab analysis 

Perc.clay Percent clay in soil % Field data & lab analysis 

Perc.C Percent carbon in soil % Field data & lab analysis 

Perc.N Percent nitrogen in soil % Field data & lab analysis 

Ca Calcium concentration ppm Field data & lab analysis 

Al Aluminium concentration ppm Field data & lab analysis 

Mg Magnesium concentration ppm Field data & lab analysis 

Fe Iron concentration ppm Field data & lab analysis 

Mn Manganese concentration ppm Field data & lab analysis 

B Boron concentration ppm Field data & lab analysis 

Zn Zinc concentration ppm Field data & lab analysis 

P Phosphorous concentration ppm Field data & lab analysis 

Cu Copper concentration ppm Field data & lab analysis 

Topography    

Elevation Measured in field using Garmin GPS 
eTrex vista H 

m GPS data from field 

Slope Measured in field using a compass degrees Field data 

Cos.asp cosine transformation of aspect in 
radians, 30m DEM resampled to 60m 
resolution 

 ASTER GDEM, METI & 
NASA 2011 

TCI Topographic convergence index using 
60m DEM resolution 

 ASTER GDEM 

TPI1.3 Average difference in elevation 
between a focal cell and neighborhood 
defined using an annulus of inner 
radius 60m and outer radius 180m 

m ASTER GDEM, METI & 
NASA 2011 

Curve30 Calculated from ASTER DEM 30m 
pixel 

 ASTER GDEM, METI & 
NASA 2011 

Solar60 Potential annual direct solar radiation 
based on latitude, slope and aspect. 
Calculated using 60m DEM pixel 

MJ/cm2

/yr 

McCune and Dylan 2002 

 

Data Analysis 

Assessing relative influence of climate, topography, habitat and soil 

Abundance data for 79 tree and shrub species with stems ≥ 1cm dbh, across a total of 85 

plots, were used in statistical analysis as recent studies show that environmental filtering 

affects trees even at early life stages (Baldeck et al. 2013, Brown et al. 2013). 

The environmental predictors were grouped into four matrices: “climate”, “soil”, 

“topography” and “habitat”. Redundancy analysis (RDA) (Rao 1964) was conducted on 

Hellinger transformed species abundance data (Griffith and Peres-Neto 2006) using the four 

matrices as predictors. Canonical variation partitioning (Borcard et al. 1992) was used to 

determine the amount of variation that could be accounted for by each of the predictor 
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matrices. This method runs RDAs based on the full model and then subtracts the components 

of variation accounted for by each individual matrix, while controlling for the effects of the 

other matrices through partial RDAs. The analysis was conducted in R statistical software 

using the package ‘vegan’. The adjusted R2 (R2
a) for each component was then calculated  

(Peres-Neto et al. 2006) and compared.  

 

Selection of best environmental model 

To obtain the most parsimonious set of environmental predictors for RDA, we used model 

selection based on Akaike’s Information Criteria (AIC) (Burnham and Anderson 2002). A set 

of 102 competing models was formulated using insights from the results of RDAs described 

above and by building increasing levels of complexity, starting with the broader scale 

predictors for climate and successively adding different combinations of finer scale predictors 

based on topography, soil and habitat (see Appendix 4.1 for full model set). Interaction terms 

between climate predictors were also included.  

 

Selection of best spatial model 

Alternative spatial models representing different types and levels of connectivity were 

formulated based on Dray et al. (2006). Three different model sets (see Appendix 4.2 for 

illustration) designed to represent different dispersal scenarios were tested. The first defined 

links between sampling sites based on a Delauney triangulation. Inverse-distance weights 

were assigned to links using the formula: 1- (d/dmax)y. This approach maximizes linkages 

and therefore connectivity and dispersal across all sites.  

 

The second set of spatial connectivity matrices was defined using a series of 50 threshold 

Euclidean distances to define connectivity. These distances ranged (in intervals of about 

330m) from 3.5km (minimum distance required to ensure that all plots had at least one 

neighbour) to 20km. The range of distances was decided based on a multivariate variogram 

of species abundances (Dray et al. 2006). The links were weighted as indicated above. 

Weights formulated with values for y between 2 and 10 were tested. These models represent 

dispersal limitation at different distance ranges, with the likelihood of dispersal decreasing 

non-linearly with distance.  
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The third spatial connectivity matrix was designed specifically to test topographical effects 

on dispersal. In topographically complex terrain Euclidean distance between plots may not 

accurately capture connectivity if significant barriers exist. Hence we defined a connectivity 

matrix using binary links weighted by slope resistance (Appendix 4.2), instead of Euclidean 

distance. Resistance values for links between plots were derived using a Circuit Theory 

approach (McRae et al. 2008). A raster of slope values for the study area, derived from the 

DEM (resampled to 60m resolution) was used as a resistance surface. This part of the 

analysis was conducted using Circuitscape software v. 4.0 (McRae et al. 2009). A binary 

matrix with a threshold distance of 4.8km was created for all the plots. Plots ≤ 4.8 km apart 

received a value of ‘1’ and those > 4.8km apart received a value of ‘0’. The threshold 

distance of 4.8 km was derived by plotting a multivariate variogram of detrended species 

abundances (Borcard et al. 2011). This matrix was then multiplied (using Hadamard product) 

by the inverse slope-derived resistance value between each pair of plots, using the same 

formula as above, to yield the final spatial connectivity matrix. This was done in R using the 

‘spdep’ package. 

  

Spatial predictors in the form of Moran’s Eigenvector Maps (MEMs) were derived from each 

of the above spatial connectivity matrices. Only positive MEMs were selected as the intent 

was to model positive spatial autocorrelation between plots, driven by dispersal processes. To 

test competing spatial models, Hellinger-transformed species abundance data was first 

detrended using plot x and y coordinates, as there was a significant spatial trend present in the 

data (Borcard et al. 2011). RDAs were run with the detrended data as the response variable 

and positive MEMs derived from each of the spatial connectivity matrix models as predictors. 

The model with the lowest AICc values was picked as the best spatial model (Dray et al. 

2006). This analysis was conducted in R using packages ‘vegan’, ‘spdep’, ‘spacemakeR’. 

 

Assessing the relative influence of environment and space  

Canonical variation partitioning based on RDAs was used to assess how much of the species 

abundance data was explained by environment and space. The environmental and spatial 

models with the lowest AIC values were selected as described above. A third explanatory 

matrix was also added consisting of the plot x and y locations as a significant spatial trend 

was present in the data and had to be modelled separately (Borcard et al. 2011). The pure 
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space and pure environment components were determined, and the significance of each of the 

partitions was assessed by permutation (Borcard et al. 2011). 

 

Finally, we used the method suggested by Diniz-Filho et al. (2012) to test for the presence of 

unmeasured environmental variation represented in the pure space component. This was done 

by obtaining species abundances predicted by the pure space component (Diniz-Filho et al. 

2012) and then conducting a Mantel’s test between a matrix (R) representing the Pearson’s 

correlations between these species’ abundances, and a matrix (M) representing the Manhattan 

distances between species Moran’s I correlograms. This analysis was conducted in R using 

the libraries ‘vegan’ and ‘ncf’. 

 

 

Results 

Data for a total of 15,854 individuals belonging to 79 species, across 85 vegetation plots was 

used in the analysis. The number of individuals (≥ 1cm dbh) in a 0.04ha plot varied from 37 

to 573, with a mean of 182 and median of 165. Species richness in the plots varied from 8 to 

33 (mean = 22, median = 21). The most abundant species was a shrub represented by 2186 

individuals. There were two species each represented by one and two individuals 

respectively.  The most abundant tree species were: Symplocos foliosa, Litsea wightiana and 

Neolitsea cassia, while the most abundant shrub species were: Psychotria nilgiriensis and 

Lasianthus venulosus.  

 

Relative influence of climate, topography, habitat and soil on species abundances 

The results of the RDAs with each set of environmental predictors run separately indicated 

that all four canonical models were significant (P < 0.05). Hence climate, topography, habitat 

and soil were all important in explaining variation in species abundance. Among the climate 

predictors the following were significant (P < 0.05): an interaction between temperature 

seasonality and dry quarter precipitation, and annual precipitation. All of the 5 habitat terms 

used were highly significant (P < 0.01). The RDA with soil predictors indicated that simple 

percentage values for sand clay and soil C, and concentrations of N, Ca, Cu Al, P and Zn 

were also significant (P < 0.05). Finally, of the topographic predictors, elevation was highly 

significant (P < 0.01) with cosine aspect, TCI and slope also showing significant effects (P < 

0.05).  
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Variation partitioning indicated that the 31 environmental predictors explained a significant 

amount of the variation in the tree and shrub abundances (R2
a = 42%, P = 0.005). Among 

these 6 climate predictors, plus an interaction term between temperature seasonality and dry 

quarter precipitation, were able to explain the maximum amount (R2
a = 26.9%, P = 0.005), 

followed by 5 local habitat predictors (R2
a = 19.5%, P = 0.005), 7 topographic predictors (R2

a 

= 14%, P = 0.005) and 12 soil predictors (R2
a = 11.5%, P = 0.005). Some combinations of 

environmental factors showed significant effects while others did not. Thus, climate and 

topography (R2
a = 6.3%, P = 0.005), and climate and habitat were important (R2

a = 5.4%, P = 

0.005), while topography and soil was not (Fig. 4.2). Furthermore, significant (P < 0.01) 

proportions of variation were attributable purely to climate (R2
a = 8%), habitat (R2

a = 6%), 

soil properties (R2
a = 4%), and topography (R2

a = 2.8%). Climatic and habitat predictors were 

better able to explain variation in species abundance distributions compared to soil and 

topographic predictors. 

 

Figure 4.3: Variation partitioning results for Hellinger transformed tree and shrub abundance data 

with 4 explanatory environmental matrices. The enclosing box represents total variation in 

composition, of which 42.75% was explained by the environmental datasets The labels for the 

adjusted R2 values for each of the partitions are as follows: [a] pure climate fraction, [b] pure soil 

fraction, [c] pure topography fraction, [d] pure habitat fraction, [e] climate + soil, [f] soil + 

topography, [g] climate + topography, [h] habitat + climate, [i] habitat + soil, [j] topography + habitat.  
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Selection of the best environmental model  

The full list of 102 models that we built using various combinations of significant 

predictors is presented in Table S1 with AIC, ΔAIC values, model likelihood, adjusted R2 

and significance level. There were 10 models with ΔAIC < 2, indicating that they were 

equally good (Table 4.2). The set of predictors that performed best were: an interaction 

between temperature seasonality and dry quarter precipitation, slope, TCI, percent clay, N, P, 

Ca, Zn, log of fragment area and landscape context. Elevation, though a strong predictor on 

its own did not add additional explanatory power when combined with temperature and 

precipitation variables (Table1). The model with the lowest AIC value has an R2
a = 40.3% (P 

= 0.005). Eight of the 14 RDA axes from this model are significant (P < 0.05) and the first 4 

axes account for 30.5% of the variation.  

 

Table 4.2:   Top ten environmental models based on Δ AIC< 2, along with model likelihood, 

adjusted R2 values and significance. Please refer to Table 4.1 for variable codes. 

Model AIC Δ 

AIC 

Model 

lik 

AIC 

wt 

R2 R2adj P DF 

tmp.seas*prec.dryqt + ann.prec + Slope 

+ TCI60 + Nperc + perc.clay + P + Ca + 

Zn + ln.area + LS.cont 

-85.65 0.00 1.00000 0.109 0.50 0.40 0.005 15 

tmp.seas*prec.dryqt + ann.prec + Slope 

+ TCI60 + Nperc + perc.clay + P + Ca + 

Zn + ln.area + LS.cont + plotBA 

-85.43 0.22 0.89474 0.098 0.51 0.40 0.005 16 

tmp.seas*prec.cv + ann.prec + Slope + 

TCI60 + Nperc + perc.clay + P + Ca + 

Zn + ln.area + LS.cont 

-85.21 0.44 0.80148 0.087 0.50 0.40 0.005 15 

tmp.seas*prec.dryqt + ann.prec + 

coldest.min + Slope + TCI60 + Nperc + 

perc.clay + P + Ca + Zn + ln.area + 

LS.cont 

-85.20 0.46 0.79632 0.087 0.51 0.41 0.005 16 

tmp.seas*prec.dryqt + Slope + TCI60 + 

Nperc + perc.clay + P + Ca + Zn + 

ln.area + LS.cont 

-85.02 0.63 0.72879 0.079 0.49 0.39 0.005 14 

tmp.seas*prec.dryqt + coldest.min + 

Slope + TCI60 + Nperc + perc.clay + P + 

Ca + Zn + ln.area + LS.cont 

-84.86 0.79 0.67326 0.073 0.50 0.40 0.005 15 

tmp.seas*prec.dryqt + Slope + TCI60 + 

elev + Nperc + perc.clay + P + Ca + Zn 

+ ln.area + LS.cont 

-84.59 1.07 0.58697 0.064 0.50 0.40 0.005 15 

tmp.seas*prec.dryqt + Slope+ TCI60 + 

elev + Nperc + perc.clay + P + Ca + Zn 

+ Cu + ln.area + LS.cont 

-84.18 1.47 0.47837 0.052 0.51 0.40 0.005 16 

tmp.seas*prec.dryqt + Slope+ TCI60 + 

elev + Nperc + perc.clay + P + Ca + Zn 

+ Cu + ln.area + plotBA + LS.cont 

-83.93 1.72 0.42293 0.046 0.52 0.40 0.005 17 

tmp.seas*prec.dryqt + coldest.min + 

Slope + TCI60 + Nperc + perc.clay + P + 

Ca + Zn + ln.area + plotBA + LS.cont 

-83.84 1.82 0.40346 0.044 0.49 0.39 0.005 16 
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Temperature seasonality, fragment area, dry quarter precipitation, Ca and N influence the 

distribution of sites along the first RDA axis (Fig. 4.4), indicating an association with small 

forest patches at high elevation. This axis is positively correlated with Litsea wightiana, 

Psychotria nilgiriensis and Symplocos foliosa abundance (Table 4.3). The second axis is 

positively correlated with P, Ca, and temperature seasonality, while negatively correlated 

with dry quarter precipitation and log fragment area (Fig. 4.4). Species strongly negatively 

correlated with this axis are Saprosma ceylanicum, Cryptocarya lawsonii and Psychotria 

nilgiriensis (Table 4.3). Indicating that these species have higher abundances in lower dry 

season rainfall areas, within large fragments with relatively nutrient poor soil. RDA 3 is 

positively correlated with annual precipitation and TCI and negatively correlated with a 

landscape context of tea and the interaction between temperature seasonality and dry quarter 

precipitation. This axis is correlated with Neolitsea sp. and Nothapodytes nimmoniana (Table 

4.3).  RDA 4 is influenced by landscape context, mainly separating sites surrounded by 

Acacia mearnsii plantation from those surrounded by tea. It is also positively correlated with 

N levels and negatively correlated with Zn. This axis is positively associated with shrub 

species Psychotria nilgiriensis and Lasianthus venulosus, which have higher abundances in 

wattle sholas. 

 

Table 4.3: Species with the ten highest scores on first four RDA axes of the best 

environmental model. Names listed in decreasing order based on the absolute value of the 

score. Negative scores are indicated in brackets. 

RDA1 RDA2 RDA3 RDA4 

Litsea wightiana Saprosma ceylanicum (-) Neolitsea cassia  (-) Psychotria nilgiriensis 

L. stocksii (-) Cryptocarya lawsonii (-) 
Nothopodytes 
nimmoniana Saprosma ceylanicum (-) 

Psychotria 
nilgiriensis Psychotria nilgiriensis (-) 

Neolitsea scrobiculata 
(-) Lasianthus venulosus 

Symplocos foliosa Litsea wightiana 
Isonandra 
perottetiana (-) Meliosma simplicifolia (-) 

Cestrum 
aurantiacum (-) L. stocksii 

Symplocos 
macrocarpum Litsea wightiana (-) 

Mahonia 
leschenaultii Lasianthus venulosus (-) Saprosma ceylanicum 

Cinnamomum wightiana 
(-) 

Litsea floribunda  (-) Mahonia leschenaultii Casearia thwaitesii Casearia thwaitesii 

Lasianthus venulosus 
Cinnamomum 
macrocarpum (-v) 

Cryptocarya 
neilgherrensis (-) Cryptocarya lawsonii (-) 

Syzygium montanum 
Nothopodytes 
nimmoniana 

Excoecaria 
oppositifolia (-) Neolitsea cassia  (-) 

Actinodaphne  
bourdillonii (-) Litsea floribunda  (-) Litsea floribunda  Cinnamomum sp. 
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Figure 4.4:  Triplots of RDA axes 1 & 2 of Hellinger transformed tree and shrub data 

constrained by predictors from the best environmental model. Top panel represents the 

distance biplot (scaling 1) using weighted average scores. Bottom panel represents the 

correlation biplot (scaling 2) with site scores as open circles. 
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Selection of best spatial model 

 The best spatial model in the RDAs between the detrended Hellinger-transformed species 

data and the respective MEMs, was a model that linked sites at a distance threshold of 4.8 km 

(Appendix 4.2) and had an inverse distance weighting on the links using the formula 1-

(d/dmax)2. This model yielded the lowest AICc values (Table 4.4) and had 10 positive MEMs 

(Fig 4.5). The Delauney triangulation models performed the worst, indicating that spatial 

predictors based on maximum spatial connectivity across all sites and therefore unlimited 

dispersal, did not model variation in the detrended species abundances as well as the other 

models. The models derived from slope resistances did not perform as well as the ones based 

on simple Euclidean distance weights using a threshold for connectivity. 

 

Table 4.4: Competing spatial models with AICc values and number of spatial predictors 

derived (in the form of positive MEMs). Only variants of the best distance threshold model 

are shown (i.e. models with threshold = 4.8km) 

S.no Spatial Model AICc weight type 

No. 
MEM 
pred 

1 
Links thresholded at 4.8 km with 
inverse Euclidean distance weights -89.870 1- (d/dmax)2 10 

2 Links with 4.8 km threshold -88.193 None 8 

3 
Links thresholded at 4.8 km with 
inverse slope resistance weights -87.927 1- (slope.res/slope.resmax) 11 

4 
Links thresholded at 4.8 km with 
inverse slope resistance weights -87.031 1- (slope.res/slope.resmax)2 8 

5 
Links thresholded at 4.8 km with 
slope resistance weights -83.752 slope resistance 6 

6 
Inverse Euclidean distance weighted 
links based on Delauney triangulation -82.105 1- (d/dmax)2 6 

7 Links based on Delauney triangulation -81.821 None 8 

 

Relative influence of environment and space on species abundances:  

Variation partitioning conducted with 3 predictor matrices: best environmental model, best 

spatial model, and the spatial coordinates (x, y) of plots, indicated that environmental and 

spatial predictors together explained 50.8% of the variation in the undetrended tree and shrub 

data (Fig. 4.6). The environmental variables explained 40.3% of the variation, of which only 

5.5% is not spatially structured (pure environment). This fraction likely represents the effects 

of local environmental conditions. The remaining fractions (Fig. 4.6) represent spatially 

structured environmental variation (total 27.4%) and are indicative of induced spatial 
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Figure 4.5:  Maps of 10 positive Moran’s Eigenvectors (MEMs) from the best spatial model (i.e. Euclidean distance threshold of 4.8 km with 

inverse distance weighted links). Black squares represent positive spatial autocorrelation while white squared represent negative spatial 

autocorrelation. The size of the squares correspond to the magnitude of the correlation
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variation. The pure environment fraction (Ra
2 = 5.5%) and pure spatial (Ra

2 = 9.4%) fraction 

are both significant (p < 0.01), while the pure spatial trend is very small and non-significant, 

and shows overlap with environmental predictors (Fig. 4.6). The spatial predictors alone 

account for less than 10% of the variation. 

 

 

Figure 4.6: Variation partitioning results for Hellinger transformed tree and shrub abundance data 

with space, environment and plot (x,y) locations. The enclosing box represents total variation in 

composition, of which 50.8% was explained by the environmental, plot x.y locations and spatial 

(MEM) data. The labels for the adjusted R2 values for each of the partitions as follows: [a] pure 

environmental fraction, [b] pure spatial trend fraction, [c] pure MEM fraction, [d] joint environment 

and spatial trend fraction, [e] MEM + spatial trend, [f] environment + MEM. 

 

The Mantel’s test between the matrix containing the correlations between predicted species 

abundances (using the pure space component) and another matrix containing the Manhattan 

distances between Moran’s I correlograms for each of the species was non-significant (rM =    

- 0.048, p = 0.99). This indicates that the variation attributed to the pure space component is 

unlikely to be confounded by unmeasured environmental variables (Fig.4.7).  
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Figure 4.7: Correlogram showing the average Moran’s I value for a given distance class. 

Moran’s I calculated based on predicted abundances of 79 tree and shrub species using the 

pure spatial component from variation partitioning. Increment between distance classes is 

approximately 620m.  Dashed lines represent 1 standard deviation from the mean. 

 

 

Discussion 

 

This study investigates the importance of environment, space, history, and biotic factors in 

the organization of plant communities in a unique landscape of montane tropical forest in the 

Western Ghats of India. The results clearly show that environment, historical factors and 

space accounted for about half the total variation in shola tree and shrub abundances among 

sample plots distributed over a 600 km2 area. The total variation explained in this study is 

high compared to some studies where both edaphic and topographic predictors were used 

(Svenning et al. 2004, Jones et al. 2008), and within the range of results found for smaller 

intensely mapped study areas (24-50 ha) across lowland tropical forests (Baldeck et al. 2012). 

Although direct comparison of variation partitioning results across studies that differ in scale, 

spatial structuring of environment and species life-history is not recommended (Smith and 

Lundholm 2010), the high explanatory power of this analysis may reflect the attempt to 

include all the important factors that potentially influence plant distributions and abundance. 

 

Importantly, the results demonstrate strong evidence of spatially induced variation in plant 
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community structure. The major influence must therefore arise from spatially structured 

environmental variation and its interaction with limited dispersal (Smith & Lundholm 2010, 

Garzon-Lopez et al. 2014). However, at least 9% of the variation in species abundances can 

be attributed to spatial processes alone (i.e., not due to unmeasured environmental factors) 

and this is most likely due to dispersal limitation. Thus it could be concluded that dispersal 

limitation has a relatively small role in determining the extant plant community structure in 

this landscape, a finding that is consistent with observations that these forest mosaics are tens 

of thousands of years old (Caner et al. 2007). 

 

Environmental and historical factors that influence shola species abundance 

Climate was the most influential environmental factor followed by habitat and then soil. 

Previous studies had found a strong relationship between variation in climate and tree species 

distributions at large spatial scales in the Western Ghats (Davidar et al. 2007, Ramesh et al. 

2010). The results show that in topographically complex terrain, at high elevations, climate 

influences species distributions even at scales on the order of tens of kilometres. The 

elevation-temperature gradient in the study area drives much of the variation in species 

composition from north to south. Its interaction with the west-east precipitation gradient can 

explain why the northwestern plots show the greatest difference in species composition with 

the southeastern ones. Therefore gradients and interactions of temperature and precipitation 

that shape tree species distributions at regional scales across the entire Western Ghats 

(Davidar et al. 2007) also affect plant community structure within a single habitat type at 

much smaller scales, albeit in topographically complex terrain. It should also be noted that 

the study area covers the high elevation end of the elevation-temperature gradient in the 

Western Ghats, where many tropical evergreen tree species are at their range boundaries 

(Ohsawa 1991). Therefore species abundances may respond relatively strongly to changes in 

precipitation and seasonality in this landscape. 

  

Moisture availability for vegetation may further act through the frequency and duration of 

mist immersion, a factor that is not fully captured in precipitation data.  Such non-

precipitating moisture inputs is known to play a critical role in determining dry-season 

moisture availability in tropical mountains (Goldsmith et al. 2013, Oliveira et al. 2014). 

Although dry-quarter precipitation does vary between sites in the study area - with lower 

values for the western edge of the plateau and higher in the southeastern parts - the specific 

importance of mist immersion needs further investigation. 
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Apart from the major influence of climate, historical factors appear to have a substantial 

influence of plant distributions (Svenning et al. 2004, Ramesh et al. 2010, Garzon-Lopez et 

al. 2014), and this is reflected in the importance of patch area and landscape context.  It has 

been shown that patch size affects both the structure and composition of sholas (Mohandass 

and Davidar 2010). The results are consistent with this observation, and while species such as 

Litsea wightiana, Symplocos foliosa, Mahonia leschenaultii and Syzygium grande are most 

abundant in the smaller patches, Cryptocarya lawsonii, Cinnamomum macrocarpum, 

Saprosma ceylanicum and Litsea floribunda achieve highest abundance in the largest patches. 

Life histories of tree species in this region have not been studied in detail, but shade tolerance 

could be one possible mechanism causing the patch size effect on species composition. 

Seedling and sapling survivorship in shade is an important influence on species distributions 

in tropical forests (Svenning et al. 2004, Comita and Hubbell 2009). Smaller patches 

experience higher influence of edge habitat (Bunyan 2009), which explains the dominance of 

at least Litsea wightiana in these patches (Mohandass and Davidar 2010). Mahonia 

leschenaultii, a species with temperate affinity, is frost-resistant (Meher-Homji 1967) - 

possibly enabling it to compete better in smaller, ‘edgier’ sholas.  

 

Landscape context is confounded with climate, and decisions on the establishment of 

monoculture exotic tree and tea plantations are influenced by local climate. In addition, plots 

in sholas surrounded by the nitrogen fixing Acacia mearnsii plantations (Forrester et al. 2007) 

showed higher average values for total soil N, while plots located in a matrix of tea 

plantations showed higher average P concentrations. Plots in grassland sholas had higher 

concentrations of Al, indicating lower pH levels. Although these differences in soil properties 

are correlated with differences in abundance of some species, other factors may be also 

involved in driving broader community-level differences. Thus while Symplocos foliosa and 

Syzygium grande were dominant in higher N sites, Meliosma simplicifolia and Neolitsea 

cassia were common in higher P sites. An invasive shrub Cestrum aurantiacum was most 

abundant in sholas surrounded by tea, followed by wattle plantation sholas and was absent in 

grassland sholas, but the exact reason for these differences are unknown. The canonical 

model results show that the effects of landscape context persisted even after accounting for 

the effects of all environmental predictors. Changes in other factors associated with landscape 

context, such as disturbance frequency or movement behaviour of seed dispersers (Morales et 

al. 2013) could also influence species abundances through their effects on regeneration and 
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recruitment.  

 

The importance of total soil N in explaining variation in abundances is supported by findings 

that high-elevation tropical montane cloud forest soils are N limited (Fisher et al. 2013). 

Litsea wightiana appears to be more dominant in sites with lower total soil N, while 

Symplocos foliosa and Neolitsea cassia are more dominant in sites with higher total soil N. 

Phosphorous limitation is reported to be greater in low-elevation tropical forests, with P 

availability increasing with elevation in some places (Tanner et al. 1998, Fisher et al. 2013). 

However, overall P concentrations for the study area seem very low, probably in part due the 

region’s non-allophanic Andisols that are known to have high P retention (Caner et al. 2000), 

reducing P availability to plants. Species correlated with low P concentrations are Turpinia 

cochinchinensis, Symplocos obtusa and Syzygium calophyllifolium, while species correlated 

with higher P concentrations include Litsea wightiana, Mahonia leschenaultii and Casearia 

thwaitesii. High Ca concentrations were positively correlated with Meliosma simplicifolia, 

Saracocca saligna, Nothopodytes nimmoniana and Isonandra perotettiana abundances and 

low Ca concentrations with the abundance of Microtropis ramiflora, Symplocos macrophylla 

and Vaccinium leschenaultii. Studies in lowland tropical forests have also found P and Ca to 

be important in explaining species distribution patterns (Paoli et al. 2006, John et al. 2007, 

Guèze et al. 2013). Apart from soil nutrients, soil texture (percent clay content), a factor that 

affects water retention, was important for some species (e.g., Cinnamomum macrocarpum 

and Litsea stocksii). 

 

Surprisingly, other than elevation, topographic variables were the least important 

environmental predictors. Although many studies have found topography to have a strong 

influence on species abundance patterns, they typically used only topographical predictors 

within a 25-50 ha scale that were derived using 20m resolution data (Legendre et al. 2009, De 

Cáceres et al. 2012, Brown et al. 2013). It is possible that the topographical analysis 

presented here (180 m – 90 m; using a 30m DEM) was too coarse to capture its effects on 

vegetation measured at the 20m scale. Variation in relative topographic position (within a 180 

m neighbourhood), aspect, and surface curvature (over a 90 x 90m neighbourhood) do not 

seem to influence the distribution of shola species. However, abundances of Nothapodytes 

nimmoniana, Symplocos macrocarpum, Saprosma ceylanicum, Casearia thwaitesii and 

Litsea floribunda are positively correlated with topographic wetness (TCI) at intermediate 

spatial scales, while slope measured at the plot scale is correlated with Meliosma simplicifolia 
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and Vaccinium leschenaultii abundance. 

 

RDA-based variation partitioning 

Recent simulation studies have questioned the ability of variation partitioning approaches to 

reliably assess the relative importance of niche and neutral processes (Smith and Lundholm 

2010, Gilbert and Bennett 2010). Gilbert & Bennett (2010) found that the RDA-based 

method tends to underestimate the environmental signal in the data, while over-fitting and 

inflating the importance of space. The former is due mainly to the limitations of RDA in 

modelling non-linear species-response curves (Austin 2002, Gilbert and Bennett 2010). I 

plotted species abundances against important environmental predictors such as elevation and 

precipitation for the common species and found that in many cases, the response could be 

approximated by a linear relationship. While this might simply indicate that the 

environmental gradient sampled here was not large enough to encompass the ranges of most 

of the study species, the observed linear responses does minimise potential problems with 

RDA-based analyses. Furthermore, using polynomial transformations of precipitation and log 

transformations of soil predictors as suggested by (Jones et al. 2008) did not improve the 

explanatory power of the models (analysis not shown). Therefore the nature of species 

response curves in this study is unlikely to cause inefficiency or bias in RDA analyses. Since I 

did not use forward selection analyses, the tendency of MEMs to inflate the proportion of 

variation accounted for by space is not important (Mundry and Nunn 2009, Gilbert and 

Bennett 2010).  

 

Interpretation of the pure space component 

In variation partitioning studies, the component of variation explained by pure space is most 

often interpreted as driven by dispersal limitation. In this study I found that a threshold-based 

and inverse-distance weighted spatial connectivity model performed best in terms of 

predicting patterns of positive spatial autocorrelation in species abundances. Furthermore, 

Mantel analyses showed no significant effects of unmeasured spatially structured 

environmental variables. Therefore I interpret the Euclidean distance-weighted connectivity 

as a direct measure of the effect of pure space, while the threshold value (here ~4.8 km) 

appears to indicate an important breakpoint in connectivity between sites in this landscape. 

Such thresholds could be determined by specific aspects of the topography or the landscape 

influencing movement of dispersers.       
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The irregular sampling scheme necessitated in this study prevents the direct interpretation of 

scale for the spatial predictors used (Borcard et al. 2011), which is indeed a disadvantage. A 

regular sampling scheme was not feasible in this habitat, given the patchy nature of the 

forests and the fact that most patches are relatively small and are very irregularly distributed 

in space. An increase in the proportion of closely spaced plot pairs (≤ 100m apart) may 

however improve the ability to model dispersal-based processes at this spatial scale.  

 

Possible factors contributing to unexplained variation 

Given the large spatial extent of this study, low gamma diversity and high environmental 

variability, we would have expected the amount of unexplained variation to be lower (De 

Cáceres et al. 2012, Brown et al. 2013). However substantial variation in species abundances 

remains unexplained, and some unaccounted factors such as disturbance and historical events 

may in part be responsible. At broader spatial scales, environmental factors such as wind 

speed and mist immersion that are important in for montane cloud forests (Goldsmith et al. 

2013), were not considered due to lack of data. At intermediate and fine spatial scales, effects 

of temporal variation in environmental factors such as soil nutrients and moisture (Jones et al. 

2008) and the stochastic effects of colonization and gap dynamics could also contribute to 

unexplained variation (Condit et al. 2002).  

 

Despite these limitations, this study compares well in terms of the comprehensive 

environmental dataset that could be directly measured and also extracted from secondary 

sources, when most other studies have relied mainly on topographical predictors (Chang et al. 

2013). It is also one of the few studies that has used spatial eigenvectors in a hypothesis 

testing framework and introduces a novel approach combining Circuit Theory and MEMs to 

model dispersal in topographically complex terrain. 
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Chapter 5 

Effects of Conversion of Landscape Matrix from Grassland 
to Tea and Exotic Tree Plantation on the Shola Tree and 

Shrub Community in the Upper Nilgiris 
 

 

Introduction 

Fragmentation studies have only recently begun to move away from the patch-island 

paradigm to investigate the role of the landscape matrix in influencing ecological processes 

(Driscoll et al. 2013). Rather than viewing the landscape matrix as an inhospitable ‘ocean’ 

surrounding ‘islands’ of natural habitat, ecologists are now examining the effects of the 

matrix on processes such as dispersal, pollination and disturbance (Kupfer et al. 2006, 

Debinski 2006, Bennett et al. 2006, Gardner et al. 2009). Anthropogenic conversion from one 

matrix land cover type to another does not always result in loss of habitat, or even in the 

breaking apart of existing habitat (i.e. fragmentation (sensu Fahrig 2003), but it may still 

affect ecological processes at the landscape level, thereby altering resource availability, 

functional connectivity (Ricketts 2001) and abiotic environments in and around habitat 

patches (Driscoll et al. 2013).  

 

Studies have found evidence that processes which drive patterns of species abundance and 

distribution within natural communities are strongly affected by the surrounding landscape 

matrix (Prugh et al. 2008, Prevedello and Vieira 2010, Watling et al. 2011, Magrach et al. 

2012). Watling et. al.’s (2011) meta-analysis found that for 63 studies on terrestrial vertebrate 

abundance and occupancy, the effect of predictors based on matrix composition was greater 

than that of binary (habitat-non habitat) predictors. Significant differences in effect sizes 

across levels of matrix heterogeneity were also found for both abundance and occupancy 

measures. Their results supported the findings of Prugh et al. (2008), which indicate patch 

area and isolation alone are poor predictors of occupancy among animal populations; and that 

landscape context has “a strong effect on occupancy patterns across many taxonomic groups 

and ecosystems worldwide” (Prugh et al. p.20773). Simulation studies indicate that even a 

small difference in the matrix interaction can significantly affect the chances of survival and 

persistence for plant metapopulations in a landscape (Loehle 2007). 
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In the case of plants, the processes that cause these changes include: alteration of  edge 

habitats (Laurance et al. 2011, González-Moreno et al. 2013), increased frequency of 

disturbances such as fire, grazing and trampling within habitat patches (Laurance et al. 2011), 

disruption or alteration of plant-animal interactions - through change in herbivore, disperser 

and pollinator communities and behaviour (Bender and Fahrig 2005, Aguilar et al. 2006, 

Prugh et al. 2008, McConkey et al. 2012) - and finally, increased competition with invasive 

exotics (Murphy and Lovett-Doust 2004, González-Moreno et al. 2013). Apart from the 

effect of each of these processes in isolation, complex and synergistic interactions between 

them can cumulatively cause major shifts in natural plant communities (Ries et al. 2004, 

Laurance et al. 2011, Driscoll et al. 2013). For instance, anthropogenic change in landscape 

context surrounding a forest patch could simultaneously increase its susceptibility to 

invasion, as well as increase invasive propagule pressure (Didham et al. 2007, González-

Moreno et al. 2013).  

 

Importance of naturally fragmented systems for studying impacts of matrix conversion: 

the shola-grasslands of the Upper Nilgiris 

Naturally fragmented forest systems such as the sholas of the Western Ghats offer a unique 

opportunity to study the effects of anthropogenic matrix conversion in a context in which it is 

far less confounded by other aspects of anthropogenic fragmentation such as habitat loss or 

partitioning (Ewers and Didham 2006). The shola-grassland system is comprised of discrete 

patches of forest habitat surrounded by a relatively homogenous and structurally distinct 

matrix of grasslands. Species distributions, interactions and ecological processes are likely to 

have equilibrated across fragments in these systems over many hundreds of generations (for 

trees). Subsequent conversion of the natural grassland matrix to exotic tree plantations and 

tea estates, particularly over the last 100 years (Prabhakar 1994), is very likely to have 

disrupted this equilibrium in complex and unpredictable ways (Driscoll et al. 2013). For 

instance, such conversion could have a ‘reverse fragmentation effect’ on processes such as 

seed dispersal by increasing frugivore density through the introduction of generalist 

frugivores that are commensal with humans. Conversely, it could also decrease functional 

connectivity by diverting frugivore movement into matrix habitats, thereby increasing seed 

rain in these areas, as opposed to within forest patches.  Edge effects would certainly be 

altered, especially in those areas where grassland was converted to wattle (Acacia mearnsii) 

plantations, leading to reduced light, lower wind stress and increased moisture at the forest 
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edge (Bunyan 2009). As this is a naturally fragmented system, several endemic tree and shrub 

species are adapted to the shola-grassland edge (Meher-Homji 1967) and alteration of edge 

conditions through matrix conversion could impact their distributions. 

 

One obvious and widely acknowledged effect of matrix conversion has been the increase in 

invasive alien species in the remnant grasslands (Thomas and Palmer 2007, Personal 

observation). In fact, one of the main species of plantation exotics, Acacia mearnsii, has been 

recognized as an aggressive invader of montane grasslands (Thomas and Palmer 2007). 

However, far less conservation and research attention has been paid to the invasion of shola 

forest patches. 

 

Cestrum: a montane forest invasive in the Upper Nilgiris  

The genus Cestrum in the Family Solanaceae has 175 known species of shrubs, vines and 

small trees (de Rojas and D’Arcy 1998, Cuevas-Arias et al. 2008, Monro 2012). The native 

range for this genus is Central and South America (Monro 2012). Here most Cestrum species 

occur in montane areas, above 800m elevation, in cloud forests and conifer and oak forests 

(de Rojas and D’Arcy 1998, Cuevas-Arias et al. 2008, Monro 2012). The abundant, attractive 

and often fragrant flowers of this genus are the reason it has been introduced as an 

ornamental plant in many regions, where it has subsequently become naturalized, and in 

several cases, turned invasive in parts of Australia, South and east Africa, Reunion Islands, 

South Asia, the Pacific islands, Galapagos and Hawaii (PIER 2005, Henderson 2007, Harvey 

et al. 2012, Gardener et al. 2013, USDA 2013). These species include: Cestrum laevigatum 

Schltdl., C. parqui (Lam.) L'Hér., C. auriculatum L'Hér., C. diurnum L., C. nocturnum L., C. 

elegans (Brongn. ex Neumann) Schltdl., and C. aurantiacum.  

 

Most of these species bear berries with small seeds that remain viable in the seed bank and 

are bird dispersed (Marambe et al. 2001, Geldenhuys 2004, Gardener et al. 2013). They are 

fast-growing, capable of vegetative reproduction (Symon 1981) and tend to form dense mats 

which can suppress the regeneration of other plant species (USDA 2013). They are also 

known to be shade-tolerant (Geldenhuys 2004), drought-tolerant, capable of growing on poor 

soils and have invaded a range of habitats from coastal dunes to savannahs, grasslands, 

plantations and closed forest (Henderson 2007). Most are quite toxic to livestock and native 
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mammals (de Rojas and D’Arcy 1998, Juyal and Ghildiyal 2013, USDA 2013). For these 

reasons, they are labelled as noxious weeds with moderate to high invasive potential (Nel et 

al. 2004, PIER 2005, Henderson 2007, USDA 2013). In South Africa and Australia extensive 

programs have been undertaken to clear areas of Cestrum species (MacDonald and Jarman 

1985, Stockard and Shepherd 1996, Marais and Wannenburgh 2008). 

 

Cestrum diurnum, C. nocturnum, C. elegans and C. aurantiacum are reported from many 

parts of the Indian subcontinent and Sri Lanka, including the Kashmir (Bano et al. 2013) and 

Nepal Himalayas (Kunwar 2003), Darjeeling (Moktan and Das 2012) and the Western Ghats 

(Saravanan et al. 2014). In the Western Ghats, Sri Lanka and Darjeeling Himalayas, Cestrum 

aurantiacum and C. elegans are reported as invasive weeds (Marambe et al. 2001, Moktan 

and Das 2012, Sajeev et al. 2012, Saravanan et al. 2014). However no comprehensive effort 

to study their distribution and impact on native vegetation has been undertaken.  

 

These species seem to occur at higher elevations, between 1500 to above 2000m (Marambe et 

al. 2001, Moktan and Das 2012, Sajeev et al. 2012, Personal observation), and in the Nilgiris 

have successfully invaded native forest fragments and the understorey of tree plantations 

(Saravanan et al. 2014, Personal observation). They appear to have spread from settled areas 

and tea plantations, where their abundance is highest (Personal observation for Nilgiris) and 

were likely imported as ornamental plants for the managers’ bungalows. Cestrum 

aurantiacum is the more abundant species and where it occurs in large numbers under native 

forest canopies, seems to dominate the understorey with little native regeneration apparent 

below it. It appears to be well adapted to the cloud forest environment in its native range in 

Guatemala and Nicaragua (de Rojas and D’Arcy 1998, Monro 2012), which would allow it to 

spread from open environments and thrive in the dense shade of shola fragments. 

 

Objectives 

In this chapter I investigate whether matrix conversion from natural grassland to tea and 

wattle plantations has had an impact on shola plant communities by assessing whether shola 

patches embedded within different landscape matrix types differ in community composition, 

population structure of tree and shrub species and soil characteristics. I also assess factors 

related to Cestrum invasion and its effects on regeneration of shola trees. I discuss possible 

ecological pathways through which the altered matrix has affected shola vegetation in the 
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context of the conceptual framework proposed by Driscoll et al. (2013). My specific 

objectives can be listed as follows: 

 

i) Assess differences in patterns of species richness and dominance, stand structure 

and tree size class distribution across sholas in the different landscape contexts. 

ii) Assess whether sholas in different landscape contexts also differ in terms of soil 

characteristics. 

iii) Examine causes of Cestrum invasion in sholas surrounded by tea plantations and 

consequences for regeneration of native species. 

 

 

Methods 

Study area 

The study area of approximately 600km2, is located between 11.17oN, 76.77oE and 11.50oN, 

76.43oE on the Upper Nilgiri Plateau (1800-2630m elevation). Most of the survey was 

conducted on the western and south western parts of the plateau that contain the largest 

stretches of intact shola-grassland mosaics (please see Figure 4.1 in Chapter 4 for a map of 

the study area). Shola forests extend from 1500-2590m (Ranganathan 1938). This region is 

rich in endemic plants. Blasco (1971) has recorded 223 plant species known only from the 

sholas and grasslands of the higher altitude ranges of the Western Ghats. Fifty-three percent 

of the tree and shrub species in the study area are endemic to the Western Ghats. Most tree 

and shrub species have zoochorous dispersal with birds and mammals being the main 

dispersal vectors (Ganesh and Davidar 2001). There are a few wind dispersed species such as 

Rhododendron and Gordonia obtusa, however their abundances inside shola patches is 

relatively low. Patch size in the study area varies widely with few very large patches (>100 

ha) and several smaller patches (< 10 ha). A detailed description of the climate, geology and 

soils of the study area can be found in the preceding chapters. 

 

The area is very sparsely populated, and falls under Reserved Forests and also a National 

Park. Major land cover types are: exotic tree plantations (Eucalyptus sp. and Acacia 

mearnsii), agriculture, tea plantation, and shola-grassland (Prabhakar 1994). There is 

evidence that the grasslands have a climatic origin that pre-dates human settlement (Sukumar 

et al. 1995, Caner et al. 2007). Over the last 150 years, vast stretches of grassland were 
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converted to monoculture exotic tree and tea plantations. One of the plantation species, 

Acacia mearnsii (black wattle), has subsequently invaded large areas of grassland. Most of 

the conversion to wattle has occurred over the last 70 years (Prabhakar 1994). 

 

Vegetation sampling 
 

A detailed description of the sampling design and data collected from vegetation plots can be 

found in Chapter 4. In large shola fragments (≥ 60 ha), three transects of plots were placed at 

a minimum of 250m apart, with a distance of at least 50m between each plot along the 

transect, where possible. One large fragment in each landscape context was sampled. Two 

transects of four 1x1m seedling plots each were laid across each vegetation plot. All 

seedlings within these plots were censused. Sampling effort was not equal across all three 

landscape contexts, owing to their unequal distribution across the region. While there are 

many sholas located within wattle plantations, there are far fewer within grasslands and tea 

plantations (please see Figure 4.1).  

 

Soil sampling and analysis 

Please see Chapter 4 for description of soil data collection in the field. In the lab, soil samples 

were processed and texture was measured using the hydrometer method (Sheldrick & Wang 

1993; see Chapter 4 and Appendix 4.1 for protocol). Most of the plots had soil texture that 

varied from loamy sand to sandy loam. The mean sand content was 75.13% ± 5.67, mean silt 

content was 16.75% ± 4.34 and mean clay content was 8.11% ± 2.95. The colour of the 

samples varied greatly from light brown to very dark brown (almost black). There was also 

high organic matter content consisting of fine roots or leaf and bark fragments in the samples. 

Total soil carbon and nitrogen was measured using a C/H/N analyzer (LECO). 

Approximately 10g of soil from each plot was first ground to pass through a fine mesh sieve 

(0.25mm). Approximately 0.15g of this was used for the LECO analysis. Each batch of 

samples was processed along with a blank as well as a set of known soil standards to calibrate 

the readings. The results show that the average percent carbon in the samples was 11.27% ± 

3.68 and the average percent nitrogen was 0.86 ± 0.22. 

 

The Mehlich III extraction protocol (Trans and Simard 1993) was followed to measure 

exchangeable soil cation concentrations. The Mehlich extracts were analysed using ICP-
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Optical Emission Spectrometry (Thermo Fischer ICAP 6000 series). Mehlich extraction was 

conducted on the dried archived soil samples rather than fresh soil as I did not have access to 

lab facilities during field sampling. However, after drying and preparation the soil samples 

set aside for nutrient analysis were kept refrigerated. The readings for potassium were 

unusually high for several plots and further investigation indicated an error in the ICP 

readings for potassium in two batches of sample runs. Therefore potassium data was not used 

in further analysis. 

 

Soil data was not collected in 9 of the vegetation plots. For 7 of these plots, inverse-distance 

interpolation was used to estimate soil texture values and kriging was used to estimate soil 

cation concentrations. As one of the sites was located far apart from the others, it was not 

possible to get good estimates for soil predictors for this sites. It was therefore dropped from 

the dataset and not used in further analysis. This analysis was done in R statistical software 

v.3.0.2 (R-Development-Core-Team 2013) using the ‘GeoR’ package. 

 

Environmental Data Collection 

Habitat variables describing plot characteristics (shola fragment area, topography, climate) 

were extracted using ArcGIS v.10.0 (ESRI 2011) and Google Earth (Google Earth 

2013).Variables were plotted to check their distribution and transformed as necessary. 

Pearson’s r was also calculated to assess which of the variables were highly correlated. The 

ASTER Global Digital Elevation Model (GDEM) v.2 tiles (30m contour interval) (METI and 

NASA 2011) for the study area were used to extract the following topographic predictors in 

ArcGIS using Spatial Analyst and Topography toolbox: elevation, slope and distance to 

stream, which was used as a proxy for soil moisture (Lookingbill and Urban 2004). 

Bioclimatic predictors were downloaded from the BIOCLIM global dataset, available at 1km 

resolution (Hijmans et al. 2005). 

 

 

Data analysis 

Species richness was estimated and diversity indices such as Shannon’s, Simpson’s and 

Fisher’s alpha (Magurran 2004) were calculated for each landscape context. Plots below 

2000m elevation were removed from this analysis. Sample-based rarefaction curves with the 

x-axis standardized to number of individuals (Gotelli and Colwell 2001) was plotted using 

the Mao-Tau estimator as implemented in the software EstimateS (Colwell 2013). As the 
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number of grassland shola plots was the lowest (n = 18), data from the wattle (n = 41) and tea 

sholas (n = 22) were rarefied to the level of individuals sampled in grassland sholas in order 

to make comparisons of species diversity. Morisita-Horn Index was used to assess the degree 

of species overlap among the grassland sholas and among sholas in wattle that occurred 

above 2000m elevation and in the same rainfall zone (please see Figure 4.1 in Chapter 4). 

This index of beta diversity was chosen as it is not affected by unequal sample sizes (grass n 

=18 and wattle n = 35) (Wolda 1981). The tea estate sholas were excluded from this analysis 

as they occurred in a different rainfall zone (Figure 4.1). Finally, to assess differences in 

species composition the Importance Value Index (IVI) of each species was calculated for the 

set of sholas (above 2000m) in each landscape context (Ganesh et al. 1996), to compare 

which species were dominant in each of the landscape contexts. 

 

Stand structure within plots was characterized by number of stems per plot, basal area of the 

plot, mean dbh of plot, number of large trees (> 40cm dbh), number of seedlings, number of 

saplings, number of shrubs (belonging to Psychotria or Lasianthus) and finally number of 

dioecious individuals present. GLMs with a Poisson error term were used to test whether 

each of these structural characters differed significantly between the three landscape contexts, 

after accounting for the effects of elevation (m), dry season rainfall (mm) and (log 

transformed) shola fragment area.  

 

In addition to this, the diameter size class distribution (SCD) of shola tree species was 

examined by fitting a Weibull distribution and comparing the parameters across landscape 

contexts. This analysis was repeated for a subset of 12 dominant tree species. The seedling 

data (individuals < 0.5m height) was not used to construct the SCDs. 

 

Differences in soil characteristics of sholas across the different landscape contexts was 

examined graphically using boxplots and tested using ANOVAs. 

 

Field observations indicated that Cestrum presence was strongly related to distance from tea 

plantation edges. Therefore I modelled it as a function of distance to the closest tea plantation 

edge using a GLM with binomial error and logit link function. The results of this modelling 

was used to set a threshold distance from tea plantations, beyond which the probability of 

Cestrum occurrence fell to zero, so that subsequent modelling of the determinants of Cestrum 

abundance was free from the issue of zero-inflation (Martin et al. 2005). This threshold was 
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then used to define a subset of the study plots within which Cestrum presence was likely 

based on their distance from a tea plantation edge (n = 54). This subset of the data was then 

used to model Cestrum abundance was as a function of bioclimatic and habitat variables. The 

models were compared using Akaike Information Criteria to identify the model that best 

predicted Cestrum abundance. Finally, a GLM with a Poisson error term was used to test 

whether Cestrum abundance within a plot was related to the number of shola species 

seedlings and shrubs in the plot. 

 

 

Results 

 

Variation in shola diversity, composition and structure across landscape context 

Shola patches (≥ 2000m elevation) sampled in wattle and tea plantations showed similar 

species richness levels to those in grassland (Table 5.1, Figure 5.1). However the values for 

Simpson’s Inverse Index, which is sensitive to dominance within plots, were lower for tea 

and wattle sholas compared to the grassland sholas, indicating a greater dominance and lower 

evenness in the sholas that are located in transformed matrix types (Table 5.1).  

 

Table 5.1: Measures of species diversity in shola patches across grass, tea and wattle 

landscapes. 

 

Index Grass Tea Wattle 

Sest (Mao-Tau estimator) 55 52 56 

Fisher's alpha 8.56 8.09 8.77 

Shannon -Weiner 3.13 3.05 3.06 

Simpson's Inverse Index 16.29 14.71 13.59 

 

The distribution of pairwise Morisita-Horn Index index values for plots in tea plantation and 

grassland sholas had higher mean (0.56) and median (0.59) values than the plots located in 

wattle sholas (mean = 0.44, median = 0.43). The former also showed a wider range of values 

than the latter (Figure 5.2). This indicates that there was lower turnover in species 

composition among wattle sholas compared to grassland and tea plantation sholas that occur 

at similar elevation and rainfall. There was also greater dominance by common species as this 

index is sensitive to abundances of the most common species. 
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Sholas in grasslands had the following dominant species (IVI > 10, listed in order of 

decreasing importance): Cryptocarya lawsonii, Cinnamomum macrocarpum Hook.f., Litsea 

floribunda, Saprosma foetens, Symplocos macrophylla, Microtropis ramiflora, Symplocos 

foliosa, Cinnamomum wightii Meisn.and Litsea oleiodes. Sholas in tea plantation had the 

following dominant species (IVI > 10, listed in order of decreasing importance): Litsea 

wightiana, 

 

 

 

Figure 5.1: Rarefaction curves of Sest (Mao Tau) estimator of species richness in sholas 

across grassland (black line), tea (orange line) and wattle (light blue line) landscapes. Grey 

lines show 95% CI for grassland shola estimates. 
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Figure 5.2: Boxplots showing the distribution of pair-wise Morisita-Horn values between 

plots in grassland sholas (n = 18), tea sholas (n = 22) and wattle sholas (n = 35) 

 

Symplocos foliosa, Neolitsea zeylanica (Nees & T. Nees) Merr., Syzygium grande, Litsea 

oleiodes, Meliosma simplicifolia and Cinnamomum wightii. Sholas in wattle plantations had 

the following dominant species (IVI > 10, listed in order of decreasing importance): 

Symplocos foliosa, Syzygium calophyllifolium, Syzygium grande, Litsea wightiana, 

Cinnamomum wightii. The set of dominant species differed across landscape context. 

Symplocos foliosa and Litsea wightiana are edge-tolerant, generalist and relatively fast-

growing (average wood density for Symplocos = 0.49 g/cm3 and Litsea = 0.42 g/cm3; data 

compiled by J. Kanowski (2008) from (Ilic et al. 2000). These species were more dominant in 

wattle and tea sholas compared to those in grasslands. Cryptocarya lawsonii and 

Cinnamomum macrocarpum, which were mostly found towards the interior of fragments, 

dominated in grassland sholas. Two slow growing, edge-tolerant, generalist Syzygium sp. 

(wood density = 0.60 g/cm3) were more dominant in tea and wattle plantation sholas 

compared to grassland sholas. Psychotria and Lasianthus species were far less dominant in 

the understorey of grassland and tea sholas than they were in the understorey of wattle 

sholas. 
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There were significant structural differences found between sholas in grasslands and those in 

tea and wattle plantations, even after accounting for the effect of elevation, dry season rainfall 

and shola fragment area (Table 5.2). Number of stems per plot showed a very slight but 

significant decrease with elevation (-0.0006 [0.0001], P < 0.001), a slight increase with dry 

season rainfall (0.004 [0.001], P < 0.001) and a stronger, significantly positive relationship 

with log of patch area (0.11 [0.004], P < 0.001) and was higher in grassland sholas compared 

to tea landscapes. Plot basal area (m2/ha) was significantly positively related to log of shola 

fragment area (3.02 [1.32], P < 0.05) but was lower in grassland sholas compared to those in 

tea and wattle (Table 2). This was mainly driven by the presence of greater numbers of large 

trees (≥ 40cm dbh), especially in tea plantation sholas (Table 5.2). The number of individuals 

belonging to Psychotria and Lasianthus sp. in the understorey shrub layer of sholas increased 

slightly with elevation (0.003 [0.0002], P < 0.001) and dry quarter precipitation (0.018 

[0.004], P < 0.001) and much more so with log fragment area (0.165 [0.01], P < 0.001).  

 

Wattle sholas showed significantly higher numbers of Psychotria and Lasianthus sp. 

compared to grassland (Table 5.2) and tea sholas (0.98 [0.05], P < 0.001). This could be due 

to increased competition from other understorey species such as Strobilanthes sp. (not 

measured) and Saprosma sp. in the case of grassland sholas.  

The number of dioecious individuals in the plot increased with size of shola fragment (0.039 

[0.009], P < 0.001), and dry season precipitation (0.015 [0.002], P < 0.001), but was slightly 

negatively influenced by elevation (-0.003 [0.0002], P < 0.001). Interestingly, after 

accounting for shola fragment size, wattle and tea shola fragments had significantly higher 

numbers of dioecious individuals compared to grassland sholas (Table 5.2). Wattle sholas 

had a significantly lower number of dioecious individuals compared to tea sholas (-0.23 

[0.03], P <0.001), indicating a possible positive effect on pollination and reproductive 

success for dioecious trees in a tea matrix. 

 

Number of saplings was slightly negatively related to elevation (-0.0008 [0.0001], P < 

0.001), but positively associated with dry quarter precipitation (0.015 [0.002], P < 0.001) and 

shola fragment area (0.11 [0.007], P < 0.001). Number of seedlings was significantly 

negatively associated with elevation (-0.003 [0.0002], P < 0.001) and positively with log 

fragment area (0.037 [0.011], P < 0.001). Sholas in tea plantations showed significantly 

lower sapling and seedling counts than grassland sholas (Table 5.2, Figure 5.3). The partial 

coefficient for the effect of a wattle matrix on seedling counts was non-significant (Table 
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5.2). However, wattle sholas had the lowest level of individuals in the sapling class (Table 

5.2, Figure 5.3). This indicates a possible effect of a wattle matrix on establishment of shola 

saplings. Overall, regeneration levels appear to be decreased within sholas surrounded by 

altered landscape matrix. 

 

Table 5.2: Results of GLM analysis comparing structural characteristics of sholas in tea and 

wattle landscapes to grassland sholas, after accounting for the effects of elevation, dry quarter 

precipitation and log of shola fragment area. 

 

  Tea Wattle 

Response Slope 
Std. 
error z P  Slope 

Std. 
error z P < 

No. stems -0.075 0.02 -3.95 <0.001 -0.010 0.016 -0.59 >0.1 

Plot basal area† 16.53 5.57 2.97 <0.01 11.54 4.975 2.32 <0.05 

Mean dbh of 
plot† 

2.33 1.22 1.91   <0.1 -0.93 1.09 -0.85 >0.1 

No. large trees 0.465 0.15 3.18 <0.01 0.137 0.137 0.97 >0.1 

No. seedlings -0.64 0.06 -10.2 <0.001 -0.083 0.049 -1.68 <0.1 

No. saplings -0.365 0.03 -13.6 <0.001 -0.799 0.025 -30.9 <0.001 

No. shrubs± -0.058 0.07 -0.88 >0.1 0.941 0.052 18 <0.001 

No. dioecious 
individuals 

0.42 0.04 11.69 <0.001 0.209 0.034 6.11 <0.001 

† t statistic used to test response level instead of z in GLMs with normal error term 

± only individuals of dominant genera Psychotria and Lasianthus considered. 

 

Figure 5.3: Boxplots showing differences in regeneration levels in sholas measured by 

number of seedlings and saplings across grass, tea and wattle landscapes. 
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Analysis of size class distributions across landscape context 

The comparison of shola tree diameter size class distributions (SCDs) across landscape 

contexts shows that the SCDs of grassland and tea plantation sholas are very similar (Fig. 

5.4). However sholas surrounded by wattle show fewer individuals in the smallest size class 

(0-5cm dbh) and a greater proportion of smaller trees (5-15cm dbh). The results of the GLM 

analysis on abundance of saplings above are supported by these SCDs. The SCDs do not 

include the seedling data.  

 

Parameter estimates for the Weibull distributions fitted to individual species SCDs also 

reflect these differences (Figs 5.4 & 5.5, Appendix 5.1). Eight of the 12 species compared 

showed flatter inverse-J shaped SCDs in wattle landscapes (Appendix 5.1). These include 

both shola interior species such as Litsea oleiodes and Cryptocarya lawsonii as well as more 

edge-tolerant species such as Litsea wightiana, Mahonia leschenaultii, Rapanea wightiana 

(Wall. ex A. DC.) Mez, Symplocos foliosa, Meliosma simplicifolia and Syzygium grande. In 

the case of M. leschenaultii, a frost-adapted, endemic, shola edge species, the proportion of 

saplings in wattle sholas is much lower compared to tea and grassland sholas (Appendix 5.1). 

This species may therefore be negatively affected by altered conditions at the shola-wattle 

edge. Syzygium calophyllifolium and Mictrotropis ramiflora appear to have proportionally 

fewer individuals in the smaller size classes in grassland sholas compared to tea and wattle 

sholas, indicating better regeneration in these transformed landscapes (Appendix 5.1).  

 

Differences in soil nutrient levels and texture in sholas across landscape contexts 

Grassland shola soils had significantly higher levels of Al (F= 13.8, P < 0.001) and lower 

levels of Ca (F= 8.55, P < 0.001), Mg (F= 11.51, P < 0.001) and Cu (F= 3.99, P < 0.05) than 

sholas surrounded by tea and wattle plantations (Fig. 5.6). No significant difference was 

detected in the levels of total soil C and N, P, Fe, Mn, Zn or B across sholas in different 

landscape contexts (Fig 5.6), although wattle sholas appear to have slightly higher levels of 

percent total N (Fig 5.7). Sholas in tea plantations showed lower percentage of silt and higher 

percentage of sand than grassland and wattle shola soil (Fig. 5.8). 

 

Factors related to Cestrum presence and abundance in sholas 
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The results of the GLM model of Cestrum presence using distance to tea edge showed that 

beyond 4km the probability of Cestrum occurring falls to near zero (Fig. 5.9). A set of 13 

competing models for Cestrum abundance were tested in plots ≤ 4km from a tea plantation 

edge (n = 54). The best model, which receives practically all the support from the data, 

indicates that abundance is influenced by both bioclimatic (temperature seasonality and 

annual precipitation) and habitat factors i.e. distance to tea edge, distance to shola fragment 

edge and distance to stream (Table 5.3). The β coefficients [SE], for the predictors in this 

model indicate the effect they have on mean Cestrum abundance (on the log scale): the β for 

seasonality of temperature (0.0151 [0.0009]) indicates that Cestrum abundance is higher in 

areas with greater seasonality of temperature. It also decreases with mean annual 

precipitation (-0.004 [0.0005]). Abundance increases with distance from stream (0.0003 

[0.0007]) and decreases with distance from the edge of the shola (-0.014 [0.002]) and from 

tea plantation edge (-0.0001 [0.0001]) (Fig. 5.10). The effect of distance to tea on abundance 

was dampened by the fact that one of the tea plantations sampled – Korakundah Estate – 

contains populations of Cestrum which have not yet spread into the sholas, mainly due to 

their organic ecologically-centred management practices. This observation indicates that 

improved management practices of tea estates can restrain the spread of Cestrum into sholas. 

 

Possible effect of Cestrum invasion on regeneration of native shola species and shrub 

understorey 

The number of seedlings in a plot was significantly negatively related to Cestrum abundance 

(-0.009 [0.002], P < 0.001). The number of shola saplings in a plot however did not show a 

significant relationship to Cestrum abundance (0.00006 [0.0007], P > 0.1). 

The number of Psychotria and Lasianthus individuals in the plot was significantly negatively 

related to Cestrum abundance (-0.07 [0.005], P < 0.001), indicating possible negative 

competitive interactions with these dominant native shrub species. 
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Table 5.3: Results of model selection using GLMs with Poisson error to model Cestrum 

abundance in sholas as a function of bioclimatic and distance variables. Predictor codes: 

tmp.seas = temperature seasonality, ann.prec = mean annual precipitation, prec.cv = cv of  

precipitation, d.tea = distance to tea edge, d.stream = distance to nearest stream, d.edge = 

distance to nearest shola edge 

 

S.no Model AIC ΔAIC Mod lik AIC_Weight df 

1 tmp.seas+ann.prec+d.tea+d.edge+d.stream 668.69 0 ~1 ~1 6 

2 tmp.seas+prec.cv+d.tea+d.edge+d.stream 707.52 38.83 ~0 ~0 6 

3 tmp.seas+d.tea+d.edge+ d.stream 729.67 60.98 ~0 ~0 5 

4 tmp.seas+ann.prec 918.93 250.24 ~0 ~0 3 

5 tmp.seas 936.54 267.85 ~0 ~0 2 

6 prec.cv+d.tea+d.edge+d.stream 952.71 284.02 ~0 ~0 5 

7 ann.prec+d.tea+d.edge+ d.stream 1105.4 436.71 ~0 ~0 5 

8 d.tea+d.edge+ d.stream 1107.7 439.01 ~0 ~0 4 

9 prec.cv 1140 471.31 ~0 ~0 2 

10 d.stream 1178.2 509.51 ~0 ~0 2 

11 d.tea+ d.edge 1332.1 663.41 ~0 ~0 3 

12 d.tea 1345 676.31 ~0 ~0 2 

13 d.edge 1444 775.31 ~0 ~0 2 

14 ann.prec 1509.2 840.51 ~0 ~0 2 

.
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Figure 5.4: Shola tree diameter size class distributions across different landscape contexts with fitted Weibull distributions and their respective 

shape and scale parameter estimates 
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Figure 5.5: Boxplots of shape and scale parameter values of Weibull distributions fitted to 

diameter size class distributions for 12 dominant shola tree species across plots in grass, tea 

and wattle landscapes. Higher values for shape and scale parameters indicate flatter size class 

distributions. 
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Figure 5.6: Boxplots showing shola soil macro and micro nutrient levels in ppm across 

different landscape contexts. Box widths scaled to reflect difference in sample size. 
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Figure 5.7: Differences in total C (right panel) and N (left panel) percentage in shola soils 

across grassland, tea and wattle landscapes. 

 

 

 

Figure 5.8: Differences in percentage silt in shola soils across grassland, tea and wattle 

landscape contexts 
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Figure 5.9: Probability of Cestrum presence modelled as a function of distance from tea 

plantation edge, using GLM with binomial error. 

 

Figure 5.10: Cestrum abundance in sholas modelled as a function of distance to tea 

plantation edge, distance to nearest shola fragment edge and distance to stream, using GLMs 

with a Poisson error. 
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Discussion 

 

There is substantial evidence of the ability of a human dominated matrix to enable persistence 

of tropical forest species in fragmented landscapes (Umapathy and Kumar 2000, Mudappa 

2001, Bhagwat et al. 2005, Raman 2006, Perfecto and Vandermeer 2008). However the 

factors that enable this persistence are still poorly understood. Patterns of variation in 

community structure and composition across different matrix types in a naturally fragmented 

system could allow us to draw inferences about possible mechanisms through which the 

transformed matrix influences natural communities. Such inferences could then be 

formulated as competing hypotheses which can be further tested through field studies.  

 

The results presented here indicate that conversion of natural grasslands to tea and wattle 

plantations in the Upper Nilgiri Plateau has affected both the structure and composition of 

shola plant communities.  In terms of structural differences, there are a greater number of 

trees in smaller size classes (5-15 cm dbh) in wattle sholas compared to other landscape types 

and a significantly lower number of saplings (> 0.5m height and < 1cm dbh). Tea plantation 

sholas have significantly lower densities of dominant native shrub species and a significantly 

higher proportion of dioecious tree species. Past-logging and ongoing anthropogenic 

disturbance of tea estate sholas appears to have changed their structure compared to sholas in 

other landscape contexts. Both tea and wattle sholas show a reduction in seedling and sapling 

numbers compared to grassland sholas. In some tea estate sholas this maybe partly explained 

by the presence and higher abundances of Cestrum sp. which is an invasive exotic, that 

appears to repress shola tree regeneration. In terms of composition, sholas in tea and wattle 

plantations appear to be dominated to a greater extent by a smaller group of widespread, 

generalist species, both in the canopy and the understorey. This is also reflected in lower beta 

diversity levels among wattle sholas. However, overall species richness levels do not seem 

significantly different across landscape context. The soils of grassland sholas have lower 

concentrations of nutrients such as Calcium and Magnesium and higher concentrations of 

Aluminium, indicating greater acidity. 

 

The conceptual framework for the domain of matrix effects on patch-dependent species 

presented by (Driscoll et al. 2013) provides a useful tool to organize patterns found in this 
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study and draw inferences regarding possible mechanisms behind them. This framework 

posits three ‘core’ matrix effects: movement or dispersal, resource availability and abiotic 

environment of patches. These core effects are modified by five dimensions of matrix 

characteristics: spatial variability, spatial scale, temporal variability, temporal scale, and the 

ability of organisms to adapt to the matrix either genetically or through plasticity of traits and 

behaviour. For the sake of simplicity and because of the lack of information on some of these 

dimensions with regard to the study system, I focus primarily on the three ‘core’ matrix 

effects in the following discussion. 

 

Altered patterns of pollen and seed movement 

Abundance of dioecious individuals is likely to be a good indicator of whether matrix 

alteration has affected pollination processes, as most dioecious species are pollinated by 

insects such as small bees which have restricted movement between foraging sites (Bawa and 

Opler 1975, Bawa 1980). Sholas in altered matrix types did not show a decline in the number 

of dioecious species, in fact tea estate sholas showed the greatest number of such species. 

Therefore this study provides no evidence that occurrence or movement of pollinators has 

been negatively affected by matrix alteration. It may in fact even be enhanced in tea estates 

due to the presence of other plants that attract these pollinators.  

A possible explanation for lower seedling and sapling counts in tea and wattle sholas could 

be reduced seed rain due to matrix effects on disperser movement behaviour. Most shola 

species are bird dispersed (Ganesh and Davidar 2001), however there are some such as 

Syzygium sp. which are also dispersed by mammals. One would expect the movement of 

avian dispersers to be strongly affected by matrix conversion from open grassland to wattle 

plantations (Sasal and Morales 2013, Morales et al. 2013). Avian frugivores tend to move 

through grassland rather rapidly, using shrub thickets or riparian strips for cover (Personal 

observation). In dense wattle stands their movement is likely to be slower and less direct, 

owing to the much higher availability of perches (Sasal and Morales 2013), greater cover 

from predators and reduced visibility. This altered movement is likely to result in reduced 

inter-patch seed rain among wattle sholas compared to their grassland counterparts (Morales 

et al. 2013). The wattle matrix could therefore act as a sink for shola seeds. The empirical 

(Hangsing 2012) and observational evidence (Bob Stewart & Tanya Balcar Pers. comm.) of 

substantial shola regeneration under mature wattle plantations support this. Further studies 



  

139 
 

which directly measuring seed rain in the different landscape contexts are needed to test this 

hypothesis. 

 

Another possible mechanism by which the matrix affects seed rain is through its influence on 

the composition of the disperser community (Raman 2006). Declines in abundance and 

diversity of frugivores have been found along a gradient of matrix types ranging from 

secondary forest, agroforests, exotic tree plantations, to agriculture and finally pasture 

(Gardner et al. 2009, Sekercioglu 2012). Vijayan and Gokula (2006) report overall bird 

species diversity and abundance to be highest in shola followed by grassland and lastly wattle 

plantation. They found the population density of the Nilgiri laughing thrush (Trochalopteron 

cachinnans) to be 79% lower in wattle plantations compared to undisturbed shola forest. This 

indicates wattle plantations would not increase the abundance of key endemic avian seed 

dispersers in the landscape (Zarri et al. 2008), despite their greater structural complexity and 

canopy connectivity. This is probably due to their impoverished floristic composition and 

lack of resources available for such species (Raman 2006). Tea plantations have been found 

to compare poorly with other matrix types such as coffee plantations in terms of rainforest 

bird communities (Raman 2006). The bird community in tea plantation landscapes is likely to 

be dominated by common, smaller birds from open scrub habitats, such as red-whiskered 

bulbuls (Pycnonotus jocosus) (Daniels et al. 1990, Sekercioglu 2012). Such species would 

selectively disperse smaller-seeded trees and shrubs. This may explain the increased 

dominance of species like Litsea wightiana and Symplocos foliosa in tea estate sholas 

compared to trees like Cryptocarya lawsonii, Litsea oleoides and Litsea floribunda, which 

have larger fruits and seeds. It would certainly explain the greater presence and abundance of 

Cestrum sp. in sholas closer to tea estate edges (Carleton and Owre 1975, Personal 

observation). 

 

Altered matrix resource availability leading to spillover effects into shola fragments 

As discussed above, movement of seeds and pollen is influenced by changes in matrix 

resource availability for frugivores and pollinators. A similar mechanism could affect rates of 

herbivory and seed predation within sholas in an altered matrix. Densities of wild herbivores 

such as sambar (Rusa unicolor) and gaur (Bos gaurus) appear to be higher in wattle and tea 

plantation landscapes compared to natural grasslands (Personal observation). Recent work 
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indicates vertebrate herbivory levels play a critical role in determining seedling survival rates 

(Clark et al. 2012). Increased seedling herbivory leading to lowered survival rates could 

explain the lower sapling counts in wattle plantations. 

 

Shanker (2001) found that the population density of Rattus sp. increased by a factor of 1.5 in 

old wattle plantations of the study area, compared to sholas. Rattus sp. was not found in 

grasslands but did occur in tea plantations at densities comparable to those of shola forests. 

Matrix conversion could therefore have led to altered resource availability for Rattus sp., 

potentially leading to increased seed predation and lowered seedling counts in wattle and tea 

plantation sholas.  

 

Another way in which the altered matrix resource base affects the shola community is 

through a ‘spillover effect’ (Rand et al. 2006) of Cestrum sp. into tea plantation sholas. This 

appears to have had a negative impact on shola seedlings and native shrub species, which are 

highly endemic. Cestrum has established a growing population within open areas in tea 

estates and is dispersing into adjacent sholas, where it has formed dense thickets in the 

understorey. It should be noted however that not all tea estates that hold Cestrum populations 

have invaded sholas. Estate management appears to be an important determinant of invasion 

success. Apart from one or two seedlings in a couple of plots, none of the sholas sampled in 

Korakundah tea estate were invaded by Cestrum. This was the only estate sampled which is 

completely organic and has several ecologically-friendly management certifications. Their 

management policies actively attempt to reduce levels of anthropogenic disturbance in sholas 

within the estate (Pritam Dambekodi Pers. Comm). Therefore a combination of several 

interacting effects arising from the tea matrix seems to lead to actual invasion: establishment 

of large, fertile populations of Cestrum sp. in the matrix through resource provision, 

increased disturbance of the understorey through frequent human use of the sholas and 

increased propagule pressure effected through dispersal by common birds such as the red-

whiskered bulbul. 

 

Altered abiotic environment at the forest edge 

The shola-grassland edge is characterized by short, sharp gradients in temperature, light and 

humidity (Bunyan 2009). Unlike lowland tropical forests, where edge effects can extend up 
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to 100m into the forest (Laurance et al. 2011), sholas surrounded by grassland are thought to 

have shallower edges, on the order of tens of metres (Bunyan 2009). Smaller shola fragments 

(≤ 1ha) are influenced by the greater proximity of multiple edges and therefore do not 

demonstrate gradients in abiotic conditions that can be found in larger shola patches (Bunyan 

2009). The abiotic environment of these smaller patches is therefore dominated by the 

pervasive edge. While shola-tea plantation edges should be more comparable to shola-

grassland edges, conversion of the matrix from grassland to wattle plantation would result in 

a much greater ‘softening’ of edge conditions; lowered light availability, wind stress, diurnal 

temperature fluctuation and increased humidity (Ries et al. 2004). This could affect the 

regenerative and competitive abilities of certain edge-adapted species such as Mahonia 

leschenaultii and Litsea wightiana. Interestingly, the latter is the most dominant species in tea 

estate sholas but not in wattle plantation sholas. Conversely, the greater dominance of 

generalist endemics such as Symplocos foliosa and Syzygium sp. in wattle sholas - 

particularly in smaller fragments - could also indicate altered edge-related abiotic conditions 

favouring the growth of these species.  

 

Finally, the higher density of small trees (5-15cm dbh) in wattle sholas compared to 

grassland and tea sholas, may be linked to specific shola-wattle edge conditions, such as 

increased soil Nitrogen availability (Le Maitre et al. 2011), enabling faster growth rates and 

therefore rapid transitions from sapling to small tree size classes (Condit et al. 1998). 

Unfortunately, the sampling scheme and type of data gathered here limits inferences 

regarding specific mechanisms. Further field studies are necessary to investigate the possible 

pathways through which altered edge environments influence the structure and composition 

of the shola plant community. 

 

In conclusion, the patterns emerging from this study indicate definite structural and 

compositional differences in the shola tree and shrub community across the different 

landscape contexts. The results indicate that mitigation of negative effects of matrix 

conversion such as Cestrum invasion and reduced regeneration would require a management 

strategy in which the type of intervention is dependent on the landscape context of the shola 

fragments. Further, as conversion of grasslands to tea and wattle plantations appears to have 

altered successional trajectories and vegetation dynamics within shola fragments, long-term 
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studies of sholas stratified by both fragment size and landscape context are urgently required 

in order to better conserve and manage these rare and biologically important habitats in the 

face of climate change. Such studies have provided critical insights into long-term effects of 

fragmentation on lowland tropical forests (Laurance et al. 2011), yet none exist for the 

equally important tropical montane forests in general and naturally fragmented habitats in 

particular. 
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Chapter 6 
Conclusion and Synthesis 

 

The ecologically distinct and narrowly distributed upper montane (shola) forests in the 

Western Ghats are not as well studied as their lower elevation counterparts. Most studies on 

sholas are fairly restricted in spatial extent of sampling and inference, and generally do not 

attempt comparisons across different regions or within larger landscapes. Despite the great 

conservation significance of these forests, little is known about how patterns of tree and shrub 

species composition vary across space, how environmental factors such as climate, 

topography and soil affect tree and shrub community composition, and how widespread 

conversion of surrounding grasslands to tea and exotic tree plantations has affected plant 

communities. Additionally, the presence and distribution of transitional ecotones for this 

habitat type along elevation and rainfall gradients remain poorly studied. 

 

The primary objective of this work was to understand the patterns of distribution and plant 

community composition of shola forests at different spatial scales. At the regional scale I 

attempted to understand the distribution of shola fragments within the grassland matrix in 

which they occur. At the landscape scale I studied variation in plant metacommunity 

composition across shola fragments and the environmental factors associated with this 

variation. I also investigated whether the structure, composition and regeneration of sholas 

have been affected by conversion of grassland to tea and wattle plantations. Several important 

insights have emerged from this study that provide a deeper understanding of the patterns and 

drivers of spatial heterogeneity in these forests. The findings of this work are relevant to 

ongoing conservation and management efforts and help define future research questions on 

this system. 

 

Topographic and bioclimatic factors influencing vegetation pattern in shola-grassland 

mosaics 

The distribution of shola forests at the regional scale in the central and southern Western 

Ghats is influenced by both topography and bioclimate as well as the interaction between the 

two. Elevation strongly influences the occurrence and distribution of shola fragments within 

the grassland mosaic. Above 2000m, the mosaic is dominated by grassland, with shola 

patches more likely to occur on northern aspects and in sites with concave land surface 
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curvature, particularly along the sides of deep valleys. Below 2000m, relative topographic 

position (within a 300m neighbourhood), is an important predictor of vegetation pattern. 

Bioclimatic factors that influence shola forest and grassland distribution are: dry quarter 

precipitation, annual temperature range and the interaction between the two. The results 

indicate that the distribution of shola forest and grassland within these mosaics is influenced 

by complex interactions between topography and bioclimate and between topographic 

variables. The marked regional differences in the roles of various topographic and bioclimatic 

predictors across the range of the Western Ghats, indicates that the same pattern of grassland 

interspersed with forest patches, may be generated by different sets of processes across the 

region, depending on latitude and elevation. In particular, shola grasslands that occur above 

2000m elevation differ in terms of their vegetation pattern and associated topographic and 

bioclimatic influences from mosaics that occur below 2000m. 

 

Floristic composition of shola forests in the Upper Nilgiris 

A total of 95 tree and shrub species occur in the sholas of the study area, with about 53% of 

them being endemic to the Western Ghats and Sri Lanka. While these forests are not as 

species-rich as middle and lower elevation evergreen forests in the Western Ghats (Pascal 

1988, Ganesh et al. 1996, Ramesh et al. 2010, Jayakumar and Nair 2012), they hold a greater 

proportion of endemics (Jayakumar and Nair 2012). The majority of the tree and shrub 

genera in sholas have an Indo-Malayan affinity (Meher-Homji 1967, Suresh and Sukumar 

1999), with a large proportion of endemics restricted to the central and southern Western 

Ghats, particularly within the shrub genera. Lauraceae is the most species rich family (19 

species), followed by Rubiaceae (8 species) and Myrtaceae (6 species). Dominant tree genera 

include Litsea, Cinnamomum, Syzygium and Symplocos, while dominant shrub genera are 

Psychotria and Lasianthus. Above 1800m there is an increasing presence of Palaearctic 

components characterized by genera such as Rhododendron, Ilex, Berberis and Mahonia. 

Four dominant species associations were identified in the study area. Stem densities within 

these forests vary widely and are on average much higher than those in lower elevation 

evergreen forests (Ramesh et al. 2010). Average stand basal area fell within the range of 

values reported for shola forests in other parts of the Western Ghats.  
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Metacommunity pattern and response to the elevation gradient 

The composition of shola tree and shrub communities is strongly influenced by elevation. 

The metacommunity pattern along the elevation gradient in the study area corresponds more 

closely to a Clementsian pattern rather than a Gleasonian one. Many species exhibit non-

overlapping distributions, with significant turnover and clumping of species range 

boundaries. Turnover was the highest between 1900-2100m in the Upper Nilgiris. Basal area 

of Myrtaceae increased with elevation as did that of Symplocaceae, Magnoliaceae and 

Celastraceae.  Taxa with temperate affinities such as Ericaceae and Berberidaceae also 

showed an increase with elevation, while Theaceae, Araliaceae, Oleaceae, Sapotaceae and 

Rutaceae showed the largest declines in basal area with elevation.  Replacement of species by 

sister taxa along the elevation gradient was observed mainly in the genera Litsea, Syzygium 

and Symplocos. The nature of the floristic changes observed between 1800m and 2400m in 

the study area are consistent with transitions found in montane forests noted by previous in 

Sri Lanka (Werner 1995) and south east Asia (Ohsawa 1995, Ashton 2003). I therefore 

conclude that a transitional ecotone between lower and upper montane shola communities 

occurs between 1900 and 2100m in the study area. This zone appears to coincide with the 

elevation of cloud formation in many large, tropical mountains (Jarvis and Mulligan 2011). 

Metacommunity pattern in the study area is also correlated to the east-west precipitation 

gradient, but not as strongly as with elevation. 

 

Influence of environment and dispersal on shola plant community composition 

The observed turnover along the elevation gradient indicates that the shola metacommunity is 

largely structured by niche-based species sorting. However, the extent to which dispersal 

limitation plays a role in influencing community structure has not yet been investigated. I 

address this question by using variation partitioning to assess the relative influence of abiotic 

factors (i.e. climate, topography, soil and habitat) and biotic factors such as dispersal 

limitation on the spatial abundance patterns of shola tree and shrub species.  

 

The results confirm strong spatial structuring of the shola plant community, driven mainly by 

spatial variation in environmental factors. Overall, the environmental and spatial predictors 

used were able to account for approximately half of the variation in species abundances 

across the study area. Most of this (~ 40%) was accounted for by environmental predictors, 

most of which were strongly spatially structured. However, a little less than 10% of the 
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explained variation is accounted for by spatial predictors that represent dispersal processes 

and do not seem to be influenced by any unmeasured environmental factors. Among 

environmental predictors, bioclimate was the most influential in explaining variation in 

species abundances, particularly dry season precipitation and temperature seasonality (the 

latter being very strongly correlated with elevation), as well as their interaction. This 

demonstrates that in topographically heterogeneous terrain, variation in bioclimate over short 

spatial lags (5-10km) can cause high turnover in species composition. The next most 

influential set of environmental variables was related to habitat/historical factors - namely 

size of the shola fragment and whether the shola was surrounded by tea, wattle or grassland. 

Soil nutrient content was the next most important in explaining variation in species 

abundances. Finally, certain topographic predictors such as slope and topographic 

convergence index (TCI), emerged as having slight but significant effect on the abundances 

of some species. 

 

Impacts of landcover change on shola tree and shrub communities 

Conversion of the landscape matrix from natural grasslands to wattle and tea plantations has 

influenced the composition, stand structure and regeneration of shola tree and shrub species. 

While species richness levels are not significantly different across the three landscape 

contexts, sholas in tea and wattle plantations appear to be dominated to a greater extent by a 

smaller group of widespread, generalist species, both in the canopy and the understorey. This 

is reflected in lower beta diversity levels among wattle sholas. In terms of structural 

differences, sholas located within a matrix of wattle plantations have a greater number of 

trees in smaller size classes (5-15 cm dbh) compared to sholas in grasslands and tea 

plantations. They also have a significantly lower number of saplings (> 0.5m height and < 

1cm dbh), indicating that recruitment to this size class is lower than in other sholas. Tea 

plantation sholas have significantly lower densities of dominant native shrub species and a 

higher proportion of dioecious tree species. Past-logging and ongoing anthropogenic 

disturbance of tea estate sholas appears to have changed their structure compared to sholas in 

other landscape contexts. Both tea and wattle sholas show a reduction in seedling and sapling 

numbers compared to grassland sholas. In some tea estate sholas this is partly explained by 

the presence and higher abundances of Cestrum sp., an invasive exotic that appears to repress 

shola tree regeneration. Finally, compared to wattle and tea sholas, soils of grassland sholas 
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had lower concentrations of nutrients such as Calcium and Magnesium and higher 

concentrations of Aluminium – indicating greater acidity.  

Further research is required to understand the mechanisms through which land cover change 

has impacted shola forests. These include; altered disturbance regimes, changes in seed 

predation, dispersal or herbivory, and changes in edge dynamics  

 

Potential impacts of climate change on shola forests 

The results support the primary importance of climatic factors such as variation in rainfall 

and temperature in determining the distribution and composition of shola forests, even at 

relatively small spatial scales (e.g. 5-10km). This in addition to the fragmented, mountain-top 

nature of this forest, make it extremely vulnerable to anthropogenic climate change (Foster 

2001). Studies have found that under a future scenario of doubled CO2 levels, the suitable 

climatic conditions for cloud forest growth could shift upslope by approximately 200-500m 

(Still et al. 1999, Foster 2001). This would lead to a major reduction of area under shola 

forests in the Western Ghats. Shola species assemblages, including several endemics, which 

currently occur above 2000m could go extinct. 

 

 

Figure 6.1: Potential mechanisms through which climate change may threaten montane cloud 

forest (shola) ecosystems. Based on Foster (2001). 

 



154 
 

The biggest threat to cloud forests from climate change consists of increased water stress and 

drought (Fig. 6.1), coupled with increased disturbance in the form of fire and hurricanes 

(Bawa and Markham 1995, Foster 2001, Oliveira et al. 2014). This could result from a 

number of possible changes including the lifting of the cloud base and associated reduction in 

mist immersion (Foster 2001), which would affect much of the flora, such as epiphytes and 

even trees and shrubs that are known to be very drought sensitive (Oliveira et al. 2014). 

Reduction in dry season precipitation and increase in extreme rainfall events would also lead 

to greater water stress and shifts in species compositions (Fig. 6.1). Higher temperatures 

combined with reduction in mist immersion would negatively impact shola trees and weaken 

their ability to compete with lower elevation species migrating upslope.  This is confirmed by 

the results of previous modelling efforts looking at the impact of climate change on the cloud 

forest zone (Still et al. 1999, Foster 2001, 2010). Observational evidence from some sites 

support this. Pounds et al. (1999) document an increase in the number of mist-free days in 

Monte Verde since the 1970s. Other major impacts could include shifts in phenology which 

would disrupt existing plant-pollinator as well as plant-disperser networks and affect the 

reproductive success of shola species. The combined effects of increased disturbance and 

disruption of plant-animal networks would enhance the spread of exotic invasive species in 

this ecosystem (Foster 2001). 

 

In light of the results of this work and future climate projections, one would expect to see 

major shifts in shola community composition and a reduction in species diversity (driven by 

the loss of narrow endemics) with climate change. These climatically-driven shifts should be 

most apparent within the transitional ecotone between lower and upper montane shola 

communities (Bawa and Markham 1995). Finally, studies that attempt to model projected 

range shifts for shola species must take into account the effects of local-scale topography on 

the distribution of shola fragments. 

 

Emerging issues and implications for management 

The sholas have persisted in a natural mosaic with grasslands over tens of thousands of years, 

expanding or retreating during previous episodes of climate change (Sukumar et al. 1995, 

Caner et al. 2007). Apart from high levels of endemism, this ecosystem provides critical 

hydrological services to millions of people in Tamil Nadu, Kerala and Karnataka (Nair and 

Khanduri 2001, Srivastava 2001). However, the present situation facing sholas is 
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unprecedented in terms of combined stresses of rapid climate change and recent large scale 

habitat conversion and throws into question this ecosystem’s ability to resist and adapt to 

current and future change.  

 

In the last 70 years, this ecosystem has already undergone a major regime shift (Parrott and 

Meyer 2012) i.e. the conversion of thousands of hectares of natural grassland to exotic tree 

plantations (Prabhakar 1994). Results presented here provide evidence that successional 

trajectories and associated vegetation dynamics of shola fragments occurring within these 

altered matrix types have already been affected. This increases the level of complexity and 

uncertainty with regard to management of this system, making it increasingly difficult to 

predict the outcomes of any management intervention. Such levels of uncertainty require a 

management approach that is flexible and adaptive in nature, with a strong emphasis on 

monitoring (Filotas et al. 2014, Messier et al. 2015). Such an approach would require forest 

managers to build alternative scenarios that consider the likelihood of possible future states, 

given current conditions, predicted changes in climate and the scale and type of intervention 

planned (Filotas et al. 2014).  

 

For instance, the current policy being enacted in Tamil Nadu is to clear fell existing exotic 

tree plantations with the objective of restoring the original shola-grassland mosaic habitat in 

their place (Proceedings of the Principal Chief Conservator of Forests, Chennai, dated 

26/3/2014, Proc.No.WR1/7028/2014). Given climate-induced changes in disturbance regimes 

and the current levels of invasion by exotic species in remnant grasslands (Thomas and 

Palmer 2007) as well as in sholas, a possible outcome of such a large-scale, soil-disturbing 

intervention could be yet another regime shift in favour of woody alien invasives in clear-

felled areas, further threatening sholas as well as remnant grasslands. It could also lead to the 

replacement of a relatively stable, though altered vegetation state (i.e. mature Acacia and 

Eucalyptus plantations) with an inherently unstable one (Scheffer and Carpenter 2003, 

Scheffer et al. 2012) – with attendant implications for biodiversity and ecosystem services. In 

short, the feasibility as well as suitability of restoration to an earlier state should first be 

evaluated relative to other possible scenarios and then pursued accordingly. At the very least, 

clear-felled areas should be monitored to assess the impact of this intervention before 

extending it to larger areas. 
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Linked to this is the need for an integrated, ecosystem-based approach for the shola-grassland 

mosaic as a whole, which fosters capacity for resilience and adaptation to climate change. 

This would entail examining effects of management practices that are currently being 

deployed at large spatial scales (hundreds of hectares), such as the clear-felling of exotic tree 

plantations or the planting of shola saplings in grasslands, to assess whether these actions 

enhance or reduce the shola-grassland ecosystem’s capacity to persist in the face of climate 

change. 

 

Specific management recommendations that emerge from this work include: 

a) The shola-grassland mosaics that occur above 2000m elevation require a distinct set 

of management prescriptions and guidelines, as they differ in terms of vegetation 

pattern and associated topographic and bioclimatic factors. 

b) Species composition of sholas are most strongly influenced by elevation, precipitation 

seasonality, fragment size and landscape context. Therefore these factors should be 

taken into consideration while deciding on management interventions for individual 

shola fragments. 

c) As conversion of grasslands to tea and wattle plantations appears to have altered 

successional trajectories and vegetation dynamics within shola fragments, long-term 

monitoring plots, stratified by elevation, fragment size and landscape context, are 

required in order to better conserve & manage these habitats in the face of climate 

change.  

d) Effects of climate change on sholas, such as upslope migration of lower elevation 

species, reduction in cloud immersion or changes in phenology should be most 

apparent at the transition zone between lower and upper montane sholas. Therefore, 

for the Nilgiris it is recommended that monitoring plots be established particularly 

within the 1900-2100m elevation zone with particular attention paid to monitoring 

epiphytic flora (Foster 2001). 

e) Measures to monitor and control the spread of Cestrum sp. into shola fragments near 

tea plantations should be undertaken as this invasive appears to suppress regeneration 

of native tree and shrub species. 

 

In summary, I find that both vegetation pattern within shola-grassland mosaics in general, 

and the shola tree and shrub metacommunity in particular, are strongly structured by the 



157 
 

elevation gradient. Specifically, above approximately 2000m elevation, there appear to be 

shifts in both the distribution of forest and grassland within these mosaics, as well as high 

turnover in community composition within shola fragments. Whether this transition is being 

driven by the height of the cloud base (Grubb and Whitmore 1966, Foster 2001, Jarvis and 

Mulligan 2011) or by a temperature-related mechanism remains to be resolved. The answer to 

this is critical to determining how the system will respond to climate change. Spatially 

structured environmental variability, generated primarily by topographic heterogeneity, 

accounts for much of the variation in shola tree metacommunities. However, approximately 

half of the variation in tree and shrub communities remains unexplained by the 

environmental, historical and spatial predictors considered here. Finally, sholas located 

within a landscape matrix of grassland differ significantly in terms of structure, composition 

as well as regeneration levels from those located within an altered landscape matrix of tea 

plantations and wattle (Acacia mearnsii), indicating that landscape matrix conversion has 

affected the structure and dynamics of vegetation in sholas. 
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Appendix 2.1 
Stacked barplots indicating regional identity and vegetation type of data points falling in terminal nodes of the classification tree in 
Figure 2.3 
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Appendix 3.1 
Shola tree and shrub species from the central and southern Western Ghats 

 

Genus Species ssp. / var. Synonym Family Habit Biogeog 
Red 
List 

Abelmoschus  angulosus       Shrub Indo-Malay   

Acronychia pedunculata   

Jambolifera 
pedunculata, 
A. barberi, A. 
laurifolia Rutaceae Tree Indo-Malay   

Actinodaphne bourdillonii     Lauraceae Tree S.WG   

Actinodaphne bourneae     Lauraceae Tree C. & S. WG EN 

Actinodaphne campanulata     Lauraceae Tree C. & S. WG VU 

Actinodaphne lanata     Lauraceae Tree C.WG CR 

Actinodaphne lawsonii     Lauraceae Tree C. & S. WG VU 

Actinodaphne malabarica   A. hirsuta Lauraceae Tree S.WG   

Actinodaphne salicina     Lauraceae Tree C. & S. WG EN 

Aglaia  bourdillonii     Meliaceae Tree C. & S. WG   

Agrostitachys indica     Euphorbiaceae Tree Indo-Malay   

Allophylus rhomboidalis     Sapindaceae       

Alseodaphne semecarpifolia     Lauraceae Tree WGSL   

Alstonia venenata     Apocynaceae Tree S. India   

Aphanamixis polystachya     Meliaceae Tree Indo-Malay   

Apodytes dimidiata   

A. beddomei, 
A. 
benthamiana  Icacinaceae Tree 

Indo-Malay, 
Africa   

Apollonias arnottii     Lauraceae Tree S.WG   

Antidesma menasu   A. montanum Euphorbiaceae Tree Indo-Malay   

Ardisia blatteri     Myrsinaceae Tree S.WG   

Ardisia pauciflora     Myrsinaceae Tree S. India, SL   

Ardisia rhomboidea     Myrsinaceae Shrub C. & S. WG   

Ardisia sonchifolia     Myrsinaceae Shrub C. & S. WG EN 

Atalantia wightii   A. ceylanica Rutaceae Shrub Indo-Malay   

Beilschmeida wightii     Lauraceae Tree C. & S. WG   

Berberis tinctoria     Berberidaceae Shrub 
India, 
Himalaya   

Bhesa indica     Celastraceae Tree Indo-Malay   

Bischofia javanica     Euphorbiaceae Tree Indo-Malay   

Breynia retusa   
Sauropus 
elegantissimus Euphorbiaceae Shrub 

Indo-China, 
Himalaya, 
SL CR 

Bridelia retusa     Euphorbiaceae Tree Indo-Malay   

Cajanus  trinervius     Leguminosae Shrub S. India, SL   

Calamus gamblei     Arecaceae Shrub WG   

Callicarpa tomentosa   C. lanata Verbenaceae Tree S. India, SL   

Calophyllum  polyanthum     Clusiaceae Tree Indo-Malay   

Canthium  dicoccum 
var. 
umbellatum 

Plectronia 
didyma, 
Psydrax 
umbellata  Rubiaceae Tree 

Indo-Malay, 
China   

Canthium  neilgherrense     Rubiaceae Tree C. & S. WG VU 

Canthium  travancoricum   
Plectronia 
travancorica Rubiaceae Tree C. & S. WG   
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Genus Species ssp. / var. Synonym Family Habit Biogeog 
Red 
List 

Casearia  ovata   C. esculenta Flacourtiaceae Tree WGSL   

Casearia  thwaitesii   C. coriacea Flacourtiaceae Tree WGSL   

Casearia  zeylanica     Flacourtiaceae Tree Indo-Malay   

Cassine paniculata   
Elaeodendron 
paniculatum Celastraceae Tree S.WG   

Celtis phillipensis     Ulmaceae Tree 
Indo-China, 
SL   

Celtis tetrandra     Ulmaceae Tree Indo-Malay   

Celtis timorensis     Ulmaceae Tree Indo-Malay   

Chionanthus linocieroides   
Olea 
linocieroides Oleaceae Tree S.WG   

Chionanthus malabarica   C. mala-elengi Oleaceae Tree S. India   

Chionanthus ramiflorus     Oleaceae Tree Indo-Malay   

Chrysophyllum  roxburghii    
C. 
lanceolatum Oleaceae Tree Indo-Malay   

Cinnamomum macrocarpum   C. iners Lauraceae Tree C. & S. WG   

Cinnamomum  malabathrum     Lauraceae Tree WG   

Cinnamomum perrottetii     Lauraceae Tree C. & S. WG VU 

Cinnamomum riparium     Lauraceae Tree C. & S. WG VU 

Cinnamomum sulphuratum     Lauraceae Tree C. & S. WG   

Cinnamomum verum     Lauraceae Tree WGSL   

Cinnamomum walaiwarense     Lauraceae Tree S.WG   

Cinnamomum wightii     Lauraceae Tree C. & S. WG   

Cipadessa baccifera   
Melia 
baccifera Meliaceae Shrub Indo-Malay   

Cissampelopsis walkeri     Asteraceae Tree S. India, SL   

Clerodendrum   viscosum   
C. 
infortunatum Verbenaceae Shrub Indo-Malay   

Cotoneaster buxifolius     Rosaceae Shrub WG   

Crotalaria barbata      Leguminosae Shrub C. & S. WG   

Crotalaria calycina     Leguminosae Shrub Paleotropics   

Crotalaria  formosa      Leguminosae Shrub S.WG   

Crotalaria  madurensis     Leguminosae Shrub WG   

Crotalaria notonii     Leguminosae Shrub India   

Crotalaria  semperflorens     Leguminosae Shrub Indo-Malay   

Croton laccifer     Euphorbiaceae Tree S. India, SL   

Cryptocarya  bourdillonii   C. wightiana Lauraceae Tree S. India   

Cryptocarya  lawsonii     Lauraceae Tree C. & S. WG   

Cryptocarya  neilgherrensis    C. stocksii Lauraceae Tree S. India   

Daphniphyllum  glaucescens   D. lancifolium Daphniphyllaceae Tree 
Indo-Malay, 
E. Asia   

Daphniphyllum  neilgherrense     Daphniphyllaceae Tree Indo-Malay   

Debregeasia longifolia   D. velutina Urticaceae Shrub Indo-Malay   

Dendrophthoe memecylifolia     Loranthaceae 
Hemi-
parasite WG   

Dendrophthoe neelgherrensis      Loranthaceae 
Hemi-
parasite S. India, SL   

Dendrophthoe trigona     Loranthaceae 
Hemi-
parasite WG   

Desmodium  ferrugineum     Leguminosae Shrub S. India, SL   

Dodonea viscosa     Sapindaceae Shrub Pantropical   
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Genus Species ssp. / var. Synonym Family Habit Biogeog 
Red 
List 

Drypetes elata   
Hemicyclia 
elata Euphorbiaceae Tree C. & S. WG   

Drypetes wightii    
Hemicyclia 
wightii Euphorbiaceae Tree C. & S. WG   

Elaeocarpus munronii   
Monocera 
munronii Elaeocarpaceae Tree C. & S. WG   

Elaeocarpus recurvatus   
E. 
ferrugineous Elaeocarpaceae Tree C. & S. WG   

Elaeocarpus serratus     Elaeocarpaceae Tree Indo-Malay   

Elaeocarpus tuberculatus     Elaeocarpaceae Tree Indo-Malay   

Elaeocarpus variabilis   

E. 
glandulosus, 
E. oblongus Elaeocarpaceae Tree WG   

Erythroxylum  moonii   
E. 
acuminatum Erythroxylaceae Tree WGSL   

Eugenia roxburghii    E. bracteata Myrtaceae   S. India, SL   

Euonymus angulatus     Celastraceae Tree C. & S. WG VU 

Euonymus crenulatus     Celastraceae Tree C. & S. WG   

Euonymus  dichotomus     Celastraceae Tree C. & S. WG   

Euonymus indicus     Celastraceae Tree WG   

Euonymus serratifolius     Celastraceae Shrub C. & S. WG EN 

Eurya nitida   E. japonica Theaceae Tree 
Indo-Malay, 
China   

Excoecaria  oppositifolia 
var. 
crenulata E. robusta Euphorbiaceae Tree S. India, SL   

Fagraea ceilanica   F. obovata Loganiaceae Tree Indo-Malay   

Ficus   drupacea   F. mysorensis Moraceae Tree Indo-Malay   

Flaucourtia indica     Flacourtiaceae Tree Paleotropics   

Flaucourtia montana     Flacourtiaceae Tree WG   

Garcinia cowa     Clusiaceae Tree Indo-Malay   

Garcinia gummi-gutta   G. cambogia Clusiaceae Tree WGSL   

Gaultheria  fragrantissima     Ericaceae Shrub Indo-Malay   

Glochidion ellipticum   
G. 
malabaricum Euphorbiaceae Tree C. & S. WG   

Glochidion  heyneanum    G. velutinum Euphorbiaceae Tree 
Indo-China, 
Himalaya   

Glochidion neilgherrense   
G. 
candolleanum Euphorbiaceae Tree WGSL   

Gomphandra coriacea     Icacinaceae Tree WGSL   

Goniothalamus   wightii     Annonaceae Tree S.WG   

Gordonia obtusa     Theaceae Tree WGSL   

Gnidia glauca   
Lasiosiphon 
erioephalus Thymelaeceae Tree 

India, SL, 
Africa   

Hedyotis articularis   
Olendlandia 
articularis Rubiaceae Shrub C. & S. WG   

Hedyotis buxifolia     Rubiaceae Shrub S.WG   

Hedyotis hirsutissima     Rubiaceae Shrub C. & S. WG   

Hedyotis leschenaultiana 

var. 
leschenaulti
ana H. stylosa Rubiaceae Shrub C. & S. WG   

Hedyotis swertioides     Rubiaceae Shrub C. & S. WG   

Helixanthera intermedia     Loranthaceae 
Hemi-
parasite C. & S. WG   

Helixanthera obtusata     Loranthaceae 
Hemi-
parasite C. & S. WG   
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Genus Species ssp. / var. Synonym Family Habit Biogeog 
Red 
List 

Heritiera papilio     Sterculiaceae Tree India   

Holigarna nigra     Anacardiaceae Tree C. & S. WG   

Hydnocarpus alpina     Flacourtiaceae Tree S. India, SL   

Hypericum japonicum     Hypericaceae Shrub 

Indo-Malay, 
Australia, 
New 
Zealand, E. 
Asia   

Hypericum mysurense     Hypericaceae Shrub Indo-Malay   

Ilex denticulata     Aquifoliaceae Tree 
Indo-China, 
SL   

Ilex gardneriana     Aquifoliaceae Tree C. & S. WG CR 

Ilex walkeri     Aquifoliaceae Tree India, SL   

Ilex wightiana     Aquifoliaceae Tree S. India, SL   

Ixora notoniana     Rubiaceae Shrub WG   

Isonandra lanceolata     Sapotaceae Tree S. India, SL   

Isonandra perrottetiana   I. candolleana Sapotaceae Tree C. & S. WG   

Isonandra montana     Sapotaceae Tree S. India, SL   

Jasminum  cuspidatum     Oleaceae Shrub S. India, SL   

Lasianthus acuminatus   L. coffeoides Rubiaceae Shrub WG   

Lasianthus blumeanus     Rubiaceae Shrub S.WG   

Lasianthus ciliatus     Rubiaceae Shrub C. & S. WG VU 

Lasianthus venulosus     Rubiaceae Shrub C. & S. WG   

Leucus lanceifolia     Lamiaceae Tree S. India   

Ligustrum lucidum   L. roxburghii Oleaceae Tree E. Asia   

Ligustrum perrottetii   
L. 
neilgherrense Oleaceae Tree WG   

Ligustrum robustrum     Oleaceae   S. India   

Litsea bourdillonii     Lauraceae Tree WG   

Litsea deccanensis     Lauraceae Tree S. India, SL   

Litsea floribunda     Lauraceae Tree WG   

Litsea glabrata     Lauraceae Tree C. & S. WG   

Litsea ghatica     Lauraceae Tree WG   

Litsea ligustrina   L. quinqueflora Lauraceae Tree S. India VU 

LItsea myristicaefolia     Lauraceae Tree Indo-Malay   

Litsea mysorensis     Lauraceae Tree C. & S. WG   

Litsea oleiodes     Lauraceae Tree S. India   

Litsea stocksii var. glabrata   Lauraceae Tree WG   

Litsea wightiana 
var. 
wightiana   Lauraceae Tree WG   

Lobelia leschenaultiana     Lobeliaceae Shrub India, SL   

Lonicera ligustrina     Caprifoliaceae Shrub 
Indo-China, 
Himalaya   

Macaranga indica     Euphorbiaceae Tree India, SL   

Macrosolen parasiticus     Loranthaceae Shrub S. India, SL   

Maesa Indica   
M. 
perrottetiana Myrsinaceae Tree Indo-Malay   

Mahonia leschenaultii   

Berberis 
nepalensis, B. 
leschenaultii Berberidaceae Shrub C. & S. WG   
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Genus Species ssp. / var. Synonym Family Habit Biogeog 
Red 
List 

Mallotus phillipensis     Euphorbiaceae Tree 
Indo-Malay, 
Australia   

Mallotus tetracoccus   M. albus Euphorbiaceae Tree 

Indo-China, 
Himalaya, 
SL   

Mastixia arborea   
Bursinopetalu
m arboreum Cornaceae Tree C. & S. WG   

Melicope lunu-ankenda   
Euodia lunu-
ankenda Rutaceae Tree Indo-Malay   

Memecylon flavescens     Melastomataceae Tree C. & S. WG EN 

Memecylon randerianum   

M. 
malabaricum, 
M. 
amplexicaule  Melastomataceae Tree C. & S. WG   

Memecylon sisparense     Melastomataceae Tree C. & S. WG CR 

Memecylon umbellatum   M. edule Melastomataceae Tree S. India, SL   

Meliosma simplicifolia 
ssp. 
pungens M. wightii Sabiaceae Tree 

Indo-Malay, 
China   

Meliosma pinnata 
ssp. 
barbulata 

Meliosma 
arnottiana Sabiaceae Tree 

Indo-Malay, 
China   

Michelia nilagirica     Magnoliaceae Tree WG   

Microtropis microcarpa     Celastraceae Tree C. & S. WG   

Microtropis ovalifolia     Celastraceae Tree C. & S. WG   

Microtropis ramiflora     Celastraceae Tree S. India, SL   

Microtropis stocksii     Celastraceae Tree WG   

Mitragyna parvifolia     Rubiaceae Tree Indo-Malay   

Myristica dactyloides      Myristicaceae Tree S. India, SL   

Neolitsea cassia     Lauraceae Tree Indo-Malay   

Neolitsea fischeri     Lauraceae Tree S.WG VU 

Neolitsea foliosa   N. umbrosa Lauraceae Tree S. India   

Neolitsea zeylanica     Lauraceae Tree Indo-Malay   

Neolitsea scrobiculata     Lauraceae Tree C. & S. WG   

Nothopegia beddomei     Anacardiaceae Tree S. India, SL   

Nothopegia heyneana 
var. 
heyneana 

N. 
colebrookiana Anacardiaceae Tree S. India   

Nothopodytes nimmoniana   N. foetida Icacinaceae Tree Indo-Malay   

Olea paniculata   O. glandulifera Oleaceae Tree 
India, 
Himalaya   

Osbeckia aspera     Melastomataceae Shrub S. India, SL   

Osbeckia cupularis     Melastomataceae Shrub C. & S. WG   

Osbeckia gracilis     Melastomataceae Shrub C. & S. WG   

Osbeckia reticulata     Melastomataceae Shrub C. & S. WG   

Pavetta blanda     Rubiaceae Tree S. India, SL   

Pavetta breviflora     Rubiaceae Tree C. & S. WG   

Persea macrantha   
Machilus 
macrantha Lauraceae Tree S. India, SL   

Phoebe lanceolata     Lauraceae Tree Indo-Malay   

Phoebe paniculata     Lauraceae Tree India, Burma   

Phoebe wightii     Lauraceae Tree India, Burma   

Photinia intergrifolia 

vars. 
sublanceolat
a P. notoniana Rosaceae Tree India, SL   
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Genus Species ssp. / var. Synonym Family Habit Biogeog 
Red 
List 

Pittosporum dasycaulon     Pittosporaceae Tree C. & S. WG   

Pittosporum  neelgherrense      Pittosporaceae Tree WG   

Pittosporum tetraspermum     Pittosporaceae Tree S. India, SL   

Polygala  arillata     Polygalaceae Shrub 
Indo-Malay, 
China   

Prinsepia  utilis     Rosaceae Shrub 
India, 
Himalaya   

Prunus ceylanica     Rosaceae Tree Indo-Malay EN 

Psychotria  nilgiriensis 
var. 
astephana P. congesta Rubiaceae Shrub C. & S. WG EN 

Psychotria  sohmeri   P. elongata Rubiaceae Shrub S. India, SL   

Psychotria  truncata     Rubiaceae Shrub WG   

Rapanea capitellata     Myrsinaceae Tree 
India, 
Himalaya   

Rapanea daphnoides     Myrsinaceae Shrub C. & S. WG   

Rapanea thwaitesii     Myrsinaceae Tree S.WG   

Rapanea wightiana 
Myrsine 
wightiana   Myrsinaceae Tree S. India, SL   

Rauvolfia  verticillata R. densiflora   Apocynaceae Shrub Indo-malay   

Rhododendron arboreum nilagiricum   Ericaceae Tree C. & S. WG   

Rhodomyrtus  tomentosa     Myrtaceae Tree 
Indo-Malay, 
China   

Rubus ellipticus     Rosaceae Shrub Indo-Malay   

Rubus  fairholmianus     Rosaceae Shrub Indo-Malay   

Rubus niveus 
R. 
mysorensis   Rosaceae Shrub 

Indo-Malay, 
China   

Rubus racemosus     Rosaceae Shrub C. & S. WG   

Rubus rugosus 
var. sub-
lanceolata   Rosaceae Shrub Indo-Malay   

Saprosma foetens 
ssp. 
ceylanicum   Rubiaceae Shrub C. & S. WG   

Saprosma fragrans     Rubiaceae Shrub C. & S. WG VU 

Sarcococca saligna     Buxaceae Tree Indo-Malay   

Schefflera capitata     Araliaceae Tree WG   

Schefflera racemosa     Araliaceae Tree C. & S. WG   

Schefflera rostrata     Araliaceae Tree C. & S. WG   

Schefflera wallichiana   
Paratropia 
wallichiana Araliaceae Tree S. India, SL   

Scolopia crenata   
Phoberos 
crenata Flacourtiaceae Tree Indo-Malay   

Semecarpus travancorica     Anacardiaceae Tree S.WG   

Strobilanthes decurrens     Acanthaceae Shrub C. & S. WG   

Strobilanthes foliosa     Acanthaceae Shrub S. India   

Strobilanthes gracilis     Acanthaceae Shrub C. & S. WG   

Strobilanthes heyneanus     Acanthaceae Shrub India, SL   

Strobilanthes homotropa     Acanthaceae Shrub     

Strobilanthes integrifolius     Acanthaceae Shrub WG   

Strobilanthes isophylla     Acanthaceae Shrub India   

Strobilanthes kunthianus     Acanthaceae Shrub C. & S. WG   

Strobilanthes lanatus     Acanthaceae Shrub C. & S. WG   
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Genus Species ssp. / var. Synonym Family Habit Biogeog 
Red 
List 

Strobilanthes lawsonii     Acanthaceae Shrub C. & S. WG   

Strobilanthes lurida     Acanthaceae Shrub     

Strobilanthes  micranthus     Acanthaceae Shrub C. & S. WG   

Strobilanthes  neilgherrensis     Acanthaceae Shrub C. & S. WG   

Strobilanthes  neoasper     Acanthaceae Shrub WG   

Strobilanthes  papillosus     Acanthaceae Shrub C. & S. WG   

Strobilanthes wightianus     Acanthaceae Shrub C. & S. WG   

Strobilanthes  zenkerianus     Acanthaceae Shrub C. & S. WG   

Solanum denticulatum     Solanaceae Shrub S. India   

Solanum  erianthum     Solanaceae Shrub 
Indo-Malay, 
Australia   

Symplocos anamallayana     Symplocaceae Tree S.WG EN 

Symplocos cochinchinensis ssp. laurina S. spicata Symplocaceae Tree Indo-Malay   

Symplocos foliosa     Symplocaceae Tree C. & S. WG   

Symplocos macrocarpa   S. kanarana Symplocaceae Tree S.WG VU 

Symplocos macrophylla 
ssp. 
macrophylla S. gardneriana Symplocaceae Tree India, SL   

Symplocos macrophylla 
ssp. 
microphylla   Symplocaceae Tree C.WG   

Symplocos macrophylla ssp. rosea   Symplocaceae Tree C. & S. WG   

Symplocos monatha     Symplocaceae Shrub    

Symplocos obtusa     Symplocaceae Tree S. India, SL   

Symplocos pendula   S. sessilis Symplocaceae Tree Indo-Malay   

Symplocos racemosa   S. beddomei Symplocaceae Tree Indo-China   

Syzygium calophyllifolium     Myrtaceae Tree WGSL   

Syzygium caryophyllatum   

S. 
caryophyllaeu
m, Myrtus 
caryophyllata  Myrtaceae Tree WGSL EN 

Syzygium cumini     Myrtaceae Tree Indo-Malay   

Syzygium  densiflorum   S.arnottianum Myrtaceae Tree C. & S. WG VU 

Syzygium  hemisphericum     Myrtaceae Tree S. India, SL   

Syzygium lanceolatum   S. wightianum Myrtaceae Tree S. India, SL   

Syzygium grande   

S. 
tamilnadensis. 
S. montanum Myrtaceae Tree C. & S. WG   

Tarenna asiatica   
Rondeletia 
asiatica Rubiaceae Shrub C. & S. WG   

Taxillus recurvus     Loranthaceae 
Hemi-
parasite WG   

Ternstroemia  gymnanthera   T. japonica Theaceae Tree 
Indo-Malay, 
China   

Trema orientalis   
Celtis 
orientalis Ulmaceae Tree 

Paleotropics, 
Australia   

Trichilia  connaroides    
Zanthoxylum 
connaroides Meliaceae Tree Indo-Malay   

Tricalysia  apiocarpa   
Dicospermum 
apiocarpum Rubiaceae Tree WG CR 

Turpinia cochinchinensis   T. nepalensis Staphylaceae Tree 
Indo-Malay, 
China   
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Genus Species ssp. / var. Synonym Family Habit Biogeog 
Red 
List 

Vaccinium leschenaultii     Vacciniaceae Tree 
India, 
Burma, SL   

Vaccinium  neilgherrense      Vacciniaceae Tree C. & S. WG   

Vernonia arborea   V. monosis Asteraceae Tree Indo-Malay   

Vernonia bourneana      Asteraceae Tree C. & S. WG   

Viburnum coriaceum   
V.  
capitellatum  Caprifoliaceae Tree Indo-Malay   

Viburnum cylindricum     Caprifoliaceae Tree Indo-Malay   

Viburnum erubescens     Caprifoliaceae Tree India, SL   

Viburnum hebanthum     Caprifoliaceae Tree C. & S. WG   

Viburnum punctatum   
V. 
acuminatum Caprifoliaceae Tree Indo-Malay   

Wendlandia  thyrsoidea   W. notoniana Rubiaceae Tree S. India, SL   

Xantolis tomentosa   
Sideroxylum 
tomentosum Sapotaceae Tree Indo-Malay   

Xenacanthus  pulneynensis      Acanthaceae Shrub S. India   

Zizyphus jujuba     Rhamnaceae Shrub 
C. Asia, 
China   

 

 

List compiled from the following sources: 
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Bunyan, M. 2009. Edge Effects In A Forest-Grassland Mosaic In Southern India. Ph.D. 

Thesis, University of Florida, Gainsville. 
Das A.A. This study. Survey of shola tree species in the Western Upper Nilgiris Plateau. 

Davidar, P., Mohandass, D., Vijayan, L. 2007. Floristic analysis of tropical montane 

evergreen forest in Kukkal, Palni Hills. Tropical Ecology 48: 15-25. 
Gamble, J.S. 1935. Flora of the Presidency of Madras. 3volumes. Adlard & Son, London. 

Krishnakumar, N., Udayan, P.S., Subramani S.P., Anandalakshmi, R. 2013. Flowering Plants of 

Sholas and Grasslands of the Nilgiris. Indian Council of Forestry Research and 

Education, Coimbatore. 
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Torrey Botanical Club, v. 94, No. 4: 230-242 

Menon, A.R.R. 2001. Mapping and anlaysis of the shola-grassland vegetation of Eravikulam, 

Idukki District in Nair, K.K.N., Khanduri S.K., Balasubramanyam, K. eds. Shola 
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Institute, Peechi. 453 p. 
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50: 219-229. 

Nair, K.K.N. and Menon, A.R.R. 2001. Endemic arborescent flora of the sholas of Kerala 
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Balasubramanyam, K. eds. Shola Forests of Kerala: Environment and Biodiversity. 

Kerala Forest Research Institute, Peechi. 453 p. 

Nair, P.V. and Baburaj, T.S. 2001. Biodiversity mapping of sholas through remote sensing 

and GIS techniques in Nair, K.K.N., Khanduri S.K., Balasubramanyam, K. eds. Shola 

Forests of Kerala: Environment and Biodiversity. Kerala Forest Research Institute, 

Peechi. 453 p. 
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Munnar, Idukki district in Nair, K.K.K., Khanduri S.K., Balasubramanyam, K. eds. 

Shola Forests of Kerala: Environment and Biodiversity. Kerala Forest Research 

Institute, Peechi. 453 p. 
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eds. Shola Forests of Kerala: Environment and Biodiversity. Kerala Forest 

Research Institute, Peechi. 453 p. 
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Appendix 3.2 

Shola tree and shrub species of the Western Upper Nilgiris Plateau above 1800m 

Species ssp. / var. Synonym Family Endemic Habit 

Actinodaphne wightiana (Kuntze) 
Noltie   

A. hirsute, A. 
malabarica Lauraceae Y Tree 

Actinodaphe bourdillonii Gamble     Lauraceae Y Tree 

Acronychia pedunculata (L.) Miq.   Rutaceae N Tree 

Apodytes dimidiata Meyer ex Arn.  

A. beddomei, 
A. 
benthamiana Icacinaceae N Tree 

Beilschmeida wightii Benth. ex 

Hook. f.     Lauraceae Y Tree 

Berberis tinctoria Lesch.     Berberidaceae N Shrub 

Canthium dicoccum (Gaertn.) 
Teys. & Binn. 

var. 
umbellatum 
(Wt.) Sant. & 
Merch. 

Plectronia 
didyma, 
Psydrax 
umbellata  Rubiaceae N Tree 

Casearia sp.     Flacourtiaceae   Tree 

Casearia thwaitesii Briq.   C. coriacea Flacourtiaceae N Tree 

Celtis tetrandra Roxb.     Ulmaceae N Tree 

Cestrum aurantiacum Lindl.     Solanaceae N Shrub 

Cinnamomum macrocarpum 
Hook.f.   C. iners Lauraceae Y Tree 

Cinnamomum malabatrum 

(Burm.f.) J.Presl  C. iners Lauraceae Y Tree 

Cinnamomum riparium Gamble     Lauraceae Y Tree 

Cinnamomum sulphuratum Nees     Lauraceae Y Tree 

Cinnamomum verum J.Presl     Lauraceae N Tree 

Cinnamomum walaiwarense 
Kosterm.     Lauraceae Y Tree 

Cinnamomum wightii Meissn.     Lauraceae Y Tree 

Cissampelopsis walkeri (Arn.) 

C.Jeffrey & Y.L.Chen     Asteraceae N Tree 

Crotalaria semperflorens Vent.     Papilionaceae N Shrub 

Cryptocarya lawsonii Gamble     Lauraceae Y Tree 

Cryptocarya neilgherrensis 
Meisner     Lauraceae Y Tree 

Daphniphyllum neilgherrense 
(Wt.) Rosenth.     Daphniphyllaceae N Tree 

Elaeocarpus munronii Mast.     Elaeocarpaceae Y Tree 

Elaeocarpus recurvatus Corner   E. ferrugineus Elaeocarpaceae Y Tree 

Elaeocarpus variablis Zmarzty   

E. 
glandulosus, 
E. oblongus Elaeocarpaceae Y Tree 

Euonymus crenulatus Wall.     Celastraceae Y Tree 

Eurya nitida Korth.     Theaceae N Tree 

Gaultheria fragrantissima Wall.     Ericaceae Y Shrub 

Glochidion heyneanum Wight   G. velutinum Euphorbiaceae N Tree 

Glochidion neilgherrense Wight   
G. 
candolleanum Euphorbiaceae Y Tree 

Gomphandra coriacea Wight     Icacinaceae N Tree 

Gordonia obtusa Wall. ex Wight     Theaceae Y Tree 

Hedyotis articularis R.Br. ex 
G.Don   

Olendlandia 
articularis Rubiaceae Y Shrub 

Ilex denticulata Wall. ex Wight     Aquifoliaceae N Tree 
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Species ssp/var Synonym Family Endemic Habit 

Ilex wightiana Wall. ex Wight     Aquifoliaceae N Tree 

Isonandra lanceolata Wight     Sapotaceae N Tree 

Isonandra perrottetiana A.DC.   
Isonandra 
candolleana Sapotaceae Y Tree 

Isonandra montana (Thw.) 
Gamble     Sapotaceae Y Tree 

Lasianthus venulosus Wight     Rubiaceae Y Shrub 

Leucas lanceaefolia Desf.     Lamiaceae N Shrub 

Lonicera ligustrina Wall.     Caprifoliaceae N Shrub 

Litsea floribunda Gamble     Lauraceae Y Tree 

Litsea oleiodes Hook.f.     Lauraceae Y Tree 

Litsea stocksii (Meisner) Hook. f. var. glabrata   Lauraceae Y Tree 

Litsea wightiana (Nees) Hook. f. var. wightiana   Lauraceae Y Tree 

Maesa indica (Roxb.) A.DC.     Myrsinaceae N Tree 

Mahonia leschenaultia (Wall. ex 

Wight & Arn.) Takeda   

Berberis 
nepalensis, 
B. 
leschenaultii Berberidaceae Y Tree 

Melicope lunu-ankenda (Gaertn.) 
Hartley   

Euodia lunu-
ankenda Rutaceae N Tree 

Memecylon randerianum SM & 
MR Almeida   

M. 
malabaricum, 
M. 
amplexicaule  Melastomataceae Y Tree 

Meliosma simplicifolia (Roxb.) 
Walp. pungens   Sabiaceae N Tree 

Meliosma pinnata (Roxb.) Maxim. barbulata M. arnottiana Sabiaceae N Tree 

Michelia nilagirica Zenk.     Magnoliaceae Y Tree 

Microtropis sp.     Celastraceae   Tree 

Microtropis microcarpa Wight     Celastraceae Y Tree 

Microtropis ramiflora Wight     Celastraceae N Tree 

Neolitsea zeylanica (Nees & T. 
Nees) Merr.     Lauraceae N Tree 

Neolitsea scrobiculata (Meisner) 
Gamble     Lauraceae Y Tree 

Nothapodytes nimmoniana 
(J.Graham) Mabb.     Icacinaceae N Tree 

Olea paniculata R.Br.     Oleaceae N Tree 

Pavetta breviflora DC.     Rubiaceae Y Tree 

Phoebe paniculata (Nees) Nees    P. wightii Lauraceae N Tree 

Photinia intergrifolia Lindl. 

vars. 
sublanceolata 
& serratifolia  P. notoniana Rosaceae Y Tree 

Pittosporum dasycaulon Miq.     Pittosporaceae Y Tree 

Pittosporum tetraspermum Wight 
& Arn.     Pittosporaceae N Tree 

Prunus ceylanica (Wight) Miq.     Rosaceae N Tree 

Psychotria nilgiriensis Deb & M.G. 
Gangop.    P.congesta Rubiaceae Y Shrub 

Rapanea wightiana (Wall. ex A. 
DC.) Mez   

 Myrsine 
wightiana Myrsinaceae N Tree 

Rhododendron arboreum Smith 
nilagiricum 
(Zenk.)   Ericaceae Y Tree 

Rhodomyrtus tomentosa (Aiton) 
Hassk.     Myrtaceae Y Shrub 
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Species ssp/var Synonym Family Endemic Habit 

Saprosma ceylanicum (Gardner) 
Bedd.   

 S. foetens 
ssp. 
ceylanicum Rubiaceae Y Tree 

Saprosma fragrans (Bedd.) Bedd     Rubiaceae N Shrub 

Sarcococca saligna (D.Don) 

Muell.-Arg.   
 S. 
pruniformis Buxaceae N Tree 

Schefflera capitata (Wight & Arn.) 
Harms   

 Paratropia 
capitata Araliaceae Y Tree 

Scolopia crenata (Wt. & Arn.) Clos   
Phoberos 
crenata Flacourtiaceae N Tree 

Strobilanthes sp.     Acanthaceae   Shrub 

Strobilanthes wightianus   Acanthaceae Y Shrub 

Strobilanthes neilgherrensis   Acanthaceae Y Shrub 

Strobilanthes neoasper   Acanthaceae Y Shrub 

Solanum denticulatum Blume     Solanaceae N Shrub 

Symplocos macrophylla Wall. ex 
DC 

ssp. 
microphylla 

 S. 
gardneriana Symplocaceae Y Tree 

Symplocos cochinchinensis 
(Lour.) S. Moore ssp. laurina  S. spicata Symplocaceae N Tree 

Symplocos foliosa Wight     Symplocaceae Y Tree 

Symplocos obtusa Wall. ex G. 
Don     Symplocaceae Y Tree 

Syzygium cumini (L.) Skeels   
 S. 
jambolanum Myrtaceae N Tree 

Syzygium wightianum Wall. ex 
Wight & Arn.   

 S. 
lanceolatum Myrtaceae Y Tree 

Syzygium densiflorum Wall. ex 
Wight & Arn.   S.arnottianum Myrtaceae Y Tree 

Syzygium grande (Wight) Walp.   
S. 
tamilnadensis Myrtaceae Y Tree 

Syzygium calophyllifolium (Wight) 
Walp.   

 Eugenia 
calophyllifolia Myrtaceae Y Tree 

Tarenna asiatica (L.) Kuntze ex 

K.Schum.   
Rondeletia 
asiatica Rubiaceae Y Shrub 

Ternstroemia gymnanthera (Wight 
& Arn.) Sprague     Theaceae N Tree 

Trichilia connaroides (W.& A.) 
Bentv.  

Zanthoxylum 
connaroides Meliaceae N Tree 

Turpinia cochinchinensis (Lour.) 

Merr.    T. nepalensis Staphylaceae N Tree 

Vaccinium leschenaultia Wight     Vacciniaceae N Tree 

Viburnum hebanthum Wight & 
Arn.     Caprifoliaceae Y Tree 

Xantolis tomentosa (Roxb.) Raf.   
 Sideroxylon 
tomentosum Sapotaceae N Tree 
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Appendix 4.1 

Protocol for analysis of soil texture 

Samples were sieved using a 2mm mesh, large particles were ground before placing through 

the sieve. Organic matter and rock fragments were separated and weighed and the colour and 

consistency of each sample noted. Forty grams of soil from each of the subsamples from each 

plot was then combined and mixed thoroughly to give a combined sample for the plot. Of 

this, 40g was weighed and placed in food grade plastic texture containers. Hundred ml of 5% 

solution of Sodium Hexametaphosphate (NaHMP) solution was added to each container and 

shaken. An additional container in which 100 ml of NaHMP solution but no soil was also 

prepared to serve as the blank. The closed containers were placed overnight on a mechanical 

shaker set to slow-medium speed and left there to shake overnight for a minimum of 12 

hours.  

After this, the soil solution was transferred from the texture containers to 1L 

graduated glass cylinders, which were then filled up to the 1L mark (lower meniscus) with 

distilled water stored at room temperature i.e. final solution of soil, NaHMP and water 

together made up 1L in volume.  The blank solution was treated in the same way as the soil 

solution. The contents of each cylinder were then mixed using a plunger (10 short strokes 

followed by 10 long strokes), after which the plunger was removed, a hydrometer was placed 

in the cylinder and the start time noted. Hydrometer readings (upper meniscus; added 1 to 

these readings at the time of texture calculations) were taken at 30 sec, 40sec, and 1 minute 

from start. This procedure was repeated for all the cylinders. After this the solution in each 

cylinder was allowed to settle for a period of 2 hours from the start time and a final 

hydrometer reading was taken for each cylinder. As water temperature affects specific 

density readings of soil solution, I corrected for this by adding 0.4g/L to the hydrometer 

reading for every degree above 20oC or subtracting 0.4 g/L for every degree below 20oC. 

Ten grams of each soil sample was weighed and placed separately into paper bags (wt. 1.35g) 

and left overnight in a 105oC oven. Samples were removed after 24 hours and reweighed to 

assess gravimetric soil moisture content. 

Percent sand, silt and clay was calculated using the following formulae: 

 % sand = (original conc. – corrected 40sec reading)/ (original conc.) 

 % clay = (corrected 2 hr reading/original conc.)*100 

 % silt = 100%- (% sand+ % clay) 

Where, original conc. of the soil solution = (air dried soil weight/ (1+GWC))/1000mL. 

corrected hydrometer readings => soil reading – blank reading g/L 
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Appendix 4.2 

Results of soil texture and nutrients analysis for vegetation plots 

The results of this texture analysis show that most of the plots had soil texture that varied 

from loamy sand to sandy loam the mean sand content was 75.13% ± 5.67, mean silt content 

was 16.75% ± 4.34 and mean clay content was 8.11% ± 2.95 (Fig. 1). The color of the 

samples varied greatly from light brown to very dark brown (almost black). There was also 

high organic matter content consisting of small roots or leaf and bark fragments in the 

samples. 

Soil carbon and nitrogen: 

Soil carbon and nitrogen was measured using a C/H/N analyzer (LECO). The analyzer uses 

combustion at very high temperatures to break down the soil into simple compounds which 

are then measured by infrared spectroscopy. Approximately 10g of soil from each plot was 

first ground to pass through a fine mesh sieve (0.25mm). Only approximately 0.15g of this 

was used for the LECO analysis. Each batch of samples was processed along with a blank as 

well as a set of known soil standards to calibrate the readings. 

The results show that the average percent carbon in the samples was 11.27% ± 3.68 and the 

average percent nitrogen was 0.86 ± 0.22 (Fig. 2). 

Soil cations: 

Concentration of ten soil nutrients were measured in the lab from Mehlich III extracts using 

an ICP-OES (Thermo Fischer iCAP 6000). Figure 3 shows the range of concentrations for 

each of the cations measured across the plots. Results for K are not shown owing to problems 

with ICP results for some of the plots. 
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Figure 1: Histograms and boxplots of percent sand and clay for vegetation plots 

 

 

Figure 2: Histograms of percent Carbon and Nitrogen in soils of vegetation plots 
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Figure 3: Boxplots of soil cation concentrations across vegetation plots. X axis is in units 

of concentration (ppm). 
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Appendix 4.3 

Illustration of models used to test alternative spatial hypotheses 

Alternative spatial models used for deriving MEMs: left panel shows plot distribution map with UTM 

coordinates, centre panel shows links between plots based on Delauney triangulation and right panel 

shows links based on a 4.8km threshold. 

 

Right panel shows slope map for the study area with vegetation plots marked in red. Left panel shows 

cumulative current flow between sample points calculated using slope as a resistance surface (McRae 

et al. 2008a). The warmer colours indicate higher current flow or connectivity between plots 
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Appendix 5.1 

Size class distributions across landscape contexts for common shola tree species 
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Meliosma simplicifolia 

 

 

 

 

Microtropis ramiflora 

 

 

 



185 
 

 

 

Symplocos foliosa 

 

 

 

 

Syzygium montanum 

 

 



186 
 

 

 

 

Syzygium calophyllifolium 

 

 

 

 

Rapanea wightiana 

 


