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ABSTRACT

FINITE ELEMENT ANALYSIS AND ACTIVE CONTROL 
FOR NONLINEAR FLUTTER OF COMPOSITE PANELS 

UNDER YAWED SUPERSONIC FLOW

Khaled Abdel-Motagaly 
Old Dominion University, 2001 

Director: Dr. Chuh Mei

A coupled structural-electrical modal finite element formulation for composite 

panels with integrated piezoelectric sensors and actuators is presented for nonlinear panel 

flutter suppression under yawed supersonic flow. The first-order shear deformation 

theory for laminated composite plates, the von Karman nonlinear strain-displacement 

relations for large deflection response, the linear piezoelectricity constitutive relations, 

and the first-order piston theory of aerodynamics are employed. Nonlinear equations of 

motion are derived using the three-node triangular MIN3 plate element. Additional 

electrical degrees o f freedom are introduced to model piezoelectric sensors and actuators. 

The system equations o f motion are transformed and reduced to a set of nonlinear 

equations in modal coordinates. Modal participation is defined and used to determine the 

number of modes required for accurate solution.

Analysis results for the effect of arbitrary flow yaw angle on nonlinear supersonic 

panel flutter for isotropic and composite panels are presented. The results show that the 

flow yaw angle has a major effect on the panel limit-cycle oscillation amplitude and 

deflection shape. The effect of combined aerodynamic and acoustic pressure loading on 

the nonlinear dynamic response of isotropic and composite panels is also presented. It is 

found that combined acoustic and aerodynamic loads have to be considered for high 

aerodynamic pressure values.

Simulation studies for nonlinear panel flutter suppression using piezoelectric self

sensing actuators under yawed supersonic flow are presented for isotropic and composite 

panels. Different control strategies are considered including linear quadratic Gaussian 

(LQG), linear quadratic regulator (LQR) combined with the extended Kalman filter 

(EKF), and optimal output feedback. Closed loop criteria based on the norm of feedback
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control gain (NFCG) and on the norm o f Kalman filter estimator gain (NKFEG) are used 

to determine the optimal location of piezoelectric actuators and sensors, respectively. 

Optimal sensor and actuator locations for a range of yaw angles are determined by 

grouping the optimal locations for different angles within the range. The results 

demonstrate the effectiveness o f piezoelectric materials and of the nonlinear output 

controller comprised o f LQR state feedback and EKF nonlinear state estimator in 

suppressing nonlinear flutter o f isotropic and composite panels at different flow yaw 

angles.
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1

CHAPTER I 

INTRODUCTION AND LITERATURE SURVEY

1.1 Introduction

Recently, there has been a renewed interest in flight vehicles that operate at high 

supersonic and hypersonic Mach numbers, such as the X-38 Crew Return Vehicle 

spacecraft for the International Space Station, the X-33 Advanced Technology 

Demonstrator, the X-34 Reusable Technology Demonstrator for a launch vehicle, and the 

recent NASA Space Launch Initiative (SLI) project. The exterior panels of such vehicles 

will be affected by supersonic panel flutter phenomena. These flight vehicles will usually 

operate for a range of flow yaw angles and will also be subjected to additional loading 

due to random pressure fluctuations (sonic fatigue). This brings an urgent need for panel 

flutter analysis at supersonic speeds considering the effect of flow yaw angle and the 

effect of additional acoustic loading.

The requirements of energy-efficient, high-strength, and minimum-weight 

vehicles have generated an interest in advanced lightweight composite materials. In 

addition, higher performance can be obtained by using the recently developed smart or 

adaptive materials such as piezoelectric ceramics that are embedded into the laminated 

composite panels to control and suppress undesired panel vibrations.

The primary objectives of this study are: (1) to develop a finite element tool for 

analyzing nonlinear supersonic flutter of composite panels considering the effects of flow 

yaw angle and the effect of additional acoustic loading and (2) to design practical control 

methodologies that suppress nonlinear supersonic panel flutter o f composite and isotropic 

panels using piezoelectric sensors and actuators considering the effect of flow yaw angle. 

The next sections present an overview and literature survey for the main topics of this 

research including classical and finite element analysis methods for nonlinear panel 

flutter, piezoelectric sensors and actuators, and panel flutter suppression using 

piezoelectric materials. An outline of the dissertation is then given at the end of the 

chapter.

The journal model used for this dissertation is the AlAA Journal.
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1.2 Background and Literature Survey
1.2.1 Panel Flutter

Supersonic panel flutter is a self-excited oscillation of panels exposed to 

aerodynamic flow with high Mach numbers. Figure 1.1 shows four different schematics 

explaining the panel flutter phenomenon. For dynamic pressures, q ,  less than the flutter 

boundary, random pressure fluctuations due to turbulent boundary layer control the panel 

response. At this regime, the panel response can be determined using standard linear 

sonic fatigue (noise) analysis techniques and is usually in the small displacement region, 

i.e., maximum panel displacement divided by panel thickness { W m io / h )  is much less than 

one. As the dynamic pressure increases, the panel stiffness is modified by the 

aerodynamic loading such that the first mode natural frequency, co, increases while thd* 

second mode natural frequency decreases. At the flutter boundary, the two modes 

coalesce and the panel motion becomes unstable, based on linear structure theory. 

However, due to the structural nonlinearities (inplane stretching forces) and unlike the 

catastrophic failure for wing flutter, the panel motion is limited to a constant amplitude 

oscillation. The inplane stretching forces tend to restrain the panel motion so that 

bounded limit-cycle oscillations (LCO) are observed as shown in Figure 1.1. The 

amplitude of the LCO grows as the dynamic pressure increases. The existence of LCO 

implies that large deflection nonlinear structural theory should be used beyond the flutter 

critical dynamic pressure to estimate panel response and fatigue life. The flutter LCO 

deflection shape depends on many factors such as flow yaw angle, panel boundary 

conditions, and composite laminate stacking. An example of flutter deflection shape for 

an isotropic simply supported square panel is shown in Figure 1.1.

Since the late fifties and early sixties, there have been many articles in the 

literature addressing linear and nonlinear panel flutter. An excellent review article for 

linear and nonlinear panel flutter theories and analysis through 1970 is given by Dowell 

[1]. Recently, Mei et al. [2], have produced an extensive review of various analytical and 

experimental results for nonlinear supersonic and hypersonic panel flutter up to 1999. 

Dowell [1] has grouped the vast amount of theoretical literature on panel flutter into four 

categories based on the structural and aerodynamic theories used. Gray and Mei [3]
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3

added a fifth category for hypersonic flow. The five different categories o f linear and 

nonlinear panel flutter are shown in Table 1.1. The weakness and remedies for the first 

four types o f analysis were discussed in detail by Dowell. A review of the finite element 

method of type-1 panel flutter analysis was given by Bismark-Nasr [4], A survey on 

various analytical methods, including finite element method for nonlinear supersonic 

panel flutter type-3 analysis, was given by Zhou et al. [5]. The fundamental theories and 

physical understanding of panel flutter are given in detail in published books, [6] and [7], 

This study is concerned with the type-3 panel flutter analysis that uses nonlinear structure 

theory and linear piston theory of aerodynamics with yawed supersonic flow.

As disclosed by these survey papers, a vast quantity of literature exists on panel 

flutter using different aerodynamic theories. The aerodynamic theory employed for the 

most part of panel flutter at high supersonic Mach numbers (M„ > 1.6) is the quasi-steady 

first order piston theory developed by Ashley and Zartarian [8], If aerodynamic damping 

is neglected, the quasi-steady piston theory simplifies to the quasi-static Ackeret theory. 

The piston theory, although several decades old, has generally been employed to 

approximate the aerodynamic loads on the panel from local pressures generated by the 

body’s motion as related to the local normal component of the fluid velocity and the local 

pressure. For supersonic Mach numbers, the quasi-steady aerodynamic theory reasonably 

estimates the aerodynamic pressures and shows fair agreement between theory and 

experiment for plates exposed to static pressure loads and buckled by uniform thermal 

expansion, as was shown by Ventres and Dowell [9]. For airflow with Mach numbers 

close to one, the full-linearized inviscid potential theory of aerodynamics is usually 

employed [10]. For hypersonic panel flutter, the nonlinear unsteady third-order piston 

theory is used to develop the aerodynamic pressure, [11] and [3].

The partial nonlinear behavior of a fluttering panel was first considered by several 

investigators such as [12-14], They were primarily concerned with determining stability 

boundaries o f two-dimensional plates. For nonlinear limit-cycle behavior, a variety of 

methods have been employed to assess the panel flutter problem. Galerkin’s method was 

used to reduce the governing partial differential equations to a set of coupled ordinary 

differential equations in time, which were numerically integrated using arbitrary initial 

conditions. The integration was continued until a limit-cycle oscillation of constant
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amplitude, independent of the initial conditions, was reached. The nonlinear oscillations 

of simply supported [15], and clamped [16, 17] fluttering plates were studied using this 

method. Dowell [15] determined that the direct numerical integration approach required a 

minimum of 6 linear modes, as the Galerkin approximate functions, to achieve a 

converged solution for displacements. Recently, the limit-cycle oscillation of a cantilever 

plate was studied by Weiliang and Dowell [18]. They employed a Rayleigh-Ritz 

approach in conjunction with the direct numerical integration and showed that the length- 

to-width ratio of the cantilever plate was a significant factor on the flutter vibration.

Various techniques in the temporal domain such as harmonic balance and 

perturbation techniques have been successfully employed to study the problem of 

nonlinear panel flutter. The harmonic balance method requires less computational time 

than the method o f direct integration and is mathematically comprehensible and 

systematic, but it is extremely tedious to implement. The method was used by Bolotin 

[14] and Kobayashi [17] with two-mode Galerkin solution to obtain the limit-cycle 

motions. Rectangular plates were treated by Kuo et al. [19], Eastep and McIntosh [20], 

Eslami and Ibrahim [21], and Yuen and Lau [22]. The Rayleigh-Ritz approximation to 

Hamilton’s variational principle was employed by Eastep and McIntosh to obtain the 

equations of motion in the spatial domain. Special orthotropic panels were studied by 

Eslami and Ibrahim. A hinged two-dimensional fluttering plate with moderately high 

postbuckling loads using a four-mode expansion and an incremental harmonic balance 

method was reported by Yuen and Lau. The perturbation method was employed to the 

problem of nonlinear panel flutter by Morino [23] and Kuo et al. [19], Detailed 

extensions and stability analysis of this technique to nonlinear panel flutter were studied 

by Morino and Kuo [24] and Smith and Morino [25]. Correlation between perturbation 

techniques and the harmonic balance method has been shown to be in good agreement by 

Kuo et al. [19] and Morino and Kuo [24].

All of the early studies in nonlinear panel flutter using classical methods have 

been limited to isotropic or orthotropic, two or three-dimensional, rectangular plates with 

all four edges simply supported or clamped. Extension of the finite element method to 

study the linear panel flutter problem was due to Olson [26, 27] using a frequency 

domain eigenvalue solution. Because of its versatile applicability, effects of aerodynamic
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damping, complex panel configurations and support conditions, laminated composite 

anisotropic panel properties, flow angularities, inplane stresses, and thermal loads can be 

easily and conveniently included in the finite element formulation. A survey on the finite 

element methods for linear panel flutter was given by Yang and Sung [28] and Bismark- 

Nasr [4], and for nonlinear panel flutter by Zhou et al. [5]. Application of the finite 

element method to study the supersonic limit-cycle oscillations of two-dimensional 

panels was given by Mei [29] using an iterative frequency domain solution. Mei and 

Rogers [30] implemented the two-dimensional panel flutter analysis into NASTRAN. 

Rao and Rao [31] investigated the supersonic flutter of two-dimensional panels with ends 

restrained elastically against rotation. Sarma and Varadan [32] studied the nonlinear 

behavior of two-dimensional panels using two solution procedures, both in the frequency 

domain. Further extension of the finite element method to treat supersonic limit-cycle 

oscillations o f three-dimensional rectangular plates was given by Mei and Weidman [33], 

The effects of damping, aspect ratio, inplane forces, and boundary conditions were 

considered. Mei and Wang [34] employed an 18-degree of freedom (DOF) triangular 

plate bending element to study supersonic limit-cycle behavior of three-dimensional 

triangular plates. Han and Yang [35] used the 54-DOF high order triangular plate element 

to study nonlinear panel flutter of three-dimensional rectangular plates with inplane 

forces.

Few papers in the literature have investigated supersonic limit-cycle oscillations 

o f composite panels. Dixon and Mei [36] studied the nonlinear flutter of rectangular 

composite panels. The limit-cycle response was obtained using a 24-DOF rectangular 

plate element and a linearized updated mode with nonlinear time function (LUM/NTF) 

approximate solution procedure. The LUM/NTF solution procedure in the frequency 

domain was developed by Gray [11]. Because of the renewed interest in panel flutter at 

high-supersonic/hypersonic speeds [37], Gray et al. [3] and [11] extended the finite 

element method to investigate the hypersonic limit-cycle oscillations of composite panels 

using the full third-order piston aerodynamic theory. In practice, aerodynamic heating 

will cause thermal loading on the panel in addition to the aerodynamic loading. Xue et al. 

[38, 39] investigated flutter boundaries of thermally buckled two-dimensional and three- 

dimensional isotropic panels of arbitrary shape using the discrete Kirchhoff theory (DKT)
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triangular plate element. The finite element equations in structure node DOF were 

separated into two sets of equations and then solved sequentially. The first set of 

equations yields the thermal-aerodynamic equilibrium position using Newton-Raphson 

iterative method, and the second set of equations leads to the flutter limit-cycle motions 

using the LUM/NTF approximate method. The use of LUM/NTF approximate method 

has been successful in studying nonlinear panel flutter. However, the application of the 

LUM/NTF method to the system equations has three disadvantages: (1) the number of 

structure node DOF of {W } is usually very large, (2) at each iteration, the element 

nonlinear stiffness matrices have to be evaluated and the system nonlinear matrices have 

to be assembled, and (3) the periodic and chaotic panel motions can not be determined. 

Zhou et al. [40] introduced a solution to these problems by transforming the structure 

DOF system equations o f motion into a set of modal coordinates of rather small DOF. 

The structural system equations of motion are thus transformed to the general Duffing- 

type reduced modal equations with constant nonlinear modal stiffness matrices.

The effect of flow yawing on the critical flutter dynamic pressure for isotropic 

and orthotropic rectangular panels at supersonic speeds was investigated in the late sixties 

and early seventies. Kordes and Noll [41], and Bohon [42] have theoretically studied the 

influence o f arbitrary flow angles on isotropic and orthotropic rectangular panels with 

classical simply supported boundary conditions. Durvasula [43, 44] used the Rayleigh- 

Ritz method and 16-term beam functions to study the flow yawing and plate obliquity 

effects o f  simply supported and clamped rectangular isotropic panels. Kariappa et al. [45] 

and Sander et al. [46] used the finite element method to study the effects of flow yawing 

of isotropic parallelogram panels. The dependence of critical dynamic pressure on the 

flow angle and flexible supports has been shown experimentally and theoretically by 

Shyprykevich and Sawyer [47] and by Sawyer [48]. It was found that orthotropic panels 

mounted on flexible supports experience large reductions in critical flutter dynamic 

pressure for only small changes in flow angle.

An exhaustive search of the literature reveals that there are very few 

investigations on nonlinear panel flutter considering the effects o f flow yawing. 

Friedmann and Hanin [49] were the first to study supersonic nonlinear flutter of 

rectangular isotropic and orthotropic panels with arbitrary flow direction. They used the
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first order piston theory for aerodynamic pressure and Galerkin’s method in the spatial 

domain to analyze nonlinear panel flutter with yawed supersonic flow. The reduced 

coupled nonlinear ordinary differential modal equations were solved with numerical 

integration. Using a 4x2 modes model, four natural modes in the x-direction and two 

modes in the y-direction, LCO were obtained for simply supported isotropic and 

orthotropic rectangular panels. Chandiramani et al. [50] used the third-order piston theory 

and Galerkin’s method in the spatial domain. The reduced coupled nonlinear ordinary 

differential modal equations were solved using a predictor and a Newton-Raphson type 

corrector technique for limit-cycle periodic solutions. Direct numerical integration was 

employed for nonperiodic and chaotic solutions. A 2x2 modes model, two natural modes 

in the x- and y-directions, was used for simply supported rectangular laminated panels. 

Abdel-Motagaly et al. [51] have recently extended the finite element method to study 

nonlinear flutter of composite panels with yawed supersonic flows using the MIN3 

triangular element developed by Tessler and Hughes [52] and extended for nonlinear 

analysis by Chen [53]. It was found that, for laminated composite panels [54], the flow 

direction could greatly affect the limit-cycle behavior.

In addition to the aerodynamic loading, aircraft and spacecraft panels are 

subjected to high levels o f acoustic loading (sonic fatigue), due to high frequency random 

pressure fluctuation. A comprehensive review of sonic fatigue technology up to 1989 is 

given by Clarkson [55] where various types of pressure loading, developments of 

theoretical methods, and comparisons of experimental and analytical results were given. 

Recently, Wolfe et al. [56] gave a review of sonic fatigue design guides, classical and 

finite element approaches, and identification technology including experimental 

investigation of nonlinear beams and plates response. Sonic fatigue design guides based 

on test data and simplified single mode solutions were given by Rudder and Plumblee 

[57] for isotropic panels and by Holehouse [58] for composite panels. A Solution method 

based on Galerkin procedure and on time domain Monte Carlo approach was developed 

by Vaicaitis [59] for nonlinear response of isotropic panels under acoustic and thermal 

loads. Composite panels were considered by Arnold and Vaicaitis [60], and by Vaicaitis 

and Kavallieratos [61], Bolotin [62] used the Fokker-Planck-Kolmogorov (FPK) exact 

method to solve single DOF forced Duffing equation. The finite element/equivalent
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linearization method was used by Chiang [63] to analyze the large deflection random 

response o f complex panels.

Sonic fatigue and panel flutter have been independently considered for aircraft, 

spacecraft, and missiles. However, up to very recently there was no study for nonlinear 

panel response under combined acoustic and aerodynamic loading. Abdel-Motagaly et al. 

[64] presented a study for nonlinear composite panels response under combined acoustic 

and aerodynamic loading, which is based on the research presented in this thesis.

1.2.2 Piezoelectric Sensors and Actuators

Since the discovery of piezoelectricity by the Curie brothers in 1880 [65], there 

have been many applications in various fields using piezoelectric materials, such as 

ultrasonic transducers, telephone transducers, and accelerometers. Piezoelectric materials 

basically convert mechanical energy to electrical energy and vice-versa. When 

mechanical force or strain is applied to a piezoelectric material, electrical charge or 

voltage is generated within the material, this is known as the direct piezoelectricity effect. 

Conversely, when electrical charge or voltage is applied to the piezoelectric material, the 

material generates mechanical force or strain, this is known as the converse 

piezoelectricity effect. The piezoelectric direct and converse effects are the basis for 

using them as sensors and actuators, respectively. The linear piezoelectricity constitutive 

relations that relate the mechanical and electrical variables for linear material behavior 

are given by [65]:

where {cr], [ f] , [D ], and {£} are stress, strain, electrical displacement, and electrical

field, respectively, [<2]£ is the piezoelectric stiffness matrix at constant electrical

field, is the dielectric permittivity matrix measured at constant strain, and [e] is the 

piezoelectric electro-mechanical coupling constants matrix. Based on the principle o f 

virtual work, a useful analogy between piezoelectric electrical and mechanical variables 

can be determined as given in Table 1.2. For example, the electrical field applied or 

sensed in the piezoelectric material is analogous to mechanical strain.
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Although piezoelectricity was discovered a long time ago, the application of 

distributed sensing and actuation using piezoelectric materials for flexible structures is 

relatively new. Bonding or embedding piezoelectric sensors and actuators to flexible 

structures allows for measuring and applying mechanical strains and consequently 

suppressing undesired structure vibrations, hence improving the life duration and 

performance of the structure. Figure 1.2 shows a typical piezoelectric element that could 

be used as sensors or actuators. Traditional isotropic piezoelectric material is usually 

manufactured from lead zirconate titanate (PZT) or polyvinylidene fluoride (PVDF) 

piezoelectric ceramics. Piezoelectric properties are induced in the ceramics using the 

polling process during which a high dc electrical field is applied to the ceramic in a 

specific direction.

Recently, many articles dealing with piezoelectric sensors and actuator modeling 

for active structure vibration have appeared in the literature. A review article of the 

applications and modeling of distributed piezoelectric sensors and actuators in flexible 

structures up to 1994 is given by Rao and Sunar [65]. A general review for intelligent 

structures including piezoelectric sensors and actuators is given by Crawley [66]. The 

governing equations for piezoelectric sensors and actuators using the classical approach 

were considered by many authors [67-69], This research is concerned with the modeling 

of piezoelectric sensors and actuators embedded in composite panels using the finite 

element method. The first article for modeling piezoelectric continua using finite element 

was given by Allik and Hughes [70], where they formulated finite element equations for 

piezoelectric continua based on linear piezoelectric constitutive relations and using an 

isoparametric tetrahedral element. Tzou and Tseng [71] developed a new thin 

piezoelectric solid finite element with internal degrees of freedom that is more suitable 

for modeling distributed piezoelectric sensors and actuators in plate and shell structures. 

Ha et al. [72] used an eight-node three-dimensional composite brick element to model 

dynamic and static response of laminated composites containing piezoelectric sensors and 

actuators. Hwang and Park [73] used Hamilton’s principle to derive the equations of 

motion of a laminated plate with piezoelectric sensors and actuators. They used a new, 

two-dimensional, four-node, 12 degrees of freedom quadrilateral plate bending element 

with one additional electrical degree of freedom to eliminate the problems associated
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with using solid elements and to reduce the size of the finite element equations. A 

conforming rectangular plate element based on classical plate theory was also developed 

by Zhou [74] to model composite panels with piezoelectric actuators. This formulation 

was used for panel flutter suppression analysis. The same element was used by Liu et al. 

[75] for vibration control of composite plates. Suleman and Venkayya [76] used a 4-node 

bilinear Mindlin plate element with additional electrical degree of freedom. Detwiler et 

al. [77] modified the QUAD4 isoparametric quadrilateral element to handle laminated 

composite plates containing piezoelectric sensors and actuators. Sze and Yao [78] used 

and compared the performance of various solid shell and membrane elements to model 

surface bonded piezoelectric patches. Recently, Bevan [79] modified the shear 

deformable MIN6 shell element to model composite shell structures integrated with 

piezoelectric sensors and actuators.

One new concept for piezoelectric sensors and actuators that is utilized in this 

research is the self-sensing piezoelectric actuators introduced by Dosch et al. [80] and by 

Anderson and Hagood [81]. This concept combines the sensing and actuation functions 

into a single piezoelectric piece through the use o f an electrical circuit that measures the 

sensing charge output of piezoelectric actuators. The use of such concept allows for 

collocated sensing and actuation, which is a preferable property for active vibration 

control. Another new concept is the use of anisotropic piezoelectric actuators with 

interdigital electrodes, such as the active fiber composites (AFC) piezoelectric actuator 

[82], and the Macro-Fiber Composite (MFC) piezoelectric actuator [83]. For both AFC 

and MFC, the polling and excitation fields run parallel to the plane of actuation compared 

to vertical to the plane of actuation for traditional piezoelectric materials. This permits the 

use of the more efficient “33” piezoelectric coupling constant which is usually twice the 

value of the traditional piezoelectric “31” and “32” coupling constants (see [84] for 

detailed electrical and mechanical properties of piezoelectric ceramics).

One important problem when using distributed piezoelectric sensors and actuators 

for active structural control is the optimal placement of sensors and actuators. Some 

examples for the methods used in the literature for optimal actuator and sensor placement 

are given in [85-92], Some of the methods used are based on open loop criteria such as 

maximum controllability and observability [85, 86], Another class o f methods is based on
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minimization of a linear quadratic regulator (LQR) cost function using gradient 

optimization methods [87-90]. A third class of methods is based on using more rigorous 

optimization methods such as the genetic algorithm [91] and gradient based [92] 

optimization techniques. More details for piezoelectric sensor and actuator placement for 

the problem of panel flutter suppression will be discussed in the next subsection.

1.2.3 Panel Flutter Suppression Using Piezoelectric Materials

Many researchers have investigated the effectiveness of using piezoelectric 

materials for passive or active control of flexible structures. However, only few studies 

have been reported for linear and nonlinear supersonic panel flutter suppression using 

piezoelectric materials. Scott and Weisshaar [93] were the first to study the suppression 

of linear panel flutter using piezoelectric materials. The piezoelectric materials covered 

the full surface of the panel and were used to generate bending moments to control panel 

flutter. Four modes were retained using the Ritz method, and the panel was modeled as a 

simply supported isotropic plate. Linear optimal control theory using full state feedback 

LQR was employed in the simulation. Hajela and Glowasky [94] applied piezoelectric 

elements in linear panel flutter suppression. Finite element models for panels with surface 

bonded and embedded piezoelectric materials were generated to determine the response. 

The actuation forces generated by the piezoelectric material were incorporated as static 

prestress in the finite element models. Using a multi-criterion optimization scheme, the 

optimal panel configuration with minimum weight and optimal sizing and layout of the 

piezoelectric elements for maximum flutter dynamic pressure were determined. Using a 

finite element approach, Suleman and Goncalves [95], and Suleman [96] recently 

investigated a passive control methodology for linear panel flutter suppression. The 

methodology induces tensile inplane loads from bonded or embedded piezoelectric 

patches to increase panel critical dynamic pressure. They proposed the use of the physical 

programming optimization method to determine optimal actuator configuration. Surace et 

al. [97] used piezoelectric sensors and actuators to suppress linear supersonic panel flutter 

using robust control techniques based on structured singular values for a simply 

supported composite panel over a range of Mach numbers. The panel was modeled using 

Galerkin’s method with classical plate theory and linear piston theory for aerodynamic 

loading. Frampton et al. [98] employed a collocated direct rate feedback control scheme
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for the active control of linear panel flutter. The linearized potential flow aerodynamics 

was used for the full transonic and supersonic Mach number range. They demonstrated 

that a significant increase in the flutter boundary was achieved for a simply supported 

square steel panel.

The first study of nonlinear panel flutter suppression using PZT piezoelectric 

actuators was given by Abou-Amer [99]. He used piezoelectric layers to generate inplane 

tension forces and consequently increase the panel flutter boundary. He showed that the 

PZT material is more capable of preventing nonlinear panel flutter compared to using 

active constrained layer damping. Lai et al. [100-102] studied the control of nonlinear 

flutter of a simply supported isotropic plate using piezoelectric actuators. The Galerkin’s 

method was adopted in obtaining the nonlinear modal equations. The optimal control 

theory and numerical integration were used in the simulation. They concluded that the 

bending moment induced by piezoelectric actuators is much more effective than inplane 

forces for flutter suppression. Zhou et al. [103, 104] and [74] used the finite element 

method to control isotropic and composite panels with surface bonded or embedded 

piezoelectric patches. The finite element formulation considered coupling between 

structural and electrical fields. An optimal full state feedback LQR controller was 

developed based on the linearized modal equations. The norms of the feedback control 

gain (NFCG) were used to provide the optimal shape and location of the piezoelectric 

actuators. Numerical simulations showed that the critical flutter dynamic pressure is 

increased about four times and two times for simply supported and clamped isotropic 

panels, respectively. Dongi et al. [105] have presented a finite element method for 

investigations on adaptive panels with self-sensing piezoelectric actuators. The 

LUM/NTF algorithm was extended to include the linear and nonlinear active stiffness 

matrices due to output feedback. A control approach based on output feedback for active 

compensation o f aerodynamic stiffness (ACAS) terms is developed. They showed that 

the ACAS control is able to increase the linear flutter boundary Mach number from =

3.22 to M e = 6.67 for a simply supported isotropic panel. Wind tunnel testing performed 

by Ho et al. [106] has shown that panel limit-cycle motions observed in the wind tunnel 

can be successfully reduced for composite panels with one-sided surface mounted 

piezoelectric actuators and strain sensors using an iterative root locus based gain tuning
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algorithm. Their wind tunnel testing showed the leading edge piezoelectric actuator 

patches to be more effective than the trailing edge patches in suppressing panel flutter. 

Very recently, Kim and Moon [107] presented a comparison between active control and 

passive damping using piezoelectric actuators for nonlinear panel flutter. The finite 

element method was used to model the panel and LQR control method was used for 

active control. The shape and location of the piezoelectric actuators was determined using 

genetic algorithms.

With this exhaustive search for panel flutter suppression studies, two main 

findings are determined. First, the effect of flow yaw angle has never been considered in 

the literature for both linear and nonlinear panel flutter suppression, despite its great 

effect on the panel flutter mode shape and, consequently, on the optimal location of 

piezoelectric actuators and sensors. Second, most of the studies used LQR full state 

feedback control assuming that all the states are available without any consideration for 

the problem of state estimation for the nonlinear system dynamics or used non-optimal 

output feedback based on iterative design methods.

1.3 Outline of the Study

This study presents multi-disciplinary research that includes nonlinear finite 

element modeling of composite panels, aeroelasticity, modeling and optimal placement of 

piezoelectric sensors and actuators, and control theory. It could be divided into two parts. 

The first part covers finite element modeling and analysis for nonlinear flutter of 

composite panels considering the effect of flow yaw angle and the effect o f additional 

high acoustic pressure loading. The second part covers nonlinear flutter suppression for 

composite panels under yawed supersonic flow using piezoelectric sensors and actuators 

including optimal sensor and actuator placement and controller design.

The thesis is organized as follows. In Chapter 1, background material and 

literature survey are given for the main topics of this research including nonlinear panel 

flutter analysis, piezoelectric sensors and actuators, and panel flutter suppression 

methodologies followed by an outline of the thesis contents. The derivation of finite 

element coupled nonlinear equations of motion for composite panels with integrated 

piezoelectric sensors and actuators under yawed supersonic aerodynamic flow and 

acoustic loading is presented in Chapter 2 using the three-node triangular MIN3 plate
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element with improved transverse shear [48]. The MIN3 element is modified to handle 

piezoelectric sensors and actuators by using an additional DOF for electrical potential per 

each piezoelectric layer. In Chapter 3, modal transformation and reduction, and solution 

procedure for nonlinear panel response are presented. The system governing equations 

are transformed into the modal coordinates using the panel linear vibration modes to 

obtain a set o f nonlinear dynamic modal equations of lesser order that can be easily used 

to solve the problems of linear and nonlinear flutter boundaries and to analyze panel 

response under combined acoustic and aerodynamic pressures. The reduced modal 

equations o f motion are also used to design control laws and to simulate panel flutter 

suppression. Solution procedures based on time domain numerical integration methods 

and based on frequency domain methods for nonlinear panel flutter are also described in 

this chapter. Validation o f the MIN3 finite element modal formulation and analysis 

results are presented in Chapter 4. The MIN3 finite element modal formulation is 

validated by comparison with other finite element and analytical solutions. Analysis 

results for the effect of arbitrary flow yaw angle on nonlinear supersonic panel flutter for 

isotropic and composite panels are presented using the frequency domain solution 

method. In addition, the effect of combined supersonic aerodynamic and acoustic 

pressure loading on the nonlinear dynamic response of isotropic and composite panels is 

presented. Description of the different control methodologies used for nonlinear panel 

flutter is presented in Chapter 5. Optimal control strategies [104] are the main focus for 

the suppression of nonlinear panel flutter in this study. The linear quadratic Gaussian 

(LQG) control, which combines both linear quadratic optimal feedback (LQR) and 

Kalman filter state estimator, is considered as systematic linear dynamic compensator. In 

addition, extended Kalman filter (EKF) for nonlinear systems [105-108] is also 

considered and combined with optimal feedback to form a nonlinear dynamic output 

compensator [109]. Finally, a more practical approach based on optimal output feedback 

is used. Closed loop criteria based on the norm of feedback control gains (NFCG) for 

actuators and on the norm of Kalman filter estimator gains (NKFEG) for sensors are 

described to determine the optimal location of self-sensing piezoelectric actuators. 

Simulation studies for the suppression of nonlinear panel flutter using piezoelectric 

material under yawed supersonic flow are presented in Chapter 6 . Comparison of the
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different controllers considered is performed to determine the effect o f different control 

strategies on the panel flutter suppression performance. In addition, results for nonlinear 

panel flutter suppression under yawed supersonic for a specific range o f yaw angles, 

including optimal actuator and sensor location, are presented for both isotropic and 

composite panels. In Chapter 7, summary, conclusions, main contributions, and 

recommendation for future work are given.
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Table 1.1 Panel Flutter Theories

Type Structure Theory Aerodynamic Theory Range of Mach No.

1 Linear Linear Piston V2 < Moo < 5

2 Linear Linearized Potential 

Flow

1 < Moo < 5

3 Nonlinear Linear Piston y f l  < Moo < 5

4 Nonlinear Linearized Potential 

Flow

1 < Moo < 5

5 Nonlinear Nonlinear Piston Moo > 5

Table 1.2 Analogy between electrical and mechanical 

variables for piezoelectric materials

Mechanical Electrical

Displacement u  (vector) Electric Potential 0  (scalar)

Stress cr(2nd order tensor) Charge flux density (Electrical 

Displacement) D  (vector)

Strain f ( 2 nd order tensor) Electric field E  (vector)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



W
ni

ax
/h

Flutter analysis 
Noise analysis

0.6

0.4

Dynanic Pressure, q

(4 , 1)

(0

mode (2,1)

mode (1,1)

Dynanic Pressure

Panel response Mode coalescence

A irflow

Flutter deflection mode shape for simply supported panel

i

0.5

0

0.5

1
450 460 470 4 80 490 500

Tim e (msec)

Flutter limit-cycle oscillation 

Figure 1.1 Explanation of nonlinear panel flutter phenomenon

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Polling direction

Applied or Sensed 
Electrical Field >

Surface electrodes

Figure 1.2 Schematic of traditional isotropic piezoelectric element

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



19

CHAPTER II 

FINITE ELEMENT FORMULATION

2.1 Introduction

The three-node triangular Mindlin (MIN3) plate element with improved 

transverse shear, developed by Tessler and Hughes [52], is used in this study. This 

element has Five degrees o f freedom per node and it uses a special interpolation scheme, 

anisoparametric interpolation, to avoid the problem of shear locking commonly arising 

when using the standard isoparametric interpolation approach. Additionally, an element- 

appropriate shear correction factor is used to enhance element transverse shear energy. 

Due to these improvements, the MIN3 element produces a well-conditioned element 

stiffness matrix over the entire range o f thickness to length ratios. Based on extensive 

numerical testing of the MIN3 element, Tessler and Hughes concluded that this element 

is an excellent element for linear problems and is a very viable candidate for laminated 

composites and nonlinear problems. Furthermore, Chen [53] demonstrated the efficiency 

of this element for nonlinear problems by using it for the analysis of nonlinear panel 

response under thermal and acoustic loading.

The MIN3 element is modified to handle piezoelectric sensors and actuators by 

using an additional DOF for electrical potential per each piezoelectric layer. By doing 

this, the modified MIN3 element becomes a fully coupled electrical-structure composite 

plate element. The following are the main assumptions used in the formulation:

• Thin skin panels with embedded or bonded piezoelectric layers.

• Bending theory of Mindlin (first order shear deformation theory).

• Composite laminate theory.

• First order piston theory is used to model aerodynamic pressure for yawed 

supersonic flow (1 .6 < Moo < 5).

• Large deflection effect is considered using nonlinear von-Karman strain 

displacement relations.

•  Linear constitutive relations for mechanical-electrical coupling are used 

(linear piezoelectricity).
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In the following sections, the detailed derivation of the nonlinear dynamic equations of 

motion for a laminated composite plate with embedded or bonded piezoelectric sensors 

and actuators is given. The loads considered are aerodynamic pressure due to supersonic 

yawed flow, random acoustic loading, and piezoelectric electrical loading (see Figure 

2.1). This general system of coupled nonlinear equations will later be used to analyze 

nonlinear panel flutter under yawed supersonic flow and nonlinear panel response under 

combined aerodynamic and acoustic loading. In addition, these governing equations form 

the basis for the design and simulation of control system design for nonlinear panel flutter 

suppression.

Based on the Mindlin plate bending theory, the element displacement functions 

are given by:

u x  =  u ( x ,  y , t )  +  zip  v (.v, y j )

u .  =  w ( x , y , t )

where u x, u y , u z are the displacement components at any point within the element; u, v, w 

are the displacements o f the plate mid-plane; and y/x, i//y are the rotations of the mid-plane 

normals due to bending only.

The electrical potential DOF is assumed constant for each piezoelectric layer; i.e. 

w 0 is assumed constant over the element area.

2.2 Element Displacement Functions

u v =  v(.v, y , / )  +  z y / x (x,  y , t ) ( 2 . 1)

w 0 (.v ,y ,  z , t )  =  w tp ( z k , [ )

where Zk is the z  coordinate o f the k lh piezoelectric layer. 

Then the element degrees of freedom are defined as:

(2 .2 )

(2.3)

(2.4)
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where V  is the electrical potential (voltage) for each piezoelectric layer and n p  is the total 

number o f piezoelectric layers per element (see Figure 2.2).

Displacement fields over the element are expressed in terms of element nodal 

DOF and element interpolation functions as follows: 

w(.v, y , 0  =  1H  w J{wfc } +  \_H w ¥  J{ p  }

if/x ( x , y , t )  =  [ / / « * - J M

iffy  (x , y j )  =  \ H m , ] f y / }  (2 .5 )

u { x , y j ) = \ H u J {w „ ,}  

v(.v, y , t )  =  \_HV }

The element interpolation functions are expressed in terms of element area coordinates 

(see Figure 2.3), and the element quadratic interpolation polynomials as given by 

equation (2 .6 ).

f t  f t j  

f t  l ,  m ,  m 2 J
l / v J = L « , , J = l i i  *  f t  o o  oj  
l/vJ=Ltf..J=L<> o o *  f t  f t j

Element area coordinates, 4i. are related to the element geometric coordinates using the 

following transformation:

1 ~ l i i ' ’4 i
.V • = x \ x 2 -r3 %2

. y . , y \ y  2 >’3.
' ^ i i

1
~  2  A

x2>’3 - -v3-v2 .v2 -  3*3

rri1CO F

x 2 y  i - ^ 1^3 V3 “  Vi x l ~ x 2 X

.^3 . .-vi -v2 ~ x 2 y \ -V1 _  .v2 x 2 ~  -VI . Vv. - J

(2.7)

where (x„y,) are the coordinates o f node /, and A  is the triangular element area given by: 

A  =  ^ ( x 2  —-vi )(y3 ~ >"i) — (-r3 ~ x 0 ( y i  “ Vi)-

The element interpolation polynomials are defined as:
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L x ~ — ( b 2 N 4 - b 2 N 6 ), L 2 = ~ ( b \ N 5 - b 2 N 4 )
o o

L 2 = —( b 2 N 6 - b i N 5 ), M { = — ( a 2 N 6 - a 2 N 4 ) 
o o

M 2 = - ( a 2 N 4 - a { N $  ), M 3 =  — ( a [ N 5 - a ^ i N f r )  
8 8

(2 .8 )

N 4 - 4 ^ \ q 2 < (V5 “ 4^2C3- ^ 6 = 4c3C[
a { = x 2 - x 2 , a 2 = x x- x  3, = .v2 --V!

b \  =  ,v2 ~  y 3 ’ b 2 = >*3-Vi, b 2 =  >’i -V2

2.3 N onlinear S train-D isplacem ent Relations 

The von-Karman large deflection strain-displacement relations for a plate 

undergoing extension and bending at any point - through the plate thickness are given by:

{*}= {e" }+ ;{*}=  y „  }+ { e "  }+ ;{*}= { 4  }+ i  [ e ] { S } +  c M  (2.9)

£ } = ■
£ x
e y -  & , } =

u , x
V.y ■. M = -

V y . x

V x . y

V X V u , Y+ v , x V x . x  + V y . y

[«] =
W , x  0
0 vv, v

IV, v VV’, r

(2 . 10)

vv,,
VV.,

where denotes derivative with respect to the subscript. The shear strain-displacement 

relations are:

y yz w ,  v V x
- =  ■

- M >

Yxz v v \ r V v
I  '

( 2 . 11)

Substituting the MIN3 element interpolation functions, equation (2.5), the strain 

components in equations (2.9) and (2.11) can be expressed in terms of element nodal 

coordinates as follows:

& ^Pif/b ]{lvfc \p y / y /  ]{(^} 

M = [ Q J  M

{ / } -  \C y b  ]{wfc }+ \ C y V  ]{^}

(2 . 12)
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where the strain interpolation matrices are given by equations (2.13) through (2.16).

[C, „ ]=  L H V ± y

.L^vJvv+L^./ J’V
(2.13)

(2.14)

(2.16)

(2.15)

Expressions for these strain interpolation matrices as functions o f element geometry and 

area coordinates are given in Appendix A.

Based on the analogy given in chapter 1 between electrical and mechanical 

quantities for piezoelectric materials, the electrical field-potential relations are analogous 

to mechanical strain-displacement relations. Assuming that the electrical degrees of 

freedom are constant over each piezoelectric layer in the element, the electrical field is 

related to the electrical DOF by:

Both traditional isotropic piezoelectric materials and anisotropic piezoelectric actuators, 

such as active fiber composite (AFC) [82] and macro-fiber composite (MFC) [83], are 

covered by the presented formulation. For isotropic piezoelectric materials, the 

polarization direction is the ‘"3” direction; consequently, {E,} is the electrical field in the 

3 direction and /i( is the thickness of the piezoelectric layer. For anisotropic piezoelectric

2.4 Electrical Field-Potential Relations

(2.17)
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actuators such as MFC or AFC, the polling direction is the “ 1” direction. For this case, 

{£,} is the electrical field in the 1 direction and h i  is the electrode spacing.

2.5 Linear Piezoelectricity Coupling Equations 

The stress, strain, electrical field, and electrical displacement within a 

piezoelectric layer can be fully described by the following linear electromechanical 

relationships [65]:

(, Ig)
{£>}=[e]£r}+[e]f {£}

where \q Y " is the piezoelectric layer stiffness matrix at constant electrical field, is 

the permittivity matrix measured at constant strain (clamped), [e] is the piezoelectric 

constant matrix. In practice, the constants [e] and [ e ] f  may be unavailable. They are

expressed in equation (2.19) in terms of permittivity at constant stress [e]*7 , and the 

piezoelectric constant matrix [ d \ ,  which are more commonly available 

[ e ] = [ d ] \ Q ) E
(2.19)

[e ] f  = [ G ] a - [ d ] [ Q ] E [ d ] T  

By substituting (2.19) into (2.18), the linear electromechanical coupling constitutive 

relations for mechanical stress and electrical displacement can be written as:

M = [ f i ] £ ( fr H r f]r {E}) (, 90)
{ D } = fc /]M + fe ]CT{£}

The electrical displacement, {D}, in these equations represents electrical charge flux 

density and is analogous to mechanical stress. For an isotropic piezoelectric element with 

its poling axis in the “3” direction, the matrix of piezoelectric constants [r/] has the form:

'  0 0 0 0 d \ 5 0
0 0 0 d \ 2 0 0

.^31 ^32 d 33 0 0 0

The first term in the subscript refers to the axis of applied electrical field and the second 

subscript refers to the axis of resulting mechanical strain. For thin piezoelectric ceramics, 

<̂ 33 = d is =0 and d j i = <̂32. For the case of anisotropic piezoelectric, MFC or AFC, with
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the poling axis in the “ 1” direction, the constants d - u  and d 32 are replaced by d \ \  and d \ 2 

which are determined experimentally [83].

2.6 Constitutive Equations 

Lamina stress-strain relations are derived based on the Mindlin plate theory and 

on the linear electromechanical piezoelectric coupling equations. It is assumed that all 

laminas are perfectly bonded with zero glue thickness. For a laminated fiber reinforced 

composite panel with embedded or bonded piezoelectric layers, the kth layer stress-strain 

relationships in the material principal axes (1,2,3) are given by:

(2 .22 )
0-1 Qw 012 0 n

/
’ £\ d i\

\
O’ 2 • = 012 0T> 0 * e2 ' - E a t - d i2 •

r12. k 0 o' 066. k y 12 0

The klh layer could be either structure lamina (£,* = = 0) or piezoelectric layer. The

transverse shear stress-strain relations are also given by:

^ 23! _
r13 J*

<244 0 
.  0 055

V23 

k
(2.23)

For regular isotropic piezoelectric layers i  = 3, corresponding to applied or sensed 

electrical field in the “3” directions while for MFC or AFC piezoelectric actuators / = 1, 

corresponding to applied or sensed electrical field in the *T” direction.

In laminate reference axes (x, y, z), the constitutive equations are:

(2.24)
' O n 012 016

/
d x

\

• = 012 022 026 £ y ~ E ' k ’ d y •

k 016 026 066 k Y x \ d  xy k >

| r .v: 044 045' K \
l r -vc.K  = 045 055. t 1

(2.25)

(2.26)

In matrix compact format these equations can be written as:

{<7}t = E l  ({<?}-£,*{<*},)

where, \ Q ] and \ Q S ] are the lamina transformed reduced stiffness matrices for plane 

stress and transverse shear respectively, and { d }  is the transformed piezoelectric
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constants vector. Details of the derivation of transformed stiffness and piezoelectric 

constants using laminated composite theory are given in Appendix B.

In addition to mechanical stress, the electrical displacement o f piezoelectric 

layers, given in equation (2 .20), can be written as:

D« = ¥ 1  ( t?} -  E i t  ¥ \ E ik (2.27)

Thus, equations (2.26) and (2.27) represent the constitutive relations for a general 

composite lamina or a piezoelectric layer.

2.7 Laminate Resultant Forces and Moments

In a general composite laminate, stress is different from one layer to another. The 

resultant stresses for the laminate, or forces and moments per unit length, are obtained by 

integrating stress over the laminate thickness, h, as:

h!  2
({w }{M })=  J{cr}t ( I , : ) *

- h i  2
hi  2

{*}= J H  d z

(2.28)

- h t  2

Using the lamina constitutive relations, the force and moment resultants are written as:

"A B ~ £ ° N 0

B  D . K A V (2.29)

where the laminate extension, extension-bending, bending, and shear stiffness matrices, 

[A], [£], [ D ] ,  [A5], are defined as:

/i/2

(M,[fl].[0]) = J leU ,:,:2}/;
—h i  2

h / 2 _
[ A J =  \ \ Q s \ d z  

- h / 2

and the piezoelectric resultant force and moment are:

h / 2 _

( K ) . W } ) =  \ \ Q \ { d } k E l t ( l , z ) d z
- h / 2

(2.30)

(2.31)
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These force and moment resultants can be expressed in terms of element nodal DOF 

using equation (2 . 12) for { ? }  and { k }, and equation (2 .17) for E ik as follows:

{W}= [A][C„, ]{«-„ }+2- M[0]( [c*, ] k  }+ [c„ ]fcr})+ [B}[Cb }

{M}= [J][C.]{,, }+Y&ttajflc*, I k  }+ [c„ ]M)+[o][c,, }
{«}= [ a ,  j[c  ̂]k  }+ [4S ][cw ]K

(2.32)

and the resultant piezoelectric force and moment as:

K F - k -i [bJ K I
V  }= ~ \-P m  ]

where the piezoelectric matrices [TV] and [ P m ] are defined as:

KJ=[lcl{rf},A, -  IQ\{d\hk ... \5 lp{d}„ph,v ]

= ... E l - K K w - ; * ) 2 (2.34)

[i2  \ i p  I — )” J

2.8 Aerodynamic Pressure Loading

Assuming an airflow that is parallel to the panel surface, the aerodynamic 

pressure loading is expressed using the first-order piston theory. This theory relates the 

aerodynamic pressure and panel transverse deflection as follows:

(2.33)
}= 1 feJW }

A P a  = -
2 qa

J3
'  . M i  - 2  1 A

vv, r c o s  a  + w , .. s in  a  -i  ---------------w .r
M i - l V „

(2.35)

where q a  = p a V z  /2  is the dynamic pressure, p a is the air density, V „  is the airflow 

velocity, vv is the panel transverse displacement, is the Mach number, a  is the flow

yaw angle, and /? = y j M i  - 1 .  Using non-dimensional parameters, equation (2.35) can 

be written as:

A  — [vv, v cos a  +  w, v sin a ] +  — l~  w, tA P a  = “

where

f  r> -  _ „ r »  \
(2.36)

a 3 o  a 4 j
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, _ 2 q a a Z _ p a V x { M l -  2 )
Rr\  ’ 3  a ~
P D 110 p h ( D 0 ( j

(2.37)

are the non-dimensional dynamic pressure, non-dimensional aerodynamic damping, 

aerodynamic damping coefficient, and panel reference frequency, respectively. Duo is the 

first entry of the laminate bending stiffness matrix [D] determined with all fibers of the 

composite layers are in the x-direction as a reference, p , a , and h  are the panel density, 

length and thickness, respectively.

Equation (2.36) shows that the aerodynamic loading on the panel is function of 

both local panel slopes in the .v and y  directions and of the panel vibration velocity; 

therefore panel flutter is a self-excited vibration. Using the MIN3 element interpolation 

functions, the aerodynamic pressure can be expressed in terms of element nodal DOF as 

follows:

2.9.1 Generalized Hamilton’s Principle

Element matrices and nonlinear coupled electrical and structural equations of 

motion for a composite laminated plate element with piezoelectric layers are derived 

using the generalized Hamilton’s principle. In addition to aerodynamic loading, a random 

surface pressure is also considered to allow the study of panel response under combined 

aerodynamic and acoustic loading. The generalized Hamilton’s principle is:

where T  is the kinetic energy, U  is the strain energy, W eiec is the electrical energy, and 

W e.xt is the work done by externally applied forces and electrical voltage. These energy 

terms are defined by the following volume integrals:

(2.38)

( L t f » J K  } + ! « » • * > } )
2.9 Element Equations of Motion and Matrices

(2.39)

(2.40)
Vol “
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^  =  J \ { e } T  (2.41)
Vol ~

K l «  = /  (2.42)
Vol

The work done by external forces and voltage is given by the surface integrals:

W e x t = J iw7  iFs } I S  -  J  (2.43)
5, S2

where {Fs} represents the surface loading on the element due to aerodynamic pressure 

and acoustic pressure, 5/ is the area of the surface loading. V  is the applied voltage, p iS is 

the surface charge density of the piezoelectric layer, and S 2 is the area of piezoelectric 

layer. All variations at times // and t 2 must vanish in the Hamilton’s principle, and thus it 

can be written as:

V° l (2.44)
+ { S e Y  {£> } ]r/V  + J {<5W}r  { F s  y i s  -  J S V p c s d S  =  0

Si s 2

The element matrices are determined by evaluating equation (2.44) term by term to arrive 

at the element nonlinear dynamic equations of motion.

2.9.2 Element Stiffness and Electromechanical Coupling Matrices

Element stiffness matrices including piezoelectric electromechanical coupling 

terms are derived using the variation of strain energy and electrical energy terms.

S t r a i n  E n e r g y :

Using the definition of stress force and moment resultant, the strain energy variation term 

can be written as:

S U  = 7  {^1+  { S f c f  { M  }+ a s {S y f  (2.45)

where a s is the MIN3 element shear correction factor, which is defined as function of the 

ratio of the diagonal shear and bending stiffness coefficients associated with the 

rotational degrees of freedom:
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The exact definition of element shear and bending stiffness matrices will be given later. 

More details about the selection of the shear correction factor are given in [52]. 

Substituting for strain and stress resultants in terms of element interpolation matrices and 

element nodal DOF into equation (2.45), the strain energy variation can be expressed as:

*/ = J {({&■„, }r [c,„ f  + {&■„ }r [cVi, r  rnT + {Svf [c„ F l e f )

[A][c,„ ]{»•„, } + - [A ][s ] [c f*  ] K }

+ {[A][0][cw  ]fr}+[S][C (, ]{(ir}+ [/>* ][«„ I K  }]

(2.46)

+

^[B][<9][C^ ]{¥ }+ [D][Cb ]{¥ }+ [PM ] [B0 ]{w0 }

as ({̂ v’6 }T \Cyb Y + {̂V}r \cw F )
(U, ] [Cyt ]{wb }+ U , ] [Cw  ]{¥ }) }dA

(2.47)

(2.48)

Electrical Energy:

By substituting equation (2.27) for electrical displacement, the variation of electrical 

energy can be written as:

r i i /2 t ~  \ "
■ 5 W W = J £ t t )</: (2.49)

A L-/j /  2

Using the definition of piezoelectric matrices [/V] and [Pa/], the electrical energy 

variation becomes:

S W elei. =  J { 5 E ( }r ( [ P , v f  f  M + K  I K  { £ / } ) < «  ( 2 .5 0 )

where the new piezoelectric matrix [P<,] is defined as:
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0 e ?^  Itfip

0

- U V „ P \ Q l p V htn p

(2.51)

Using the strain-displacement relations, the electrical energy variation can be expressed 

in terms of nodal DOF as follows:

= j l s T K F  [Jvf [cm]{wm}+-[e][cvb]{w6}
A 1 ^

+ ^ [e ] [c „ » ,]M )+ [P M  f [ Q , ] M + M K } l  d A

(2.52)

J  J

The linear and nonlinear element stiffness and electromechanical coupling matrices can 

be found now from the variation of both strain and electrical energies by writing the sum 

of S U  and S W eiec in matrix form as follows:

S w b T '0 0 0
8 y / 0 [ * v }\pni

S w ni
*

0 [ k \n i tp [ k ] m

S w 0
K

0 \.k]<pip \-k \0m

0 [ ^ ' i  h ip [ ^ 1  h m [ * l k

[ ^ 1  \ipb [*iV [^•1 \tpm U'lV
[^■11 mlp 0 0

}<pb [ ^ • i  h ip 0 0

o  n [ k s ]b V 0 0 "

[k] <P0
+ a . [ ^ • s  1 ipb [ k s  1 \p 0 0

+
[k] m 0

j
0 0 0 0

[ k ] 0  _ 0 0 0 0

" [* . v 0 h \-k\N 0  hip  0 o '

+ \.k\tf(t) \yjb r * i w V 0 0
+

0 0 0 0
0 0 0 0

(^•1 Nm h h \p 0 o ' \ - k \N b h tp 0 o '

t^-' l  Nm  Jipb h 0 0
+ t̂pb \-k\N iA ip 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 _

+

~ i k 2 \b \.k2 h ip 0 0 " >
w b

[ k 2 ]ipb [ k 2 \v 0 0 ¥

0 0 0 0 w m
0 0 0 0

/
w<p

= S U + d W elec (2.53)

where the element sub-matrices in equation (2.53) are defined by the following equations.
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L i n e a r  s t i f f n e s s  s u b - m a t r i c e s :

[ k ] w  = \ [ C b ]T [ D ] [ C b ] d A  (2.54)
<4

= \ [ C b ]T [ B ] [ C m ) d A  = [ k \ Tm ¥  (2.55)
.4

[*]„, = j [ C m f [ A ] [ C m ]clA (2.56)
A

P i e z o e l e c t r i c  c o u p l i n g  s u b - m a t r i c e s

[ k \ „ I0 =  \ [ C m \ T [ P N \ [ B 0 ] d A  =  [ k ] l n (2.57)
A

[* W  = l [ C b ]T [ P M ] [ B 0 ] d A  = [ k \ l ¥  (2.58)
A

P i e z o e l e c t r i c  c a p a c i t a n c e  s u b - m a t r i x

{ k \ o = \ [ B 0 \ T [ P 0 \ d A  (2.59)
A

S h e a r  s t i f f n e s s  s u b - m a t r i c e s

[ k s ]b = $ [ C } b ]T [ A s }[C. r b ] d A  (2.60)
A

\ .k s \b i/ /  =  \ [ C y b i r \ .As \ [ C y ¥ ] d A = \ k s  (2.61)
A

[ k s  V  = J [ C w  ]r [As. ][Cm  lcM (2.62)
A

F i r s t - o r d e r  n o n l i n e a r  s t i f f  l e s s  m a t r i x

The following nonlinear element sub-matrices are first order functions of the element 

transverse displacement through [ 6 \

1[ k x \ b v  =  ~ \ i C v b ]T  { 6 } T [ B ] [ C b ] d A  = [ k x ] T¥b  (2.63)
“  A

I k i h , , ,  = ^ \ [ C ¥ b ]T [ d } T { A ] [ C m ] d A = [ k l ]Tmh (2.64)

A

1

A

[*ilr  =  ^ f i C b ] T [ B ] [ e ] [ C W9,  \ d A  +  J [ C ^ ] r [0]r [fi][C6kM (2.65)
“ A A

[*1 W  = ]^A = [* ,]«*  (2 .66)
A
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F i r s t - o r d e r  p i e z o e l e c t r i c  c o u p l i n g  m a t r i c e s

The following nonlinear element sub-matrices are first order functions of the element 

transverse displacement through geometric matrix [ 6 \

[ * i W  = ^ J [ c V J r [ 0 ] 7> / v ] [ S 0 ] < M  = [ * , &  ( 2 - 6 7 )

[ t i U  =  { p N \ { B 0 \ d A  =[A,1 r
<P¥ (2 .68)

The following nonlinear element sub-matrices are first order functions of the element 

electrical displacement through piezoelectric resultant force {Af<j}.

= - \ \ [ C v h]T [N0 }[Cv/b)dA

 ̂ C T  T[ * l i V 0  — — T j   ̂ [ A  0 \[CVV \clA —
~  A

t  W V  = - ^ \ { C v v \T [ N0 ][C¥ ¥ ]dA

( 2 . 6 9 )

( 2 . 7 0 )

( 2 . 7 1 )

where the force resultant matrix [A  ̂ is found from the force resultant vector (Ar) as 

follows:

N x
N v , M = ( 2 . 7 2 )

First-order nonlinear stiffness m atrix due to  { N , „ }

The following sub-matrices are first-order nonlinear functions of plate membrane 

displacement {vv„,} through the membrane resultant force {A/„, }=[/!]{

1 * 1  Atm = ^ l i C ¥ b \ T i N m \[C„f b \dA  ( 2 . 7 3 )

\btff — 7 f lCi /rbl  [A * ] [C W  \dA — [ A r i^  
~

l A / „ ,  1 1 \dA

( 2 . 7 4 )

( 2 . 7 5 )

F i r s t - o r d e r  n o n l i n e a r  s t i f f n e s s  m a t r i x  d u e  t o  { N b }

The following sub-matrices are first-order nonlinear functions of plate rotational 

displacement { \ p \  through the membrane resultant force {A/b }=[#]{ k ]
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l*i,v* h  = ^ - J i c vb lT I N b ] [C vb \dA
~ A

1*1 Nb h<y =  \T [ N  b \ [ C VV I dA  =  \ ^ b
“  A

I k \Nb V  =  | j t C W  ? l N b II'C W  1 ^

(2.76)

(2.77)

(2.78)

S e c o n c l - o r d e r  n o n l i n e a r  s t i f f n e s s  m a t r i x

The following nonlinear element sub-matrices are second-order functions of the element 

transverse displacement through geometric matrix [ 6 \

1*2 U  = - \ [ C ¥ b ]r  [ 0 \ T [ A \ [ e \ [ C y b \dA

1*2 W  via = [ k 2 \ lb
~  A

1*2 V  =  \T \ e \ T [ A w e w C y y  VIA

(2.79)

(2.80) 

(2.81)

2.9.3 Element Mass Matrices

Element mass matrices are determined using the variation of kinetic energy term 

in the generalized Hamilton’s principle. Using MIN3 element interpolation function, the 

kinetic energy variation can be written as

s r  =  {  p h { { S » - m  }r  ( { H „  }LH „  J { .v „ ,  } +  { H v } |W  „ })
A

+ k&vb f  iH w }+ W f  {h wy/ })( LH w ]{Swb }+ L" w y  ^ } % iA
Equation (2.82) can be written in matrix form as:

(2.82)

S T  =

Swb
T

M b I ' » V 0 O'
S i y I I™]#, [ m ] v 0 0 V

S wm 9 0 0 [ '” 1 m 0 w ,n
5 w 0 0 0 0 0 <v0

(2.83)

where the element mass sub-matrices are defined as: 

[ m ] b  = J l w „ . /
a

I '« W  =  j l " W J

(2.84)

(2.85)
a
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Imiy  = JL«,v.„J7' ^ !j 2-L« ,,« ,> >

D,

(2.86)
a

(2.87)[m ]„ ,  =  J ( L ff„  J +  I H „  J ) r  - U 5 . ( LH u ] + l H , ] ) d A

<4 “

2.9.4 Element Aerodynamic and Force Matrices

The element aerodynamic stiffness and aerodynamic damping matrices, and load 

vectors are determined by examining the variation of work done by externally applied 

loads and electrical charge. The external work variation can be written as:

SW ext = J ({^ V'Z> } T  i H u-}+ {H  wifr })(AP</ + P U , y , t ) ) d A  -

(2 .88 )
J  Y { P c s  )d A

where p ( x , y , t )  is the acoustic pressure loading that could affect the panel in addition to 

the supersonic aerodynamic pressure loading. Substituting for the aerodynamic pressure 

loading using the first-order piston theory, equation (2.38), the external work variation 

can be written in a matrix form as follows:

s w ^  =  \

Swb t f

8y/ XSwm

\-a a 0 0 * w b

[c*a lysb \.a a ^l// 0 0 V

0 0 0 0 w m
0 0 0 0 WP

Sa_
CD,,

[j> \bt/f 0 o' w b Pb
\

[.? 1 if/b [S 1 y/ 0 0 V • -1- - Plf/
►

0 0 0 0 0
0 0 0 0 _ LP 0 /

(2.89)

where the element aerodynamic stiffness sub-matrices are defined as:

\ b  = { a \ J f  w J  (cos a  \ _H w J, v + sin a  [ H  w  ], v ) d A  
A

\.a a  1b !]/ ~  \ c i [ H  lt, (COS DC \_H  _), x  ^ in  CX [_ // wiff _|» v )

A

[« a \ y b  =  J a\_H wl// J  (cos a  \_H w J ,x + sin a  [ H  w J , v ) dA
A

[ a a V = J H W v  J  (cos a  \_H w w  J,x  + sin a  | H  u. v  J, v, ) clA

(2.90)

(2.91)

(2.92)

(2.93)
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The element aerodynamic damping matrices are the same as element bending mass 

matrices given by equation (2.84) through (2.86)

[ § ~ \ . m \ b '  \ -S \b i f /  \ .§ \ y /  =  (2.94)

Finally, the element load vectors due to acoustic random pressure and applied electrical 

charge are defined as:

\ P b  }= J [ Hj  p ( x ,  \ \ t ) d A
A

(2.95)

\ p v } =  \  [H  p ( x * y , t ) d A
A

(2.96)

W  }= “  J K j  }dA (2.97)
A

For the case of panel flutter analysis and suppression, the acoustic pressure. p ( x ,  v , t ), will 

be set to zero. However, some of the analysis cases given in Chapter 4 will consider the 

combined effect of acoustic loading and supersonic aerodynamic pressure.

2.9.5 Element Equations of Motion

Using the element stiffness, mass, aerodynamic matrices and load vectors, the 

fully coupled nonlinear electromechanical equations of motion for a composite laminate 

with piezoelectric layers subject to supersonic aerodynamic and acoustic loading using 

the MIN3 element can be written as:

’ ["*k [ m ] h v 0 0" ii'b ~ [ g \ b [«?  \btf/ 0 0‘
[ m \ v 0 0 ¥ ■ +  — ti> \if/b 0 0 ¥

0 0 0 V o 0 0 0 0 vvm
0 0 0 0 0 0 0 0 w 0

(
1-®a ^blf/ 0 o ' ' 0 0 0 0  1

A \-a a ]tf/b 
0

t  aci 
0

0

0

0

0
+

0

0
^l//0 +

V
0 0 0 0 0 [ k ] 0  _

~ [ k s ]b \b y / 0 o ' 0 \bi f / [*•'1 h r n t ^ ' l  I b 0

cc j  }y/b [^•5 0 0 [ * I [ * i V t ^ - l  ]y/ni [ ^•1  \y /0

0 0 0 0 [*1 h n b [ ^ 1  \m ij/ 0 0

0 0 0 0 _ [ ^ 1  \<pb [̂ 1 \0 \jf 0 0
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N 0 f^"IN<p ^bif/ 0 o ' 0 0 '

\.^ \N 0 ^ ip b 0 0
+ 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

[̂ 'lA! b h t̂ 'lA'b h i / / 0 o ' [̂ •2 [^2 W 0 0 w b P b
[ k \ N b \ y b [ k [ Nb  V 0 0 + [^2 ]y/f> [*2V 0 0 ¥ __ Ptft

0 0 0 0 0 0 0 0 w m 0
0 0 0 0 0 0 0 0 / P q

One important thing to note for this equation is that, all element matrices are symmetric 

except the aerodynamic stiffness matrices, which are skew symmetric. For abbreviation 

from now on, the element bending DOF {vry,} and { y / \  are combined together in a single 

vector. Thus, the 4 matrices with subscripts b , b y / ,  y /b , and y/a re  all combined in a single 

matrix denoted with the subscript b .

2.10 System Equations of Motion 

The system equation of motion for the complete plate can be found by following 

the standard finite element assembly, and using the specified structural and electrical 

boundary conditions. The electrical DOF also follows the traditional finite element 

assembly procedure where the electrical boundary condition stipulates equal potential 

across element boundaries for each continuous piezoelectric patch. Using the new 

notation for bending DOF:

f o } =  2  b }  (2.99)
all elenints *■ '

where the summation sign represents the finite element assembly procedure. Combining 

the shear and linear bending stiffness matrices in a single stiffness matrix [AH, then the 

system equations of motion for a composite panel embedded with piezoelectric layers and 

subject to supersonic aerodynamic pressure and acoustic pressure can be written as:

\ M b 0 0" g ~Ga 0 o ' W b '
0 M m 0 ■ W m 0 0 0 W m -  +
0 0 0

%
u 0 0 0 0 %

/ "A* 0 o'
~  Kb ^bni

1 1
£ < 0 o '

A 0 0 0 + Knib Km K/)10 + 0 0 0
V

0 0 0 1 * % K<pm 0 0 0
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K \ b +  K \ Nm +  K 1Nb
K l
K \

mb
pb

K l b m
0
0

ATIbp
0
0

K  2 0 0 
0 0 0 
0 0 0

w b Pb
- = ■ 0

Pp
(2 . 100)

where [A/], [ G aJ, [ A a ], and [AT] are the system mass, aerodynamic damping, aerodynamic 

stiffness and linear stiffness matrices, respectively; [ATI] and [ K 2 ]  are the first-order and 

second-order nonlinear stiffness matrices, which are linear and quadratic functions of the 

unknown displacements { W b } and { W , „ }  respectively; and [ K 1 n 0] is the piezoelectric first 

order stiffness matrix which depends linearly on the electrical DOF { W 0 }.  In the absence 

of acoustic pressure loading, { P b } =  0, equation (2.100) reduces to the problem of 

nonlinear panel flutter under yawed supersonic flow. However, by setting A  and g a to 

zero, equation (2 . 100) describes nonlinear random response of composite panels 

subjected to high acoustic excitations. The formulation is kept in a general form with 

both effects to allow the study of nonlinear panel response under combined acoustic and 

aerodynamic loading. However, {P/,} will be dropped when nonlinear panel flutter 

analysis and control are considered.

2.11 Piezoelectric Actuator and Sensor Equations 

The system equation (2.100) represents a system of coupled electrical-structural 

nonlinear equations. Collecting the structure degrees of freedom {W b ) and {W m ] in one 

vector denoted as {Wj, equation (2 . 100) can then be simplified as follows:

( 2 . 101)

M  0
0 0

K  2 0

f
A

'A O'
+ ~ K W

r

+
V 0 0 _%V i

Av0 )  | / 0 J

Any piezoelectric layer in the composite laminate could be used as a sensor, actuator, or a 

self-sensing actuator. First, the case of a plate equipped with piezoelectric sensors and 

actuators is examined, then the case of self-sensing piezoelectric actuators.

2.11.1 Piezoelectric Material as Actuators and Sensors

For this case it is assumed that each piezoelectric patch is either used as a sensor 

or as actuator. The electrical DOF are partitioned into sensor DOF and actuator DOF, or a 

sensor voltage vector and an actuator voltage vector as follows:
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(2. 102)

Similarly, the piezoelectric coupling and capacitance matrices can be partitioned into 

sensor and actuator contributions as given by equation (2.103)

0

K
(2.103)

For the piezoelectric sensors, there is no externally applied charge to the sensor 

electrodes and hence the electrical loading vector can be written as:

r o
(2.104)

Based on the above partition, we can now write the commonly known piezoelectric 

sensor and actuator equations.

S e n s o r  E q u a t i o n :

From the second row of system coupled equation (2.101) and using equations (2.102) 

through (2.104), the piezoelectric sensing equation is:

K 1 }= - f a  F '  ( J+ 1 * 1 ] ){l4,> < 2 i 0 5 )

This provides the equation for piezoelectric sensor voltage output. If instead, the sensor is 

used as a charge sensor, the sensor output can be determined based on the electrical 

relation: q  -  C  V  where V  is voltage, C the electrical capacitance, and q  the electrical 

charge. Noting that [K\>] is the piezoelectric capacitance, then the output of a charge 

sensor is given by:

{ l ‘  }= - f e .  1+ f c l j J V }  (2 - >06)

where { q * }  is the collected sensor charge.

A c t u a t o r  E q u a t i o n

For the actuator DOF, the second row of equation (2.101) gives:

•([* > ,]+  [k ;  }= £ > /]  (2.107)

A piezoelectric actuator could be driven either by voltage or charge. For a charge driven 

actuator, ] is known and equation (2.107) can be used to find the actuator electrical
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DOF { w °  ] as a function of the structural DOF {W } and the known applied charge as 

follows:

K °  1=  f a  J"1 { f a } -  ( f a ,  ]+  f a * .  ] M  (2- io s )
The actuator electrical DOF is then substituted in the first row of equation (2.101) to 

obtain the actuator equation for a charge driven actuator. However, in the usual actuator 

application, a driving voltage is used instead of a charge. In this case, the actuator

voltage ] is known and the charge drawn onto the piezoelectric electrodes in response

to this voltage is not o f interest. Therefore, equation (2.107) is ignored. For the voltage 

driven piezoelectric actuator, the actuator equation can be written as follows:

—-^-[M }+ -^ -[G ]^V  J+ (A [A ]+ [^ ll.]+[^'l]+[AT2 ] ){W }= { P } + { P a c l }(2.109)
c o -  u 0

where {Facr} represents the piezoelectric force due to the voltage at both sensor and 

actuator and is given by:

{P a c , > =  - ( f a . *  ] +  f a t * ] ) f a  M f a *  ] +  f a t *  ] ) K “ J < 2 -1 10 >

Since the actuation voltage is much bigger than the sensor voltage, the sensor term in 

equation (2 . 110) is neglected and the actuator equation for a voltage driven actuator is 

finally given as:

- y  [ M  ] }+ [ G ]  }+ ( A [ A ] +  [ K w  ]+ [ K 1]+
M o  01 o  (2 .111)

l K 2 ]  ) { 1 V } =  { P } - ( f a * ] +  f a i t *  ] ) f a  }

2.11.2 Piezoelectric Material as Self-Sensing Actuators

For these devices, each layer of piezoelectric material is used as sensor and 

actuator simultaneously. Therefore, there is no need to partition {W 0 ] for this case. 

Equation (2.101) can be then written as two separate equations to represent actuation and 

sensing as follows:

—V  [ M  ] } +  [ G ] f y } +  ( A [ A ] +  [ K w  ]+ [ATI]
co ~  M a  (2 . 112)

+ [JC2 ] ) { W }= {/>}- ( fa „ *  ]+ f a l ] ) f a  ]
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(2.113)

The key to self-sensing piezoelectric actuators is measuring the electrical charge drawn to 

the electrodes, ( P 0} .  This electrical charge can then be combined with the piezoelectric 

capacitance and applied electrical voltage, the term [ K P] { W 0 ) in equation (2.113), to get a 

signal proportional to the structure DOF. Analog circuits such as the ones given in [80] 

and [81] can be used to implement the right hand side of equation (2.113). In practice, the 

compensation for the piezoelectric capacitance is not perfect and could affect the sensor 

performance. In this study, the difference between the piezoelectric capacitance and the 

electric circuit compensation will be neglected, i.e., perfect implementation of the right 

hand side of equation (2.113) is assumed. Therefore, the sensor output charge for self

sensing piezoelectric actuators is given by:

Thus, equations (2.112) and (2.114) are the actuator and sensor equations, respectively, 

for self-sensing piezoelectric actuators.

(2.114)
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Figure 2 .1 Composite panel under yawed supersonic flow and acoustic pressure loading
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Figure 2.2 Composite laminate composed of n  layers with n p  piezoelectric layers
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(x2, y2)

(x l , y l ) { î» ^2,^3} = {Ai, A2, A3}/A 
A = ZAj

Figure 2.3 MIN3 element geometry and area coordinates
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CHAPTER III 

MODAL REDUCTION AND SOLUTION PROCEDURE

3.1 Introduction

The nonlinear dynamic equations derived in the pervious chapter represent the 

equation of motion in the structural node DOF. These equations could be used to solve 

nonlinear panel response for flutter and combined aerodynamic and acoustic loading. 

However, it is not efficient to do so due to the large number of structure node DOF and 

due to the nonlinear stiffness matrices, which have to be updated. Additionally, a reduced 

order system that only retains the important modes of the system should be used for 

control system design.

In this chapter, the system governing equations are transformed into the modal 

coordinates using the panel linear vibration modes to obtain a set of nonlinear dynamic 

modal equations o f lesser number. The reduced modal equations can be easily used to 

solve the problems of linear and nonlinear flutter boundaries and to analyze panel 

response under combined acoustic and aerodynamic pressures. Linear and nonlinear 

panel flutter problems can be solved using either time domain methods such as numerical 

integration, or frequency domain methods (eigenvalue problem solution). However, the 

problem o f nonlinear panel response under combined aerodynamic and acoustic loading 

must be solved using time domain methods. The reduced modal equations o f motion will 

also be used to design control laws and to simulate panel flutter suppression. The 

following are the main assumptions used in the modal reduction and solution procedure:

• General composite laminate, symmetric or unsymmetric.

•  Inplane inertia is neglected. This is justified as the frequencies of inplane 

vibration modes are much higher frequency than the out of plane bending modes.

• Self-sensing piezoelectric actuators are assumed. Therefore, equations (2.112) and

(2.114) represent the coupled actuation and sensing equations, respectively.

• The piezoelectric actuators bonded to the surface or embedded within the 

laminate produce only bending moment and not inplane force. In other words, the 

piezoelectric resultant force, is zero. This is achieved by having a pair of
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self-sensing piezoelectric actuators at the top and bottom surfaces of the laminate 

and by applying equal and opposite voltage to these two actuators (see Figure

3.1). This can be justified because the main purpose for the piezoelectric actuators 

is to suppress nonlinear panel flutter and because it was concluded in pervious 

work by [101] and [103] that piezoelectric actuators with bending moment are 

much more efficient than inplane tension for nonlinear panel flutter suppression.

3.2 G overning Equations 

Recall the system equation of motion (sensor and actuator equations) derived in 

chapter 2, equations (2.112) and (2.114):

M b
0

0

'  K b

K m b

K 2  0  
0  0

K bm
+

K m J

>1
-  ) 1 w  (I vy m J

W h

W ,
+

m
S  a  
CO,

~Ga O' { * b \ 1+
(
/I o'

_ 0 0 K , J 0 0_
K l N <p o

o

P b

o
+

K \ b +  K i  Nm +  K \ Nb

K 1  mb

+

+ (3.1)

f K b0
+

1

5 C
-

__
__

_
J \

V 1 > I

0 J
K )

'Wu

\ W ,
(3.2)

m

By setting the piezoelectric resultant inplane force, {yV<j}, to zero, as was assumed in the 

pervious section, then all linear and nonlinear element and system stiffness matrices that 

are function of piezoelectric inplane force resultant [A^] vanish. In addition, the element 

vector o f electrical DOF, {vv'0}, becomes a scalar for each element since the electrical 

DOF at the pair o f top and bottom piezoelectric layers are equal and opposite. Therefore, 

the following matrices [ATra()], [ K 1 n 0 \ ,  and [K l b0] become zero matrices, see equations 

(2.57), (2.67), and (2.70). Using this in equations (3.1) and (3.2) and by neglecting the 

inplane inertia as mentioned in the pervious section, the equations of motion then 

become:
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~ M b O ' \+8“ ~Ga o '
R L(

A X ,
O '

+
~  K b K  bm

_ 0 0 _ R, °>o 0 0 R, [ \ 0 0 . K  nib K m .

A c t u a t o r  E q u a t i o n :

1
1

U o

' K \ b + K \ N m + K \ N b

mb

S e n s o r  E q u a t i o n :

+

~ K  2 O' j
+

J . 0 0 /
' W h
w,m

' R
. o f

K b 0
0 K )  <3-3>

W = - k *  o fo l ^ l
W',„f

(3.4)

It is worth mentioning that the pure transverse displacement sensor signal in equation

(3.4) is obtained by summing the charge outputs from the pair of top and bottom 

piezoelectric layers (see Figure 3.1). Equation (3.3) can be partitioned to two separate 

equations for bending and inplane DOF. The inplane DOF, {W,„}, can be expressed in 

terms of the bending DOF, { W h \ .  as:

{ W ,„  }= I" ' ([£„,(, ! + ( « ,„ ; ,  I) { W b  } (3.5)

and the system equations in terms of the bending displacement { W i,}  as:

- L . [ M b ] ^ b Y  —  [ G a  1R  H ([*J + [ K n l  1) i w b  }= { P b  R  ] R  }(3.6)
CO~ W o

where the linear and nonlinear stiffness matrices are given by:

[ K l  1 = ( i  [ A a  ] + [ K b \ ~ [ K b m  \ { K m  ]- { [ K m b  ]) (3.7)

(3.8)[Kfl /L 1 -  - [ K b m  1 I K^mb  1 +  ) +

+  [ K 2 \ - [ K i b m \ [ K m ] - l ( [ K m b \ +  [ K l m b \)

The system equation of motion in structural DOF, equation (3.6), has two major 

drawbacks. First, the element nonlinear stiffness matrices have to be evaluated and the 

system nonlinear stiffness [ K ^ l \ is assembled and updated at each iteration or numerical 

integration step. Second, the number of structure node DOF {W b) is usually very large 

which is not suitable for control laws design and computationally costly for both 

frequency domain and time domain solution methods. To overcome these drawbacks, the 

system equations are reduced using modal transformation and modal reduction based on 

the values of modal participation. This results in a system of coupled nonlinear modal
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equations with much lesser number of DOF that could be used for control design, 

numerical integration, and frequency domain solution.

3.3 Modal Transformation and Reduction 

Assuming that the panel deflection can be expressed as a linear combination of 

some known function as

K } = i > r (D{0r }=[<!>]{<7} (3.9)
r=  I

where the number o f retained linear modes n  is much smaller than the number of 

structure node DOF in bending, {W b ) .  The normal mode {$-}, which is normalized with 

the maximum component to unity, and the linear natural frequency cor are obtained from 

the linear vibration of the system.

c o r 2 [ M b ][<pr ) = [ K b ]{<t>r } (3.10)

Since the nonlinear matrices [ K l mb\,  [K l bm], [ K l Nb], and [ K 2 ]  are all function of the 

unknown bending DOF { W b } ,  they can be expressed as the sum of products of modal 

coordinates and nonlinear modal stiffness matrices as

( [ K l „ l b l  [ K \ b m \  [A Tl^]) = ^ q r i K \ m b ]( r \  [ K l b fJ r>, [ K l tWb1 r>)

(3’l l )

r = I  j = 1

where the super-indices of those nonlinear modal stiffness matrices denote that they are 

assembled from the corresponding element nonlinear stiffness matrices. Those element 

nonlinear stiffness matrices are evaluated with the corresponding element components

[ w b } {r )  obtained from the known system linear mode {<j)r }- Therefore, those nonlinear

modal stiffness matrices are constant matrices. This is a great advantage, as these 

matrices do not need to be evaluated at the element level and assembled at each iteration 

or time integration step.

The first-order nonlinear stiffness matrix [A7m„] is a linear function o f the inplane 

displacement { W „ ,} .  From equation (3.5), {W m ) consists o f two terms as:
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Y q r [ K \ m b ] ^  U ] { « }  
l r = l  J (3.12)

n n n

= ' S Cli'{0r}m ~ ^  ^  c l  r c l s  (0r.v I w 
r= i  r= l  5=1

where the two inplane modes corresponding to the r-th bending mode {<pr } are defined as:

Thus, the nonlinear stiffness matrix [ K I Nm\ can be expressed as the sum of two nonlinear 

modal stiffness matrices as:

[* l/v » .]= -2 > < -[K l/v » ,f r) (3.14)
r = 1 r = l  , v = l

The nonlinear modal stiffness matrices [ K l Nm](r) and [K 2 Nm ](rs> are assembled from the 

corresponding element nonlinear stiffness matrices. Those element nonlinear stiffness 

matrices are evaluated with the corresponding element components obtained from

the known inplane modes {#-},„ and {0„}m, respectively. Thus, the nonlinear modal 

stiffness matrices are constant matrices. Using equations (3.11) and (3.14), the system 

equation, (3.6), is transformed to the following reduced nonlinear system in the modal 

coordinates

- V  [ M b  ^  | c  ]{<)}+ 2 { r <or  [/ ]& }+
C0o  CO- (3.15)

(  Ik l  1+  K  ] +  [ x m  ] ) { q } = &  h  [ ic b ( , ] { j y „ }

And the sensing equation in the modal coordinates is:

{7 5 } = - [ ^ f e }  (3.16)

As for the electrical DOF, there is no need to do reduction since the number of electrical 

DOF, { W 0 ) ,  is usually small.

The modal matrices are given by:

® v 7 j , [ C ] , [ ^ ] ) = [ 0 f ( [ M 6 ],[C ],[ /i:L ])[cI)l (3.17)

and the quadratic and cubic terms in modal coordinates are:
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K  ]= [<*>f £ qr ][Arm r 1 [/nm61‘1+mb r> -[KiNm t ‘
r =1 (3.18)

+[K1 Nb 1rl -  [K\bm f r) [K m r 11 [Kmb ])[4>]

n n
[k w  ] = t-f f  s  s  ‘u  M " '  r '  -

r= l„ l  (3.19)

[Kif,„,]<r» [*:mr ,[̂ i„,1>]<),)[0]
and the modal load vector and piezoelectric control force are:

\ F b  }= W  {P h  }  (3.20)

[ ^ ] = t < i - r k j = [ ^ r  (3.2i)

The nonlinear first order modal matrix [AT(/] usually represents a softening effect while the 

second order nonlinear matrix [ K qq] represents a hard spring or stiffening effect. For the 

special case of symmetric panels, [ K q \ is zero (due to [B ] = 0) and the modal equations of 

motion reduces to a multi DOF coupled Duffing system. Structural damping modal

matrix, [ c ]  =  2 £ r a ) r  ( M r / c o ^ ) [ l ] ,  has been added to the system modal equation (3.15) 

where £ r, Q)r, and M r are the modal damping, frequency, and mass, respectively, and [/] is 

the identity matrix. The modal damping ratio can be determined based on testing or on 

performance of similar structures.

The advantages of the modal equations of motion given by equation (3.15) are: (i) 

there is no need to assemble and update the nonlinear stiffness matrices at each iteration 

since all the nonlinear modal matrices are constant, and (ii) the number of modal 

equations is much smaller than the structure equations. This approach has been 

successfully used for nonlinear panel flutter of composite panels at elevated temperature 

by Zhou et al. [104]. This approach has also been demonstrated for nonlinear panel flutter 

of composite panels under yawed supersonic flow by Abdel-Motagaly et al. [51] and for 

nonlinear response of composite panels under combined acoustic and aerodynamic 

loading by Abdel-Motagaly et al. [64],

The determination of the number of modes required for a specific problem is not a 

trivial task and requires some special attention to make sure the important modes are
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retained. The few influential modes to be kept can be determined by the modal 

participation value, which is defined as:

For the problem o f nonlinear panel flutter, the number o f modes used can be determined 

based on accurate and converged magnitude and frequency of limit-cycle oscillation 

(LCO). By doing this, it is guaranteed to get accurate flutter mode shape, which is crucial 

for panel flutter suppression problem. For the problem of acoustic loading in the form of 

uniform random pressure input, the lowest few symmetric modes are usually used. In 

summary, modal reduction is problem dependent and should be performed based on a 

systematic modal convergence and participation procedure.

3.4.1 Time Domain Method

Nonlinear panel response could be simply solved by using numerical integration 

of the modal dynamic equations of motion. For the case of combined loading, the random 

surface pressure is generated and the panel response is determined at each time step. For 

the case of nonlinear panel flutter, numerical integration is carried out using any arbitrary 

initial conditions at a given value of nondimensional dynamic pressure, A .  After some 

time, the solution converges to a limit cycle and the limit cycle oscillation (LCO) 

amplitude and frequency can then be determined at the given A . This approach is accurate 

and general as it could easily handle both structural and aerodynamic damping. However, 

the frequency domain solution introduced in the next subsection is more effective 

computationally for the case of nonlinear panel flutter when the interest is only to 

determine the panel LCO response and the flutter mode shape. For control design and 

simulation, numerical integration must be used.

3.4.2 Frequency Domain Method

3.4.2.1 Critical Flutter Boundary

Linear panel flutter equations of motion can be determined by neglecting the 

nonlinear stiffness matrices, and by setting the piezoelectric actuation and random surface 

pressure to zero in equation (3.15).

P a r t i c i p a t i o n  o f  t h e  r - t h  m o d e  = \ q r \ /  Ski (3.22)

3.4 Solution Procedure
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[ M b  M + ^  [C ]{?}+ 2C r O r  [/]{?}+  W L  ]fe}=  {0}
CO

(3.23)

This equation represents a dynamic eigenvalue problem and a solution for the unknown 

modal coordinates {q )  can be assumed in the form of:

where [ q , , ]  is the eigenvector and Q  = 0  + i c o  is the panel motion parameter (J.3  is 

damping rate and co is frequency). Flutter will occur if the panel motion becomes 

unstable, i.e., when the damping rate becomes positive. Using the fact that [G] = [M h \ and 

neglecting the structural damping, the linear panel flutter eigenvalue problem can be 

written as follows:

where the eigenvalue, Kj, is defined in terms of aerodynamic damping and reference 

frequency as:

As the nondimensional dynamic pressure, A ,  increases, the panel symmetric stiffness 

matrix will be perturbed by the skew symmetric aerodynamic matrix (see equation (3.7) 

for the definition of [Aj.]). This will result in one eigenvalues K) to increase and another 

eigenvalue K j to decrease until they coalesce. If A  is increased further, the two 

eigenvalues become complex conjugate:

For the case of zero aerodynamic damping, g a = 0, the damping rate is zero at the 

coalescence of the two eigenvalues and hence this defines the flutter critical boundary, 

A cr , (i.e. at Ki -  0). In the presence of aerodynamic damping, the damping rate will vanish 

after the coalescence. Substituting (3.26) into (3.27) and using the definition of Q, it is 

found that 0 = 0  when Ki/ K r  =  g a . The value of A cr  in the presence of aerodynamic 

damping is thus slightly higher than that with no aerodynamic damping. Based on linear 

theory, the panel motion will grow exponentially beyond A cr_ In reality, this is not the 

case due to inplane stretching forces. Thus, the nonlinear matrices must be considered to

(3.24)

(3.25)

X/.2 — Kr  +  I K i (3-27)
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determine the panel limit-cycle oscillation (LCO) response beyond the critical flutter 

boundary.

3A.2.2  Nonlinear Flutter Limit-Cycle Oscillation

The reduced nonlinear modal equations for the nonlinear eigenvalue problem of 

panel flutter could be solved using the linearized updated mode with nonlinear time 

function (LUM/NTF) approximate method introduced and applied by Gray [11] for 

nonlinear hypersonic panel flutter and by Xue [39] for nonlinear supersonic panel flutter. 

The LUM/NTF method is an iterative method. It was originally applied in the structure 

node DOF and thus requires evaluation and assembly of element matrices at each 

iteration. An efficient solution procedure, presented here for the first time, is to apply the 

LUM/NTF method to the reduced modal equations. The presented solution procedure is 

efficient and has a great advantage in computation time and thus could be used for the 

study of nonlinear LCO amplitude and for flutter mode shape determination of composite 

panels.

The LUM/NTF solution procedure is based on using harmonic response 

assumption and on linearization of nonlinear time functions. Since the intent is to 

determine LCO amplitude and frequency, the solution of the modal DOF is assumed in a 

harmonic form similar to equation (3.25):

{<y}= { q 0  =  { q 0 } ( c o s c u t  +  i s i n c o t )  (3.28)

Using equation (3.15), the nonlinear panel flutter eigenvalue problem can be written as 

follows:

( -  K j  [ M b  ]+ \ K L  ]+ [ K q  ]+ [if w  ] ){ ,„  = {0} (3.29)

For a stable limit cycle, the modal solution in equation (3.28) can be written by setting /? 

to zero and by choosing either cos(tu t )  or sin(ry t )  for the harmonic solution. Using this 

modal solution, equation (3.29) becomes:

(- K j  [m  b  ]cos cut + cos cut +  \ fC q  ]cos 2 cut + [K q q  ]C°S3 O x ) { Q o  }= {0} (3.30)

Using linear approximation for the nonlinear time functions (cos2cut and cos3tuf), the 

linearized eigenvalue problem for LCO of nonlinear panel flutter can be written as:
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2 4
v  y

Equation (3.31) represents a nonlinear eigenvalue problem where the matrices \ K q  ] and 

[ K q q ]  are function of the unknown eigenvector { q 0 }- It can be solved using an iterative

linearized eigenvalue solution procedure. The nonlinear stiffness matrices are evaluated 

at iteration j + I  using the eigenvector solution from iteration j .  The eigenvalue and 

eigenvector can then be determined based on certain convergence criterion (see Figure

3.2). For a given maximum panel deflection ( W m a x ) ,  the LCO occurs at a specific 

nondimensional dynamic pressure value denoted as A l c o - At this value of dynamic 

pressure the damping rate vanishes (/? = 0). If the aerodynamic damping is neglected, this 

will occur when two eigenvalues of equation (3.31) coalesce. In the presence of 

aerodynamic damping, the value of A  l c o  is reached after of Kj become complex conjugate

( k  = K r  ±  iK i ) at the point where g a  =  * 7 1 4 K R  (s im ile  to the linear flutter case). 

Figure 3.2 describes the search algorithm and the iterative linearized eigenvalue solution 

procedure used to determine A ^ c o  for a given LCO amplitude.
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S t e p  I :  For a Given LCO amplitude W m a x , Assume {q a}

S t e p  2 :  Assume a value for X

S t e p  3 :  Solve the linearized eigen equation for the j-th iteration:

K  j  \ M  b  ] (< ? o  } j  =  ( [ ^ z .  ] +  [ ^  N L  } y

[K N L . ] = ^ - [ K q  f e o  } j  _ !  ) ] +  ^  \K qq } j - [  ) ]

where { q 0 }j is the updated modal solution 

S t e p  4 :  Get { W h \ from { q „ } } using { W b ] =  [ 0 ]  ( q „ a n d  Find ( W ntax) j  

then adjust { q „ ) j  to result in the required W max using:

r -i r i ( ^ m a x ) g iv e n
h o i i - h o i j - M — T—

v  r max /  j

S t e p  5 :  Test for convergence of {r/„}, if not go to step 3 

S t e p  6 :  Check for coalescence of the eigenvalues:

- if not, A  =  A  +  A A  then go to step 2

- if yes A l c o  = A  then exit

Figure 3.2 Iterative solution procedure for nonlinear panel flutter limit-cycle response
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CHAPTER IV 

FINITE ELEMENT ANALYSIS RESULTS

4.1 Introduction

Validation of the MIN3 finite element modal formulation and analysis results are 

presented in this chapter. The MIN3 finite element modal formulation is validated by 

comparison with other Finite element and analytical solutions. The validation tests 

performed include: linear free vibration, piezoelectric static actuation, linear and 

nonlinear panel flutter, time and frequency domain solutions, and nonlinear panel 

response under random acoustic pressure loading.

Using the verified MIN3 Modal formulation, analysis results for the effect of 

arbitrary flow yaw angle on nonlinear supersonic panel flutter for isotropic and composite 

panels are presented using the frequency domain solution method. The effect of 

combined supersonic aerodynamic and acoustic pressure loading on the nonlinear 

dynamic response of isotropic and composite panels is also considered.

Results are presented for isotropic material (Aluminum) and for graphite/epoxy 

Fiber reinforced composite with different laminate stacking sequence. The properties of 

the different materials used in this chapter are given in Table 4.1. As for the panel 

geometry, the MIN3 triangular element is used to model square, rectangular, and 

triangular panels using different mesh sizes. Figure 4.1 shows a typical MIN3 finite 

element mesh used to model both rectangular and triangular panels.

4.2 Finite Element Validation

4.2.1 Natural Frequencies

The First validation test is comparing the First few natural frequencies versus 

analytical values for a simply supported square isotropic panel performed to verify the 

linear stiffness and mass matrices. The panel dimensions are 12x12x0.05 in., 

corresponding to panel length, a ,  panel width, b , and panel thickness, h ,  respectively. The 

analytical natural frequencies (rad/s) are determined using the classical plate theory 

solution and are given by:
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where D = -— . Table 4.2 show the first six natural frequencies calculated using
12(1- 1/ - )

equation (4.1) and a 12x12 MIN3 Finite element mesh (total of 288 elements). It can be 

seen that the difference between the MIN3 solution and analytical solution is less than 

0.5%.

4.2.2 Piezoelectric Static Actuation

The piezoelectric finite element formulation is validated using the cantilevered 

bimorph beam shown in Figure 4.2 (symmetric half o f the beam). The bimorph beam 

consists of two identical PVDF piezoelectric layers with polling axis in the 3 direction 

but with opposite polarities. Hence, this beam will bend when electrical field is applied in 

the vertical direction. The mechanical and electrical constants for PVDF are given in 

Table 4.1. A unit electrical voltage is applied across the thickness and the beam lateral 

deflection at different points is determined. The results obtained using a 5x2 MIN3 

elements mesh are compared against the analytical solution of [69], the solid finite 

element of [78], and the QUAD4 finite element of [77]. Table 4.3 shows that the 

deflections obtained using the MIN3 element formulation are in good agreement with 

other analytical and finite element solutions.

4.2.3 Linear and Nonlinear Flutter

The MIN3 modal finite element solution using the lowest 25 modes and a 12x12 

mesh is used to compare the critical nondimensional dynamic pressure, A cr, values versus 

the CQ conforming quadrilateral element solution [46] and analytical solutions [15] for 

simply supported isotropic rectangular panels with different aspect ratios and at different 

flow yaw angles. All solutions assume zero aerodynamic damping and A c r is 

nondimensional with respect to the panel length, a .  Table 4.4 shows that, the solution of 

the MIN3 modal formulation is in very good agreement with the CQ element and with 

the analytical solution for different aspect ratios and different flow angles with maximum 

difference of less than 2%.
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The limit-cycie oscillations (LCO) response for a simply supported (with 

immovable inplane edges) square (12x12x0.05 in.) isotropic panel with zero yaw angle 

using a 12x12 MIN3 mesh and 6 modes in the x  direction are shown in Figure 4.3. 

Results using both frequency domain and time domain solution methods are shown in 

this Figure. The LCO obtained by [15] with a 6-mode model using G alerkin 's method and 

numerical integration is also shown in this figure for comparison. The aerodynamic 

damping coefficient, c a , is set to 0.1 (see equation 2.37). Both time and frequency domain 

solutions using the modal MIN3 element formulation are shown to be in good agreement 

with the analytical solution.

For composite panels, the limit-cycle results of a simply supported 8-layer [0/45/- 

45/90]s graphite/epoxy square (12x12x0.048 in.) panel obtained by [40] using the C 1 

conforming rectangular plate element and time domain-modal formulation are compared 

with those obtained using the present formulation with time domain solution. The 

complete plate is modeled with 12x12 mesh and using 6 modes in x  direction. The LCO 

response at zero yaw angle, shown in Figure 4.4, demonstrates the accuracy of the MIN3 

element and the present Finite element formulation.

4.2.4 Nonlinear Random Response

The last validation test is intended to verify the panel nonlinear random vibration 

under acoustic pressure loading. Table 4.5 shows the root mean square (RMS) of the 

panel maximum deflection divided by panel thickness ( W may/ h ) obtained using present 

formulation and other available solution methods for different sound pressure levels, 

SPL, (see section 4.4.1 for the details o f the acoustic pressure loading). The MIN3 Finite 

element modal formulation is used for a rectangular isotropic panel (15x12x0.04 in.) 

using a 12x12 mesh. The lowest four symmetric modes are included for uniform input 

random pressure distribution analysis. The Fokker-Planck-Kolmogorov (FPK) equation 

method [62] is an exact solution for the single DOF forced DufFing equation. The Finite 

element/equivalent linearization (FE/EL) method [63] assumes that the equivalent 

linearized system is stationary Gaussian, whereas the present time domain numerical 

integration method does not assume that the displacement response is Gaussian. 

Therefore, the present method should be more accurate.
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4.3 Effect of Flow Yaw angle on Nonlinear Panel Flutter

The effect of flow yaw angle, a ,  on nonlinear panel flutter LCO is presented in 

this section. The panels considered include: isotropic and composite material, square, 

rectangular, and triangular panels. The frequency domain solution method is used in this 

section since it is more efficient computationally than the time domain numerical 

integration method. The aerodynamic damping coefficient, ca, is set to 0.01 for all cases 

and structural aerodynamic damping is neglected.

4.3.1 Isotropic Panels

A simply supported square isotropic panel (12x12x0.05 in.) with immovable 

inplane edges ( u  = v = 0) at different flow angles is studied in detail. First, convergence 

of the LCO response using various finite element mesh sizes is studied. Three mesh sizes 

o f 8x 8 (128 elements), 10x 10 (200  elements) and 12x 12 (288 elements) are used to 

model the simply supported square isotropic panel. Limit-cycle amplitude values versus 

nondimensional dynamic pressure using 16 modes, mode (1,1) to (4,4), for the three 

mesh sizes at a  = 45° are shown in Figure 4.5. The maximum difference of the 

nondimensional dynamic pressure between the 10x10 and 12x12 models in Figure 4.5 is 

less than 1 % .

Modal convergence is also studied in detail for the square panel at different flow 

angles. The panel is modeled using a 12x12 mesh or 288 MIN3 elements. The number of 

structure DOF { W t , }  is of 407 and it is reduced to the modal coordinates to include the 

selected n  modes. The modal participation values using 4 modes in .t direction and 4 

modes in y direction (4x4 modes, total of 16 modes) for two limit-cycle amplitudes

W mCLXl h  = 0.01 and 0.8 at a  -  0°, 45° and 90° are given in Tables 4.6. The modal 

participation values indicate that a 4-mode model in the flow direction would yield 

accurate and convergent limit-cycle results for a  = 0 and 90°, while a combination of .r 

direction and y  direction modes is required for a  =  45°. The modal convergence is further 

confirmed by the convergence o f the nondimensional dynamic pressure versus the 

number of modes used in model reduction as shown in Figure 4.6 for 0° yaw angle and in 

Figure 4.7 for 45° yaw angle. These figures confirm that, a 16 modes model is required 

for all yaw angles to yield convergent LCO amplitude. For the 0° yaw angle case, Figure
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4.6 shows that using the well-known 6 modes in x  direction and using 16 modes, (1,1) to

(4,4), yield almost the same LCO amplitude. From symmetry, the same will apply for the 

90° yaw angle case. The 16 modes model is used in order to have one model for all yaw 

angle that can be used for the control system design in the next chapters.

The variation of limit-cycle amplitude versus nondimensional dynamic pressure 

for a  = 0°, 15°, 30°, and 45° are given in Figure 4.8. It is seen that increasing the flow 

angle has the effect of slightly increasing the critical nondimensional dynamic pressure, 

A cr , at zero limit-cycle amplitude (linear flutter boundary) for this square isotropic panel. 

However, as the LCO amplitude, W niax/ h ,  increases the difference in X  between different 

flow angles decreases at fixed W maJ h .  This effect is due to the different nonlinear effect 

resulting from having different flutter mode shapes as the flow angle changes. Figure 4.9 

shows the effect o f aspect ratio (a / b ) on the nondimensional dynamic pressure at a  = 0 

and 45°. It is seen that increasing the flow angle for isotropic panels with ( a / b )  >  1 causes 

the nondimensional dynamic pressure to increase at fixed limit-cycle amplitude.

The flutter deflection shapes at W mcLX/ h  = 1.0 for flow angles of a  = 0°, 45°, and 

90° are given in Figure 4.10. It is clear how the flow angle greatly changes the flutter 

deflection shape. This necessitates having different controllers and different actuator and 

sensor locations for different flow angles as will be studied in detail in Chapter 6 .

4.3.2 Composite Panels

Two simply supported rectangular (15x12x0.048 in.) graphite/epoxy composite 

panels with two different laminate stacking sequences are considered. Both panels are 

modeled using a 12x12 MIN3 finite element mesh. The first laminate considered is an 8- 

layer [0/45/-45/90]s panel. Table 4.7 shows the modal participation values for this panel 

using the lowest 16 modes in increasing frequency order. Figure 4.11 shows the LCO 

amplitude convergence using different number o f modes and confirms that convergent 

LCO amplitude can be obtained using the 16 modes model for this panel. Figure 4.12 

shows the effect o f flow yaw angle on the nonlinear panel flutter response and Figure 

4.13 shows the same effect on flutter deflection shape. Figure 4.12 shows that as a  

increases from 0 to 90°, A  increases at the same LCO amplitude, W maxf h .  However, as 

W ,„ a x /h  increases the difference in X  decreases due to the different nonlinear effect for the
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different flutter deflection shapes resulting for different flow angles, as shown in Figure 

4.13.

The second composite panel considered is a 3-layer [-40/40/-40] laminate. Modal 

convergence is given by Table 4.8 and Figure 4.14 which confirm the validity of a 16 

modes model for this panel. Figures 4.15 and 4.16 show the effect o f flow yaw angle on 

nonlinear panel flutter response and on flutter deflection shape, respectively. It is seen 

how the nondimensional dynamic pressure, A ,  at 45° yaw angle is less than that of 0° and 

90° at the same limit-cycle amplitude. The laminate considered is a good example to 

demonstrate the importance of the effect of the flow yaw angle on the nonlinear panel 

flutter. It is also seen that, unlike the isotropic case, the flutter deflection shape for a  — 0° 

and 90° is clearly not symmetric about x  or y. This is because the [-40/40/-40] composite 

laminate is anisotropic.

4.3.3 Triangular Panel

To take advantage of the triangular MIN3 element, a clamped isotropic triangular 

panel is also considered. The panel dimensions are 12x12x0.05 in. and the panel is 

modeled using a 10x10 Finite element mesh (see Figure 4.1). Figure 4.17 shows modal 

convergence for this panel using the lowest 16, 25 and 36 modes. Based on this Figure a 

25 modes model is used for this panel. Figure 4.18 shows the effect o f flow yaw angle on 

nonlinear panel response. It is noted that the linear flutter boundary for <2=0° and 180° is 

the same, but A  becomes different as the LCO amplitude increases because of the 

different nonlinear effect for the different flutter deflection shape of 0° and 180° yaw 

angles. The same applies for a  = 45° and 225°. It is also seen that the worst case for this 

panel is when the flow is yawed with 315° (^-5°), i.e., along the tilted edge.

4.4 Effect of Combined Supersonic Flow and Acoustic Pressure Loading

4.4.1 Random Surface Pressure

The input acoustic surface pressure is assumed as a band limited Gaussian random 

white noise that is uniformly distributed over the panel surface. The pressure time 

sequence is generated by using a randomly generated Gaussian pressure Filtered by a 

Chebyshev low pass Filter with the speciFied cut-off frequency, f c . The pressure power 

spectral density (PDS) is given by:
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S ( . f )  =  P o  i q  y  0  <  /  < f c
(4.2)

=  0  f > f c

where p a is the reference pressure (p a = 2 .9xl0 '9 psi) and SPL is the sound pressure 

spectrum level measured in decibels. The power spectral density (PSD) of the input 

pressure at SPL = 90 dB is shown in Figure 4.19. In practice, the acoustic pressure 

loading could be determined from recorded flight data. The formulation derived in 

Chapters 2 and 3 combined with time domain numerical integration solution is general in 

the sense that it could handle both stationary Gaussian as well as non-stationary non- 

Gaussian random loads.

4.4.2 Isotropic Panel

The response of a simply supported square isotropic panel (12x12x0.05 in.) 

under combined aerodynamic and acoustic pressure loading is studied in detail. The panel 

is modeled using a 12x12 MIN3 element mesh. The modes considered are (1,1) to (6,1) 

for panel flutter and (1,1), (1,3), (3,1), and (3,3) for random uniform pressure loading. No 

modal participation values are needed for this well studied problem. The aerodynamic 

damping coefficients, c a , is assumed to be 0.01 and a structural modal damping of 1% is 

added to all modes. No flow yaw angle is introduced for this analysis.

Figure 4.20 shows the root mean square (RMS) of panel maximum deflection 

divided by panel thickness for SPL = 0, 100, 110, and 120 dB. The case of 0 dB SPL 

corresponds to the case of nonlinear panel flutter and the points at A  = 0 correspond to 

conventional nonlinear panel response under acoustic excitation only. The maximum 

deflection is located at three quarter length from the leading edge (3a/4, a/2) for panel 

flutter and at plate center (a/2, a/2) for pure acoustic excitation. The maximum location 

for the combined load cases is somewhere between 3a/4 and a / 2  depending on the values 

of SPL and A .  It is seen from Figure 4.20 that a stiffening effect causes the RMS of 

maximum deflection to decrease as A  increases until flutter A cr  is approached. This is due 

to the anti-symmetric aerodynamic stiffness matrix perturbation, which increases the 

frequency of mode (1,1) and decreases the frequency of mode (2,1). Mode (1,1) is a 

major contributor mode to the panel random response while the anti-symmetric mode 

(2,1) has no effect on the panel random response. The RMS of maximum deflection starts
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increasing again as soon as k cr  is reached. This figure clearly demonstrates the 

importance o f the effect of combined aerodynamic and acoustic loading on the panel 

nonlinear response.

Time and frequency response of the panel maximum deflection is studied in detail 

for five different combinations of SPL and k .  The results are given in Figures 4.21 

through 4.25. Figures 4.21 and 4.22 represent the panel response at low (100 dB) and 

high (120 dB) SPL, respectively. At low SPL, the panel experiences small deflection 

within the linear random vibration with mode (1,1) being the dominant mode. At high 

SPL, the panel experiences large deflection nonlinear random vibration. The nonlinear 

behavior at SPL = 120 dB is demonstrated in Figure 4.22 via the broadening and shifting 

to higher values of the frequency peaks in the deflection PSD. At k  = 800 and 0 dB SPL, 

the panel response is the expected pure panel flutter limit-cycle oscillation with a single 

dominant frequency, as shown in Figure 4.23. For the combined load case of k  — 800 and 

SPL = 100, shown in Figures 4.24, the panel response is dominated by the panel flutter 

behavior as the random pressure effect is small compared to the aerodynamic loading. 

This is clear from the single dominant frequency in the deflection PSD plot. For the case 

of k  =  800 and SPL = 120, shown in Figure 4.25, the panel response is dominated more 

by random vibration since the SPL is high. This is demonstrated in the PSD plot by the 

broadening of the frequency peaks.

4.4.3 Composite Panel

The effect of combined loading for a clamped rectangular (15x12x0.048 in.) 8- 

layer [0/45/-45/90]s graphite/epoxy panel is also considered. The panel is modeled using 

a 12x12 MIN3 Finite element mesh. The system equation of motion is reduced using the 

lowest n  linear vibration modes. Table 4.9 shows the effect o f the number of modes used 

on the RMS of panel maximum deflection at k  -  800 and SPL = 120 dB. It is shown that 

a 16, 20, or 25 modes model would yield convergent results. The modal convergence is 

further verified by the modal participation of the lowest 25 modes given in Table 4.10. 

By retaining the 13 modes with participation values > 1 %  in the analysis, a very accurate 

RMS o f W max/ h  can also be obtained, as shown in Table 4.9. Figure 4.26 shows the panel 

nonlinear response under combined loading for different values of k  and SPL. These

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



65

results are obtained by using the most dominant 13 modes defined by modal participation 

>1%. Similar to the isotropic case, this figure shows clearly the importance of 

considering both aerodynamic and acoustic loading in the analysis o f composite panels 

especially at high SPL.

4.5 Summary

Validation of the MIN3 modal finite element formulation and analysis results for 

nonlinear panel flutter and for nonlinear panel response under combined aerodynamic 

and acoustic pressures are presented in this chapter. The finite element formulation is 

validated by comparison with other finite element and analytical solutions including 

validation of linear free vibration frequencies, piezoelectric static actuation, linear and 

nonlinear panel flutter, and nonlinear panel response under random acoustic pressure 

loading. Analysis results for the effect o f arbitrary flow yaw angle on nonlinear 

supersonic panel flutter for both isotropic and composite panels are presented using the 

modal LUM/NTF solution method. Results are presented for square, rectangular, and 

triangular panels. The results showed that the effect of flow yaw angle completely 

changes the shape of the panel limit-cycle deflection. It also showed the effect of the yaw 

angle to be a very important parameter especially for composite panels where the flow 

direction may increase or decrease the nondimensional dynamic pressure at fixed limit- 

cycle amplitude depending on the panel lamination. The effect of combined supersonic 

aerodynamic and acoustic pressures loading on the nonlinear dynamic response of 

isotropic and composite panels is also presented. It is found that for panels at supersonic 

flow, only acoustic pressure (sonic fatigue) is to be considered for low dynamic pressures 

( A  «  A c r ) while both acoustic and aerodynamic pressures have to be considered for 

significant and high aerodynamic pressures.
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Table 4.1 Material properties for the different materials used for

finite element validation and analysis results

Isotropic (aluminum)

E 10.5 Msi

V 0.3

P 0.2588x1 O'3 lb-sec2/in.4

Composite (graphite/epoxy)

H, 22.5 Msi

H: 1.17 Msi

G ,2 0.66 Msi

G23 0.44 Msi

V12 0.22

P 0.1458x10'3 lb-sec2/in.4

PVDF (for bimorph pointer)

E 2.0 Gpa

V12 0.29

d3l = d32 2.2e-l 1 m/V
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Table 4.2 Comparison between natural frequencies using MIN3 element 

and using analytical solution for square isotropic panel

Mode (n , m )
Frequency (Hz)

12x12 MIN3 Analytical

( 1, 1) 66.5482 66.4903

(2 , 1) 165.9355 166.2259

(2 ,2 ) 266.8552 265.9614

(3,1) 332.4625 332.4517

(3,2) 430.1436 432.1872

(3,3) 564.7975 565.1679

Table 4.3 Comparison of static deflection for the piezoelectric bimorph 

beam (10‘7 m) using different methods (see Figure 4.2)

Position 1 2 3 4 5

Analytical [69] 0.138 0.552 1.242 2.208 3.450

Solid FE [78] 0.138 0.552 1.242 2.208 3.450

QUAD4 [77] 0.14 0.55 1.24 2.21 3.45

MIN3 0.149 0.587 1.289 2.256 3.487
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Table 4.4 Comparison of nondimensional linear flutter boundary using

different methods at different flow angles

a/b Method
Nondimensional Critical Dynamic Pressure, A cr

ft II o 0 a  = 30° a  =45° a  =60° a  =90°

0.5 CQ [46] 382 213 172 151 135

Analytical [15] 385 - - - 138.7

MIN3 Modal 378 215 177 155 138

1.0 CQ [46] 503 516 523 516 503

Analytical [15] 512.6 - - - 512.6

MIN3 Modal 513 522 527 522 513

2.0 CQ [46] 1081 1206 1388 1703 3056

Analytical [15] 1110 - - - 3080

MIN3 Modal 1117 1237 1414 1712 3020

*AI1 values are obtained for neglected aerodynamic damping

Table 4.5 Comparison of the RMS (W max/h) for a simply supported rectangular 

(15x12x0.04 in.) isotropic plate under acoustic pressure loading only 

using different methods and mode numbers

SPL (dB) FPK [62] 

1 mode

FE/EL [63] Present 

4 modesI mode 4 modes

90 0.249 0.238 0.238 0.266

100 0.592 0.532 0.533 0.489

110 1.187 1.030 1.031 1.092

120 2.200 1.902 1.905 2.113
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Table 4.6 Modal participation values at various limit-cycle amplitudes

and different flow angles for simply supported square panel

Mode

Modal Participation, %

a  = 0° 

Wmax/h

a  = 45° 

Wmax/h

a  = 90° 

Wmax/h

0.01 0.8 0.01 0.8 0.01 0.8

qu 42.18 45.28 31.17 34.41 42.18 45.28

qi2 0.32 0.23 22.62 22.11 42.61 39.17

qi3 0.00 0.79 4.68 4.66 11.95 10.68

q u 0.02 0.03 0.93 1.16 2.44 2.44

q2i 42.61 39.17 22.62 22.11 0.32 0.23

q22 0.25 0.18 9.04 7.38 0.25 0.18

q23 0.00 0.64 1.26 0.77 0.05 0.06

q24 0.01 0.01 0.31 0.30 0.09 0.10

q3i 11.95 10.68 4.68 4.66 0.00 0.79

q32 0.05 0.06 1.26 0.77 0.00 0.64

q33 0.00 0.22 0.09 0.03 0.00 0.22

q34 0.01 0.02 0.01 0.04 0.00 0.08

q4i 2.44 2.44 0.93 1.16 0.02 0.03

q42 0.09 0.10 0.31 0.30 0.01 0.01

q43 0.00 0.08 0.01 0.04 0.01 0.02

q44 0.01 0.02 0.00 0.02 0.01 0.02
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Table 4.7 Modal participation values at various limit-cycle amplitudes and different flow

angles for simply supported rectangular graphite/epoxy [0/45/-45/90]s panel

Modal Participation, %

Mode
a  == 0° a  = 45° a  =

oOO'
Wmax/h Wmax/h Wmax/h

0.01 0.8 0.01 0.8 0.01 0.8

qi 24.85 29.87 22.74 25.24 25.62 27.43

qa 16.54 12.64 29.59 24.37 41.11 36.57

q3 31.92 33.52 17.47 21.17 3.61 4.04

q-t 5.58 3.45 5.22 4.65 7.19 6.38

qs 1.16 0.07 11.93 9.91 13.13 12.15

q6 15.37 15.03 3.35 5.74 0.12 1.65

q? 0.48 1.01 1.47 0.43 1.55 2.29

qs 0.68 0.21 0.92 0.83 0.28 0.78

q« 0.04 0.07 3.27 3.00 4.08 4.27

qio 0.01 0.18 0.07 0.04 0 .1 1 0.81

qn 3.10 3.38 0.77 1.60 0.01 0.00

qi2 0.02 0.07 0.36 0.01 0.20 0.10

qi3 0.16 0.09 0.39 0.61 0.01 0.01

qi4 0.00 0.06 2.21 2.00 2.89 2.88

qis 0.01 0.09 0.01 0.03 0.01 0.52

qi6 0.00 0.17 0.16 0.30 0.00 0.05
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Table 4.8 Modal participation values at various limit-cycle amplitudes and different flow

angles for simply supported rectangular graphite/epoxy [-40/40/-40] panel

Mode

Modal Participation, %

a  = 0° 

Wmax/h

a  = 45° 

Wmax/h

a  = 90° 

Wmax/h

0.01 0.8 0 .0 1 0.8 0.01 0.8

qi 25.33 26.38 28.85 28.95 25.65 25.90

qa 41.18 35.26 44.90 40.35 39.10 32.55

q3 4.17 7.01 2.55 2.80 7.94 10.76

q4 11.38 9.79 12.06 11.55 9.87 8.67

qs 2.83 2.73 0.73 1.00 3.45 3.54

qe 6.15 6.75 6.15 7.25 4.52 5.25

q? 1.46 2.54 1.67 2.22 3.08 4.51

qs 2.32 2.13 0.18 0.27 2.10 2.13

qy 0.84 1.22 0.74 1.31 0.32 0.70

qio 1.05 1.55 0.89 1.61 1.06 1.58

qu 1.22 1.21 0.01 0.07 0.95 1.05

qi= 0.13 0.51 0.17 0.67 0.04 0.44

qi3 0.24 0.39 0.20 0.33 0.64 0.97

q u 0.74 1.17 0.65 1.22 0.64 1.01

qi5 0.83 1.02 0.09 0.00 0.42 0.74

q i6 0.07 0.26 0.07 0.32 0.15 0.13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 4.9 Modal convergence for clamped rectangular [0/45/-45/90]s 

graphite/epoxy panel at SPL = 120 dB and A = 800

Number of Modes RMS( Wmax/h)

1 0.5557

2 0.5845

6 0.7814

9 0.7798

16 0.8279

20 0.8110

25 0.8183

Selected 13 modes 0.8124

Table 4.10 Modal participation for a clamped rectangular [0/45/-45/90]s 

graphite/epoxy panel at SPL = 120 dB and A = 800

Mode Participation, % Mode Participation, %

9i 36.72 914 4.19

92 5.24 915 0.38

93 19.3 916 0.99

94 4.25 917 1.38

95 4.01 918 2.55

96 7.67 919 0.21

97 1.71 920 0.27

98 0.76 921 0.53

99 0.33 922 0.33

9io 1.54 923 0.54

9u 4.77 924 0.14

912 0.35 925 1.54

913 0.28
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Figure 4.1 Typical MIN3 elements mesh used to model rectangular and triangular panels
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Figure 4.2 Clamped piezoelectric bimorph beam modeled using MIN3 elements
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Figure 4.12 Effect of flow yaw angle on limit-cycle amplitude for simply supported 
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CHAPTER V 

CONTROL METHODS AND OPTIMAL PLACEMENT OF 

PIEZOELECTRIC SENSORS AND ACTUATORS

5.1 Introduction

Many control strategies such as classical, optimal, Ho*, nonlinear, fuzzy logic, and

adaptive control have been utilized for vibration control in the literature. Two major 

properties, the nonlinearity and the large dimension of the model, can characterize the 

nature o f the problem of nonlinear panel flutter with yawed supersonic flow. Modem 

control techniques such as optimal control and H,*, are very suitable for such systems, as

they can easily handle large dimension and no prior knowledge of the controller structure 

is required.

In this study, optimal control strategies are the main focus for the suppression of 

nonlinear panel flutter. The linear quadratic Gaussian (LQG) control, which combines 

both linear quadratic regulator (LQR) optimal feedback and Kalman filter state estimator, 

is considered as systematic linear dynamic compensator. To address the issue of the 

flutter nonlinear dynamics involved, an extended Kalman filter for nonlinear systems is 

also considered and combined with optimal feedback to form a nonlinear dynamic 

compensator. Finally, a more practical approach based on optimal output feedback is 

used to alleviate the problem of state estimation. Closed loop criteria based on the norm 

of feedback control gains for actuators and on the norm of Kalman filter gains for sensors 

are used to determine the optimal location of self-sensing piezoelectric actuators.

5.2 State Space Representation

For control design and simulation, the nonlinear modal equations of motion given 

in Chapter 3, equations (3.15) and (3.16), need to be cast in the standard state space form. 

In state space representation, the system equations o f motion are written in the form of 

coupled first order differential equations. State space models provide a standard and 

efficient representation of systems with large number o f DOF and of multi-input multi

output (MIMO) systems in the time domain. Linearization about reference equilibrium 

points can be used to obtain a linear state space models that could be used for the design
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of modern optimal and robust control laws. The system states, AT, are defined as the panel 

modal deflections and modal velocities:

X  = (5.1)

The control input, U, and sensor output, Y, are the self-sensing piezoelectric actuators 

input voltage and sensor charge output, respectively:

< / = K )  r  =  (5.2)

Thus, the system modal equations o f motion in the continuous time domain state space 

form are:

X  =(A + J A q ) x  + BU  

Y = CX  +  DU  

where the system matrices are given by:

[0 ] [/]
. - ^ K r 1^ ]  -coi[Mbr ic d\

[o] [or
-col[Mb l {i K q }+[Kqq]j [0]

(5.3)

[ A ]  =  

U a q ] = (5.4)

[B] =
_[0] _  ' 

- co l [Mb l l [Kb(p] * [ c M k J  [0]], [Z>] = [0]

The modal damping matrix [c^ ] contains both modal aerodynamic and modal structural

damping terms. The system matrix [ A A q ] represents the effect of nonlinear stiffness 

matrices of the panel. By using linearization about the system reference point (point with 

no deflection, {<7} = 0 ), the nonlinear system matrix vanishes and the state space model in 

(5.3) reduces to a linear state space model given by:

X  =  AX + B U  
Y - C X + D U

If the sensor electrical circuit is set up to measure the time rate of electrical charge 

(current) instead of the electrical charge, then the output matrix C  is:

[C ]= [[0 ] [ / ^ ] ]  (5.6)
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It has to be noted that for non-ideal self-sensing piezoelectric actuators, i.e., with no 

perfect compensation for the piezoelectric capacitance term, the D  matrix will be nonzero 

and will contain the residual feedforward effect resulting from imperfect compensation. 

As discussed in chapter 2, this effect is usually small and hence neglected in this study.

5.3 Control Methods

5.3.1 Linear Quadratic Regulator (LQR)

One of the most commonly used methods to design full state feedback control for 

linear systems is the LQR which seeks a solution for the linear full state feedback 

problem defined as:

U  = - K X  (5.7)

that minimizes a quadratic performance index, / ,  that is function of both system states 

and control effort.

J  = ° ] [ x T Q X + U T  R u ] d t  (5.8)
0

where Q  is a symmetric positive semi-definite state weighting and R  is a symmetric 

positive definite control effort weighting. The solution for the controller gains that 

minimize the performance index of equation (5.8) for the linear state space system give 

by equation (5.5) is:

K  =  R ~ 1 B T P  (5.9)

where P  is a positive definite symmetric matrix determined from the solution of the 

Riccati equation defined as:

P  =  A T P  +  P A - P B R ~ 1 B T P + Q  (5.10)

In general, the optimal feedback gain sequence is time varying. For linear time invariant 

systems, the value o f the optimal gain converges very quickly to a fixed value. The final 

fixed value gain could be used as a suboptimal solution since it is easier for 

implementation. For the case of fixed gain suboptimal feedback gain, the Riccati equation 

reduces to the well know algebraic Riccati equation (ARE):

A 7  P +  P A - P B R ~ 1 B T  P +  Q = 0  (5.11)
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The weighting matrices Q  and R  are used as control design tuning parameters. The 

selection of Q  and R  requires some trials to achieve certain system response 

characteristics.

5.3.2 Optimal Linear State Estimation

The application of LQR is not feasible in most cases because it is difficult to have 

sensors that measure all system states. In addition, sensor outputs are usually noisy and 

the system dynamics is not known exactly. One solution to this problem is the use of 

probabilistic approach for both process dynamics and sensor noise. This leads to the well 

known Kalman filter state estimator. Kalman filter is a set of recursive mathematical 

equations that provide a solution to the least squares optimal state estimation problem in 

the presence of process and sensor noise.

Consider a standard linear state space model as the one given in equation (5.5) 

with added process and sensor noise:

where rj and v are uncorrelated process and measurement Gaussian white noise with zero 

mean and known covariance matrices, Q e = E { r j r f } and R e = E{vvr }. Kalman filter 

achieves optimal state estimation by minimizing the covariance matrix o f state estimation 

error defined as:

leads to the standard linear Kalman filter estimator described by the following dynamic 

equations:

In these equations, the error covariance matrix, Pe, and the estimator gain, Ke, are time 

varying quantities. For the special case of linear time invariant systems with time 

invariant process and sensor noise, the error covariance time derivative converges very 

quickly to zero; hence, the Kalman filter gains become a constant matrix. For this case.

X  =  A X  +  B U  +  n 
Y = C X  +  D U  +  V

(5.12)

(5.13)

where X  is the estimated state vector. The minimization of the error covariance matrix

X  =  A X  +  B U  +  K e ( Y - C X )

Pe = A P e + P e A T - P eC T R ; 1CPe + Q e 

K e =  PeC T R g 1

(5.14)
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the error covariance matrix is determined using the solution of the estimator algebraic 

Riccati equation (ARE) given by:

A P e  + P e A T  - P e C T R ~ l C P e  + Q e  = 0  (5.15)

As for the case of LQR, some tuning is required to select R e  and Q e in order to achieve 

good filter performance.

5.3.3 Linear Quadratic Gaussian Controller (LQG)

LQR and Kalman filter can be combined together to form the more practical 

controller referred to LQG compensator shown in Figure (5.1). In LQG, the controller 

output is based on the estimated states instead of the actual states:

U = - K X  (5.16)

The LQG controller is based on the linear systems separation principle that allows 

separate design of a feedback control gain and of an observer gain to form a dynamic 

compensator. Since the Kalman filter is a dynamic system, the LQG is then a linear 

dynamic regulator of the same kind used in classical control theory. However, unlike 

classical control, the design of LQG is systematic and does not require any knowledge of 

the controller structure. This makes LQG very suitable for designing stable control 

systems for high order MIMO systems such as the application at hand, nonlinear panel 

flutter suppression.

One popular method to design robust LQG compensator is to use the loop-transfer 

recovery technique (LQG/LTR). This technique is based on recovering the guaranteed 

robustness properties of the LQR (infinite gain margin and 60 degrees phase margin) to 

the corresponding LQG controller. This can be achieved by tuning the LQG Kalman filter 

weighting matrices Q e and R e to asymptotically recover LQR loop transfer function. One 

way to select the Kalman filter weighting is:

R e = m >  Q e = v 2 B B T  (5.17)

As v  goes to infinity, the loop transfer function of LQG controller approaches the loop 

transfer function of LQR. However, the value of v  should not be increased indefinitely as 

this leads to very high Kalman gains. The LQG/LTR is a frequency domain loop shaping 

approach that could be used to satisfy specific robustness bounds on the open loop 

transfer function.
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5.3.4 Extended Kalman Filter (EKF)

One major drawback with the application of linear Kalman filter to the problem of 

nonlinear panel flutter suppression is that it assumes linearized system equations about 

the reference no deflection point. Hence, the nonlinear effects are not considered at all in 

the estimation process. As it will be shown in Chapter 6 , this could deteriorate the state 

estimation performance for large limit cycle amplitudes. One solution to such a problem 

is to use Kalman filter that performs the linearization about a trajectory that is 

continuously updated with the estimated states. Such filter is referred to as extended 

Kalman filter (EKF) [109], The equations of an EKF for the nonlinear state space model 

o f panel flutter, equation (5.3), are given by:

X  =  A X  +  BU +  K e (Y —CX)

Pe =  A P e +  Pe A T — PeC T R ~ l  CPe + Q e6 e e e v e  ( 5  [ g )

K e = P eC T R ; 7

A = A  + AAq (X)

where the term AAq (X)  represents the nonlinear state space matrix evaluated using the

current state estimate. Unlike the standard Kalman filter, the EKF gain sequence cannot 

be predetermined and has to be evaluated on-line. This adds more computational cost but 

should not be a problem especially with the advanced and fast real time processors 

available today. The EKF deviates from the standard linear Kalman filter because of the 

nonlinear feedback of the measurement into the system model and because the various 

random variables are no longer Gaussian after undergoing nonlinear transformation. 

Thus, the EKF is simply an ad hoc state estimator for nonlinear systems. However, it has 

proven to be successful in various applications [109-112],

5.3.5 Nonlinear Controller using EKF and LQR

The EKF can be combined with LQR to form a nonlinear dynamic output 

compensator for the control o f  nonlinear panel flutter, see Figure (5.2). Such controller is 

nonlinear because the estimated state and consequently the control effort, U, is a dynamic 

nonlinear function of the measured sensor output. The advantage of this controller over 

the LQG controller is the more accurate state estimation for the nonlinear panel flutter 

dynamics.
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5.3.6 Optimal Output Feedback Control

A simpler control strategy for MIMO systems that avoid the need for state 

estimation is to design an output feedback compensator of the form:

The output feedback gain matrix, Ky, can be determined using optimal control by 

minimizing the quadratic performance index given in equation (5.8). However, this leads 

to a feedback control gain that is dependent on the states initial conditions which is 

undesirable. This problem can be avoided by minimizing the expected value of the 

performance index, E{J}\ hence, the minimization is performed over a distribution of 

possible values for the initial conditions. The design equations for optimal output 

feedback control are given by [108]:

The expected initial state is usually assumed uniformly distributed on the unit sphere in 

order to drive any initial state to zero. It can be seen from equation (5.20) that the 

solution for the optimal output feedback gain requires a solution of three coupled 

nonlinear algebraic matrix equations. These equations can be solved using the gradient- 

based iterative method described in Appendix C [108].

The method adopted for actuator placement in this study is the method of norm of 

optimal feedback control gain matrix (NFCG) used for panel flutter suppression by [74] 

and [100]. This method determines the effectiveness o f a piezoelectric actuator by using 

the norm o f feedback gain designed using LQR and thus is a closed loop criterion.

The higher the value of N F C G , the more effective is the actuator for panel flutter 

suppression.

U  = —K y Y (5.19)

a J p  + PAc + C T K Ty R K y C  + Q = 0

A c s + s a J  + X o = 0
K y = R ' 1 B T P S CT (CSCT )~l

(5.20)

where

A c = A - B K C , (5.21)

5.4 Optimal Placement of Piezoelectric Sensors and Actuators

NFCG  = |^  ijQR | (5.22)
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The NFCG method is extended for optimal sensor location by using the norm of Kalman 

filter estimator gain (NKFEG).

N K F E G  =  \\K Kaiman || (5 .23)

The higher the value of NKFEG, the more effective is the sensor for the problem of state 

estimation.

For the problem of panel flutter suppression, a number o f piezoelectric patches 

equal to the number of finite element mesh size are used. The effectiveness of each 

element as an actuator and as a sensor is determined using the above two criteria. The 

shape and location of optimal actuator and sensor is then determined by combining the 

most effective elements. Although each piezoelectric patch might act as both actuator and 

sensor (self-sensing actuators), the optimal location for actuator and sensor might not be 

the same.
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LQG

U  = - K X
LQR

System

Kalman Filter

Figure 5.1 Block diagram representation of the LQG controller
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Nonlinear Dynamic 
Controller

U  = - K X

LQR

Nonlinear
System

Nonlinear State 
Estimator 

(EKF)

Figure 5.2 Nonlinear dynamic compensator for nonlinear 

panel flutter suppression using EKF and LQR
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CHAPTER VI

NONLINEAR PANEL FLUTTER SUPPRESSION RESULTS

6.1 Introduction

Simulation studies for the suppression of nonlinear panel flutter using

piezoelectric material under yawed supersonic flow are presented in this chapter. The 

time domain nonlinear finite element modal equations of motion are used to simulate the 

panel nonlinear flutter using the Runge-Kutta integration method. The studies presented 

have two main objectives. The first objective is the comparison of the controllers 

presented in Chapter 5 to determine the effect of different control strategies on the panel 

flutter suppression performance. The closed loop system performance is also studied

under system parameter variations. This detailed controller performance study is

performed for the case of zero flow yaw angle. The second objective is controlling

nonlinear panel flutter under yawed supersonic for a specific range of yaw angles (the 

range selected in this study is from 0° to 90°).

Panel flutter suppression under yawed supersonic flow is considered for isotropic 

square, composite rectangular graphite/epoxy, and isotropic triangular panels. The 

properties for both isotropic and composite materials were given in Table 4.1. The main 

piezoelectric ceramic used in this study is the isotropic PZT5A. The mechanical and 

electrical material properties of PZT5A are given in Table 6.1. The piezoelectric layers 

are embedded on the top and bottom layers o f the panel to avoid disturbing the flow filed 

over the panel. Each piezoelectric layer will be used as either self-sensing actuator or as 

actuator only.

6.2 Square Isotropic Panel

A square simply supported isotropic panel (12x12x0.05 in.) is first used to study 

different control methods and to study the control of panel flutter under a range of flow 

yaw angles. Piezoelectric layers are embedded on the top and bottom surfaces of the 

panel. The piezoelectric thickness is selected as 0.01 in. compared to the panel total 

thickness of 0.05 in. Using this thickness, the actuation voltage is then limited to 152
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Volts (see Table 6.1). The aerodynamic damping coefficient, c a , is assumed 0.01 and a 

structural modal damping ratio of 1% is added for all modes.

The panel is modeled using 10x10 finite element mesh and the nonlinear modal 

equations of motion are derived using a selected number of modes based on modal 

participation and modal convergence. For the case of zero flow yaw angle, four modes in 

the flow direction, mode (1,1) to (4,1), are used for modal reduction. This allows for a 

low order open loop system and, also, provides reasonably good accuracy for the flutter 

limit-cycle oscillation (LCO) amplitude (see modal participation values at a  = 0° in Table 

4.6). This low order model is used for the detailed controller performance study. For the 

case of arbitrary yaw angle, the panel nonlinear modal equations of motion are derived 

using 16-mode model, mode (1,1) to (4,4). This makes the state space system of order 32.

6.2.1 Optimal Placement of Self-Sensing Piezoelectric Actuators

The first step is determining the optimal location of the embedded piezoelectric 

layers to achieve optimal actuation and optimal sensing. The panel is divided into 10x10 

mesh size and is completely covered on top and bottom with piezoelectric layers (total of 

100 piezoelectric actuators/sensors). The modal equations of motion are derived using the 

16-mode model in order to be able to determine the optimal actuator and sensor locations 

for different yaw angles. The linearized system equations of motion about the zero 

displacement point, equation (5.5), are used to design both optimal feedback control 

(LQR) and optimal observer (Kalman filter). The resulting optimal feedback gain, K , and 

observer gain, K e, are matrices with sizes 100x32 and 32x10, respectively. They 

represent the feedback and the estimator gain vectors for each patch of the 100 

piezoelectric patches used. The methods of NFCG and NKFEG are then used to 

determine the effectiveness of each piezoelectric patch for optimal actuation and sensing.

Figures 6.1 and 6.2 show contours of the values of NFCG and NKFEG for the 

cases of 0° and 45° flow yaw angles, respectively (A is set to 1000 for this case). These 

figures show clearly how the optimal actuator and sensor locations change completely for 

different flow angles. This indicates the importance of considering the flow yaw angle 

effect for the problem of panel flutter suppression. It is also seen that the optimal sensor 

location is at the trailing edge (TE), where the maximum panel deflection point is located, 

while the optimal actuator location is at the panel leading edge (LE) in the flow direction.
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The optimal sensor location agrees with the standard structural vibration applications by 

placing the sensors at the maximum deflection point which gives minimum noise to 

signal ration. However, the optimal actuator location doesn’t agree with the placement 

guidelines that are well known for structural vibration, which usually places piezoelectric 

actuators at the maximum curvature or maximum strain location. This is due to the 

aerodynamic loading involved in the panel flutter problem, which is proportional to the 

transverse deflection slopes (vvr and wv). Thus for A  >  A cr, considering the flutter 

deflection shape shown in Figure 4.10, the panel is subjected to a distributed pressure 

with maximum amplitude at the panel TE. It is found that the most effective piezoelectric 

actuators to counteract this forcing aerodynamic pressure are those located at the panel 

LE. This conclusion is in agreement with the experimental testing results performed by 

[106],

Figures 6.3 and 6.4 show the selected piezoelectric actuator and sensor location 

based on the NFCG and NKFEG methods for 0° and 45° yaw angles, respectively. 

Rectangular shaped piezoelectric patches are used to obtain practical sensor and actuator 

shapes. However, the optimal sensor and actuator shape can be refined by using more 

elements or triangular patches. The optimal sizing of piezoelectric actuators is outside the 

scope of this study and hence the size of both pieces is assumed by using the most 

effective 12 elements. This assumption is based on the studies performed by [74] which 

showed that the optimal size of actuator is between 10% and 20% of the panel area for 

nonlinear panel flutter suppression. Since self-sensing piezoelectric actuators are utilized 

in this study, the size of both patches located at the LE (optimal actuator) and at the TE 

(optimal sensor) is assumed to be the same, as both of them will be used as actuators. In 

practice, other types of sensors may be used such as accelerometers, displacement 

sensors, or strain gages. A case with single LE actuator and displacement sensors is 

considered when designing optimal output feedback control law.

6.2.2 Controller Study

A study of the performance of different controllers described in Chapter 5 is 

performed in this section. Two main categories o f controllers are used. The first category 

is state feedback using LQR based on estimated states. Linear state estimation using 

standard Kalman filter is considered which leads to the LQG controller. In addition.
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nonlinear state estimation using extended Kalman filter (EKF) is introduced. The second 

category considered is the optimal output feedback control.

The performance of different controllers is compared using their ability to 

suppress the panel nonlinear flutter. The measure used to asses performance is the 

maximum flutter-free dynamic pressure, A m a x, defined as the maximum dynamic pressure 

at which the control system can suppress the LCO of nonlinear panel flutter given the 

limitation of the actuator maximum voltage (saturation). This quantity is governed by 

controller performance, piezoelectric saturation voltage, and LCO amplitude. To obtain 

conservative values for A max, the controller will be activated after the convergence of 

LCO.

For the comparison performed in this section, the panel at 0° yaw angle with the 

embedded PZT5A piezoelectric self-sensing actuators shown in Figure 6.3 is considered. 

The panel is modeled using the 4-mode model (state space model is of 8 lh order). Figure

6.5 shows the change of panel frequencies as the nondimensional dynamic pressure, A ,  

increases for the panel with no piezoelectric material and with piezoelectric material 

added. It is seen how the addition of piezoelectric material decreases the panel stiffness 

compared to the original panel. This occurs because the piezoelectric material has heavier 

mass and slightly softer Young’s modulus. Figure 6.6 shows the open loop poles at 3 

different values of A . It is seen how increasing A  beyond A cr results in 2 unstable poles 

(after mode (1,1) and (2,1) coalescence) and increasing it further results in 4 unstable 

modes as the other two modes, (3,1) and (4,1), coalesce.

6.2.2.1 LQR Controller

First a full state feedback using LQR is designed for the linearized model

assuming all the states available. As discussed in Chapter 5, this is not a practical control

method unless it is combined with state estimation. The state-weighting matrix, Q , is

selected using the energy method and the control-weighting matrix, R ,  is selected as a

constant multiplied by the identity matrix.

K  0 
.0 M

Different values of ra re  tested until satisfactory performance is achieved using r  = 1000. 

Figure 6.7 shows the performance of the LQR control for nonlinear panel flutter

Q = R  =  r [ l ] (6 . 1)
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suppression at A  = 1500. The controller is activated at t  = 100 msec and it suppresses the 

LCO using the two self-sensing actuators at LE and TE within few cycles. A „ iax using this 

controller was found to be 1760 compared to 512 for the original panel and to 449 for the 

panel with embedded piezoelectric material and with no control applied.

6.2.2.2 LQG Controller

A Kalman filter estimator is designed based on the system linearized equations of 

motion. Many values are used for the design parameters Q e and R e to arrive at 

satisfactory estimator performance. The performance of the Kalman filter estimation is 

shown in Figures 6.8 and 6.9 for A  =  1000 and 2000 respectively. It is seen how the 

estimated LCO amplitude degrade as A  increases. This is expected as the Kalman filter 

uses a linear model that does not consider the nonlinear effects at all, so it is trying to 

estimate a nonlinear process using a linear model. As A  increases, the effect of 

nonlinearity increases and hence the estimated LCO amplitude using Kalman filter is not 

accurate. The design parameters of the Kalman filters are selected as: Q e = [/], R e = 

[C][C]T.

Figure 6.10 shows that, unlike the LQR, the LQG controller cannot suppress the 

flutter LCO at A  =  1500. Comparing this figure to the LQR performance, shown in Figure 

6.7, shows how the introduction of linear state estimation degrades the control system 

performance. The achieved A m a x  using LQG is 920 compared to 1760 using LQR control, 

which is about 50% performance reduction due to linear state estimation. Figure 6.11 

shows the performance of the LQG controller at the maximum flutter-free dynamic 

pressure.

6.2.2.3 Nonlinear Output Controller (EKF+LQR)

An extended Kalman filter estimator (EKF), which takes into account the system 

nonlinear dynamic by linearizing about the estimated state vector, is implemented using 

the same parameters as those of a Kalman filter (Q e, R e ). The performance of state 

estimation using EKF is shown in Figure 6.12 at A  — 2000. Comparing this to Figure 6.9 

shows how superior the performance of EKF is compared to the standard Kalman filter. It 

has to be noted that, in practice, the estimation performance will be further degraded due 

to sensor noise and system model uncertainty.
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Combing the EKF with LQR control results in a dynamic nonlinear compensator. 

Figure 6.13 shows the performance of the EKF+LQR for nonlinear panel flutter 

suppression at A  =  1500. Using this controller, A m ax was found to be 1750. To show the 

performance of EKF+LQR control even with uncertainty in the model nonlinear matrix 

used by the EKF, the controller is used with +/-25% uncertainty in the system nonlinear 

matrix, A A q , used in propagating the state estimate, see equation (5.16). Figure 6.14 

shows that the flutter LCO can be successfully suppressed using the EKF+LQR 

controller with +/-25% uncertainty in A A q . Therefore, using nonlinear state estimation 

instead of the standard linear state estimation for the problem of nonlinear panel flutter 

gives much better results even with some uncertainty in the nonlinear model matrix.

In all the controllers above, LQR, LQG, and EKF+LQR, the simulation results 

indicated that the self-sensing piezoelectric patch at the TE is not as effective as the LE 

patch from actuation point of view. However, the TE piezoelectric patch is acting as the 

optimal sensor to achieve better state estimation. Without this sensor, i.e., if the LE 

sensor is only used, the estimation performance will be degraded dramatically due to the 

high noise to signal ratio for the LE sensor resulting from smaller displacement at this 

location.

6.2.2.4 Optimal Output Feedback Controller

The iterative algorithm given in Appendix C is used to solve the coupled 

nonlinear equations given by equation (5.20) for optimal output feedback gain matrix. An 

initial stabilizing gain, K a , has to be first determined using some trail and error. The 

weighting matrices Q  and R  are the same as for the LQR case. For the panel 

configuration of 2 self-sensing piezoelectric actuators, the resulting output feedback gain 

matrix is of size 2x2. Using this configuration, an output feedback gain was successfully 

designed to suppress flutter LCO up to A m ax = 1000. Figure 6.15 shows the performance 

o f the optimal output feedback controller at the maximum flutter-free dynamic pressure. 

It is noticed that this controller introduces less damping to the system compared to the 

full state feedback control. In practice, low pass filters have to be used to filter out the 

feedback signals from the sensors. This could degrade the optimal feedback performance 

even more.
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Another panel configuration that uses only the LE actuator and uses two 

displacement sensors located at (a/2, a/2) and (3a/4, a/2) is considered. The output 

feedback gain for this configuration is o f size 1x2. Figure 6.16 shows that the optimal 

output feedback can suppress LCO up to A mclx = 1100 for this case.

In conclusion, the optimal output feedback performance for panel flutter 

suppression is less than using EKF+LQR control. However, the optimal output feedback 

is much simpler for practical implementation as it does not require the on-line adaptation 

needed for EKF. The achieved values of A m ax for the different controllers used are 

summarized in Table 6.2.

6.2.2.5 Controller Robustness

A study for the effect of system parameter variation on the performance of both 

EKF+LQR and optimal output feedback controllers is given in this section. First with 

regard to the dynamic pressure A , it was found that for LQR and optimal output feedback, 

the feedback gain determined at A nw x suppresses LCO for all values of A  <  A m a x. 

However, for accurate state estimation X  needs to be known since the system model is a 

function of A . Figure 6.17 shows the effect of +25% mismatch in A  between design model 

and reality (simulation model) for both LQR and EKF+LQR controllers when the 

simulation model has A  =  1200. It is seen how the performance of EKF+LQR is degraded 

in this case, mainly due to inaccurate state estimation.

The second type of system parameter variation considered is in the panel stiffness. 

In section 6 .2.2.3, it was shown that, the EKF+LQR controller has a satisfactory 

performance with +/-25% uncertainty in the design model nonlinear stiffness matrix. In 

this section a +/-25% variation in the modal linear stiffness is considered, which 

corresponds to about +/-13% uncertainty in the panel natural frequencies. Figure 6.18 

shows the effect of +/-25% variation in modal linear stiffness using EKF+LQR controller 

at A  — 1500. It is seen that the LCO cannot be suppressed with such system parameter 

variation. The performance of EKF+LQR is degraded with parameter variations because 

both the state estimation and the state feedback design are affected by the linear stiffness 

variation. Figure 6.19 shows the same effect for the optimal output feedback controller at 

A  = 1100 (using the configuration of single LE actuator and 2 displacement sensors). The
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optimal output feedback controller is shown to be more robust to linear stiffness variation 

than the EKF+LQR controller.

6.2.3 Panel Flutter Control with Yawed Flow

In this section, nonlinear panel flutter suppression with flow yaw angle is 

considered. The nonlinear dynamic output compensator (EKF+LQR) is used in this study 

as it provides the best performance. First, the flow yaw angle, a , is considered as simply 

a perturbation that is not considered in the design at all, i.e., not considered in the 

piezoelectric placement or in the controller design. Figure 6.20 shows the performance of 

the controller designed for a  = 0° when the actual flow is at a  = 45° and A  = 800. The 

results clearly indicate that the flutter LCO cannot be suppressed for a  = 45° using the 

control system designed for a  = 0° even at such low dynamic pressure. This shows that 

flow yaw angle has to be considered in the design of active control systems for nonlinear 

panel flutter suppression. Figure 6.21 shows the effect of flow angle on the optimal 

location of self-sensing piezoelectric actuators for a  = 0, 15, 30, 45, and 90° flow yaw 

angles. The flow LE piezoelectric patch is the optimal actuator location d6etermined 

using NFCG while the TE patch is the optimal sensor location determined using NKFEG. 

It is seen how the change of flow angle has a major effect o f the optimal actuator and 

sensor locations.

The objective is to design active control system including piezoelectric placement 

for the panel knowing that the panel will be subjected to a specific range of flow yaw 

angles. The range assumed in this study is from 0 to 90°. Performing optimization for 

piezoelectric placement over a range of a  is not a simple task. The methodology 

proposed in this study is to optimize the piezoelectric sensor and actuator placement for 

different angles within the specified range, as was shown in Figure 6.21, then group the 

resulting optimal location together to find a single piezoelectric configuration that works 

over the entire range of angles.

Figure 6.22 shows optimal actuator and sensor location that covers all the yaw 

angles from 0 to 90°. The optimal actuator consists o f 2 LE piezoelectric pieces in the 

directions normal to 0 and 90° while the optimal sensor consists o f 2 TE piezoelectric 

pieces in the directions normal to 0 and 90°. As mentioned before, the piezoelectric 

patches required for optimal sensing can be replaced by other types of sensor such as
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strain gages or can be smaller in size. However, since they will be used as actuators too, 

piezoelectric patches o f the same size are used. Thus, the configuration o f Figure 6.22 

results in an outer square covering 48% of the panel surface with embedded PZT5A. The 

embedded piezoelectric is divided into 4 equal self-sensing actuators referred to as: OLE 

and 90LE for the leading edge patches perpendicular to the 0 and 90° flow directions, and 

OTE and 90TE for the trailing edge patches perpendicular to the 0 and 90° flow 

directions. Examining this configuration further, it is seen that it does not only cover yaw 

angles from 0 to 90° but due to the panel symmetry and the usage o f self-sensing 

actuators, this configuration will cover all angles from 0 to 360°.

The performance of the EKF+LQR controller for nonlinear panel flutter 

suppression with yawed flow is now considered. Three different configurations for 

piezoelectric placement are considered for comparison. The first and second 

configurations are simply using the optimal placement determined at a  = 0° and 45°, 

respectively, while the third configuration uses the optimized piezoelectric over the range 

o f 0 to 90° with 4 self-sensing actuators, as was shown in Figure 6.22. Figure 6.23 shows 

a comparison of the achieved A m ax using these 3 configurations for flow yaw angles 

changing from 0 to 90°. It is seen that the piezoelectric optimized for 0° flow angle 

provides acceptable performance up to a  = 45° with A m axl A cr -  3.03 ( A c r  =  512), but 

A m a J A c r  decreases to about 1.56 at a =  90° compared to 3.41 at a =  0°. Therefore, this 

configuration is not a good candidate for yaw angles from 0 to 90°. However, it provides 

acceptable performance from 0 to 45° and consequently from -4-5° to 45° due to the panel 

symmetry. The second configuration, piezoelectric optimized for a  = 45°, is shown to 

provide good flutter suppression performance over the entire range yaw angles from 0 to 

90°. The best performance is achieved at a  =  45° with A m axl A cr = 3.71 while A rnax! A cr  = 

3.0 at a =  0° and 90°. The third configuration with 4 self-sensing piezoelectric actuators 

is shown to provide the best performance of all configurations with a minimum of 

A m a x /A c r  = 3.52 over the entire range of yaw angles. However, the second configuration 

uses only 24% covered panel compared to 48% for the third configuration. Figures 6.24 

through 6.26 show the time history of maximum LCO and the control inputs to the four 

self-sensing piezoelectric actuators using the EKF+LQR controller at A  =  1500 for a  =
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0°, 45°, and 90°, respectively. They clearly indicate the effectiveness of proposed 

controller and piezoelectric configuration in suppressing nonlinear panel flutter at 

different flow yaw angles.

6.3 Composite Panel

Nonlinear panel flutter suppression with yawed supersonic flow is also considered 

for a rectangular (15x12x0.048 in.) simply supported graphite/epoxy [0/45/-45/90]s 

panel. PZT5A actuators that have the thickness of 0.006 in. are embedded at the top and 

bottom layers, i.e., replacing the 0° layer. The maximum actuator applied voltage is 

limited to 91.2 Volts in this case. The panel is modeled using 10x10 MIN3 finite element 

mesh and the nonlinear modal equations of motion are derived using the lowest 16 

modes. The aerodynamic damping coefficient, c a, is assumed 0.01 and the modal 

structural damping ratio = 1%.

Adding too much piezoelectric material for this case will largely change the panel 

characteristics as it replaces the 0° layer and hence change the original panel directional 

properties. In addition, PZT5A mass density is very high compared to graphite/epoxy 

(about 5 times higher). To avoid adding too much piezoelectric material and changing the 

panel characteristics, piezoelectric material is only used as actuator for this panel and 

displacement sensors are used to provide output measurements for the estimation process. 

Similar to the isotropic panel case, the optimal actuator location is determined by 

dividing the panel into 10x 10 piezoelectric actuator elements at the top and bottom then 

using LQR state feedback gain matrix from these actuators to select the elements with the 

highest NFCG. Figure 6.27 shows optimal piezoelectric actuator using this method for a  

— 0, 15, 30, 45, and 90° flow yaw angles at A. = 800. Considering a yaw angle range from 

0 to 90°, the approximate shape of optimal piezoelectric actuator that cover all angles 

within this range is shown in Figure 6.28. It is basically the union of all elements at 

different angles shown in Figure 6.27. The piezoelectric actuator shown in Figure 6.27 is 

divided into two separate actuators one perpendicular to the 0° flow direction and the 

other to the 90° flow direction. Three displacement sensors are used at the locations of 

(3a/4, b l 2), (3a/4, 3 b / 4 ) ,  and { a l l ,  3b/4) corresponding to the approximate location of 

maximum deflection for 0°, 45°, and 90° yaw angles, respectively.
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Like to the isotropic panel, the performance of the EKF+LQR controller for 

nonlinear panel flutter suppression is studied using three different configurations for 

piezoelectric actuator placement: the optimal actuator for the case o f a  = 0°, the optimal 

actuator for a  = 45°, and the optimized actuator over the range of 0 to 90° with 2 

independent actuators, as shown in Figure 6.28. Figure 6.29 shows a comparison of the 

achieved A m ax using these 3 configurations for flow yaw angles changing from 0 to 90°. 

The critical dynamic pressure changes largely with flow angle for the original panel with 

no piezoelectric actuators added as was shown in Figure 4.12 ( A cr= 315, 250, and 185 for 

flow angles o f 0°, 45°, and 90°, respectively). The conclusion drawn from this figure are 

very similar to those of the isotropic panel case and are summarized as follows:

•  The actuator optimized for 0° flow angle does not provide good flutter 

suppression performance over the range of 0 to 90°. However, it is reasonably 

good for yaw angles from -45  to 45°.

• The best performance over the flow angles range of [0,90°] is achieved using the 

actuator optimized for this range with 2 LE actuators (OLE and 90LE).

• The actuator optimized for 45° angle provides reasonably good performance for 

all angles from 0 to 90° and has the advantage of being half the size of the 

actuator optimized for all angles from 0 to 90°.

Thus, the panel maximum flutter free dynamic pressure can be increased to a minimum 

of 750 over all yaw angles from 0 to 90° using the actuator optimized for 45° or to a 

minimum of 900 using the actuator optimized for all angles from 0 to 90°. This is 

compared to the minimum flutter-free dynamic pressure of 185 occurring at a =  90° for 

the original panel. Figures 6.30 through 6.32 show the time history of maximum LCO 

and the control inputs to the two piezoelectric actuators using the EKF+LQR controller at 

A = 900 and for a  = 0°, 45°, and 90° respectively. It shows the effectiveness of proposed 

controller and piezoelectric configuration in suppressing nonlinear panel flutter at 

different flow yaw angles for composite panels.

6.4 Triangular Panel 

The triangular (12x12x0.05 in.) clamped isotropic panel studied in Chapter 4 is 

considered for nonlinear panel flutter suppression. PZT5A layers with a thickness of 0.01
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in. are used. The panel is modeled using 10x10 MIN3 finite element mesh and the 

nonlinear modal equations of motion are derived using the lowest 16 modes. The flow 

yaw angles range selected for this panel is between 90° and 180°. This range is selected 

since it encompasses the worst case yaw angle where the flow is parallel to the tilted edge 

(or= 135° or 315°), as was shown in Chapter 4.

The optimal actuator location is determined by dividing the panel into 100 

triangular piezoelectric elements at the top and bottom then using the NFCG method. 

Figure 6.33 shows optimal piezoelectric actuator location using this method for different 

yaw angles between 90° and 180°. An approximate shape and location of a single 

piezoelectric actuator for the flow range from 90° to 180° is determined by combining the 

optimum actuators at different angles within this range of yaw angles as given in Figure 

6.34. A single displacement sensor is used at (0.2a, 0.46). This sensor location is 

determined based on the locations o f maximum panel deflection at different flow angles 

which are (0.2a, 0.36), (0.2a, 0.46), and (0.2a, 0.56) for a  = 90, 135, and 180°, 

respectively.

The performance of the EKF+LQR controller for nonlinear panel flutter 

suppression is given in Figure 6.35. The panel maximum flutter free dynamic pressure is 

increased to a minimum of 6350 compared to a minimum of 2620 for the uncontrolled 

panel. The piezoelectric material and active control system for this panel is not as 

effective as the case of square isotropic panel (3.5 times increase in X cr for the square 

isotropic panel versus only 2.4 increase for the triangular panel). This is mainly due to the 

smaller size and clamped boundary conditions of the triangular panel, which make it 

stiffen

6.5 Summary

Simulation studies for the suppression of nonlinear panel flutter using 

piezoelectric materials and different optimal control strategies are presented in this 

chapter. The control strategies considered include LQG controller, LQR combined with 

extended Kalman filter (EKF), and optimal output feedback. The nonlinear dynamic 

output compensator compromised of LQR and EKF results in a 3.5 times increase in the 

critical dynamic pressure compared to only 1.8 times for the LQG controller. Using 

optimal output feedback controller, the panel critical dynamic pressure was increased
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about 2 times. However, the optimal output feedback is much simpler for practical 

implementation as it does not require the on-line adaptation needed for EKF. Suppression 

of nonlinear panel flutter under yawed supersonic flow is considered using the LQR and 

EKF nonlinear controller. The NFCG and NKFEG methods are used to determine the 

optimal location of piezoelectric actuators and sensors, respectively. Optimal actuator and 

sensor location for a range of flow yaw angles is determined by grouping the optimal 

locations for different angles within the specified range. Using this method with four self

sensing actuators, the critical flutter boundary was increased 3.5 times over the entire 

range of yaw angles from 0 to 360° for square isotropic panel. For a rectangular 

graphite/epoxy composite panel, the critical flutter dynamic pressure is increased to a 

minimum of 900 over all yaw angles from 0 to 90° compared to 185 for the original 

uncontrolled panel. Results for a clamped triangular isotropic panel showed that the 

critical flutter dynamic pressure can be increased about 2.5 times for a flow yaw angle 

range from 90 to 180°.
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Table 6.1 Mechanical and electrical properties PZT5A piezoelectric ceramics

PZT5A

H, 9.9 Msi (69 Gpa)

e 2 9.9 Msi (69 Gpa)

G [2 3.82 Msi (26.3 Gpa)

g 23 3.82 Msi (26.3 Gpa)

d3i -6.73x10 'y in/V (-171X101- m/V)

d32 -6.73x10 v in/V (-171X101" m/V)

P 0.72x1 O'J lb-sec‘/in.4(7700 K g/m ’)

Vi2 0.31
*

he Same as layer thickness

Emax 15240 V/in (600 V/mm)

* hc: Electrode spacing

Table 6.2 Comparison of different controllers performance

for nonlinear panel flutter suppression

Controller ■̂max

LQR 1760

LQG 920

EKF+LQR 1750

Optimal OFB 1000-1100
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Figure 6.1 Contours of (a) NFCG and (b) NKFEG for simply 

supported square isotropic panel at 0° flow angle
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Figure 6.2 Contours of (a) NFCG and (b) NKFEG for simply 

supported square isotropic panel at 45° flow angle
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Optimal Actuator Optimal Sensor

Figure 6.3 Selected self-sensing piezoelectric actuators placement and size for optimal 

actuation and optimal sensing on square isotropic panel at 0° flow angle
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Optimal Actuator Optimal Sensor

Figure 6.4 Self-sensing piezoelectric actuators placement and size for optimal actuation 

and optimal sensing on square isotropic panel at 45° flow angle
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Figure 6.5 Variation of First 4 linear modes versus X  for isotropic 

panel with and without added piezoelectric material
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Figure 6.6 Open loop poles for isotropic square panels with embedded piezoelectric 

material at different values of nondimensional dynamic pressure
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Figure 6.7 Limit-cycle amplitude and control inputs time history 

for square isotropic panel using LQR control at X  =  1500
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Figure 6.9 Comparison between actual LCO amplitude and estimated 

LCO amplitude using Kalman filter at X  = 2000
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Figure 6 .10 Performance of LQG controller at X  =  1500
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Figure 6.11 Performance of LQG controller at the maximum 

suppressible dynamic pressure, Xmax = 920
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Figure 6.12 Comparison between actual and estimated LCO amplitude 

using extended Kalman filter at k  = 2000
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Figure 6.13 Performance of LQR+EKF nonlinear output compensator at X  = 1500
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Figure 6.15 Performance of optimal output feedback controller 

using two self-sensing actuators at Amax = 1000
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Figure 6.16 Performance of optimal output feedback controller using single 

leading edge actuator and two displacement sensors at A.max = 1100
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Figure 6.17 Effect of +25% mismatch in X  between design model and simulation model 

on LQR and LQR+EKF control performance at X  = 1200
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Figure 6.20 Performance of EKF+LQR controller designed for 

zero flow angle at X  =  800 and 45 deg flow angle
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Figure 6.21 Optimal actuator and sensor placement at different flow 

angles from 0 to 90° for square isotropic panel
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Figure 6.22 Placement o f four self-sensing piezoelectric actuators for optimal actuation 

and optimal sensing over the range of [0, 90°] flow angle for square isotropic panel
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Figure 6.23 Comparison of panel flutter suppression performance using LQR+EKF 

control at different flow yaw angles and using different piezoelectric placement 

configurations for a square isotropic panel
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Figure 6.24 Performance of LQR+EfCF controller for square isotropic panel with 4 self

sensing piezoelectric actuators at 0° flow yaw angle and X  =  1500
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Figure 6.25 Performance of LQR+EKF controller for square isotropic panel with 4 self

sensing piezoelectric actuators at 45° flow yaw angle and A. = 1500
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Figure 6.26 Performance of LQR+EKF controller for square isotropic panel with 4 self

sensing piezoelectric actuators at 90° flow yaw angle and A. = 1500
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Figure 6.27 Optimal actuator placement at different flow angles 

for [0/45/-45/90]s composite rectangular panel
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Figure 6.28 Optimal placement of 2 embedded piezoelectric actuators that cover 

flow angles from 0° to 90° for [0/45/-45/90Js composite rectangular panel
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Figure 6.29 Comparison of panel flutter suppression performance using LQR+EKF 

control at different flow yaw angles and using different piezoelectric actuator 

configurations for [0/45/-45/90]s rectangular composite panel
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Figure 6.30 Performance of LQR+EKF controller for rectangular 

composite panel at 0° flow yaw angle and X  =  900
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Figure 6.31 Performance of LQR+EKF controller for rectangular 

composite panel at 45° flow yaw angle and A = 900
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



155

t v
\ \ V
\ \ [x \
\ \ \ \
\ \ V \ \
\ \ \ \
\ \ \ \

a  =  90°

a  =  120°

a  =  150°

a  =  105°

a  =  165°

a  =  180°
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for clamped triangular isotropic panel
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Figure 6.34 Optimal placement of a single self-sensing piezoelectric actuator that 

approximately cover all angles from 90° to 180° for triangular clamped isotropic panel
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Figure 6.35 Performance of the LQR+EKF controller in suppressing nonlinear panel 

flutter using different piezoelectric actuator configurations 

for the clamped triangular isotropic panel
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CHAPTER VII 

SUMMARY AND CONCLUSIONS

A coupled structural-electrical modal finite element formulation for composite 

panels, with integrated piezoelectric sensors and actuators, is presented and used to 

analyze nonlinear supersonic panel flutter considering the effect of airflow yaw angle and 

the effect o f additional high acoustic pressure loading. The finite element formulation is 

also used for nonlinear panel flutter suppression with yawed airflow using optimal 

control methods. The first-order shear deformation theory is used for laminated 

composite panels and the von-Karman nonlinear strain-displacement relations are 

employed for large deflection response. Structural-electrical coupling is considered using 

the linear piezoelectricity constitutive relations. The first-order piston theory and 

simulated Gaussian white noise are employed to model supersonic aerodynamic and 

acoustic pressures, respectively. The coupled nonlinear equations of motion are derived 

using the three-node triangular MIN3 plate element with improved transverse shear. 

Additional electrical DOF per each piezoelectric layer is used to handle piezoelectric 

sensors and actuators. Thus, the modified MIN3 element is a coupled structural-electrical 

shear-deformable element for the nonlinear analysis o f smart composite structures. The 

system equations of motion in the structure node DOF are transformed into the modal 

coordinates using the panel linear vibration modes to obtain a set of nonlinear dynamic 

modal equations o f lesser number. Modal participation is defined and used to determine 

the number of modes required for accurate solutions. A new and efficient solution 

procedure is presented using the LUM/LTF approximate method to solve the reduced 

nonlinear modal equations for nonlinear panel flutter limit-cycle response. The presented 

solution procedure has the advantage of using much less computational effort than 

solving the system equations of motion in the structure node DOF.

The presented finite element modal formulation is validated by comparison with 

other finite element and analytical solutions. Analysis results for the effect of arbitrary 

flow yaw angle on nonlinear supersonic panel flutter for isotropic and composite panels 

are presented using the modal LUM/NTF solution method. Results showed that the flow
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yaw angle completely changes the shape of the Iimit-cycle deflection. It also showed that 

the effect of the yaw angle is a very important parameter especially for composite panels 

where the flow direction may increase or decrease the nondimensional dynamic pressure 

at Fixed limit-cycle amplitude depending on the panel lamination. The effect of combined 

supersonic aerodynamic and acoustic pressure loading on the nonlinear dynamic response 

of isotropic and composite panels is also presented. It is found that for panels at 

supersonic flow, only acoustic pressure (sonic fatigue) is to be considered for low 

dynamic pressures ( A  «  A cr ) and both acoustic and aerodynamic pressures must be 

considered for significant and high aerodynamic pressures.

Simulation studies for the suppression of nonlinear panel flutter using 

piezoelectric self-sensing actuators and using different optimal control strategies are 

presented. The control strategies considered include LQG controller, LQR combined with 

extended Kalman Filter (EKF) for nonlinear systems, and optimal output feedback. The 

LQG controller performance was found to be much worse than the corresponding LQR 

controller performance. This is mainly due to the use of linear Kalman filter to estimate 

the states of nonlinear flutter dynamics. The state estimation is improved by using EKF. 

The nonlinear dynamic output compensator compromised o f LQR control and EKF gives 

much better performance for nonlinear panel flutter suppression with about 3.5 times 

increase in the critical dynamic pressure compared to 1.8 times using LQG controller. By 

using optimal output feedback controller the panel critical dynamic pressure was 

increased about 2 times which is less than that of EKF+LQR controller. However, the 

optimal output feedback is much simpler for practical implementation as it does not 

require the on-line adaptation needed for EKF.

Nonlinear panel flutter suppression with airflow yaw angle is considered using the 

EKF+LQR controller. Closed loop criteria based on the norm of feedback control gains 

(NFCG) for actuators and on the norm of Kalman Filter estimator gains (NKFEG) for 

sensors are used to determine the optimal location of self-sensing piezoelectric actuators 

for different yaw angles. Optimal actuator and sensor location for a range of flow yaw 

angles is determined by grouping the optimal locations for different angles within the 

specified range. Using this method with four self-sensing actuators, the critical flutter 

boundary was increased about 3.5 times over the entire range o f yaw angles from 0 to
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360° for square isotropic panel. For rectangular graphite/epoxy composite panel with two 

actuators, the panel critical flutter dynamic pressure is increased to a minimum of 900 

over all yaw angles from 0 to 90° compared to 185 for the original uncontrolled panel. 

Results for a triangular isotropic panel with clamped boundaries showed that the critical 

flutter dynamic pressure can be increased about 2.5 times for a flow yaw angle range 

from 90 to 180° using the same methodology with a single piezoelectric actuator.

The main contributions of this research can be summarized as follows:

• Analysis o f nonlinear panel flutter of composite panels with yawed supersonic 

flow using finite element method.

• Analysis of nonlinear composite panels response under combined aerodynamic 

and high acoustic pressure loading.

• The consideration of state estimation problem for nonlinear panel flutter 

suppression and the use of nonlinear state estimation based on EKF for improved 

controller performance.

• Nonlinear flutter suppression o f isotropic and composite panels with yawed 

supersonic flow.

Other minor contributions include, the derivation of coupled structural-electrical 

nonlinear MIN3 element for composite panels, the modal LUM/NTF solution method, 

optimal sensor location based on the NKFEG method, and the study of triangular panels.

Future extensions to the current research may include adding thermal load effects, 

using more rigorous optimization method for optimal piezoelectric sensors and actuator 

location such as genetic algorithms or gradient methods, and using robust and nonlinear 

control strategies. In addition, a feasibility study is required to compare the performance 

o f nonlinear panel flutter suppression using piezoelectric actuators and using other types 

o f smart and adaptive structures such as shape memory alloys and active constrained 

layer damping. Finally, experimental validation is highly desirable to verify the 

performance o f nonlinear panel flutter suppression using the proposed methods.
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APPENDIX A

M I N 3 E L E M E N T  S T R A I N  I N T E R P O L A T I O N  M A T R I C E S

Expressions for the strain interpolation matrices as function of element geometry 

and element area coordinates are given in this Appendix for the MIN3 triangular element.
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APPENDIX B

COORDINATE TRANSFORMATION

B .l Transformation of Lamina Stiffness Matrices

For a composite orthotropic lamina (see Figure B .l), the reduced lamina stiffness 

matrix, [ Q ] ,  and shear stiffness matrix, [Q s], relate the lamina stress and strain in the 

lamina material coordinate system (123 axes) as follows:

° 1 2 u  2t2
O . = Q \2  0-22

.r I2 . 0  0

0
0

2 6 6 .
£*2

V l 2

I  ̂23

k l3 .
244 0
. 0 255 J

17'23 

iri3
(B.l)

These matrices are function of the material engineering constants:

2 n  = 2i2 =
^ 1 2 ^ - 2

2 2 2  —
1 — 2 ̂ 21 1 — 2 1̂ 21 1 — ^ 12^21

Q . 6 6 ~ G l 2 '  Q 6 6 = (^ 2 3 '  Q&6 =  ^ 13 ( B -2 )

The transformed stiffness and shear matrix for a general lamina with lamination angle 6  

can be expressed in the laminate global coordinate axes (.rvz) by using the following 

stress and strain transformation:

(B.3)
&1 ' c 2 s 2 2 CS ' ° x '
O  2 » = s 2 c 2 - 2  CS O y • = [Ta } O y

.r 12 - c s c s 1 0 c 2 - s 2 Tn- . ^  XX

'  c 2 S 2 CS ex
£2 ■ = s 2 c 2 - c s £y ■ = IT£ } £y

Y \2 - 2  CS 2  CS c 2 - s 2 y * y . /■*>-.

[7 23

k i3 .

\y 23
[ V l 3

c
s

c
s

- S '
c

-  s  
c

\y v-S

* v z

y vc
Vxz J [Vxz

(B.4)

(B.5)

(B.6)

where C = c o s#  S  = s in #  Substituting equations (B.3) through (B.6 ) in equation (B.l), 

the lamina transformed reduced stiffness matrices are then:
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=  [ T a T l \ Q ] [ T £ ] (B.7)

011 012 016

012 022 026

.016 026 066.

044 045

.045 055.

B.2 Transformation of Piezoelectric Constants

The actuation strain induced by a piezoelectric layer expressed in material

B s h = [TS r l \ Q s ] i T S ] (B.8)

coordinates is:

£1 d i{
■ = E r d i l

712 0
(B.9)

where i = 3 for tradition monolithic piezoelectric actuators and i = 1 for MFC actuators. 

Using the strain transformation matrix defined in equation (B.4), the piezoelectric 

constant can then be express in the laminate reference coordinate as:

(B. 10)

d x d a

d y II d \ 2

d x y 0

Figure B. 1 Composite lamina with general fiber orientation
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APPENDIX C

SOLUTION PROCEDURE FOR OPTIMAL OUTPUT FEEDBACK

Given the system state space matrices (A, B, C, D), performance index weighting 

matrices (Q , R ), and initial conditions distribution (AT0), then the optimal output feedback 

gain can be determined using the following iterative solution procedure:

1. Determine an initial stabilizing gain matrix, Ka, such that A-BKaC  is stable.

2 . k-th iteration:

- Set A c = A-B{Ky)kC

- Solve for P k  and S* matrices using (K y ) k  and the following equations:

a J  P  + PAC + C T K y R K y C + Q = 0  

A c S  + s a J  + X  q = 0

-  Set Jk = 0.5tr(PkX0)

If | J k - J k - i  I < Tolerance, go to step 3, otherwise:

Determine the gain update direction:

AK y = R ~ 1B T P S C T (C S C T r 1 ~ ( K y )k

Update the gain using (K y )k + i  =  (K y ) k  + a A K y  

where a  is a chosen constant 

Repeat step 2

3. Terminate and set Ky= (Ky)k+i
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