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ABSTRACT

Rhodococcus opacus strain PD630 (R. opacus
PD630), is an oleaginous bacterium, and also is
one of few prokaryotic organisms that contain lipid
droplets (LDs). LD is an important organelle for lipid
storage but also intercellular communication
regarding energy metabolism, and yet is a poorly
understood cellular organelle. To understand the
dynamics of LD using a simple model organism,
we conducted a series of comprehensive omics
studies of R. opacus PD630 including complete
genome, transcriptome and proteome analysis.
The genome of R. opacus PD630 encodes 8947
genes that are significantly enriched in the lipid
transport, synthesis and metabolic, indicating a

super ability of carbon source biosynthesis and
catabolism. The comparative transcriptome
analysis from three culture conditions revealed the
landscape of gene-altered expressions responsible
for lipid accumulation. The LD proteomes further
identified the proteins that mediate lipid synthesis,
storage and other biological functions. Integrating
these three omics uncovered 177 proteins that
may be involved in lipid metabolism and LD
dynamics. A LD structure-like protein LPD06283
was further verified to affect the LD morphology.
Our omics studies provide not only a first integrated
omics study of prokaryotic LD organelle, but also a
systematic platform for facilitating further prokary-
otic LD research and biofuel development.

*To whom correspondence should be addressed. Tel: +86 10 64888517; Fax: +86 10 64888517; Email: pliu@ibp.ac.cn
Correspondence may also be addressed to Jun Yu. Tel: +86 10 82995357; Fax: +86 10 82995373; Email: junyu@big.ac.cn

The authors wish it to be known that, in their opinion, the first four authors should be regarded as Joint First Authors.

1052–1064 Nucleic Acids Research, 2014, Vol. 42, No. 2 Published online 22 October 2013
doi:10.1093/nar/gkt932

� The Author(s) 2013. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article-abstract/42/2/1052/1026394 by R

ow
an U

niversity user on 19 Septem
ber 2019



INTRODUCTION

Lipid droplets (LDs) are cellular organelles widely found
in fungal, plant, animal and human cells (1–3). They are
encapsulated by a phospholipid monolayer and are com-
positionally different from other membrane structures (4).
They differ in that their primary role is lipid storage, but
may also be pivotal in cellular communication with organ-
elles such as the mitochondria to regulate energy metab-
olism and substrate utilization. LD is an important
organelle related to human metabolic diseases and
biofuel productions. For example, LD dysfunction is
one of the main causes of metabolic disorders such as
obesity, insulin resistance, type 2 diabetes, and cardiovas-
cular diseases (5–9). In biofuel studies, triacylglycerol
(TAG) in LD of green algae has been investigated and
developed for high oil yields by using targeted metabolic
engineering (10–12), making it a biological candidate for
biofuel production.

Delineating the molecular mechanisms of LD dynamics
is essential to understand its formation, functions, syn-
thetic engineering and further biofuel applications. Since
perilipin, the first protein of perilipin family (PLIN), was
identified in 1991 (13), numerous proteins have been
revealed to be related to LD functions and dynamics
(3,14). LD may also be involved in multiple important
cellular processes such as intermembrane lipid traffic
(15), lipid storage (16), lipolysis (17), signaling, temporal
protein storage (18) and protein degradation (19). LD is
reported functionally interacted with many other organ-
elles such as the mitochondria (20), endoplasmic reticulum
(21,22), endosome (23) and peroxisome (24). Despite the
functional importance of LDs, systematic understanding
of the organelle’s biogenesis and dynamics remains
elusive. In contrast to eukaryotes that have multiple or-
ganelles, LD is the only membranous organelle found in a
number of bacterial strains that can be used as ideal model
organisms for LD research. Among them, Rhodococcus
opacus PD630 has the ability to accumulate large
amounts of TAG in the LD (25).

The importance of Rhodococcus opacus strain PD630
(R. opacus PD630) as a model system is also exemplified
by its powerful ability to convert carbon sources into
lipids. Interestingly, the TAG storage in R. opacus
PD630 accounts for up to 87% of the cellular dry
weight (26), and thus has higher lipid storage capacity
when compared with other oleaginous organisms (26,27).
Early studies reported that R. opacus PD630 has 10
diacylglycerol acyltransferases (DGAT) that assimilate
cellular fatty acids into TAG (13,28). Holder et al.
reported a partial genome, and also performed a compara-
tive genomic study with a lipid mass analysis (29), which
identified 16 DGAT and 261 genes that are directly
involved in 20 TAG cycle reactions. These previous
studies suggest that TAG biosynthesis from carbon
sources is a pronounced characteristic of R. opacus
PD630. Therefore, to facilitate the application of
R. opacus PD630 LD production for biofuel development,
a complete genome of the organism and integrated
analysis of its transcriptome, a proteome of its lipid syn-
thesis, storage and metabolism are essential.

We performed multi-omic studies and present herein the
complete genome sequence, a comparative transcriptome
and a comparative LD proteome of R. opacus PD630.
After integrating the collected data, a number of protein
families involved in LD dynamics were identified including
lipid synthesis, LD structure-like proteins, dynamin-like
and SNARE-like proteins. A structure-like protein
LPD06283 was verified by its LD location and its effect
on LD size. Together, these omics are useful tools to in-
vestigate the mechanisms of LD dynamics that will
enhance our understanding of the lipid storage of LD in
biofuel development.

MATERIALS AND METHODS

DNA extraction and genome sequencing and assembly

Cells of R. opacus PD630 (30) were obtained from Dr
Steinbüchel’s lab at the University of Münster. Cells
were cultured aerobically in 100ml of nutrient broth
(NB) at 30�C to postlogarithmic phase, and then the
DNA was extracted. The complete nucleotide sequence
was obtained using a combination of paired-end/mate-
pair Illumina sequencing, and 454 sequencing. The
sequence gaps were completed by direct sequencing of
polymerase chain reaction (PCR)-amplified fragments.
For 454 pyrosequencing, genomic DNA was sheared up
by nebulization into random fragments of 500–800 bp for
the construction of a dispersed library, which was then
clonally amplified and sequenced on a 454 Genome
Sequencer. For Illumina sequencing, genomic DNA was
processed to construct paired-end libraries with size spans
of 300 bp, and also mate-pair libraries with size spans of
3 kb using an Illumina Genomic DNA Sample Prep kit.
The total number of 454 reads obtained was 861 751,

giving a 36-fold coverage, while the total number of
paired-end and mate-pair library reads was 40 110 584,
giving a 445-fold coverage. We used two assembly
programs and combined the primary contigs and paired-
end data to build scaffolds in successive assemblies. Four
hundred fifty-four sequences were assembled using the
Roche GS assembler, Newbler (version 2.5), with default
parameters. The primary contigs were then scaffolded
with Illumina mate-pair reads using SSPACE-premium
(version 2.1) (31). To close the gaps among scaffolds,
read pairs that were uniquely mapped to the contig tails
were extracted for manual assembly. Primers were
designed for the remaining gaps and PCR walking was
used to finish the whole genome. Illumina reads (300 bp)
were mapped to this assembled whole genome sequence to
identify potential single miss-called nucleotides using the
Bowtie method (32).

Genome analysis and annotation

Gene models were predicted independently using
GLIMMER (33) and GeneMark (34). The predicted
open reading frames (ORFs) were further evaluated and
adjusted using RBSfinder (35). The translated sequences
of the predicted protein-coding genes were searched
against UniProt (36) and InterPro (37). The function of
enzymes was assigned using EFICAz2 (38) and searched
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against the KEGG database (39). We used the COG clas-
sification scheme (40) to further classify gene functions.
Two-tailed Fisher exact test was used to compare the dis-
tributions of COG categories between two species. For
each COG category, a 2� 2 contingency table was con-
structed by recording the numbers of genes included or
not included. Putative tRNAs were identified using
tRNAscan-SE (41) and TFAM 1.0 (42). rRNAs were
detected by RNAMMER (43) and confirmed against
known rRNAs using BLASTN. Transposons and repeat
elements were identified using ISfinder (44) and searched
against Repbase (45). Protein domains were predicted
using the Pfam (46) and NCBI CDD (47) databases.
Horizontally transferred genes (HTGs) were predicted
using the WN method (48). For protein sequence
analysis, multiple alignments were generated with
CLUSTALX (49), and phylogenetic analysis was per-
formed with MEGA4.0 (50). The operons of PD630
were predicted by using a statistic operon prediction
method (51). All PD630 proteins were compared with
the proteins of R. opacus B4 (R. opacus B4),
Rhodococcus jostii RHA1 (R. jostii RHA1) (52) and an
earlier reported partial genome of PD630 (29) that were
downloaded from NCBI database (NCBI release data of
March 2012), by using BLASTP (53) with a cutoff value of
1.0E-3.

RNA extraction, sequencing and transcriptome analysis

RNA was extracted from R. opacus PD630 under the three
culture conditions, NB, MSM3 and MSM24, by using
Trizol Reagent (Invitrogen, Carlsbad, CA, USA) follow-
ing the standard protocol except that after isopropanol
treatment of the sample was incubated at �20�C over-
night. Further purification and DNase treatment was con-
ducted with RNAprep pure cell/bacteria and RNAclean
Kits (TIANGEN, Beijing, China) according to the manu-
facturer’s instructions. Rhodococcus opacus PD630 rRNA
was depleted using a RiboMinus Eukaryote Kit
(Invitrogen, Carlsbad, CA, USA). After RNA amplifica-
tion, libraries were constructed for sequencing by using a
SOLiD system (Applied Biosystems Inc.) according to the
manufacturer’s specifications.
RNA-Seq reads from each mRNA sample were mapped

against our assembled genome by using Bowtie with the
‘best’ strata option (32). Totals of 39 922 375, 62 306 706
and 51 153 776 reads from the NB and MSM3 and
MSM24 samples, respectively, were mapped with less
than two mismatches. To analyze differential expression,
fragments per kilobase of transcript per million mapped
reads values (FPKM) were calculated using Cufflinks (54).
The fold change between conditions A and B is calculated
as � log2

A
B.

Quantitative real-time PCR

Total RNA from cultured R. opacus PD630 was isolated
using Trizol Reagent (Invitrogen) and purified using
TIANGEN RNAclean Kit (TIANGEN) according to
the manufacturer’s instructions. For quantitative real-
time PCR (qPCR) analysis, RNA was reverse transcribed
using the M-MLV Resverse Transcriptase Kit (Promega)

and further used in qPCR reactions containing SYBR
green fluorescent dye (ABI). Relative expression of
mRNA was determined after normalization with 16S
levels using the DD-Ct method, comparing MSM3,
MSM24 with NB, respectively. qPCR was performed
using an ABI StepOne PLUS PCR machine.

LD purification

LD was isolated according to the method described by
Ding et al. (55). Forty milliliters of R. opacus PD630
cells were centrifuged in NB, and then transferred into
400ml of mineral salt medium (MSM) and cultured for
24 h for TAG accumulation. MSM contains a high carbon
source (10 g/l) but low nitrogen source (0.5 g/l), and pri-
marily used to induce a stress state in the culture medium
for TAG accumulation. Cells were collected by centrifu-
gation at 5000g for 10min and washed twice with 30ml of
phosphate buffered saline (PBS) each time. After
incubating in 30ml of buffer A (25mM tricine, 250mM
sucrose, pH 7.8) on ice for 20min, cells were homogenized
by passing through a French Pressure Cell four times at
100MPa, and 4�C. The cell homogenate was centrifuged
in a 50-ml tube at 6000 g for 10min to remove cell debris
and unbroken cells. The postnuclear supernatant fraction
(10ml) overlaid with 2ml of buffer B (20mM HEPES,
100mM KCl, 2mM MgCl2, pH 7.4) was centrifuged at
38 000 rpm for 1 h at 4�C (Beckman SW40). The white
band containing LDs at the top of the gradient was col-
lected using a 200-ml pipette tip and transferred to a 1.5-ml
Eppendorf tube. LDs were washed three times with 200 ml
of Buffer B each time. One milliliter of chloroform:acet-
one (1:1, v/v) was added to each sample to dissolve lipids
and precipitate LD proteins. The sample was mixed thor-
oughly by vortexing and then centrifuged at 20 000 g for
10min (Eppendorf centrifuge 5417R). The pellet contain-
ing LD proteins was resolved with 50 ml of 2� sodium
dodecyl sulphate (SDS) sample buffer and denatured at
95�C for 5min. The sample was stored at �20�C until
required.

Mass spectrometry (MS) analysis

The bands of interest from the NB and MSM24 samples
were cut from SDS-polyacrylamide gel electrophoresis
(SDS-PAGE) gels. Samples were loaded onto a C18 trap
column with an auto-sampler and then eluted onto a C18
column (100mm� 100 mm) packed with Sunchrom
packing material (SP-120-3-ODS-A, 3 mm) for nano-
LC-ESI-LTQ MS/MS analysis. The linear trap
quadrupole (LTQ) mass spectrometer was operated in
data-dependent mode with the initial MS scan ranging
from 400–2000 Da. All the MS/MS data were searched
against our assembled and annotated genome sequence
by the SEQUEST program (Thermo, USA). Bio-Works
search parameters were set up as enzyme, trypsin, precur-
sor ion mass tolerance, 2.0 Da; and fragment ion mass
tolerance, 1.0 Da. The variable modification was set to
oxidation of methionine (Met+15.99 Da) and the fixed
modification to carboxyamidomethylation of cysteine
(Cys+57.02 Da). Results were filtered with Xcorr
(charge values) of Xcorr (+ 1)> 1.90, Xcorr (+ 2)> 2.50
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and Xcorr (+ 3)> 3.75, where Xcorr is the cross-correl-
ation score of a candidate peptide against a search
database. The MS/MS data were then converted and de-
posited at PRIDE database (56).

Construction of LPD06283 deletion mutant

A deletion mutant of structural protein LPD06283 was
constructed by using homologous recombination.
Colloidal Blue staining was used to verify the absence of
the LPD06283 protein bands. Different phenotypes
between the LPD06283 deletion mutant strain and the
wild type were observed by EM. The upstream and down-
stream sequences of the target gene were cloned by PCR
using primers a/b and c/d, respectively, and using the wild
type R. opacus PD630 genome as a template, generating
fragments AB and CD. Fragments AB and CD were
ligated together, sequenced and then cloned into a
pK18mobsacB plasmid. Plasmid pK18mobsacB was
kindly provided by Ping Xu from Shanghai Jiao Tong
University. The pK18mobsacB fusion plasmids were trans-
formed into R. opacus PD630 by electronic transformation.
Positive mutants were selected with a positive screen using a
kanamycin cassette and a negative screen using a sacB
cassette. Primers a and d were used to confirm that the
final selected cells were positive mutants. Primers f and r
were used for further PCR validation.

All primer sequences were as follows:

LPD06283-a: CGGAATTCTGAGGAGTTCACTGA
TGGTGGCG

LPD06283-b: CGGGATCCTGCGTGTCGACCTCG
TAGGATGGG

LPD06283-c: CGGGATCCCGGCTTTCTCCTGTTC
AACGGTGG

LPD06283-d: CGAAGCTTAAGAAGATCGAGCTG
CAGGTGGGG

LPD06283-f: CAGGATCCACTGACCAGAAGACC
ATCGACAGCGT

LPD06283-r: CAGGATCCAGCCTTCTTGGCCGGA
GCAGCCTT

Thin layer chromatography and western blotting

For thin layer chromatography (TLC), neutral lipids were
extracted twice from purified LD and bacterial sam-
ples using chloroform:acetone (1:1, v/v) and chloroform:
methanol:medium (1:1:1, v/v/v), respectively. The organic
phases were collected and air dried with nitrogen gas of a
high purity. Total lipids were dissolved in 100 ml of chloro-
form for TLC analysis by using Whatman PurasilTM

60FÅ silica gel plates (Merck, Germany). Neutral lipids
were developed using the solvent system hexane:diethyl
ether:acetic acid (80:20:1, v/v/v) and phospholipids
in chloroform:methanol:acetic acid:H2O (75:13:9:3, v/v/
v/v). TLC plates were visualized using iodine vapor.

For western blotting, proteins were separated by SDS-
PAGE and transferred to a polyvinyl difluoride (PVDF)
membrane, followed by blotting with the antibodies
indicated and detection using an ECL system. We
selected 20 LD proteins based on the proteome analysis

for antibody production. Two rabbits were immunized
with two synthetic peptides per protein.

Transmission electron microscopy and confocal
microscopy

Bacterial cells were examined by transmission electron
microscopy (TEM), including positive staining and
ultrathin sectioning methods. For positive staining, cells
were loaded onto carbon-coated copper grids and subse-
quently stained using 2% (w/v) phosphotungstic acid for
2min. The grid was then washed with deionized water
thrice before viewing using a FEI Tecnai 20 (FEI Co.,
Netherlands) electron microscope. For ultrathin section-
ing, cells were prefixed in 2.5% (w/v) glutaraldehyde in
PBS (pH 7.4) overnight at 4�C and postfixed in 2%
(w/v) potassium permanganate for 5min at room tem-
perature. The sample was then dehydrated in ascending
concentrations of ethanol at room temperature and
embedded in Spurr’s resin. Sections with a thickness of
70 nm were cut with a Leica EM UC6 Ultramicrotome
(Leica Germany), then stained with 2% (w/v) uranyl
acetate for 15min and lead citrate for 5min at room tem-
perature before visualization.
For confocal microscopy, PD630 cells were washed

twice with PBS and then mounted onto coverslips
pretreated with collagen prepared from rat tail. Samples
were dried for 30min before washing with 1ml of PBS,
and then incubated for 30min in a 1:500 solution of
LipidTOX Red in darkness at room temperature.
Samples were mounted onto glass slides with Mowiol
mounting media and analyzed by confocal microscopy
(Olympus FV1000).

Data access

Genome assemblies, together with predicted gene models
and annotation, were deposited at GenBank under the
project accession number PRJNA178618. The accession
numbers of chromosome and plasmids are CP003949
(chromosome), CP003950 (plasmid-1), CP003951
(plasmid-2), CP003952 (plasmid-3), CP003953 (plasmid-
4), CP003954 (plasmid-5), CP003955 (plasmid-6),
CP003956 (plasmid-7), CP003957 (plasmid-8), CP003958
(plasmid-9). The expression data sets used in this study are
available at the NCBI Gene Expression Omnibus (GEO)
(http://www.ncbi.nlm.nih.gov/geo/), under accession
number GSE42381.

RESULTS

Rhodococcus opacus PD630 genome exhibits a super
ability of biosynthesis and catabolism

We used a combined dispersed strategy incorporating data
generated using Roche/454 and Illumina sequencing
technologies, and assembled the genome and associated
plasmids of R. opacus PD630. The complete genome
consists of a circular chromosome of 8 376 954 bp in
length and nine plasmids, which in combined total are
9 169 032 bp (Supplementary Table S1). The genome
encodes 8947 protein-coding genes, 51 tRNA and 12
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rRNAs genes (Supplementary Tables S2 and S3). The
mean size of predicted ORFs is 928 bp, with 80.28% of
the ORF between 201 and 1500 bp in length (Figure 1A).
Further, a few insertion sequences were predicted using
the ISfinder (44) (Supplementary Table S4), but only
occupy 0.38% of the genome. A large number of genes
(i.e. 2563) are duplicated (Figure 1B). Rhodococcus opacus
PD630 has a high genomic G+C (guanine–cytosine
content) content (67.47%), with 176 genes having either
a much higher or lower G+C contents than the genome
on average (Figure 1C). Protein functions were manually
assigned based on Interpro (37), UniProt searches (36)
and COG functional classification system (40). Among
the 22 COG subclasses, lipid transport and metabolism
were the largest category, occupying 850 genes.
The genomes of two other species in the Rhodococcus

genus, namely R. opacus B4 (R. opacus B4) and R. jostii
RHA1 (R. jostii RHA1) (52) have also been sequenced.
Although they are closely related to R. opacus PD630
(Figure 1D), comparative analyses reveals that R. opacus
PD630 may have superior lipid metabolism. For example,
R. opacus PD630 has 850 COG categories E genes (amino
acid transport and metabolism), 556 of the P genes (inor-
ganic ion transport and metabolism) and 580 of the G
genes (carbohydrate transport and metabolism), which is
significantly more than R. jostii RHA1, which has 595, 329

and 434 genes, respectively, and R. opacus B4, which has
575, 328 and 412 genes, respectively, in the above men-
tioned categories (all P< 1E-04, two-tailed Fisher exact
test, Supplementary Table S5). Enzymes were annotated
to metabolic reactions using EFICAz2 (38) and the
KEGG database (39). In summation, 3200 enzymes are
predicted for 2727 metabolic reactions that are markedly
more than predicted reactions of R. jostii RHA1, R.
opacus B4 (39) and earlier reported 2017 metabolic reac-
tions of PD630 partial genome (29).

As R. opacus PD630 is able to grow on a variety of
substrates, and environments (26,29,57), we searched for
HTGs that might confer selective evolutionary advantages
in different environments. A total of 532 genes
(Supplementary Table S2) were predicted as HTG by
using the WN method (48). Of the 612 genes implicated
in energy production and conversion, and the 711 genes
involved in lipid transport and metabolism, 73 and 77,
respectively, were predicted to be HTG, providing signifi-
cant evolutionary contributions to lipid synthesis and lipid
metabolism in R. opacus PD630 (P-values: 2.26E-07 and
3.05E-06, two-tailed Fisher exact test).

Global gene expressions under lipid accumulation

To confirm that R. opacus PD630 cells include LDs and
also display their dynamics in different cultures, cells were

Figure 1. Basic statistic information of R. opacus PD630 genome. (A) Length distribution of predicted R. opacus PD630 ORFs. The average length
of all genes is 928 bp, with most genes ranging from 200 to 1600 bp. The number of genes in each category is noted above each bar. (B) Distribution
of the copy numbers of homologous genes among all 8947 genes. Homologous genes were detected using BLASTP with an e-value cutoff of 1.0E-20
and identity of 50%. The number of genes in each category is noted above each bar. (C) The average C+G content of all genes was 67.47% (solid
red line). One percent of the genes fell outside the upper and lower green-dotted lines and had markedly higher or lower G+C contents. (D) Venn
diagram comparing the whole genomes of R. opacus PD630, R. jostii RHA1 and R. opacus B4. All proteins in R. opacus PD630 were compared with
those in R. jostii RHA1 and R. opacus B4 using BLASTP with an e-value cutoff of 1.0E-20 and an identity of 50%.
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first cultured in NB, and subsequently transferred to a
MSM for 3 h (MSM3) and 24 h (MSM24), respectively.
Since MSM is a low nitrogen/carbon ratio medium that
is used as a stressful culture for TAG accumulation
(27,28,58), the systematically comparative analysis of dif-
ferential gene expressions under NB and MSM cultures
will be helpful to reveal how proteins and biological
pathways respond to TAG accumulation and LD
dynamics. Firstly, LipidTOX staining showed that the
R. opacus PD630 cells grown in MSM cultures contain
much larger LDs than those grown in NB culture
(Supplementary Figure S1A). This observation is in agree-
ment with results from the TLC that TAG is accumulated
to a greater amount in MSM24 than NB, but DAG is
much accumulated in lesser quantities (Supplementary
Figure S1B). Further, we imaged cells by TEM to better
visualize phenotypic differences in LDs. Interestingly, LDs
derived from the MSM24 treatment were much larger in
diameter than those cultured in NB (Figure 2A).
Moreover, R. opacus PD630 contains many electron-
transparent structures that occupy most of the inner
area of the cell, with the TAG content increasing from
the NB to MSM24 culture (Supplementary Figure S2).
These measurements confirm that R. opacus PD630

contains LDs and accumulate large amounts of TAG
under MSM culture conditions.
To investigate the proteins that are related to dynamics

of R. opacus PD630 under different culture conditions, we
sequenced and compared whole-genome transcriptomes of
these three cultures NB, MSM3 and MSM24. The quality
of our transcriptomes was confirmed by measuring expres-
sions of 13 randomly selected genes by using qPCR.
Among the 13 genes, 9 genes (LPD05955, LPD07778,
LPD02638, LPD05411, LPD04190, LPD04189,
LPD05410, LPD02774, LPD06334) presented similar
trends in NB to MSM3 and MSM24, and only four
genes (LPD02936, LPD05356, LPD02250, LPD07707)
had little ratio differences (Supplementary Figure S3 and
Supplementary Table S6 for detailed expression values).
The qPCR result confirmed the transcriptomic data is
reliable. We then performed a systematic analysis of the
genome-wide expression dynamics under three cultures
NB, MSM3 and MSM24. Most genes were either ex-
pressed under all three conditions (6759 genes) or under
at least one condition (7770 genes), but there were 1177
genes that were not expressed under any of these condi-
tions. When cells were changed from NB to MSM condi-
tion, a drastic response to environmental change was

Figure 2. Whole-genome differential expression analysis. (A) EM images (ultra-thin sections) of R. opacus PD630-WT cultured in MSM for 3 h
(MSM3), or 24 h (MSM24), or grown in NB for 48 h (NB). Bar=0.5 mm. (B) Relative abundance of different categories of differentially expressed
genes in R. opacus PD630 are shown under the three culture conditions. Pie charts on the left represent upregulated genes, while those on the right
represent downregulated genes. The total number of genes accounted is given below each pie chart. Colors correspond to categories in the COG
database.
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observed even after 24 h. We observed a marked response
3 h after cells were transferred from NB to MSM;
with 56.99% of the genes upregulated and 30.32%
downregulated, and 21.15% being upregulated >2-fold
and 9.36% being downregulated >2-fold (Supplementary
Figure S4). The functional enrichment analysis was per-
formed for differentially expressed genes (�2-fold change;
Figure 2B, Supplementary Table S7). Genes in category J
(translation, ribosomal structure and biogenesis) were sig-
nificantly upregulated (P-value: 5.05E-20, two-tailed
Fisher exact test), while genes in category K (transcrip-
tion), G (carbohydrate transport and metabolism) and C
(energy production and conversion) were downregulated
(P-values of 6.0E-07, 8.08E-06 and 4.56E-05, respectively,
two-tailed Fisher exact test). The increased expression of
ribosomal proteins is consistent with the number of genes
(56.99%) upregulated in the MSM3 treatment. The large
upregulated protein proportions and their functional
enriched groups exhibited a dynamical landscape of
proteins and pathways responsible for lipid synthesis
and storage in PD630.

Enzymes involved in TAG biosynthesis and metabolism

The accumulation of TAG in R. opacus PD630 is a
dynamic balance between lipid synthesis and degradation.
Here we systematically analyzed the potential proteins
involved in the TAG biosynthesis and metabolic
pathway. The pathway consists of 22 reactions, involving
457 candidate enzymes (Supplementary Table S8). These
reactions are further classified into five stages: initially
fatty acid biosynthesis, TAG biosynthesis, TAG storage,
TAG degradation and fatty acid degradation (Figure 3A
and C). In these enzyme families, the largest one is 123
3-oxoacyl-(acyl-carrier-protein) reductase (EC:1.1.1.100),
exhibiting a marked preference for acyl-carrier-protein de-
rivatives over CoA derivatives as substrates. Hundred
acyl-CoA dehydrogenase (EC:1.3.3.6/EC:1.3.99.3/
EC:1.3.99.13) performed different specificities for long,
medium and short chains. Other large gene families
include 16 diacyglycerol O-acyltransferase (DGATs,
EC:2.3.1.20), 45 lipase/esterase (EC:3.1.1.3), 40 long-
chain fatty acid CoA ligase (EC:6.1.2.3) and 53 enoyl-
CoA hydratase (EC:4.2.1.17). Among these reactions,
many enzymes were highly expressed or differentially
expressed by >2-fold change (Figure 3B), indicating that
a broad spectrum of fatty acids were differentially
synthesized and catabolized in R. opacus PD630 when
cultures changed.
Earlier studies revealed that R. opacus PD630 can

synthesize many neutral lipids, but the precise enzymes
involved for different lipids have rarely been reported
(13,28–30). Thus, identifying key lipid enzymes and sup-
pressing glycogen synthesis appears important to ensure
maximal TAG yields. In our study, 16 DGATs were pre-
dicted as possessing lipid synthases activity and these
could be further divided into several subclusters using
phylogenetic analysis (Figure 3D). The expression of
genes in each subcluster was similar under three condi-
tions, indicating that those genes of subclusters may be
involved in different lipid synthesis. In particular, the

gene LPD02996 was significantly upregulated >2-fold
change in MSM3 compared with NB culture. Three
genes, LPD01972, LPD05741 and LPD00644, were also
slightly upregulated with fold change of 1.39, 0.41 and
1.34, respectively. Since TAG accumulates to high levels
in MSM cultures, the increased expression of these four
genes suggests that they may be involved in TAG
synthesis. LPD05741, also named artf2, had been
verified to be involved in TAG biosynthesis and accumu-
lation in PD630 (59). The elevation of LPD05741 is con-
sistent with this study. Furthermore, the significant
upregulation of LPD02996 also suggests it may be
another potential protein related to TAG biosynthesis.
Six genes LPD03605, LPD04096, LPD04039, LPD04040,
LPD02252 and LPD04049 were significantly
downregulated >2-fold change, indicating that these six
genes may be involved in other lipid synthesis, or TAG
degradation but blocked in MSM culture to potentiate
greater TAG yield. A total of 45 genes coding for
putative lipase/esterase proteins (17 lipases, 22 esterases
and 6 others) were predicted to be involved in neutral
lipid degradation. Of the 17 lipases, the expression of
LPD00504 and LPD03906 were significantly elevated in
MSM3 compared with NB (�2 fold change), while
LPD03039, LPD00420 and LPD05381 were slightly
increased with fold change of 0.2, 0.44 and 1.84, respect-
ively. A gene LPD04146 was decreased with a fold change
of 1.68 in MSM3 compared with NB (Figure 3E). Of the
22 esterases, LPD00874 and LPD03041 were dramatically
upregulated (�2-fold change), while LPD05391
LPD02749, LPD00891, LPD01667, LPD07390 and
LPD05053 were slightly upregulated with fold change of
1.58, 1.24, 1.46, 1.86, 1.55 and 0.31, respectively. Gene
LPD00479 was significantly downregulated in MSM3
compared with NB culture (�2-fold change, Figure 3F).
These proteins can be classified into some subclusters with
similar expression patterns in each cluster by phylogenetic
analysis. For example, LPD00874 and LPD02749 are
both increased in MSM3 and then decreased in
MSM24 (Figure 3F-F1). A similar tendency is also
observed among LPD00891, LPD03041 and LPD01667
(Figure 3F-F2). These results presented a precise predic-
tion that those differentially expressed lipases/esterases
may be involved in TAG synthesis and degradation.

Identifying proteins associated to prokaryotic LD

To better understand prokaryotic LD proteins, we
isolated LDs (please see ‘Materials and Methods’
section) (Supplementary Figure S5A) and performed
proteomic and lipid analyses. Initially, we determined
the quality of isolated LDs. TEM imaging of isolated
LDs using positive staining displayed few contaminants
present from other membranes (Supplementary Figure
S5B). The size distribution of LDs is bell shaped, and
between 131 and 3168 nm as determined using a Delsa
Nano C particle analyzer (Supplementary Figure S5C).
Total lipids from isolated LDs and from the total cell
membrane were separated by TLC (Supplementary
Figure S5D). Results indicated that the main lipid
present was TAG (band 2 in Supplementary Figure
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S5E), and that the total membrane fraction was
enriched in phosphatidylethanolamine (band 5 in
Supplementary Figure S5F) and also an unknown lipid
(band 4 in Supplementary Figure S5F). The protein com-
position of LDs was distinctly different from that of the
total membrane, cytosol and whole-cell lysates
(Figure 4A), further verifying the high quality of the
isolated LDs.

We then conducted comparative proteomic studies on
LDs isolated under different culture conditions, and
focused our attention to identify proteins that are
related to LD functions and dynamics. LD proteins
from bacteria cultured in MSM24 were initially separated

by SDS-PAGE. The gel was cut into 42 slices, with 430
proteins identified using proteomic analysis (Figure 4B).
Proteins with a high abundance according to the peptide
number in the MS data were chosen and respective
antibodies produced. Further, Western blotting was
performed to verify the association of these proteins
with LDs and determine their cellular distribution
(Figure 4C). The proteins LPD02850, LPD04067,
LPD05350, LPD03377, LPD08045 and LPD02496 were
mainly present in the LD fraction, whereas proteins
LPD01403 and LPD02840 were present in both the LD
and cytosol fractions. Proteins LPD02062 and LPD02043
were ubiquitous distributed within the whole cell.

Figure 3. Expression and phylogenetic analysis of gene families involved in TAG biosynthesis and degradation. (A) TAG biosynthesis, storage and
degradation pathways are divided into five biochemical stages and 22 reactions. (B) Heatmap of highly expressed (�10 FPKM) or dramatically
differentially expressed enzymes (�2-fold change) in each reaction. (C) EC numbers of enzymes involved in (A). (D) Phylogenetic tree and heatmap
of 16 predicted TAG synthases. (E) Phylogenetic tree and heatmap of 17 predicted TAG lipases. (F) Phylogenetic tree and heatmap of 22 predicted
esterases. Genes whose expression increased from NB to MSM3 (�2-fold change) are marked by red triangles, and those which decreased (�2-fold
change) are marked by green triangles in D, E and F. Two examples of gene clusters that have similar sequences and expression patterns are noted as
F1 and F2.
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Figure 4. Functional and expressional analysis of LD proteins. (A) Rhodococcus opacus PD630 proteins from whole-cell lysates (W), cytosol (C),
membranes (M) and purified LDs (L) were separated by 10% SDS-PAGE, followed by silver staining. (B) LC-MS band analysis of LD-associated
proteins. Arrows indicate the positions at which the gel was sliced. Forty-two bands (1–42) from the MSM24 sample, and eight bands (43–50) from
the NB sample corresponding to the major bands in the MSM24 sample were analyzed. (C) Western blotting of LD-associated proteins. The same
amount of protein from LDs, membranes, the cytosol and whole-cell lysates were separated by 10% SDS-PAGE and blotted with the antibodies
indicated. Western blotting using anti-LPD02850, anti-LPD04067, anti-LPD05350, anti-LPD03377, anti-LPD08045, anti-LPD01403, anti-LPD02496,
anti-LPD02840, anti-LPD02062 and anti-LPD02043. (D) 430 LD-associated proteins were identified in MSM24 and categorized into nine groups
based on searches of our R. opacus PD630 genome, and the Pfam and NCBI databases. (E) Histogram showing the percentage of LD-associated
genes with dramatic expression changes in the three conditions. (F) Heatmap showing the expression of all 430 genes. ATP synthase (up), RNA
polymerases, translation initiation factors and elongation factors (middle) and ribosome proteins (down) are enlarged to the right of the heatmap.
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The 430 proteins identified in LDs were categorized into
nine groups, including 231 enzymes, 6 transport proteins,
25 transcription and translation proteins, 31 ribosome
proteins, 5 chaperone protein, 8 stress-induced proteins,
5 cell division–related proteins and 110 other unknown
functional proteins (Figure 4D and Supplementary Table
S9). The 231 enzymes were mainly involved in lipid syn-
thesis and degradation, including 40 transferases, 8 ligases,
37 dehydrogenases, 32 reductases and 29 synthases, which
summed up >63% of these enzymes. To further confirm
these results, two independent proteomic analyses of
PD630 LD proteins under MSM24 condition were per-
formed. Two hundred thirty-eight of these 430 proteins
were also identified at least once (Supplementary
Table S10). The major LD protein bands that showed
marked differences between the NB and MSM24
samples (Figure 4B, bands 43 to 50. Supplementary
Table S11 for corresponding bands in two samples) were
then subjected to proteomic analysis. Most abundant
proteins in these bands were similar in these two
samples, but increased markedly in the MSM24 samples
compared with NB. Interestingly, we found that 31 ribo-
somal proteins were all increased by >2-fold change
(Supplementary Table S9). Furthermore, six ATP
enzymes (Figure 4F, LPD02785, LPD02782, LPD02805,
LPD03215, LPD02780 and LPD02777), two RNA poly-
merases, two translation initiation factors, two elongation
factors and 15 transcriptional regulators were also found
to be differentially expressed. There were 13 of the 15
transcriptional regulators upregulated in MSM3
compared with NB. Since these expressions of these
factors were highly correlated, they may construct as a
complete transcription/translation system in LD surface.
For summary, the abundant proteins detected in PD630
LD revealed that prokaryotic LD are involved in not only
the lipid synthesis and catabolism, but also multiple other
important cellular functions.

Proteins involved in LD dynamics

Integrating transcriptomic and proteomic data is a useful
method to reveal the proteins involved in LD dynamics.
Transcriptome analysis specifically for LD proteome
showed that >50% of 430 proteins were dramatically dif-
ferentially expressed under the varying NB, MSM3 and
MSM24 conditions. Totally, 177 of the 430 genes were
significantly upregulated, while 30 genes were
downregulated (�2-fold change or �2-fold change) from
NB to MSM3 (Figure 4E), suggesting that these proteins
play important functions related to LDs when culture con-
ditions changed. Specifically, 99 proteins of the 231
enzymes were increased, suggesting that the lipid synthesis
processes are much accelerated. We also identified four
dynamin (LPD02043, LPD02044, LPD02062 and
LPD02063) and three SNARE-like proteins (LPD02118,
LPD02119 and LPD03976) that may be involved in LD
dynamics (Supplementary Table S12). Each of the
dynamin proteins contains a Dynamin_N domain
(PF00350) (also named DLP_2 in NCBI CDD database)
(Supplementary Figure S6A). Further, operon LPD02062
and LPD02063 were highly expressed but operon

LPD02043 and LPD02044 showed almost no
expressions. The three SNARE-like proteins each
contain a SNARE_assoc domain (PF09335) (also named
PRK10847 in NCBI CDD database) (Supplementary
Figure S6B). Moreover, LPD03976, LPD02118 and
LPD02119 were expressed under all three conditions and
were observed to have a 1.5-fold change from NB to
MSM3 culture. Since dynamin and SNARE-like proteins
play important roles in LD budding and fusion processes
in eukaryotes (60,61), their presence in R. opacus PD630
suggests that these proteins may also mediate the LD
dynamics in prokaryotic organisms, thus indicating their
evolutionary origins. So far, these integrated omics studies
systematically revealed multiple factors that are related to
prokaryotic LD dynamics, especially the lipid synthesis,
storage and LD morphology.

A structure-like protein affects the morphology of
prokaryotic LDs

Among all the proposed proteins that may be involved in
LD dynamics, we further determined the protein
LPD06283 as a structure-like protein. We observed that
it was involved in LD dynamics. The expression of
LPD06283 was markedly increased from NB (FPKM
3.77) to MSM3 (FPKM 18.15), achieving a 2.27-fold
change. It was revealed as the major protein band
(Figure 5A). A fragment of LPD06283 (from 26 to
127 bp) was predicted to be an apolipoprotein domain
(PF01442, Figure 5B) by using Pfam databases (46). The
average posterior probability that means the degree of
confidence in each individual aligned residue is arranged
from 65 to 75%, showing a high confidence of this predic-
tion. We deleted it by homologous recombination to in-
vestigate its function (Supplementary Figure S7A and B).
Compared with the wild type, LDs in the LPD06283
deletion mutant were dramatically larger; however, their
numbers were reduced (Figure 5C, Supplementary Figure
S8, S9). LPD06283 is sequence similar with the earlier
reported proteins Ro02104 in RHA1 (62) and TadA in
PD630 (63). These results are consistent with early
studies demonstrating that LDs are easily fused in the
absence of structural proteins, and also consistent with
early studies in eukaryotic cells (62,64-66).

DISCUSSION

LD is an important organelle in both prokaryote and
eukaryote organisms, but little is known regarding its
function, dynamics and evolution. R. opacus PD630 is a
useful model for the investigation of LD, since the LD is
the only intracellular membranous organelle. We have
comprehensively presented the R. opacus PD630
genome, transcriptome and LD proteome, and have sys-
tematically investigated the key proteins potentially
involved in LD dynamics and functions. Integrating
these oimcs data revealed significantly differential expres-
sion of 177 LD proteins and further depicted a dynamical
landscape of prokaryotic LD in TAG accumulating
cultures. These results not only confirmed several early
studies of LD proteins, but also indicated many novel
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candidate proteins for optimizing TAG synthesis and
storage.
Comparative proteomics detected an abundance of

proteins on the PD630 LD surface, including enzymes,
transport protein, cell division related proteins, transcrip-
tion/translation protein, ribosome proteins and many
other unknown proteins. These diverse proteins indicate
that prokaryotic LDs, as the first intracellular membrane
system, are involved in lipid metabolism and other import-
ant cellular functions. Furthermore, this diversity of LD
proteins was also observed in earlier reported proteomics
from multiple species, such as green algae (67), yeast (68),
Drosophila (69), Caenorhabditis elegans (70), mice (71),
indicating a functional evolutionary path from
prokaryotes to mammals. For example, many ribosomal
proteins were found in the LDs of PD630, yeast,
C. elegans and Drosophila embryos but absent in the
LDs of mice. The number of enzymes presented in LDs
is decreased from PD630 to mice. The wide range of
functions carried out by prokaryotic LDs and the special-
ization of mammalian LDs suggest that functional special-
ization, accompanied by the distribution of other
biochemical processes among other organelles, and it is
a trend that continues during LD evolution from prokary-
otes to eukaryotes.
In both prokaryotic and eukaryotic cells, LDs have the

same topological structure that lipids are encapsulated by
phospholipid monolayer. From a topological view, LD
should be evolutionarily constructed by cells themselves,
and rather different from organelles such as the
mitochondria and chloroplast that may be original via
fusion of prokaryotic cells (72,73). An early model of
LD ontogeny in strain PD630 had been proposed that
LDs originate in the internal side of the cytoplasmic
membrane, where DGAT enzymes are localized (58).

However, this model presents difficulty to explain how
TAGs are synthesized and topologically encapsulated
into LDs in the cytoplasm, as TAGs are not soluble in
water. Our discovery of dynamin-like proteins in LDs may
suggested that the initialized lipid synthesis may be
accelerated at the cell membrane bilayer and disengaged
from cell membrane via catalysis of dynamin-like proteins;
however, further experiments need to be performed to val-
idate this hypothesis. We believe the complete R. opacus
PD630 genome, transcriptome and LD proteome pre-
sented here provides a starting point not only for
unravelling mechanisms of LD dynamics but also for
investigating the organelle and eukaryotic evolution.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Figure 5. Deletion of LPD06283 results in supersized LDs. (A) Gel electrophoresis of LD proteins from R. opacus PD630-WT and the LPD06283
deletion mutant stained by colloidal blue. Band 3, the main band, disappeared in the LPD06283 deletion mutant. (B) Location of the predicted
domain in LPD06283, Apolipoprotein (PF01442). (C) a1-a2, EM images of R. opacus PD630-WT cultured in MSM for 24 h after growing in NB for
48 h using positive staining methods; b1-b2, EM images of the LPD06283 deletion mutant under the same conditions as R. opacus PD630-WT. The
lower panels give amplified pictures. Bar=2 mm.
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