
Aggregation and pattern formation in

charged granular gases

Dissertation

for the award of the degree

"Doctor rerum naturalium"

of the Georg-August-Universität Göttingen

within the doctoral program

Physics of Biological and Complex Systems

of the Georg-August University School of Science (GAUSS)

submitted by

Chamkor Singh

from Hanuman Garh, India

Göttingen 2019



Thesis committee
Prof. Dr. Marco G. Mazza
Research Group: Non-Equilibrium Soft Matter
Max Planck Institute for Dynamics and Self Organization, Göttingen

Prof. Dr. Eberhard Bodenschatz
Department of Fluid Physics, Pattern Formation and Biocomplexity
Max Planck Institute for Dynamics and Self Organization, Göttingen

Prof. Dr. Reiner Kree
Institute for Theoretical Physics, University of Göttingen

Thesis referees
Prof. Dr. Marco G. Mazza
Research Group: Non-Equilibrium Soft Matter
Max Planck Institute for Dynamics and Self Organization, Göttingen

Prof. Dr. Eberhard Bodenschatz
Department of Fluid Physics, Pattern Formation and Biocomplexity
Max Planck Institute for Dynamics and Self Organization, Göttingen

ii



Members of the examination board
Prof. Dr. Marco G. Mazza
Research Group: Non-Equilibrium Soft Matter
Max Planck Institute for Dynamics and Self Organization, Göttingen

Prof. Dr. Eberhard Bodenschatz
Department of Fluid Physics, Pattern Formation and Biocomplexity
Max Planck Institute for Dynamics and Self Organization, Göttingen

Prof. Dr. Reiner Kree
Institute for Theoretical Physics, University of Göttingen

Prof. Dr. Matthias Krüger
Institute for Theoretical Physics, University of Göttingen

Dr. Claus Heussinger
Institute for Theoretical Physics, University of Göttingen

Prof. Dr. Stefan Klumpp
Institute for Dynamics of Complex Systems, University of Göttingen

Date of oral examination
02.09.2019

iii





to Basant and Gurmeet.





Publications from the thesis
C. Singh and M.G. Mazza, Electrification in granular gases leads to constrained fractal
growth, Scientific Reports 9: 9049 (2019).

C. Singh and M.G. Mazza, Early-stage aggregation in three-dimensional charged granu-
lar gas, Physical Review E 97: 022904 (2018).

Invited talk from the thesis
Particle aggregation in 3-D charged granular gas: simulations and mean-field study,
Gordon Research Seminar - Granular Matter (Frontiers of Granular Physics Session),
Easton, Massachusetts, USA, July 2018.

vii





Contents

Abstract xiii

Acknowledgements xv

List of Symbols xxi

List of Abbreviations xxiii

List of Figures xxxii

List of Tables xxxiii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Granular frictional or tribo, and contact electrification . . . . . . 5
1.2.2 Charged suspensions, powders, colloids, and dusty plasma . . . . 6
1.2.3 Aggregation of charged particles and astrophysical applications . 7
1.2.4 Collective effects in flows of charged particles . . . . . . . . . . . 8
1.2.5 Charged granular gases and their scope . . . . . . . . . . . . . . 9

1.3 Extent, scope and organization of the thesis . . . . . . . . . . . . . . . . 10

2 Theoretical framework 13
2.1 Statistical distribution function . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Boltzmann equation for a charged granular gas . . . . . . . . . . . . . . 14
2.3 Macroscopic quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Collision integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Collision integral for a neutral granular gas . . . . . . . . . . . . 20
2.4.2 Modified collision integral for a charged granular gas . . . . . . . 22

2.5 Mean-field description of aggregation: Smoluchowski coagulation equation 24

3 Granular molecular dynamics 27
3.1 Equation of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Contact forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Long-range forces: Ewald summation . . . . . . . . . . . . . . . . . . . 31
3.4 Long-range forces: Induced polarization . . . . . . . . . . . . . . . . . . 34
3.5 Charge currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 Rescaling of the equations: Non-dimensional numbers . . . . . . . . . . 36

ix



Contents

3.7 Numerical integration of the equations of motion . . . . . . . . . . . . . 40
3.7.1 Gear’s integration scheme . . . . . . . . . . . . . . . . . . . . . 40
3.7.2 Velocity Verlet integration scheme . . . . . . . . . . . . . . . . . 41

3.8 Integration of the stochastic differential equation for charge . . . . . . . 42
3.9 Non physicality of random walk charge-exchange . . . . . . . . . . . . . 44
3.10 Charge-exchange with multiplicative noise . . . . . . . . . . . . . . . . . 50
3.11 Viscous friction: Preliminary . . . . . . . . . . . . . . . . . . . . . . . . 50
3.12 Software and hardware used . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Early-stage aggregation in three-dimensional charged granular gas 53
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.2 Mean-field: Smoluchowski aggregation equation with modified

reaction kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.3 Velocity distribution . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Electrification in charged granular gases leads to constrained fractal growth 79
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.1 Inhomogeneous aggregation and fractal growth . . . . . . . . . . 92
5.3.2 Interplay between fractals and mesoscopic flow . . . . . . . . . . 94

5.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4.1 Kinetics and modified collision integral . . . . . . . . . . . . . . 95
5.4.2 Splitting restitution and aggregation . . . . . . . . . . . . . . . . 97
5.4.3 Derivation of the hydrodynamic equations (5.6)-(5.8) . . . . . . . 101
5.4.4 Solution for the restitutive part

(
3
2
∂T
∂t

)
res

. . . . . . . . . . . . . . 103
5.4.5 Solution for the aggregative part

(
3
2
∂T
∂t

)
agg

. . . . . . . . . . . . . 105
5.4.6 Granular MD simulations . . . . . . . . . . . . . . . . . . . . . 106

5.5 Comparison of individual T , 〈δq2〉, and n profiles, and emergence of con-
vective flow using Mach number . . . . . . . . . . . . . . . . . . . . . . 107

5.6 Reference scales and laboratory relevance of present results . . . . . . . . 110
5.7 Conclusions and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 111

6 There is more happening before aggregation 115
6.1 Dimensional analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.2 Hydrodynamics in the limit keq

2
ref

r̄
� T |ε2 − 1| . . . . . . . . . . . . . . 117

6.2.1 Mass transport . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2.2 Momentum transport . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2.3 Kinetic energy transport . . . . . . . . . . . . . . . . . . . . . . 120
6.2.4 Charge transport . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.2.5 Pressure tensor, heat flux, and transport coefficients . . . . . . . . 122

6.3 Linear stability of the hydrodynamic equations . . . . . . . . . . . . . . 122

x



Contents

6.3.1 Transverse modes . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.3.2 Longitudinal/parallel and other hydrodynamic modes . . . . . . . 126

7 Effect of induced polarization and viscous friction: Preliminary 131
7.1 Polarized, heterogeneously charged granular gas . . . . . . . . . . . . . . 132

7.1.1 Cluster mass/size versus cluster dipole moment . . . . . . . . . . 132
7.1.2 Effect on the fractal dimension . . . . . . . . . . . . . . . . . . . 134
7.1.3 Effect on the average cluster size . . . . . . . . . . . . . . . . . . 136

7.2 Effect of drag due to random interstitial velocities . . . . . . . . . . . . . 137
7.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8 Conclusions, Outlook, and Extensions 143
8.1 Summary of conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.2 Outlook and possible extensions . . . . . . . . . . . . . . . . . . . . . . 147

Appendix 1: Accompanying media and source codes 149

Appendix 2: Overall granular molecular dynamics algorithm 151

Appendix 3: MATLAB Scripts - Eigenvalues of the linear stability matrix 153

Appendix 4: MATHEMATICA Scripts - Dipole interactions and kinetic integrals 155

Appendix 5: Highly nonlinear regions on macroscopic scale 159

References 161

Curriculum Vitae 169

xi





Abstract

Particulate flows of dielectric grains are almost always plagued by contact or triboelec-
trification and the resulting long-range electrostatic interactions. Extensive experimental,
but rare theoretical, work is ongoing at present to understand the underlying mechanisms
of contact electrification, and its consequences on collective scales. Although the hard
matter principles remain elusive, here an effort is made to theoretically understand the
collective/many-body effects in granular gases arising due to this phenomena.

This thesis is focused on understanding the aggregation and pattern formation in het-
erogeneously charged, globally charge conserving, and initially dilute granular gases; the
gas is charged with simplified but physically valid charge-exchange recipes and the sub-
sequent effects of the long-range forces on the dynamics and morphology are studied.
Canonical observables, such as growth rates of the average cluster size, average frac-
tal dimension, granular temperature, and charge variance are computed using granular
molecular dynamics simulations. In addition, the size, velocity and charge distributions
are also studied. The observations from the detailed numerical simulations are utilized to
(i) modify the mean field Smoluchowski’s coagulation equation, and (ii) to provide a ki-
netic description taking care of restitution as well as aggregation. The onset of clustering
instability and the competition between dissipation and electrostatics, on a macroscopic
scale, is then studied via the linear stability analysis of the granular hydrodynamic equa-
tions. Finally, the alterations in the aggregate growth rates and the fractal dimension due
to additional degrees of freedom, introduced by the grain polarizability, are briefed.

Most important results, in general terms, from the thesis are as follows. The presence
of electrostatics fundamentally changes the nature of clustering in a granular gas – from
dynamic clustering to actual aggregation/coagulation. The growth rates of the clusters are
enhanced. The morphology of the emerging structures is self-similar and exhibits fractal
nature at simulated length and time scales. However, it is found that the heterogeneous
charges and aggregation have a negligible influence on the established statistical result of
granular temperature decay – the Haff’s law. The presence of charges fetches the granular
gas further far-from equilibrium relative to its neutral counterpart, suggested by a non-
relaxing velocity distribution and some evidence of the charge-velocity correlations. In
case of large scale charge separation in the gas, the spatial regions can be differentiated
to (i) where the electrostatic origin of the onset of clustering instability is expected to
be linear, and (ii) where it is in principle nonlinear. The grain polarizability affects the
small sized aggregate population; the fractal dimension of this subpopulation is lowered.
The overall cluster growth is further enhanced due to the polarizability. Finally, it is
demonstrated that only small-sized aggregates are expected to survive if they are "hit" by
random interstitial drag – a scenario applicable to astrophysical dust growth processes.
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x̄ : ȳ Contraction of two tensors x̄ and ȳ

δx Variation of a variable x
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"Most of the world is of great roughness and infinite complexity. However, the infinite sea
of complexity includes two islands of simplicity: one of Euclidean simplicity and a

second of relative simplicity in which roughness is present but is the same at all scales."

Benoît Mandelbrot





Chapter 1

Introduction

1.1 Motivation

Granular media are collections of athermal macroscopic grains. Flows of granular ma-

terials are ubiquitous in nature, industry and in our everyday life. There is a wide range

of phenomena which involves granular matter in one way or the other. From the sand on

a beach to the rings of Saturn, from the extraction of minerals to the salt and pepper in

our kitchen, and from pharmaceutical to the medicine industry, the appearance of granular

matter is unavoidable. As an example on astronomical scales, Fig. 1.1 shows the Pillars

of Creation of the Eagle’s Nebula, captured by the Hubble space telescope. These clouds

of cosmic dust in the pillars, although surrounded and influenced by gas and radiation, are

one example of granular structures having the size of the order of light years. On the other

hand, Fig. 1.2 shows typical examples from medicine, mining, agriculture, and mineral

industries. Given that granular matter is omnipresent, the rigorous understanding of their

dynamics is vital, both for the industry as well as for natural curiosity.

The granular flows are usually characterized by inelasticity and friction during col-

lisions of constituent grains. Thus they dissipate energy and require external or inter-

stitial driving for sustained motion. Densely packed granular materials may behave like

solids (de Gennes, 1999). Under large enough forcing, they may flow and show a tran-

sition to a liquid-like behavior (Campbell, 1990). Even larger driving, such as vibra-

tory motion, may fluidize the grains resembling a gaseous phase. Exposed to different

conditions, granular materials display various patterns, for example, dunes and ripples
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(a)

(b)

Figure 1.1: (a) The Pillars of Creation of Eagle’s nebula observed by the Hubble space
telescope, and (b) exaggerated view of a cosmic dust cluster in the nebula. Original image
source: ESA/Hubble. weblink: https://www.spacetelescope.org/images/heic1501a.

in deserts, Chladni figures in vibrated granular layers, fingering in planar avalanches,

etc (Aranson & Tsimring, 2006). The flows of granular matter are also a great example

of fluid-mechanical phenomena which is distinctive, but in some sense still analogous, to

the flows of ordinary liquids and gases (Haff, 1983; Jaeger et al. , 1996).

A particularly interesting class of granular matter is its dilute phase which is initially

driven but evolves with no external forces, known as a granular gas. Although mass and

momentum are conserved during collisions, energy dissipation1 in granular gases leads to

complex dynamic facets. These include appearance of clusters, vortex formation, and

power-law decay of particle velocity fluctuations (Goldhirsch & Zanetti, 1993; McNa-

mara, 1993; Brito & Ernst, 1998; Brey et al. , 1999; Brilliantov et al. , 2004; Nie et al.

, 2002). Furthermore, a non-zero dissipation produces other intriguing features such as

anomalous diffusion (Bodrova et al. , 2016; Brilliantov & Pöschel, 2000a), and dissimi-

larity between ensemble-averages and long-time averages of observables (non-ergodicity)

(Bodrova et al. , 2015).

The dynamics of neutral granular gases have been extensively studied in the last few

decades. For granular gases of dielectric grains, it is highly expected that the grains attain

electric charges due to contact or triboelectrification during mutual collisions. This aspect

1The kinetic energy dissipated during a collision can be specified in terms of the coefficient of restitu-
tion, which is elaborated in Fig. 3.1 in chapter 3.
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(a) (b)

(c) (d)

Figure 1.2: Typical examples from medicines, mining, agriculture and mineral industries.
(a) medicinal tablets,1 (b) ferric-oxide,2 (c) raw food grains,3 and (d) salt and pepper used
in our everyday life.4

is rarely addressed in the context of granular gases. In addition to triboelectrification

mechanisms, the additional degrees of freedom originating due to grain polarizability

further complicate the problem. Furthermore, studies of collisionally or triboelectrically

charged granular gases may help to reveal some dynamic aspects of the natural systems,

such as electrified volcanoes and sand storms [Fig. 1.3].

The dynamics and pattern formation in granular gases under such scenarios, or at least

close to such scenarios, is the topic of this thesis. In the next section and subsections

therein, literature relevant to the scope of the thesis is first reviewed. A summary of the

literature is provided thereafter. Finally, the extent and scope of the present thesis are

discussed.

1Image source: www.pixabay.com/photos/tablets-pills-medicine-disease-700670
2Image source: www.modernaquatix.com/bulk-gfo-granular-ferric-oxide
3Image source: www.pixabay.com/photos/food-cereals-wheat-grains-plant-4509
4Image source: www.amazon.com/Salt-Pepper-Shakers-Glass-Clear/dp/B06XH11C7K.
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(a) (b)

Figure 1.3: (a) Lightening due to static electrification of volcanic ash particles,1 and (b)
an artist’s impression of electrically charged dust strom on Mars.2

1.2 Literature review

Electrostatics plays a vital role in a wide range of natural as well industrial processes. Few

most common examples involving electrification are:

(i) Charge separation in clouds (Saunders, 2008); charging of ocean droplets, wind

blown dust, earthquake lightening, volcanic plumes and even sand storms.

(ii) Spray paints, precipitation of fly-ash using corona discharge, xerography, dielec-

trophoresis, electrostatic separation of minerals (Moore, 1972).

(iii) The transportation of powders, sugar, flour or pharmaceuticals through ducts.

(iv) Use of electrostatic probes to measure particulate mass flow rates in con-

duits (Cheng & Soo, 1970).

In the following subsections, the present understanding and relevant literature of elec-

trification in particle systems are classified into five categories: (i) granular frictional or

tribo and contact electrification, (ii) charged suspensions, powders, colloids and dusty

plasma, (iii) aggregation of charged particles and astrophysical applications, (iv) collec-

tive effects in flows of charged particles, and finally (v) charged granular gases and their

scope.

1 c© George Kourounis.
2Image source: www.nasa.gov/images/content/151990main_elec_dust_storm_lgweb.jpg
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1.2.1 Granular frictional or tribo, and contact electrification

The existence of electric charges is known from as early as 600 BC. It was observed that

a mineral called amber was able to attract light pieces of material, such as feather, when

rubbed with fur. The common term to describe this frictional electricity is triboelectri-

fication. However, later it was understood that charge transfer can be achieved by mere

contact between two surfaces without relative motion. The extent of charge transfer, how-

ever, might depend on the motion. To understand the contact or triboelectrification and its

effects on flows of insulator particles, extensive research has been performed in the past.

Below some recent studies are listed.

For contact between metal and glass surfaces, Lowell (1991) found that the interfa-

cial electric field is modified by conduction of charges, which in turn has an effect on

the charge transfer. Zhang et al. (2015) investigated the effect of external electric field

and humidity on contact electrification of insulators. The researchers suggested that the

surface can adsorb small amounts of water from the surrounding air, and the electric field

subsequently separates positive ions from negative ions. During the contact of two insu-

lators, they claim ions of one sign on one surface neutralizes the ions of opposite sign on

the second surface, leaving both the insulator surfaces with net charges after the contact.

Before this, theoretical efforts have been made to describe the effects of humidity/water

content on contact triboelectrification of sand particles (Zheng et al. , 2014; Gu et al. ,

2013). Yoshimatsu et al. (2016) studied the dynamics in fluidized granular bed under an

external electric field applied parallel to gravity. The grains in this study were charged

upon collisions using a mechanism proposed by Pähtz et al. (2010). According to this

mechanism, the grains become polarized in the external field and the charge transfer takes

place due to a neutralization event during the contact. The mechanism requires the pres-

ence of an external electric field. In a later study, Yoshimatsu et al. (2017) proposed a

multipole grain model with self-charging of grains to study granular beds. The mechanism

of grain charging in this study depended on polarizability and a neutralization efficiency.

The researchers found that initially, a perturbative charge could grow exponentially in

time. Among theoretical studies, Hu & Xie (2016) proposed a model for the probability

distribution function (PDF) of net charge transfer specific to a sand-bed collision process.

Matias et al. (2018) theoretically studied mechanical equilibrium of a number of charged
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grains inside individual aggregates and found that grains charged with the same sign may

also stay together due to induced polarization. In recent experiments, Schella et al. (2017)

showed that tribocharging changes the particle coordination number in a shaken dense bi-

nary sphere packing. Haeberle et al. (2018) found charge distributions with exponential

tails of particles undergone a single or multiple collisions. Shinbrot et al. (2017) pro-

posed that the charging of grains undergoing repeated contacts occur via the development

of local charge domains on the surface of grains, and the growth of these charge domains

is exponential, although a slower transient growth may also be a possibility. Shinbrot et al.

(2018) also found that the grain charging decreases as contact frequency increases if the

discharging kinetics were rapid than the charging kinetics. The proposition was backed

by granular bed experiments. The study visualized the charge patterns on the surface of

a celluloid ball and found that the point of contact retains a minimum amount of charge.

The authors suggested that the understanding of the kinetics of charge transport on the sur-

face itself needs further investigations. Lee et al. (2018) developed a novel experimental

technique to track the charge transfer between a single sub-millimeter sized particle with

a flat surface based on acoustic-levitation. The charge transfer between surfaces found to

be dependent on the hydrophobicity of the contacting surfaces.

1.2.2 Charged suspensions, powders, colloids, and dusty plasma

There are other charged particulate systems from which some analogies can be drawn,

e.g., charged powders, colloids, and dusty plasma. Charge separation and particle size

segregation were studied by Konopka & Kosek (2017) for elastic particles with prop-

erties of polyethylene powder. Dammer & Wolf (2004) found universal scaling for the

size distribution for an equally charged particle suspension in a thermal bath, using the

Smoluchowski aggregation equation. Another physical system close to granular gases is

the dusty plasma, where the particles attain charge from the surrounding ionized environ-

ment (Matthews & Hyde, 2004; Ma et al. , 2013; Horanyi & Goertz, 1990). In such a

setup, the dust grains may charge up due to primary plasma currents, secondary electron

emission and/or photoemission (Ma et al. , 2013), and collisional or triboelectric charging

is typically not considered. The charges attained by aggregates in plasma may correlate to

the structural properties of the aggregates (Ma et al. , 2013). There is even the possibility
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of gelation or runaway-growth of aggregates (Matthews & Hyde, 2004). Application of

Smoluchowski’s mean field approach has shown enhanced coagulation if the small grains

in plasma are charged oppositely to the big ones (Horanyi & Goertz, 1990). Matthews

et al. (2018) theoretically studied dust aggregates in a plasma environment. The aggre-

gates were prone to charge fluctuations due to the random attachment of small amounts of

elementary charges from the plasma. Authors used a master equation to describe the time

evolution of the PDF of the set of elementary charges attached to patches on the surface of

the aggregate grains. In colloids, the fractal dimension of colloidal aggregates is known

to be a decreasing function of dipolar forces (Lebovka, 2012).

1.2.3 Aggregation of charged particles and astrophysical applica-

tions

Particle aggregation processes are a wide branch of study, ranging from nano-sized col-

loidal coagulation to formation of protoplanetary bodies. Mechanistically, the aggregation

processes are classified based on the type of motion or trajectories of particles/aggregates

and the probabilities that a given collision between two particles/aggregates will lead to

sticking. Relevant to these processes, the following theoretical models need to be men-

tioned:

(i) Diffusion limited aggregation (DLA), also known as rapid aggregation, where the

trajectories of particles/aggregates are typically Brownian or random, and the stick-

ing/attachment probabilities are high.

(ii) Ballistic aggregation (BA), where the trajectories are straight.

(iii) Reaction limited aggregation (RLA), also know as slow aggregation, where the

sticking/attachment probabilities are low.

(iv) Cluster-cluster aggregation (CCA), where two aggregates/clusters join to make a

new aggregate.

(v) Particle-cluster aggregation (PCA), where a single particle/monomer joins with an

aggregate/cluster to make a new aggregate.
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(vi) Eden like aggregation (ELA), where single particles attach on the periphery of the

growing aggregate.

In addition to the above mechanisms, restructuring of clusters might also happen during

the growth process. This restructuring kinetics might lead to a reversible (where frag-

mentation is permissible) or irreversible growth (where eventually one single large cluster

appears).

In the context of aggregation of electrified particles, some recent studies have stim-

ulated significant interest in the problem. The most important in our opinion are listed

below. Ivlev et al. (2002) studied the aggregation of charged micro-particles in an ambi-

ent gas using the Smoluchowski aggregation equation for a mass-charge joint probability

distribution function. The analytical results indicated that a gelation or run-away growth

may occur if charge-dipole interaction is also taken into account. These gelation events

were also observed in a later experimental study, where charged micro-particles were in-

jected in a low-pressure neutral gas environment (Konopka et al. , 2005) with sufficient

initial number densities. Space shuttle microgravity experiments with sub-millimeter par-

ticles conducted by Marshall et al. (2005) revealed that electrostatic forces lead to the

formation of filamentary, and under certain conditions, larger size loosely packed aggre-

gates. The experiments indicate that dipolar interactions play a significant role. Lee et al.

(2015) experimentally showed charging and aggregation in freely falling granular streams.

The experiments showed millimeter-sized charged particles to follow Kepler-like orbits in

their mutual electrostatic field, bouncing on each other before forming aggregates. The

aggregation due to electrostatics is also found to be prevalent for mineral grains with a

chemical composition similar to that which are found in the sand of Titan (Harper et al. ,

2017). The resulting effect would be that the threshold velocity of the wind flowing over

the surface of the Titan’s sand has to be larger to cause any significant transport.

1.2.4 Collective effects in flows of charged particles

The collective effects, and pattern formation, caused by grain contact or triboelectrifica-

tion in a many-body granular system (dense or dilute) remains largely unexplored. Below

are some of the recent studies which have touched this aspect. The effect of particle

charging and polarization on particle-laden flow in a vertical pipe under gravity, in the
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absence of dissipation during particle-particle collisions, is studied by Kolehmainen et al.

(2018a). In this study, which is specific to wall-bounded flow, researchers found quali-

tative changes in the particle flow characteristics, such as meandering or sheathing flow

regimes. Di Renzo & Urzay (2018) studied inertial charged particles in turbulence. The

particles experienced drag and electrostatic forces, and the particle-particle collisions were

neglected. Half of the particle population was considered to carry constant value positive

charge, and the rest was carrying constant value negative charge. The study revealed the

generation of mesoscopic electric fields. Nordsiek & Lathrop (2015) studied the collec-

tive behavior of grains of different materials shaken inside a cell between two conductive

plates. The electrical potential across the two plates was measured. Partial segregation

events were observed in the presence of electrification of grains. The observations were

found to be unaltered by the particle size, shape or material. The study suggested that

structures forming at large scale and long-range interactions are important to understand

the electrification phenomena in general.

1.2.5 Charged granular gases and their scope

Very few studies exist where the granular gases have been augmented with long-range

potentials. Some of the known outcomes are listed as follows. Müller & Luding (2011)

studied the granular temperature using pseudo-Liouville operator formalism and MD sim-

ulations for attractive (self-gravity) and repulsive r−1 potentials. For short-ranged attrac-

tive potentials, Murphy & Subramaniam (2015) studied the deviation of granular temper-

ature from the Haff’s law up to short times and noticed velocity correlations arising due

to monomer sticking events. Other than self-gravity, attractive non-contact potentials be-

tween grains are expected to enhance clustering, while the opposite is true for repulsive

potentials (Gonzalez et al. , 2014). Granular temperature decays inverse logarithmically

in a monopolar and equally charged granular gas (Scheffler & Wolf, 2002; Takada et al. ,

2017).

It is important to note that in most of the above studies in this subsection, the homo-

geneous cooling state (HCS) of the granular gas was the primary focus. The structure for-

mation, the morphology of the clusters, and the collective effects emerging out of the ag-

gregation processes in a charged (and polarized) granular gas are still largely unexplored.

9
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The collective behavior and pattern formation in heterogeneously charged particulate sys-

tems is in general an inadequately understood phenomenon. Although analogies can be

drawn from other charged systems (such as charged colloids, dusty plasma, and experi-

mental works on protoplanetary dust aggregation, as discussed in previous subsections)

there is ample scope to theoretically describe the pattern formation in these many-body

systems, beginning from the microscopic collision level where both the dissipation and

tribo/contact electrification play key roles.

1.3 Extent, scope and organization of the thesis

This thesis is focused on understanding the aggregation and pattern formation in hetero-

geneously charged, globally charge conserving, and initially dilute granular gases; the

gas is charged with simplified but physically valid charge-exchange recipes and the sub-

sequent effects of the long-range forces on the dynamics and morphology are studied.

This theoretical setup closely replicates, or at least targets, the charged dust agglomera-

tion scenarios. Canonical observables, such as growth rates of the average cluster size,

average fractal dimension, granular temperature, and charge variance are computed us-

ing granular molecular dynamics simulations. In addition, the size, velocity and charge

distributions are also studied. To systematically understand the aggregation and patterns,

different approaches are used in the thesis, namely

(i) Smoluchowski’s mean field equation with modified aggregation kernel,

(ii) kinetic theory with modiefied collision integral,

(iii) molecular dynamics simulations, and

(iv) linear stability analysis of the hydrodynamic equations for the onset of pattern form-

ing instability.

The forces acting on macroscopic grains in granular media are due to mutual me-

chanical contacts or cohesion/surface forces, augmented by interactions with interstitial

medium; additionally, there might be non-contact forces such as gravitational or electro-

static. Let us consider these forces one by one under a dilute limit, that is r̄ � d0, where
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d0 is typical grain size and r̄ is the mean separation between grains. The mechanical con-

tact forces in granular media are inevitable. The accelerations of grains due to interstitial

fluid will typically scale as ∼ v/τfric, where v is the velocity of grains relative to fluid

and τfric is some friction time scale between grains and the fluid. As long as this time

scale is large enough, the interstitial medium can be neglected. The gravitational forces

will typically scale as Gm2/r̄2, where m and G are the grain mass and the gravitation

constant respectively. No matter how small relative to other forces, gravitational forces

are never zero. The electrostatic forces are active if the grains are charged and will scale

as keq2/r̄2, where q and ke are the typical charge on grains and the Coulomb’s constant

respectively. The electrostatics is expected to dominate gravitation only if keq2 � Gm2,

or q/m �
√
G/ke. Thus in vacuum, the charge by mass ratio should be much greater

than
√
G/ke ≈ 8.6 × 10−11 C kg−1 for electrostatics to be more significant than the

gravitation. Under this, and using the definitions of grain material’s mass density ρm and

surface charge density ρq, it can be estimated that for electrostatics to be dominant over

the gravitation in vacuum

d0 �
ρq

ρm

×
√
ke
G
. (1.1)

Putting typically measured charge densities (≈ 10−6 C m−2),1 mass density of silica

(≈ 3800 kg m−3),1 and values of the Gravitational and Coulomb’s constant, it can be

estimated that electrostatic will be dominant over gravity if

d0 � 1 m. (1.2)

The results in this thesis should qualitatively apply to charged granular gases with the

above condition on the monomer sizes, together with the condition of initially dilute gas

d0 � r̄. (1.3)

1Lee et al. (2015) measured ≈ 106 elementary charges on ≈ 300 µm diameter particles, which indi-
cates the surface charge density ≈ 10−6 Cm−2.
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The grains are considered athermal, which under normal conditions roughly implies that

d0 � 1 µm. (1.4)

To replicate contact electrification, the charge-buildup models used in this thesis primarily

rely on experimental observations and do not target to resolve hard condensed matter

details of the charge transfer processes.

The structure of the thesis is the following. The kinetic framework and the deriva-

tion of the mean field Smoluchowski equation are described in chapter 2. The granular

molecular dynamics, treatment of long-range forces and polarization, treatment of charge-

exchange currents is presented in chapter 3. Thereafter chapter 4 deals with the results

for early-stages of aggregation, the mean field prediction of the aggregate growth rates,

and the effects of electrostatics on velocity distribution. Chapter 5 contains the study

of fractal structures and development of rate equation for macroscopic quantities during

the aggregation. Chapter 6 deals with the linear stability analysis of the hydrodynamic de-

scription under certain limits and discusses the hydrodynamic modes involved at the onset

of the inhomogeneous state. Thereafter preliminary results for induced polarization and

viscous friction are presented in chapter 7. Finally, the conclusions, outlook, and possible

extensions are summarized in chapter 8.

12



Chapter 2

Theoretical framework

2.1 Statistical distribution function

Let us define a probability distribution function f(r, t;v, q), which describes the positions

r, velocities v, and charges q of equal sized spherical particles of the gas in their phase

space, at a time t. Let us consider that the distribution function is normalized such that

the product fdrdvdq = dN is the mean number of particles in the phase space volume

element drdvdq. The particles in drdvdq have values of r,v and q in the ranges dr, dv

and dq respectively. Integration over the entire phase space provides the normalization

condition

∫
q

∫
v

∫
r

f(r, t;v, q)drdvdq = N, (2.1)

where N is the total number of particles in the gas. Instead of mean number of particles

in the element drdvdq, it is useful to consider the spatial number density fdvdq = dN
dr

.

In this way the spatial description is separated from the other phase variables, and the

integration now provides

∫
q

∫
v

f(r, t;v, q)dvdq = n(r, t). (2.2)

Here n is the mean spatial number density of the particles at (r, t).

In the above definition of the mean or macroscopic number density n, the linear size

of the spatial volume element dr is considered much smaller than the characteristic linear
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size L of the problem, while still large in comparison to the particle mean free path r̄ ∼
L

N1/3 . The volumes dr contain many particles and the particle number fluctuations in

dr are negligible relative to the mean number of particles in dr. In this study, the particle

charge q is explicitly considered as additional phase space variable. Explicit consideration

of the charge dynamics will result in a modified Boltzmann equation, which is described

in the next section.

2.2 Boltzmann equation for a charged granular gas

The time evolution of the distribution function f(r, t;v, q) is given by the Liouville’s

theorem, which states that

df

dt
=
∂f

∂t
+
∑
k

Ẋk
∂f

∂Xk

= 0. (2.3)

HereX are the phase space variables. Using the setX = {r,v, q}, the Liouville’s theorem

can be written as

∂f

∂t
+ v · ∂f

∂r
+ v̇ · ∂f

∂v
+ q̇

∂f

∂q
= 0. (2.4)

The accelerations v̇ of the particles might be due to internal (electrostatics in this case)

and external body force fields, or due to the collisions. The last term on the left-hand side

(LHS) signifies the changes in the distribution function produced by the charge exchange

events during collisions.

The charged particles experience body forces due to the mutual electrostatic field. Let

us consider that the electric field at the location of a particle is e. This microscopic electric

field e at the location of a particle may be expressed as the sum of a mean electric field

E, and a fluctuating part e′ due to the nearby encounters with the other charged particles,

i.e., e = E + e′. Thus the acceleration due to body force is v̇body = q
m0

(E + e′); m0

in the monomer mass. The contribution to the acceleration caused by the collisions is

denoted by v̇coll. The acceleration due to external body force fields (for example gravity
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or external magnetic field) is considered zero. Using these, Eq. (2.4) is rewritten as

∂f

∂t
+ v · ∂f

∂r
+
qE

m0

· ∂f
∂v

= −v̇coll · ∂f
∂v
− qe′

m0

· ∂f
∂v
− q̇ ∂f

∂q
. (2.5)

As discussed, the right-hand side (RHS) in the above equation arises due to grain col-

lisions, electric field fluctuations (or Coulomb collisions), and charge exchange events

during collisions. Here the RHS is termed as the modified collision integral

Icoll = −v̇coll · ∂f
∂v
− qe′

m0

· ∂f
∂v
− q̇ ∂f

∂q
. (2.6)

The mean electric field E must satisfy the averaged Maxwell’s electrostatic equations

∂

∂r
× E = 0, (2.7)

∂

∂r
· E = 4πρq, (2.8)

where ρq is the mean volumetric charge density which can be expressed in terms of the

distribution function itself as

ρq(r, t) = nQ(r, t) =

∫
q

∫
v

qf(r, t;v, q)dvdq, (2.9)

Here Q is the mean or macroscopic charge. The equation set (2.5)-(2.9) is similar to the

Vlasov equations for collisionless plasmas (Pitaevskii & Lifshitz, 2012), except the fact

that here a more involved collision integral which accounts for granular inelastic collisions

and collisional charge exchange needs to be augmented.

2.3 Macroscopic quantities

In principle, once the distribution function is suitably defined, any macroscopic observable

〈ψ〉(r, t) can be expressed by taking average of its microscopic counterpart ψ(v, q), i.e.

〈ψ〉(r, t) =
1

n

∫
q

∫
v

ψ(v, q)f(r, t;v, q)dvdq. (2.10)
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In addition to the particle number density n and and the mean charge density ρq given in

Eqs. (2.2) and (2.9), respectively, the following macroscopic quantities are useful, and are

used in the thesis. The mean, or macroscopic velocity V is given by the relation

nV(r, t) =

∫
q

∫
v

vf(r, t;v, q)dvdq. (2.11)

The granular temperature T , or the mean velocity fluctuations, is given by the relation

3

2
nT (r, t) =

∫
q

∫
v

1

2
m(v −V)2f(r, t;v, q)dvdq. (2.12)

In addition to the mean charge Q, another quantity of interest will be the mean charge

fluctuations 〈δq2〉, given by

n〈δq2〉(r, t) =

∫
q

∫
v

(q −Q)2f(r, t;v, q)dvdq. (2.13)

2.4 Collision integral

To make the collision term Eq. 2.6 in the Boltzmann equation analytically tractable, the

following simplifications are made:

(i) It is considered that the collisions between particles are instantaneous. Thus the

description of the collisions in a spatial volume element dr is probabilistic, and the

description of the events taking place within the collision time is simplified.

(ii) The particle collisions are considered to be binary. This assumption requires that

the gas is sufficiently rarefied so that the particle interactions involving more than

two particles can be neglected.

(iii) Before each collision, the velocities, and the charges of two colliding particles are

uncorrelated.

To derive the collision integral within the above framework, the phase space volume

element is first written as drdV , where V are the phase space variables other than position

r and time t, e.g., dV = dv for neutral granular gas and dV = dvdq for charged granular
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gas. Thus f(r, t;V)dV are the number of particles per unit spatial volume, irrespective of

the number of variables in V .

Let us consider two colliding particles, i and j, having values Vi and Vj in dVi and

dVj , respectively. Due to the collision, these values will alter and both the particles will

find new values V ′i and V ′j in dV ′i and dV ′j respectively. The aim is to find total number

of particles j colliding with particles i per unit spatial volume and per unit time, say ν,

which lead to (Vi,Vj)→ (V ′i,V ′j).

The number of collisions per unit time and per unit spatial volume ν will be propor-

tional to the number of particles per unit spatial volume f(r, t;Vi)dVi. However, there will

be a probability that each of them undergoes a collision with particles j. This probability

will be higher if the number of colliding particles j per unit spatial volume, f(r, t;Vj)dVj ,
is higher. Also, the larger the post-collision ranges dV ′i and dV ′j , the larger is this proba-

bility. Collecting these arguments

ν ∝ f(r, t;Vi)dVi f(r, t;Vj)dVj dV ′idV ′j, (2.14)

or

ν = pf(r, t;Vi)dVi f(r, t;Vj)dVj dV ′idV ′j, (2.15)

where the proportionality constant p is determined in the following way. Each of the

particles from f(r, t;Vi)dVi will collide with only incoming particles from f(r, t;Vj)dVj .
Or in other words the collisions will take place only if the velocities of particles j relative

to particles i, i.e. vj − vi ≡ vij , are directed towards particles i [Fig. 2.1]. If nij =
rj−ri
|rj−ri|

is the unit vector pointing from particle i towards particle j at the time of contact, then

the above condition says that −vij · nij > 0 for collisions to take place, or in other words

Θ(−vij · nij) = 1. Also, if the particle j has to satisfy the condition Θ(−vij · nij) = 1

at the instant of the collision, then it should be at a distance |vij|dt from its location at

the moment of contact [Fig. 2.1]. Or in the direction along nij , it should be at a distance

|vij · nij|dt from its location at the moment of contact [Fig. 2.1]. If dσ is the differential

area around nij on which the collisions of particles j are to be counted, then the particles

j only within a cylinder of volume dσ|vij · nij|dt will collide with i. The number of such
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Figure 2.1: Geometrical description of a binary collision between neutral particles. A
particle j collides with particle i, within a differential time dt, only if the relative velocity
vij points towards a region covered by the impact parameter b, and the particle j is within
a distance |vij|dt from the point of contact. The direction nij is the unit vector from the
center of particle i towards the center of particle j at the instant of contact, and dσ

dΩ
is the

differential cross section per unit solid angle around nij .

particles j colliding with the particle i will be f(r, t;Vj)dVjΘ(−vij · nij)dσ|vij · nij|dt.
Now as there are f(r, t;Vi)dVi particles of type i per unit spatial volume, the total number

of collisions per unit spatial volume in time dt will be

f(r, t;Vi)dVif(r, t;Vj)dVjΘ(−vij · nij)dσ|vij · nij|dt, (2.16)

or the number of collisions per unit time and per unit spatial volume will be

ν = f(r, t;Vi)dVif(r, t;Vj)dVjΘ(−vij · nij)dσ|vij · nij|. (2.17)

Comparing Eqs. (2.15) and (2.17), the proportionality coefficient p turns out to be

p(V ′i,V ′i;Vi,Vj) =
Θ(−vij · nij)dσ|vij · nij|

dV ′idV ′j
. (2.18)
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The number of collisions per unit time and per unit spatial volume [Eq. (2.17)] determines

the number of collisions, or the number of particles that are leaving the volumes dVi, dVj ,
per unit time and per unit spatial volume. At the same time, there might be collisions

which lead to increase the number of particles in the volumes dVi, dVj . Let us consider

that these collisions take place in the ranges dV ′′i , dV ′′j , where the superscript ′′ now indi-

cates pre-collision values. With similar arguments as above, the number of such collisions

per unit time and per unit spatial volume, ν+, will be

ν+ = f(r, t;V ′′i )dV ′′i f(r, t;V ′′j )dV ′′j Θ(−v′′ij · nij)dσ|v′′ij · nij|. (2.19)

Notice that for these so called "inverse" collisions

p(Vi,Vi;V ′′i ,V ′′j ) =
Θ(−v′′ij · nij)dσ′′|v′′ij · nij|

dVidVj
. (2.20)

The difference ν+− ν is the net change in the number of particles per unit spatial volume

and per unit time, written as

ν+ − ν =f(r, t;V ′′i )dV ′′i f(r, t;V ′′j )dV ′′j Θ(−v′′ij · nij)dσ|v′′ij · nij|

− f(r, t;Vi)dVif(r, t;Vj)dVjΘ(−vij · nij)dσ|vij · nij|. (2.21)

The normal component of the pre-collision velocities v′′ij are related to their post collision

values vij via the coefficient of restitution as

v′′ij · nij = −1

ε
vij · nij, (2.22)

where 0 ≤ ε ≤ 1 is the coefficient of restitution. For further simplification, the volume

elements dV ′′i , dV ′′j are to be transformed to dVi, dVj using

dV ′′i dV ′′j =
∂(V ′′i ,V ′′j )

∂(Vi,Vj)
dVidVj, (2.23)

where
∂(V ′′i ,V ′′j )

∂(Vi,Vj) is the determinant of the Jacobian of the transformation.

Using Eqs. (2.22) and (2.23) in Eq. (2.21), dividing by dVi, and integrating over vari-

ables Vj and all possible directions nij , the following form of the collision integral is
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obtained

Icoll =
∂

∂t
f(r, t;Vi) =

∫
Vj

∫
nij

[
χf(r, t;V ′′i )f(r, t;V ′′j )− f(r, t;Vi)f(r, t;Vj)

]
×Θ(−vij · nij)|vij · nij|dVjdσ, (2.24)

where

χ =
|v′′ij · nij|
|vij · nij|

∂(V ′′i ,V ′′j )

∂(Vi,Vj)
. (2.25)

Note that according to the definition, the phase space variables V includes velocity, as

well other variables of interest. For example for a neutral granular gas V = v only, while

for granular gas of charged particles, V = {v, q}. Also dσ ≡ dσ
dΩ
dΩ ≡ dσ

dΩ
dnij , with dσ

dΩ

being the differential cross section per unit solid angle around nij [Fig. 2.1]. Thus for

specifying the above collision integral for a given set of V , the collision rule for each of

the component variables in V should be specified. Below, the case of neutral granular gas

is first discussed, where V = v.

2.4.1 Collision integral for a neutral granular gas

For a neutral granular gas V = v, where the Jacobian simplifies to
∂(V ′′i ,V ′′j )

∂(Vi,Vj) =
∂(v′′i ,v

′′
j )

∂(vi,vj)
,

and can be found by specifying the relation between pre and post collision velocities. The

relation between the normal component of relative velocities is given in Eq. (2.22). In

this thesis, the frictional forces are ignored and thus the tangential component of relative

velocities remain unchanged, i.e.

vij − (vij · nij)nij = v′′ij − (v′′ij · nij)nij. (2.26)

Combining Eqs. (2.22) and (2.26) provides

vij = v′′ij − (1 + ε)(v′′ij · nij)nij. (2.27)
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Using the momentum balance

m0,iv
′′
i +m0,jv

′′
j = m0,ivi +m0,jvj (2.28)

in Eq. (2.27), the post-collision velocities in terms of pre-collision velocities are written

as

vi = v′′i +
1 + ε

2
(v′′ij · nij)nij, (2.29)

vj = v′′j −
1 + ε

2
(v′′ij · nij)nij, (2.30)

where it is assumed that m0,i = m0,j . Alternatively, the pre-collision velocities in terms

of post-collision velocities, using v′′ij · nij = −1
ε
vij · nij , are written as

v′′i = vi +
1 + ε

2ε
(vij · nij)nij,

v′′j = vj −
1 + ε

2ε
(vij · nij)nij. (2.31)

These relations are then used to obtain the transformation dv′′i dv
′′
j =

∂(v′′i ,v
′′
j )

∂(vi,vj)
dvidvj. For

example, considering a collision where nij = (0, 0, 1), the Eqs. (2.31) read as

v′′i,x = vi,x, v
′′
i,y = vi,y, v

′′
i,z = vi,z +

1 + ε

2ε
(vj,z − vi,z),

v′′j,x = vj,x, v
′′
j,y = vj,y, v

′′
j,z = vj,z −

1 + ε

2ε
(vj,z − vi,z). (2.32)

Now considering the case of a constant ε, the Jacobian of transformation reads

∂(v′′i ,v
′′
j )

∂(vi,vj)
=

1

ε
. (2.33)

Incorporating this into the definition [Eq. (2.24)], the collision integral for a neutral gran-

ular gas can be written as

Icoll =

∫
vj

∫
nij

[
χf(r,v′′i ; t)f(r,v′′j ; t)− f(r,vi; t)f(r,vj; t)

]
×Θ(−vij · nij)|vij · nij|dvjdσ. (2.34)
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Using Eqs. (2.22) and (2.33) in equation (2.25), the value of χ for a granular gas with

constant ε turns out to be 1
ε2

. For a granular gas with ε = ε(|vij · nij|), the transformation

dv′′i dv
′′
j → dvidvj is more involved. For example in this case the expression for χ, under

certain assumptions, is derived by Brilliantov & Pöschel (2010), which reads as

χ =
1

ε(|vij · nij|)

[
1 + c0

6

5
|vij · nij|1/5 + ...

]
, (2.35)

where c0 is a material constant.

2.4.2 Modified collision integral for a charged granular gas

For a granular gas of charged particles, V = {v, q}. Thus, the Jacobian of transformation

dq′′i dq
′′
j → dqidqj is also required in addition to the transformation dv′′i dv

′′
j → dvidvj .

The expression for χ in this case reads

χ =
|v′′ij · nij|
|vij · nij|

∂(v′′i ,v
′′
j )

∂(vi,vj)

∂(q′′i , q
′′
j )

∂(qi, qj)
. (2.36)

In relation to this point, several intricacies need to be addressed. First, the grains in

a granular gas may be of conducting or dielectric materials. However, in the context

of protoplanetary dust evolution, it is assumed that the grains are of dielectric nature.

Second, the grains have finite size and thus it is possible that the charge is distributed on

the grain surface in a complex manner. Third, the charge transfer between two colliding

dielectric grains, in itself, is not a well understood phenomenon. Fourth, the relative

collision velocity might correlate with the grain surface charges altering the collision rule

significantly in an intricate manner. Therefore in practice, the transformation dq′′i dq
′′
j →

dqidqj is quite involved.

For analytical tractability, the following simplifying assumptions are made. The

charges on the grains influence the impact parameter, or the differential cross section

(say dσq), however, the restitution rule for viscoelastic particles [Eq. (2.31)] is assumed

to remain unaltered during the course of a collision. In other words, the Jacobian
∂(v′′i ,v

′′
j )

∂(vi,vj)

is considered to keep its form similar to the neutral viscoelastic granular gas. The grains

are considered to carry charge monopoles at their COM, and the values of the charges

alter only during the course of a collision. As a simple specific example, consider that in
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addition to the charge conservation during collisions

q′′j + q′′i = qj + qi, (2.37)

the ratio of pre to post collision relative charges is defined as

κ =
qj − qi
q′′j − q′′i

. (2.38)

The above two equations lead to the collision rule

q′′i =
qj + qi

2
− 1

2κ
(qj − qi),

q′′j =
qj + qi

2
+

1

2κ
(qj − qi). (2.39)

Using the above equation, and considering a granular gas with constant κ, the determinant

of the Jacobian of transformation reads

∂(q′′i , q
′′
j )

∂(qi, qj)
=

1

2

∣∣∣∣∣∣
(
1 + 1

κ

) (
1− 1

κ

)(
1− 1

κ

) (
1 + 1

κ

)
∣∣∣∣∣∣ =

2

κ
. (2.40)

Thus for a granular gas with constant ε and constant κ,

χ =
2

ε2κ
, (2.41)

while for a granular gas with ε = ε(|vij · nij|) and constant κ,

χ =
2

κ

1

ε(|vij · nij|)

[
1 + c0

6

5
|vij · nij|1/5 + ...

]
. (2.42)

In practice, κ is expected not to be constant. Therefore, the notation χ is used as a gen-

eral variable in the collision integral. While taking moments of the collision integral to

determine the time rate of change of macroscopic quantities, it can be shown that the ac-

tual expression for χ is not required, and the charge exchange rule can be used directly.

This helps in incorporating the present knowledge (empirical or analytical) of the charge

exchange mechanism into the kinetic description. This point is further discussed in chap-

ter 5, where the time evolutions of the macroscopic quantities are derived.
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2.5 Mean-field description of aggregation: Smolu-

chowski coagulation equation

A sophisticated collision dynamics is considered in the kinetic theory above. In the fol-

lowing, an alternative mean-field approach, also used in the thesis, is described to deter-

mine the growth rate of aggregates in a charged granular gas.

Consider an aggregation process where the motion of particles, and their mutual inter-

actions, are spatially isotropic. The particles are considered to aggregate, or stick together,

with some probability s upon collisions. The collision time, i.e. the time taken by the par-

ticles during the course of a collision, is considered much smaller than the time taken by

particles to travel the mean free path r̄. The smallest particles during the aggregation pro-

cess, or monomers, have diameter d0 and mass m0, and are initially monodispersed. The

variable of interest is the mass m of an aggregate at a given time t.

Let us consider a mass distribution function f(m, t), normalized such that f(m, t)dm

provides the number of particles/aggregates per unit spatial volume (or the parti-

cle/aggregate number density), which have mass in the range dm around m, at time t.

The number of collisions which lead to aggregation of particles, having masses in the

range dmi and dmj , per unit time and per unit spatial volume, will be

νagg,− = sij vij σij f(mi, t)dmi f(mj, t)dmj, (2.43)

where, vij is the relative collision speed and σij is the total collision cross section between

the particles/aggregates i and j. sij is the probability (called sticking probability) that a

collision between particles i and j will lead to aggregation. The superscript “−" is used

to emphasize that the particles, after aggregation, will leave the ranges dmi and dmj .

Similarly, there will be collisions, where the particle masses will enter into the range

dmi around mi. If m′′j are the pre-collision masses, which have to enter the mass range

dmi, they must collide with particles having masses m′′k = (mi − m′′j ). The number of

collisions which satisfy this condition, per unit time and per unit spatial volume, will be

νagg,+ = s′′ij v
′′
ij σ

′′
ij f(mi −m′′j , t)dm′′k f(m′′j , t)dm

′′
j , (2.44)
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Subtracting Eq. (2.43) from Eq. (2.44), dividing by dmi, and integrating over appropriate

ranges of masses, one obtains the time rate of change of f(mi, t)

∂

∂t
f(mi, t) =

∫ mi/2

0

s′′ij v
′′
ij σ

′′
ij f(mi −m′′j , t)

dm′′k
dmi

f(m′′j , t)dm
′′
j

−
∫ ∞

0

sij vij σij f(mi, t) f(mj, t)dmj (2.45)

The above equation can be considered as a general form of the Smoluchowski coagulation

equation, excluding the fragmentation events. The integration limits in the gain term (first

term on the RHS) are such that (i) they satisfy m′′k + m′′j = (mi − m′′j ) + m′′j = mi,

and (ii) the particles are not counted twice. Assuming that the differential mass elements

dmi = dm′′j = dm′′k, Eq. (2.45) can be simplified to

∂

∂t
f(mi, t) =

∫ mi/2

0

Ki−j,j f(mi −mj, t) f(mj, t)dmj

−
∫ ∞

0

Ki,j f(mi, t) f(mj, t)dmj (2.46)

Here the quantity

Ki,j ≡ sijvijσij (2.47)

in the above integro-differential equation is termed as the collision kernel, or the reaction

kernel. The macroscopic number density n(t) of aggregates at any given time t is given

by

∫ ∞
0

f(mi, t)dmi = n(t). (2.48)

Also, the following normalization states that at any time t, the total mass is conserved by

the Smoluchowski equation

∫ ∞
0

mi f(mi, t)dmi = constant. (2.49)

The following points about the Smoluchowski equation need to be emphasized. The spa-

tial information of aggregates is not accounted for, and the equation, in principle, applies

25



Chapter 2

to homogeneously mixed systems. Also, only pair collisions are considered which makes

it useful for dilute particle systems. It is also assumed that the particle interactions, and

motions, are spatially isotropic. There are no mass sources, or sinks, of particles. The

information about aggregate morphology, relative motion, and sticking probability can be

incorporated in the Smoluchowski’s equation via the reaction kernel [Eq. (2.47)].

The mean field approach described above is used in chapter 4 to determine the aggre-

gation rates, for neutral, as well as charged granular gases.

If initially, all the grains/monomers have identical massm0, then the mass of an aggre-

gate i will be simplymi = m0 Ni, whereNi is now the number of monomers in aggregate

i. In this case, the integrals in Eq. (2.46) can be replaced by discrete sums, as

∂

∂t
f(Ni, t) =

1

2

i−1∑
j=1

Ki−j,j f(Ni −Nj, t) f(Nj, t)−
∞∑
j=1

Ki,j f(Ni, t) f(Nj, t). (2.50)

In the present thesis, the smallest entities, i.e, monomers are considered monodispersed,

and thus the discrete form of the Smoluchowski equation is used. The modification in the

aggregation kernelKi,j , however, is needed. An appropriate treatment ofKi,j is developed

in chapter 4 with the help of MD simulation results.
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Chapter 3

Granular molecular dynamics

3.1 Equation of motion

One of the important aspects in the process of planetary dust aggregation is that the nature

of interactions between grains, and their motion, change as one moves from grain sizes

as small as few nm to as large as meter-sized bodies. The Brownian motion and surface

forces are important for grains in the size range of nm− µm. The aggregation processes

in this regime of grain sizes have been the subject of several studies (Ivlev et al. , 2002;

Blum, 2006; Castellanos, 2005). For bodies whose size is comparable to or larger than a

few meters, the gravitational interaction takes over. As argued in section 1.3, the present

work is focused on the grain size regime d0 ∼ mm − cm, where neither the surface

interactions, such as Van der Waals forces, nor the gravitational forces are of primary

importance. Mainly the effect of electrostatic interactions originating due to the collisional

electrification of the grains is investigated. The grains are athermal (i.e. they are not

in Brownian motion). Their shape is assumed to be spherical. The short-range forces

between grains are considered purely due to mechanical contact. The contact forces can

be model specific, and their treatment is separately described in the next section.

For the translation of and the rotation about the COM of a grain i, Newton’s equation

of motion is written as

mi
dvi
dt

= Fshort
i + Flong

i ,

Mi
dωi
dt

= Ti, (3.1)
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where mi is the grain mass, vi is the grain COM velocity, Mi is the moment of inertia

about the COM, and ωi is the angular velocity of the grain. The terms Fshort
i , Flong

i and Ti

are the net short-range force, long-range-force and the torque on the grain i, respectively,

while t denotes time. Due to contact or collisional electrification, the equation for charge

qi on a grain i is written as

dqi
dt

= Ii,

where Ii are the currents acting on the grain i. These charge currents are introduced

in sections 3.5, 3.8, 3.9, and 3.10. In this work, the grain surface is assumed to be

smooth and the tangential contact forces are neglected. In practice, finite size grains

might have complex, time-dependent, charge distributions on their surface and might have

contributions to the rotational motion as well. Oblique collisions might also result in

angular momentum exchange between grains. The above scenarios are neglected in the

present work (i.e. Ti = 0), and only the translational motion of the grains is considered.

Treatment of the short and long-range forces Fshort
i and Flong

i is presented in sec-

tion 3.2, 3.3 and 3.4. The charge currents Ii are introduced in section 3.5, and then the

rescaling of the entire system of equations is presented in section 3.6. Numerical integra-

tion schemes, viscous friction and stochastic treatment of Ii are discussed thereafter.

3.2 Contact forces

The net force Fi on a grain is the resultant of the short-range (normal) and long-range

(central) forces, i.e.

Fi = Fshort
i + Flong

i . (3.2)

The net short-range normal force Fshort
i on a grain i is considered equal to the pairwise

sum of the forces due to grains j, which come into mechanical contact with grain i, and

written as

Fshort
i =

∑
j

Fshort
ij Θ(d0 − rij). (3.3)
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Here

rij ≡ |rij| ≡ |rj − ri| (3.4)

is the magnitude of the distance vector from the center of grain i to the center of grain j.

The grain diameter is denoted by d0. Thus, a collision or mechanical contact between two

particles is detected when

d0 − rij = ξij > 0. (3.5)

Here ξij might be understood as mutual compression between colliding pair, which

changes with time during the course of a collision [Fig. 3.1]. The following two mod-

els for the computation of Fshort
ij are considered in this work:

(i) Linear spring-dashpot model, which corresponds to a constant coefficient of resti-

tution, and

(ii) Viscoelastic force model, which corresponds to a coefficient of restitution which

depends on the relative collision velocity.

The coefficient of restitution, ε, is defined in Fig. 3.1. In the linear spring-dashpot model,

the normal contact force Fshort
ij is written as

Fshort
ij = −

[
Aξij +B

dξij
dt

]
nij, (3.6)

where A and B are the elastic and dissipative constants, and

dξij
dt
≡ ξ̇ij = − d

dt
|rij(t)| = −vij · nij. (3.7)

The normal vector pointing from the center of grain i towards the center of grain j is

defined as [Fig. 3.1]

nij ≡
rj − ri
|rj − ri|

≡ rij
|rij|

. (3.8)

The first term in Eq. (3.6) is an elastic contact force which increases linearly with the

mutual particle compression ξij , and acts on the particle i in the direction opposite to nij

[Fig. 3.1]. The second term mimics the viscous damping force during the collision. In

the decompression phase during a collision, dξij
dt

< 0, and it might happen that Aξij +
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j

i

j

i

j

i

ξij

vj

vi

v′
j

v′
i

nij

vijvn

vt

v′
ij

v′
n

v′
t

Figure 3.1: The relative velocity just before the collision between two grains i and j is
vij = vj − vi, and just after the collision is v′ij = v′j − v′i. The normal collision velocity
is vn = (vij · nij)nij where nij =

rj−ri
|rj−ri| =

rij
|rij | is a unit vector pointing from the center

of particle i towards the center of particle j. The normal collision velocity just after the
collision is related to the normal collision velocity just before the collision as v′n = −εvn
where 0 ≤ ε ≤ 1 is the coefficient of normal restitution. Similarly the tangential collision
velocity just after the collision is related to the tangential collision velocity just before the
collision as v′t = εtvt where εt is the coefficient of tangential restitution. In the present
study εt = 1. During the course of the collision, the mutual deformation of the particles
is denoted as ξij(t) = d0 − |rij(t)|.

B ˙ξij < 0. In the simulations, this might lead to a net nonphysical attraction between

particles during the decompression phase of a collision. To avoid this scenario, Eq. (3.6)

is implemented in the following modified form

Fshort
ij = −max

[
Aξij +B

dξij
dt

, 0

]
nij. (3.9)

For viscoelastic grains, more than one force models have been proposed. We adopt

the viscoelastic force model

Fshort
ij = −max

[
Eξ

3/2
ij +Dξ

1/2
ij

dξij
dt

, 0

]
nij. (3.10)

While the first term in this model was originally derived by Hertz (Hertz, 1882), the

dissipative part was augmented in the model later (Kuwabara & Kono, 1987; Brilliantov

et al. , 1996; Pöschel & Schwager, 2005). The elastic and dissipative constants, E and D,

in the model are further related to material properties (Young’s modulus Y and Poissons
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ratio νP) and the effective radius Reff ≡
(

1
Ri

+ 1
Rj

)−1

of the colliding pair, as

E =
2Y
√
Reff

3(1− ν2
P)
, (3.11)

D = γE. (3.12)

The constant γ is a function of material viscosity (Brilliantov et al. , 1996). The dissipative

force in Eq. (3.10) takes into account a coefficient of restitution ε, which depends upon

the relative collision velocity (Pöschel & Schwager, 2005).

3.3 Long-range forces: Ewald summation

The net long-range force Flong
i on grain i due to the monopole electrostatic interactions

with all the other grains k is the pairwise sum

Flong
i = −

∑
k,k 6=i

keqi
qk
r3
ik

rik, (3.13)

where rik ≡ rk − ri is the distance vector pointing from the center of grain i towards

the center of the grain k, and q are the electric charges. The constant ke ≡ 1
4πε

is the

Coulombs’s constant, with ε being the permittivity of the medium surrounding the grains.

For grains in vacuum, ke = 8.98 × 109 Nm2C−2. For a setup of periodic boundary

conditions, the above sum in the simulations is to be modified into the following form

Flong
i = −

∑
b

k 6=i if b=0∑
k

keqi
qk

|rik + bL|3 (rik + bL), (3.14)

where now the additional sum is over a set of periodic replicas of the original system of

linear size L. This is denoted by a vector of integers , b = (bx, by, bz) ∈ Z3. When the

above sum is performed for each of the Nmon grains in the original image of the system,

the computational time increases as O(N2
mon), which is computationally intractable when

Nmon becomes large. One of the standard remedy to this problem is the Ewald summation,

which is implemented and parallelized in the simulations in this thesis. Next, the details

of the Ewald summation are briefly described.

31



Chapter 3

The electrostatic force on a grain i carrying charge qi in Eq. (3.14) can be rewritten as

Flong
i = −qi

∂

∂ri
U(ri), (3.15)

where U(ri) is the electrostatic (central) potential at the location of particle i due to the

surrounding charges k, written as

U(ri) = ke
∑
b

k 6=i if b=0∑
k

qk
|rik + bL| . (3.16)

Consider the original image of the system b = 0. For each particle i, there are Nmon − 1

terms in the above sum, where Nmon is the total number of monomers/particles in the

original image. When the potential is computed at the location of each of the Nmon parti-

cles, the total number of terms to be dealt with is Nmon(Nmon − 1). The total number of

terms can be reduced to 1
2
Nmon(Nmon − 1) if Newton’s third law is exploited. However,

as Nmon → ∞, the computational operations still increase with O(N2
mon). This is one

of the challenging aspect in N -body problems involving long range interactions (another

example is self-gravitation).

In general, the potentials decaying slower than∼ r−aik , where a is the number of spatial

dimensions in the problem, have the characteristic that their range exceeds the half of the

linear size of the system, and the sum over the potentials due to only nearest neighbors

is not enough (Allen & Tildesley, 2017). The potential in Eq. (3.16) drops as ∼ r−1
ik

with the interparticle distance rik. When one has to adopt a periodic system to eliminate

or minimize the finite-size/boundary surface-effects, the computation becomes even more

involved, in addition to theO(N2
mon) problem. This is due to the reason that the direct sum,

in this case, is conditionally convergent with an increasing number of periodic replicas b.

An established remedy to the above problem is the Ewald-summation method, in

which the summation series (3.16) is split into a sum of two series, which converge rapidly

with increasing number of periodic replicas. The basic idea is to split the sum of r−1
ik po-

32



Granular molecular dynamics

tentials simply as

U(ri) =ke
∑
b

k 6=i if b=0∑
k

qk
|rik + bL|f(|rik + bL|)

+ ke
∑
b

k 6=i if b=0∑
k

qk
|rik + bL|(1− f(|rik + bL|)). (3.17)

The function f(|rik + bL|) is chosen such that the first series converges rapidly in the

real space, while sum of the Fourier transforms of the terms in the second series converge

rapidly in reciprocal space. That is, the first sum is simply performed in real space, while

the terms in the second sum are evaluated in reciprocal space. After evaluating the Fourier

transforms of the terms in the second sum, their total provides the inverse Fourier trans-

form, which is then added to the first sum. Usually, f(|rik + bL|) = erfc(β|rik + bL|),

where

erfc(x) = 1− 2√
π

∫ x

0

e−u
2

du (3.18)

denotes the complementary error function, and β is the Ewald splitting parameter.1 The

final result reads

U(ri) =ke
∑
b

k 6=i if b=0∑
k

qk
erfc(β|rik + bL|)
|rik + bL|

+ ke
4π

L3

m 6=0∑
m

∑
k

qk
|m|2 exp(−|m|2/4β2) exp(im · rik)

− ke
2β√
π
qi, (3.19)

where m = 2πb/L, and the last term corrects for the self-interaction. The force on the

1In all the simulations in the present thesis, the size of the system is 70d0 × 70d0 × 70d0. The value of
the Ewald splitting parameter is chosen to be 0.125, which is sufficient for the real part of the electrostatic
potential to drop to a negligible value within the standard minimum image convention.
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particle i is then obtained using Eq. (3.15), which provides

Flong
i =− keqi

∑
b

k 6=i if b=0∑
k

qk
rik,b
|rik,b|3

[
erfc(β|rik,b|) +

2β√
π|rik,b|

exp(−β2|rik,b|2)

]

− keqi
4π

L3

m 6=0∑
m

k 6=i∑
k

qk
m

|m|2 exp

[
−|m|

2

4β2

]
sin (m · rik) , (3.20)

where rik,b ≡ rik + bL = (rk − ri) + bL. Notice that the gradient of the self-correction

term is zero, and the so called surface dipole corrections are neglected.1

3.4 Long-range forces: Induced polarization

In chapter 7, the case of electrically polarized granular gas is addressed, up to the dipole

level. In addition to the charge-charge interactions (CC), the charge-dipole interactions

(CD), the dipole-charge interactions (DC), and the dipole-dipole interactions (DD) are

added. The grain material is assumed to have isotropic polarizibility αµ. If the electric

field at the location of grain i due to surrounding charges, and dipoles, is ei(ri), then the

induced dipole moment µi(ri) is written as

µi(ri) =αµei(ri) (3.21)

The electric field ei(ri), for a given charge and dipole configuration, is computed as

ei =−
∑
k

k 6=i if b=0∑
b

ke
qk

|rik + bL|3 (rik + bL) +

rik≤rc∑
k,k 6=i

ke

[
µk
r3
ik

− 3 rik(rik · µk)
r5
ik

]
.

(3.22)

Eqations (3.21) and (3.22) are coupled and must be solved simultaneously. In the simu-

lations, the Jacobi iteration method is used to solve Eqs. (3.21) and (3.22). In Eq. (3.22),

the Ewald summation is utilized for the computation of the CC interations (first term

on RHS), while the CD interactions (second term on RHS) are computed up to a cutoff

radius rc. In the simulation rc = L/2, i.e., the standard minimum image convention. Once

Eqs. (3.21) and (3.22) are solved in a coupled manner, the polarization force on a grain i

1See Appendix 3 for a simple script to move from Eq. (3.19) to Eq. (3.20).
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qi

qj

(a) Charge-charge

qi

µj

(b) Charge-dipole

µi

qj

(c) Dipole-charge

µi

µj

(d) Dipole-dipole

Figure 3.2: A schematic representation of the treatment of long-range charge-charge in-
teractions (CC), charge-dipole interactions (CD), dipole-charge interactions (DC), and
dipole-dipole interactions (DD). While CC interactions are dealt with using the Ewald
summation, the minimum image convention is used for the other three cases.

due to CD, DC, and DD interactions is computed as

Fpol
i =

rik≤rc∑
k,k 6=i

keqi

[
µk
r3
ik

− 3 rik(rik · µk)
r5
ik

]

−
rik≤rc∑
k,k 6=i

keqk

[
µi
r3
ik

− 3 rik(rik · µi)
r5
ik

]

−
rik≤rc∑
k,k 6=i

keµi ·
[
3
rik ⊗ µk + µk ⊗ rik

r5
ik

+ 3
rik ⊗ µk
r5
ik

Ī− 15
rik ⊗ µk
r7
ik

rik ⊗ rik

]
,

(3.23)

where the operator ⊗ is the tensor product, and Ī is the identity matrix. The first term in

Eq. (3.23) is the force on the charge i due to the surrounding dipoles k, the second term is

the force on the dipole i due to the surrounding charges k, while the last term is the force

on the dipole i due to the surrounding dipoles k. Finally, the total long-range force on a

grain is the sum of the Eqs. (3.20) and (3.23), i.e.

Flong
i + Fpol

i . (3.24)
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j

i

X
X

X X
Aji(t)

Iji(t)

Figure 3.3: The charge exchange current Iji(t) during the course of collision between two
grains i and j. The time dependent contact area Aji(t) during the course of collision is
shown on the right, indicated by section XX. The instantaneous area during collision can
be related to the mutual particle compression ξij as: Aji(t) = πξij(t)[d0−ξij(t)]. See also
Eq. (3.5) and Fig. 3.1 for ξij .

3.5 Charge currents

In this work, it is also considered that the electric charge on a grain evolves with time

due to collisional charge exchange between the particles. If Iji(t) are the instantaneous

currents from neighbor particles j colliding with particle i, then we write the equation of

motion for the charge qi on a grain i as

dqi
dt

= Ii =
∑
j

Iji(t)Θ(d0 − rij). (3.25)

In this thesis, certain treatments of the charge exchange currents have been implemented,

which are summarized in Table 3.1. The corresponding descriptions of the models are

presented in the thesis, whenever they are used for the first time.

3.6 Rescaling of the equations: Non-dimensional num-

bers

In the following, the system of equations of motion are non-dimensionalized and impor-

tant non-dimensional parameters are deduced. Introducing the following non-dimensional
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variables

m̃i =
mi

mref

, ṽi =
vi
vref

, t̃ =
t

tref

, r̃ij =
rij
`ref

,

ξ̃ij =
ξij
`ref

, d̃0 =
d0

`ref

, ñij =
r̃ij
|r̃ij|

, L̃ =
L

`ref

,

q̃i =
qi
qref

, µ̃i =
µi
µref

, ẽi =
ei
eref

, Ĩji =
Iji
Iref

, (3.26)

r̃c =
rc
`ref

, (3.27)

the rescaled form of the equation of motion reads as

m̃i
dṽi

dt̃
=

−
[
trefE`

3/2
ref

mrefvref

]∑
j

ξ̃
3
2
ijñijΘ(d̃0 − r̃ij)

−
[
trefD`

1/2
ref vref

mrefvref

]∑
j

ξ̃
1
2
ij

˙̃ξijñijΘ(d̃0 − r̃ij)

−
[
trefkeq

2
ref

`2
refmrefvref

]∑
k

k 6=i if b=0∑
b

q̃i
q̃k

|r̃ik + bL̃|3
(r̃ik + bL̃)

+

[
trefkeqrefµref

`3
refmrefvref

] r̃ik≤r̃c∑
k,k 6=i

q̃i

[
µ̃k
r̃3
ik

− 3 r̃ik(r̃ik · µ̃k)
r̃5
ik

]

−
[
trefkeqrefµref

`3
refmrefvref

] r̃ik≤r̃c∑
k,k 6=i

q̃k

[
µ̃i
r̃3
ik

− 3 r̃ik(r̃ik · µ̃i)
r̃5
ik

]

−
[
trefkeµ

2
ref

`4
refmrefvref

] r̃ik≤r̃c∑
k,k 6=i

µ̃i ·
[
3
r̃ik ⊗ µ̃k + µ̃k ⊗ r̃ik

r̃5
ik

+ 3
r̃ik ⊗ µ̃k
r̃5
ik

Ī− 15
r̃ik ⊗ µ̃k
r̃7
ik

r̃ik ⊗ r̃ik

]
,

(3.28)

the polarization equation reads as

µ̃i =

[
αµeref

µref

]
ẽi, (3.29)
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the electric field equation reads as

ẽi =−
[
keqref

`2
referef

]∑
k

k 6=i if b=0∑
b

q̃k

|r̃ik + bL̃|3
(r̃ik + bL̃) (3.30)

+

[
keµref

`3
referef

] r̃ik≤r̃c∑
k,k 6=i

[
µ̃k
r̃3
ik

− 3 r̃ik(r̃ik · µ̃k)
r̃5
ik

]
,

and, the equation of motion for the charge reads as

dq̃i

dt̃
=

[
trefIref

qref

]∑
j

Ĩji(t)Θ(d̃0 − r̃ij). (3.31)

Setting µref = qref`ref , eref = keqref/`
2
ref , the equation of motion is further simplified as

m̃i
dṽi

dt̃
=− E

∑
j

ξ̃
3
2
ijñijΘ(d̃0 − r̃ij)−D

∑
j

ξ̃
1
2
ij

˙̃ξijñijΘ(d̃0 − r̃ij)

−K
[
F̃long
i + F̃pol

i

]
, (3.32)

the polarization equation reads as

µ̃i = A ẽi, (3.33)

the electric field equation reads as

ẽi =−
∑
k

k 6=i if b=0∑
b

q̃k

|r̃ik + bL̃|3
(r̃ik + bL̃) +

r̃ik≤r̃c∑
k,k 6=i

[
µ̃k
r̃3
ik

− 3 r̃ik(r̃ik · µ̃k)
r̃5
ik

]
, (3.34)

and, the equation of motion for the charge reads

dq̃i

dt̃
= Q

∑
j

Ĩji(t)Θ(d̃0 − r̃ij). (3.35)
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The non-dimensional groups in the above equations are the important problem parameters,

which are denoted in the thesis as

E =

[
trefE`

3/2
ref

mrefvref

]
, D =

[
trefD`

1/2
ref vref

mrefvref

]
, K =

[
trefkeq

2
ref

`2
refmrefvref

]
,

A =

[
αµke
`3

ref

]
, Q =

[
trefIref

qref

]
. (3.36)

In the present work, the above non-dimensional forms of Eqs. (3.32)-(3.35) are numeri-

cally solved, instead of their dimensional counterparts. In the past, the effect of variations

of E and D in granular gases is extensively dealt with. In this work, the focus is primarily

on the problem parameters K, Q and A. Some useful outcomes from the above rescal-

ing of the equations can be deduced straightaway. Let us consider the following limiting

cases:

(i) K → 0, A → 0, Q → 0 with finite E and D:

This is the case of neutral granular gas. The Coulomb interactions, polarization as

well as charge exchange are negligible. In the most simplistic case in this regime,

the dynamics of the gas would approach that of an ideal elastic gas, if D = 0

with finite E . The case of non-zero D is extensively studied in the past and ex-

hibit numerous intriguing features such as pattern formation (Goldhirsch & Zanetti,

1993; McNamara, 1993; Brito & Ernst, 1998; Brey et al. , 1999; Brilliantov et al.

, 2004), universal Gaussian velocity distributions in the long time limit (Nie et al. ,

2002), multiscaling and self-similarity in collisions (Ben-Naim & Krapivsky, 2000;

Ben-Avraham et al. , 2003), non-equilibrium steady states and asymmetric veloc-

ity distributions under energy inputs (Grossman et al. , 1997), anomalous diffusion

(Bodrova et al. , 2016; Brilliantov & Pöschel, 2000a), ballistic aggregation of clus-

ters as a whole (Paul & Das, 2017), and dissimilarity between ensemble-averages

and long-time averages of observables (non-ergodicity) (Bodrova et al. , 2015).

(ii) A → 0, Q → 0 with finite E , D, and K:

This case corresponds to a charged granular gas of monopoles, with fixed charge on

each of the grain, without any polarization. This case of constant charge on grains

has been studied by Müller (2008). It is used for validation in chapter 4.
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(iii) A → 0 with finite E , D, K and Q:

This case corresponds to a granular gas where charge exchange between grains is

permitted, without polarization, and is the focus of chapters 4 and 5 in the present

thesis.

(iv) Finite E , D, K, Q and A:

This case corresponds to a granular gas where charge exchange between grains, as

well as induced polarization is incorporated, and is the focus of chapter 7.

3.7 Numerical integration of the equations of motion

Two numerical integration schemes for the coupled differential equations of motion are

used in the thesis:

(i) Gear’s integration scheme, and

(ii) Verlet integration scheme.

The latter is used only in case of validation simulations. Unless otherwise specified, the

default integration scheme used in the thesis is the Gear’s integration scheme. In the

following, the two numerical time integration schemes are briefly discussed.

3.7.1 Gear’s integration scheme

The Gear’s integration scheme consists of two steps. In the first step, the particle positions

ri, velocities ṙi, accelerations r̈i, and the higher order time derivatives are predicted at time

t+ ∆t from their known values at time t, using Taylor expansions:

rpredicted
i (t+ ∆t) = ri(t) + ∆t ṙi(t) +

1

2
∆t2 r̈i(t) +

1

6
∆t3

...
r i(t) +O(∆t4),

ṙpredicted
i (t+ ∆t) = ṙi(t) +

1

2
∆t2 r̈i(t) +

1

6
∆t3

...
r i(t) +O(∆t4),

r̈predicted
i (t+ ∆t) = r̈i(t) +

1

6
∆t3

...
r i(t) +O(∆t4),

...
r predicted
i (t+ ∆t) =

...
r i(t) +O(∆t4). (3.37)
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From the predicted particle positions and velocities, the forces Fi on the particles are

computed. From these forces, the newly predicted accelerations are

r̈force
i =

Fi

mi

, (3.38)

which in general are not accurate, and are corrected next in a corrector step. The corrected

values of the particle positions and its time derivatives are finally obtained by addition

of numbers which are proportional to the difference between the accelerations from the

forces, r̈force
i , and the predicted accelerations r̈predicted

i at t+ ∆t, i.e.

∆r̈i = r̈force
i − r̈predicted

i . (3.39)

The complete correction step reads as

rcorrected
i (t+ ∆t) = rpredicted

i (t+ ∆t) + a0
1

2
∆t2∆r̈i,

ṙcorrected
i (t+ ∆t) = ṙpredicted

i (t+ ∆t) + a1
1

2
∆t2∆r̈i,

r̈corrected
i (t+ ∆t) = r̈predicted

i (t+ ∆t) + a2
1

2
∆t2∆r̈i,

...
r corrected
i (t+ ∆t) =

...
r predicted
i (t+ ∆t) + a3

1

2
∆t2∆r̈i. (3.40)

The above described integration scheme is of fourth order, i.e., the numerical error grows

as O(∆t4), and requires calculation of time derivative upto third order. In principle how-

ever, Gear’s scheme of any order can be implemented. In the present thesis, a sixth order

Gear’s scheme is utilized. The coefficients ak depend on the order of the scheme and

the nature of the differential equations. For a sixth order gear integration scheme, the

coefficients are (Pöschel & Schwager, 2005)

a0 =
3

16
, a1 =

251

360∆t
, a2 =

1

∆t2
, a3 =

11

18∆t3
, a4 =

1

6∆t4
, a5 =

1

60∆t5
. (3.41)

3.7.2 Velocity Verlet integration scheme

In specific cases, the velocity Verlet time integration scheme is used because it is computa-

tionally time-saving. However, in the present study, the most time-consuming calculations
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are the computation of long-range forces. Therefore, the use of the lower order velocity

Verlet is restricted to only validation case studies, while the higher order Gear’s integration

scheme is utilized in the final simulations. For completeness, the velocity Verlet scheme

is described below.

In this scheme, the particle velocities at half time step t + ∆t/2 are first computed

using the Taylor expansion, as

ṙi

(
t+

∆t

2

)
= ṙi(t) +

∆t

2
r̈i(t). (3.42)

The particle positions are then updated as

ri (t+ ∆t) = ri (t) + ∆t ṙi

(
t+

∆t

2

)
. (3.43)

The forces, or accelerations r̈i (t+ ∆t), are then estimated using the particle positions

ri (t+ ∆t) and velocities ṙi
(
t+ ∆t

2

)
. And finally the velocities are corrected using the

Taylor expansion

ṙi (t+ ∆t) = ṙi

(
t+

∆t

2

)
+

∆t

2
r̈i (t+ ∆t) . (3.44)

3.8 Integration of the stochastic differential equation for

charge

The charge-currents Iji(t) to build a charge distribution in the gas are considered stochas-

tic in nature. Therefore, the numerical integration of the stochastic differential Eq. (3.35)

requires special treatment. For brevity, the “∼" symbols are dropped from Eq. (3.35) in

the following discussion.

As a first approximation, the charge-exchange currents Iji(t) are assumed to be white

Gaussian random variables. It shall be shown shortly that such stochastic treatment of

Iji(t) is not physical, and needs to be modified. However, the integration scheme for

Eq. (3.35) described below is in the context of white Gaussian Iji(t). The integration

scheme then can be modified for different treatments of Iji(t). If a different treatment of

Iji is used, it is mentioned explicitly in the thesis.
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The white Gaussian currents Iji(t) are characterized by the following:

(i) Their expectation value 〈Iji(t)〉 = 0 at any time t,

(ii) the variance 〈Iji(t)2〉 = λ at any time t, and

(iii) two values of the current Iji(t1) and Iji(t2) are independent of each other for t1 6= t2.

The noise Iji is thus discontinuous everywhere by definition, and its instantaneous values

are not well defined.

Numerically, a discrete sequence of random numbers, say Wi, is used to replicate the

properties of Iji(t), with intermediate time elapse ∆t between two consecutive random

numbers W1 and W2. The first condition of Iji(t) having zero mean is simply fulfilled

by choosing Wi with zero mean. The variance of the discrete sequence Wi, however, is

to be adjusted with ∆t (Volpe & Volpe, 2013) for an accurate numerical solution of the

stochastic differential equation of type (3.35). To mimic the second property, a condition

〈(Wi∆t)
2〉/∆t = λ is to be imposed, which adjusts the variance of Wi to λ/∆t (Volpe

& Volpe, 2013). In practice, a sequence of random numbers, uniformly distributed be-

tween 0 and 1 is generated by the machine. A suitable algorithm (here the Box-Muller

transform) is then applied to transform these numbers to Gaussian white random numbers

with zero mean and unit variance. Finally, these machine-generated numbers, say wi, are

rescaled to obtain Wi = wi

√
λ

∆t
, which satisfies 〈(Wi∆t)

2〉/∆t = λ. A finite-difference

discretization of Eq. (3.35) thus can be written as

qi(t+ ∆t) = qi(t) + ∆tQWi = qi(t) + Γ wi, (3.45)

where wi are now the machine generated Gaussian numbers with zero mean and unit

variance, and

Γ =
√
λ∆tQ. (3.46)

In addition to above, if the grains have a finite capacity to hold a maximum charge of

magnitude C, the Constraint |qi(t) + Γ wi| ≤ C should also be imposed. Thus Eq. (3.45)
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is written as

qi(t+ ∆t) = qi(t) + Γ wi, if |qi(t+ ∆t)| ≤ C,

qi(t+ ∆t) = 0, otherwise. (3.47)

Notice again that the above equation is already non-denationalized, and the non-

dimensional charge holding capacity of a grain is defined as

C =
C

qref

, (3.48)

where C is the charge holding capacity in Coulombs.

3.9 Non physicality of random walk charge-exchange

At present, there is extensive ongoing experimentation to explore the mechanism of col-

lisional charging of dielectric grains [Fig. 3.4]. As the mechanism itself remains elusive,

the simulations of the collective dynamics of a gas made up of such grains are chal-

lenging. Additional complexities are added by induced polarization of grains and the

non-equilibrium interstitial flow. The problem, even considering point-like charges, is not

well addressed.

The stochastic nature of charging of grains is indicated in a recent study by Haeberle

et al. (2018). Thus one might first test a Langevin-like, or random walk-like, model for

the equation of motion for the charge on a particle. Results from a typical simulation

of a granular gas, using Eq. (3.47) coupled with Eq. (3.32) are shown in Fig. 3.5 and

Fig. 3.6-3.8.

In the long time limit, the neutral granular gases are characterized by a power-law

decay of the granular temperature T . This result was first predicted by Haff (Haff, 1983),

and is marked with black filled circles in Fig. 3.5. When random walk charge exchange

currents are considered between the colliding particles, it is found that the granular tem-

perature T reaches a steady state at long times. This mechanism of charge-exchange

essentially leads to energy injection into the system, which balances the dissipation. This

is shown with blue circles and asterisks in Fig. 3.5 (a). The currents Iji are always active
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Figure 3.4: Charging and sticking of glass particles in a drop tower experiments (Image
from private communication with Prof. Gerhard Wurm, Universität Duisburg Essen).
URL: https://www.uni-due.de/imperia/md/images/physik/agw/sticking.gif.
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(a) (b)

Figure 3.5: (a) The average kinetic energy and the granular temperature of a granular
gas with random walk charge-exchange currents. This mechanism of charge-exchange
leads to energy injection into the system, which balances the dissipation at long times. (b)
The average kinetic energy and the granular temperature of a granular gas with modified
charge-exchange currents. This mechanism of charge-exchange reproduces Haff’s law at
long times. Here vi is the grain speed and V is the mean advective velocity in the vicinity
of grain i.

during the collision events, and because the charges are coupled to EOM, they homoge-

nize the system. The charge distribution attains a stationary state, however, the charge

fluctuations persist. Coupled to the Coulomb forces, these fluctuations keep adding energy

into the system. This continuous injection of energy is nonphysical for a real dissipative

system.

In the above random-walk charge-exchange model, the role of initial conditions, f(t =

0, q), where f is the charge distribution function, is also studied. The initial charge states

can be set using a generalized distribution

f(t = 0, q) =
z

2Γ(1/z)
e−(|q|)z . (3.49)

Different initial charge distribution f(t = 0; q) are chosen by varying z. Here the value

of z is varied from 8 (nearly uniform) to z → 0 (delta distribution). It is found that

in this case the long time dynamics is independent of the initial charge distribution. The

distribution attains a steady state in each case. For each case of z, the gas remains spatially

homogeneous, except for some probable local heterogeneities [Fig. 3.6-3.8].
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3.10 Charge-exchange with multiplicative noise

First, the charge exchange current Iji(t) from particle j towards i during the course of a

collision can be rewritten (or dimensionally factorized) as

Iji(t) = Aji(t)
Vji(t)

`ji(t)ρI

, (3.50)

where Aji(t), Vji(t) and `ji(t) are the instantaneous collision contact area [Fig. 3.3], po-

tential difference across the surfaces in contact, and a characteristic length along which

the charge is transferred, while ρI is the particle’s material resistivity. At the beginning of

a collision, Aji = 0, and thus the charge transfer is zero. As the mutual particle compres-

sion ξij increases, Aji increases. As a modification to the random walk charge exchange

model, the following approach is used. The contact area during a collision between grains

is considered deterministic and is related to the mutual particle compression as

Aji(t) = πξij(t)[d0 − ξij(t)]. (3.51)

The experimental observation of the puzzling dynamics of charge sites on particle sur-

face (Shinbrot et al. , 2018), and considering that the surface structure of dielectric parti-

cles in practice can be irregular, point to the fact that the potential difference and exchange

length are hardly deterministic. This part, i.e. Vji(t)

`ji(t)ρI
, is now considered stochastic. A typ-

ical simulation result for granular temperature from a simulation with the above charge

exchange approach is shown in Fig. 3.5 (b). The model reproduces the Haff’s law and

avoids any nonphysical energy injection into the system. The charge exchange models

considered in this thesis are summarized in Table 3.1, and are elaborated wherever used

in the thesis.

3.11 Viscous friction: Preliminary

In actual planetary dust aggregation processes, it is expected that the grain motion is in-

fluenced by its interactions with the surrounding gaseous medium. To mimic the simplest

possible case, a viscous friction or drag force on the particles is also considered briefly in
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Model Description

dqi
dt

=
∑

j Iji(t)Θ(d0 − rij),
〈Iji(t)〉 = 0, 〈Iji(t)2〉 = λ

Langevin like stochastic charge
exchange with white Gaussian charge

exchange currents Iji. As shown in
Fig. 3.5 (a), the model introduces a

nonphysical energy injection into the
system. This case is addressed in the

present chapter.

dqi
dt

=
∑

j Iji(t)Θ(d0 − rij) ∝∑
j(rand sign)j × (v2

ij)
η

Empirical charge exchange model
based on experiments by Poppe et al.

(2000b); Poppe & Schräpler (2005)
where the researchers observed a

dependence of charge exchange on the
relative collision speeds. This case has

been used in chapter 4 and 5.

dqi
dt

=
∑

j Aji(t)
Vji(t)

`ji(t)ρ︸ ︷︷ ︸
Ψ(t)

Θ(d0 − rij)

Charge-exchange currents proportional
to the contact area during collision,

with multiplicative noise term Ψ(t). As
shown in Fig. 3.5 (b), the model avoids
nonphysical energy injection. This case
is used in present chaper and chapter 7.

dqi
dt

= 0

No exchange with a given stationary
f(q). In this case, three choices of f(q)
are considered: (i) constant monopolar

charge, (ii) stationary Gaussian, (iii)
general charge distribution with a

tuning parameter which alters the shape
of the distribution from a uniform

distribution towards a delta distribution.
This case is used for validation in

chapter 4.

Table 3.1: Different models considered for the charge-exchange currents Iji. Here d0 is
the grain diameter, qi is the charge on a grain i, and rij is the distance between grains i
and j.
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chapter 7, given by

Ffric
i =

mi

τfric

(vfluid − vi). (3.52)

where τfric is the friction time and can be related to different drag models. If τfric → ∞,

it implies that the particle motion is negligibly influenced by the interstitial fluid velocity

vfluid. On the other hand a small friction time would imply that the particle velocity vi

relaxes quickly to the fluid velocity vfluid. The Eq. (3.52) is rescaled as

F̃fric
i =

[
tref

τfric

]
m̃i(ṽfluid − ṽi). (3.53)

The non-dimensional ratio of the two time scales is the Stokes number, denoted as

S =

[
tref

τfric

]
. (3.54)

The effect of Stokes number is discussed briefly in chapter 7.

3.12 Software and hardware used

All the numerical simulations reported in this thesis are parallelized using CUDA (Com-

pute Unified Device Architecture) parallel computing platform and are deployed on ei-

ther Tesla-P100 or Tesla-K20Xm GPUs (Graphics Processing Units). The particle aggre-

gation/cluster analysis is performed using an in-house MATLAB program. Apart from

this the kinetic-theory [chapter 5], and the linear stability analysis of the hydrodynamic

description [chapter 7], utilizes additional MATLAB and MATHEMATICA programs,

which are provided in the appendices and online.
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Early-stage aggregation in

three-dimensional charged granular

gas1

Neutral grains made of the same dielectric material can attain considerable charges due

to collisions and generate long-range interactions. We perform molecular dynamics sim-

ulations in three dimensions for a dilute, freely-cooling granular gas of viscoelastic par-

ticles that exchange charges during collisions. As compared to the case of clustering of

viscoelastic particles solely due to dissipation, we find that the electrostatic interactions

due to collisional charging alter the characteristic size, morphology and growth rate of

the clusters. During the early stages of growth, the average cluster size grows with time

as a power law, whose exponent is relatively larger in the charged gas than the neutral

case. The growth of the average cluster size is found to be independent of the ratio of

characteristic Coulomb to thermal energy, or equivalently, of the typical Bjerrum length.

However, this ratio alters the crossover time of growth. Both simulations and mean-field

calculations based on the Smoluchowski’s equation suggest that suppression of particle

diffusion, due to the electrostatic interactions, helps in the aggregation process.

1The content of this chapter has been published in: Singh, Chamkor, and Marco G. Mazza. "Early-stage
aggregation in three-dimensional charged granular gas." Physical Review E 97.2 (2018): 022904.
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4.1 Introduction

Since classical antiquity lightning has been associated with the ashes produced during

volcanic activity (Anderson et al. , 1965; Most, 2006). It has been long speculated that

collisional charging may play a significant role in particle’s aggregation (Gill, 1948; Wes-

son, 1973) in natural processes such as the formation of planetesimals during the early

stages of the birth of a planet (Wesson, 1973; Poppe et al. , 2000b), charging in dust dev-

ils (Crozier, 1964), lightenings in thunderclouds (Simpson & Scrase, 1937), and electric

sparks in dunes (Kamra, 1972). At such length scales (102−104 m), a number of processes

are observed such as charge separation, the buildup of significant potential differences and

electric discharge (Franz et al. , 1990). A specific example is the electrostatic re-accretion

in the protoplanetary disks where the charged fragmented ejecta from a larger body are re-

attracted towards the parent body due to its electrostatic field (Blum & Wurm, 2008). On

a more mundane scale, this phenomenon also affects the processes at length scales which

are technologically relevant e.g. in vibrated granular beds (Kolehmainen et al. , 2016), in

the transportation of coal (Nifuku et al. , 1989) and in electrostatic powder spraying (Bai-

ley, 1998). The origin of the above intriguing processes inside a granular gas is due to the

charging of particles during collisions. This phenomenon, however, is rather stochastic

as indicated by experimental measurements (Lee et al. , 2015; Poppe et al. , 2000b; Hu

et al. , 2012). On the other hand, the consequences of this local exchange on a collection

of particles have been experimentally observed to be quite complex as it shows highly

fluctuating characteristics (Nordsiek & Lathrop, 2015). Very recently, these fluctuations

also are shown numerically in dense granular systems (Yoshimatsu et al. , 2017). The

collective consequences on particle aggregation and their growth due to this very local

charge exchange in the dilute granular system, however, are not yet well understood. Rel-

evant exceptions are the theoretical findings of Scheffler & Wolf (2002); Müller (2008)

for a monopolarly charged granular gas neglecting collisional charging, and the Smolu-

chowski’s aggregation analysis by Dammer & Wolf (2004) for the monopolarly charged

suspensions undergoing Brownian motion.

A granular gas is an adequate theoretical setup to study such particle aggregation pro-

cesses in the dilute limit. The clusters in a neutral granular gas typically exhibit a power

law growth during its time evolution (Paul & Das, 2017; Das et al. , 2016). It is, however,
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unclear if bipolar collisional charging of grains, which is ubiquitous in technological set-

tings (Pingali et al. , 2009; Bailey, 1998; Nifuku et al. , 1989; Kolehmainen et al. , 2016;

Mehrotra et al. , 2007), and in natural flows (Blum et al. , 2000; Blum & Wurm, 2008;

Poppe et al. , 2000a; Wolf et al. , 2009), enhances or suppresses the cluster growth.

The dissipation in neutral granular gases leads to the formation of clusters. The growth

of these clusters in two and three dimensions has been investigated in the past (Miller &

Luding, 2004; Luding & Herrmann, 1999; Brilliantov et al. , 2015; Brilliantov & Spahn,

2006). In three-dimensions, it is found that the cluster growth can be described by a power

law behavior with similar exponents as in percolation theory (Miller & Luding, 2004).

The same is shown for the growing clusters in two dimensions (Luding & Herrmann,

1999). Furthermore, the coagulation equations for inelastic dust particles in a surrounding

molecular gas, which is more relevant to natural settings, has also been studied from

a mean-field point of view (Brilliantov & Spahn, 2006). The growth of the clusters in

granular gases has also been investigated for different nature of the interactions between

the particles for example under short-range attractive potentials (Murphy & Subramaniam,

2015) and square well potential (Takada et al. , 2016).

In this study, we show that the time-dependent average cluster size S(t) in a charged

granular gas, during the early stages of the growth, obeys the power law

S(t) ∼ tz. (4.1)

We elucidate that

(i) the early stage aggregation after the homogeneous cooling state (HCS) of the gran-

ular gas is relatively enhanced due to the collisional charging with z changing from

≈ 6/5 for the uncharged gas to ≈ 3/2 for the charged gas,

(ii) the growth exponent z is found to be independent of the ratio of the character-

istic Coulomb to thermal energy K or equivalently the ratio K = `B/d0 of the

Bjerrum length `B = keq
2
ref/Tref to the particle diameter d0, where qref is the

typical charge on the particles, Tref the thermal energy scale or the granular tem-

perature, and ke = 1/(4πε0) is the Coulomb constant with vacuum permittivity

ε0 = 8.85418782 × 10−12 F m−1. A change in `B, however, influences the charac-
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teristic time of emergence of clustering.

(iii) We find that contrary to the case of neutral viscoelastic particles, the velocity distri-

bution of the charged viscoelastic particles does not show a relaxation back towards

the Maxwellian within the characteristic time of emergence of the inhomogeneous

cooling state (ICS).

4.2 Model

We simulate Nmon ∼ 104 − 105 identical, viscoelastic particles in a three-dimensional

domain of volume L3 = 70 × 70 × 70.1 The filling fraction of the system φ ≡
Nmonπd

3
0/(6L

3) = 0.076, and the ratio E/D ≈ 10 are kept constant,2 while the effect

of K on the particle aggregation is studied; the case K = 0 corresponds to the neutral

viscoelastic granular gas. In addition, the particles attain charge during the pairwise colli-

sions according to a charge exchange rule (of empirical basis augmented with stochastic-

ity, Table 3.1), discussed below.

Collisional charging has far-reaching consequences. Large amounts of charges are

generated in volcanic plumes (Anderson et al. , 1965); estimated figures are of the or-

der of 105 or 106 elementary charges per cubic centimeter (Anderson et al. , 1965),

and this effect might have played a role for the origin of life by synthesizing amino

acids (Johnson et al. , 2008). Dust and sand storms also exhibit contact electrification

and lightnings (Freier, 1960; Stow, 1969; Lacks & Sankaran, 2011), and such phenom-

ena might even exist on Mars (Melnik & Parrot, 1998). Contact electrification can result

in explosions if a flammable material is present (Glor, 1985; Nifuku et al. , 1989; Lacks

& Sankaran, 2011); pharmaceutical processes are often plagued by electrostatic charge

buildup (Pu et al. , 2009; Pingali et al. , 2009) leading to high maintenance costs. Under-

standably, a vast amount of attention has been put to explore what mechanisms stimulate

the charge buildup, separation, transport and its effect on the dynamics of granular flows

1Here L is the non-dimensional linear size of the system. See rescaling in chpater 3.
2Taking silica particles as representative for the granular gas fixes Young’s modulus Y = 73.1 GPa,

Poisson’s ratio νP = 0.2, particle mass density ρm = 2650 kg/m3. We select a small value of the dissipa-
tion constant γ = 7.0 × 10−6 s. The dissipation constant γ is introduced in Eq. (3.12) in chapter 3. The
thermal energy scale or the initial granular temperature is T (0) = 10. If we consider particle/monomer size
d0 = O(mm), we find E ≈ 278.6, D ≈ 27.7. In all our calculations we fix E = 278.6, D = 27.7, and
vary K. See chapter 3 for definitions of E , D, and K
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Figure 4.1: (a) The evolution of the granular temperature T (or Tg) for a purely repulsive
dilute granular gas with monopolarly charged particles and constant coefficient of resti-
tution ε. We study the dependence on the ratio of Coulomb to thermal energy K. The
K = 0 curve corresponds to a neutral granular gas. At very short times, the granular
gas follows Haff’s (Haff, 1983) law (T (t) ∼ t−2) in the homogeneous cooling state. The
repulsive electrostatic interactions among the particles reduce the collision frequency and
thus result in a slower decay of T as time progresses (T (t) ∼ 1/ ln(t/tc), also shown
analytically by Scheffler & Wolf (2002)). As K increases, the deviation from Haff’s law
is more pronounced and occurs earlier in time. The solid line represents the theoretical
prediction of Haff’s law for a neutral granular gas with ε = const, and the dashed line
is a theoretical prediction for monopolarly charged granular gases. (b) Same as (a) but
for the early stage of evolution of the viscoelastic (ε 6= const.) granular gas with charge
exchange. The dashed line represents the theoretical prediction of Haff’s law for a neutral
viscoelastic granular gas. Here the notations T and Tg are used interchangeably, and t0 is
some time scale of relaxation of the initial transience in the gas. The time scale tc marks
a transition from Haff’s law to inverse logarithmic decay of T .
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(Gill, 1948; Anderson et al. , 1965; Kamra, 1972; Mehrotra et al. , 2007; Yoshimatsu et al.

, 2017; Pähtz et al. , 2010). Additionally, the collective behavior is are unclear in spite

of great experimental (Poppe et al. , 2000b; Nordsiek & Lathrop, 2015; Lee et al. , 2015;

Nordsiek & Lathrop, 2015) and theoretical (Kolehmainen et al. , 2016; Müller, 2008;

Scheffler & Wolf, 2002; Yoshimatsu et al. , 2017; Takada et al. , 2017) efforts. More-

over, the theory of contact electrification, i.e., charging of similar or dissimilar surfaces

due to mutual contact is not yet rigorously established. Two basic, experimental facts still

defy a consistent explanation: (i) insulators can transfer large amounts of charge, though

they have no free charge carriers; (ii) upon contact/impact even the grains with identical

material charge up (Pähtz et al. , 2010). However, there are certain observations which

have been made repeatedly in the context of collisional charging. For instance, an ex-

tensive and systematic experimental study conducted by Poppe et al. (2000b); Poppe &

Schräpler (2005) has revealed that the number of elementary charges ∆Zij transferred

during a collision of silica particles on polished quartz and silicon wafer surfaces, on

average, are proportional to a power of the relative kinetic energy during the collision,

i.e. ∆Zij = (KEkin)η, where Ekin is the relative kinetic energy during the collision,

K [J−1] (K−1 ∼ 10−12 − 10−15J) and η = 0.83 are constants (Poppe et al. , 2000b).

Similar observations have also been made by Hu et al. (2012) for single collisions of

glass particles exhibiting dependence of charge transfer on impact energy. This, in one

sense, is analogous with the impact velocity dependent coefficient of restitution. How-

ever, the widespread nature of data in the collisional charging experiments also suggests

that the collisional charge exchange is influenced by myriad factors. Indeed, among pos-

sible influential parameters are the surface material and its roughness, contact pressure,

surface cleaning, humidity, the orientation of the crystalline lattice, the temperature of the

surfaces, and the size of the colliding objects (Poppe et al. , 2000b). Taking this into ac-

count, we introduce a collisional impact energy dependent model for the charge exchange

augmented by a stochasticity in its parameters

∆qij = ±e∆Zij = ±e
[
Ψ1K

1

2
meff (vij · nij)2

]η+Ψ2

, (4.2)
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or in non-dimensional terms1

∆q∗ij = ±Q
[
Ψ1m

eff∗ (v∗ij · n∗ij)2
]η+Ψ2

, (4.3)

where Q =
e(Kmrefv

2
ref)

η

qref
, meff = mimj/(mi + mj) is the reduced mass of the colliding

particles, e = 1.6021765 × 10−19 C is the absolute value of the electron charge, ∆Zij

is the number of elementary charges exchanged, mrefv
2
ref = Tref is the thermal energy

scale. In our calculations, we fix qref such that Q = O(eK). The numbers Ψ1 and Ψ2 are

equally distributed noise with 〈Ψ1〉 = 1.63, 〈Ψ2〉 = 0, in the intervals Ψ1 ∈ [0.1, 3.1623]

and Ψ2 ∈ [η − 0.05η, η + 0.05η]. The mean and the interval of the noise Ψ1 are chosen

such that the charge exchange ∆qij fits the experimental power law e∆Zij = e(KEkin)η

found by Poppe et al. (2000b).

The multiplicative noise Ψ1 indicates that the charge exchange in the system has a

dependence on the current state of the kinetic energies of collisions while the stochastic-

ity in the exponent does not depend on the kinetic conditions, which is reflected through

an additive noise Ψ2. In other words, in a freely cooling granular gas, where the impact

kinetic energies keep decreasing over time, the stochastic coupling coefficient Ψ1 assures

an upper limit to the charge on an individual particle and avoids any unphysical diver-

gence of the amount of charge on it. It should be noted that here we make the simplifying

assumption, in lack of any established theory of tribocharging, that the charge exchange

is independent of the preexisting charge on the particles before the collisions. This sim-

plification is partially based on the experiments of Poppe & Schräpler (2005), where it

was observed that even precharged particles acquire additional charge upon collision, in-

dicating a negligible influence of electrical conductance during the short collision time.

Therefore, neglecting the possibility of discharging of the particles due to the combined

effect of potential created by the preexisting charge and the electrical conductivity of the

particle’s material is a reasonable simplification. The addition of the stochastic variable

Ψ2 in the exponent is based on the fact that its value is reported to be fluctuating (0.83

in Poppe et al. (2000b) while later 0.79 in Poppe & Schräpler (2005)).

1See chapter 3 for rescaling.
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Figure 4.2: Snapshots of the granular gas showing the time evolution of the neutral system
of viscoelastic particles (left column) and charged viscoelastic particles (center and right
columns). Here time t∗ = tvref/d, total number of monomers Nmon = 50016 and the
particle filling fraction in the system φ = 0.076. As the ratio of characteristic Coulomb
to thermal energy K increases, the characteristic time for the emergence of clustering
decreases, however, their growth rate is unchanged (see also Figs. 4.3 and 4.5). The
clusters exhibit a relatively compact morphology in the charged system.
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Figure 4.3: Sticking of particles during clustering in the charged system. We observe
a mechanism similar to collide-and-capture events observed in experiments on a falling
granular stream by Lee et al. (2015). Particles stick together in clusters and exhibit pro-
nounced persistence in each cluster over a considerable duration of time. This mechanism
is not observed in the neutral system, where instead particles collide and separate. (a)
Specific particles and their first neighbors are shown at different times. (b)-(d) The evolu-
tion of the number of contacts, Nstick, with time for the same particles shown in panel (a).
The occasional fragmentation results in the fluctuation of Nstick with time.
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4.3 Initialization

The simulations are initialized by randomly placing the particles in a 3D domain with

initial velocities distributed according to a Gaussian with zero mean and
√
T (0) standard

deviation. The (non-dimensional) initial granular temperature T (0) = 10. Any remaining,

initial net velocity of the system
∑N

i=1 vi is removed from each particle’s velocity vi

to ensure that no net macroscopic flux is present in the system. Initially, all particles

have zero charges. We also ensure that the system is at all times globally neutral, i.e.∑N
i=1 qi = 0, by enforcing conservation of charge during each collision event. We let the

system equilibrate for some time only under the influence of elastic forces. The dissipation

and collisional charging are then switched on.

4.4 Results and discussion

The dynamics of granular gases in the absence of electrostatics are reasonably well un-

derstood (Nie et al. , 2002; Brilliantov & Pöschel, 2010; Grossman et al. , 1997; van der

Weele et al. , 2001; Mikkelsen et al. , 2002), and exhibit numerous intriguing features such

as universal Gaussian velocity distributions in the long-time limit (Nie et al. , 2002), mul-

tiscaling and self-similarity in collisions (Ben-Naim & Krapivsky, 2000; Ben-Avraham

et al. , 2003), non-equilibrium steady states and asymmetric velocity distributions un-

der energy inputs (Grossman et al. , 1997), anomalous diffusion (Bodrova et al. , 2016;

Brilliantov & Pöschel, 2000a), ballistic aggregation of clusters as a whole (Paul & Das,

2017), and dissimilarity between ensemble-averages and long-time averages of observ-

ables (non-ergodicity) (Bodrova et al. , 2015). In addition, it is now known from the

studies of Takada et al. (2017); Scheffler & Wolf (2002); Müller (2008) that if a granular

gas is composed of equally charged particles (that is, the charge on each particle is equal in

sign and magnitude), the number of collisions per unit time decreases due to the Coulomb

repulsions. This, in comparison to a neutral granular gas, results in a slower decay rate of

the kinetic energy per particle or the granular temperature T as the time progresses. This

feature is recovered in our simulations as depicted in Fig. 4.1(a), which shows the decay

of T with time for constant coefficient of restitution. At short times, the granular tem-

perature follows Haff’s law [T (t) ∼ t−2], however, at later times it deviates from it and
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approaches a slower, inverse logarithmic scaling as was shown analytically by Scheffler

& Wolf (2002). Moreover, the HCS becomes unstable due to dissipative cooling of the

granular gas, and clustering emerges. Here we show that the additional perturbations due

to collisional charging alter the geometrical morphology of clusters and their growth in

time.

Figure 4.2 shows the time snapshots of the system for both neutral (K = 0.0) and

charged viscoelastic granular gas (K = 0.25 and 5.0). The clusters are relatively elon-

gated for neutral viscoelastic systems, while they are relatively compact in the collision-

ally charged system. The clustering for non-zero K initiates through mutual sticking of

charged particles and results in the formation of very localized agglomerates of particles

[Fig. 4.3]. This agglomeration process is identified by following the trajectories of parti-

cles and, via nearest-neighbor search, identifying the particles which are in contact with

the followed particle. A contact is defined if |rij| ≤ d0. As the time progresses, we see that

there is a definite trend of particles to stick together [see Fig. 4.3(a)], and the persistence

of individual particles in these localized aggregates is rather long-lived [Fig. 4.3(b-d)].

The long persistence of particle contacts is not present in the ICS of the neutral granular

gas where particles aggregate due to a mechanism described as a hydrodynamic insta-

bility (Brilliantov & Pöschel, 2010). In fact, a collide-and-capture mechanism has been

observed experimentally by Lee et al. (2015), for collisional charging in a falling dilute

granular stream. In the experiments (Lee et al. , 2015), the particles collide, bounce mul-

tiple times and then tend to stick together giving rise to local aggregates. One particular

observation made by Lee et al. (2015) is that when a single particle hits a cluster, it can

either get trapped in the electrostatic field or can cause other particles to leave the cluster

leading to fragmentation. In our simulations, the fragmentation is observed occasionally

as suggested by fluctuating neighbor contacts Nstick in [Fig. 4.3(b-d)] over time.

Figure 4.4(a) shows the time evolution of the mean absolute charge, q̄ = 1
N

∑N
i=1 |qi|,

in the system. According to our ansatz, the rate and extent of collisional charging strongly

depend on the number of collisions occurring per unit time, as well as on the relative

velocities between the colliding particles. Due to dissipation, on the other hand, the kinetic

energies of the particles keep decreasing and thus effectively contributing to the reduction

of charge exchange between the particles. Once the kinetic energy per particle becomes
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sufficiently low, the mean charge in the system begins to saturate. The initial evolution of

the mean charge can be estimated by the product of the initial collision frequency ν and

the charge exchange during single collision ∆qij . Since initially all particles are neutral,

the collision frequency must coincide with its neutral counterpart ν(t = 0) = nπb2〈ξ̇ij〉
(Scheffler & Wolf, 2002), where 〈ξ̇ij〉 is the mean relative velocity between colliding

particles, n is the number density and b = d0 is the impact parameter. Then the initial rate

of collisional charge exchange is

ν〈∆qij〉 = nπb2〈ξ̇ij〉
[
Cmeff〈ξ̇2

ij〉
]η
e, (4.4)

which is proportional to the rate of mean collisional charging ˙̄q. Assuming initially a

Gaussian velocity distribution, so that 〈ξ̇ij〉 ∝ T 1/2, and considering the fact that for

viscoelastic particles T ∝ t−5/3, the evolution of q̄ obeys

dq̄

dt
∝ T 1/2T η ∝ t−5/6t−5/(3η). (4.5)

As experiments show that η ≈ 0.8 (Poppe et al. , 2000b), the rate of mean charge buildup

with time is then
dq̄

dt
∝ t−13/6. (4.6)

A fit of the simulation results to Eq. (4.6) is also shown in Fig. 4.4(a), which closely fol-

lows the initial charge buildup. However, later in time it deviates from the prediction in

equation Eq. (4.6) indicating that the collision rate or the relative velocities of impact be-

tween particles after charge buildup are suppressed. This is expected after mutual sticking

of particles.

The conservation of charge at a single collision level and the initial condition∑N
i=1 qi = 0 results in the fact that there is a statistically equal number of pairwise at-

tractions and repulsions. This symmetry of the sign of charge among mono-dispersed

particles has also been shown recently through experiments for a global charge conserved

system, and when no other material or wall is present (Lee et al. , 2015). As a consequence

of this symmetric charge distribution, the early evolution of the granular temperature does

not show any considerable deviation from the Haff’s law [Fig.4.1(b)]. On the other hand,

if the number of pairwise repulsive interactions exceed the attractive, the rate of the decay
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of T slows down, as evident in Fig. 4.1(a).

4.4.1 Clustering

To investigate the statistical properties of the clusters, we calculate the cluster size dis-

tribution. A time-dependent matrix which contains information about the occupied (or

dense) and unoccupied (or dilute) sites in the system is obtained by thresholding the

coarse-grained particle density in the system (Paul & Das, 2017). Specifically, we di-

vide the simulation domain into equal-size boxes and, at any given time, compute the

particle density in each of the boxes. The boxes which have particle density higher than

a threshold value is then labeled as an ‘occupied site’ and the rest of the boxes as ‘unoc-

cupied’ 1. A cluster is then defined as the region of such connected occupied sites. This

definition of clusters provides the advantage that it is independent of whether granular

particles are in contact with each other in a strict sense (as they are in the charged case)

or they only form density inhomogeneities without contacts (as in neutral granular gases).

The size distribution Ns(s) of such connected occupied sites is then obtained. The size

distribution asymptotically scales as

Ns(s) ∼ s−τ (4.7)

where τ is so called the Fisher exponent (Stauffer, 1979; Stauffer & Aharony, 2003).

Figure 4.4(b-d) shows Ns(s) for both the neutral and the charged scenarios. The Fisher

exponent during early aggregation increases relatively quickly in the charged case (from

−1.62 to −1.34) compared to the neutral system (from −2.51 to −2.45). Additionally,

the size distribution of the occupied sites is relatively broader for the charged gas. The

count for a given cluster size s is larger in the charged system, except for very small s.

This suggests, in relation to the observations in Fig. 4.2, that the clusters in the charged

gas are compact and more numerous.

This difference in the rate of change of Fisher exponent in the charged system results

1The threshold filling fraction is taken equal to a third of the maximum possible filling fraction, that
is, the hexagonal close packing for equal spheres, φhcp = π

3
√
2
= 0.7405. Changing the threshold in our

calculations only results in a different multiplicative factor for the average cluster size, and does not change
the growth exponents.
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in a different growth exponent of the so called average cluster size

S(t) =

∑
s s

2Ns∑
s sNs

. (4.8)

For the neutral gas, a best fit to the average over twenty independently initialized simula-

tions reveals [Fig. 4.5]

S(t) ∼
[
t1.21±0.04 ≈ t6/5

]
, (4.9)

which is close to the mean field result based on the Smoluchowski’s aggregation equa-

tion (Leyvraz, 2003; Pathak et al. , 2014). The error in the exponent represents a 95%

confidence level. For the charged gas, we obtain

S(t) ∼
[
t1.49±0.012 ≈ t3/2

]
(4.10)

which clearly indicates a relatively faster cluster growth [Fig. 4.5]. The growth exponent

z can be precisely obtained using the method of local slope

z =
log[S(t)/S(t/p)]

log(p)
, (4.11)

where p characterizes the time resolution (Lübeck, 2004). In the limit 1/t → 0, the

function should attain a saturation value, which is the best estimate for z. Fig. 4.5 (inset)

shows this saturation of z to ≈ 1.5 for the charged while to ≈ 1.21 for the neutral gas as t

increases (or 1/t→ 0).

For early stages of growth, in the charged system, the cluster growth exponent z,

remarkably, does not show a dependence on the ratio of the characteristic Coulomb to

thermal energy K or equivalently on the typical dimensionless Bjerrum length `B/d0. In

Fig. 4.5 we show S(t) for increasing K = 0.25, 1.0 and K = 5.0. Upon decreasing

K, the characteristic time tc for the emergence of aggregation increases and approaches

the neutral case as K → 0. However, once the aggregation starts, it does not influence

the growth exponent z. An increase of tc upon decreasing K is reminiscent of the self-

focusing Brownian aggregation of monopolarly charged particles found by Dammer &

Wolf (2004).
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4.4.2 Mean-field: Smoluchowski aggregation equation with modified

reaction kernel

Aggregation phenomena are very common in nature, for example, the coalescence of

raindrops, coagulation of snow, aerosol, and powders, polymerization, or agglomeration

in colloids. One is often interested in determining, at a given time during the aggregation

process, the sizes of the aggregates and the rate at which they grow in time. A simple

way to approach is via a mean-field theory, which has been extensively applied (mainly

for uncharged particle systems) to precisely predict the time-dependent aggregate size

distributions and their growth rate. In this, only simplified features of the underlying

transport processes and the nature of the physical interactions between the aggregates are

taken into account . Here we make a mean-field approximation of the aggregation of the

initially monodisperse system using the discrete form of the Smoluchowski’s equation

[Eq. (2.50)] derived in chapter 2, i.e.

∂f(Ni, t)

∂t
=

1

2

i−1∑
j=1

Ki−j,jf(Ni −Nj, t)f(Nj, t) (4.12)

−f(Ni, t)
∞∑
j=1

Ki,jf(Nj, t),

where f(Ni, t) is the number density of aggregates having Ni monomers at a time t, and

Ki,j is the aggregation kernel [Eq. (2.46)]. The kernel Ki,j is typically related to the

collision cross-section σij of the colliding aggregates and the relative aggregate velocity

vij as

Ki,j ∝ σijvij. (4.13)

The collision-cross section is dependent on the aggregate size while the velocity part of

the kernel is related to the diffusion of the aggregates. Numerical solution of Eq.(4.12)

with a well-known kernel of the form

Ki,j ∝ (N
1/3
i +N

1/3
j )2(N−1

i +N−1
j )1/2 (4.14)

from the kinetic theory of uncharged particle aggregation (Antony et al. , 2004) yields a

growth exponent z = 1.19 which is close to our result for the neutral case in Fig. 4.5.
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Electrostatic interactions are difficult to treat as they result in an additional dependence

ofKi,j on the charge distribution among the aggregates besides the dependence on the size

distribution. It is, however, possible to include the effects of electrostatic interactions in

the aggregation kernel (Dammer & Wolf, 2004; Ivlev et al. , 2002). If the charge on the

individual particles is time-dependent and fluctuating, as in the present study, even the

solution of the above mean-field theory becomes quite complex. As a first attempt for a

collisionally charged granular gas, here we indirectly introduce the electrostatic effects in

the Smoluchowski’s kernelKi,j based on the results from the MD simulations. Under this,

for a bipolarly charged gas, we argue that the average collision cross-section 〈σij〉 remains

statistically unchanged due to the symmetry of the charge distribution.1 This should be

true as long as the net charge in the system is zero. This conjecture is consistent with the

result in Fig. 4.1(b), which shows no significant deviation of T from the neutral system,

at least in the early stage of evolution. However, the relative aggregate velocities vij are

expected to be suppressed due to the mutual sticking of particles and their entrapment

in the electrostatic field, as discussed previously. This fact is modeled in the kernel by

introducing a variable β as

Ki,j ∝ (N
1/3
i +N

1/3
j )2(N−1

i +N−1
j )1/β, (4.15)

where β = 2 corresponds to the neutral aggregation. An increasing β simply implies a

suppressed diffusion. We numerically solve the Smoluchowski’s equation with the kernel

(4.15). The growth exponent z → 1.49 when β → 3. The increase in the value of z in

the mean-field theory when the velocity term vij is suppressed supports the argument of

reduction in the relative aggregate velocities.

To support the inclusion of the parameter β in the diffusion part of the kernel, we study

the mean square displacement (MSD) of the particles. This is depicted in Fig. 4.6. The

MSD in a dissipative granular gas is known to exhibit a sub-diffusive behavior (Bodrova

et al. , 2016). Figure 4.6 (inset) shows that the sub-diffusive regime due to dissipation is

further suppressed due to the electrostatic interactions. The fact that the MSD is strongly

sub-diffusive is consistent with a reduced relative aggregate velocity, and thus with in-

1The impact-parameter for individual collisions will be different depending on the charge magnitude
and sign on the particles, however, here it is assumed that the average number of attractive encounters in the
gas are equal to the average number of repulsive encounters.
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creasing β.

The Smoluchowski’s equation can be further simplified, if a strict monodisperse mass

distribution of the aggregates is assumed at any time t, i.e. at a given time t, only aggre-

gates with size Ni (Ni are the number of smallest possible entities, for example number

of monomers or the number of the occupied sites, in the ith aggregates) are present and

the number density of aggregates of size Nj other than Ni is zero. This approximation is

rather severe, however it reduces the Smoluchowski’s equation to an analytically solvable

form, written as (Blum, 2006)

∂f(Ni, t)

∂t
= −Ki,if

2(Ni, t), (4.16)

where the kernel Ki,j now takes the following form

Ki,i ∝ (N
1/3
i )2(N−1

i )1/β = N
1/6
i N

−1/β
i . (4.17)

If the total mass in the system is conserved, then f(Ni, t)Ni(t) = const., and one can

transform Eq. (4.16) to the following

∂Ni(t)

∂t
=

1

τ0

(N
1/6
i N

−1/β
i ), (4.18)

where τ0 is some characteristic time. The solution of this ordinary, but non-linear differ-

ential equation is

Ni(t) ∼ tz, with


z = 6/5, if β = 2,

z > 6/5, if β > 2,

z = 3/2, if β = 3.

(4.19)

Figure 4.6 also shows the comparison of Eq. (4.19) with the MD results. Upon changing β

from 2 to 3 the mean-field calculations agree reasonably well with the MD results, which

is consistent with the suppression of diffusivity due to electrostatics [Fig. 4.6 (inset]. We

find that the system size does not affect our results. Above it is considered that the number

of monomers in the ith aggregate, i.e Ni(t), scales linearly with the average size of the

occupied sites S(t). The consistency of the results from numerically solving the kernel

in Eq. (4.15), MD calculations, and Eq. (4.19) suggest that the suppression of particle
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diffusion due to electrostatics enhances the aggregation process.

4.4.3 Velocity distribution

To analyze the global effects of charging on the dynamical state of the system, we

also study the evolution of the normalized velocity distribution function f(ṽ), where

ṽ = v/〈v2〉1/2, and its deviation from the equilibrium, Maxwellian distribution fMB(ṽ).

For viscoelastic particles f(ṽ) quickly deviates from the Maxwell distribution early in

time, attains a maximal deviation regime and tends to approach back the Maxwellian

(Brilliantov & Pöschel, 2010). This behavior for neutral viscoelastic particles is shown in

Fig. 4.7(a), where the relaxation of f(ṽ) after its maximal deviation is highlighted. The

physical reasoning behind this relaxation is that as t→∞, the impact velocities (vij ·nij)
tend to reduce which implies the coefficient of restitution ε = −v′ij · nij/vij · nij → 1

(Here v′ij is the post collision relative velocity). This causes most collisions to be effec-

tively elastic and thus f(ṽ, t) → fMB(ṽ) (Pöschel et al. , 2003). The intriguing finding

in our study is that the deviation of f(ṽ) from the Maxwellian is more significant in dy-

namically charged systems and it does not exhibit a relaxation towards fMB(ṽ) within the

early stage of aggregation. Figure 4.7(b) shows f(ṽ) at different times for a charged sys-

tem. The deviation of fMB(ṽ) from f(ṽ) is more pronounced in the charged case than in

the neutral gas and indicates that the nature of the clustering is different in case of dy-

namically charged systems as compared to the neutral system. The tail of the distribution

nearly scales as f(ṽ) ∼ exp(−ṽ) in both cases. Over time, the most probable value of ṽ

is reduced in the charged system [Fig. 4.7 (b) (inset)]. On the other hand, this deviation is

minimal for the neutral gas particles [Fig. 4.7 (a) (inset)]. The difference between the two

cases again indicates a reduced motility of particles in the charged gas.

The high-speed particles from the tail of f(ṽ) compensate for the reduction of the most

probable velocity. To understand which particles are—statistically—responsible for the

fat exponential tail of the distribution, we consider a scatter plot of charge and speed for

our system, as shown in Fig. 4.8. As the time elapses, a subpopulation of weakly charged

particles with high velocities can be identified. This subpopulation corresponding to the

fat tail of the distribution suggests an interesting and counterintuitive fact. Although the

tail of the distribution deviates significantly from fMB(ṽ) in the charged systems, weakly
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Figure 4.7: (a) The relaxation of the scaled velocity (ṽ = v/〈v2〉1/2) distribution function
towards the Maxwellian for neutral viscoelastic particles. This result from our simula-
tions for neutral viscoelastic particles is consistent with the Sonine expansion for the time
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charged granular gas. Here the non-dimensional time t∗ = tvref/d.
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charged particles are actually responsible for it. These weakly charged and high-speed

particles fail to stick and form agglomerates. It can be imagined that these particles expe-

rience fewer collisions due to the fact that more space is provided by the agglomeration

process. Thus the nonequilibrium nature of the charged granular gas is enhanced indi-

rectly through the agglomerating particles, and directly by the weakly charged, high-speed

particles. This scenario implies a thermal decoupling between highly charged particles

and the subpopulation of weakly charged particles. We expect that due to their relatively

high velocities, these weakly charged particles are then the most probable reason behind

the occasional fragmentation of the local aggregates, as observed in Fig. 4.3. In neutral

freely-cooling granular gases, the exponential tails of the velocity distribution during the

intermediate time regime are dominated by the fastest moving particles which manage to

avoid any collision with other particles (Nie et al. , 2002). However, the number of such

particles decreases over time and eventually the large-velocity tail tends to diminish (Nie

et al. , 2002). In the present scenario, the “survival probability” of such uncharged fastest-

moving particles is expected to be higher as they gain more accessible volume due to the

compact coagulation of the other charged particles. Consequently, the large-velocity tail

survives, at least during the early stages of the particle aggregation.

4.5 Conclusions

We have studied the effect of collisional charging on the aggregation dynamics of dilute,

freely cooling granular gases of viscoelastic particles. We perform molecular dynamics

simulations that take into account the collisional charge exchange, and the electrostatic

interactions by means of the Ewald summation. Our simulations depict that the electro-

static interactions due to collisional charging alter the morphology1 [Fig. 5.1] and the

growth rate of the clusters. In a charged system, the local sticking of particles triggers the

aggregation, and the subsequent growth of the average cluster size is enhanced [Fig. 4.5

and 4.6]. The growth of the average cluster size is found to be independent of the ratio of

characteristic Coulomb to thermal energy, or equivalently, of the typical Bjerrum length.

The combined results from the numerical solution of Eq. (4.12) with the modified reaction

kernel in Eq. (4.15), the results in Eq. (4.19), the behavior of f(ṽ) as shown in Fig. 4.7

1The morphology of the aggregates is further studied in detail via the fractal dimension in chapter 5.
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(b), and the MD results all suggest that electrostatic interactions enhance the aggregation

process in a charged granular gas.

In our work, some important physical ingredients such as friction, rotational degrees

of freedom of the particles as well as other charging mechanisms such as ionization of

the particle interstitial gas due to irradiation, are not included. Especially important is

to further improve the charge exchange model [Eq. (4.2), see also Table 3.1]. However,

our study, we believe, will be helpful in clarifying very basic feature of natural processes

which produce dust aggregation in charged environments e.g., the agglomeration of plan-

etary dust (Blum et al. , 2000) and cohesive powder substructures (Wolf et al. , 2009).

In the perspective of planetary dust aggregation, it will also be interesting to include the

effects due to drag caused by interstitial gas surrounding the particles, dipolar effects (Siu

et al. , 2015; Wesson, 1973), as well as van der Waals effects (Blum et al. , 2000).
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Electrification in charged granular

gases leads to constrained fractal

growth1

The empirical observation of aggregation of dielectric particles under the influence of

electrostatic forces lies at the origin of the theory of electricity. The growth of clusters

formed of small grains underpins a range of phenomena from the early stages of plan-

etesimal formation to aerosols. However, the collective effects of Coulomb forces on the

nonequilibrium dynamics and aggregation process in a granular gas – a representative of

the above physical processes – have so far evaded theoretical scrutiny. Here, we establish

a hydrodynamic description of aggregating granular gases that exchange charges upon

collisions and interact via the long-range Coulomb forces. We analytically derive the gov-

erning equations for the evolution of granular temperature, charge variance, and number

density for homogeneous and quasi-monodisperse aggregation. We find that, once the

aggregates are formed, the granular temperature of cluster population, the charge vari-

ance of cluster population and the number density of cluster population evolve in such a

way that their non-dimensional combination obeys a physical constraint of nearly con-

stant dimensionless ratio of characteristic electrostatic to kinetic energy B(t) ≤ 1. This

constraint on the collective evolution of charged clusters is confirmed both by the the-

ory and the detailed molecular dynamics simulations. The inhomogeneous aggregation

1The content of this chapter has been published in: Singh, Chamkor, and Marco G. Mazza. "Electrifi-
cation in granular gases leads to constrained fractal growth." Scientific reports 9.1 (2019): 9049.
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of monomers and clusters in their mutual electrostatic field proceeds in a fractal manner.

Our theoretical framework is extendable for more precise charge exchange mechanism, a

current focus of extensive experimentation. Furthermore, it illustrates the collective role

of long-range interactions in dissipative gases and can lead to novel designing principles

in particulate systems.
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5.1 Introduction

The electrostatic aggregation of small particles is ubiquitous in nature and ranks among

the oldest scientific observations. Caused by collisional or frictional interactions among

grains, large amounts of positive and negative charges can be generated. These clus-

ters have far-reaching consequences: from aerosol formation to nanoparticle stabilization

(Castellanos, 2005; Schwager et al. , 2008), planetesimal formation, and the dynamics of

the interstellar dust (Wesson, 1973; Harper et al. , 2017; Brilliantov et al. , 2015; Blum,

2006). The processes accompanying granular collisions, charge buildup and subsequent

charge separation can also lead to catastrophic events such as silo failure, or dust explo-

sions.

Experimental investigations of the effects of tribocharging date back to Faraday, and

recent in situ investigations have revealed important results (Jungmann et al. , 2018; Lee

et al. , 2015; Yoshimatsu et al. , 2017; Poppe et al. , 2000b; Haeberle et al. , 2018).

However, technical difficulties plague even careful experiments and often impede their

unambiguous interpretation (Spahn & Seiß, 2015). A source of these difficulties is the

lack of consensus about whether electrostatics facilitate or hinder the aggregation process

of a large collection of granular particles (Spahn & Seiß, 2015). Despite considerable

effort (Ivlev et al. , 2002; Dammer & Wolf, 2004; Müller & Luding, 2011; Ulrich et al.

, 2009; Brilliantov et al. , 2018; Liu & Hrenya, 2018; Takada et al. , 2017; Kolehmainen

et al. , 2018b) a statistico-mechanical description of aggregation in a dissipative granular

system with a mechanism of charge transfer is still lacking. The theoretical treatment

requires reconsideration of the dissipation of kinetic energy conventionally described by

a monotonic dependence of the coefficient of restitution on velocities ε(v), and also the

inclusion of long-range electrostatic forces due to the dynamically-changing charge pro-

duction. Understanding the growth of charged aggregates requires a statistical approach

due to the different kinetic properties and aggregate morphology.

In this work, we present a modified Boltzmann description for the inelastic and ag-

gregative collisions of grains that interact via Coulomb forces, and exchange charges upon

collision. We derive the hydrodynamic equations for the number density n, the granular

temperature T , and the charge fluctuations 〈δq2〉 of the aggregates under the assumptions

of homogeneous and quasi-monodisperse aggregation. We find that the dimensionless

81



Chapter 5

ratio of the characteristic electrostatic energy ke〈δq2〉
d

to the granular temperature T , i.e.
ke〈δq2〉
Td

, approaches but stays below 1. Here ke is the Coulomb’s constant while d is the

characteristic size of the aggregates.

To bolster our results, and explicitly consider fluctuations in dynamics and morpho-

logical structures, we also use three-dimensional molecular dynamics (MD) simulations

that explicitly include Coulombic interactions and a charge-exchange mechanism. We

find that the granular dynamics agree quantitatively with the predictions of the Boltzmann

equation. The cooling gas undergoes a transition from a dissipative to an aggregative

phase marked by a crossover in the advective transport. We explore the morphological

dynamics of the inhomogeneous aggregation via the mean fractal dimension and their

interplay with the mesoscopic flow.

5.2 Kinetics

In general, agglomeration in a three-dimensional collisionally charging cooling granular

gas is a spatially inhomogeneous process which involves the interplay between dissipa-

tion, the time-varying size distribution of aggregates, charge fluctuations and exchange

mechanism during collisions, long-range forces, and collective effects (Singh & Mazza,

2018). This complexity is illustrated in Fig. 5.1 which shows snapshots of cooling clus-

ters from a typical MD simulation, beginning from a homogeneous and neutral state (see

Methods for MD). In the following, we establish a modified Boltzmann approach for this

intricate dynamics of the aggregation process, which predicts novel physical limits.

We consider the single particle probability distribution function f = f(r, t;v, q, d),

where the particle velocity v, charge q, position r and particle size d, are the phase space

variables, and t denotes time. We specialize to a homogeneous and quasi-monodisperse

aggregation scenario (i.e. the size is assumed to vary in time but spatially mono-dispersed,

see schematic representation in Fig. 5.2). Under these limits, the spatial and particle-size

dependence of f drops out, i.e. f = f(t;v, q) only, and its time evolution is given by the

simplified Boltzmann equation (Pitaevskii & Lifshitz, 2012; Brilliantov & Pöschel, 2010)

∂f

∂t
= Icoll, (5.1)
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valid at any time instant t. Here we define Icoll as the modified collision integral which

includes dissipation as well as charge exchange during particle collisions. We will now

elucidate how the charge exchange mechanism and particle size growth modify the colli-

sions.

Let us consider contact collisions of particles i and j with pre-collision velocity-charge

values (vi, qi) and (vj, qj), respectively. In the ensemble picture, particle collisions will

change f(t;v, q) in the infinitesimal phase-space volumes dvidqi and dvjdqj , centered

around (vi, qi) and (vj, qj), respectively. The number of direct collisions N−c per unit

spatial volume which lead to loss of particles from the intervals dvidqi and dvjdqj in time

∆t are

N−c = fidvidqifjdvjdqj|vij · n|Θ(−vij · n)Θqdσ∆t , (5.2)

where vij ≡ vj − vi, n is the unit vector at collision pointing from the center of

particle i towards particle j, and dσ is the differential collision cross-section. The

Heaviside step function Θ(−vij · n) selects particles coming towards i, while we use

Θq ≡ Θ
(

1
2
mv2

ij − keqiqj
d

)
to ensure that a contact with an approaching particle takes

place only when the Coulomb energy barrier can be overcome, where ke = 1/(4πε0),

ε0 = 8.854×10−12 F m−1 is the vacuum permittivity, and d is the particle diameter at time

t. If the interaction is repulsive, keqiqj/d is positive, and Θq = 1 only if 1
2
mv2

ij > keqiqj/d.

In case of attractive interaction, keqiqj/d is negative and thus Θq = 1 always. Essentially,

Θq filters repulsive interactions which do not lead to a physical contact between particles.

Consider now particles with initial velocity-charge values (v′′i , q
′′
i ) and (v′′j , q

′′
j ) in the

intervals dv′′i dq
′′
i , dv

′′
j dq

′′
j . The number of particles N+

c per unit volume which, post-

collision, enter the interval dvidqi and dvjdqj in time ∆t is

N+
c = f ′′i dv

′′
i dq

′′
i f
′′
j dv

′′
j dq

′′
j |v′′ij · n|Θ(−v′′ij · n)Θ′′qdσ

′′∆t . (5.3)

The net change ∆Nc ≡ N+
c −N−c of number of particles in time ∆t per unit volume, then

reads (see Methods)

∆Nc =

(
1

ε(vij)
J
vij
ij J

q
ijf
′′
i f
′′
j − fifj

)
|vij · n|Θ(−vij · n)dvjdqjdσΘq∆t , (5.4)
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Constrained fractal growth

where J
vij
ij and Jqij are the determinants of the Jacobians of the transformations for

dv′′i dv
′′
j → dvidvj and dq′′i dq

′′
j → dqidqj , respectively, which lump together the mi-

croscopic details of the collision process, namely dissipation and charge exchange in the

present study.

Integrating over all incoming particle velocities and charges from all directions, divid-

ing by ∆t and taking the limit ∆t→ 0, we obtain the formal expression for the modified

collision integral

Icoll =

∫ (
1

ε(vij)
J
vij
ij J

q
ijf
′′
i f
′′
j − fifj

)
|vij · n|Θ(−vij · n)dvjdqjdσΘq. (5.5)

Here we assume that the differential collision cross section and the contact condition

specified by Θq retain their form for direct and inverse collisions. The particle encounters

which do not lead to a physical contact have been excluded using Θq. While taking mo-

ments of Icoll, a fraction of those contact collisions that lead to aggregation is accounted

for by taking the limit ε = 0 for certain conditions on the relative velocity vij , and by con-

sidering the charge transferred to particle i equal to the charge on particle j (see Methods).

In Icoll, distant encounters, which do not lead to a contact between particles (glancing col-

lisions) are neglected and the charge exchange and dissipation is considered only during

the contact. The long-range effect is incorporated via the collision cross-section.

After setting up the collision integral, we derive the macroscopic changes of number

density n, granular temperature T , and the charge variance 〈δq2〉 by taking the moments of

the Boltzmann equation (see Methods). The particles are initially neutral and the charge

on them is altered either by collisions or during aggregation. However, due to charge

conservation during collisions and aggregation, the system remains globally neutral and

the mean charge variation 〈δq〉 is zero. The next choice is thus 〈δq2〉. In order to obtain

closed-form equations, and for analytical tractability, we assume quasi-monodispersity

and homogeneity of the aggregating granular gas at any given time, as illustrated in Fig.

5.2. This means that during aggregation the mass of the clusters is assumed to grow

homogeneously, while their numbers decrease in a given volume.

We assume that the charge and velocity distributions are uncorrelated, and their prop-

erly scaled form remains Gaussian (see Methods). After integration, we find the governing
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equations

∂n

∂t
= −n2T

1
2 g1(B, Cn

agg), (5.6)

3

2

∂T

∂t
= −n2T

8
5 g2(B, CT

res) + n2T
3
2 g3(B, CT

agg), (5.7)

∂〈δq2〉
∂t

= n2T (η+ 1
2

)g4(B, Cq
res)− n2〈δq2〉T 1

2 g5(B, Cq
agg), (5.8)

which are coupled via a time-dependent dimensionless ratio

B(t) ≡ ke
〈δq2〉(t)
T (t)d(t)

, (5.9)

between charge variance, granular temperature, and aggregate size. The terms gk are time-

dependent functions of B and material constants Cres, Cagg (Methods Table I). We term

the ratio B as Bjerrum number. In Eq. (5.9), d represents the size of a particle, also evolv-

ing with time during aggregation [Fig. 5.2]. Notice that as f is considered independent of

d during aggregation, an explicit equation for d is required. For this we consider the total

mass M , system volume V , and particle material density ρm to be constant, which fixes

the relation between particle size d and particle number density n, according to

d(t) =

[
6M

πn(t)V ρm

] 1
Df

, (5.10)

and closes the equation set (5.6)-(5.8). Here Df is the fractal dimension. In the solu-

tion of the above analytical equations, we have assumed Df = 3 (spherical aggregates).

Below, we will compute values of Df using the MD simulations. The above set of equa-

tions is consistent with modified Haff’s law for a velocity dependent coefficient of restitu-

tion (Schwager & Pöschel, 1998; Brilliantov & Pöschel, 2000b; Ramírez et al. , 1999) in

the absence of collisional charging. In this limit 〈δq2〉 = 0, B = 0, and we obtain ∂n
∂t

= 0,
∂〈δq2〉
∂t

= 0 and 3
2
∂T
∂t

= −T 8/5
[
πCTres

2

]
, whose solution is the modified Haff’s law.

87



Chapter 5

100 102 104

10-5

10-4

10-3

10-2

10-1

100

T
of

cl
u
st
er

p
op
.

100 102 104

10-5

10-4

10-3

10-2

〈δ
q2
〉o

f
cl
u
st
er

p
op
.

100 102 104
10-4

10-3

10-2

10-1

n
of

cl
u
st
er

p
op
.

100 102 104

10-5

100

B
je
rr
u
m

nu
m
b
er

B(
t)

time tvref/d0

time tvref/d0

a

b

c

d

B = 1

Figure 5.3: Evolution of temperature (a) T of cluster population, (b) charge variance
〈δq2〉 of cluster population, and (c) number density n of cluster population, for different
monomer filling fractions φ and charge strength K. (d) The granular temperature, charge
variance and average size of the cluster population during aggregation evolve in such
a manner that their non-dimensional combination B(t) = ke〈δq2〉/(Td) ≤ 1 (see also
Fig. 5.4). Both temperature and charge variance of cluster population decay as power
laws. The number density evolution, however, is highly dynamic and exhibits a non-
monotonic behavior due to emergence of mesoscopic flow (see Methods for φ, K, vref, d0

and mesoscopic flow).
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5.3 Results

The time evolution of T , 〈δq2〉 and n of aggregate population from MD simulations is

shown in Fig. 5.3. The aggregate temperature from simulations is extracted as 3
2
T =

1
Nagg

∑
i

1
2
mi[(vi −V)2]. Notice that vi and mi are center of mass velocity, and mass of

the ith aggregate respectively, and should not be confused with monomer velocities and

masses. V is the local advective velocity in the neighborhood of ith aggregate. Similarly,

〈δq2〉 = 1
Nagg

∑
i(qi − 〈q〉)2, and n = Nagg/V , where Nagg is the total number of aggre-

gates and V is the system volume. In the MD simulations, oppositely charged monomers

hold together into mechanical contact when the elastic repulsion between them balances

the Coulomb attraction. This is the scenario at low granular temperature when the dissi-

pative force term, and the inertial term, in the equation of motion [Eq. (5.57)] is negligible

compared to the elastic and Coulomb terms. We identify the aggregates with the following

condition: if the distance between the centers of two monomers rij is less than or equal

to the monomer diameter d0, they belong to the same aggregate. Once all the aggregates

in the system are identified using the above definition, the aggregate velocity and mass as

a whole is computed. If vi are the velocities of monomers in kth aggregate, the aggregate

velocity vk is computed by vk =
∑

imivi/
∑

imi, which is the center of mass velocity

of the aggregate. The mass of the aggregate is simply mk =
∑

imi. Similarly, the net

charge on kth aggregate is qk =
∑

i qi.

Initially (tvref/lref < 102), the relative collision velocities vij remain larger than the

time varying threshold
√
b ≡

√
ke|qiqj |

2Td
(see Methods for the treatment of threshold b).

In this time regime, the collisions are primarily restitutive, leading to either Coulomb

scattering without collision, or charge exchange and dissipation without considerable ag-

gregation. The dissipation reduces T [Fig. 5.3(a)] while the charge exchange increases

〈δq2〉 [Fig. 5.3(b)]. In this time regime the number density n, and thus size d of the aggre-

gates, is altered only moderately due to those low-velocity attractive monomer encounters

which lead to aggregation [Fig. 5.3(c)].

As a result of our kinetic formulation, the dynamics of n, T and 〈δq2〉 can be collected

into evolution of B, shown in Fig. 5.3(d). The Bjerrum number B initially increases,

which indicates that temperature decreases at a faster rate than the rate of increase of

charge variance and the aggregate size. As the relative velocities vij approach the thresh-
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old
√
b, B → 1. Near this time, the dynamics cross over to aggregative collapse. The

individual particles, or monomers, cluster in such a way that the charge variance of the

cluster population now begins to reduce. The temperature of the aggregate population

keeps decreasing at the same rate with a slight dip near the aggregative collapse. The

number density starts to evolve non-monotonically. We explore the non-monotonicity in

the next section and in the Methods. These results are robust under variation of the initial

monomer filling fraction φ and the charge strength K [Fig. 5.3].

After the initial time regime and the aggregative collapse, the crossover in the dynam-

ics is depicted in Fig. 5.4, where the evolution of the combination B, and its compari-

son with the solution of Eq. (5.6)-(5.8) is highlighted. We solve the full kinetic equa-

tions Eq. (5.6)-(5.8) including the aggregation kinetics [Fig. 5.4 (solid line)]. We also

solve Eq. (5.6)-(5.8) for a system with only dissipative collisions and without aggrega-

tion; hence, the cluster size d remains unchanged. These results are shown in Fig. 5.4

(dashed line). In this limit of only restitutive kinetics, B increases continuously above the

limiting value 1. The purely restitutive kinetic theory thus fails to predict the MD results.

When aggregation is explicitly treated (solid line), the theory predicts an upper limit dur-

ing the growth. The theory shows that once aggregation sets in, the aggregating granular

gas obeys the constraint

B(t) ≤ 1 . (5.11)

The upper physical limit predicted in the theory, B(t) < 1, is endorsed by the granular

MD simulations under moderate variation of φ and K. It is notable that at later times, the

limit B ≤ 1 allows the right-hand sides of the equations for number density, temperature

and charge variance [Eq. (5.6)-(5.8)] to remain real-valued during the aggregation process.

This mathematical indication confirms the effectiveness of the quasi-monodisperse picture

[Fig. 5.2] considered in the present study.

The initiation of aggregation brings about a power law decay in the charge variance

[Fig. 5.3(b)]. It is notable that a different charge exchange model might provide a dif-

ferent charge buildup rate during the purely dissipative (restitutive) phase. However, the

decay of charge variance during the aggregative phase is not expected to be influenced

by charge exchange mechanism. The reason is that aggregation sets in at relatively low
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temperature where the thermal motion of monomers, if any, inside the clusters is signif-

icantly decreased, and thus collisional charge-exchange is expected to be negligible. If

two oppositely charged particles i and j collide with a speed which is below the aggre-

gation threshold speed, it is considered that they form a single aggregate with net charge

qi + qj on it [Fig. 5.2]. Thus, the charge variance of the cluster population is reduced by

the aggregation process, rather than by the collisional charge exchange.

Our key theoretical finding is that after the aggregative collapse, the decay of the

charge variance of aggregate population and the growth of the size of the aggregates is

balanced by the decay of temperature during the aggregation, resulting in the stationary

value of B(t). The constraint B ≤ 1 is robust in the theory, while the granular MD

simulations suggest B(t) < 1 and confirm the upper limit of B(t). It is also intriguing that

the temperature of the cluster population still closely follows the modified Haff’s law for

different φ and K, despite complex heterogeneous aggregation-fragmentation events and

the long-range electrostatic interactions.

The number density’s temporal evolution obtained from the MD simulations reveals

a more intricate non-monotonic dynamics. It initially begins to decrease during small

aggregate formations due to low-velocity attractive monomer encounters. In an interme-

diate time regime, the emergence of mesoscopic particle fluxes triggers fragmentation

events and the aggregate numbers increase. We quantify the emergence of mesoscopic

flow using the Mach number (see Methods and Media therein). After this intermediate

time regime, the aggregation again takes over and the number density of clusters starts

to decrease. The non-monotonic evolution of n causes a dip in B(t) after the aggregative

collapse (tvref/lref > 102) [Fig. 5.3 and 5.4]. For temperature values in this regime, the

charge transfer events between monomers are statistically ineffective, and the evolution

of 〈δq2〉 is primarily dominated by aggregation events. We find that a maximum of charge

fluctuations 〈δq2〉 occurs near this crossover.

The size difference between aggregates in the MD simulations further adds to the

complexity of B’s evolution after the aggregative collapse, which is neglected in the ho-

mogeneous and quasi-monodisperse aggregation kinetic theory. However, the theory still

clearly predicts the growth of B and selects a unique upper limit after the aggregative col-

lapse. To further explore the mechanisms behind the non-monotonic evolution of n, we
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Figure 5.4: The granular temperature, charge variance and average size of the cluster
population during aggregation evolve in such a manner that their non-dimensional com-
bination B(t) = ke〈δq2〉/(Td) ≤ 1. This is not captured in the kinetic theory if only
restitutive (no aggregation) collisions are considered. The granular MD simulations con-
firm the analytical results. (inset for different monomer filling fraction φ).

explore the spatially heterogeneous cluster dynamics and nature of the structures from the

MD simulations.

5.3.1 Inhomogeneous aggregation and fractal growth

To gain access to the spatial structure formation in the gas, we perform a detailed cluster

analysis of the results from granular MD simulation, see Fig. 5.1. The morphology of

the aggregates is studied by computing the average fractal dimension 〈Df〉 (Mandelbrot,

1977; Jullien, 1987) of cluster population from the scaling relation m ∼ R
〈Df 〉
g between

cluster masses m, and radii of gyration Rg = [ 1
Nmon

∑
i(ri − rmean)

2]1/2, where the index

i runs over total number of monomers Nmon in a given aggregate. Here ri is the position

vector to the ith monomer in the given aggregate and rmean is the position vector to the

center of mass of that aggregate. Once m and Rg of all the aggregates in the system are

calculated, we compute the Rg versus m scatter-plots at different times, for example in

Figure 5(a-c). We repeat this for different times and filling fractions, and calculate 〈Df〉 as
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Figure 5.5: (a-c) The scaling between cluster mass m and their radius of gyration Rg,
m ∼ R

Df
g at different times, and (d) the time evolution of 〈Df〉, thus obtained, for different

filling fractions. The average fractal dimension in the aggregating charged gas varies
across reported average values for ballistic cluster-cluster aggregation (BCCA, 〈Df〉 ∼
1.94) and diffusion-limited particle-cluster aggregation (DLPCA, 〈Df〉 ∼ 2.46) (Blum,
2006; Smirnov, 1990). t∗ ≡ tvref/d0. Here the initial transience of the fractal dimension
during the charge buildup phase is omitted.
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the slope of the fit toRg versusm scatter-plots. Fig. 5.5(d) shows the time evolution of the

exponent 〈Df〉 for varying filling fraction. The average fractal dimension lies between the

average values reported for the ballistic cluster-cluster aggregation (BCCA, 〈Df〉 ' 1.94)

and the diffusion-limited particle-cluster aggregation (DLPCA, 〈Df〉 ' 2.46) (Blum,

2006; Smirnov, 1990) models. In time, 〈Df〉 is dynamic and changes across the two

model limits. These results indicate that the aggregate structures retain their fractal nature

over time.

The BCCA and DLPCA are popular models for aggregation that have been used for

neutral dust agglomeration (e.g hit and stick, ballistic motion, (Blum, 2006)), wet gran-

ulate aggregation (sticking due to capillary bridges and ballistic motion, (Ulrich et al. ,

2009)), colloidal aggregation (van der Waals and repulsions (Lebovka, 2012)), and hit

and stick agglomeration in Brownian particles under frictional drag (Kempf et al. , 1999).

The observation that 〈Df〉 lies between the reported average values of 〈Df〉 for BCCA

and DLPCA indicates the presence of mixed characteristics from both of these simplified

models. The size distribution in an aggregating charged granular gas (Singh & Mazza,

2018) tends to resemble a DLPCA-like behavior where the smaller size aggregates are

larger in number, in contrast to a BCCA-like model where the size distribution is typically

bell-shaped (Blum, 2006). On the other hand, the monomer motion is found to be highly

sub-diffusive (Singh & Mazza, 2018) in agreement with the BCCA model. In addition,

the Coulombic interactions will cause considerable deviations from the short-ranged or

ballistic propagation typical of the BCCA or DLPCA models. We find that the long-range

forces due to a bipolar charge distribution lead to the value of 〈Df〉 intermediate between

the above two aggregation models, indicated by dashed lines in Fig. 5.5(d).

5.3.2 Interplay between fractals and mesoscopic flow

Apart from the long-range effects, the morphology of the aggregates is also altered by

additional mechanisms. We discuss two physical processes that are not captured in the

analytical theory, but that we investigate via our MD simulations.

First, in our modified Boltzmann kinetic description, the collisions between aggre-

gates at any given time are considered as collisions between two spheres with sizes equal

to the average size of the aggregate population. This is a quasi-monodisperse assumption
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typically used in cluster-cluster aggregation models. The quasi-monodispersity, however,

neglects the morphology and surface irregularities of the colliding aggregates. In practice,

collisions between two aggregates with large size difference are also possible. Addition-

ally, individual monomers might collide with large aggregates and result in fragmentation

events. Our kinetic description neglects these specific scenarios. It is important to note

that the main reason for the mismatch between kinetic theory and MD results for the

density evolution [Fig. 5.7(c)] is our neglect of size differences among aggregates in the

kinetic theory.

Secondly, granular gases are characterized by the emergence of a convective flow

(Hummel et al. , 2016; Brilliantov & Pöschel, 2010) which we find (see Methods and

Media therein), in the present case, induces the non-monotonicity in the temporal evolu-

tion of the number density [Fig. 5.3(c)]. Due to the mesoscopic flow, aggregates which

are weakly connected are prone to fragmentation. This results in an intermediate regime

where the concentration of aggregates increases instead of decreasing.

Excluding the two above mechanisms explains the slight deviation of our quasi-

monodisperse Boltzmann theory from the non-monotonic behavior of B(t) after the

crossover to aggregative collapse.

5.4 Methods

5.4.1 Kinetics and modified collision integral

After obtaining number of direct collisions in Eq. (2) in the main text, let us consider

the number of particles N+
c per unit spatial volume having initial velocity-charge values

(v′′i , q
′′
i ) and (v′′j , q

′′
j ) in the intervals dv′′i dq

′′
i and dv′′j dq

′′
j which, post-collision, enter the

in the intervals dvidqi and dvjdqj in time ∆t are

N+
c = f ′′i dv

′′
i dq

′′
i f
′′
j dv

′′
j dq

′′
j |v′′ij · n|Θ(−v′′ij · n)Θ′′qdσ

′′∆t , (5.12)
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and thus the net increase of number of particles per unit time and volume is N+
c − N−c .

We can relate the primed velocities to the unprimed via

dv′′i dv
′′
j = J

vij
ij dvidvj, (5.13)

where Jvijij = 1+(6/5)Cεv
1/5
ij +... is the determinant of the Jacobians of the transformation

for viscoelastic particles (Brilliantov & Pöschel, 2010). Here Cε is a material constant. To

obtain the transformation dq′′i dq
′′
j → dqidqj , we consider the ratio of relative charges after

and before the collision

r =
qi − qj
q′′i − q′′j

, (5.14)

and in addition we impose charge conservation during collisions

qi + qj = q′′i + q′′j . (5.15)

The above two relations finally provide the transformation

dq′′i dq
′′
j = Jqijdqidqj, (5.16)

where, for example, Jqij = 2
r

for a constant r. This means that the differential charge-

space volume element shrinks or expands by a factor of r/2. In general, for velocity and

particle pre-charge dependent charge transfer, the expressions of r and Jqij can be quite

complicated as it depends on how the charge exchange takes place during collisions and

its dependence on myriad factors (such as size, composition, and crystalline properties).

Incorporating the above phase-space volume transformations due to collisions, the net

change ∆Nc of number of particles per unit phase-space volume and in time ∆t reads

∆Nc =

(
1

ε(vij)
J
vij
ij J

q
ijf
′′
i f
′′
j − fifj

)
|vij · n|Θ(−vij · n)dvjdqjdσΘq∆t ,

where we assume that the differential cross-section and the contact condition specified by

Θq are the same for direct and inverse collisions. Finally, dividing by ∆t, and integrating

over all incoming particle velocities and charges from all directions in the limit ∆t → 0,
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we obtain a formal expression for the collision integral

Icoll =

∫ (
1

ε(vij)
J
vij
ij J

q
ijf
′′
i f
′′
j − fifj

)
|vij · n|Θ(−vij · n)dvjdqjdσΘq. (5.17)

At this point the particle encounters which do not lead to a physical contact have been

excluded using Θq, however, collisions that lead to aggregation have not been explicitly

accounted. We do so by taking the limit ε = 0 for certain conditions on the relative

velocity vij , and by considering the charge transferred to particle i equal to the charge on

particle j [Eq. (5.25)-(5.30) below]. In Icoll, distant encounters, which do not lead to a

contact between particles (glancing collisions) are neglected and the charge exchange and

dissipation is considered only during the contact. The long-range effect is incorporated

via collision cross-section.

5.4.2 Splitting restitution and aggregation

The time rate of change of the average of a microscopic quantity ψ(vi, qi) is obtained by

multiplying the Boltzmann equation for fi by ψi and integrating over vi, qi, i.e.

∂〈ψ〉
∂t

=

∫
dvidqiψi

∂fi
∂t

=

∫
dvidqiψiIcoll. (5.18)

It can be shown that

∂〈ψ〉
∂t

=

∫
dvidqiψiIcoll

=
1

2

∫
dvidvjdqidqjdσfifj|vij · n|Θ(−vij · n)Θq∆[ψi + ψj]

=

∫
dvidvjdqidqjdσfifj|vij · n|Θ(−vij · n)Θq∆[ψi], (5.19)

where ∆[ψi + ψj] = (ψ′i + ψ′j − ψi − ψj) and ∆[ψi] = (ψ′i − ψi) is the change of ψ

during the collision between pair i, j, and the prime denotes a post collision value. We

note that the transformations in Eq. (5.13) and (5.16) are reversed back while integrating

Icoll weighted with quantity of interest ψ. We consider the number density, the kinetic

energy or granular temperature, and the charge variance (the system is globally neutral
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and the mean charge variation 〈δq〉 is zero), respectively

(i) ψ = n, (5.20)

(ii) ψ =
1

2
mv2, (5.21)

(iii) ψ = (δq)2 = (q − q0)2 =

(
q − qi + qj

2

)2

, (5.22)

where q0 =
qi+qj

2
is the mean charge on the colliding pair. At this point we differentiate

the restitutive or dissipative collisions from aggregative ones by splitting Θq∆[ψi] as

Θq∆[ψi] = ∆res[ψi]Θ
(
vij −

√
b
)
,

+ ∆agg[ψi]Θ(−qiqj)Θ
(√

b− vij
)
, (5.23)

where

√
b ≡

√
2ke|qiqj|
md

. (5.24)

If vij >
√
b, the particles collide and separate after the collision irrespective of the sign

of qiqj (attractive or repulsive). This leads to dissipation of energy with finite non-zero

ε = ε(vij), and charge exchange according to a specified rule. The aggregative part is

zero in this case. If vij <
√
b and qiqj < 0 (attractive encounters at low velocities),

the particles collide and aggregate with ε = 0, and with charge exchange to particle

i equal to qj . If vij <
√
b and qiqj > 0 (repulsive encounters at low velocities), no

physical contact takes place between the particles which leads to neither dissipation nor

aggregation (Θq∆[ψi] = 0). Also represented schematically in Fig. (2) in the main text.

The expressions for ∆res[ψi] and ∆agg[ψi] are obtained as follows. The particle num-

ber does not change during a dissipative collision but reduces by one in an aggregative

collision, i.e.

∆res
n [ψi + ψj] = 0,

∆agg
n [ψi + ψj]n = −1. (5.25)
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For the granular temperature,

∆res
T [ψi + ψj] = −1

2
m(1− ε2)(vij · n)2,

∆agg
T [ψi + ψj] = −1

2
m(vij · n)2, (5.26)

where we take the limit ε = 0 for the aggregation. The change in the charge variance is

obtained as

∆res
q [ψi] = (δq2

i )
′ − (δq2

i )

= (q′i − qi)2 + 2(q′i − qi)(qi − q0), (5.27)

where (q′i − qi) equals the charge transferred to particle i during its collision with particle

j, and q0 =
qi+qj

2
is the mean charge on the pair. For the charge transfer, based on seminal

experiments (Poppe et al. , 2000b; Poppe & Schräpler, 2005), we consider

(q′i − qi) = C∆q|vij · n|η
qi − q0

|qi − q0|
, (5.28)

which is also obtainable if charge transferred is considered proportional to the contact

area during the course of collisions. In the present simulations, the value of the exponent

η = 2×0.8 after the experiments (Poppe et al. , 2000b; Poppe & Schräpler, 2005), where a

power law dependence was found of the charge exchange on the relative collision energy,

when silica particles were impacted on a surface. A similar expression can also be derived

if the extent of charge transfer is considered dependent on the maximum area of contact

during a collision (Kolehmainen et al. , 2017). In the MD simulations, we have verified

that while moderate changes of η around the experimental value might produce changes

in the charge buildup rate of the gas (t∗ . 102 in Fig. 5.3(b)), however, the dynamics

of charge in the aggregation phase are unaffected (t∗ > 102 in Fig. 5.3(b)). Once the

magnitude of collision velocities |vij ·n| reduces with reducing granular temperature, the

value of η has a negligible influence on the decay rate of 〈δq2〉, because it is primarily

controlled by aggregation and merging of charges. The power law in Fig. 5.3(b) during

the aggregation time regime remains unaffected.
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Using Eq. (5.28) in Eq. (5.27), we get

∆res
q [ψi] = C2

∆q|vij · n|2η + 2C∆q|vij · n|η(qi − q0). (5.29)

For aggregation, the charge tranferred to particle i equals the charge on the merging par-

ticle j, i.e, q′i − qi = qj , which gives

∆agg
q [ψi] = (δq2

i )
′ − (δq2

i )

= qiqj. (5.30)

Putting Eqs. (5.25), (5.26), (5.29), and (5.30) in (5.23), and then (5.23) in (5.19), the

resulting integrals are solved, assuming the statistical independence of charge-velocity

distribution function, i.e., f(v, q) = f(v)f(q), and assuming that their scaled form re-

mains Gaussian. In addition to the charge exchange, the coefficient of restitution is taken

as velocity dependent, i.e

ε = ε(|vij · n|) = 1− Cε|vij · n|1/5 + ... (5.31)

while the long-range effects due to Coulomb interactions are taken into account by the

change in collision cross section. After integration we obtain Eq. (5)-(7) in the main text.

The functions gk in Eq. (5)-(7) have the forms

g1(B) =

[
Cn
agg

l31l
3

] [
an1 tan−1 l1

B + an2 + an3 tan−1 B
l

+ an4 tan−1 l1
B + an5 + an6 tan−1 l

B

]
,

(5.32)

g2(B) =

[
CT
res

l5

] [
aT1 + aT2 tan−1 B

l

]
, (5.33)

g3(B) =

[
CT
agg

l5

] [
aT3 + aT4 cot−1 B

l
+ aT5 + aT6 tan−1 B

l

]
, (5.34)

g4(B) =

[
Cq
res

l5

] [
aq1 + aq2 tan−1 B

l

]
, (5.35)

g5(B) =
[
Cq
agg

] [ 1

aq3

(
aq4 + aq5 tan−1 B

l1
+ aq6 tan−1 l

B

)]
(5.36)

[
Cq
agg

] [ 1

aq7

(
aq8 tan−1 l1

B + aq9 + aq10 tan−1 l

B

)]
, (5.37)
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Figure 5.6: The scaled charge distribution f(q̃) of individual particles obtained from typi-
cal MD simulation runs (dots) in the aggregated granular gas. The solid line is a Gaussian
fit. Here q̃ = q/〈δq2〉1/2.

where the coefficients l, l1, aTk , aqk, ank are functions of B(t) [Table 5.1].

5.4.3 Derivation of the hydrodynamic equations (5.6)-(5.8)

To solve the integrals in Eq. (5.19) for different ∆[ψi] from Eq. (5.25)-(5.30), we assume

that the normalized velocity as well as charge distribution of the aggregating particle pop-

ulation at any time remain Gaussian, and the two are uncorrelated, i.e

f(v, q) = f(v)f(q) = n
( m

2πT

) 3
2
e−mv

2/(2T )

(
1

2π〈δq2〉

) 1
2

e−q
2/(2〈δq2〉). (5.38)

In Fig. 5.6, we show charge distribution of monomers obtained from typical simulation

runs, which is essentially the distribution before initiation of the aggregation. In Eq. (5.38)

above, we assume that although granular temperature T and charge variance 〈δq2〉 do

change with time due to restitution and aggregation, the shape of the scaled distribution

remains close to Gaussian, and the increase of size/decrease of number of particles due to

aggregation process does not alter scaled distribution shape.

The attractive or repulsive long-range effects are emulated through an effective dif-

ferential cross-section for a binary collision, which changes depending upon the sign and
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magnitude of charges on the particle pair i, j and their relative velocity, according to

dσ =

(
dσ

dΩ

)
dΩ =

d2

4

(
1− 2keqiqj

dm|vij · n|2
)
dn ≈ d2

4

(
1− 2keqiqj

dmv2
ij

)
dn, (5.39)

where
(
dσ
dΩ

)
is the differential cross-section per unit solid angle dΩ ≡ dn. The ex-

pression d2

4

(
1− 2keqiqj

dmv2
ij

)
is independent of n, and thus the total cross section is σ =

d2

4

(
1− 2keqiqj

dmv2
ij

) ∫ π
0
dφdθ sin θ = πd2

(
1− 2keqiqj

dmv2
ij

)
. For neutral particles, qi = qj = 0,

and thus σ = πd2. For qiqj > 0 (repulsive encounters), σ < πd2, while for qiqj < 0

(attractive encounters), σ > πd2. Thus Eq. (5.39) is a linear adjustment to the neutral

cross-section and is reasonable approximation in case of small angle scattering (Landau

& Lifshitz, 2000). The possibility of negative cross-section for repulsive encounters is

eliminated by the switch Θ

(
vij −

√
2ke|qiqj |
md

)
.

Below we explain the solution procedure for the restitutive, as well as aggregative,

part of the equation for ∂T
∂t

. Similar procedure can then followed for the equations for ∂n
∂t

and ∂〈δq2〉
∂t

.

Plugging Eq. (5.26) into Eq. (5.23) and then the resulting equation to Eq. (5.19), we

find

3

2

∂T

∂t
=

(
3

2

∂T

∂t

)
res

+

(
3

2

∂T

∂t

)
agg

=
1

2

∫
dvidvjdqidqjdσfifj|vij · n|Θ(−vij · n)

[
−1

2
m(1− ε2)(vij · n)2

]
Θ(vij −

√
b)

+
1

2

∫
dvidvjdqidqjdσfifj|vij · n|Θ(−vij · n)

[
−1

2
m(vij · n)2

]
Θ(−qiqj)Θ(

√
b− vij),

(5.40)

which, after using the above Eq. (5.31) and (5.39), and separating the integrals over n,v

and q, reads as

3

2

∂T

∂t
=

1

2

∫
q

dqidqjf(qi)f(qj)× Iresv +
1

2

∫
q

Θ(−qiqj)dqidqjf(qi)f(qj)× Iaggv , (5.41)
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where

Iresv =

∫
v

Θ(vij −
√
b)dvidvjf(vi)f(vj)×

dσ
dΩ︷ ︸︸ ︷

d2

4

(
1− 2keqiqj

md|vij|2
)
×Iresn , (5.42)

Iaggv =

∫
v

Θ(
√
b− vij)dvidvjf(vi)f(vj)×

d2

4

(
1− 2keqiqj

md|vij|2
)
× Iaggn , (5.43)

and

Iresn =

∫
n

dn|vij · n|Θ(−vij · n)
(
−mCε|vij · n|11/5 + ...

)
, (5.44)

Iaggn =

∫
n

dn|vij · n|Θ(−vij · n)

(
−1

2
m|vij · n|2

)
, (5.45)

where in the aggregative part, we have set ε = 0, and Θ(−qiqj) selects only the attractive

encounters against low velocities selected by Θ(
√
b − vij), the charge-velocity combina-

tion which leads to aggregation. Here

√
b ≡

√
2ke|qiqj|
md

. (5.46)

5.4.4 Solution for the restitutive part
(
3
2
∂T
∂t

)
res

The solution for the parts Iresn , Iresv are as follows.

Iresn =

∫
n

dn|vij · n|Θ(−vij · n)
(
−mCε|vij · n|11/5 + ...

)
=

∫ π

0

∫ π

π/2

dφdθ sin θ
(
−mCε|vij|16/5| cos θ|16/5 + ...

)
= −2π

5

21
mCε|vij|16/5 + ... (5.47)

Using Eq. (5.47) and (5.38) from the above text, Iresv reads as

Iresv =

∫
v

Θ(vij −
√
b)dvidvj

[
n
( m

2πT

)3/2

e−(m/2T )v2
i

] [
n
( m

2πT

)3/2

e−(m/2T )v2
j

]
×
[
−2π

5

21
mCε|vij|16/5

]
d2

4

(
1− 2keqiqj

md|vij|2
)
. (5.48)
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To perform the integration over the relative velocity vij , the following transformations

are made: (i) wij = 2T
m

(vi − vj), and (ii) wc = 2T
m

(vi + vj), which also results in

dvidvj = −1
8

(
m
4T

)−3
dwijdwc. Incorporating these transformations, we obtain

Iresv =

[
−n

2d2

4

1

8

( m
4T

)−3 ( m

2πT

)3
(

4T

m

)16/10
]

×
∫
wij

dwij

[∫
wc

dwce
−w2

c

]
e−w

2
ij

[
−2π

5

21
mCεw

16/5
ij

](
1− keqiqj

2Tdw2
ij

)
= −2T 8/5

[
21/5n2d2

π3m8/5

] [
4π

∫ ∞
0

dwcw
2
ce
−w2

c

]
︸ ︷︷ ︸

Iwc

× 4π

∫ ∞√
ke|qiqj |

2Td

dwijw
2
ije
−w2

ij

[
−2π

5

21
mCεw

16/5
ij

](
1− keqiqj

2Tdw2
ij

)
︸ ︷︷ ︸

Iwij

. (5.49)

Notice the lower limit on relative velocities,

√
b ≡

√
ke|qiqj|

2Td
, (5.50)

is also altered due to the transformation vij → wij . The integral Iwc gives

Iwc = π3/2, (5.51)

while the integral Iwij is solved as

Iwij = −40π2

21
mCε

∫ ∞√
ke|qiqj |

2Td

dwijw
26/5
ij e−w

2
ij

(
1− keqiqj

2Tdw2
ij

)
= −40π2

21
mCε

∫ ∞
√
b

dwijw
26/5
ij e−w

2
ij

(
1− a

w2
ij

)
= −40π2

21
mCε

1

2

[
Γ

(
31

10
, b

)
− aΓ

(
21

10
, b

)]
≈ −40π2

21
mCε

1

2
[Γ (3, b)− aΓ (2, b)]

= −40π2

21
mCε

1

2

[
2e−b(1 + b+ b2)− ae−b(1 + b+ b2)

]
, (5.52)
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where a =
keqiqj
2Td

and b =
ke|qiqj |

2Td
. Putting Iwc , Iwij in Iresv , and finally Iresv in the restitutive

part of Eq. (5.41), and integrating over qi, qj , we obtain

(
3

2

∂T

∂t

)
res

=
1

2

∫ ∞
−∞

∫ ∞
−∞

dqidqj
1√

2π〈δq2〉
e−q

2
i /(2〈δq2〉) 1√

2π〈δq2〉
e−q

2
j /(2〈δq2〉)

× (−2)T 8/5

[
21/5n2d2

π3m8/5

]
π3/2 (−40π2)

21
mCε

× 1

2

[
2e−b(1 + b+ b2)− ae−b(1 + b+ b2)

]
= −T 8/5

[
CT
res

l5

] [
aT1 + aT2 tan−1 B

l

]
. (5.53)

Notice that if B = 0, we recover the classical Haff’s law for viscoelastic granular gas.

5.4.5 Solution for the aggregative part
(
3
2
∂T
∂t

)
agg

The solution for the parts Iaggn , Iaggv are as follows.

Iaggn =

∫
n

dn|vij · n|Θ(−vij · n)

(
−1

2
m|vij · n|2

)
=

∫ π

0

∫ π

π/2

dφdθ sin θ|vij|| cos θ|
(
−1

2
m|vij|2| cos θ|2

)
=
π

4
m|vij|3. (5.54)

Using Eq. (5.54) and (5.38) from the above text, and again using the variable transforma-

tions (i) wij = 2T
m

(vi − vj), (ii) wc = 2T
m

(vi + vj), (iii) dvidvj = −1
8

(
m
4T

)−3
dwijdwc,

the integral Iaggv in Eq. (5.43) reduces to

Iaggv = −T 3

[
2
√

2π2d2

m2

]∫ √
ke|qiqj |

2Td

0

dwijw
2
ijw

3
ije
−w2

ij

(
1− keqiqj

2Tdw2
ij

)
︸ ︷︷ ︸

Iwij

. (5.55)

Here notice that now the relative velocity limits are from vij = 0 to
√
b, the condition for

aggregation selected by Θ(
√
b − vij). Finally putting Eq. (5.55) into aggregative part of

Eq. (5.41) and integrating over qi, qj , we obtain

(
3

2

∂T

∂t

)
agg

= n2T 3/2

[
CT
agg

l5

][
aT3 + aT4 cot−1 B

l
+ aT5 + aT6 tan−1 B

l

]
. (5.56)
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Notice that after integrating from vij = 0 to
√
b, the integration over qi, qj is to be bro-

ken into the sum of two parts, one over qi ∈ (−∞, 0], qj ∈ [0,+∞), plus a second

integral over qi ∈ [0,+∞), qj ∈ (−∞, 0], to satisfy the aggregative condition set by

Θ(−qiqj)Θ(
√
b− vij).

A similar procedure is followed for
(
∂〈δq2〉
∂t

)
res

,
(
∂〈δq2〉
∂t

)
agg

and
(
∂n
∂t

)
agg

using corre-

sponding ∆[ψi]. Finally, the key constraint to be noted is that the solutions of the integrals

in the rate equation for T are real valued for B ≤ 4, while in equations for 〈δq2〉 and n,

they are real valued for B ≤ 1. The MD simulations confirm that these constraints put a

physical limit during the aggregation phase.

5.4.6 Granular MD simulations

The equation of motion of the form

dvi
dt

=
∑
j

[
Θ(ξij)

(
Eξ

3
2
ij +Dξ

1
2
ij ξ̇ij

)
nji

]
+K

∑
k

∑
b

′ qiqk
|rki + bL|3 (rki + bL), (5.57)

is solved for each particle with a setup of periodic boundary conditions in a cubic box

of size (d0L)3 = 70d0 × 70d0 × 70d0, where d0 is the monomer diameter and L is the

non-dimensional system length [Table 5.2, 5.3]. Here b = (bx, by, bz) ∈ Z3 is a vector

of integers representing the periodic replicas of the system in each Cartesian direction.

The symbol ′ indicates that k 6= i if b = 0 to avoid Coulomb interaction of particles

with themselves. The non-dimensional numbers in the above equation are E =
αl

3/2
ref tref

mrefvref
,

D =
βl

1/2
ref tref

mref
and K =

keq2
reftref

mrefvrefl
2
ref

, with α and β being viscoelatic material constants. From

practical problems, we select the reference length lref ≡ d0, time reference tref, velocity

reference vref, and charge reference qref such that the elastic force strength E ≈ 278,

dissipative force strength E/10, and Coulomb force strength is varied acrossK = 0.4−5.0

[Table 5.2, 5.3]. The effect of dissipation compared to elastic forces is extensively studied

for neutral systems (Brilliantov & Pöschel, 2010). The variation of Coulomb strength

compared to dissipation and elastic forces we have repoted in Singh & Mazza (2018).

The above order of magnitudes of E , D, and K also helps to attain an early clustering in

non-dimensional time units in a finite size (N ∼ 50000) neutral granular gas system [see
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Singh & Mazza (2018) for more details]. Also ξij ≡ d0 − rij, ξ̇ij ≡ dξ
dt

, nji is the unit

vector pointing from center of in-contact neighbor j towards the center of particle i, while

rki is the distance vector pointing from particle k towards the center of particle i.

The equation of charge on particle i may be written as

dqi
dt

=
∑
j

[Θ(ξij)Iji] , (5.58)

with Iji being the charge-exchange currents from colliding neighbors j during the course

of collision. For any contact neighbor j, we approximate its integrated value over the time

step τ by Eq. (5.28), i.e.

(q′i − qi) =

∫
dqi =

∫ τ

0

Ijidt ≈ C∆q|vij · n|η
qi − q0

|qi − q0|
. (5.59)

After charge-exchange, the long-range Coulomb forces for a setup with periodic boundary

conditions in Eq. (5.57) is challenging and conditionally convergent as it depends on the

order of summation. We employ the Ewald summation that converges rapidly, and has a

computational complexity O(N3/2). The algorithm is highly parallelized and optimized

on graphics processing unit (GPU). In our simulations, the total computing time to reach

non-dimensional simulation time∼ 103 for a typical simulation with monomersN ∼ 105,

including the long-range electrostatic forces, is of the order of weeks. See Singh & Mazza

(2018) for more details.

5.5 Comparison of individual T , 〈δq2〉, and n profiles, and

emergence of convective flow using Mach number

In Fig. 5.7, we decompose the theoretical comparison of B, presented in the main text,

into individual comparisons of T , 〈δq2〉, and n profiles for a typical simulation run. The

difference between the kinetic theory with and without aggregation is also emphasized.

It is noticeable that the granular temperature of the aggregates closely follows Haff’s

law, and is confirmed by theory, notwithstanding the presence of long-range effects and

intricate aggregation and annihilation events. If only the restitutive terms of the hydrody-

namic equations are considered (dashed line), the theory predicts that T drops at a slower
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Constrained fractal growth

rate at long times. Furthermore, the charge variance in this case saturates. The number

density in the absence of aggregation is, of course, invariant. If the aggregation dynamics

is augmented, the simulation results are closely predicted by the theory.

In the MD simulations, the decay of 〈δq2〉 during the aggregation phase closely agrees

with the theory, even though we observe that the charge exchange in the simulations leads

to asymmetric but non-Gaussian charge distribution among monomers during the initial

restitution phase [Fig. 1].

The number density evolution, however, is highly dynamic and exhibits a non-

monotonic behavior due to fragmentation event caused by the emergence of mesoscopic

flow. The theory predicts the decay of cluster density only in an average sense [Fig. 5.7(c)

inset]. To quantify the emergence of the mesoscopic flow, calculate the Mach number

M =
〈V2〉1/2
vth

, (5.60)

where V is the local mesoscopic velocity, and vth ∼
√
T is the thermal velocity. To

compute this, we divide the system volume into equal sized cubic boxes. The advective

velocity in jth box is computed as Vj =
∑

imivi/
∑

imi, where index i runs over all

the monomers in that box j. We take the square of this velocity (we square the velocity

of the box before summing it up over all the boxes, otherwise the advective velocities of

the boxes might cancel each other even in the presence of a directed motion/advective

flow, for example in a lattice of vortices) as 〈V2〉 = 1
Nboxes

∑
j V

2
j , take its square root, and

normalize it with the thermal velocity vth ∼
√
T . Thus according to our definition, M

is a global measure of the magnitude of directed/advective motion. The time evolution of

M is shown in Fig. 5.7(c) (inset), which indicates that M grows at a higher rate when

the number density evolution becomes non-monotonic (tvref/d0 ≈ 102), indicating an

intricate aggregation and fragmentation dynamics, and the generation of mesoscopic flow.
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0

Figure 5.8: Growth of the average cluster size S, and the size of the largest cluster with
time. Here S is computed from the mass-size relationship S ∼ 〈m〉1/〈Df 〉. The average
mass is defined as

∑
km

2
kNm(m)/

∑
kmkNm(m). Here 〈Df〉 is the average fractal di-

mension, Nm(m) is the mass distribution of the aggregates, and the index k runs over all
the aggregates. See also Figs. 4.5 and 4.6.

5.6 Reference scales and laboratory relevance of present

results

Typically non-Brownian growth in planetary dust becomes dominant for monomer sizes

near or above several µm (Zsom et al. , 2010) and the growth barrier problem (Spahn &

Seiß, 2015) starts to arise near d ∼ 10−3 m. The mass of silica particles in this range

of sizes is m ∼ 10−4 − 10−6 kg. If the particles are initially agitated with velocities

v ∼ 1.0 m s−1, the time scale reference to convert our simulation time to laboratory time

is d/vref ∼ 4.78×10−3 s. Thus in our results the growth over 104 units of non-dimensional

time approximately implies growth over ∼ 10 s. The average size of aggregates in the

growth period grows approximately by one order of magnitude (e.g. the growth of the

largest cluster is from ≈ 2 mm to ≈ 7 cm in ≈ 10 s time for particles of such size and

mass, and for initial monomer filling fraction of φ = 0.076) [Fig. 5.8].
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Constrained fractal growth

5.7 Conclusions and discussion

We have derived the rate equations for the evolution of the number density n, granu-

lar temperature T , and charge variance 〈δq2〉 of the cluster population in a collision-

ally charged, aggregating granular gas [Eqs. (5.6)-(5.8)]. In contrast to well-known

Smoluchowski-type equations [Eq. 2.46], we have explicitly coupled n to the decay of

T and charge variance. We have compared the results with three-dimensional molecular

dynamics simulations [Fig. 5.4 and 5.7] and the outcomes of detailed cluster analysis,

and have explored the morphology of the aggregating structures via fractal dimension

[Fig 5.5].

Taken together, our results indicate that the aggregation process in a charged granular

gas is quite dynamic while respecting some physical constraints. The growth process

obeys B(t) = ke〈δq2〉/(Td) ≤ 1, while morphologically, the clusters exhibit statistical

self-similarity, persistent over time during the growth. The fractal dimension and growth

of structures is intermediate between the BCCA and DLPCA models [Fig 5.5]. We also

demonstrate that the application of a purely dissipative kinetic treatment is not sufficient to

make predictions about global observables such as T and 〈δq2〉 in an aggregating charged

granular gas [Fig 5.4].

Finally, we believe that our kinetic approach can be applied to study aggregation pro-

cesses in systems such as wet granulates with ion transfer mechanism (Lee et al. , 2018;

Zhang et al. , 2015), dissipative cell or active particle collections under long-range hydro-

dynamic and electrostatic effects (Yan et al. , 2016; Friedl & Gilmour, 2009), and charged

ice-ice collisions (Dash et al. , 2001).
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Coefficient Expression
B ke〈δq2〉/(Td)

l
√

4− B2

l1
√

1− B2

CT
res 80 21/5 d2Cεm/(21

√
πm8/5)

CT
agg d2/(8

√
πm)

Cq
res 1.4080 d2C2

∆q(2 + η)(4/m)η+1/2/π
Cq
agg 4d2/

√
πm

Cn
agg d2/(2

√
πm)

aT1 B(8− 5B2)l + π(16− 10B2 + 3B4)
aT2 −32 + 20B2 − 6B4

aT3 l(2π(B2 − 4)2 + B(−32 + 28B2 + B4))
aT4 −4(32− 20B2 + 9B4)
aT5 lB(−32 + 28B2 + B4)

+2π(B2(20− 8l) + B4(−9 + l) + 16(−2 + l))
aT6 4(32− 20B2 + 9B4)

aq1 2Bl(B2 − 1)− π(4− 2B2 + B4)
aq2 2(4− 2B2 + B4)
aq3 16l

√
πl1(4− 5B2 + B4)2

aq4 −√πBl(π(B2 − 4)(1 + 2B2)
+2Bl1(−8− 54B2 + 33B4 + 2B6))

aq5 2
√
πBl5(1 + 2B2)

aq6 16
√
πBl51(4 + 5B2)

aq7 8l
√
πl1(4− 5B2 + B4)2

aq8 −√πBl5(1 + 2B2)
aq9

√
πBl1Bl(8 + 54B2 − 33B4 − 2B6)

aq10 8
√
πBl1(B2 − 1)2(4 + 5B2)

an1 −B2l3

an2 l1lB(−4 + 7B2) + l1π(B2 − 1)(8− 4l + B2(−6 + l))
an3 4l1(4− 7B2 + 3B4)
an4 −B2l3

an5 l1l(B(−4 + 7B2) + π(4− 5B2 + B4))
an6 −4l1(4− 7B2 + 3B4)

Table 5.1: Expressions of the coefficients in Eq. (5)-(7) in the main text. Here m and d
are the mass and size of the aggregates. The material constant Cε is from Eq. (5.31) and
influence the viscoelastic properties of the particles, while C∆q and η are from Eq. (5.28)
and influence the charge buildup. Other notations are as described in the main text.
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Constrained fractal growth

Parameter Expression Value
Nmon No. of monomers 8516, 19652, 50016, 89746
L3 System size 70× 70× 70
φ Monomer filling fraction 0.013, 0.030, 0.076, 0.137

E αl
3/2
ref tref

mrefvref
278.0

D βl
1/2
ref tref

mref
27.8

K keq2
reftref

mrefvrefl
2
ref

0.4, 1.0, 5.0

Table 5.2: Simulation parameters used in chapter 5
.
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R
eference

scale
D

escription
V

alue
m

ref
Particle

m
ass

reference
1.52×

10
−

4
kg

lref
=
d

0
L

ength
reference=m

onom
erdiam

eter
4.78×

10
−

3
m

v
ref

V
elocity

reference
1.0

m
s −

1

tref
=
d

0 /v
ref

Tim
e

reference
reference

4.78×
10
−

3
s

T
ref

=
13 m

ref v
2ref

Tem
perature

reference
0.51×

10
−

4
kg

m
2

s −
2

k
e

C
oulom

b’s
constant

8.98×
10

9
N

m
2

C
−

2

α
E

lastic
constantofparticles

2.67×
10

4
kg

m
−

1
/
2s −

2

β
V

iscous
constantofparticles

1.28×
10

1
kg

m
−

1
/
2s −

1

q
ref

C
harge

reference
2.0×

10
−

8
C

-
5.6×

10
−

9
C

Table
5.3:R

eference
values

in
SIunits

forconversion
ofnon-dim

ensionalresults
to

laboratory
relevantvalues.
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There is more happening before

aggregation

In this chapter, the onset of clustering instability in charged granular gases is studied.

A hydrodynamic description is presented, coupled to the electrostatic limit of Maxwell’s

equations. The regime under focus is where keq2
ref

r̄
� T |ε2 − 1|, i.e., the characteristic

kinetic energy of the system, multiplied by the fractional energy lost per collision, is much

higher than the characteristic electrostatic energy in the system. In this limit, it is as-

sumed that the hydrodynamic transport coefficients remain the same as that of a neutral

granular gas. A linear stability analysis indicates that at the onset, electrostatics tend to

suppress suppress the so called "heat mode" of clustering instability, and might result in

excitation of the "sound modes". It is shown that the "sound modes" become the dominant

mechanism at the onset as the ratio 1
|ε2−1| ·

q2
refke
r̄

is increased. Finally, it is discussed that

the electrostatic origin of instability, in principle, is non-linear in certain spatial regions

of the granular gas, and the linear stability analysis presented in the chapter is valid away

from these regions.
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6.1 Dimensional analysis

The granular gases are characterized by the fact that particle collisions are inelastic. The

dissipation leads to a clustering instability which develops when the characteristic length

scale over which the energy is dissipated becomes smaller than the characteristic length

scale of density fluctuations (Goldhirsch & Zanetti, 1993). This can be understood by the

following arguments based on dimensional analysis.

Let us consider that the characteristic length scale of density fluctuations is `ρ. The

characteristic scale for speed in the granular gas might be taken equal to
√
T/m0, where

T is the granular temperature and m0 is the mass of a particle. Then a characteristic time

scale τρ can be defined over which the density fluctuations develop

τρ ∼
`ρ√
T/m0

. (6.1)

To compare it with dissipation, let us first consider the magnitude of energy loss |∆E| in a

single collision. If vij is the magnitude of the relative velocity before a collision between

two particles i and j, then |∆E| ∼ 1
2
m0v

2
ij|ε2−1|, where ε is the coefficient of restitution.

Or alternatively, the fractional energy lost in one collision is |∆E|
1
2
m0v2

ij

∼ |ε2 − 1|. If ν are

the number of collisions taking place per unit volume and per unit time (i.e. collision

frequency) in the gas with number density n, the the fractional energy lost per unit time

per particle ∼ ν|ε2 − 1|/n. The inverse of this quantity can be chosen as the time scale

(say τ∆E) of fractional energy loss per particle, i.e.

τ∆E ∼
n

ν|ε2 − 1| . (6.2)

If the time scale of fractional energy loss per particle is less than the time scale over which

the density fluctuations develop, then one finds

`ρ >
n
√
T/m0

ν|ε2 − 1| =
r̄

|ε2 − 1| , (6.3)

where r̄ is the mean free path of the particles. If ε → 1, the right hand side goes to ∞,

and it becomes harder for the clustering instability to occur in a finite size system. The

opposite is true if ε < 1.
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There is more happening before aggregation

Now consider a granular gas with a distribution of charges. If qref is the standard

deviation of the charge distribution, then the characteristic time scale for two oppositely

charged particles, separated by r̄, to collapse under Coulomb potential can be chosen as

τq ∼
r̄2
√
m0T

keq2
ref

, (6.4)

where ke is Coulomb’s constant. If this time scale is smaller than τρ, one finds

`ρ >

(
r̄

qref

√
ke/T

)2

. (6.5)

In this case, it becomes harder for the system to develop density fluctuations as

qref

√
ke/T → 0. From Eq. (6.3) and (6.5), it follows that in a charged granular gas, the

dissipation would be the dominant mechanism behind the growth of density fluctuations,

if
r̄

|ε2 − 1| < `ρ <

(
r̄

qref

√
ke/T

)2

, (6.6)

or if
keq

2
ref

r̄
� T |ε2 − 1|. (6.7)

For a given charge distribution, the above condition is less stringent for a dilute granular

gas (larger r̄) with smaller ε.

In the following, this competition between dissipation and electrostatics is shown

quantitatively with the help of linear stability analysis of the granular hydrodynamic equa-

tions.

6.2 Hydrodynamics in the limit keq
2
ref
r̄ � T |ε2 − 1|

In this and the next sections, the mechanisms of the onset of instability in the context of

macroscopic fields is studied in the regime keq2
ref

r̄
� T |ε2−1|. This limit essentially states

that the characteristic kinetic energy, multiplied by the fractional energy lost per collision,

is much higher in comparison to the characteristic Coulomb energy in the system. The

gas has not yet cooled down to a state where the long-range forces are capable of any

aggregative collapse. Under this ansatz, it can be assumed that the kinetic coefficients
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retain their forms similar to that of a neutral granular gas, while the effect of electrostatics

is only perturbative. It is assumed that the coefficient of restitution ε is constant. First, the

hydrodynamic equations for the mass, momentum, energy and charge transport, coupled

to the mean electrostatic field are described. Thereafter the linear stability analysis of the

hydrodynamic equations is presented.

6.2.1 Mass transport

Let us first consider the mass balance. Multiplying the Boltzmann equation from chapter 2

with particle mass m, and integrating over the phase space variables v, q, one obtains

∫
m
∂f

∂t
dvdq +

∫
m
∂

∂r
· vfdvdq +

∫
m
∂

∂v
· qE
m
fdvdq =

∫
mIcolldvdq. (6.8)

In the following, it is assumed that the phase space variables r,v and q are independent

of each other. Using the definitions of number density n and the macroscopic velocity V

from chapter 2, the above equation provides

m
∂n

∂t
+m

∂

∂r
· nV +

∫
∂

∂v
· qEfdvdq = 0. (6.9)

The collision term on the right hand side vanishes due to the mass conservation during

collisions. The integral over v in third term on the left hand side can be transformed to

a surface integral in the velocity space, i.e.
∫

∂
∂v
· Efdv =

∫
(Ef) · dAv, which also

vanishes. Thus the mass balance results in

∂ρ

∂t
+

∂

∂r
· ρV = 0, (6.10)

where ρ = mn is the mass density in the gas.
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6.2.2 Momentum transport

Multiplying the Boltzmann equation with particle momentum mv, and integrating over

the phase space variables v, q, one obtains

∫
mv

∂f

∂t
dvdq +

∫
mv

∂

∂r
· vfdvdq +

∫
mv

∂

∂v
· qE
m
fdvdq =

∫
mvIcolldvdq.

(6.11)

The first term simplify as
∫
mv ∂f

∂t
dvdq = m ∂

∂t

∫
vfdvdq = ∂

∂t
ρV. In the second term,

the particle microscopic velocities v are first considered as the sum of the macroscopic

velocities V and a fluctuating part v′. This leads to vv = (V + v′)(V + v′) = VV +

v′v′ + 2Vv′. Here the notation vv ≡ v ⊗ v ≡ vivj denotes a tensor product. Thus the

integral in the second term equals the sum

∫
m
∂

∂r
·VVfdvdq +

∫
m
∂

∂r
· v′v′fdvdq +

∫
m
∂

∂r
· 2Vv′fdvdq. (6.12)

The first term in the above sum simplyfies as
∫
m ∂

∂r
·VVfdvdq = ∂

∂r
·mVV

∫
fdvdq =

∂
∂r
· ρVV. The second term in the sum is rewritten as

∫
m
∂

∂r
· v′v′fdvdq =

∂

∂r
·
∫
mv′v′fdvdq =

∂

∂r
· P̄, (6.13)

where P̄ =
∫
mv′v′fdvdq is the kinetic part of the pressure tensor. The last term in the

sum vanishes as follows

2m
∂

∂r
·V
∫

v′fdvdq = 2m
∂

∂r
·V
∫

(v −V)fdvdq = 2m
∂

∂r
·V(nV − nV) = 0.

(6.14)

The term
∫
mvIcolldvdq in Eq. (6.11) also vanishes due to momentum conservation dur-

ing collisions, while the term
∫
mv ∂

∂v
· qE
m
fdvdq reduces to−nQE. Here the definition of

the mean or macroscopic charge Q is used from chapter 2. Thus the momentum balance

provides

∂

∂t
ρV +

∂

∂r
· ρVV = − ∂

∂r
· P̄ + nQE. (6.15)
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6.2.3 Kinetic energy transport

Multiplying the Boltzmann equation with 1
2
m(v−V)2 = 1

2
mv′2, and integrating over the

phase space variables v, q, one obtains

∫
1

2
mv′2

∂f

∂t
dvdq +

∫
1

2
mv′2

∂

∂r
· vfdvdq +

∫
1

2
mv′2

∂

∂v
· qE
m
fdvdq

=

∫
1

2
mv′2Icolldvdq. (6.16)

The first term, according to the definition of granular temperature from chapter 2, is simply
∂
∂t

3
2
nT . The second term, again using v = V+v′, and after some manipulations1 provides

∫
1

2
mv′2

∂

∂r
· vfdvdq =

∂

∂r
· 3

2
nTV +

∂

∂r
·Q + P̄ :

∂

∂r
V

where Q is the heat flux vector, and the notation ":" represents a tensor contraction. The

term due to electric field in Eq. (6.16) takes the form
∫

1
2
mv′2 ∂

∂v
· qE
m
fdvdq reduced to

−nQE ·V, while the collision term provides

∫
1

2
mv′2Icolldvdq = −3

2
nTζ. (6.17)

Here ζ is the cooling coefficient. Thus finally the energy transport is written as

∂

∂t

3

2
nT +

∂

∂r
· 3

2
nTV = − ∂

∂r
·Q− P̄ :

∂

∂r
V − 3

2
nTζ + nQE ·V. (6.18)

Again, the notation ":" represents a tensor contraction.

6.2.4 Charge transport

Multiplying the Boltzmann equation with particle charge q, and integrating over the phase

space variables v, q, one obtains

∫
q
∂f

∂t
dvdq +

∫
q
∂

∂r
· vfdvdq +

∫
q
∂

∂v
· qE
m
fdvdq =

∫
qIcolldvdq. (6.19)

1See, for example, Pitaevskii & Lifshitz (2012).
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The first term provide
∫
q ∂f
∂t
dvdq = ∂

∂t

∫
qfdvdq = ∂

∂t
nQ. The second term is first

rewritten as

∫
q
∂

∂r
· vfdvdq =

∂

∂r
·
∫
qvfdvdq =

∂

∂r
·
∫

(Q+ q′)(V + v′)fdvdq, (6.20)

where the particle velocity and charge is written as the sum of their mean values V and

Q, and corresponding fluctuating parts v′, and q′. The integral then splits as

∂

∂r
·
∫

(Q+ q′)(V + v′)fdvdq =
∂

∂r
·QV

∫
fdvdq

+
∂

∂r
·Q
∫

v′fdvdq

+
∂

∂r
·V
∫
q′fdvdq

+
∂

∂r
·
∫

v′q′fdvdq. (6.21)

The first integral on the right hand side provides ∂
∂r
· QV

∫
fdvdq = ∂

∂r
· nQV. The

second, and the third integral vanishes following arguments similar to Eq. (6.14). The last

integral provides a term, n〈v′q′〉, consisting of correlations between charge and velocity

fluctuations. Here it is assumed that the charge and velocity fluctuations are uncorrelated,

and the last integral is neglected. The third term on left hand side of Eq. (6.19) again

vanishes. The charge during collisions is assumed to be conserved, therefore, the collision

term also vanishes, resulting in the charge transport equation

∂ρq

∂t
+

∂

∂r
· ρqV = 0, (6.22)

where ρq = nQ is the charge density.

The above transport equations are to be coupled to the electrostatic limit of Maxwell’s

equations for the mean electric field E, which are

∂

∂r
· E = 4πρq,

∂

∂r
× E = 0. (6.23)

Using E = ∂
∂r
ϕ as a result from the second equation, the above two equations can be
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reduced to a single equation for the electrostatic potential ϕ, written as

∂2

∂r2
ϕ = 4πρq. (6.24)

6.2.5 Pressure tensor, heat flux, and transport coefficients

For a granular gas, the pressure tensor P̄ ≡ Pij and the heat flux vector Q have the

form (Brilliantov & Pöschel, 2010)

Pij = pδij − η
[
∂Vj
∂ri

+
∂Vi
∂rj
− 2

3
δij

∂

∂r
·V
]
,

Q = −κ∂T
∂r
− µ∂n

∂r
. (6.25)

In the above expressions, p is the hydrostatic pressure, κ is the thermal conductivity, and

η is the shear viscosity. The coefficient µ appear only for granular gases (Brilliantov &

Pöschel, 2010) and does not have a counterpart for molecular fluids. It relates the heat

flux to the density gradient. The coefficients η, µ, κ are obtained from the microscopic

properties of the particles using either Chapman-Enskog approach or Grads method, for

example by Brilliantov & Pöschel (2010). In the following section, the linear stability of

the macroscopic equations is presented, for a time regime where 1
|ε2−1| ·

q2
refke
r̄
� T , and

the variations in the transport coefficients due to electrostatic field are neglected.

6.3 Linear stability of the hydrodynamic equations

Taken together, the hydrodynamic equations are written into the following form

∂ρ

∂t
= − ∂

∂r
· ρV,

∂V

∂t
= −V · ∂

∂r
V − 1

ρ

∂p

∂r
+
η

ρ

[
∂2

∂r2
V +

1

3

∂

∂r

(
∂

∂r
·V
)]

+
ρq

ρ
∇ϕ,

∂T

∂t
= −V · ∂

∂r
T +

2

3n

[
κ
∂2

∂r2
T + µ

∂2

∂r2
n

]
− 2

3n
P̄ :

∂

∂r
V − Tζ +

2

3n
ρq∇ϕ ·V,

∂ρq

∂t
= − ∂

∂r
· ρqV,

∂2

∂r2
ϕ = 4πρq. (6.26)
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The fields ρ,V, T, ρq and ϕ are then perturbed around a state which is homogeneous with

zero mean velocity, i.e.

ρ(r, t) = ρ0 + δρ(r, t),

V(r, t) = 0 + δV(r, t),

T (r, t) = T0(t) + δT (r, t),

ρq(r, t) = ρq0 + δρq(r, t),

ϕ(r, t) = ϕ0 + δϕ(r, t). (6.27)

For the sake of the linear stability analysis, it is assumed that the transport coefficients are

space independent. The fields are rescaled using ρ̃ = ρ/ρ0, Ṽ = V/vth(t), T̃ = T/T0(t),

ρ̃q = ρq/ρq0, t̃ = t/t0(t), r̃ = r/`0, ζ̃ = t0ζ and ϕ̃ = ϕ/ϕ0 = ϕ/(4πρq0`
2
0), where

vth(t) =
√

2T0(t)/m = `0/t0(t).1 Then the scaled perturbation expansions around the

homogeneous state read as

ρ̃(r, t) = 1 + δρ̃(r, t),

Ṽ(r, t) = 0 + δṼ(r, t),

T̃ (r, t) = 1 + δT̃ (r, t),

ρ̃q(r, t) = 1 + δρ̃q(r, t),

ϕ̃(r, t) = 1 + δϕ̃(r, t). (6.28)

For the scaled perturbations, it is assumed that δρ̃ � 1, δT̃ � 1, δρ̃q � 1, δϕ̃ � 1,

and |δṼ| � 1. Also using these scales, Eqs. (6.26) can be non-dimensionalized. Putting

Eqs. (6.28) into non-dimensionalized hydrodynamic equations, and preserving only the

1Notice that here the time scale t0(t) is itself time dependent. See Brilliantov & Pöschel (2010) for
details on this choice.
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terms which are linear in the perturbations, one finds

∂δρ̃

∂t̃
= − ∂

∂r̃
· δṼ,

∂δṼ

∂t̃
=

1

4
ζ∗δṼ − 1

2

[
∂

∂r̃
δρ̃+

∂

∂r̃
δT̃

]
+ η∗

[
∂2

∂r̃2
δṼ +

1

3

∂

∂r̃

(
∂

∂r̃
· δṼ

)]
+R ∂

∂r̃
δϕ̃,

∂δT̃

∂t̃
= −1

4
ζ∗δT̃ − 1

2
ζ∗δρ̃+

5

2

[
κ∗

∂2

∂r̃2
δT̃ + µ∗

∂2

∂r̃2
δρ̃

]
− 2

3

[
∂

∂r̃
· δṼ

]
,

∂δρ̃q

∂t̃
= − ∂

∂r̃
· δṼ,

∂2

∂r̃2
δϕ̃ = 1 + δρ̃q. (6.29)

The rescaled transport coefficient are now pure numbers (Brilliantov & Pöschel, 2010),

and their relation with the coefficient of restitution is provided in appendix 3. The non-

dimensional numberR is

R =
2πq2

ref

T0`0

ρ0t0`
2
0

m0

∝ B. (6.30)

The scaled perturbation equations are then transformed into Fourier space. If a(r, t)

is a field in r space, then

ak(t) =
1√
L3

∫
e−ik·r a(r, t) dr, (6.31)

where k = 2πb/L, with b = (bx, by, bz) being a vector of integers bx, by, bz. The trans-

form provides the following scaled perturbation equations in k space

∂δρ̃k

∂t̃
= −ik · δṼk,

∂δṼk

∂t̃
=

1

4
ζ∗δṼk −

1

2
ik
[
δρ̃k + δT̃k

]
+ η∗

[
(ik)2δṼk +

1

3
ik
(
ik · δṼk

)]
+Rikδϕ̃k,

∂δT̃k

∂t̃
= −1

4
ζ∗δT̃k −

1

2
ζ∗δρ̃k +

5

2

[
κ∗(ik)2δT̃k + µ∗(ik)2δρ̃k

]
− 2

3

[
ik · δṼk

]
,

∂δρ̃q,k

∂t̃
= −ik · δṼk,

(ik)2δϕ̃k = δρ̃q,k. (6.32)
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In the last equation it is assumed that k 6= 0. The last two equations in the above set can

be combined, and the time derivative of δϕ̃k can be obtained as

∂δϕ̃k

∂t̃
=

1

k2
ik · δṼk. (6.33)

In shorthand, the perturbation equations can be expressed by

∂δψ̃k

∂t̃
= M̄δψ̃k, (6.34)

where δψ̃k = (δρ̃k, δT̃k, δṼk, δϕ̃k), and M̄ is a matrix containing coefficients from

the right hand sides of Eq. (6.32) and (6.33). The eigenvectors of M̄ are defined by the

equation

M̄δψ̃k,l = λlδψ̃k,l. (6.35)

These eigenvectors, also called hydrodynamic modes, are decoupled from each other in

the linearized framework and evolve independently. Their time evolution is given by

δψ̃k,l(t̃) = δψ̃k,l(0) exp
[
λlt̃
]
, (6.36)

If the real part of the eigenvalues λl ≤ 0, the concerned modes are stable, that is small

initial perturbations decay exponentially in time; if λl > 0, the corresponding modes are

unstable. Moreover, the scaled velocity perturbation can be written as a sum of its two

components, one chosen perpendicular, and the other parallel to the vector k, i.e.

δṼk‖ = (δṼk · k)
k

k
= δṼk‖

k

k
,

δṼk⊥ = δṼk − δṼk‖. (6.37)

Below, the stability results for the transverse/perpendicular velocity perturbation, longitu-

dinal/parallel velocity perturbation, and other hydrodynamic modes are discussed.
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6.3.1 Transverse modes

Using k · δṼk⊥ = 0 in Eq. (6.32), the equation for the mode δṼk⊥ is decoupled from

other modes, and reads as

∂δṼk⊥

∂t̃
=

[
1

4
ζ∗ − η∗k2

]
δṼk⊥. (6.38)

For the mode δṼk⊥ to be unstable, the eigenvalue 1
4
ζ∗ − η∗k2 should be positive, which

requires k <
√
ζ∗/4η∗.

The linear stability analysis thus depicts that electrostatics does not alter the evolution

of these transverse modes. These modes lead to the formation of vortices in the granular

gas and are also called shear modes. Thus the emergence of vortex formation in the linear

regime in a charged granular gas is expected to be similar to a neutral granular gas.

6.3.2 Longitudinal/parallel and other hydrodynamic modes

Excluding the decoupled transverse mode, the matrix M̄ for the remaining modes δψ̃k =

(δρ̃k, δT̃k, δṼk‖, δϕ̃k) now reads

M̄ =



0 0 −ik 0

−1
2
ζ∗ − 5

2
µ∗k2 −1

4
ζ∗ − 5

2
κ∗k2 −2

3
ik 0

−1
2
ik −1

2
ik 1

4
ζ∗ − 4

3
η∗k2 Rik

0 0 −1
ik

0


. (6.39)

The eigenvalues, λi, of the above matrix with respect to k are plotted in Fig. 6.1 and 6.2

with varying values of ε andR.

In Fig. 6.1, the value of ε = 0.7 is fixed while the non-dimensional numberR, which is

proportional to the Bjerrum number B computed in chapter 5, is varied from 0 to 0.9. The

case R = 0 [Fig. 6.1(a)] corresponds to a neutral granular gas (solid lines). Two of the

non-zero eigenvalues of the matrix in Eq. (6.39) are ≤ 0 for all k, while one of them can

be positive up to a certain value of k. The unstable mode, in this case, is referred to as heat

mode, while the other two stable modes are non-propagating sound modes (Brilliantov

& Pöschel, 2010). If the characteristic size L of the system permits the existence of k
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Figure 6.1: The change in the eigenvalues λi(k) as the value of the non-dimensional
parameter R is increased from 0 (a) to 0.9 (f). The case R = 0 corresponds to a neutral
granular gas (solid lines), where one eigenvalue is positive and signifies heat mode of
clustering instability. AsR is increased, the eigenvalue corresponding to the heat mode is
suppressed, and the other two eigenvalues may become equal and positive (dashed lines).
At certain R, these two eigenvalues take over [e.g. in subplot (e) and (f)]. In this regime,
the heat mode now becomes stable.
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Figure 6.2: The change in the eigenvalues λi(k) as the value of the coefficient of restitution
ε is decreased from 0.8 (a) to 0.3 (f) at a fixed R = 0.9. With increasing dissipation, the
critical value of k for a charged granular gas (dashed lines) is decreased from its neutral
counterpart (solid lines).

128



There is more happening before aggregation

0 0.05 0.1 0.15
0

0.05

0.1

0.15

0.2

(a)

0 0.05 0.1 0.15
0

0.005

0.01

0.015

0.02

(b)

Figure 6.3: The value of the quantity R
|ε2−1| as a function of the critical value of k. The line

with symbols corresponds to an unstable mode which will be excited first in the charged
gas. Up to some value of R

|ε2−1| , the heat mode will initiate the instability, while after that
the sound mode will be the dominant mechanism. As R

|ε2−1| increases, the change from
the heat mode to the sound mode is abrupt.

corresponding to unstable heat mode, it leads to the formation of (dynamic) clusters in the

dissipate granular gas.

For non-zeroR (dashed lines), the eigenvalues corresponding to heat as well as sound

modes are altered. The 4× 4 matrix (6.39) has rank 3, and one of the eigenvalues is zero.

The non-zero eigenvalue corresponding to heat mode is now suppressed with increasing

R. The sound modes, on the other hand, tend to be unstable. At some value of R, the

two sound modes can become unstable while the heat mode is always stable. At a higher

value of R, the instability due to these two sound modes might occur even at larger k, or

at smaller length L, compared to the case of a neutral granular gas [Fig. 6.1(f)].

In Fig. 6.2, the value of ε is varied from 0.8 to 0.3 at a fixed value of R. As the gas

becomes more dissipative, i.e. ε → 0, the critical value of k for the electrostatic case

(intersection of dashed lines at zero) becomes lower than in the neutral case (intersection

of the solid line at zero). This indicates that more dissipation actually makes it harder for

electrostatics to initiate the instability at smaller length scales.

The above results suggest that the mechanisms of initiation of clustering, before the

longtime aggregation phase, in a charged granular gas can be distinct from the ones oc-

curring in a neutral granular gas. The suppression of heat mode, and instability of both

the sound modes, endorse this argument.

The maximum of the critical values of k, for which the eigenvalues intersect zero line
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ρq

x

Non-linear
onset=⇒

Linear
onset

=
⇒

Figure 6.4: If charge is separated over some length scale, it is expected that the electro-
static origin of instability in the regions close to ρq = 0 will be non-linear in principle.
In the regions which can be described with some charge density bias ρq0, the electrostatic
origin of instability can be linear.

in Fig. 6.2, is plotted against the parameter R
|ε2−1| in Fig. 6.3. For small R

|ε2−1| the heat

mode will be excited first, while as R
|ε2−1| increases, the sound modes become dominant.

It is important to note that in Eq. (6.27), the charge density field ρq is perturbed around

a finite value ρq0. If initially a system is considered entirely neutral, i.e. with ρq0 = 0,

one will find that there remain no terms which are linear in δρ̃q or δϕ̃. This leads to

the following argument. Consider a gas where the charge somehow separates over some

length scale [Fig. 6.4]. On a macroscopic scale, there will be regions where ρq0 = 0

is possible. The onset of instability in these regions, if triggered by electrostatics, in

principle, is expected to be non-linear. On the other hand in regions where a finite ρq0

is a good approximation, the onset of instability is expected to be initially linear. This is

emphasized schematically in Fig. 6.4. A test case to emphasize this point is also presented

in Appendix 5, where the full set of hydrodynamic equations (6.26) are evolved for given

initial charge separation.
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Effect of induced polarization and

viscous friction: Preliminary

Charged dielectric grains are expected to polarize in their mutual electrostatic field. The

resulting charge-dipole interactions (CD), dipole-charge interactions (DC) and dipole-

dipole interactions (DD) augment the monopole charge-charge interactions (CC). The

reordering of the induced moments might occur at a time scale much faster than the char-

acteristic time taken by the particles to travel their mean free path. Precise knowledge

of the effect of this reordering on the aggregate growth and fractal structures is entirely

lacking. These additional degrees of freedom are studied in this chapter. In addition, it is

demonstrated that if the grains experience a drag force due to random interstitial "hits",

the small-sized aggregates are still able to survive.
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In this chapter, two extensions of the simulations are presented:

(i) Polarized, heterogeneously charged granular gas [section 7.1], and

(ii) Polarized granular gas under viscous drag due to random interstitial velocities [sec-

tion 7.2].

The preliminary results are presented in terms of cluster mass versus net dipole moment,

effect on fractal dimension, and the effect on average cluster size. For the second case,

the granular temperature, and the visualization of particle aggregates are also included in

this chapter.

7.1 Polarized, heterogeneously charged granular gas

In this case, the complete set of coupled Eqs. (3.32)-(3.35) is solved. Eqs. (3.33)

and (3.34) are coupled and must be solved simultaneously at each time step. In the simu-

lations, the Jacobi iteration method is used to solve Eqs. (3.33) and (3.34). In Eq. (3.34),

the Ewald summation is utilized for the computation of the CC interations (first term

on RHS of Eq. (3.34)), while the CD interactions (second term on RHS of Eq. (3.34)) are

computed up to a cutoff radius rc. In the simulations rc = L/2, i.e., the standard mini-

mum image convention. Once Eqs. (3.33) and (3.34) are solved in a coupled manner, the

polarization force on a grain i due to CD, DC, and DD interactions can be computed. In

the next subsections, the preliminary results are presented.

7.1.1 Cluster mass/size versus cluster dipole moment

Figure 7.1 shows the scatter plots of the masses of aggregates, m, versus the magnitude

of the net dipole moment of aggregates

µ ≡ |
∑
i

µi| ≡

(∑
i

µx,i

)2

+

(∑
i

µy,i

)2

+

(∑
i

µz,i

)2
1/2

. (7.1)

The index i runs over all the monomers in a given aggregate. The results in Fig 7.1

indicate that larger size aggregates are expected to have relatively small magnitudes of the

net dipole moment. This might be due to more homogenized dipole moments inside larger
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Figure 7.2: The average fractal dimension 〈Df〉 with time, for different non-dimensional
polarizability A. The average fractal dimension decreases as the polarizability increases,
and this effect is more pronounced at early times during the aggregation process. The
initial transients during the charge-buildup (t∗ . 200) are excluded and the dynamics
after charge saturation on the monomers is compared in the discussion [subsection 7.1.2].

aggregates. The smaller aggregates on the other hand, do not have enough monomers

to minimize the net dipole moment. The magnitude of net dipole moment of clusters

increases with with increasing polarizability. In the simulation in Fig. 7.1, the charge

exchange model constructed in Eq. 4.3 is used. The other simulation parameters are E =

278.6, D = 27.7, K = 1.0. The value of Q ∼ 10−4 = O(eK), while a large value of the

non-dimensional charge capacity C is set.1

In Fig. 7.1, it is also noted that the magnitude of the net dipole moment of smaller

aggregates (Nmon ≤ 10) falls in a range which is almost persistent over time. As their size

grows, however, the magnitude of net dipole moment is expected to decrease over time.

7.1.2 Effect on the fractal dimension

The simulations depict that the average fractal dimension of the aggregates may decrease

due to the induced polarization. Fig. 7.2 shows the average fractal dimension with time,

where three cases of non-dimensional polarizability are compared: granular gas with (i)

1See list of mathematical symbols and non-dimensional numbers in the front matter of the thesis, and
chapter 3 for their exact definitions.
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Figure 7.3: The average cluster size S ∼ 〈m〉1/〈Df 〉, with time, for different non-
dimensional polarizability A. Here 〈m〉 =

∑
km

2
kN(m)/

∑
kmkN(m), N(m) being

the mass distribution.

A = 0.0, (ii) A = 0.005, and (iii) A = 0.075. At very low A = 0.005, the difference is

negligible. After initial transients due to charge-buildup, the increasing value of the av-

erage fractal dimension 〈Df〉 signifies the compaction of the aggregates, for all the three

cases. However, it is observed that at a give time after the initial transience, the value of

〈Df〉 is decreased forA = 0.075. This drop in the value of 〈Df〉 due to increased polariz-

ability is also observed in the simulations if the charge holding capacity C is altered from

a value of 1 to 10, or higher. Also, this drop of 〈Df〉 is present irrespective of whether the

charge exchange is considered proportional to collision speeds [Eq. (4.3)], or it is consid-

ered stochastic and biased with the particle contact area during a collision [Eq. (3.50)].

The charge-exchange mechanisms are increasingly ineffective with decreasing granular

temperature and eventually, the charge distribution has a tendency to saturate. In Fig. 7.2,

the simulations parameters are same as described in subsection 7.1.1.

It is also noted that if the aggregates having monomers equal to 5 or less are excluded

from the calculation of 〈Df〉, there is only about ≈ 2% change in 〈Df〉, while if all the

aggregates are considered, the change in 〈Df〉 is ≈ 8 − 9%. This shows that the mor-

1The other simulation parameters are E = 278.6, D = 27.7, K = 1.0, Q ∼ 10−4 = O(eK), while
C � 1. See the list of non-dimensional number in the front matter and chapter 3 for their exact definitions.
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Figure 7.4: The average kinetic energy and the granular temperature of a granular gas (a)
without, and (b) with the effect of viscous friction due to random interstitial velocities
[see Eq. (7.2)]. Here polarizability A = 0.075 in both (a) and (b), and the Stokes number
S = 0.0 in (a) while S = 0.05 in (b). In the second case, a steady state granular tem-
perature is attained after the granular temperature reaches the order of energy input due
to random interstitial fluid velocities. This case is closer to practical scenarios of dust ag-
gregation where the influence of interstitial medium is important. In the steady state time
window, the mass versus dipole moment of the fractal aggregates is studied and presented
in Fig. 7.5. Here vi is the grain speed and V is the mean velocity of grains in the vicinity
of grain i.1

phology of the smallest aggregates is more altered relative to that of the aggregates with

a larger mass. It is important to note that the drop in fractal dimension due to polarization

in Fig. 7.2 is more pronounced during the early stages of the growth but after the initial

charge buildup (t∗ & 200). The difference of fractal dimension between the casesA = 0.0

and A = 0.075 tend to decrease over time.

7.1.3 Effect on the average cluster size

Figure 7.3 shows the average cluster size with time for different non-dimensional polar-

izability. The preliminary raw data indicates an enhanced cluster growth with increasing

polarizability. Notice that growth of clusters, after the initial transience, is visibly differ-

ent for A = 0.005 and A = 0.075, while the evolution of 〈Df〉 for these two cases is

negligible in Fig. 7.2.

The data in Fig. 7.1, 7.2, and 7.3 are preliminary, and the averaging over multiple
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simulations is under progress at the time of writing of the thesis. It is expected that

averaging will provide more precise growth rates while reducing the noise.

7.2 Effect of drag due to random interstitial velocities

To mimic the effects caused by an interstitial fluid velocity on the aggregation and fractal

structures, a viscous force on the grains is applied, given by1

F̃fric
i = S (ṽfluid − ṽi), (7.2)

where S = tref/τfric is the Stokes number. Here τfric is the friction time that would be

taken by the particles to relax to the interstitial velocities ṽfluid, and tref is some appropri-

ately chosen reference time scale d0/vref . In short, as S → 0 the grain velocities become

more and more decoupled from the fluid velocities, and vice-versa. In the simplest case

presented here, the interstitial velocities ṽfluid are random, while the grain velocities are

computed from the solution of coupled Eqs. (3.32)-(3.35).

Figure 7.4 shows the average kinetic energy and the granular temperature of the gran-

ular gas of equal-sized monomers (a) without, and (b) with the effect of viscous friction

due to random interstitial fluid velocities. Here polarizability A = 0.075 in both (a) and

(b), and the Stokes number S = 0.0 in (a) while S = 0.05 in (b). In the second case,

a steady-state granular temperature is attained after the granular temperature reaches the

order of energy input due to random interstitial velocities. This case is closer to practical

scenarios of dust aggregation where the influence of interstitial medium is important. In

the steady-state time window, the mass versus dipole moment of the fractal aggregates is

studied and presented in Fig. 7.5.

The interstitial velocities are capable of fragmenting larger aggregates formed due to

long-range interactions, which is quite intuitive. However, very small aggregates (with

≤ 5 monomers) are still able to survive [Fig. 7.5, S = 0.05 case]. Furthermore, these

smallest surviving aggregates tend to form small chains [Fig. 7.6], which might be to

induced polarization forces between monomers. Because the fluid velocities acting on the

grains are random, there is no well-defined length scale associated with the interstitial flow

1See also Eq. (3.52) and its normalization in chapter 3.
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(analogous to, for example, the scale of the smallest eddies in turbulent flow). Or in other

words, this setup is more like a flow where the particles are "hit" by random collisions

with gas "particles" (or molecules). This setup is closer to what is described as Epstein

drag regime (Capelo et al. , 2019). Such scenarios occur where the surrounding gas has

very low pressure, and the Knudsen number, defined as Kn = r̄gas/d0, is & 1. Here r̄gas

is the mean free path of the surrounding gas molecules, and d0 is the grain diameter.

From the preliminary results in Figs. 7.5 and 7.6, it is anticipated that the gas inter-

actions in this regime put some restraints on the continuous agglomerate growth favored

by electrostatics. These local agglomerate chains might play a role of "nucleation sites"

and might further influence the fluid dynamical instabilities (for example "heat mode" and

"sound mode" mechanisms studied in chapter 6). As one relevant example, fluid dynam-

ical mechanisms of density variations have been explored recently in experimental work

by Capelo et al. (2019) for conducting grains. The researchers found the formation of

small scale dynamic clusters in the presence of a laminar incompressible gas stream.

7.3 Conclusions

The preliminary results presented in this chapter have provided a strong indication that the

growth of average cluster size is enhanced [Fig. 7.3] while the fractal dimension is lowered

[Fig. 7.2]. The smaller aggregates in the cluster population are relatively more affected

due to these degrees. As the size of aggregates grows, the magnitude of the net dipole

moment on them decreases [Fig. 7.1]. Results from the implementation of friction due

to random interstitial velocities have shown that a steady-state aggregation-fragmentation

regime can be reached [Fig. 7.4], and only small-sized aggregates are expected to survive

[Fig. 7.5]. Furthermore, these smallest surviving aggregates, due to induced polarization

forces between monomers, form very small chains [Fig. 7.6], consisting of ≈ 2 to 6

monomers. These local agglomerate chains might play a role of "nucleation sites" and

might further influence the fluid dynamical instabilities (for example "heat mode" and

"sound mode" mechanisms studied in chapter 6).

From these outcomes, few general remarks can be made in the context of cluster-

cluster aggregation (CCA) models, where two clusters collide and make a larger cluster.

Corresponding to the gas simulated in this chapter, the interactions in the CCA model
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can be broken into cases: between small-small, small-large, and large-large clusters. It

can be considered that the interactions between large-large clusters can be simplified to

only CC level, while interactions between small-small or small-large clusters need to be

augmented by CD, DC and DD forces.1

Furthermore, the polarization and the mechanism involving reordering of the dipole

moments might even cause aggregation in a gas of like-charged particles (i.e., where all

the particles carry same sign of charge). This has been rarely shown theoretically (ex-

cept, for example, by Matthews & Hyde (2009) for charged dust-aggregation in plasma

environment). As shown in previous chapter 4 [Fig. 4.1(a)], a gas of monopoles with

like-charges is simply a repulsive gas where collision frequency keeps decreasing over

time and no aggregation appears. However, to study like-charged gas under polarization

forces is a future scope and may show some qualitative differences from a gas of only

like-charged monopoles.

1The size distribution in the aggregating granular gas is more like a continuous one [Fig. 4.4, chap-
ter 4]. The scenario of interactions between small-small, small-large and large-large clusters should be
considered/pictured accordingly.
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Chapter 8

Conclusions, Outlook, and Extensions

Imagine a collection of agitated dielectric grains in which (notoriously) a scalar quantity

gets transported across the grains on completely different (and unknown) time scales than

the time scales associated with the motion of the grains themselves. This notorious quan-

tity, furthermore, may "jump" or "travel" from places to places on the surface of the grains

in a mysterious manner. Why we should try to catch it and why not let it do whatever it

wants to do? The problem is that it causes "interruptions" to the independent motion of

the grains. Because the "travel" of this quantity is mysterious, the "interruptions" caused

by it become hard to predict. The quantity interconnects the motion of all the grains on

which it decides to live. When everything seems to settle down, it "reorders" itself on the

grain surfaces because it sees that its "friends" on the other grains are doing the same.

The quantity is the electric charge, while some examples of "interruptions" are clog-

ging in pipes and hoppers during industrial conveying of grains, increase in saltation

thresholds of wind-blown sand beds, coagulation of planetary dust, and so on. In the

above paragraph, "reordering" implies the induced polarization effect.

Although the hard condensed matter principles of contact or frictional electrification

remain elusive, here an effort is made to theoretically understand the collective/many-

body effects in dissipative granular gases, once the grains are charged. Specifically, the

aggregation and pattern formation in heterogeneously charged, globally charge conserv-

ing, and initially dilute granular gases is focused; the gas is charged with simplified but

physically valid charge-exchange recipes and the subsequent effects of the long-range

forces on the dynamics and morphology are studied. Canonical observables, such as
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growth rates of the average cluster size, average fractal dimension, granular temperature,

and charge variance are computed using granular molecular dynamics simulations. In

addition, the size, velocity and charge distributions are also studied. The observations

from the detailed numerical simulations are utilized to (i) modify the mean-field Smolu-

chowski’s coagulation equation, and (ii) to provide a kinetic description taking care of

restitution as well as aggregation. The onset of clustering instability and the competition

between dissipation and electrostatics, on a macroscopic scale, is then studied via the lin-

ear stability analysis of the granular hydrodynamic equations. Finally, the alterations in

the aggregate growth rates and the average fractal dimension due to additional degrees of

freedom, introduced by the grain polarizability, are briefed.

8.1 Summary of conclusions

The overall conclusions from the thesis are summarized below.

The presence of charges in granular gases leads to aggregate formation, rather than

dynamic clustering [Figs. 4.2, 4.3, 5.1]. Here, by dynamic clustering, it is meant that the

density variations emerge due to dissipation, but no literal sticking of grains appears. The

dynamic clustering, however, might also be present in the charged granular gas at meso-

scopic scales where individual aggregates behave as "newborn" particles [see Fig. 5.7(c)

inset for Mach number, and movies accompanying the thesis]. The crossover time of the

onset of aggregation reduces with increasing ratio of the characteristic Coulomb to kinetic

energy K [Fig. 4.5]. When compared on a coarse-grained scale, the average cluster size

increases faster in a charged granular gas than a neutral granular gas [Fig. 4.5]. The faster

growth of aggregates in a charged granular gas is explained by suppression of diffusion

of particles in their mutual electrostatic field. This observation of suppressed MSD from

the simulations, when incorporated into the reaction kernel of the Smoluchowski’s coag-

ulation equation, also supports an enhanced growth rate [Fig 4.6]. The simulations have

indicated charge-velocity correlations in the gas [Fig. 4.8]. The high-velocity monomers

have shown to carry relatively low magnitudes of charge; the low-velocity monomers may

or may not. These high-velocity particles create non-relaxing stretched tails in the velocity

distribution function of the monomers [Fig. 4.7], and imply that the granular gas is fetched

further from equilibrium than its neutral counterpart (at least during the transience if there
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exist an eventual equilibrium state).

The aggregates in the charged granular gas are statistically self-similar (fractals), and

this feature remains persistent during the course of aggregation. The masses of aggregates

have a power-law relation with their sizes, characterized by the average fractal dimension

[Fig. 5.5]. The value of the average fractal dimension indicates compaction of the ag-

gregates with time; with time its value is increased from the typical values for ballistic

cluster-cluster aggregation (BCCA) (∼ 1.8 − 2.0) to the typical values for diffusion lim-

ited particle-cluster aggregation (DLPCA) (∼ 2.5).

Once the aggregation sets in, the aggregates might be thought of as "newborn" par-

ticles. The average quantities such as number density, temperature, charge variance etc.

of these "newborn" particles are computed [Figs. 5.3, 5.7]. Up to the simulated times,

the granular temperature of the gas of "newborn" particles remains close to the modified

Haff’s law for viscoelastic granular gas of monomers. The charge variance drops dur-

ing aggregation, provided that the charge on individual monomers is saturated [Fig. 5.6].

The dynamics of number density [Fig. 5.7(c)], and the size distribution [Fig. 4.4] of these

"newborn" particles are more involved; the number density evolution is non-monotonic

and the size distribution broadens over time as the aggregation proceeds.

One important result is that once the aggregates are formed, the granular tempera-

ture of cluster population T (t), the charge variance of cluster population 〈δq2〉(t) and

the typical aggregate size in the cluster population d(t), evolve in such a way that their

non-dimensional combination

B(t) =
ke 〈δq2〉(t)
T (t) d(t)

(8.1)

obeys a physical constraint of B(t) ≤ 1. This constraint on the collective evolution of

charged clusters is confirmed both by the developed kinetic model [Eq. (5.6)-(5.8)] and

the detailed molecular dynamics simulations [Figs. 5.3, 5.4]. In the above equation, ke

is the Coulomb constant. It is also showed that the application of a purely dissipative

kinetic treatment is not sufficient to make predictions about global observables such as T

and 〈δq2〉 in an aggregating charged granular gas [Fig 5.4], and an appropriate effective

coefficient of restitution needs to be augmented in the kinetic-theory [Fig 5.2].

The onset of instability is also explored via the linear stability analysis of the hydro-
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dynamic equations for a granular gas coupled to Maxwell’s electrostatic equations, in a

certain regime of the granular temperature [chapter 6]. In this limit, the transport coeffi-

cients are expected to remain close to that of neutral granular gas. The presence of charge

alters the so called "heat mode" and "sound modes" of instability [Figs. 6.1, 6.2, 6.3].

It is found that electrostatics is expected to favor "sound modes", rather than the "heat

mode", at low granular temperatures. The difference between the two is that in the "sound

modes", the onset of instability is triggered by the growth of temperature and velocity

perturbations, while in the "heat mode" it is triggered by the density variations. Thus, it

implies that electrostatics is expected to favor velocity and temperature variations first,

and then the density variations emerge.

The preliminary results presented in chapter 7 have provided a strong indication

that because of the induced polarization, the growth of average cluster size is enhanced

[Fig. 7.3] while the fractal dimension is lowered [Fig. 7.2]. The smaller aggregates in the

cluster population are relatively more affected due to these degrees. As the size of aggre-

gates grows, the magnitude of the net dipole moment on them decreases [Fig. 7.1]. Results

from the implementation of friction due to random interstitial velocities have shown that a

steady-state aggregation-fragmentation regime can be reached [Fig. 7.4], and only small-

sized aggregates are expected to survive [Fig. 7.5]. Furthermore, these smallest surviving

aggregates, due to induced polarization forces between monomers, form very small chains

[Fig. 7.6], consisting of ≈ 3 to 6 monomers. These local agglomerate chains might play a

role of "nucleation sites" and might further influence the fluid dynamical instabilities (for

example "heat mode" and "sound mode" mechanisms studied in chapter 6).

From these outcomes in chapter 7, few general remarks can be made in the context of

cluster-cluster aggregation (CCA) models, where two clusters collide and make a larger

cluster. The interactions in the CCA model can be broken into cases: between small-small,

small-large, and large-large clusters. It can be considered that the interactions between

large-large clusters can be simplified to only CC level, while interactions between small-

small or small-large clusters need to be augmented by CD, DC and DD forces.1

Furthermore, the polarization and the mechanism involving reordering of the dipole

1The size distribution in the aggregating granular gas is more like a continuous one [Fig. 4.4, chap-
ter 4]. The scenario of interactions between small-small, small-large and large-large clusters should be
considered/pictured accordingly.
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Interstitial fluid-dynamical,
dissipation, and
electrostatics mechanisms

e.g. Van der Waals Collapse

Figure 8.1: Different grain size regimes and corresponding mechanisms of growth. The
results from this thesis support the following school of thought (Spahn & Seiß, 2015):
in the grain size regime d0 ∼ mm − cm, electrification and polarization of grains might
be a dominant mechanism, which is capable of producing aggregate sizes sufficient for
subsequent gravitational collapse (d0 & m). For grain sizes d0 . µm, cohesive forces
such as Van der Waals are important in the growth process.

moments might even cause aggregation in a gas of like-charged particles (i.e., where all

the particles carry same sign of charge). This has been rarely shown theoretically (ex-

cept, for example, by Matthews & Hyde (2009) for charged dust-aggregation in plasma

environment). As shown in previous chapter 4 [Fig. 4.1(a)], a gas of monopoles with

like-charges is simply a repulsive gas where collision frequency keeps decreasing over

time and no aggregation appears. However, to study like-charged gas under polarization

forces is a future scope and may show some qualitative differences from a gas of only

like-charged monopoles.

8.2 Outlook and possible extensions

The theoretical description of pattern formation in dissipative, charged and polarized par-

ticulate systems is a formidable task. Especially for practical scenarios, the aggregation

dynamics needs to be augmented with an accurate description of the (turbulent) gaseous

flow fields around them. The unresolved hard condensed matter principles of contact

or triboelectric charging add to the complexity. In particle-laden flows, often the colli-

sion mechanics and dissipation during collisions is simplified. Thus, a rigorous four-way

coupled model for polarized particles with more accurate modeling of the triboelectric
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charging, and resolution of the charge dynamics on the grain surfaces are tasks left to the

future. The dynamics of charge on the gain surface is expected to be occurring at a differ-

ent time scale than the time scales of a collision, or the time scales of the mean free path.

The interstitial flow would introduce its own time scale. Thus in principle, the problem

is multi-scale and at this moment lacks rigorous understanding. Another complexity is

the computational expense introduced by the long-range nature of electrostatics. Even the

development of accurate time-saving mean-field models for this problem would require

at least some knowledge from either careful experiments or simulations taking care of

all or most of the above degrees of freedom. Precise inclusion of the above mechanisms

might also resolve the "meter barrier" problem in planetesimal formation [Fig. 8.1]. In-

trinsic presence of the charge-velocity correlations and aggregation (gas is no more dilute

locally) makes Boltzmann-like descriptions questionable later in time or at least requires

further development for the long-time solutions.
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Appendix 1: Accompanying material

The following media and codes accompany this thesis:

(i) A movie of the evolving and aggregating structures in the charged granular gas (in
a compact disk attached with the thesis).

(ii) An in-house cluster analysis code in MATLAB to obtain the fractal dimension, clus-
ter size distribution, average cluster size, and other statistical quantities, which is
made open-source at https://gitlab.com/cphyme/matbox.

(iii) An in-house MATLAB program to solve coupled hydrodynamic equations for ho-
mogeneous quasi-monodisperse aggregation. This program is also a part in the
open-source code https://gitlab.com/cphyme/matbox.
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Appendix 2: Overall algorithm

start

predict positions  
and velocities 

(Gear 6th order) 
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periodic  

boundaries
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end

generate a 
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compute forces: 
(elastic,damping,  
CC,CD,DC,DD) 

charge-exchange 
(stochastic) 

correct positions  
and velocities 

(Gear 6th order) 

extract data, 
end time?

no, t=t+dt 
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using FDM 
for stochastic differential 
equations 

CC force using Ewald Summation, 
iteratively solve electric field 
and polarization, compute  
CD, DC, DD forces  
using minimum image 
and add to CC force. 
  

Figure A2.2: Overall granular molecular dynamics algorithm, and incorporation of
charge-exchange and induced polarization
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Appendix 3: MATLAB Scripts

Script for eigenvalues of the linear stability matrix

close all; clear all; clc
PLOT_NEUTRAL_CASE = 1;
PLOT_CHARGED_CASE = 1;
[fig_0,fig_0_gcf]  = 
createFig(1,'$k$','$\lambda_i$','holdoff','boxon','linlin',22);
xlim([0 0.3]);
ylim([-0.2 0.11]);
syms Z M K E k
e = 0.7;
a2 = 16*(1-e)*(1-2*e^2)/(9+24*3+(8*3-41)*e+30*e^2*(1-e));
nu1= (3-3*e+2*3)*(1+e)*(1-a2/32)/(4*3);
nu2= (1+e)*( (3-1)/2+(3*(3+8)*(1-e))/16+(4+5*3-3*(4-3)*e)*a2/512 )/(3-1);
Z  = (2+3)*(1-e^2)*(1+3*a2/16)/(4*3);
E  = 1/(nu1-0.5*Z);
K  = (1+2*a2)/(nu2-3*Z);
M  = 2*Z*(K+(2/3)*a2/Z)/((4/3)*nu2-3*Z);
if(PLOT_NEUTRAL_CASE)
MAT = [...
    0,                      0,                      -i*k; ...
    -0.5*Z-(5/2)*M*k^2,     -0.25*Z-(5/2)*K*k^2,    -(2/3)*i*k; ...
    -0.5*i*k,               -0.5*i*k,               0.25*Z-(4/3)*E*k^2;...
    ];
LAMBDA = real(eig(MAT));
hold on;
fplot(k,LAMBDA(1),[0 0.3],'-k','linewidth',1.5);
fplot(k,LAMBDA(2),[0 0.3],'-b','linewidth',1.5);
fplot(k,LAMBDA(3),[0 0.3],'-','linewidth',1.0,'color','r');
end
P=1;
R=0.9000/P;
MAT = [...
  0,                  0,                  -i*k,                0; ...
  -0.5*Z-(5/2)*M*k^2,-0.25*Z-(5/2)*K*k^2, -(2/3)*i*k,          0; ...
  -0.5*i*k,          -0.5*i*k,            0.25*Z-(4/3)*E*k^2,  R*i*k/(i*k)^2;...
   0,                 0,                  -i*k,                0;...            
    ];
LAMBDA = real(eig(MAT));
hold on;
fplot(k,LAMBDA(1),'--','color', [.8 .8 .8],'linewidth',0.5);
if(PLOT_CHARGED_CASE)
fplot(k,LAMBDA(2),[0 0.3],'--k','linewidth',1.5);
fplot(k,LAMBDA(3),[0 0.3],'--b','linewidth',1.5);
fplot(k,LAMBDA(4),[0 0.3],'--r','linewidth',1.0);
txt2 = sprintf('$\\epsilon=%.1f, \\mathcal{R}=%.4f$', e, R);
leg2=text(fig_0, 0.13, 0.085, txt2);
set(leg2, 'interpreter', 'latex', 'fontsize', 22);          
end
if(0)
    txt3 = sprintf('$\\lambda_1$');
    leg3 = text(fig_0, 0.05, 0.05, txt3);
    set(leg3, 'interpreter', 'latex', 'fontsize', 18);
    
    txt4 = sprintf('$\\lambda_2$');
    leg4 = text(fig_0, 0.01, 0.006, txt4);
    set(leg4, 'interpreter', 'latex', 'fontsize', 18);
    
    txt5 = sprintf('$\\lambda_3$');
    leg5 = text(fig_0, 0.01, -0.065, txt5);
    set(leg5, 'interpreter', 'latex', 'fontsize', 18);    
end
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Approximation of the scaled cooling and transport coeffi-
cients for a gas with ε = const., in the limit 1

|ε2−1| ·
q2refke
r̄ � T

The following set of scaled transport coefficients is used in the linear stability analysis in
Chapter 6 (Brilliantov & Pöschel, 2010):

η∗ =
1

ν∗1 − 1
2
ζ∗
, (2)

κ∗ =
1 + 2a2

ν∗2 − 3ζ∗
, (3)

µ∗ = 2ζ∗
κ∗ + 2a2

3ζ∗

4
3
ν∗2 − 3ζ∗

, (4)

ζ∗ =
5

12
(1− ε2)

(
1 +

3a2

16

)
, (5)

where

ν∗1 =
(9− 3ε)(1 + ε)

12

(
1− a2

32

)
, (6)

ν∗2 =
1 + ε

2

(
1 +

33(1− ε)
16

+
19− 3ε

512
a2

)
, (7)

a2 =
16(1− ε)(1− 2ε2)

81− 17ε+ 30ε2(1− ε) . (8)

Notice that for ε = 1 (elastic gas), a2 = 0, ν∗1 = 1 and ν∗2 = 1. The scaled transport
coefficients in this case are constants.

Moving from Ewald potential to forces
The following simple symbolic script can be run in MATLAB to differentiate the Ewald
potential in Eq. (3.19):

clear all;
close all;
clc;
syms b qi qk ke pi L m rik ri rk
Uri_real = ke*qk*erfc(b*abs(rk-ri))/abs(rk-ri)
Fi_real  = -qi*gradient(Uri_real,ri)
Uri_reciprocal = (ke*4*pi/L^3)*qk * (1/abs(m)^2) * exp(-abs(m)^2 / (4*b^2))*cos(m * (rk-ri))
Fi_reciprocal  = -qi*gradient(Uri_reciprocal,ri)
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Appendix 4: MATHEMATICA Scripts

Dipole-dipole interaction (DD) added to the MD code

In[35]:= (*CC, CD, DC and DD forces*)
(*Input:*)
rij = {rx, ry, rz}
pj = {muxj, muyj, muzj}
pi = {muxi, muyi, muzi}
rijrij = TensorProduct[rij, rij]
rijpj = TensorProduct[rij, pj]
pjrij = TensorProduct[pj, rij]
rijdotpj = Dot[rij, pj]
IM = IdentityMatrix[3]
FijDD1 = -Dot[pi, a (rijpj + pjrij) + a rijpj IM + b rijpj rijrij]
-pi.(a IM rijpj + a (pjrij + rijpj) + b rijpj rijrij)

Out[35]= {rx, ry, rz}

Out[36]= {muxj, muyj, muzj}

Out[37]= {muxi, muyi, muzi}

Out[38]= rx2, rx ry, rx rz, rx ry, ry2, ry rz, rx rz, ry rz, rz2

Out[39]= {{muxj rx, muyj rx, muzj rx}, {muxj ry, muyj ry, muzj ry}, {muxj rz, muyj rz, muzj rz}}

Out[40]= {{muxj rx, muxj ry, muxj rz}, {muyj rx, muyj ry, muyj rz}, {muzj rx, muzj ry, muzj rz}}

Out[41]= muxj rx + muyj ry + muzj rz

Out[42]= {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}

Out[43]= -muxi 3 a muxj rx + b muxj rx3 - muyi b muxj rx ry2 + a (muyj rx + muxj ry) -

muzi b muxj rx rz2 + a (muzj rx + muxj rz),

-muyi 3 a muyj ry + b muyj ry3 - muxi b muyj rx2 ry + a (muyj rx + muxj ry) -

muzi b muyj ry rz2 + a (muzj ry + muyj rz),

-muzi 3 a muzj rz + b muzj rz3 - muxi b muzj rx2 rz + a (muzj rx + muxj rz) -

muyi b muzj ry2 rz + a (muzj ry + muyj rz)

Out[44]= -muxi 3 a muxj rx + b muxj rx3 - muyi b muxj rx ry2 + a (muyj rx + muxj ry) -

muzi b muxj rx rz2 + a (muzj rx + muxj rz),

-muyi 3 a muyj ry + b muyj ry3 - muxi b muyj rx2 ry + a (muyj rx + muxj ry) -

muzi b muyj ry rz2 + a (muzj ry + muyj rz),

-muzi 3 a muzj rz + b muzj rz3 - muxi b muzj rx2 rz + a (muzj rx + muxj rz) -

muyi b muzj ry2 rz + a (muzj ry + muyj rz)
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MATHEMATICA instructions to solve kinetic integrals

(*These are the MATHEMATICA instructions to solve the restitutive,
aggregative, and some other useful integrals. Some of the integrals below are
expensive and might take some time in MATHEMATICA. The last instruction
at the bottom of this script can be used to clear all the results,

so that the script can be run again.*)

Integrate[x^2 / (E^(b x y) E^x^2 E^y^2), {y, 0, Infinity}, {x, 0, Infinity}]

Integrate[x^2 / (E^(b x y) E^x^2 E^y^2), {y, -Infinity, 0}, {x, -Infinity, 0}]

Integrate[x^2 / (E^(b x y) E^x^2 E^y^2), {y, 0, Infinity}, {x, 0, Infinity}] +

Integrate[x^2 / (E^(b x y) E^x^2 E^y^2), {y, -Infinity, 0}, {x, -Infinity, 0}]

Integrate[E^(-x^2 - y^2) x^2 (1 - b x y), {y, 0, Infinity}, {x, -Infinity, 0}]

Integrate[E^(-x^2 - y^2) x^2 (1 - b x y), {y, 0, Infinity}, {x, -Infinity, 0}] +

Integrate[E^(-x^2 - y^2) x^2 (1 - b x y), {y, -Infinity, 0}, {x, 0, Infinity}]

Integrate[r (2 + Abs[b] r^2 Sin[t] Cos[t]) E^(-Abs[b] r^2 Sin[t] Cos[t]) E^(-r^2),
{r, 0, Infinity}, {t, 0, Pi / 2}] +

Integrate[r (2 + Abs[b] r^2 Sin[t] Cos[t]) E^(-Abs[b] r^2 Sin[t] Cos[t]) E^(-r^2),
{r, 0, Infinity}, {t, Pi, 3 Pi / 2}]

Integrate[E^(-x^2 - y^2 - b x y) (2 + b x y),
{y, -Infinity, Infinity}, {x, -Infinity, Infinity}]

Integrate[x^2 / (E^(b x y) E^x^2 E^y^2),
{y, -Infinity, Infinity}, {x, -Infinity, Infinity}]

Integrate[E^(-x^2) E^(-y^2) E^(-R Abs[x y])
(2 + 2 R Abs[x y] + R^2 (Abs[x y])^2 - R x y - R^2 Abs[x y] x y),

{y, -Infinity, Infinity}, {x, -Infinity, Infinity}]

Integrate[x^2 E^(-x^2) E^(-y^2) E^(-R Abs[x y]) (-R x y + R Abs[x y] + 1 ),
{y, -Infinity, Infinity}, {x, -Infinity, Infinity}]

Integrate[E^(-x^2) E^(-y^2) E^(-R Abs[x y])
(-R x y E^(R Abs[x y]) + R x y + E^(R Abs[x y]) - R Abs[x y] - 1 ),

{y, -Infinity, 0}, {x, 0, Infinity}] + Integrate[E^(-x^2) E^(-y^2)
E^(-R Abs[x y]) (-R x y E^(R Abs[x y]) + R x y + E^(R Abs[x y]) - R Abs[x y] - 1 ),

{y, 0, Infinity}, {x, -Infinity, 0}]
Integrate[E^(-x^2) E^(-y^2) E^(-R Abs[x y])

( P A x y (1 + R Abs[x y]) + B (2 + 2 R Abs[x y] + R^2 (Abs[x y])^2) ),
{y, -Infinity, Infinity}, {x, -Infinity, Infinity}]

Integrate[E^(-x^2) E^(-y^2) E^(-R Abs[x y])
(x y Q (-R Abs[x y] + E^(R Abs[x y]) - 1) + R^2 (Abs[x y])^2 +

2 R Abs[x y] - 2 E^(R Abs[x y]) + 2), {y, -Infinity, 0},
{x, 0, Infinity}] + Integrate[E^(-x^2) E^(-y^2) E^(-R Abs[x y])
(x y Q (-R Abs[x y] + E^(R Abs[x y]) - 1) + R^2 (Abs[x y])^2 +

2 R Abs[x y] - 2 E^(R Abs[x y]) + 2), {y, 0, Infinity}, {x, -Infinity, 0}]

156



Integrate[(w^5 (-B w^(16 / 5)) (1 - a / w^2)) / E^w^2, {w, Sqrt[b], Infinity}]

Integrate[
E^(-x^2) E^(-y^2) E^(-R Abs[x y]) (R x y (- R Abs[x y] + E^(R Abs[x y]) - 1 ) +

(R Abs[x y])^2 + 2 R Abs[x y] - 2 E^(R Abs[x y]) + 2 ) , {y, -Infinity, 0},
{x, 0, Infinity}] + Integrate[E^(-x^2) E^(-y^2) E^(-R Abs[x y])
(R x y (- R Abs[x y] + E^(R Abs[x y]) - 1 ) + (R Abs[x y])^2 + 2 R Abs[x y] -

2 E^(R Abs[x y]) + 2 ) , {y, 0, Infinity}, {x, -Infinity, 0}]

Integrate[
Sin[x] (A (Abs[Cos[x]])^(2 * k + 1) + B (Abs[Cos[x]])^(k + 1)), {x, Pi / 2, Pi}]

Integrate[w^2 E^(-w^2) (1 - a / w^2) (A w^(2 * k + 1) + B w^(k + 1)),
{w, Sqrt[b], Infinity}]

Integrate[
E^(-x^2) E^(-y^2) E^(-R Abs[x y]) ( (1 + R Abs[x y]) (R x y) A + S Abs[x - y] R x y B -

2 (1 + R Abs[x y] + (R Abs[x y])^2 ) A / 2 - S Abs[x - y] (1 + R Abs[x y]) B ),
{y, -Infinity, Infinity}, {x, -Infinity, Infinity}]

Integrate[(w^(26 / 5) (1 - Tanh[1 / w^2])) / E^w^2, {w, sqrt[1], Infinity}]

Integrate[E^(-x^2) E^(-y^2) E^(-R Abs[x y])
(-R x y E^(-R Abs[x y]) + R x y + E^(R Abs[x y]) - R Abs[x y] - 1 ) ,

{y, -Infinity, 0}, {x, 0, Infinity}] + Integrate[E^(-x^2) E^(-y^2)
E^(-R Abs[x y]) (-R x y E^(-R Abs[x y]) + R x y + E^(R Abs[x y]) - R Abs[x y] - 1 ),

{y, 0, Infinity}, {x, -Infinity, 0}]

Integrate[x y E^(-x^2) E^(-y^2) E^(-R Abs[x y])
(-R x y E^(-R Abs[x y]) + R x y + E^(R Abs[x y]) - R Abs[x y] - 1 ) ,

{y, -Infinity, 0}, {x, 0, Infinity}] + Integrate[x y E^(-x^2) E^(-y^2)
E^(-R Abs[x y]) (-R x y E^(-R Abs[x y]) + R x y + E^(R Abs[x y]) - R Abs[x y] - 1 ),

{y, 0, Infinity}, {x, -Infinity, 0}]

Integrate[(b^2) / (1 + a b^2), {b, 0, c}]

Integrate[((p x^2 y^2 - (x^2 y^2 / a)^(3 / 2) (b / (x y))) (1 / (x y))) / E^(x^2 / s),
{x, -Infinity, Infinity}]

Integrate[b / (1 + a b^2), {b, 0, c}]

Integrate[(x^2 Log[r / x^2]) / E^(x^2 / s), {x, -Infinity, Infinity}]

(*Execute following to clear all ouput*)
NotebookDelete[Cells[EvaluationNotebook[], GeneratedCell → True]]
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Appendix 5: Highly nonlinear regions
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Figure A5.3: Typical time evolution of the hydrodynamic equations (6.26) introduced in
chapter 6. The left and right-hand side panels, respectively, show the macroscopic charge
and mass density fields, normalized by some appropriate reference values. (a) The initial
charge density (top left) is set to emphasize a possible scenario of charge separation, as
schematically shown in Fig. 6.4. (b) It is shown that the regions (marked by XX) for
which the terms linear in δρ̃q or δϕ̃ in chapter 6 are expected to vanish, indeed develop
high mass densities (bottom right, marked by XX). The results from the linear stability
analysis presented in chapter 6 are thus valid away from these regions where a finite ρq0

approximation is reasonable. Credits: In this particular figure, the hydrodynamic code
was developed by Dr. Mathias Hummel (Hummel et al. , 2016), while the electrostatic
part was added by Chamkor Singh.

159





References
Allen, Michael P, & Tildesley, Dominic J. 2017. Computer simulation of liquids. Oxford

university press.

Anderson, Robert, Björnsson, Sveinbjörn, Blanchard, Duncan C, Gathman, Stuart,
Hughes, James, Jónasson, Sigurgeir, Moore, Charles B, Survilas, Henry J, & Vonnegut,
Bernard. 1965. Electricity in volcanic clouds. Science, 148(3674), 1179–1189.

Antony, S Joseph, Hoyle, William, & Ding, Yulong. 2004. Granular materials: funda-
mentals and applications. Royal Society of Chemistry.

Aranson, Igor S, & Tsimring, Lev S. 2006. Patterns and collective behavior in granular
media: Theoretical concepts. Reviews of Modern Physics, 78(2), 641.

Bailey, Adrian G. 1998. The science and technology of electrostatic powder spraying,
transport and coating. J. Electrostatics, 45(2), 85–120.

Ben-Avraham, Daniel, Ben-Naim, Eli, Lindenberg, Katja, & Rosas, Alexandre. 2003.
Self-similarity in random collision processes. Phys. Rev. E, 68(5), 050103.

Ben-Naim, Eli, & Krapivsky, Paul L. 2000. Multiscaling in inelastic collisions. Phys. Rev.
E, 61(1), R5.

Blum, J, Wurm, G, Kempf, S, Poppe, T, Klahr, H, Kozasa, T, Rott, M, Henning, Th,
Dorschner, J, Schräpler, R, et al. . 2000. Growth and form of planetary seedlings:
Results from a microgravity aggregation experiment. Phys. Rev. Lett., 85(12), 2426.

Blum, Jürgen. 2006. Dust agglomeration. Adv. Phys., 55(7-8), 881–947.

Blum, Jürgen, & Wurm, Gerhard. 2008. The growth mechanisms of macroscopic bodies
in protoplanetary disks. Annu. Rev. Astron. Astrophys., 46, 21–56.

Bodrova, Anna, Chechkin, Aleksei V, Cherstvy, Andrey G, & Metzler, Ralf. 2015. Quan-
tifying non-ergodic dynamics of force-free granular gases. Phys. Chem. Chem. Phys.,
17(34), 21791–21798.

Bodrova, Anna S, Chechkin, Aleksei V, Cherstvy, Andrey G, Safdari, Hadiseh, Sokolov,
Igor M, & Metzler, Ralf. 2016. Underdamped scaled Brownian motion:(non-) existence
of the overdamped limit in anomalous diffusion. Sci. Rep., 6, 30520.

Brey, J Javier, Ruiz-Montero, MJ, & Cubero, D. 1999. Origin of density clustering in a
freely evolving granular gas. Physical Review E, 60(3), 3150.

Brilliantov, Nikolai, Saluena, Clara, Schwager, Thomas, & Pöschel, Thorsten. 2004. Tran-
sient structures in a granular gas. Physical Review Letters, 93(13), 134301.

Brilliantov, Nikolai, Krapivsky, P L, Bodrova, Anna, Spahn, Frank, Hayakawa, Hisao,
Stadnichuk, Vladimir, & Schmidt, Jürgen. 2015. Size distribution of particles in Sat-
urn’s rings from aggregation and fragmentation. Proc. Natl. Acad. Sci. USA, 112(31),
9536–9541.

161



Brilliantov, Nikolai V, & Pöschel, Thorsten. 2000a. Self-diffusion in granular gases. Phys.
Rev. E, 61(2), 1716.

Brilliantov, Nikolai V, & Pöschel, Thorsten. 2000b. Velocity distribution in granular gases
of viscoelastic particles. Physical Review E, 61(5), 5573.

Brilliantov, Nikolai V, & Pöschel, Thorsten. 2010. Kinetic theory of granular gases.
Oxford University Press.

Brilliantov, Nikolai V, & Spahn, Frank. 2006. Dust coagulation in equilibrium molecular
gas. Math. Comput. Simulat., 72(2), 93–97.

Brilliantov, Nikolai V, Spahn, Frank, Hertzsch, Jan-Martin, & Pöschel, Thorsten. 1996.
Model for collisions in granular gases. Phys. Rev. E, 53(5), 5382.

Brilliantov, Nikolai V, Formella, Arno, & Pöschel, Thorsten. 2018. Increasing temperature
of cooling granular gases. Nature Communications, 9(1), 797.

Brito, R, & Ernst, MH. 1998. Extension of Haff’s cooling law in granular flows. EPL
(Europhysics Letters), 43(5), 497.

Campbell, Charles S. 1990. Rapid granular flows. Annual Review of Fluid Mechanics,
22(1), 57–90.
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