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ABSTRACT

TOPOLOGY AND GRID ADAPTION FOR HIGH-SPEED FLOW COMPUTATIONS

Jamshid Samareh Abolhassani 
Old Dominion U n iv ers ity , 1987

D irectors: Dr. Surendra N. Tiwari
Dr. Robert E. Smith

This study investigates the e ffe c ts  o f grid  topology and g rid  

adaption on numerical solutions of the Navier-Stokes equations. In the 

f i r s t  p a rt o f th is  study, a general procedure is presented fo r  

computation of high-speed flow over complex three-dimensional 

configurations. This includes the grid  generation and so lu tion

algorithm  fo r  Navier-Stokes equations in  a general three-dimensional

c u rv ilin e a r coordinate system. The flow  f ie ld  is  simulated on the

surface of a B u tler wing in a uniform stream. Results are presented fo r  

Mach number 3 .5  and a Reynolds number o f 2 ,000,000. The 0-type and H- 

type grids have been used fo r th is  study, and the results  are compared 

together and w ith other theore tica l and experimental re s u lts . The 

results  demonstrate th a t while the H-type grid  is  su itab le  fo r the

leading and t r a i l in g  edges, a more accurate solution can be obtained fo r  

the middle p a r t of the wing with an 0-type g r id . In sp ite  o f some

discrepancies, the present numerical re su lts  compare favorably w ith  the

experimental re s u lts . In the second p art o f th is  study, methods o f g rid

adaption are reviewed and a method is  developed w ith the c a p a b ility  of 

adapting to several variab les . This method is  based on a v a r ia tio n a l

with permission of the copyright owner. Further reproduction prohibited without permission.



approach and is  an algebraic method. Also, the method has been 

formulated in  such a way th a t there is  no need for any m atrix  

inversion . This method is  used in conjunction w ith the ca lcu latio n  of 

hypersonic flow over a blunt-nose body. A movie has been produced which 

shows simultaneously the trans ien t behavior of the solution and the grid  

adaption.

For both cases, the simulations are done by in tegrating  the viscous 

Navier-Stokes equations. These equations govern the unsteady, viscous, 

compressible and heat-conducting flow of an ideal gas, and a l l  viscous 

terms are re ta in e d . The equations are w ritte n  in c u rv ilin e a r  

coordinates so th a t the body surface is  represented accurate ly . The 

computer codes are w ritte n  in FORTRAN, is  vectorized and cu rren tly  run 

on the CDC Vector Processing System (VPS-32, CYBER 205) computer. The 

resu lts  in d ica te  the v ia b i l i ty  and v a lid ity  of the proposed methods.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1

INTRODUCTION

Continuum problems in engineering are qu ite  often modeled by 

systems of nonlinear p a r t ia l d if fe re n t ia l equations. These equations 

are usually complex and, in most instances, must be solved by numerical 

means. The numerical solution of the governing p a r t ia l d i f fe r e n t ia l

equations has two steps: (1) grid  generation and (2) numerical

in te g ra tio n . Grid generation is  the d iv is io n  of the solution domain 

in to  d iscrete  interconnected points called  grid  po ints . The accumula­

tion  of grid  points is  ca lled  a g rid . The location  o f g rid  points is  

p rim arily  a function o f boundary geometry and the physics o f the

problem. The grid  should conform to the boundaries and be concentrated  

in  regions where there are large gradients. In the second step, the 

d eriva tives  in  the p a r t ia l d if fe re n t ia l equations are approximated w ith  

algebra ic  expressions (usually  by Taylor series expansions where higher 

order terms are tru n ca ted ). The most commonly used techniques fo r

in te g ra tin g  the governing equations are c la s s if ie d  as f in i t e  d iffe rence  

techniques, f in i t e  volume techniques or f in i t e  element techniques. The 

accuracy of a numerical solution depends on both the solution technique 

and the g r id . Grid points must be appropriate ly  defined to apply 

boundary conditions and must be s u ffic ie n t ly  close together to resolve  

the physics to the desired level o f accuracy. They must also be

oriented re la t iv e  to each other in such a manner th a t errors  are not

1
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2

introduced in to  the so lu tion . On the o ther hand, computer speed and 

memory l im it  the number of grid points th a t can be used in the solution  

of a given problem. I t  is ,  th ere fo re , necessary to d is tr ib u te  grid  

points to maximize overa ll accuracy w hile covering the e n tire  region of 

in te re s t.

I f  the g rid  points are ordered in such a way th a t the re la tionsh ip  

between any g rid  po int and its  neighbors is  the same fo r a l l  grid  

points, then th is  grid  is  called  a structured g r id . A s tructural grid  

can be generated num erically by determining the values of the physical 

coordinates in  the physical domain from the values on the boundaries. 

This can be accomplished in two basic ways: (1 ) by algebraic

in te rp o la tio n  from the boundary values, and (2) by solving a set of

p a rtia l d i f fe r e n t ia l  equations with the boundary geometry as a boundary 

condition. The resu ltin g  boundary-fitted  coordinate system is  a 

c u rv ilin e a r coordinate system having some coordinate lin es  (surfaces in  

three-dimensions) conforming to the shape o f each boundary. When the 

governing equations are transformed onto such a coordinate system, a 

f in i te  approximation can be made using neighboring points a t  coordinate 

lin e  in te rs e c tio n s , w ithout the need fo r in te rp o la t io n , regardless of 

boundary shape and boundary movement. Thus, quite general code can be

w ritten  fo r the numerical solutions o f the governing p a rtia l

d if fe re n t ia l  equations on a rb itra ry  reg ions. Although many of the 

accomplishments in grid generation have occurred w ith in  the f ie ld  o f

computational f lu id  dynamics, the techniques are equally  applicable in  

electrom agnetics, so lid  mechanics, and other areas involv ing  solutions  

of p a r t ia l d if fe re n t ia l  equations in  an a rb it ra ry  region. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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l i te ra tu r e  on g rid  generation is  extensive and th is  is  c r i t ic a l ly  

reviewed in  [1 , 2 ] * .

An examination of the Taylor series  expansion of a function about a 

point in the so lu tion  domain, reveals th a t the truncation e rro r  depends 

on d eriva tives  o f the solution and c h a ra c te ris tic s  o f the g r id , such as 

d is tr ib u tio n  o f spacing, orthogonality  and aspect r a t io .  The se lectio n  

o f a grid  topology has d irec t e f fe c t  on the solution of a given problem 

through the in troduction  of s in g u la r it ie s  and constrain ts  on the 

orthogonality  o f the g rid . Eriksson [3 ]  has studied the e ffe c ts  o f grid  

s in g u la r it ie s  on the solution of the Euler equations. I t  was pointed  

out th a t the nonconservative centered scheme is  lik e ly  to be unstable a t  

mesh s in g u la r it ie s , whereas, the conservative centered f in i t e  volume 

scheme is  stab le  in a local sense. Also, i t  was concluded th a t the 

local tim e-stepping gives r is e  to exponentia lly  growing modes fo r  

nonconservative schemes. Mastin and Thompson [ I ,  4] examined two 

sources o f truncation  error in  the numerical solutions o f p a r t ia l  

d if fe r e n t ia l  equations on a c u rv ilin e a r  coordinate system. The erro r  

sources are derived from grid spacing and the degree of nonorthogonality  

(g rid  skewness). I t  is  possible fo r a poor d is trib u tio n  or o rie n ta tio n  

of grid  points to introduce errors  in to  a numerical s o lu tio n . For 

example, sudden changes in the lin e  spacing and excessively skewed lines  

can introduce negative numerical d iffu s io n  in to  a so lu tio n . Although 

precise orthogo nality  is  not e s s e n tia l, some error terms vanish fo r an 

orthogonal system. Also, Raithby [5 ]  has observed th a t an excessive

"Jc

The numbers in  brackets indicate re ferences.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4

grid skewness w il l  exaggerate the truncation e rro r . The l i te ra tu re  

survey ind ica tes  a lack o f inform ation on the e ffe c ts  o f g rid  topology 

on the s o lu tio n , especially  in three-dimensions. In general, the 

coordinate system should have lin e s  concentrated in  regions of an 

expected high varia tion  of the physical solutions. The coordinate 

system should be coupled w ith the physical so lution  so th a t the 

coordinate lin es  continually adapt to resolve the evolving gradients in 

the physical so lu tion . A s ig n if ic a n t amount o f work on the grid

adaption is  ava ilab le  in the l i te r a tu r e  and th is  is  discussed, in 

d e ta i l ,  in Chap. 6.

In regard to the grid  generation and solution of continuum 

problems, th is  study has two d is t in c t  ob jectives. These a re : (1) the

q u a lita t iv e  assessment of errors re su ltin g  from the re la t iv e  o rien ta tio n  

o f grid  points and overall g rid  topology, and (2 ) the proper

re d is tr ib u tio n  o f the grid  points over a region to minimize the 

truncation e rro r through grid  adaption. In order to study the e ffec ts  

o f grid  topology, flow over a B utler wing [6 ] has been simulated using 

two d if fe r e n t  grid  topologies. Solutions obtained w ith  the two 

topologies are compared with each other and with experimental resu lts  

obtained by Squire [7 -9 ] .  In the second part of th is  study, a method of 

grid  adaption w ith the cap ab ility  o f adapting the grid  points to several 

variab les  is  proposed. This method is  formulated in such a way th a t i t  

is  not necessary to solve a system of equations and is ,  th e re fo re , very 

e f f ic ie n t  com putationally.

The physical models used in th is  study are discussed in Chap. 2.

The form ulations of the governing equations are presented in Chap. 3.

The method of solution and the i n i t i a l  and boundary conditions are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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explained b r ie f ly  in Chaps. 4 and 5, resp e c tive ly . Chapter 6 contains a 

review o f the grid-adaption method and discussion of the proposed new 

method. F in a lly , some c r it ic a l  resu lts  are presented in  Chap. 7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2 

PHYSICAL MODELS

The two basic physical models considered fo r th is  study are 

discussed b r ie f ly  in th is  chapter. These are a Butler wing and a b lunt 

leading edge of a panel holder.

The B utler wing is  a good te s t case fo r investigating  the e ffe c ts  

of grid  topology on the numerical solutions o f Navier-Stokes equations. 

This is  due to a unique feature  o f i ts  geometry. The B utler wing is  a 

delta  wing which was proposed by D. S. B u tler [ 6 ] .  The plan form of the 

wing is  an isosceles tr ia n g le , and the leading edges of the wing lay 

along the Mach lines  of the unperturbed stream. The f i r s t  twenty 

percent o f the wing is  conical and the la s t  eighty percent of the wing 

has e l l ip t ic a l  cross sections with increasing e c c e n tr ic ity  along the x- 

axis (F ig . 2 .1 ) .  At the t r a i l in g  edge, the e l l ip t ic a l  cross section has 

in f in i te  e c c e n tric ity  and is  a s tra ig h t l in e .  The B utler wing is  

symmetric about (x -z ) and (x -y ) planes. This permits the use of one 

quarter o f the e n tire  physical domain w ith zero angle of attack (F ig . 

2 .1 ) .  However, i f  the angle of attack is  greater than zero, then h a lf 

of the physical domain should be considered. The semi-major and minor 

axes are given by

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
g.

 
2

.la
 

Ph
ys

ic
al

 
mo

de
l 

of 
a 

Bu
tle

r 
Wi

ng
 

(to
p 

vi
ew

)



8

CT>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
g.

 
2

.Id
 

Ph
ys

ic
al

 
mo

de
l 

of 
a 

Bu
tle

r 
wi

ng
 

(o
bl

iq
ue

 
Vi

ew
)



11

Major axis (semi-span) = j  0 < x < L (2 .1 a )

Minor axis (thickness on = 0 < x < 0.2L (2 .1b )
c e n te r lin e )

=  j U ~  [- - Q ^ 2-1 ] 4 ] 0.2L < x < L (2 .1 c )

where

The model is  0 .8  f t .  (0.2438 m) long , and the geometry has been 

generated fo r a Mach number of 3 .5 . That is  the semi-apex angle of the  

plan form and the i n i t i a l  conical nose is  s in “ * ( l . / 3 . 5 )  = 16.602°.

B utler has compared the experimental re su lts  fo r surface pressure 

with the th e o re tic a l resu lts  [ 6 ] .  These th eo re tica l resu lts  are  

obtained from in v is c id  equations o f motion which are s im p lified  by using 

the slender-body approximations. Walkden and Caine estimated the  

pressure on the surface of a Butler wing a t  zero incident in a steady 

uniform stream. They numerically in tegrated  the two sem i-characteristic  

forms of the equations governing in v is c id  supersonic flow of an idea l 

gas w ith constant s p ec ific  heats [1 0 ]. Squire has obtained experimental 

resu lts  fo r a B u tle r wing with varying Mach number and angle of a ttack  

[9 ] .  In a l l  previous a n a ly tica l and numerical in ves tig a tio n s , the 

in v isc id  form of the equations of motion has been used.

Grid generation is  the f i r s t  step which should be considered in  

obtaining flow f ie ld  solutions over any co n fig u ra tio n . Due to the data 

base management o f the present program, i t  is  necessary to map an e n tire  

physical domain in to  a rectangular p a ra lle le p ip e d . Among the g rid  

types, selection o f an 0-type grid fo r cross sections in the stream-wise 

direction  produces a po in t s in g u la rity  a t  the nose tip  and a l in e
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s in g u la rity  a t  the t r a i l in g  edge (F ig . 2 .2 ) .  Nevertheless, an O-type 

grid maps the e n tire  solid  boundary onto an e n tire  face o f the 

p a ra lle le p ip e d . I t  is  also possible to generate orthogonal g rid  in  the 

regions where there is  re la tiv e  high curvature . However, an H-type grid  

does not map the so lid  boundary onto an e n tire  face of the computational 

box (F ig . 2 .2 ) .  This creates a p o ten tia l problem in updating the 

boundary conditions near the leading edges o f the wing and also the grid  

in some regions could be highly skewed. But, there are no s in g u la r it ie s  

in the g r id . Figure 2.2 shows a topological comparison between H-type 

and 0-type g rids  fo r the Butler wing. Both types of grids have been 

used in  th is  study, and the resu lts  are compared with other num erical, 

a n a ly tica l and experimental re su lts .

Another aspect o f th is  study is  the g rid  adaption fo r high-speed 

flow computation. In the hypersonic flow about b lunt bodies (F ig . 2 .3 ) ,  

the temperature, pressure and density o f the flow increase almost 

explosively across a shock wave. At the same time, the curved shock 

wave is  close to the body. Numerical sim ulation of th is  phenomena has 

been a great challenge to the computational f lu id  dynamics researchers. 

Presently, there is  a great deal of in te re s t  in  improving the q u a lity  of 

numerical s im ulation techniques, and grid  adaption is  one way to achieve  

th is  goal.

The accuracy of f in ite -d iffe re n c e  solutions depends on the fineness  

of the g r id . Therefore, the f in e r  the g r id , the more accurate the

numerical so lu tion  w il l  be. Also, the accuracy o f solutions depends on 

the reso lu tion  o f the solution g rad ien t. The presence o f large  

gradients causes the e rro r to be large in  the d ifference approximation 

of d e r iv a tiv e s . In the presence of shock waves, more a r t i f i c i a l
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diffus ion  must be added to re ta in  adequate smoothness of the s o lu tio n s . 

Therefore, there is  a need for schemes th a t can resolve large gradients  

without adding ad d itio n a l grid po in ts . An adaptive scheme moves the  

grid  points to regions of high grad ients , when the locations o f these 

gradients are not known a p r io r i .  Also, an adaptive method reduces the 

to ta l number of g rid  points required to achieve a given accuracy, but i t  

requires more computer tim e. In some instances, the computer time makes 

grid  adaption im p ra c tic a l. The ideas used in the construction o f 

adaptive grid  techniques are lim ited  only by one's imagination; and any 

scheme th a t works in  the sense of providing a b e tte r solution is  a good 

one. The u ltim ate  answer to numerical solutions of p a rtia l d i f fe r e n t ia l  

equations may w ell be to dynamically adapt g r id s , ra ther than to devise 

more elaborate d iffe ren ce  representations and solution  methods [1 1 ] ,

In both cases, the flow is simulated by solving the Navier-Stokes 

equations num erically . The equations are unsteady, compressible, 

viscous and th re e - or two-dimensional. The time dependency o f the 

governing equations allows the solution to progress na tu ra lly  from an 

a rb itra ry  in i t i a l  guess to an asymptotic steady s ta te , i f  one e x is ts .  

The equations are transformed from physical coordinates to computational 

coordinates, allow ing the solutions to be computed in a rectangular  

domain. The equations are solved by the MacCormack t im e -s p lit  technique 

[1 2 , 13] which is  vectorized and programmed to run on the CDC VPS-32 

(CYBER 205) computer. The code is  w ritte n  in 3 2 -b it (ha lf-w ord) 

FORTRAN. The d e ta ils  of the form ulation and solution procedure are  

presented in the subsequent chapters.
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Chapter 3

GOVERNING EQUATIONS

3.1 Navier-Stokes Equations

The governing equations fo r a thermal f lu id  system are the conser­

vation of mass, momentum and energy. These equations are developed for  

an a rb itra ry  region under the assumption th a t the system is  a continuum. 

Equations of motion fo r a viscous, compressible, unsteady and heat- 

conducting f lu id  can be w ritte n  as [14]

Continu ity: + v • (pu) = 0 , (3 .1a)

Momentum: + V • (puu -  t ) = 0 , (3.1b)

Energy: - ^ 1  + V • (Eu + q -  u • x) = 0 , (3 .1c)

where E is  the to ta l energy per u n it volume given by E = p(e + v v /2 )

and e is  the in te rn a l energy per u n it volume. Equations (3 .1b -3 .1c ) can

be s im p lified  by assuming th a t the stress a t  a p o in t is  lin e a r ly  

dependent on the ra te  of s tra in  (deformation) of the f lu id  (Newtonian 

f lu id )

au. au,. au,

P Sij + " K*xJ + Tssfl+ 6U •*’ w ?  ■ (3-2a>

The Kronecker delta  function is  denoted by 6 . . ,  and p' is  the second
 ̂3

c o e ffic ie n t o f v isco s ity  which is  re la ted  to the c o e ff ic ie n t of bulk

17
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viscosity  (k ) by the expression k  = 2p/3+|a'. The contribution o f k can 

be neglected i f  the pressure in  a f lu id  is  not changed abruptly during  

i ts  expansion or contraction , in other words, the hydrostatic pressure 

is assumed to be equal to the average of the normal stresses. Under 

th is  assumption, the stress tensor can be re la te d  to the pressure and 

veloc ity  components as

au. au. ? 3u.

Ti j  = " P 6i j  + 14 ^ ‘5x7 + '5x7^ " 1  6i j  * {3 *2b)

For an iso tro p ic  system, the heat flu x  in  Eq. (3 .1 c ) can be expressed in  

terms of temperature gradient (Fourier law o f heat conduction) as

q = -  K V T (3 .3 )

where K is  the c o e ffic ie n t o f thermal conduction. A common 

approximation used fo r v iscosity  is  based on the k in e tic  theory of gases 

using an id e a lized  in term olecular-force p o te n tia l.  The re la tio n  is

3/2 T + S,

j r  = (t ~) t v  s? (3 *4)O 0

where

SQ = 198.6 °R

T = 492 °R o

P0 = 0 .35x l06 ( lb f - s e c ) / f t 2

the c o e ffic ie n ts  of thermal conduction K can be determined from the 

Prandtl number as
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YPCV
K = ~ p -^  (3 .5 )

r

where Cy is  the s p ec ific  heat a t  a constant volume and y is  the r a t io  

o f spec ific  heats.

I t  is  essen tia l to have a supplementary re la tio n  to close the

system of equations, Eqs. (3 .1 a -3 .1 c ). By neglecting the in term olecular 

forces (therm ally  p e rfe c t system), the thermodynamic properties can be 

described by the equation of state

P = pRT (3 .6 )

where R is  the universal gas constant. The assumption of therm ally

perfect gas permits the in te rn a l energy to be expressed as a function o f  

temperature only i . e . ,  e=e(T ). In a d d itio n , the assumption o f a 

c a lo r ic a lly  p e rfe c t gas [e (0 )= 0 ] allows the fo llow ing  re la tio n

e = CvT . (3 .7 )

A substitu tion  of Eq. (3 .6 ) in to  Eq. (3 .7 ) re su lts  in

P = pe (y -1 ) . (3 .8 )

The equations of motion are in conservative form. For s im p lic ity , these 

equations can be w ritte n  in  a compact vector form as

where

8U 5F 8G 8H .  „  , ,  Q.
H  ¥  w  " S z '  * (3,9)

P ] [ pu
Ip u i Ip U U  -  T  + P
I f  1 XX

U = ypvV , F = ypuv -  t
I I

Jpwi Jpuw -  Txz

[ E  )  \Eu + qx -  4»x + Pu
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p v
lPuv -  V  

Fpw -  T . .  + P
yy

|pvw -  xyz 

Ev + qy -  4>y + Pv,

pw
pUW -  X.

H =  7  pvw -  X,
zx

zy
| pWW -  X + P 

Ew + qz -  4>z + Pw,

XX
= _ p  +  2 u  a u  -  ^  u f a u  +  BV +  a w 1

p + ^  3x 3 *l( -5x ay az} *

xy
,au , av, 

“ •B y 4 * * 1 *

xz
/9w , Bu,

“ f e  + al> •

-  d j. av 2 „ / 9u j. av . aw,
yy p + 2|i ay “ 1  » %  + ay + az> *

yz
, d v  , aw, 

^ % z + 3 y } •

zz
-P + 9W -  2 u faU + dV + d W )P + 2p ^  ^  ,

d> =  UX + v x  +  w x  , x XX xy xz *

d> =  u x  + VX +  WX
y xy yy w y z  *

= UTxz + VTyz + WTzz *

n -  - K  dT
qx " K ax *

n -  -K dT 
qy " K "5y *

BT
z " *5z ‘q- = -K
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3 .2  Navier-Stokes Equations in  Computational Coordinates

For the sake of g e n era lity , the governing equations are transformed 

from a physical domain into  a computational domain as

+ iaF aG aH
a t  y y (  (a? 55 85 r la r i 5q 5n

The stress tensor, d issipation function and heat conduction must also be 

transformed from a physical domain in to  a computational domain. Using 

Eqs. (A .23c) and (A .24a), they can be expressed as

t = -P + xx
9 f 55 5u 5t) 5u 55 5u-\ 9 /_ r 55 5u , 5n 5u . 55 5u

^  M  3x 5? + dx W  " 2 /3  11 55 + 5X 8^ + 57 55

55 5v 5t] 5v 55 5v 85 8w 6ti 5w 55 5W-.
^ y ^ 5 + ‘S y^T  + '5 y ‘5 5 + 5 2 5 5 + 5 2 d ^  + - 5 z ^  •

_ _ ra? au 5r) 5u 55 5u 55 5v , 5t) 5v , 55 5v-i
Tx y ~ ^ ^ ^  + ^y^5- + ^ y ^  + -5x-5f + - 5 x ^  + -5 x ^ J  »

_ -  „ f®5 5w , 6r) 6w 55 5w . 6 5  5u 6r) au . 65 6u-i
Tx z " t i '‘- 5 x -^  + - 5 x ^  + -5x-5r + -5z-51 + -52'5^ + -S 2 ^ J  »

,  -  -p + r5? av 5r) 5v 85 6Vj _ ? /.  f 55 6u . 5ri 5u . 55 8u
yy P + 211 l^y ^  + ^y 3n + T5y W  2 /3  11 k x  M  + T *  ax 55

+ 2 1  + + aT)_6w 55 aw-,
ay M 5y 8n 8y 55 5z 55 5z 5t| 5z 55J *
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/•&£ dv , &n 5v .&G 5v dw &n dw dC bw-*
' y z “ M 3 z 9 l '  3 z 3 n  3 z 3 £  3 y & ?  '5 y a ^  ‘5 y 3 c J ’

zz = -P 9 (-a? aw an aw ac aw-* _ 9 /~ roc,  ou on ou . 
+ 2,i 1az + ^ z  Tz W  2 /3  11 l ax M  ax a^ +

a£ au an au ac _au 
ax ac

• _ „  r as aT , an aT ac a i\
qx " K l ‘5x M  + "Sx an "Sx ’

n -  -k- aT crn 0 1 OC, 0 1 >!
q” " ^  ^  + Tw 1ST + "377 T^J

an aT . ac aT-, 
*5y S n  W 5 £ J

_ „  r 85 8T an 8T . ac 8T-,
z '•az a? az an *5z ! i £ J *

The transformation is  based on the chain r u le .  The transformation  

c o e ffic ie n ts  can be computed from a functional re la tio n  between the 

computational coordinates and the physical coordinates as

I  = 5 (x , y , z) ,

ti = n (x , y , z) , (3 .11 )

C = C (x , y , z) .

I f  the re la tio n  in Eq. (3 .11 ) were known, the transform ation c o e ffic ie n t

could have been computed by d ire c t d if fe re n t ia t io n . I f  not, a f te r  some 

algebraic manipulations (Eq. A .14), the transform ation co e ffic ie n ts  can 

be computed by
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ax ax ax
■55 an ac
ay ay ay
as an ac
bz az az
a? an ac

- 1
as as a?

|T>x "5y £z |
ari an an V _ r n  -  /  5y 5y av I  n  i? t

i ? x  3y " [J ] " ~  ~  >  {3 *12)
ac ac ac

5y 3z

where [J -1 ]  is  defined as

r b y  az ay az^ ( b x  az ax az-> r bx by  ax ay->
^  T Z  "  “55 “&P' ~l '5n -5c "  “55 *5nJ l "5n ‘S? "  TO TOJ

m  _ 1 )  _ ( b y  bz  _ ay az-, r 3x 3z _ 3x 3Z-* _c3x 3y _ 3x 3yi
L J j j - l |  \  “ l ‘5c ac ~ ac W  l as ac "  ac a r  ~'TO  ac " ac as J

(•ay az _ ay az-, bx bz  _ax _az-> ^ax ay ax ay-i
'■ac an " ari TO' “ '•ac an ~ an asJ _l-as an ”  an asJ

(3.13)

_ 3x r b y  b z  3y Bza 8x ( b y  b z  ay Bz^
, ,-1  j _ /a y  ay ay( ~ TO 'TO “5c ~ TO TOr ”  an ^as "5c "  TO TOJ
' ! “ \?1F ?m X r  /

, 3x ( b y  b z  b y  az-v
+ TO lTO TO '  TO TOJ

3x ax ax
i S l an ac
lay ay ay

an ac
[az az az1
'TO TO TO

In the case o f a Butler wing, the g rid  planes are perpendicular to 

the x -coord inate . Consequently, physical coordinates can be w ritte n  as

x = x (S) ,

y = y (5 , n, 0  , (3.14)

z = z (s  n» C) .

This reduces the transformation c o e ffic ie n ts  from nine to f iv e  non-zero 

elements and, th e re fo re , reduces the memory requirements.
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In the case o f grid  adaption, the physical geometry is  two- 

dimensional. Therefore, a l l  d eriva tives  w ith  respect to the x and £ 

coordinates are se t to zero . This s im p lifie s  the governing equations to  

the fo llow ing form

| K > ]  = 0 ,3 .1 5 ,

where

U =

pv
I P W

G = \  pvw
*yy + p
Tyz

Ev + q -  <b + Pv

pw
, pvw -  T I zy

H = \  pww -  t z2 + P

Ew + q2 -  + Pw

There are four non-zero transformation c o e ff ic ie n ts .

In both cases, the transformed governing equations are called  Chain 

Ruled Conservation Law Form (CRCLF) [1 5 ] .  However, the governing 

equations can be w ritte n  with m etric c o e ffic ie n ts  inside the  

d iffe re n tia t io n s ; th is  form is  called  the Strong Conservation Law Form 

(SCLW). I t  has been shown [15] th a t CRCLF requires no special 

considerations on how to compute the m etric  c o e ffic ie n ts  or th e ir  

d eriva tives  and i t  also requires th a t fewer a rith m etic  operations be 

performed compared to the other forms. A lso, i t  has been shown th a t i t  

has the a b i l i t y  to capture weak shocks.
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C h a p te r 4

METHOD OF SOLUTION

A time-marching method is  used to  compute the solution  so th a t the 

possible tra n s ie n t features can be re a d ily  captured. This e x p l ic i t  

method is  a t im e -s p lit  p red ic to r-co rrec to r algorithm which is  second-

order accurate in time and space [1 2 ] ,  The governing equations are

s p l i t  in to  three groups of operators, each aligned w ith  transformed 

coordinates. Then, these equations, Eq. (3 .1 0 ) ,  are d is c re tize d  in  the 

computational d irec tions . In a compact form, they can be expressed as

C k  ■ C W l  ' W l  t ' V ' V l  “nj.k

where

At^ = A tc = |  Atj, (4 .1 )

and L^, , and are the operators in  the £, v , ,  and C d ire c tio n s ,

re s p e c tiv e ly . A time step is  completed in th is a lgorithm  w ith the 

a p p lica tio n  o f each operator applied symmetrically about the middle 

operator. Operator can be defined as

L?(A t?) = . (4 .2a )
fo r  the p red ic to r step:

U. . . = U1.11. . -  T - i  [ (F .  -  F. J  i !  i  + (G. -  G. , )  H  i 
i >J jk  i >J»k l i —1 5x i i “ 1 9y

+ (Hf -  W k ' I .  t  • (4 .2b )J * K

25
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fo r the corrector step:

+ (Gi+l ' V # 1 + <Hi+l - H1) ■§! 1 1. ) • (4.20
J > K

Operator L can be defined as
■n

V 4V  '  u“ “j , k  • (4 - 3a)

fo r the p red ic to r step:

At .

= U! " i . k  -  W -  t (Fj  -  Fj - l >  &  J + (Gj  -  Go-i>  §  J

+ ' Hj  -  Hj - i>  U  J] „ • (4 .3b )
I 9 K

fo r the correcto r step:

1U k - 7 ( " u , t * V j , k 4 [ ' Fi ( 1 - Fjl | i

* (Gj+l " V Ij? J + (Hj+l " V '5? J • (4‘3cl1 ,K

Operator can be defined as

L?(A tc) u? j >k » (4 .4a)

for the p red ic to r step:

V j . k  Ui " j , k  " W ^ (Fk “ Fk -1 ) H  k

+ (Gk ” Gk -1 } W  k + (Hk " Hk-1* H  k^. . * (4 .4b)
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fo r the corrector step:

u? l * '  ?  " C ' . k + 5i . j , k  -  ^ C[(Fw  -  V  § k

+  ' V i - G k » f k  +  < H k + i  -  h k > H  > •  < * • * >
* J

Fluxes are computed by a forw ard-d ifference approximation fo r  the 

pred icto r and a backward-difference approximation fo r the co rrec to r. 

Therefore, the algorithm  is  second-order accurate in space. More 

d e ta ils  can be found in [1 2 -1 4 ].

The solution is  stable i f  the time step o f each operator does not 

exceed the allow able step s ize fo r th a t operator. The f in ite -d if fe re n c e  

scheme is  consistent i f  the sums o f the time steps fo r each operator are 

equal. The solution is  second-order accurate i f  the operators are 

applied sym metrically [1 2 -1 4 ].

This method has a tim e-step s ta b il i ty  l im i t ,  but there is  no 

rigorous s ta b i l i ty  analysis a v a ila b le . A commonly used conservative  

tim e-step is

+ 1 + l , ) ] ' 1 (4 .5 )
J  Ax Ay Az

where c is  the local speed of sound. This is  v a lid  fo r cartes ian  

coordinates. Using Fourier s e rie s , a s im ila r equation is  derived fo r  

general c u rv ilin e a r  coordinates in  Appendix B

A t < min [-----------------------------— - -------------« t t 7 t \  » (4 *6a>
*  |u5x + v5y + ws2 | + c U x + 5y + q )

AT < min [---------------------------- ■—  ------*------- tk------- *  ■ .a ] , (4 .6b )
|unx + vt) + wti2 | + c(t)x + n + q2 )
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At.. < min [-----------------------------------~ ------5--------5------- 3 -1 in ] .
 ̂ |UCZ + VCy + W Cj + C ( ^  + Cy + ^ ) l / k

(4 .6 c )

In the supersonic and hypersonic regions, there ex is ts  large  

gradients which requ ire  a very fin e  grid  to resolve them. Most c e n tra l-  

difference methods admit a solution which has sawtooth or plus-minus 

waves w ith the shortest wave length th a t the grid  can support. In the 

case of a nonlinear problem, these short waves in te ra c t ,  vanish, and 

reappear again as d is to rte d  long waves, or o s c illa t io n s . These 

o s c illa tio n s  eventually  cause the solution  to blow up i f  they are not 

resolved. These numerical o s c illa tio n s  are caused by truncation  e rro r  

and can be reduced by g rid  refinem ents. The o s c illa t io n s  of "low 

frequency" can be suppressed by adding a fourth-order damping term. A 

common damping used is  pressure damping. This is  usually  expressed in  

cartesian coordinates as

where

.3  5 r l vJ  + c - 2 
*Jl ° J L  M T  1

- a „  At„ & 'r T F

4P a 6:

T F

T F

a 6;

a 6,

a -  P au -i
77x" i] 5L = 1 , 2 ,3

2
_ a p _ jP1+l,j,k “ 2 Pi,j,k + Pi-l,j,kJ

a lPi+l,j,k + 2 Pi,j,k + Fi-1,j,k *

_ o2 p _ |Pi,j+l,k 2 Pi»j»k + Pi ,j—1, k J
a n2 lPi,j+l,k + 2 Pi»J»k + pi,j-l,ki

a2 p !Pi,j,k+l ‘ 2 P. . . + P. . i .1 i»J»k i,j,k-l!
ac2 lPi,j,k+l + 2 P. . . + P." ' i»J»k i , J, k-1'

(4 .7 a )
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The la s t  term in Eq. (4 .7 a ) is  computed by a fo rw ard -d iffe rence  

approximation fo r the p red ic to r step and a backward-difference  

approximation fo r the correcto r step . I t  is  common to use only an 

approximation of the second d e riv a tiv es  of pressure in  the transformed 

coordinate system, instead o f using the actual rigorous transforma­

tio n s . The use of covarian t v e lo c it ie s  may ra ise  problems fo r complex 

grid topologies. One remedy fo r  general c u rv ilin e a r coordinates is  to 

use contravarian t v e lo c itie s  defined by

U = (Cxu + 5yv + Szw) (x| + y |  + z \ ) l l Z

V = (n u + n v + n w) (x2 +  y 2 + z 2 ) 1/2 (4 .7b)
A  y  t .  T] TJ T|

W = (Cxu + Cyv + C2w) (x2 + y 2 + z 2c) 1 /2

To implement Eq. (4 .7 a ) ,  f lu x  F in  Eqs. (4 .2 a )- (4 .2 c ) can be replaced by

c aC 82 P IUI + c 9U . . . .

Flux G in Eqs. (4 .3 a )- (4 .3 c )  can be replaced by

r  an a 2 P Iv I  + C aO . .  . . .

G ' W  T -T 7  " v 4 z ; i7 2 T R r  ’ (4 ‘ 8b)
a 6‘  (g )

Flux H in Eqs. (4 .4 a )- (4 .4 c )  can be replaced by

u _ “c a2 P . |W| + c au I A
H W  ■[■g33;'17'2 dC * (4 *8c)

The equations fo r g11, g22 and g33 are defined in  Eq. (A .1 0 ) , and U, V 

and W are defined in  Eq. (4 .7b )

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C hapter 5

INITIAL AND BOUNDARY CONDITIONS

In computational f lu id  dynamics the i n i t i a l  conditions usually  

correspond to a real s itu a tio n  for a tra n s ie n t problem, or a rough guess 

fo r a steady s ta te  problem. In p ra c tic e , i n i t i a l  conditions are

obtained from experiments, empirical re la t io n s , approximate theories or 

previous computational re s u lts . An improper in i t i a l  guess may re s u lt  in  

generating u n re a lis tic  strong trans ien t waves which propagate throughout 

the computational reg io n , dominating the flow f ie ld  and eventua lly  

leading to a so lution  fa i lu r e .  An im portant requirement fo r the i n i t i a l  

conditions is  that they should be physica lly  as close as possible to the 

actual nature o f the flow f ie ld  in the region under study. This w i l l

minimize the number o f ite ra tio n s  required fo r convergence. An

a ttra c tiv e  approach is  to in i t ia l iz e  the e n tire  flow f ie ld  with a crude

and simple guess (e .g . ,  free  stream c o n d itio n ). During the course of 

the computation, both body and upstream boundary conditions are changed 

in  a gradual manner to th e ir  f in a l values over a prescribed number of 

ite ra t io n s . In the present study, th is  technique is  applied in  only one 

step which is  equ iva lent to impulsive i n i t i a l  conditions.

I t  is  equally  important to implement a r e a l is t ic ,  accurate and 

stable method to determine boundary cond itions. The ap p lica tio n  o f 

certain  conditions may cause numerical in s ta b i l i t y  even though the flow  

is  physically  s ta b le . Most of the boundary conditions c u rren tly

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



31

implemented are drawn mainly from in tu i t io n ,  simple a n a ly tic a l 

expressions, wind tunnel experiments and computational experim entation. 

In the selection of boundary conditions, consideration should be given 

to the follow ing c r i t e r ia :  convergence, s t a b i l i t y ,  computer time and 

above a l l  the physical ju s t if ic a t io n . For the B utle r wing case, there  

are fiv e  d iffe re n t boundary conditions. They are upstream, downstream, 

outer, so lid  boundaries, and symmetry.

5.1 Upstream Boundary Condition fo r a B utler Wing

For the case of an H -g rid , the upstream boundary is  located a t  s ix  

grid point spacings ahead of the nose o f the wing. The follow ing  

undisturbed free stream conditions are assumed fo r  th is  boundary

■ ~u-  • i 5- 1’

For the case of an 0-type grid , the upstream boundary is  set a t  

f iv e  percent of the chord from the t ip  o f the wing to avoid the point 

s in g u la r ity . The conical assumption has been made fo r th is  boundary

[1 6 ]. Flow is  said to be conical i f  the physical conditions such as 

pressure and ve lo c ity  do not vary with position along any ray through a 

poin t, re ferred  to as the vertex . For th is  case, the viscous-conical

solutions are obtained fo r a cone a t the proper angle of a ttack . This 

is  done by creating a conical grid which has s tra ig h t lin es  (rays) from 

the vertex (F ig . 5 .1 ) .  Then, the conical Navier-Stokes equations are 

integrated fo r the middle plane (plane B), then planes A and C are set

equal to plane B. This procedure is  repeated u n til  convergence is

reached. This so lution  is  va lid  provided the wing is  s u ff ic ie n t ly  

slender.
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Fig. 5.1 Conical grid
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5 .2  Downstream Boundary Conditions fo r a B utler Wing

A zero g rad ien t in  the ^ -d ire c tio n  (p a ra lle l to the primary 

d irec tio n  of flow ) is  assumed fo r the downstream boundary, i . e . ,

SU
■5S = 0 . (5 .2a )

IL , j , k

A backward-difference is  used to approximate the Eq. (4 .2 a ) which 

resu lts  in

DIL , j ,k  = DI L - l , j , k  * (5 * 2b)

5 .3  F a r - f ie ld  Boundary Conditions fo r a B utler Wing

The outer boundary is  located fa r  away from the body to avoid any 

influence on the in te ra c tio n  region. Presently, a zero normal grad ient 

of fluxes is  assumed fo r th is  boundary, i . e . ,

5U
= 0 . (5 .3a )

1,JL,k

S im ilar to the down stream boundary cond ition , a backward d iffe re n ce  is  

used to approximate Eq. (5 .3 a ) which re su lts  in

bi,J L ,k  = bi , J L - l ,k  * (5 * 3b)

5 .4  S olid -W all Boundary Conditions fo r a B utler Wing

The w alls  are assumed to be impermeable and n o -s lip  boundary 

conditions are ap p lied , there fo re , a l l  v e lo c ity  components are assumed 

to be zero . S im ila r ly , the wall is  assumed to have a constant 

temperature Tw. A zero normal pressure grad ient is  assumed fo r  the 

solid  surface, i . e .
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ap
an = 0 . (5 .4 )

i , l , k

This appears to be a boundary-layer approximation ( i . e . ,  a zero normal 

pressure g ra d ie n t). I t  is ,  however, a much m ilder approximation, since 

constant pressure is  not applied through the boundary lay e r but over one 

grid lin e  in  the boundary la y e r . This approximation has yielded stable  

computation fo r both the non-separated and separated boundary layers

[1 7 ]. For general c u rv ilin e a r  coordinates, Eq. (A.25b) can be used to 

express Eq. (5 .4 ) as

dP _  ^ x  ^ x  +  ^ y  ^ y  +  ^ z  ^ z  D A ^ x  +  ^ y  +  vz n

K >X ly I Z J \  lx fy IZ J

C T) +  C T] +  C  T)A x 'x y 'y z z p 0 . .
;  7 9 1 /2  PC ' (5 .5a )

K  + "y *  ^

This equation is  approximated using a c e n tra l-d iffe re n c e  approximation 

on the wall surface, and a second-order backward-difference approxima­

tion normal to the w a ll.

Pi , l , k  = t 4 Pi ,2 ,k  " Pi , 3 , k  + 2 ( C2 (Pi+ l ,2 ,k  " Pi - l , 2 , k )

+ C1 (Pi ,2 ,k + l  " Pi , 2 , k - 1 ) ^ /3  ’ (5 *5b)
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where
n23r  -  9 

1 27
9

(5 .5c )
n12r  = 9 

l 2 ” 27 ‘ 
g

g12, g23 and g22 are defined by Eqs. (A .9 )- (A .1 0 ) . Then, density is  

computed based on pressure and w all temperature. At the w a ll ,  a l l  

boundary conditions are second order accurate and are s a tis fa c to ry  even 

fo r a skewed g r id . Leading-edges o f the wing have high curvatures near 

the back o f the wing, therefore the normal pressure may not be equal to 

zero. Consequently, the above boundary condition may not be p h ys ica lly  

v ia b le . However, the resu lts  in d ica te  they are accurate enough fo r  th is  

problem.

In the case of H -grid , a zero gradient in the r i-d ire c tio n  is  

assumed fo r the symmetry boundary, i . e .

U  I = 0 . (5 .6a )
' i . l . k

A backward-difference approximation is  used to approximate the Eq. 

(5 .6a ) which resu lts  in

Ci , l  ■ 'Ui , 2 , k  '  <5 ' 6b>

Also, the v e lo c ity  components normal to th is  boundary is set equal to 

zero

w = 0 . (5 . 6c)
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5.5 Boundary Conditions fo r Blunt Leading-Edge

There are four boundaries in the computational domain w ith fiv e  

d if fe re n t  boundary cond itions. They are upstream, downstream, outer, 

so lid  and symmetry boundary conditions. The top boundary (j=JL) 

contains the upstream and the outer boundaries. The upstream boundary 

condition is  assumed to be the same as the freestream condition which 

can be expressed as

"UJL,k = "U» * <5- 7>

S im ilar to the previous case, the outer boundary is  located fa r  away 

from the body to avoid any influence on the in te ra c tio n  reg io n . Using a 

backward d ifference approxim ation, boundary condition fo r  the top 

boundary can be expressed as

V k  '  V : , k  • (5 -8 >

A zero gradient in the C -d irec tio n  is assumed fo r the downstream 

boundary. Using a backward-difference approximation, the fo llow ing can 

be w ritten

'Uj,K L  = Cj,K L - l  '  <5-«>

At the w a ll ,  a l l  v e lo c ity  components are assumed to be zero . A zero 

normal pressure gradient is  assumed fo r the so lid  surface, which can be 

expressed as

Pl , k  -  [4 P2,k -  P3 ,k  + 2 C3 (P2 , M  -  P2 ,k -1 > ] /3  • <5- 10>
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where

4 ----------r ~ 2 --------
4  + \

A zero grad ien t in  the y -d ire c tio n  is  assumed fo r the symmetry 

boundary, a p p lica tio n  o f a backward-difference approximation y ie ld s  the 

f o l1owi ng

Dj , l  = ~Uj , 2  * (5 .11a )

Also, the v e lo c ity  component normal to th is  boundary is  set equal to

zero

v = 0 . (5 .11b )
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Chapter 6

ADAPTIVE GRID GENERATION

For hypersonic flow about b lunt bodies (F ig . 2 .3 ) ,  the temperature, 

pressure and density of the flow increases almost explosively across 

shock wave. At the same time, curved shock waves are close to the 

body. Numerical simulations of th is  phenomena have been a great 

challenge to computational f lu id  dynamics researchers. Presently, there  

is a great deal of in te re s t in improving the q u a lity  of numerical 

simulation techniques and grid adaption is  one way to achieve th is  goal.

As stated e a r l ie r ,  grid generation is  the f i r s t  step in the 

numerical solutions of p a rtia l d i f fe r e n t ia l  equations fo r complex 

geometric domains. B as ica lly , grid  generation is  the creation o f 

boundary-fitted  c u rv ilin e a r  coordinates. The second step is  the

construction of d iffe ren ce  equations fo r  the p a rtia l d if fe r e n t ia l

equations. I t  is  apparent th a t the accuracy o f f in i te  d iffe rence

solutions depends on the fineness of the g r id . Therefore, the f in e r  the 

g rid , the more accurate the numerical so lution  w i l l  be. Also, the

accuracy of so lutions depends on the reso lu tion  of the solution  

g rad ien t. The presence o f large gradients causes the error to be large  

in the d iffe ren ce  approximation of d e r iv a tiv e s . In the presence of a 

shock wave, more a r t i f i c i a l  d iffus ion  must be added to re ta in  adequate 

smoothness of the so lu tions. Therefore, there is  a need for schemes th a t  

can resolve large gradients without adding ad d itional grid po in ts . An
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adaptive scheme moves the grid points to regions of high grad ients, when 

the locations o f these gradients are not known a p r io r i .  Also, an 

adaptive method reduces the to ta l number o f grid  points required to 

achieve a given accuracy, but i t  requires more computer tim e. In some 

instances, the computer time makes th is  method im p rac tica l. The ideas 

used in  the construction of adaptive grid techniques are lim ited  only by 

one's im agination; and any scheme th a t works in the sense of providing a 

b e tte r solution  is  a good one. The u ltim ate  answer to numerical 

solutions of p a r t ia l  d if fe re n t ia l equations may well be to dynamically 

adapt g rid s , ra th er than to devise more e laborate d iffe rence  

representations and solution methods [1 1 , 18].

6.1 L ite ra tu re  Survey

Adaptive methods have been used in the solutions of ordinary

d if fe re n t ia l  equations. In order to control the local truncation erro r  

[1 9 ], v a ria b le -s te p  in it ia l-v a lu e  problems are solved by ad justing the 

step s ize as the in tegration  advances. Adaptive methods have also been 

implemented fo r  solving equations of motion in conjunction w ith the 

method of lin es  [2 0 ]. In th is  case, the time step is  autom atically  

adjusted to control local e rro r. S im ila r ly , adaptive methods have been 

used to solve boundary value problems [2 1 -2 6 ], An optimal g rid  fo r a 

tw o-point boundary value problem can be determined e ith e r  im p lic it ly  or 

e x p l ic i t ly .  In the im p lic it  approach, the weight function depends upon 

the so lu tio n . As a re s u lt the o rig in a l boundary value problem is

converted in to  an augmented system in which the dependent variab les and

the grid  are computed simultaneously. In the e x p l ic it  approach, the

weight function does not depend on the so lu tion . Instead, i t  depends
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upon a previously calculated so lu tio n . In the im p lic it  approach, a 

nonlinear tw o-po int boundary value problem should be solved even fo r  a 

lin e a r  problem. Im p lic it  techniques do not preserve the lin e a r /n o n ­

lin e a r  character o f the o rig ina l problem. Moreover, even fo r the 

nonlinear problem, the augmented system is  usually more d i f f i c u l t  to 

solve than the o rig in a l problem. On the other hand, the e x p l ic i t  

technique preserves the lin ea r/n o n lin ea r character of the o rig in a l two- 

point boundary value problem.

Adaptive schemes are divided in to  two basic categories: 

d if fe re n t ia l  and a lg eb ra ic . D if fe re n t ia l methods are based on a 

v a ria tio n a l approach. B rackbill and Saltzman [27-30] have developed a 

technique for constructing adaptive grids using a varia tio n a l approach. 

In th e ir  scheme, a function which contains a measure of grid smoothness, 

orthogonality  and volume varia tio n  is  minimized by using a v a r ia tio n a l 

p r in c ip le . The smoothest grid can be generated by solutions o f Laplace 

equations which are b e tte r known as e l l i p t i c  systems [3 1 -3 2 ]. This  

approach ignores the e ffe c ts  of o rth o g o n ality , and i t  is  very slow. 

This method has been modified fo r b e tte r  e ffic ie n c y  by dropping the 

second d e riv a tiv e  terms in one coordinate d irec tio n  [3 3 ]. This makes 

the equations p arab o lic , therefore they can be solved by a marching 

technique. A method which considers the orthogonality and volume 

varia tio n  has been developed by Steger and Sorenson [3 4 ], This method 

is  widely known as the hyperbolic method, and i t  can be solved by a non­

i te ra t iv e  marching technique. The v a r ia tio n a l approach provides a s o lid  

mathematical basis fo r the adaptive methods, but the Euler-Lagrange  

equations must be solved in addition  to the o rig in a l governing 

d if fe r e n t ia l  equations. On the other hand, an algebraic method requires  

much less computational e f fo r t ,  but the g rid  may not be smooth.
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Rai and Anderson [35-40] have developed an algebraic technique 

where the g rid  movement is  governed by estim ates o f the local e rro r  in  

the numerical s o lu tio n . This is  achieved by requ iring  the points in  the 

large erro r regions to a tt ra c t  other points and points in the low e rro r  

region to repel other po in ts . Nakahashi and Deiwert [41 ] have formu­

lated  an a lg ebra ic  method which is  based on the v aria tio n a l p r in c ip le .  

To reduce the o vera ll solution e rro r , a spring analogy is  used to 

re d is tr ib u te  the grid  points. In th is  case, o p e ra to r-s p litt in g  and one­

sided contro ls fo r  the orthogonality and smoothness are used to make the 

method p ra c t ic a l, robust and e f f ic ie n t .  Dwyer [42-45] has used an 

adaptive method in  which the points are moved along one set of the 

o rig in a l coordinate lin es  in  response to the evolving gradients in  the 

physical s o lu tio n . The analysis shows th a t  the percentage change in  a 

dependent varia b le  can be determined a p r io r i .  Improvement in speed by 

an order o f magnitude is  obtained, but some problems with excessive 

skewness are encountered.

G enerally , dynamic adaption can be performed in two ways. One is  

to keep the computational space fixed  and include the grid  speed in  the 

flow f ie ld  equations. This is  an ideal method to use fo r unsteady flow . 

The second way is  to set the grid  speed equal to zero and in te rp o la te  

the solution onto the new grid a fte r  each adaption. The f i r s t  way is  an 

ideal method to use in unsteady flow w hile the second way is  eq u iva len t 

to solving a sequence o f boundary-value problems and is  an economical 

way to tre a t  steady flows where solutions are  approached asym pto tica lly . 

In the second approach i t  is  generally s u ff ic ie n t  to adapt ju s t  a few 

times during the course of the computation. In th is  approach, the g rid  

d is tr ib u tio n  a t  time N+l is  determined from time N. Dwyer adapts the
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grid  points a f te r  each in teg ra tio n  step or a f te r  a selected number o f 

steps [4 2 ]. However, the grid  speed can be obtained by postulating a 

law governing i t  which is  based on some solution p ro p e rties . These 

equations can be in teg ra ted  w ith the governing p a r t ia l  d if fe re n t ia l  

equations to y ie ld  the new grid  d is trib u tio n  [4 6 ] ,  The advantage of 

th is  technique is  th a t the location of grid points and grid  speed are  

time accurate.

The l ite ra tu re  survey indicates that most techniques adapt to ju s t  

one variab le . This means th a t the weight function is  based on the 

solution  of one varia b le  only. However, the so lutions of equations of 

motion produce several dependent variab les . Viscous-hypersonic flow  

over a blunt-body has large gradients in pressure, v e lo c ity , e tc . in 

d if fe re n t  parts of the flow f ie ld .  For instance, there is  a large  

gradient in pressure near the shock region, and a t  the same time there 

is  a large gradient in  v e lo c ity  near the s o lid  body. Therefore, there 

is  a need for the development of an e f f ic ie n t  grid  adaption method which 

u t i l iz e s  several variab les  simultaneously.

6 .2  Methods of Grid Adaption

One reason to use grid  adaption is  to minimize the e rro r over some 

domain by rearranging the g r id . Calculus of v a ria tio n s  can be used to 

perform th is  m in im ization . In general, a weighted in te g r a l ,  which is  a 

measure of some grid  or solution property over some domain, can be 

expressed as

I  = /  W d V, (6 .1 )
V
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where W is  the weight function to be m inimized. The selection o f W may 

vary from problem to problem. There is  a co llec tio n  of d e fin itio n s  fo r  

W in [ 1 ] ,  The weight function can be based on grid  properties such as 

cell-volum e, the average of the square o f diagonal lengths, the c e ll  

area/volume r a t io  and c e ll skewness [3 3 ] ,  There exists a d if fe re n t ia l  

equation which minimizes the in tegra l I  in  Eq. (6 .1 ) .  This d if fe re n t ia l  

equation is  c a lle d  the Euler-Lagrange equation [4 7 ], The Euler-Lagrange 

equation can be found in  [27 -30 ].

6.3 Multidimensional Grid Adaption

B rackbill and Saltzman [27-30] have developed a technique based on 

a v aria tio n a l approach. In th e ir  scheme, a function which contains 

measures of g r id  smoothness, o rth o g o n a lity , and volume v aria tio n  is

minimized. To maximize the smoothness o f the g rid , the fo llow ing

in tegral must be minimized

3
I  = /  2 V l 1 • 7 C1 dY . (6 .2 )

s V 1=1

This is  simply the sum of the squares o f ce ll-edge lengths. S im ila r ly ,  

orthogonality can be acquired by minimizing the in tegral I 0

I  = /  (? 51 • V dV , (6 .3 )o v

with ( i , j , k )  c y c lic . This in tegra l vanishes for an orthogonal g rid .

The concentration or cell-volume v a ria tio n  can be obtained by minimizing  

the in tegra l

I w = J W J dV , (6 .4 )w v
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where W is  a specified  weight fu n ctio n . This causes the c e lls  to be 

small where the weight function is  la rg e . The grid generation system 

which provides smoothness, orthogonality  and concentration is  obtained  

by minimizing the to ta l in tegral I which is  a lin e a r combination o f I s, 

I 0 and Iw

1 ’  ! s + \  'o  + \ -  '  <6 ' 5>

The competing features such as smoothness, orthogonality , and c e ll 

volume v a ria tio n  can be stressed by the proper choice o f the c o e f f i ­

cients X and X . For example, a la rg e  X n  w il l  re s u lt  in  a nearly0 W 0
orthogonal g rid  a t  the cost of the smoothness and the concentration.

The Euler-Lagrange equations fo r the sums of those ind ividual in te g ra ls

form the system o f p a rtia l d i f fe r e n t ia l  equations from which the

coordinate system is  generated. The equations are q u a s i- lin e a r, second-

order p a r t ia l d if fe re n t ia l equations w ith  co e ffic ie n ts  which are

quadratic functions of the f i r s t  d e riv a tiv e s  [2 9 ]. This v a ria tio n a l

form ulation is  equivalent to Winslow's method [3 1 ] where X and X areo w
set equal to zero . The Euler equations are those given by Winslow, and 

th e ir  so lution  maximizes the smoothness. This is also used by Thompson 

e t a l .  [3 2 ] ,  The additional terms a l t e r  other c h arac te ris tics  o f the 

mapping in a s im ila r  way. The c e ll -s iz e  v a ria tio n  and skewness can be 

contro lled  by proper selection of I s , I Q and I w. The use o f a 

v aria tio n a l approach provides a so lid  mathematical basis fo r  grid  

adaption. But, the Euler-Lagrange equations must be solved in ad d itio n  

to the governing equations o f f lu id  motion. For fu rth er in form ation , 

readers are re fered  to exce llen t a r t ic le s  by Thompson [11 , 18].
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6 .4  One-Dimensional Grid Adaption

The Euler-Lagrange equation Eq. ( 6 .5 ) ,  is  general and capable of 

adapting grids simultaneously in m u ltip le  dimensions. When the so lution  

varies predominately in  a single d ire c tio n , one-dimensional adaption can 

be applied with the g rid  points constrained to move along one fam ily  o f

fixed  c u rv ilin e a r  coordinate lin e s . The fixed  fam ily o f lin es  is

established by generating a fu l l  m ultidim ensional grid using any 

standard grid  generation technique. The points generated fo r the 

i n i t i a l  grid  together w ith some in te rp o la tio n  procedure, e .g . ,  cubic or 

lin e a r  in te rp o la tio n , serve to define the fix e d  lin e s  along which the 

grid points w i l l  move during the adaption. This is  done e x p l ic i t ly ,

therefore there is  no need to solve any d if fe r e n t ia l  equations.

A technique c a lle d  eq u id is trib u tio n  is  developed to improve the 

solutions of boundary value problems [2 1 -2 6 ]. This technique has proven 

to be e ffe c tiv e  and e f f ic ie n t .  This technique is  used to minimize the 

erro r by re d is tr ib u t in g  grid  points such th a t a weight function is

constant over each in te r v a l.  The Euler-Lagrange equation is

x^ W = constant . (6 .6 )

This minimizes the fo llow ing  in tegra l

1 ?
I i  = /  W(C) Xp dC . (6 .7 )

0 %

Equation (6 .7 ) represents the energy of a system o f springs w ith the 

spring constant W (£), spanning each g rid  in te rv a l.  The weight 

function is  associated w ith the grid  points themselves and not w ith
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th e ir  lo catio n s . An a lte rn a tiv e  viewpoint re su lts  from in te g ra tin g  over 

x, instead of 5 , i . e . ,  summing over the g rid  in te rva ls  ra ther than over 

the grid po in ts . This can be expressed as

r1 ?x
* 2  ^  H Tx ) '~ d x  * ( 6 , 8 )

The Euler-Lagrange equation for th is  form ulation is  given by Eq. (6 .6 ) .  

E is  considered to represent the p o in t density . This v a r ia tio n a l
A

problem represents a minimization over the density of the g rid  points  

subjected to a weight function . This can produce smooth grid  d is tr ib u ­

tions. Here the weight function W(x) is  associated with the lo ca tio n  of 

grid po in ts . I f  the weight function is  associated with the g rid  points  

themselves ra th e r than th e ir  lo catio n s , W = W(£). Equation (6 .6 )  is

the Euler equation fo r the follow ing in te g ra l

! 3 " {  tu rn - ]2 d? (6 - 91

where § is  a measure of the smoothness o f the grid  d is tr ib u t io n , with  

the emphasis placed on smoothness in c e rta in  regions. This is  inverse ly  

proportional to the weight function W (g). Equation (6 .6 ) is  the E u ler- 

Lagrange equation fo r the in teg ra ls  in  Eqs. (6 .7 -6 .9 )  which can be

w ritten  as

x
?(x) = /  W(t) d t . (6 .10 )

0

Equation (6 .10 ) can be w ritten  in terms o f arc length as

s
5 (s ) = /  W(t) d t . (6 .1 1 )

0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



47

The weight function is  used to reduce the grid  point spacing where W is

la rg e , and the w eight function should be some measure o f the e rro r .

White [26 ] has suggested the following form o f the weight function

o l/2m
W = [a + ||J | ] , (6 .12 )

where a is  constant. With m=l and a=0, th is  becomes

W = |Ux | . (6 .13 )

A combination of th is  equation and Eq. (6 .6 ) y ie ld s ,

= Constant . (6 .14 )

This choice replaces the grid points so th a t the same change in  the 

solution occurs a t  each grid  in te rv a l. This is  simply the solution  

grad ient. Taking n=l and a=l y ields

W = V l  + | u j k . (6 .15a)

Combination of E q .(6 .15a) and Eq. (6 .6 ) resu lts  in

/ I  7 ~
x|  + =  S l  =  Constant • (6.15b)

This produces a uniform d is trib u tio n  o f arc lengths on the solution

curve. W hite's re s u lts  [25 ] indicated th a t the arc length form is  

favored. The disadvantage of th is method is  th a t the weight function  

near the extreme s o lu tio n , i . e .  Ux=0 lo c a lly ,  is  treated  as a f l a t

region. Concentration near the solution extreme can be achieved by 

incorporating some e f fe c t  of the second d e riv a tiv e  (Uxx) in to  the 

weight function [4 2 ] such as
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W = 1 + a f(U x) + p g(Uxx) , (6 .16a )

where a and p are pos itive  parameters. Equation (6 .10 ) can be

rew ritten  in normalized form as

x
/  W(t) d t

5 (x ) = - j ---------------  . (6.16b)
/  W(t) d t 
0

With the second d eriva tive  terms included, the value of a must be 

co n tin u a lly  updated to keep the same re la tio n a l emphasis or concentra­

tio n . Therefore, a system o f two equations and two unknowns must be 

solved fo r each fixed grid  lin e  [4 3 -4 5 ]. I t  w i l l  be shown la te r  th a t 

through the reform ulation of Eq. (6 .16 b ), the parameter can be found 

d ire c tly  or the matrix inversion can be e n tire ly  avoided.

6 .5  One-Dimensional Grid Adaption With Several Variables

Flow equation solutions consist of several v a ria b le s . Therefore, 

the weight function should also be a function of more than one v a ria b le . 

I t  is  desirab le  to devise a scheme in which grid  points can adapt to 

several variab les  with control of the magnitude o f adaption fo r each 

v a ria b le . In the case of high-speed flow , ve lo c ity  has large gradients  

in  some regions where pressure is  constant or vice versa. In general, 

the weight function can be expressed as

N
W = 1 + E b. f . (6 .17 )

i= l  1 1

where N is  the number of variab les , b̂  are constants, f^ are variab les  

or th e ir  d e riv a tiv e s , and 1 is fo r u n ifo rm ity . A su b stitu tion  o f Eq. 

(6 .17 ) in to  Eq. (6.16b) resu lts  in
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N
S + _Z bf F. (S)

CCS) = -------------I j j i -----------------------  , (6 .18 )

+ Z b4 F4 ( S _ JllldA

where

max i= l  1 1 m

S
F, (S) = /  f .  ( t )  d t .
1 0 1

I t  should be noted th a t Eq. (6 .18 ) is  fo r adapting along a fix ed  grid  

l in e .  To ensure th a t ?(S) increases m onotonically, bf and f f  should be 

p o s itiv e . In order to keep the same re la t iv e  emphasis of the concen­

tra tio n  along each grid  l in e ,  bf should be computed based on some

percentage of the g rid  points being a llocated  to each v a r ia b le . The

percentage of grid  points assigned to a p a rtic u la r  function f f  can be

expressed as

bi F i {Smax)Rj = -------------^ ----- — ----------- , j = l , 2 , . . . , N  . (6 .19 )

S + E b. F. (S ) max i=1 l i max

Rearranging th is  equation re su lts  in

[ A . . ]  {b ,}  = {c .}  , (6 .20 )
w * J  J

where

F- (S ), _ □ i max . , .

= R. -  1 i  = j ,  c . = -  R. S /F .  (S ) .j  3 3  max 3 max

Therefore, a system of N equations and N unknowns must be solved fo r  

each fixed  grid  lin e  (N is  the number of v a r ia b le s ). This can be 

avoided by the reform ulation of Eq. (6 .1 8 ). The crucia l steps are 

outlined here. Equation (6 .1 9 ) can be rew ritten  as
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bJ [Sn,ax + b1 F1 (Smax>] ‘

A su b stitu tio n  of Eq. (6 .21 ) in to  Eq. (6 .18 ) re su lts  in

N R, F . ( S )
S + W E r " •/ g 1 i

 ̂ 4—1 i* ’ mav'
5(S)  =  h L - ^ — E E L  , ( 6 .22 )

^max + Wmax ^  ^i

where

N
W = [S + E b. F. (S )1 max L max .=1 i i  v max J

A summation of Eq. (6 .19 ) over a l l  j  values y ie ld s

N
E R. = 

j = l  J

N
E b. F. (S ) 

j=1 J J max7
R (6 .23 )

S + E b. F. (S ) max .=1 i i max

Rearrangement of Eq. (6 .23 ) resu lts  in

max
E b.  F. (S ) 

• _ 2  i i max

N
E

i= l  
71— (6 .24 )

1 -  E R. 
i = l  1

A su b stitu tio n  of Eq. (6 .24 ) in to  Eq. (6 .22 ) y ie ld s

S r N N F . (S)
5 ( S ) = - r - ^ [ l -  E R ]  + E R — r ’  r . (6.25)

max i= l  1 i= l  V  max'
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This reform ulation avoids the need fo r continuous updating the b-j's to 

keep the same re la t iv e  emphasis on concentration. Applying this  

equation, grid points can be adapted w ith more than one variab le  without

any need fo r matrix inversions. Eiseman [48] proposed a very s im ilar

approach but did not e laborate on th is .

Presently, Eq. (6 .18 ) is  approximated by a trapezo idal ru le . For 

unequally-spaced data, th is  can be w ritte n  as

S , JL
F -(S ) = J f . ( t )  dt = 7  Z C (t . , + t . )  ( f . ( t . )  -  f . ( t .  -  1 )) ,

1 0 j= l

where

F .(0 )  = 0 .

In the in i t i a l  stages of the so lu tions, there e x is t  large o s c illa ­

tions in the flow and f lu id  p ro p e rties . Consequently, the adapted grid  

w ill  have these o s c illa tio n s  as w e ll. In order to have a smooth grid , 

these o s c illa tio n s  can be smoothed out w ith the fo llow ing  f i l t e r

fjk+1 “ (?Jk + ~rU ,k  + ?J-l,k * + • (6-25a)

where

r  = (y » z )T .

This is  equivalent to the Lapalace f i l t e r  which can be expressed as

^ -7  + - ^ = 0  . (6.25b)
ail ac

This s lig h t ly  reduces the e f fe c t  o f adaption, but i t  f i l t e r s  out low 

frequency o s c illa t io n s .
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In some physical phenomena lik e  shocks, the length o f d is c o n tin u ity  

is  of the order o f molecule s ize . I f  the weight function contains the 

d eriva tives  w ith respect to physical coordinates, the adapted g rid  tends 

to have a very small spacing. This can be corrected by reducing the 

e ffe c t  of the weight functions near the d is co n tin u itie s . Therefo re , the 

weight functions (f^ ) can be m u ltip lie d  by the following function

AS
‘  A T T "

(1 -  e min)

where ASm. is  some allowable minimum spacing. This function varies  min r a

from zero to one and is  proportional to the spacing. Also, th is  can be 

corrected by replacing the d eriva tives  o f physical coordinates w ith  the 

d eriva tives  of the computational coordinates.

A fte r the new adapted grid  has been created, the so lutions are 

in te rp o la ted  in to  the new grid d is tr ib u tio n . Presently, a piece-w ise  

lin e a r  sp line has been used. However, th is  may create some problems in  

the case of unsteady flow. E ither higher order in te ro p la tio n  should be 

used or the time derivatives of the g rid  po in t should be incorporated  

in to  transformed governing equations.
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C hapter 7

RESULTS AND DISCUSSION

In previous experiments [ 9 ] ,  the surface o il- f lo w  patterns over the 

Butler wing a t  various angles o f a ttack and a t  Mach number 3.5 show no 

signs of tra n s itio n  and the nature o f the o il  streak lin es  is  typical o f 

a laminar flow . Therefore, resu lts  are obtained only fo r laminar flow  

over a B utler wing a t  a Mach number of 3 .5 , Reynolds number o f 2x10^ 

(based on chord len g th ), fre e  stream s ta tic  temperature o f 390°R 

(216.67°K ), wall temperature o f 1092°R (606.67°K ), length of 0.80 f t  

(0.2438 m), sp ec ific  heat ra t io  —  of 1 .4 , sp ec ific  heat a t  a constant 

volume o f 4290 ( f t /s e c )^ /R , and a t  zero and ten degrees angle of a ttack . 

In th is  study, a two boundary grid  generation (TBGG) technique [13] is  

used. This method is  e s s e n tia lly  an a lgebra ic  method. The app lication  

of the TBGG method requires th a t the e n tire  body be s liced  in to  

d iffe re n t cross sections. These cross sections are obtained in the 

stream-wise d irec tio n  by a n a ly tic a l descriptions of the wing surface, 

(Eqs. 2 .1 a -2 .1 c ). Then, two types of g rid  are generated fo r th is  wing; 

the H-type and 0 -type . Then, resu lts  o f both cases are compared and 

discussed.

7.1 H-Type Grid

In th is  case, the e n tire  flow f ie ld  is  s liced  in to  f i f t y - f i v e

stations in the stream-wise d ire c tio n , and each s ta tio n  has 64x36 grid

points (F ig . 7 .1 ) .  There is  a to ta l o f 126,720 grid  points which take
53
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2.8 m illio n  3 2 -b it  words of primary memory (16 v a ria b le s ). The required  

computational time is  1.9x10“  ̂ s e c /g r id -p o in t/ite ra t io n  (2 .5  

s e c /ite ra tio n ) which is  typ ical fo r a CYBER 205 w ith two pipes. Results  

are obtained fo r  zero angle of a tta c k . The computed pressures are 

plotted in (F ig s . 7 .2 a -7 .2 c ). The pressure c o e ffic ie n t along the center  

lin e  is  shown in  F ig . 7 .2a. The re s u lts  are compared w ith a v a ila b le  

experimental and numerical resu lts  [6 - 9 ] ,  The resu lts  on the center 

lin e  are in  e x c e lle n t agreement w ith the experimental and previously  

obtained numerical resu lts  (Refs. 6 -9 ) .  A t 41.662 and 68.332 chordwise 

position , the pressure ra tio s  are p lo tted  against the conical span-wise 

coordinates y /x ta n (9 ) ,  (F igs. 7 .2 b -7 .2 c ) . They are in good agreement 

with experimental and numerical re s u lts . However, there are some 

discrepancies in  the resu lts  between 30° and 60°. This is  probably due 

to the fa c t th a t grid  lin es  are not orthogonal near those regions and 

th is  may be a d ire c t  consequence of the H-type g r id . Also in th is  case, 

the wing's leading edges are represented by a jag g ed -lin e , in other 

words grid  lin es  are not along the leading edges of the wing. This does 

not allow us to compute the boundary conditions using a second-order 

accurate form ula. Therefore solutions are not second-order accurate  

near so lid  boundaries.

7.2 0-Type Grid

For th is  case, the physical domain is  lim ite d  to 52 to 952 o f the 

wing. This is done to avoid any s in g u la r it ie s . The conical N avier- 

Stokes solutions are enforced for the upstream boundary which is  located  

a t  52 o f the wing. This solution is  obtained by the in teg ra tio n  o f the 

Navier-Stokes equations [16 ] for a conical grid  with proper boundary
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conditions. The wing is  sliced in to  forty-one s ta tions in the stream- 

wise d ire c tio n , and each station has 41x127 grid  points (F ig . 7 .3 ) .  

There is  a to ta l o f 213,487 grid points which take 4 .7  m illio n  3 2 -b it  

words of primary memory. Results are obtained fo r zero and ten degrees 

angle o f a tta c k .

Results fo r  zero angle of attack are compared w ith re su lts  obtained 

with the 0-type g r id , w ith resu lts  from the experiments and other 

numerical re s u lts  [6 -9 ] .  The computed pressure is  p lo tted  in Figs. 

7 .4 a -7 .4 c . The pressure c o e ffic ie n t along the center lin e  (F ig . 7 .4a) 

is  in good agreement w ith other numerical and experimental re s u lts . 

Nevertheless, there is  some discrepancy near the nose reg ion . This may 

be due to the fa c t  th a t the upstream solutions are based on the conical 

so lutions. But, these solutions match exactly  with resu lts  from H-type 

grids . This is  because the grid topology near the center l in e  is  the 

same fo r both g rid  types. At 41.67% and 68.33% chordwise p o s itio n s, the 

pressure ra t io  is  p lo tted  against the conical span-wise coordinates 

y /x ta n (0 ). They are in excellen t agreement w ith experimental and 

numerical re s u lts  (F igs. 7.4b, 7 .4c ). In add ition  they are much closer 

to the experimental resu lts  compared to the resu lts  obtained from the H- 

type g rid . This may be due to good grid  orthogonality  in  the case of an 

0-type g r id , and the wing's leading edges are represented by a s tra ig h t  

l in e .  On the th ick  sections near the nose the pressure is  highest on 

the cen terlin e  and f a l ls  toward the leading edge. Figure 7.4d shows the 

cross-flow  v e lo c ity  a t  5%, 23%, 41%, 59%, 77% and 95%.

The re s u lts  fo r ten degrees angle of attack are compared w ith  

experimental re s u lts . The computed pressure is  p lo tted  in Figs. 7 .5a- 

7.5d . At 17%, 30%, 50% and 70% chordwise p os itions, the pressure ra t io
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Fig. 7.4d Cross-flow veloci ty  vectors 

(zero angle of attack)
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Fig. 7.4d Continued
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Fig. 7.4e Streak l ines (zero angle of attack)
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is p lo tted  against the conical spanwise coordinate y /x ta n (0 ). They are  

in good agreement w ith experimental and numerical resu lts  (F igs . 7 .5 a - 

7 .5 d ). As in the previous case, on the th ick sections near the nose the 

pressure is  highest on the cen terlin e  and f a l ls  toward the leading edge, 

whereas near the t r a i l in g  edge the spanwise d is tr ib u tio n  is  more "wing 

lik e "  w ith the maximum pressure a t the leading edge. The change-over is  

shown by the pressure peaks in the pressure d is tr ib u tio n s  a t  x /c=0.5  and 

0.7 a t 10 degrees angle o f a ttack . There are some discrepancies near 

x/c=30%-50%; th is  may be due to the fa c t th a t Squire [9 ] has not used 

the exact model of the B u tle r wing. In order to mount the model in the 

wind tunnel, the lower surface is  d is to rted  to include a sting  

support. Figure 7.5e shows the cross-flow ve lo c ity  a t  5%, 23%, 41%, 

59%, 77% and 95%. These figures show a weak cross-wise separation on 

the suction side which is  confined to the body. At 59%, the cross flow  

has separated but a w e ll-d e fin ed  vortex is  not v is ib le . Squire [7 ] has 

performed a series of tes ts  to investigate  the e ffe c ts  of thickness on 

the long itud ina l c h ara c te ris tic s  of a d e lta  wing w ith d if fe re n t  aspect 

ra t io s . The tests  on the th ick symmetrical d e lta  wings have confirmed 

th a t the l i f t  curve slope decreases as the thickness increases. This 

loss of l i f t  is  associated with a weaker vortex system giving less  

nonlinear l i f t .  Squire [9 ]  also observed a p a ir of vortices a t  the 

t r a i l in g  edges, but there was no sign of any span-wise flow outboard of 

these v o rtices . The B utler wing has a round leading edge fo r most of 

i ts  length , and previous numerical experiments have indicated th a t flo w - 

f ie ld  solutions are inconsis ten t using both the Euler and the Navier- 

Stokes equations fo r th is  type of geometry [4 9 ] .  The problem appears to 

be the determination of the in i t i a l  location o f separation over the
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Fig. 7.5e Cross-flow veloci ty  vectors 
(ten degree angle of attack)
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Fig. 7.5e Continued
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Fig. 7 .be Continued
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Fig- 7.5e Continued
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Fig. 7.5e Continued
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Fig. 7 .b f  Streak lines (ten degree angle of attack)
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Fig. 7 .5 f  Streak lines (ten degree angle o f attack)
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suction s id e . I f  the leading edge is  sharp, there is  no problem since 

the separation lin e  is  along the leading edge. For a rounded lead ing - 

edge, the separation point is  not defined uniquely because the numerical 

dissipation  influences where the separation point occurs [4 9 ] .  The 

leading-edge separation fo r the rounded-edge may be a numerical 

phenomenon. I t  is  possible th a t th is  problem o f uniqueness occurs in 

th is  study as i t  does with a l l  o ther numerical experiments, having 

rounded leading edge and a r t i f i c ia l  d iss ip atio n  applied in the solution  

technique.

The question has been raised concerning the app lica tion  o f the 

Navier-Stokes equations in a flow f ie ld  study when only the pressure 

solution and streak lines are compared with experimental data. I t  is  

argued th a t the solution of the Euler equations would produce the same 

inform ation w ith  a high degree o f accuracy. This is  a le g itim a te  

argument i f  the sole purpose o f the study is  to c o lle c t in v is c id  

inform ation. However, we believe th a t the solution of the Navier-Stokes  

equations provides considerably more inform ation i f  there are enough 

grid  points in  the proper locations. Also, the solution of the N avier- 

Stokes equations provides experience fo r  the fu ture when computer speed 

w ill  be fa s t enough to handle the large number of grid po ints .

7.3 S ta tic  Grid Adaption

The second p art of th is  study concentrates on f in ite -d if fe re n c e  

methods in which the grid points adapt to the solution dynamically to 

obtain an accurate solution for hypersonic flow . A computer program has 

been w ritte n  to u t i l i z e  Eq. (6 .25 ) fo r  grid  adaption. P resently , th is  

code is  being run on the Network Operating System (NOS) and the Vector
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Processing System (VPS-32) a t  NASA Langley Research Center. Hypersonic 

flow over a b lun t nose is  a typ ica l te s t case in computational f lu id  

dynamics. This problem has a detached shock which should be resolved  

accu ra te ly , and the location  and the magnitude o f the shock are not 

known a p r io r i .  The g rid  should adapt as the so lution  progresses. This  

problem is  used to analyze and v e r ify  the adaptive method. The 

equations of motion are solved by the MacCormack method [1 2 -1 3 ] fo r  

hypersonic flow over a sm all-radius blunt-body w ith  the in c lin e d -p la te  

afterbody (F ig . 2 .3 ) .  The blunt leading edge is  a part of the panel 

holder which has been tested a t the Langley Research Center [5 0 ] .  The 

resu lts  are obtained a t  the fo llow ing conditions: free  stream Mach 

number of 6 .8 , a pressure of 9.26 l b / f t 2 , v e lo c ity  o f 6510 f t /s e c ,  

temperature of 375°R (s ta t ic  tem perature), Reynolds number o f 220,000, 

sp ec ific  heat ra t io  o f 1 .38 , universal gas constant o f 1771 f t 2/se c 2/R 

and a wall temperature o f 540° Rankine.

Two tes ts  have been performed: s ta t ic  adaption and dynamic

adaption. For s ta t ic  adaption, the solution has been obtained w ith  the 

fixed grid  points shown in Fig. (7 .6 ) .  Then, the grid points are  

adapted to two v a ria b les , the f i r s t  and the second d eriva tives  o f 

pressure. Results are shown in F ig . ( 7 .7 ) .  In th is  case, twenty 

percent o f the grid  points are a llocated  to f i r s t  and second d e riv a tiv es  

of pressure (R2=R2=20%). For the same case, F ig . (7 .8 ) shows adaption  

with Rj =R2=50%. In th is  case, a l l  the grid  points are a llocated to the 

f i r s t  and the second derivatives  of the pressure. This explains the 

large voids in the constant pressure regions. Figures 7 .7 -7 .8  lack g rid  

resolution  in the v ic in ity  of the so lid  boundaries. This is due to the 

constant pressure near the solid  boundaries. But Eq. (6 .25 ) can adapt
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Fig. 7.6 I n i t i a l  grid d istr ibut ion
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Fig. 7.7 Adapted grid (R^=R2~20%)
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Fig. 7.8 Adapted grid (R-j =1^=50%)
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to several v a ria b le s . Figure 7 .9  shows the grid points which are  

adapted to two variab les  —  pressure and v e lo c ity . The weight function  

consists of the f i r s t  derivatives  o f pressure, the v e lo c ity  and the 

second d e riv a tiv e  of pressure. Twenty percent of the grid  points are 

allocated  to each function , and fo rty  percent of the grid  points are  

a llocated  fo r u n ifo rm ity . This avoids the creation o f any void. I t  is  

noted th a t g rid  points are clustered near the shock and the s o lid  body. 

Therefore, i t  is  possible to resolve the pressure as well as the 

ve lo c ity  gradients in  the boundary lay e r reg ion . In F ig . (7 .1 0 ) ,  th ir ty  

percent o f g rid  points are a llocated  to the f i r s t  d e riv a tiv e  o f Mach 

number. I f  there was a chemical reaction  in process, some o f the g rid  

points could have been allocated for reso lv ing  the gradients o f the 

chemical species.

7.4 Dynamic Grid Adaption

The above procedure has been applied dynamically to the same 

problem. Figure 15a shows the i n i t i a l  grid  d is tr ib u tio n  fo r  th is  

problem. Figure 7.11 shows sequences o f grid  d is trib u tio n s  a t  a 

d if fe re n t  tim e. In th is  case, grid points are adapted to six  varia b les : 

the f i r s t  and second derivatives o f pressure, Mach number and 

v e lo c ity . Ten percent of the grid  points are a llocated  equally  to f i r s t  

d e riv a tiv es , and f iv e  percent of the g rid  points are a llocated  to th e ir  

second d e riv a tiv e s . F if ty - f iv e  percent o f the grid points are also  

allocated  to the u n ifo rm ity . A movie has been produced of th is  work 

which shows the dynamic adaption. A few frames are shown in F ig . 

(7 .1 2 ) .  They demonstrate how grid  points are a ttrac ted  toward high 

gradient regions and repelled  from low grad ien t regions.
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Fig. 7.9 Adapted grid (R-, =R2=R3=20%)
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Fig. 7.10 Adapted grid (Rc=30%)
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Fig. 7.11 Adapted grid (Dynamic)
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Fig. 7.11 Continued
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Fig. 7.11 Continued
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Fig. 7.11 Continued
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Chapter 8

CONCLUDING REMARKS

General form ulations are presented to in ves tig a te  the flow f ie ld  

over complex configurations fo r high-speed fre e  stream conditions. An 

advanced a lg ebra ic  method is  used to generate grids around these 

configurations. The computational procedure developed is  applied to  

investigate  the flow f ie ld  over a Butler wing. I l lu s t r a t iv e  re s u lts  

obtained fo r sp ec ified  free  stream conditions compare very w ell w ith  

ava ilab le  experimental and numerical re s u lts . Results are obtained fo r  

laminar flow over a B utler wing a t a Mach number o f 3 .5 , Reynolds number 

of 2 x l0 ® /ft (6 .5 6 x l0 6/m ), free  s ta tic  temperature of 390°R (216 .67°K ), 

wall temperature o f 1092°R (606.67°K ), length o f 0.80 f t  (0.2438 m) when 

the wing is  a t  zero and ten degrees angle o f a tta c k . Two types of grids  

have been generated fo r th is  wing; H-type and 0 -typ e . Results o f both 

cases are compared and discussed. The fu ture  plans to extend th is  study 

are to include the s tin g , use m ultiple g rid , d if fe r e n t  Mach numbers, and 

to include turbulence.

A grid  adaption method has been developed w ith the c ap a b ility  of 

adapting grid  points to several variab les . This method is  an a lgebra ic  

method, and has been formulated in such a way th a t there is  no need fo r  

any matrix in vers io n . The method is  used in  conjunction w ith the 

calcu lation  of hypersonic flow over a blunt-nose body. A movie has been 

produced which shows simultaneously the tra n s ie n t behavior of the

108
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so lu tion  and the grid adaption. The resu lts  indicate the v ia b i l i t y  and 

v a l id i ty  of the proposed method. The fu ture  plans for th is  technique

are to use th is  problem with a true unsteady problem, to study the 

e f fe c t  o f in te rp o la tio n , to consider more complex geometries and f in a l ly  

to adapt the problem in three-dimensions.
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APPENDIX A

MATHEMATICAL DETAILS FOR THE TRANSFORMED EQUATIONS

A .l C urv ilinear Coordinates

In covarian t coordinates system (x ^ ), the position vector o f a 

poin t from the o rig in  is  expressed as

r  = e.j x. = ei  + e2 x2 + e3 x3 (A . l )

where e  ̂ is  the covarian t base vector.

In the present study, covariant coordinates are labeled as x, y , 

and z ( i ,  3 , k) and contravariant coordinates are labeled as £ , h and 

C ( i ,  j ,  k ) . The covariant base vectors are defined as

where J is  the Jacobi an of transform ation. Magnitude of Jacobi an ( | j | )  

is the local value of the ra tio  of an elemental volume in the mapped 

(usually cube) c e ll to the corresponding elemental volume in  the 

physical (usually  d is to rted ) c e l l .
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The co n travarian t base vectors are defined as

i ax1

or
— ax.

?x ?y
71x ^y = [J ] ^ j >  . (A .3)
C Cx y

Position vector can be expressed e x p l ic it ly  in  terms of 

contravariant vector (x1); however, the in fin ite s im a l vector dr  ̂ can be 

expressed as

dr = X X  d x1 = e . dx1 . (A .4)
6x 1

Also the magnitude of arclength (ds) can be expressed as

(d s )2 = dr • dr (A .5)

Substitution o f Eq. A .4 in to  Eq. A .5 w il l  re s u lt  in

ds2 = (e.j • e j)  dxj dxj = g ^  dxi dx^ (A .6)

where g.^ is  ca lled  covariant fundamental m etric c o e ffic ie n ts .

These c o e ffic ie n ts  can be defined as

- I T  - 1g f 1  = U Y  CJ h  - ~ l  - _ 4  . ( A . 7)
J ax1 axJ

They are defined as

911 = 4  + 4  + 2 I  ’ (A*8a)

912 = 921 85 \  + H  \  + 2 S 2n ’ (A*8b)
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9 13 " g31 ~  x l x Z  +  y £ y C + ZC ’ (A .8c)

s22 = %2 + A * 4 ■

s 2 3 '  « 3 2  ‘  xn x c + y n H * \ zt ' (A .8e)

g33 = XC + yC + ZC * (A .8 f )

S im ila r ly , contravarian t fundamental metric c o e ffic ie n ts  are defined as

g1* - e 1 • eJ* = [J ] [J ]T = * L  . , (A .9 )

or

g11 = l 2x  + I *  + C2 , (A.10a)

g21 = g12 = ?x rix + Sy ny + r,z , (A.10b)

g13 = g31 = 5X cx + Cy + cz cz , (a . i o c )

99 9 9 9
9 = + \  + ’ (A .IOd)

g23 = g32 = nx Cx + ny Cy + nz Cz , (A .iO e)

33 9 2 2
g = S  + Cy + CZ * (A‘ 10 f)

Furthermore, there ex is ts  a unique re la tio n sh ip  between contra­

v aria n t and covariant fundamental metric c o e ffic ie n ts ,

i i  9rs gAs '  9r t  9Jls Gi i  Cofactor of g , .

  is^i— - i s ^ r  * ( f l - n )

where

GU  = g22 933 “ g23 * (A.12a)

G12 = G21 = g13 923 " g12 g33 » (A.12b)
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G13 = G31 = '1 2  923 " g13 922 ’ (A.12c)

G22 = 9 11 933 " g13 * (A.12d)

G23 = G32 = 912 g13 “ 9 23 9 11 * (A.12e)

G33 = 911 922 " 912 ’ (A .12f)

where

, i j  Cofactor of g1J 
b

, J  | g 1 J | | g , J

There is  also a re la tio n sh ip  between covarian t and contravarian t base 

vector

i ± i  *  I k  e =  --------------- , (A.13)

' 9i  j '
where

i .e.

I s i j l  ■ IJ_ 1 I 2 .

,1 - V ? 'ycV 1 ‘ 'W V n ’ J + V c 'V .)1 k
=11

1

|J

V c 'ycV ■,NiVVn) (Vc“Vn)

jj^Tj" T~(y5ZC_yCZC) {x£zC~Xc V  ~*x5yC~xey5* /  * {A*14^

< y 5 Z n " y T 1 2 5 )  ‘ ( x 5 Z t i " X t , 2 C )  { V t T X t i V

where

J = e 1
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There is  also a re la tio n sh ip  between contravarian t and covarian t base 

vector

e J x ek

where

i . e .

1 |g1Jl ’

|g1 j | = |J |2 , (A .15)

|J|

or from Eq. (A .2)

' (V z ',1z,:x) ‘V / V x 1 

*=T <J-Vz-?zV (?xV«zcx» (AA6»
t t y n r h ' y '  - (?x V « z V  ^ x V S V

, - l - T
X

T]
X

[ e l  e 2  e 3 ]  =
y n y,h z

h
z

a

H ’
c,

(tiy C2-n 2Cy ) - ( 5 yC2-5 2Cy ) ( 5 y V 5 2riy )

| - ( V z ^ z cx) <5XW X> - U XV 5 2V /  / I j l * (A.16b)

(T1xS~T,yCx) “^ W x *  (5xv V x }

The re la tio n s h ip  between vector bases can be obtained also by matrix  

algebra. From basic matrix id e n t ity , Jacobian can be w r itte n  as

— 1 — i ^ T
, Transpose of cofactor [J ]  [[J  ]  1

[J ]  = [J " 1] = -------------------- r ^ j - --------------------- = --------= j ------ . (A .17)
i n  ij ‘

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



121

Equation (A .17) is  the same as Eq. (A .14). There also e x is ts  an inverse  

re la tio n  fo r Eq. (A .17 ).

A .2 Vector Representation in C u rv ilin ear Coordinates

A vector F(Fxi ,  Fy j ,  Fzk) can be expressed in  con travarien t 

coordinates as

F. = (gi f ) 1 /2  F1’ . (A. 18)

This is  a pro jection  of Fn- on x1 coordinate

F, . *
r ~

where i»’ i ■

le1* I F1" = Px F + &x F + Px1 F (A 19)I ' cSoT x ay y H z T  z  * tA.xy;

Equation (A .19) can be expressed as

|V (911) / ( 5x 5y ( Fx )  Fx

\\n*n)in [  = YV \  V  ] y f  CJ] ‘ y  ̂ ( A ' 2 0 )

h n^3)V2 )  ( 5x S  O K )
C
'z

where g^- is  defined in  Eq. (A .8 ) .

The inverse re la tio n  to Eq. (A .20) is

F X ) i V (sn /2)

Fy I  ’  IJ " 13 )  V (s22/2 )  ^ '  (A' 21)

F2 )  '  FC/ (g33/ 2 )
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For example, the veloc ity  vector in covarian t coordinates can be w r itte n  

as

u) ( u/(s1i/2) j
v >  = [J ]" 1 < V /(g 2J/ 2 ) \  . (A .22a)

w '  ( w / ( g 3J/ 2 ) )

Also, the ve lo c ity  vector in co n travarian t coordinates can be expressed 

as

U hl)m
\ V / ( g 22) 1 / 2 > = [JJ (A.22b)

s )1' 2

where u and U are v e lo c ities  in the covarian t and the co n travarian t 

coordinate systems, respective ly .

A .3 Normal D erivative  in C u rv ilin e a r Coordinates 

A normal deriva tive  of a scalar varia b le  (A) can be computed as

(!£ )  = n • 7 A (A.23a)
where

-  e . e .

" ‘ M  ’ TiTT'  ^ 7^ 72  • (A'23b)

VA = Axi  + Ayj + Az k (A .23c)
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or

A x 1

A y  0  >  =  C J ]  

Az k

(A

Equation (A .23a) can be w ritten  as

5A
3n constant c|>

[<1>X  <l>y 4>2 3  C J ]
i .2 . .2 2 v1 /2
(^x + 4>y + <i>2 )

(A

For a constant Eq. (A.24b) can be w ritte n  as

5A
3n

g11 A- + g12 A + g13 A 
a  I  3  t ]  3  C

5A
3n

aA
dn

( g . )17Z

, (A.24b) can be w ritten  as

g22 A + g23 A

( g 22 )
1 / 2 "

(A.24b) can be w ritte n  as

931 A5 + g32 A + g33 Ar 
Tl s CS m m m

(g ) J

(A

(A

(A
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also

(A)" le1 1 * V A = (e1 j j = l  ^  * gJ) Al'

3
- "1/2 —1 -j > (A*26)

e .g .

( g ^ )  J=i 6x'

K  ‘  [g l1  As + g12 %  *  s13 Ac ] • (A- 27)

This equation is s im ila r to Eq. (A .2 5 a ).

A.4 Miscellaneous Relations

The angle between two grid lin e s  is  given by

e. • e .
cos 0 = ■ ■ ■ J

l e i I  l e j l  *

C° £ 6 l j  = [ | g „ |  | S j j | ] x/i! ' <A' 28’

Therefore, fo r the orthogonal g r id , the fo llow ing should be tru e ,

9 i j  = 0 fo r  1 *  $ * (A .29)

Arclength is  defined as

2 3 3 .
(ds) = 2 Z g . .  dx1 dxJ . (A.30a)

i= l  j = l  1J

An arclength along x1" coordinate is  defined as

(ds)1 = (gt i ) 1 /2  dx1 . (A.30b)
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The area o f an element on which the x1 constant is  defined as

(d r1 = je.. d xJ • e^ d xk | = (g ^ .) dx1' dx^ , (A .31)

e .g .

d r5 = |e2 dn x e3 dc| = dn dC = dn dC , (A .32a)

dr11 = G22 6 1  dC = — dC , (A.32b)

r   ______ ^9 3 3
dr* = dC dti = — jp  61  drj .

The volume o f an element is defined as

dV =_ 8 (x ,y ,z )  _ | n- l |  Jt. J 
" d (5 .ri';c) " ' J ' dC dT1 dC

= je j  • (e2xe3)| 6 1  dr) dC = { |g ^.. | ) 1 /2  6 1  dt) dC . (A .33)
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APPENDIX B

TIME-STEP ANALYSIS

In order to analyze the governing equations, they can be divided  

in to  two parts : in v is c id  and viscous. This makes the task of analyzing  

much sim pler. However, th is  is  another assumption which may impair the 

resu lts .

B .l  Inviscid  Part 

For the in v is c id  p a rt, the governing equations can be w ritten  as

Pt  + v • (pu) = 0 , (B .la )

(p u ). + V • ( puu) + (V • P) 6 . .  = 0 , (B .lb )
L I J

e t  + V • (ev) + [V  • (pu )] 6 . .  = 0 , (B .lc )
*  '  J

e .  - I t  + sii+4-i . (B.ld)

Y p = PC2 . (B .le )

A fter some a lg eb ra ic  m anipulations, Eqs. (B . la )—(B . Id ) can be w ritten  as

q t  + A q x + B qy + c q2 = 0 ( B . 2 )

where

q = (p, u, v, w, P)T ,
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A =

u P 0 0 0 ) If v 0 p 0 0
0 u 0 0 1 /p f 1\  0 V 0 0 0
0 0 u 0 0 > B = <; o 0 V 0 1 /p
0 0 0 u 0 ’  B ) 0 0 0 V 0

0 2
PC 0 0 u J 1f 0 0

2pc 0 V

w 0 0 P 0
0 w 0 0 0
0 0 w 0 0
0 0 0 w 1/p
0 0 0 pc2 w

C =

Equation (B .2) can be transformed from physical coordinates to computa­

tio n a l coordinates as

where

qt  + A + B q + C q ? = 0 ,

A = A l x  + b Cy + C £z ,

B = A tix + B ri + C r ) z  ,  (B .3)

c = a cx + B + c c z

This equation can be s p lit  as fo llow s

„n+l „n . t  . . n nq - q  + A A t ^ q ^ = 0 ,

q"+2 -  q"+1 + B A q " * 1 *  0 , (B .4 )

q"t3  -  qn+2 . C l t j  qf2 = 0 .

This s p l it t in g  is  valid  and s tab le  i f  the time-step of each operator

does not exceed the allowable s tep -s ize  for each operator. I t  is

consistent i f  the sum of the time steps fo r each operator be equal.

This method would be second order accurate i f  the sequences o f the
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operator are symmetric. In order to analyze th is  equation, f i n i t e -  

Fourier series  can be introduced to monitor the growth and decay o f the 

erro r as

q = q es t elk?  . (B .5)

S ubstitu ting  th is  equation in Eq. (B .4) re s u lts  in

o s A t  _  1 _  J kAT> -  p ikATi
X + A - ------------ * ---------= o .  (B .6)T H 2 a n

Rearranging and co lle c tin g  terms, y ie ld s  the fo llow ing

e sAt = [G] = [ I  -  i A ( ^ i  s in  e) ] , 9 = k A £ . (B .7)

The system is  stable i f  the largest eigenvalue is  less than u n ity . This 

condition insures th a t the error always decays.

|G| < 0 . (B .8)

Therefore, the determinant of [G] can be set equal to zero

_ A t.
det [A sin 0 -  A l] = 0 ,

or

Eu-A P?ZE 0

0 Eu-A 0 0 E5X/p
0 0 Eu-A 0

E?y /P
0 0 0 Eu-A

E!z/p
0 PCSXE

PS E
PC5ZE Eu—A

0 ,
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where

A t.

E = 1 T  s1n0 (ACx + B 5y  + C 5z } *

u = u + v Cy  + w i z  .

The de te rm inan t can be w r i t te n  as

(u E -  \ ) 3 [ (u  E -  X ) Z -  E2 c2 U 2 + C2 + £2 ) ]  = 0 . (B .10 )
a y ^

Equation (B .10) can be so lved fo r  X  as 

A t
X 1 ,2 ,3  ’ i r  sine [ | “ 5„ + v 5y + w ?2 | ]  , ( B . l l )

4̂,5 = zr s1ne[lu ct5x * + «z)1/2l •
Consequently, there  are f iv e  e ig en va lue s , and the time step is  based on 

the  maximum o f them,

At <  ---------------------------------& --------- 2 ------- 2-------T T 7 7  ‘ (B‘ 12a)
|u Cx + v Cy + w l z \ + c U 2 + ^  + q ) l l z

S im ila r  expressions can be found fo r  A t^  and A t^

A t <  ---------------------------------^ ---------- 2------- 2-----2 1 7 ?  » (B * 12b)
|u r ix + v riy + w n2 | + c (n x + hy + n2)

A t-  <  ---------------------------------^ ---------- 2------- 2----- 2 "  1 / 2  * (B .12c)
|u Cx + v Cy + w Cz | + + S  + c z ’
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B.2 Viscous P art 

For the viscous p a rt, the governing equations can be w ritten  as

| ^  + | E  + | £  + |y .=  0 , (B .13)a t  ax ay az

where

p \  f  0 1 f  0  ̂ (  0
PU /  I  -T  /  I  -T  I  1 -Tf  1 xx f 1 xy I  l  xz

U = {  P V \ , F “ \  - \ y > . G = < -T^yy > , H = /  - X y z

lpwl l~̂ z\ r yz \  r Tzz
p e ;  v v v  I v v  \  qz_<*)z

Equation (B.13) can be transformed from physical coordinates to 

computational coordinates as

r S l !  1  ^
■̂ ■r + [J ]  < G_ G G- V = 0 . (B.14)

FT1 C
G G„

r\ C
H H r
T)

a t  L J V 5
H

Sim ilar to the previous case, Eq. (B .4) is  s p l i t  in to  three components. 

For example, the I  component can be w ritten  as

w  + 5* f 5 + S h + 5z H? -  0 • (B- 15)

A fter some a lg ebra ic  m anipulation, Eq. (B .15) can be w ritte n  as

H  + [A] q ^  + [B] q ^  + [C] = 0 , (B .16)

where
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[A]

0

0

0

0

,ag

0

( \ - ( i ) ^ + n g n

(<|>+H)gy Sx

(<H-|0525X
11

( \- ii)C y + w n

(d»+ii)52?y

^ + \ i ) l x l z

(«Kn)?zCy

0 Pg

o

o

o

o

l i

0 0 0 0 0 ^ 

0 ( \-n )5 xnx+ng12 ^Tly+nSyT^ ^ x T12 +^ z T1x 0

[B] =<f 0 (^ yTlx+nSxTiy (\-n )C yny+ng12 ^ yri2+ ^ zriy 0

0 4,?2‘ny+ ^ yrj2 (x -n )C 2rix+iig12 0
12 12 <*g 0 0 o Pg

o o  o o o \
0 ( \-n )C x Cx+,ig13 0

[C] =< 0 (p?yCx+ ^ xCy (\-p )S y Cy+pg13 ^ yCz+n5yCy 0

0 ^ 2Cx+ti5xCy ^ zCy+|iCyC2 ( \ - i i ) 5 2C2+lig13 0

13 13
ag 0 0 0 eg1,3

where

YUP
TPr p ( y— 1)

O -  YP
P Pr p ( y - 1 )
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Sim ilar to the in v is c id  case, the fo llow ing f in ite -F o u r ie r  series  can be 

introduced as

_t  ik ,C  ik ?ri i  koC 
q = q • e • e • e • e . (B .17)

Substitu tion  of Eq. (B.17) in to  (B.16) re su lts  in  the fo llow ing

[G] = [ I  -  A -  B -  C] (B .18)

where

2 ®14At- sin -5-  -  sin 9, sin 9 , At-

* -  — i t t ,  •

-  sin 9- sin 09 A t-

L z rm ------------

9 j = kx AC , 02 = k2 ATI , 03 = k3 AC .

This system is  stable i f  the la rg es t eigenvalue is  less than u n ity , th is  

condition insures the decay of e rro r . Therefore, the determ inant of [G] 

can be set equal to zero as

-X 0 0 0 0

0 ^ 2 Z ~ X g23- x G24"X 0

0 g32- x G33~X g32- x 0

0 G4 2-X G43- \ G44"X 0

G 5 1 ' X 0 0 0 G55

= 0 , ( B. 19a)

where

G. - = A. .+ B. . + C. .  
i j  i j  i j  i j
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or

X(G55- \ )  [(G 22-X ) C(G33-X ) (G44- \ )  -  (G32-X ) (G43- \ ) ]

-  (G23-X ) C(G32-X ) (G44- \ )  -  (G32-X ) (G42- \ ) ]

+ (G24-X) C(G32-X) (G43-X) -  (G33-M  (G42- X ) ] ]  = 0 . (B.19b)

Equation (B.19b) can be solved fo r X as

X i = 0 , X2 = G55 . (B .20)

or

24 sin j ,  sin 0 j sin e2 12 sin ei  sin 63 13 At-

x2 = ------- K —  9 " ------------ 2n--------- 9 + ------------ K -----------9 ] w

A fte r a l l  a lgebraic  manipulations, the fo llow ing are found

2 2 2 E + E + E E. ti + E Ti + E Ti  ̂ YF ro x y 9z A i S  'x y 'y ^z 'z
AtE < p -P J T r lT  1 2 ------- ^ 2 --------+ 1 STAfi

A  CX + 5V CV + ?Z i r l
+ 1-J L J L — - k ~ k — — I ] • (B*21a)

S im ila r expressions can be found fo r  At^ and At^

2 2 2 
t i  + r i  +  t i  E n + 5 ‘n + 5 n

M „ <   Z ?l

♦ C z i r 1. (B .21M
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Three more eigenvalues need to be computed from Eq. (B.21b) which 

requires solution o f a nonlinear equation fo r each po in t in the 

computational space.
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