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ABSTRACT
THE DIRECT SUMMATION OP 

TOTALLY SELF-CHECKING CHECKERS
Stefan Andrew Fedyschyn 

Old Dominion University/ 1985 
Thesis Director: Dr. Sharad V. Kanetkar

A new technique for reducing the complexity of designing 
Totally Self-Checking (TSC) checkers for m-out-of-n codes is 
presented. The method is based on the partitioning of the 
input variables into r classes, then partitioning the code 
groups generated into Z output partitions. Comparison with 
earlier results reveals improvements in design simplicity 
and logic and testing complexity.

This thesis also presents a new method of TSC checker 
design where a j-level m^/n^ code and a k-level n^/i^ 
code TSC checker are directly summed to form a maxtj/k]-level 
(n^ + mjJ/Cn^ + r^) TSC checker. A library of m/n code 
TSC checkers can then be used as building blocks for other 
m/n code TSC checkers.
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Chapter One 
INTRODUCTION

The need to communicate reliable information is an 
important requirement in a wide range of systems. Many 
methods have been developed to increase reliability. One of 
these methods is the practice of encoding the information. 
Another is the use of circuitry that checks the coded input 
and determines if it belongs to the set of code words that 
are being used. Some circuits of this type are called 
Totally Self-Checking (TSC) checkers.

Totally self-checking checkers are the subject of many 
papers presenting many design strategies. The importance of 
these circuits in fault-tolerant computers has received 
considerable attention. Fault tolerant devices use these 
checkers for fault detection. These circuits are used to 
detect the presence of an error. The error these checkers 
detect is an error in the structure of the code used. Their 
ability to detect an error extends to detecting errors 
within themselves. If a TSC checker cannot properly 
differentiate between code words and non code words, because 
of an error in the checker itself, the checker will indicate 
this as an error also. TSC checkers accomplish this through 
the use of coded inputs.
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These circuits are usually designed for a specific class 
of code. This class of code is called the m-out-of-n (m/n) 
code. These codes are used because of their ability to 
detect errors which have the same direction, i.e., errors 
that make ones into zeros or zeros into ones but not both. 
The code is defined as each code word having a length of n 
made up of m ones and n-m zeros. For example, the set of 
3-out-of-5 (3/5) code words is (11100, 11010, 11001, 10110, 
10101, 10011, OHIO, 01101, 01011, 00111).

Used in communications and computer systems, these 
circuits are placed in systems on data lines where 
reliability is important. A totally self-checking checker 
is designed to detect errors in code words used for 
transmitting information between a transmitter and a 
receiver. Therefore, they can be used in any device that 
needs to send reliable information from one point to 
another.

Many design strategies have been presented. One design, 
forwarded by Gaitanis and Halatsis [1], shows results that 
are a significant improvement in logic and testing 
complexity over earlier designs. Their method involves 
partitioning the input variables, the formation of a product 
(AND gate) array and partitioning the array's output. 
Systematic separation of the array's output variables into 
output separation partitions by specific rules generates the 
TSC checker. This generation of the output separation 
partitions is the key factor in the design. A similar
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design, forwarded by Halatsis, Gaitanis and Sigala [2], 
translates m-out-of-(2nri— 1) codes to a l-out-of-2 code in 
three gate levels.

It is because of the results obtained in those two 
papers that this research took its direction. The work 
accomplished here presents a method of obtaining comparable 
results, with improvements in some cases, and an overall 
improvement in the simplicity of design. This thesis also 
extends past work done with a new method of checker design
for m/n codes not previously considered.

The first method described here partitions the input 
variables and forms the product array in the same manner as 
in [1] . This thesis presents a new method of partitioning 
the product array's output variables, i.e., a new method of 
determining the output separation partition.

The second method presented combines TSC checkers made 
with a product array by a recursive technique never before 
considered. By a direct summation method a m^/n^ code
TSC checker and a n^/nj code TSC checker generate a
(m1+m2)/(n1+n2) code TSC checker.

This method allows TSC checkers to be designed, for a 
large range of nv̂ n codes, in only three gate levels. The 
only requirement is for both checkers to have exactly two 
output separation partitions each. The method is then 
generalized to construct new TSC checkers from checkers 
having any number of output separation partitions.
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This new method simplifies the design and, as an added 
benefit, the calculation of the design cost is greatly 
simplified. The cost of the design is determined by the 
number of gates and gate input lines necessary in the 
circuit. These two methods show cost improvements over 
earlier totally self-checking checker designs. The design 
presented here lends itself to directly calculating the size 
of the product array, the number of input lines in the 
array, and the number of code words required to test the 
checker from a simple polynomial expansion.

Included as an appendix are results of research 
completed that supplement this thesis. It forwards original 
work that can serve as a starting point for future research.

The notation used throughout is consistent with previous 
work.
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Chapter Two 
DEFINITIONS

2.1 Fault Model
The design of checking circuits necessitates the 

identification of the types of errors that are most likely 
to be encountered. In previous works, the logical fault 
model used is line stuck-at faults. Stuck-at-one (s-a-1) 
and stuck-at-zero (s-a-0) faults have been used with great 
success in single fault and multiple fault designs. This 
fault modelling is successful because most failures in a 
circuit have the same effect as a circuit line being stuck 
at a logical value.

The term fault will refer to one or more lines of a 
circuit s-a-1 or s-a-0. Faults only go forward in a circuit 
and have the effect, in the model, of causing gate outputs 
to be independent of network inputs. A single fault circuit 
is defined as a circuit having only one stuck-at line and a 
multiple fault circuit is defined as a circuit having more 
than one stuck-at line. A unidirectional fault is defined 
as a multiple fault where all the stuck-at lines are 
stuck-at the same logical value. For example, all faults 
are either s-a-1 or s-a-0. A fault set is defined as the 
set of faults currently under examination. An error is 
defined as the incorrect logic signal caused by a fault. A

5
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fault does not necessarily produce an error for a particular 
input. Logical operations of the gates are unaffected.

Because of the number of possible faults a circuit can 
experience, previous work in this area has confined the 
fault set, which we require the circuit to detect, to single 
or unidirectional faults. This thesis confines itself to 
consider this same prescribed fault set.
2.2 Totally Self-Checking Model

Totally self-checking checkers have previously been 
defined by Anderson and Metze [3]. A totally self-checking 
circuit must have at least two outputs, and no output may 
take a constant logical value for code word inputs. The 
requirement for no constant valued output permits the 
checking for a s-a-1 fault at that output. It follows that 
the circuit must have at least two output values for code 
word inputs. At least one code word input should be mapped 
to each code word output. It has been formalized by 
Anderson [3] and used in all work since that, for a two 
output checker, a code word input will map to either output 
(1,0) or (0,1) and a non code word input will map to either 
output (0,0) or (1,1).

Definition 2-1: A code disjoint circuit maps cede word
inputs to code word outputs and non code word inputs to non
code word outputs. See Figure 1(a).

Using this definition, a checker can be seen as a
m-out-of-n to a l-out-of-2 code disjoint translator. Most
TSC checker designs realize this translation in one of two

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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designs. Both divide the checker into three subcheckers.
The first,
a) m/n to l/(n/m) code translator,
b) l/(n/m) to k/2k code translator, 

and c) k/2k to 1/2 code translator.
The second,
a) m/n to 1/Z (Z = 4, 5, or 6),
b) 1/Z to 2/4 code translator,

and c) 2/4 to 1/2 code translator.
A totally self-checking checker has been defined by 

Anderson and Metze in [3] as follows:
Definition 2-2: A circuit is self-testing if for every

fault from a prescribed set, the circuit produces a non code 
word output for at least one code word input. See Figure 
1(b) .

Definition 2-3: A circuit is fault-secure if for every
fault from a prescribed set, the circuit never produces an 
incorrect code word output for a code word input. See 
Figure 1 (c).

Definition 2-4: A circuit is totally self-checking
(TSC) if it is both self-testing and fault secure.

With the above definitions it can be seen that a circuit 
can be diagnosed using only code word inputs. For example, 
the set of all code word inputs can detect every fault from 
the prescribed set of faults. When a circuit receives its 
entire input space with just the application of code word 
inputs, the circuit is defined to be fully exercised.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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2.3 Test Set
As seen from the definitions above, an important 

criteria and capability is the circuit's ability to test 
itself. It has been noted that a circuit can be diagnosed 
using only code word inputs and that the entire set of code 
words can detect the entire set of prescribed errors.
However, in some TSC checkers it is not necessary to use all 
the code words as inputs to detect all the errors. The 
minimum size set of input code words that are required to 
insure the correct operation of the checker is called the 
test set. It is obvious that the smaller the test set, the 
faster and easier it becomes to "test* a checker's 
operation. For m/n codes with many code words, a reduction 
in the number of tests necessary to insure correct operation 
may be significant.

The objective of using a test set is to insure that 
there are no s-a-0 or s-a-1 faults in the circuit. This is 
done by insuring that every gate input and every gate output 
is enabled at least once while conducting the test.
2.4 Majority Detection Logic

A large number of TSC checker designs use majority logic 
detection circuits. These circuits and some methods of 
their implementation are presented.

Consider a set of A input bits, where A = (x^,X2,...,xn). 
The number of bits in the set is n. The number of ones 
occurring at any one time is k. The majority function 
defined as T(k>=i) , where 1 =< i =< n, is to be equal to 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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if and only if the condition in the parenthesis is true. 
There are two general ways to implement this function. The 
first is minimum gate level design and the second is 
multilevel cellular (minimum gate) design. See Figure 2. 
These two methods vary considerably in size and the number 
of code word inputs needed to test their correct operation. 
See Tables 1 and 2.

Using a m-out-of-n code as an example, a minimum gate 
level realization will be described. It is possible to 
construct a 2*-level AND-OR implementation of the function 
T(k>i), 1 =< i =< n. There are * n!/i!(n-i)I
AND gates with i inputs for 1 ■< i =< n. The outputs of 
these AND gates are then the inputs of a single OR gate for 
each value of i for a total of n OR gates. For example, the 
implementation of T(k>=3) for A = (a^, a2 , a^, a^) 
shows

T(k>=3) = aia2a3 + a ^ ^  + + a^a^j
For this implementation of T(k>=3) there are four AND gates 
and the one OR gate. When i = 1, all n lines are inputs to 
a single OR gate. When i = n, all lines are inputs to one 
AND gate and there is no second level OR gate. It is 
obvious that each AND gate realizing T(k>=i) has i inputs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Chapter Three 
DESIGN PROCEDURE

3.1 Philosophy
A TSC checker is fundamentally a data reduction circuit

that translates „C m/n code words into two 1/2 coden m
words. This reduction must preserve the integrity of the 
information that describes the correctness of the inputs and 
the TSC checker itself. This reduction should also be 
realized in a manner to minimize gate delay and hardware 
costs.

A valuable characteristic of m/n codes is that they have 
a constant number of ones in each code word. It follows 
that the first step in reducing the code space and the 

j  easiest procedure to determine the presence of an error is
to count the number of ones. This is accomplished by using
majority detection logic.

As stated earlier, there are two realizations of 
majority logic, minimum level and multilevel cellular. The 
minimum level design has the smaller gate delay and the 

I multilevel cellular design has the smaller hardware cost.
We can design for both of these characteristics by 

j  partitioning the input variables.
The input variables are partitioned, according to a few 

criteria, to make tradeoffs between gate delays and hardware

12
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costs. Depending on the sizes of the partitions* the code 
space can be greatly reduced in this one step. Since we are 
counting the number of ones* this information is not lost by 
such a procedure. By summing outputs from the majority 
logic we can determine the number of ones in the input.

The comparison is done by an array of AND gates. These 
gates form a product array. Each AND gate has an input from 
the majority logic outputs of every different partition. 
These inputs are the distributions that add to m for a m/n 

TSC checker. When a valid code word is the input* one and 
only one AND gate will have an output.

We can see that if there are less than m ones there will 
be no output from any AND gate and if there are more than m 
ones there will be an output from more than one AND gate.
The presence of a s-a-0 or s-a-1 fault can be seen to have 
the same effect* respectively. When the inputs and the 
circuit are correct one and only one partition will have an 
output.

The outputs from this array are again partitioned for a 
further reduction step. This partitioning must be done in 
such a manner that any error up to this point will produce 
either no outputs from any partition or cause more than one 

| partition to have an output. And when there is no error

i present one and only one partition will have an output.
This manner of partitioning and reducing is continued 

; until there are only two outputs. At this point any code
| word is mapped to (0* 1) or (1* 0) and any non code word or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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error is mapped to (0, 0) or (lr 1).
3.2 Design

The TSC checker presented here is of the same general 
form as the one forwarded by Gaitanis and Halatsis [1]. It 
consists of two major circuits, c^ and Cj. Circuit c^ 
is a m/n to 1/Z code translator and circuit c2 is a 1/Z to 
1/2 code translator. See Pigure 3a.

Circuit c^ consists of three subcircuits, c^,  
c^2> aRd c^2* Circuit c ^  is the majority detection 
logic. Circuit c12 implements product functions and is an 
array of AND gates. Circuit c13 is an output reducing 
circuit and is an array of OR gates. See Figure 3b.

Anderson and Netze [3] forwarded a theorem for designing 
TSC checkers by the interconnection of subcircuits.

Theorem 3-1: A circuit c consisting of an
interconnection of subcircuits is TSC for unidirectional 
faults if it contains no inverters and each subcircuit is

1) TSC for unidirectional faults,
2) code disjoint,
3) fully exercised,
4) input encoded with a completely unidirectional error

detection code (e.g., m/n code).
If the circuit c contains inverting gates, then it is TSC 
only for single faults.

Two theorems that establish conditions for the proper 
design of the TSC checker follow from this and were first 
forwarded as propositions in (1]. Theorem 3-2 insures s-a-0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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faults are detected and Theorem 3-3 insures s-a-1 faults are 
detected.

Theorem 3-2: For any m/n code (m >= 2, n >= 4) , c ^
concatenated by c^2 ĉn  ® C12^ a co^e disjoint 
circuit if and only if n^ =< m for every i =* 1 to r.

Theorem 3-3: For any m/n code (m >= 2, n >= 4) the
circuit c ^  @ c^2 is a self-testing checker if and only 
if

Consider an input partition p(A) on the set A of input 
variables, A =  (x1# x2 ,..., xR) , into r subsets, i.e.,

Let n^ =< m, i = 1 to r, be the number of variables in 
subset A^. Let k.̂  be the number of variables in A^ 
that are equal to 1.

Circuit c ^  uses majority logic detection circuitry to 
implement the majority functions

Circuit c12 uses AND gates to form the product array 
implementing the product functions. The product functions

=< m =< n - n^ over all i = 1 to r

p(A) = (A^, Aj r • • • 9

T(ki>=mj), i = 1 to r and m^ 1 to n^

ir*2 • • •
majority functions such that
P _ are defined as the logical product of

* T(kr>=mr)
where

+ + mr m
and

max(m-n+n^, 0) =< m^ =< n^, i = 1 to r
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The product functions are combinatorial distributions of 
the outputs from the majority logic for the m/n code words 
over p(A). For example, a 3/8 code with r = 3 partitions of 
size ^(3,3,2), has the product functions:

P300' P210' P201' P120' Plll' P102f P030' P021 and P012* 
See Figure 4.

For a TSC checker with this type of realization, the 
size of the test set is the number of distributions of the 
code words over the input partitions. The test set is the 
set of code words which are inputs to the majority logic 
that generate an output from each AND gate and those 
functions not requiring an AND gate, i.e., those functions 
in a m/n code that correspond to PQq m q , m^ = m.
These inputs test the entire circuit and are generated at 
the same time as the TSC checker itself with no additional 
calculations. The test is the required input for the 
circuit to demonstrate the self-checking property.

To be self-checking requires the circuit to produce an 
output of 1, from every gate in the circuit, at least once 
for some code word input. It also requires the circuit not 
to produce an output, i.e., an output of 0, from every gate 
in the circuit, at least once for some word input. These 
two requirements test for s-a-0 and s-a-1, respectively.

The size of the input partitions must allow the two 
requirements, testing for s-a-0 and s-a-1, to be realized.

For an m/n code, if the partition's size, n^, is 
larger than m, the section of the majority logic that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Implements T(k^>»iiH-l) can never be tested for s-a-0. In 
this event, a non code word input of (m+l)/n may not be 
mapped to a non code word output.

Conversely, if the number of partitions is too small, it 
will not allow each partition's majority logic to have an 
output of 0, at least once, for some code word input. A 
s-a-1 fault may not be detected. For example, a 5/6 code 
TSC checker with partitions n^(2,2,2) has product 
functions corresponding to [(2,2,1), (2,1,2), (1,2,2)]. If 
the output line of any of the T(k^>=l) majority logic OR 
gates is s-a-1, none of the code words will detect this 
fault. Therefore, at least one 4/6 non code word will 
produce a valid code word output.

From the above it was shown [1] that the number of input 
partitions r should satisfy

The output reducing circuit, is an array of OR
gates. The partitioning of the set of product functions, 
i.e., the outputs from c12r results in forming the output 
separation partition B and determines the number, z, of OR 
gates.

B = ( Bq , B^,..., B^_2)*
The method of partitioning the product functions will be 

presented in Chapter Four. A maximum lower bound for z as a 
function of r was established in [1]. This bound was given

fn /(n -m )| ) .

(The notation n means to take the next highest whole 
number, and[_ J means to truncate.)
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for odd and even values of r as
z »< 3 * 2U_1 for r * 2u + 1 

z =< 2U for r = 2u.
Circuit c2 is a 1/Z to 1/2 code translator. It is now 

obvious that z = z. Circuit c^ converts the m/n code to a 
1/Z code where z satisfies the following condition [1]

min(n-m, m) >= fn/z].
For some m/n codes, Z may take the value of 3. To date, 

there have been no TSC checkers designed using standard 
design procedures. However, two 1/3 TSC checkers designs 
were presented, David [4] and Golan [5], that do not fulfill 
our requirement for minimization. The first uses sequential 
circuits and the second uses a combined fixed weight code. 
Neither of these designs serve the purpose of cost 
efficiency, compared to designs using Z = 4. Therefore, 
where Z = 3, we will use Z = 4 in the design.

For a ra/n code, there are three types of inputs that 
need to be considered. The first, where

ki + k2 + ... + kr = m, a code word.
The second, where

ki + k2 + ••• + kf < m, a non code word.
And the third, where

ki + k2 + ••• + kr > m, a non code word.
The first type is the required m/n code word input. The 

checker maps the code word input to a code word output, 
either (0,1) or (1,0).

The second type is a non code word input that maps into
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the non code word type output (0,0). Since
I  k. < m
i=l

no product function is realized and all outputs are 0.
The third type is a non code word input that is designed 

to map into the non code word output (1,1) . To realize this 
mapping at least one product function that maps to (0,1) and 
at least one product function that maps to (1,0) must 
produce an output. Specifically, for every non code word 
that corresponds to k^k2...kr with

^  + k2 + ... + kr 3 m+1, 
there are at least two product functions

P.
and

where

and

k^k2 . * 1... k^

k^k2 ••.kj-1..»kr

ki + k2 + ... + k̂ -1 ... + kr = m

^  + k2 + ... + kj-1 ... + kr = m
that produce an output of 1. This leads to the following.

Definition 3-1: The error cover set E. . .
1 2  ’ * r

is the set of product functions that become equal to 1 for 
every non code word that corresponds to k^k2 ...kr with 
ki + k2 + ... + kr > m and k^ =< m for every i = 1 to r.

Example (continued): The error cover sets for the circuit 

°11 ® c12 of c0<̂ e' r = 3 partitions of size
^(3,3,2) f are:
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^ 1 0 * (P300' P210}
E301 S (P300' P201}
E220 * (P210 ' P120)
E211 X (P210' P201 f ^ l l 1
E202 “ (P201' P102}
E130 3 (P120' P030)
E121 = (P120' Plll' P021}
E112 - (P111' P102f P012)
E031 3 (P030' P021}
E022 * (P021f P012)

Definition 3-2 •• The fault cover set
is the set of product functions that become one in the 
event of a s-a-1 fault in the i-th path of 
for any of the code words that correspond to the following 
r-digit numbers:

( + 1 )  n»2 • • • (m^—1) • • • m^

ml *“3 * * *mi-l ̂ mi_1^mi+l * * *mr

m. . .ro_ix — mi-2 (mi-l+15 {mi ~l} rai+l
nî  • mi • * • nî

m^.. (m^-1) mi+2 ’ **m i

(m .-1) mi+i • * * mr-i ̂ m r+l) • 
Definition 3-3: F

• • • m j • • •

• • • (nij+1) h* • • (m^-l) • • • 
every product function

contained in the fault set
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Example (continued): The fault cover sets for the
circuit c ^ * c12 of the 3/8 code are:

P3*00 * P21*0 3 P201* a (P300' P210' P201)*
f2*10 3 P12*0 3 Plll* a (P210' P120' *1 1 1'•
P2*01 3 Pll*l 3 P102* a (P201' Plll' P102)•
Pl*ll " P02*l 3 P012* a (P111' P021' P012)*
Pl*20 “ P03*0 3 P021* a (P120/ P030' P02l'*
Pl*02 3 P01*2 as {P102/ P012 •
Theorem 3-4: For any m/n code (m >= 2 r n

circuit c ^  @ c12 is a TSC checker if and only if
n^ =< m =< n - n^ over all i = 1 to r

for any input partition p(A) of r subsets.
Definition 3-4: B = (Bq , B^f Bz_^) is called

an output separation partition on the set of the product 
functions if and only if neither any error cover set nor any 
fault cover set is contained entirely in one subset of B.

Theorem 3-5: For any m/n code (m >= 2 , n >= 4) the
circuit c ^  @ c12 @ c13 is a TSC checker if and only if

a) n^ =< m < n-n^ for i = 1 to r for any p(A) and
b) partition B is an output separation partition.
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Chapter Pour 
OUTPUT SEPARATION PARTITION 

This section presents a new method of determining the 
output separation partition B. Different than the method 
forwarded by Gaitanis and Halatsis [1], this technique 
simplifies the design of TSC checkers substantially. 

Assign to each Aĵ  an arbitrary weight w ^  e.g., 
w^ = i mod Z tor w^ = (i-1) mod Z).

Here we define the product weight as the algebraic sum
r

W = ( I wi * ®i.) m0<* z*i=l
Let P„ „ _ and P .  . be two different.m_ m , m 0 ...mm^m2.. .mr m ĵm 2- - —  ^

for 1
■ W

product functions. The weight for P^ m is
w_ = { I W. * m.) mod Z,P i=i 1 1

and the weight for is
x Zr r  

w~i = ( y w. * m'.) mod Z.
p i=lSince the product terms are different, there are at least

two terms in P„ „ which are not equal in
1 ̂  * * * r

P . , . at positions m. (m* •) and
1 2 * * r

(m'k). At these positions m^ = m'j + 1 and mk =
m'k - 1, for j,k = 1 to r and no mi < 0.

Here we define the product distance as
D = |wp - wpl I mod Z

= ( y I w.*m. - w.*m'.|) mod Z u 1 X X  x Xi=l

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25

* lwjmj + wicmic ” Wj(aij-l) - wk (m^+1) j mod Z 
= |Wj - wk | mod Z

An examination of the error cover sets for the product 
distances of the product terms in the sets reveal the 
following. By definition 3-1, those product terms with 
kl + k2 + .. • + lcr > m and k^ =*< m for every i = 1 
to r belong to the same error cover set. The error

Ek1k2 ...kr “ (P(k1~l)k2 ..,kr'
^ ( k j - l )  ...krr •••' pk1k2 ...(kr-l)) •

The product distance between any two product terms in an
error cover set is

dE = l(lci”1)wi + kjwj " kiw i “ mod 2
= |wt - Wj | mod Z ,  i # j and i,j = 1  to r.

Since every error cover set has at least two function 
elements and Z >= 2 , there is at least a product distance of 
D = 1 between at least two of its elements. In fact, for 
Z = 4 and r =< 4, there is a product distance of at least 
D = 1 between any two elements. The same can be shown for 
the fault cover set, Dp >= 1.

Since in the error cover sets and in the fault cover 
sets, the minimum distance is D = 1 between product 
functions, we cannot use the same output separation 
partition B as in [1]. Here we make the following 
proposition.

Proposition 1: Any partition B on the set of product
functions such that D = 0 for every pair of functions that 
belong to the same subset of B, i.e., the product functions
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have the same weight, is an output separation partition.
From the definition of an output separation partition 

(Definition 3-4), no subset of B can completely contain an 
error cover set or a fault cover set. Since all product 
functions in an error cover set or a fault cover set have a 
minimum distance of D = 1, and elements in each subset of B 
have D = 0, at least one function from at least two output 
separation partitions will produce an output indicating an 
error. Set B is an output separation partition.

Example (continued): The output separation partitions
for the 3/8 code, with r = 3, Z * 4 and partitions of size 
ni (3,3,2), are designed as follows. Ose the weighting 
scheme w^(3,2,l). Determine the product weight for each 
product term.

P300 => W = 3*3 mod 4 = 1

P210 => w = 2*3 + 1*2 mod 4 = 0

P201 => w = 2*3 + 1*1 mod 4 = 3

P120 => w = 1*3 + 2*2 mod 4 = 3

Plll => w = 1*3 + 1*2 + 1*1 mod

P102 => w = 1*3 + 2*1 mod 4 = 1

P030 => w = 3*2 mod 4 = 2

P021 => w = 2*2 + 1*1 mod 4 = 1

P012 => w = 1*2 + 2*1 mod 4 = 0
The output partitions become:

Bo = (P210' P012
B1 = {P300' P102

w to II (P111' P030
B3 = (P201' P120
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No error cover set or fault cover set is entirely contained 
In any one output separation partition.

For any m/n codes, m >= 2 and n >= 4, the equation

is used to determine the value for Z. As stated, when Z = 3 
the value used for the design is Z = 4. For m/2m codes, the 
value of Z = 2. Using two partitions of size m and 
realizing m+1 product functions into m-1 AND gates, the 
output separation partition is of size 2, E = (BQ , B^) . 
Circuit c2 is nonexistent.

For m/2m codes, using m partitions of size 2 realizes a 
three level TSC checker.

At this point it is important to stress the fact that 
this method is significantly less complex to implement than 
any previous method. The design and analysis of this design 
is within the capabilities of researchers without the aid of 
computers. Many of the designs previously forwarded have 
required computer programs to determine the output 
separation partitions and the hardware cost of the designs.
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Chapter Five 
THE DIRECT SUMMATION METHOD

This chapter presents a new method for TSC checker 
design. By a recursive procedure, two TSC checkers are 
directly summed to form a new TSC checker for a larger code 
without increasing the gate level size over the previous two 
checkers.

Two TSC checkers, for the codes m^/n^ and n^/nj, 
are directly summed to form a third checker for the code 
(n^+mjJ/t^+rij). For example, two 3/7 three level 
TSC checkers are directly summed to form a 6/14 three level 
checker, then this new checker could be summed with a 
mj/Oj three level checker to form a (6+m3)/(14+n3) 
three level checker.

This design procedure is a direct sum of two TSC 
checkers. These two TSC checkers must be made using a 
product array designed in Chapter Three or designed by the 
methods described by Gaitanis and Halatsis [1], Halatsis, 
Gaitanis and Sigala [2], Bose and Lin [6] or Reddy [71.
While this method designs the output separation partition 
for the new TSC checker differently than described earlier, 
the output separation partitions for the two smaller TSC 
checkers play an important role.

28
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5.1 Partitioning for Three Level Checkers
Because of the importance of speed in TSC checker 

designs, we will first design three level checkers. This 
necessitates using input partitions of size 2 and two output 
separation partitions in each of the TSC subcheckers. The 
recursive nature of this procedure does not make this a 
large restriction. Many three level checkers have been 
designed using product arrays [2, 6, 7, 9, appendix].

The input partitioning of the first checker is
p(A^) 3 ^12' • • • /  j)

and the second is

pCAj) = ^22' *23*
In the new checker the input partitioning is

p(A) = ( p ^ ) ,  ptAj))
= ( A ^ ,  ..., A l r , A ^ ,  ..., Ajg)

= ( A^ , A2 f • * . f A^g) .
The formation of the new product array follows the

method outlined in Chapter Three. The product functions are
the combinatorial distributions of the
(n^+mjJ/t^+nj) code words over p(A). The product
function P „ is again defined as

mll***inlrm21***ni2s
^ ^ ... j ^21 ^ ... g nî  •

Let k^ be the number of variables in pCA^ that are
equal to 1 and let k2 be the number of variables in
p(A2) that are equal to 1. In this method the values of
k1 and k2 are important in determining the output
separation partitions. The P_ product

mll***mlrni21**,'in2s
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function's output separation partition's assignment is 
determined by the distribution

®11 + ••• + ®ir “ kl
and

®2i + ••• + ®2s * k2*
The new checker is formed by partitioning the product

functions by one of two methods determined by two cases.
These two cases are differentiated by the value of k, i.e.,
those variables equal to 1, for the inputs to each
distinct checker's input partition.
The cases considered are differentiated as

CASE 1 —  code words belonging to subset 2
CASE 2 —  code words belonging to subsets 1 and 3.

Where
Subset 1 —  code words where

kl < ml and k2 > m2 /
Subset 2 —  code words where

^1 = “l an<* *2 = m2 r
Subset 3 —  code words where

k^ > m^ and k.2 < m ^
An important property of these two cases is that they

are mutually exclusive. No code word considered in CASE 1
is considered in CASE 2 and no code word considered in CASE
2 is considered in CASE 1. The sets are easily seen to be
mutually exclusive by the strictly greater than or less than
relations. Since the subchecker (i.e., subscript)
designation as one or two is arbitrary, subsets 1 and 3 are
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symmetric. In all subsets + k2 3 + n^.

CASE 1. * ®]_ and 2̂ * ®2*
In this case each individual checker behaves as the

distinct m/n checker it was originally designed as. The
output partitions are determined as follows.

The respective output separation partitions associated
with the distributions are determined, i.e., the partitions
that include _ and P_ _ , and the

mU - . - ,nlr “21"-"28 
two compared. The product function's output separation
partition is then determined for the corresponding
p
“ll* * •mlrm21’ * ‘^ s '  

where

and

n*2i + ••• + S = k2*
If the subchecker output separation partitions for

(P , P ) are the same, the product
mll* * ,inlr ”21---"^s 

function belongs to Bg, arbitrarily. If the subchecker
output separation partitions are different, the product
function belong to B^. For example, if the subchecker
output separation partitions are either (Bg, Bg) or
(Bi, B1), then the function belongs to Bg. If the
subchecker output separation partitions are either (Bg, B1)
or (B^, Bg), then the function belongs to B1 .

CASE 2. kj * m^, k2 # and ^  + k2 = 1̂ +  n^.
This condition would create an error to be detected in

both of the subcheckers; therefore, a different method is
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needed to determine these valid product functions' output 
separation partitions.

For this case we use the same method presented in 
Chapter Four. The partition that the product function 
belongs to is determined by its weight

W = iA^ mod 2.
All product functions whose weight is zero are in Bq and 
all product functions whose weight is one are in B^.
5.2 Error and Fault Detection

Identical to the reasoning presented in Chapter Three, 
any non code word input where k^ + k2 < m^ + n^, 
i.e., an error of less than m ones for an nv/n code, produces 
no output from any product function. The TSC checker's 
output will be the non code word (0,0).

The output separation partitions need to be examined to 
insure that no error cover set or fault cover set is 
completely contained in any one partition. This is done by 
examining both of the cases individually and noting that 
each case is mutually exclusive over the set of code words.

CASE 1. k^ + k2 > nij +
with either k1 = m1 and k2 >
or k^ > and k2 = n^.

Symmetry enables the examination of only one of the two
faults in this case. Suppose the fault where k1 = 
and k2 > exists. Then according to design procedure, 
the first subchecker will have a function in either BQ or 
B^, say Bq . The second subchecker with k2 > will
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produce a term in both Bq and because it acts as a 
distinct nij/nj checker and would indicate an error by 
producing a non code word output of (1,1)* The total 
checker will then partition the input non code word into 
(Bq, Bq) and (Bq, B1), which maps into both Bq and

CASE 2. k^ + kj > m^ + mj
with either k^ < and k2 >
or k^ > m1 and k2 < n^.

Again symmetry enables the examination of only one of 
these faults. We have defined the product distance as

D = lwp " WP'I mod z'
here Z = 2. The error cover set and the fault cover set
were seen to have at least two functions, with a minimum
distance of D = 1 between at least two functions. The 
output separation partition is again designed with D = 0 
between functions. As described in Chapter Four, at least 
one function from both output separation partitions will 
produce an output indicating an error.
5.3 Partitioning for Multilevel Checkers

There are some codes that have no three level TSC 
checker implementation, i.e., cannot be designed using only 
two output separation partitions. It is possible to 
directly sum two checkers having more than two output 
separation partitions. Also, it is possible to directly sum 
two checkers with an unequal number of output separation 
partitions.
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The summation method involving checkers with more than 
two output separation partitions is similar to that 
involving two output partitions, A generalized method is 
presented for designing a TSC checker by summing two TSC 
checkers with output separation partition size Z, Z >* 2. 
While the design of a checker which reduces to an 1/3 code 
is not commonly in use, the design is included for 
completeness.

Consider two TSC checkers. The first for a m^/^ 
code with input partitions

p(A^) = ^^llf "  *r ^ir^ 
and output separation partitions

3 ( a ^  r 1 • • • r 3 ^  ^ r 2  j

and the second for a mj/nj code with input partitions

= ^ l '  *•*' A2s) 
and output separation partitions

1&2 = t * hj t • • • r ) t Zj ^ *
The resultant checker designed by the summation method 

will be for a (n^+mj) /(n^i^) code with input 
partition

p(A) = (p(A1), ptAj}) 
and with output separation partitions

B = ( C^ f C£ r * * * t ) t 

where z = max(z^, z2)•
' The new (m^+n^/fn^+nj) code words are 

distributed over the input partitions of the two checkers. 
The output separation partitions for the product functions
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P * * „ are determined by the following two
mll**'inlrm21*‘,in2s
cases corresponding to the distributions

m ^  + . . . + m ^ r * k ^
and

®2i + ••• + a *2*
CASE 1. 3 “i and *2 * “2*
The individual checker maintains its distinct m/n code 

TSC checker behavior. Each checker's c^ subcircuit 
initially had as an individual output a 1/Z. code, wherecl
Z, is the checker's respective number of output separationa
partitions. As in the three level design above, the output
separation partitions for the product functions Pm
and P _ are compared. The result of this comparison

*21- " ^ s
determines the output separation partition of the corresponding
P - _ product function.
mll** l r ^ l * * * ^ s

The assignment is determined by the following rule. For
a^bj, the terms are assigned to B such that no ordered
pair is duplicated and each aA or b.. term in any one
partition is distinct.

This method is general and many solutions exist. As a
starting point for the examples, the following criteria is
used for all partitioning except for the three level checker
i.e., where Z, = Z0 = Z = 2, . For P e a.

1 2  mil**,mlr
and P e b., denoted by a.b., then them21...m2s i 11
corresponding term Pmil.. •mirm2i * * ,in2s e ci'
a.b. e c..
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For example, the following partition assignments 
forwarded for various combinations of TSC checkers. 

Z, = zn “ Z * 4

C1 = (albl • t ° 3 a3 4'
c2 = (alb4 a2b2 BjHl.

c3 * t»lb2 a2b4

no

talb3 a3b2'
=* Z - 4, ■ 3
C1 = (albX * 2 b3 a3b2>
C2 = (»lb2 * 3 b3 a4bl>
c3 “ (alb3 a4b2>

iio

(a2b2 *3 bl a4b3>
■ z = 4, * 2

cl = (albl a3b2
c2 = <alb2 a4bl
c3 = (a2b2 V l
c4 = (a2bX a4b2
- Z2 = Z 3

C1 = talbl a2b3 a3b2>
c2 = (alb3 H bi a3bj)

c3 = (alb2 * 2 bl a3b3>
Z1 = Z = 3 Z2 = 2

°1 = <albl ^3b2

c2 = (alb2
°3 = (a2b2 * 3 bl

4 2'

4 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



37

3 Z2 3 Z 3 2

cx 51 ^ ^ 2^

c2 3 âlb2r
CASE 2. k^ * n^, k2 ^ ®2 and ki + k2 = ”*1 + m2*
Under these conditions, an error would be detected by 

both subcheckers and none of the product functions assigned 
in CASE 1 would produce an output indicating a valid code 
word.

For this case we again use the method presented in 
Chapter Four and used above in CASE 2 of the three level 
checker design. The partitioning is determined by the code 
word's weight

W = iA^ mod Z.
The value of Z is determined by

Z = max (Z^, Z2) .
5.4 Error and Fault Detection

Showing that CASE 2 fulfills the requirements for a TSC 
checker has already been addressed. It is necessary to 
examine CASE 1. The criteria for each i, j, 1 =< i =< Z1 
and 1 =< j =< Z2 » to be distinct in each partition is an 
important one.

Consider the partitioning. If a valid code word was the 
input to subchecker one, it would produce an output for the 
associated product function in a^. Now, suppose a non 
code word was the input to subchecker two, where k2 > n^.
(In the case of k2 < n^, no product function would 
produce an output and the new (m^+ra^/fn^+n^
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checker would have (0,0) as Its output.) This causes two 
product functions to produce an output, say for partitions 
bj and b^. If in one partition both a^b^ and ajb^ 
were included, no error would be detected. Therefore, a^bj 
and a^b^ must be in different partitions. This implies 
each subchecker partition a^ and b^ must be distinct in 
each partition in B.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter Six 
DESIGN COST 

6.1 Majority Detection Logic
With minimum level realization of the majority detection 

logic, the number and sizes of the input partitions are 
critical factors in determining the cost of the TSC checker. 
The input variables are partitioned such that m >= n ^  
i = 1 to r. It was shown [1] that the gate cost is 
minimized when

n = s * r  + t, t < r  

where s = j_n/rj* For partition p(A) with t subsets where 
n^ = s + 1 and r - t subsets where n^ = s, the gate cost 
G^Cr) is

Gn (r) = (r + t)2s - 2r.
The number of gate input lines to the majority logic has 
been shown to be

In (r) = t(2s-1+l) (s+3) + (r-t) (2s”1-!) (s+2) .
Table 1 shows gate counts and input line counts for 

individual two-level realizations of majority logic and 
Table 2 shows multilevel cellular design costs.

j 6.2 Product Array
| The gate cost of the product term array is egual to the
£
? number of product functions, since each product function
j forms one AND gate. In [II, formulae were given to

! 39
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TABLE 1 TABLE 2
Majority detection logic 

minimum level design
Majority detection logic 

multilevel cellular design
n gates inputs n gates inputs
2 2 4 2 2 4
3 6 15 3 6 12
4 14 42 4 11 23
5 30 105 5 18 38
6 62 248 6 26 56
7 126 567 7 35 77
8 254 1270 8 45 101
9 510 2805 9 57 129

10 1022 6132 10 70 160
11 2046 13299 11 84 195
12 40 94 28658 12 99 231

calculate the number of gates and inputs necessary to 
construct the product array. This paper forwards a 
different presentation of the calculations needed.

As stated, the product functions are the combinatorial 
distributions of the code words over the majority logic. To 
determine the number of product functions, it is necessary 
to calculate the number of ways m things can be partitioned 
into r groups of size n^. The method presented here uses 
a polynomial expansion.

The generating function takes the form
0 n 4G(y) = 1 + yx + yx + ... + yx 

For an m/n code with r partitions the gate count function is 
G12(y) = (1+YX+-•.+yxnl)(l+yx+...+yxn2)***(l+yx+...+yxnr)

or, in closed form
n ! nl, 2,n2

nI
V V - ' - V

1 (yx) (yx ) . . . (yx*j
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The sum is over all non-negative integers nQ ,
P

nlf...,np for which I  ni  * n and the product is over 
all partitions.

The gate count for a specific m/n code is found by 
evaluating the coefficient using

G12(1> = G12(y)l m “ e' <evaluated at •
The input lines needed in the product array are

I12(l) * d/dy G12(y)|^m - e.
Where e is the correction needed if for some i = 1 to r, 
n̂  ̂= m. When this condition is met, the product term

takes the form PQ0..m ..00 where mi 3 m and no AND 
gate is necessary. Therefore, e equals the number of 
partitions of size m.

Using the same polynomial, the number of error cover 
sets can be found to be

Ely) = gly) Ijjlm+l) ’
The number of fault cover sets is

F(y) = d/<3y G12(y> I m
= I12(l)+e

The test set size is

T(y) = G12« l xn.
Example (continued): For the 3/8 code, there are r

partitions of size ^(3,3,2). The costs are found by 
evaluating the polynomial

G(y) = (l+yx+yx2+yx3)2 (1+yx+yx2).
3Evaluated for x gives the cost function as

Gi2(y) I 3 = 2y + 6y2 + y3 - e
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where e » 2 (P300 and P030)• The gate count is

G12(1) 3 9 " 2 “ 7*
And the input line cost is

I12(1)I 3 m 2 +  12y + 3y2 - e
* 2 + 12 + 3 - 2 » 15.

The number of the error cover sets is
E(l)| 4 - 7y2 + 3y3 

x
* 7 + 3 » 10

The number of the fault cover sets is
P(l) * 17

6.3 Output Reducing Array
The output reducing circuit c13 is an array of OR 

gates, the number of which depends on the output separation 
partition. The number of gates will be determined in 
Chapter Four. The number of input lines to c13 is equal 
to the number of gates in c12 without the correction 
factor.

= G12(l)+e.
Finally, circuit c2 for z = 4 has a gate cost of 10 

and an input line cost of 20.
6.4 Cost Minimization Example

To determine the best partition size, begin with

It has been shown that the most economical TSC checker is 
designed with the input partitions of approximately the same 
size.
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Example (continued): Por a 3/8 code, determining the
partition sizes for the most economical design is found by 
the following method. First, determine the various sizes of 
partitioning for consideration. Por a 3/8 code, we can use 
^(3,3,2), n^(3,2,2,1) and ^(2,2,2,2), this is not a 
complete list. Calculate the cost of circuit c ^ ,  the
majority logic, using the equations

G^fr) = (r + t)2s - 2r and
In (r) = t U ^ + l )  (s+3) + (r-t) (2S_1-1) (s+2).

n̂, (3,3,2) —  s = 2, r = 3 and t =* 2
G(r) = (3+2)22 - 2(3) =* 14 gates.
I(r) = 2(22“1+1)(2+3) + (3-2)(2X-1)(2+2)

= 34 inputs. 
ni(3,2,2,l) ~  s = 2, r = 3 and t = 1

G(r) = (3+1)22 - 2(3) = 10 gates.
I(r) = 1(21+1)(2+3) + (3-1)(21-!)(2+2)

= 23 inputs. 
ni(2,2,2,2) —  s = 2, r = 4 and t = 0 

G(r) = (4)22 - 2(4) = 8 gates.
I(r) = 0 + 4(21-1)(2+2)

= 16 inputs.
Next, calculate the cost of circuit c12» the product

array, using and evaluating the following:
n^(3,3,2) —  G(y; = (l+yx+yx2+yx3)2(1+yx+yx2)

G(y)I 3 = 2y + 6y2 + y3 _ e (e = 2) 
x

G(l) = 2 + 6 + l - 2 = 7  gates,
and
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I(y) = 2 + 12y + 3y2 - e
1(1) = 2 + 1 2 + 3 - 2 - 1 5  inputs.

ni(3r2 r2 fl) —  G(y) - (l+yx+yx2+yx3)(1+yx+yx2)2(1+yx)
G(y)| 3 * y + 9y2 + 4y3 - e (e = 1) 

x
G (1) = 1 + 9 + 4 - 1 = 1 3  gates,

and
I(y) = 1 + 18y + 12y2 - e
1(1) = 1 + 18 + 12 - 1 = 30 inputs.

ni(2,2,2,2) —  G(y) = (1+yx+yx2)4
G(y) | 3 = 12y2 + 4y3 - e (e = 0) 

x
G(l) = 12 + 4 = 16 gates,

and
I(y) = 24y + 12y2 - e 
1(1) = 24 + 12 = 36 inputs.

Since circuits c13 (4 gates and G(y) + e inputs) and 
c3 (10 gates and 20 inputs) are used in all three test 
partitions, we can select the partitioning of ni(3,3,2) as 
our most economical design, with a total of 35 gates and 78 
inputs.
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Chapter Seven 
DIRECT SUMMATION EXAMPLE

Using the direct summation method for construction of 
TSC checkers is a straightforward procedure that is 
demonstrated here. First, a three level 3/7 code TSC 
checker and a three level 2/4 code TSC checker will be 
directly summed to form a three level 5/11 code TSC 
checker. Then this new checker can be used to make other 
checkers.

Consider a TSC checker for the code 3/7 with input 
partitions of size (2,2,2,1) and output separation 
partitions of

A1 = (2100, 1020, 0210, 2001, 0201, 1110, 0021) 
= (1200, 2010, 0120, 1101, 0111, 1011).

Consider a 2/4 code TSC checker with input partition 
size n^(2,2) and output separation partitions of

= (20, 02) 
b2 = (11).

These two checkers will be summed to form the three 
level 5/11 code TSC checker. This checker will have input 
partitions of size ^ ( 2,2,2,1,2,21, where the first four 
partitions correspond to the 3/7 checker and the last two 
partitions correspond to the 2/4 checker.

The generating polynomial for the 5/11 code using these

45
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input partitions is
G(y) = (1 + yx + yx2)5(l + yx).

Expanding and evaluating at x5 , for a m = 5 code, the size
of the product array becomes

G(y)| 5 = 40y3 + 50y4 + 6y5
so

G(l)| - * 40 + 50 + 6 * 96 gates, 
x

The number of input lines in the array is
I(y)| 5 * 120y2 + 200y3 + 30y4

x
and

1(1)| 5 = 120 + 200 + 30 = 350 input lines, 
x

Therefore, the total cost of the checker will include 10 
gates with 20 inputs in the majority logic and 2 OR gates 
with 96 inputs to form the output separation partitions.
The cost for this design is then

108 gates, 466 input lines and a test set of size 96.
The procedure divides the code words into two cases: 

CASE 1, where and k2 = nij, and
CASE 2, where ^ = 10̂ and k2 = n^.

CASE 1 code words.

These are the code words that are formed by the 

concatenation of an element from set A^ or with an 
element from set or Bj. For example, from A^ take 

(2100) and from A 2  take (20) to form (210020). The number 

of code words included in this set are (the total number of 

elements in sets plus B^) times (the total number of

elements in sets A2  plus B2 ) • Here, 13 * 3 = 39 code

i
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words making 39 product functions or 39 AND gates in the 
product array from CASE 1 code words.

The mapping for this case will be
Aj = Â  ̂ @ and Bi ® B2
B3 = Aj @ B2 and A2 @ B^.

That is,- elements from partitions concatenated with elements 
from partitions with the same letter designation go into 
Aj, if not, they go into B3 » The 39 code words are then 
partitioned as shown in Table 3.
CASE 2 code words.

The remaining code words are mapped in accordance with 
the rule

6
A- =0  = ( ,1, in.) mod 2"3 1
B, = 1 = ( .£, in.) mod 2.3 i=l 1

For example, the code word 221000 is mapped
[6*2 + 5*2 + 4*1 + 3*0 + 2*0 + 1*0 = 26]mod 2 = 0 => A ^  

The code word 220100 is mapped
[6*2 + 5*2 + 4*0 + 3*1 + 2*0 + 1*0 = 25]mod 2 = 1 => B3 .
For the 5/7 code there are 96 - 39 = 57 CASE 2 code 

words. Twenty eight map into A2 and twenty nine map into 
B3. See Table 3.

The code words from the two cases listed in Table 3 
become the product functions. These 96 product functions 
make the AND gates in the product array. The outputs of 
these AND gates are then the inputs of two OR gates 
partitioned as listed. This partitioning makes the 
completed three level 5/11 code TSC checker.
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A comparison of this three level 5/11 code checker with 
the three level 5/11 code checker designed in [2] shows an 
equal number of gates used and the same test set size. 
However, where their design uses 517 inputs, this uses 
466— a 9.9% improvement over theirs. The most dramatic 
difference is the simplicity of design in this method over 
that in [2].

This same procedure can now be used again with the 5/11 
code checker partitioned in this manner with another three 
level checker, say the 3/7 code checker to form a three 
level 8/18 code TSC checker or the 2/4 code checker to form 
a three level 7/15 code checker.

An interesting result of this method uses a 1/2 code TSC 
checker with input partitions of size n^(l,l) and output 
separation partitions of A = (1,0) and B = (0,1). This 
checker, having no gates with the input lines becoming the 
output lines, can be directly summed with other TSC checkers 
using the above procedure.
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Table 3 
PARTITIONING POR 5/11 CODE

CASE 1 CODE WORDS
Aj = (210020, 210002, 201011, 200120, 200102, 120011,

111020, 111002, 110111, 102020, 102002, 101111,

021020, 021002, 020120, 020102, 012011, 011111,

002120, 002102)

B3 = (210011, 201020, 201002, 200111, 120020, 120002,
111011, 110120, 110102, 102011, 101120, 101102,
021011, 020111, 012020, 012002, 011120, 011102,
002111) .

CASE 2 CODE WORDS
= (221000, 220010, 211100, 211001, 210110, 202010, 

201101, 200012, 122000, 121010, 120101, 112100,
112001, 111110, 110021, 102101, 101012, 100121,
100022, 022010, 021101, 020012, 012110, 011021,
010112, 002012, 001121, 001022)

B3 = (220100, 220001, 212000, 211010, 210101, 202100,
202001, 201110, 200021, 121100, 121001, 120110,
112010, 111101, 110012, 102110, 101021, 100112,
022100, 022001, 021110, 020021, 012101, 011012,
010121, 010022, 002021, 001112, 000122)
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Chapter Eight 
SUMMARY AND RECOMMENDATIONS 

FOR FUTURE RESEARCH
This thesis has forwarded two new methods of designing 

TSC checkers. The first method designs basic checkers with 
a simplification in both analysis and construction. This 
new technique enhances capabilities of insuring that the 
most cost effective checkers are designed.

The second method, the direct summation method, designs 
TSC checkers from a library of other TSC checkers. This 
most important capability, never before presented, gives 
designers prior knowledge of the existence of checkers 
meeting design criteria and a method for constructing those 
checkers.

The direct summation method gives designers the 
capabilities of constructing TSC checkers for a wide range 
of codes, i.e., m/(2m+2), etc., that previously had no 
realization in three level checkers. This method has great 
potential in PLA architectures.

Future research should be aimed at the construction of 
basic three level checkers. This translates to identifying 
the output separation partitions for m/n codes.

Further work can be done in the investigation of the 
structure of the code partitions as suggested in the 
appendix.

50
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APPENDIX
A GRAPHICAL METHOD FOR DETERMINING 
M/N CODE OOTPUT SEPARATION PARTITIONS

In researching and developing the methods presented 
here, much work was done outside the main thrust of this 
thesis. Some of this work was trying to derive output 
partitions for m/n codes, specifically trying to derive 
output separation partitions of size Z = 2. Methods for 
obtaining these output separation partitions by formulae 
have been presented in many papers [1],[2],[6], [7] and [9].

During the research for this thesis, a graphical method 
was developed. This method has not been previously 
forwarded and provides some interesting results. It is 
presented in an appendix because it does not fall in the 
focus of the main thesis. The method is presented here for 
output separation partitions of size z = 2. The method can 
be extended for larger values of Z.

STEP 1. Determine the product functions for a ra/n code 
TSC checker.

STEP 2. Determine the error cover sets and the fault 
cover sets.

STEP 3. Using the product functions as nodes, connect 
all nodes corresponding to the error cover sets. See Figure 
A-l.
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STEP 4. Members of an error cover set, which have only 
two elements, are connected by a line. All such pairs must 
have one member in each output separation partition.

STEP 5. Each member of an error cover set with more 
than two elements are connected by a polygon. At least one 
product function, from the inclusive nodes of each polygon, 
must be in each output separation partition.

(Note: It may not always be possible to connect nodes
neatly. As in Figure A-l, the code word 0111 belongs to 
four polygons. Any method of connection is allowable as 
long as proper partitioning can be completed. The use of 
multiple graphs (see Figure A-l) and colors may be helpful.)

STEP 6. The final output separation partitions are then 
compared with the fault cover sets to determine if no fault 
cover set is contained completely in any one partition.

While this method does nothing more than present the 
error cover sets graphically, it presents the relationships 
between these sets clearly.

From Figure A-l, for a 3/7 code or the dual 4/7 code, 
two different partitionings can be found. See Tables A-l 
and A-2. Examining these partitions reveals that each 
partition can be divided into two segments —  a core and a 
supplement. Both partitionings consist of one core in each 
partition with the supplements interchanged.

Examination of the results obtained in the direct 
summation method also shows this core/supplement structure. 
The CASE 1 code words can be related to the core, while
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CASE 2 code words can be related to the supplement. With 
the arbitrary assignment of CASE 2 code words, two different 
output separation partitions can be derived.

No other method of deriving these partitions forward 
more than one solution. The characteristic of a 
core/supplement structure also has not been presented.

Also, derived from this method was a size Z = 4 
partitioning for the 2/9 code. See Table A-3. This has 
never been done previously and opens new possibilities in 
designing more cost effective checkers.

,1
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Table A-l

PARTITIONING POR THE 3/7 CODE

A B
Core 2100 1200

1020 2010
0210 0120

Supplement 2001 1101
0201 0111
1110 1011
0021

or

A B
Core 2100 1200

1020 2010
0210 0120

Supplement 1101 2001
0111 0201
1011 1110

0021

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table A-2 
PARTITIONING POR THE 4/7 CODE

A B
Core 1021 20112101 0121

0211 1201
Supplement 2200 2110

2020 1210
0220 1120
1111

Table A-3 
PARTITIONING FOR THE 2/9 CODE

A B
20000 10010
02000 01100
00200 00011
00020 01010

C D
10100 11000
00101 10001
01001 00110
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