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Abstract 

Soil microbes have profound impacts on plant growth and survival and can either promote or 

inhibit plant dominance. Exotic plants are often strongly invasive because they have escaped 

their natural enemies, potentially including antagonistic soil microbes. I examined how the 

invasive shrub Lonicera maackii and a common native tree, Acer negundo, responded to soil 

microbial communities to determine the role of soil microbes in regulating invasion success. 

This was done by growing both species with microbes from invaded {L. maackii) and uninvaded 

(A. negundo) soils collected from three locations within a riparian forest. Seedlings were grown 

both in isolation (Experiment 1) and in combination {Experiment 2) with both live and sterilized 

soil inocula from these locations. Despite the expectation of minimal microbial inhibition due to 

a lack of natural enemies, L. maackii was strongly inhibited by 1/3 A. negundo and 3/3 L. 

maackii soil microbiome collections when grown in isolation. The native Acer negundo was 

strongly inhibited by 2/3 A. negundo and 3/3 L. maackii microbiome collections. Conversely, 

when grown together the soil microbiome largely mitigated negative interspecific interactions 

(i.e. plant-plant, plant-microbe) leading to a net advantage for L. maackii in many cases. This 

dynamic is likely key to L. maackii seedling success when it occurs with seedlings of other 

species, allowing L. maackii a competitive advantage through biotic interactions. 

Key wGrds: soil microbes, soil communities, soil inocula, invasion 
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Introduction 

With modern global commerce, anthropogenically-facilitated biological invasions and their 

negative consequences are ubiquitous aspects of plant communities worldwide. One of the 

biggest concerns about biological invasions is loss of biodiversity through competitive exclusion 

(Shochat et. al 2010; French and Watts 2015; Wardle and Peltzer 2017). This impact is especially 

evident in plant communities where resource partitioning is a stabilizing force. Niche 

specialization allows plants that are usually weak competitors to be locally more dominant 

given the right environmental conditions (Shriver 2017; De Deurwaerder et al. 2018). The 

addition of an invasive plant to a community often displaces competitively inferior plants from 

their niche. Niche specialists can easily be excluded through new competitive interactions 

(Strickland et al. 2010) or the alteration of the environment by an invader (Hilton et al. 2006), 

leading to a dramatic loss in species richness within invaded patches. 

Typically, direct competitive effects of an invasion are studied because they are more 

immediately evident than indirect or secondary invasion impacts. In many cases, especially for 

plant invasion, secondary effects may have much further reaching effects than direct 

competitive interactions. In particular, exotic plants have been shown to alter carbon, nitrogen 

and water cycling in soils (Ehrenfeld 2003; Van Der Heijden et al. 2008; Hickman et al. 2013; 

Delgado-Baquerizo et al. 2017), resource availability (Krishna and Dart 1984; Chen et al. 2003; 

Van Der Heijden et al. 2008), and ultimately competitive interactions (Pendergast et al. 2013; 

Mariette et al. 2018). This alteration of soil conditions and competition can strongly impact 

community composition of both soil microbial (Kourtev et al. 2002) and plant communities 

{Ehrenfeld 2003; Bever et al. 2010). 
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An often-overlooked indirect effect of plant invasion is their impact on soil microbial 

communities. Most plant species culture the adjacent rhizosphere with a unique suite of root 

exudates, accumulating a species-specific soil microbiome of mutualist, parasites, pathogens, 

and commensal organisms (Broeckling et al. 2008; Liang et al. 2012, 2016). Obligate mutualism 

between plants and microbes are not uncommon as many species are dependent on 

mycorrhizae to improve nutrient and water uptake (Krishna and Dart 1984; Hart et al. 2003; 

Basu et al. 2018). Species invasions may alter soil microbial communities in ways that may 

indirectly alter the performance of other plant species. For example, Alliaria petio/ata, a forest 

understory invader, releases root exudates with anti-fungal properties that suppress 

mycorrhizal populations {Hale and Kalisz 2012) leading to poor seedling recruitment of 

mycorrhizae-dependent plant species {Prati and Bossdorf 2004; Stinson et al. 2006). In another 

example, Solidago canadensis has been shown to produce allelopathic chemicals that suppress 

soil pathogens. This not only improves conditions for itself but also lowers pathogen loads for 

neighboring plants (Zhang et al. 2009). 

Furthermore, some of the indirect effects are likely mediated by interactions between the soil 

microbial communities of adjacent plant species. Plants are usually influenced by a cocktail of 

unique microbiomes from surrounding plants as well as their own (Zhang et al. 2009; Wardle 

and Pe:ltzer 2017). The prevalence and potential strength of such plant-microbe interactions 

elevates soil microbes to be one of the primary controllers of plant community structure and 

dynamics (Bezemer et al. 2018) and species invasions (Andonian et al. 2012) 

Lonicera maackii (Amur Honeysuckle) is one of the most widespread invasive plants in 

Eastern North America, widely colonizing riparian and mesic forests. Originally introduced as an 
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ornamental from Asia as an ornamental and for erosion control, the shrub quickly escaped 

cultivation via bird dispersal into the surrounding landscape {Hutchinson and Vankat 1997, 

1998; Bartuszevige and Gorchov 2006). Lonicera maackii is a fast-growing shrub that often 

forms large monocultural stands in disturbed forests (Hutchinson and Vankat 1998). The leaf 

phenology of L. maackii provides an extended growing season relative to native plant species. It 

is likely that the species' aggressive growth and extended phenology are responsible for the 

decline in understory plants {Collier and Vankat 2002; Gorchov and Trisel 2003) and canopy tree 

growth (Hartman and McCarthy 2009) in areas invaded by L. maackii. Lonicera maackii has 

been shown to reduce decomposition rates, leading to a buildup of organic matter, ultimately 

improving nutrient availability to the shrub (Arthur et al. 2012). Therefore, the indirect effects 

of L. maackii via changes to the soil microbiome are also likely to be an important factor in this 

species' success relative to native species (Arthur et al. 2012) and warrant further attention. 

As L. maackii commonly invades riparian forests, I focused on microbial interactions 

with the dominant native tree (Acer negundo) to determine whether microbially mediated 

effects are contributing to the success of L. maackii in this system. To do this I conducted two 

experiments using the soil microbiomes of both the invading shrub and the native tree. The first 

experiment studied the reciprocal effects of each soil microbiome on seedlings of both species 

grown in isolation. The second experiment repeated the design of the first, but with both 

species grown together in co-culture. This allowed for comparison between microbiome 

culturing effects. Specifically, I asked: 1) Does the soil microbiome of L. maackii differ from that 

of native Acer negundo in its effects on seedling growth when gown in isolation? 2) Do the net 
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impacts ofthe soil microbiome change when seedlings are grown together in co-culture? 3) 

How do the soil microbiome communities differ between A. negundo and L. maackii. 

Materials and Methods 

Soil was collected from the study site (The Ainsley Farm) located in Monroe Center, Ogle Co, IL 

(42.116307,-88.987253 ) for use as inoculum in the experiments. The study site was split into 

three sub-sites for sampling: west, middle and east sites. All subsites were within a riparian 

forest that stretched intermittently along a stream for approximately 8 km from its source to its 

confluence with the south branch of the Kishwaukee River. From each sub-site, two samples 

were taken from the top 5-10 cm of the soil, avoiding large root material. One sample was 

taken from beneath a well-established lonicera maackii patch and the other from beneath the 

uninvaded canopy of Acer negundo trees. The samples were transferred to the lab and 

mechanically homogenized with a 4 mm sieve to remove intact plant parts. Processed soils 

were then stored at 4°C until use. Soils were used as inocula for two greenhouse experiments 

and for microbiome analysis. After 90 days in each experiment the plant material from both 

experiments was harvested and dried at 60°C for 5 days. For plants grown in isolation, both 

above and below ground biomass was harvested. As initial analyses indicated very similar 

responses for both roots and shoots, I present only total biomass for the isolation experiment. 

Only above ground biomass was harvested for the plants grown in co-culture because of 

difficulty in differentiation. 

Experiment 1 - Impacts of microbial communities on seedling growth in isolation 
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For each sub-site, I generated three unique soil inocula types (invaded alive, uninvaded alive, 

and dead - Fig. 1). To control for abiotic heterogeneity in the inocula, each treatment consisted 

of a 1:1 mixture of both invaded and uninvaded soil types with either both dead (autoclaved at 

121 °C for 90 minutes) or one alive, depending on the treatment. This isolated the direct biotic 

effects of each unique microbial community from any abiotic differences in soil properties. 

Therefore, any differences in biomass production across treatments can be attributed solely to 

the biotic effects of the microbe community and not abiotic differences across locations 

(Pendergast et. al 2013). 

Seedlings of each species were started on soilless greenhouse medium (Pro-Mix, 

Premier Tech Ltd, Quebec, Canada). 164 ml cone-tainers (Ray Leach Inc) were filled 2/3 with the 

same sterile potting mix. 10 ml of mixed inoculum was added and integrated into the top 2 cm 

of this 1layer. The small size of the inoculum relative to soil volume further minimizes the 

potential for abiotically generated variation across treatments. The inoculum layer was then 

covered with an additional 2.5 cm of sterile potting mix to minimize microbial spread across 

treatments. Seedlings were transplanted into the sterile layer of each tube, and any that died 

within the first 10 days were replaced. 

Biomass data were converted into response ratio where each data point is scaled 

relative to its sterile control. By doing so, variance created by the differences in growth 

between the species, or abiotic differences across soils were removed from the analyses. 

Transformed data were then analyzed with ANOVA. All analyses were conducted in R (R Core 

Team 2017). 
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Experiment 2 - Impacts of soil microbial communities on seedlings grown in co-culture 

To contrast with the single species experiment, the influences of soil microbial communities on 

seedlings grown in co-culture were examined by measuring biomass production of plants grown 

together in a pot. I used an identical experimental design and inocula as the first experiment, 

except each pot (a 20 cm diameter, 3.05 L azalea pot) contained six seedlings, three of each 

species planted in an alternating pattern (Figure 2). This design was replicated 6 times per 

inoculum type. As in the first experiment, seedlings of each species were started on soilless 

greenhouse medium (Pro-Mix, Premier Tech ltd, Quebec, Canada). Each pot was filled 80% with 

sterile potting mix, and 250 ml of inoculum was added and integrated into the top 2 cm of the 

potting mix. The inoculum layer was then covered with an additional 2.5 cm of sterile potting 

mix to minimize microbial spread across treatments. Seedlings were transplanted into each pot, 

and any that died within the first 10 days were replaced. Seedlings were harvested after 60 

days and the data analyzed as above. However, as seedlings within pots are not independent, I 

averaged biomass data for each species in each pot to generate a single independent response 

value. 

Microbiome Community make-up and variation 

The inocula used in the two greenhouse experiments were analyzed to determine the makeup 

of the bacterial and eukaryotic components of the microbial community. The rRNA/eDNA from 

each soil sample was extracted and cleaned with the DNeasy Power Soil Kit (Qiagen, Hilden, 

Germany). Each soil sample yielded a unique community genome. PCR reactions for each 
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sample were run to amplify the V4 region of the 16S and 18S (prokaryote- and eukaryote

specific, respectively) rRNA using previously described primers (Kozich et at. 2013). The 

amplicons were then barcoded for multiplex sequencing analysis using the lllumina Nextera 

primer and index system (lllumina, Madison, WI) and KAPPA HiFi Hot Start Polymerase (Roche, 

Indianapolis, Indiana). Each sample was amplified using a unique set of indices that allow 

pooling of the am pl icons for sequencing. PCR products were run through a 2% agarose gel at 

100 V for 30 minutes. Amplified bands were identified by comparison to a lane run with 

O'GeneRuler 1 kb DNA standard ladder (Thermo Scientific, Waltham, MA). The correct bands 

were extracted, and the gel was removed with an MPBIO gel clean kit (MP Biomedicals, Santa 

Ana, Ca). The resulting amplicons were diluted to a standard concentration and pooled by 

amplified region. Two pooled samples (16S and 18S) were sent to the UIUC DNA Services Lab 

(Champaign, IL) for lllumina sequencing. The resulting sequence data was then compared 

against SILVA version 132 SSU reference database (Quast et al. 2013) using MOTHUR SOP (Schloss 

et al. 2013 ) to determine the community make-up and structure for each sample. Differences 

between the samples was analyzed with principal coordinates analysis (PCoA) using amplicon 

counts as a measure of relative abundance for prokaryotic and eukaryotic data separately. 

Results 

Impacts of microbial communities on seedling growth in isolation 

Overall, microbial impacts on growth were inhibitory across locations and microbial 

communities for both species (Fig. 3, Table 1). Lonicera maackii was inhibited by both the A. 
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negundo and L. maackii microbiomes across all sampling locations. However, A. negundo was 

only inhibited by its own microbe community, with minimal reduction in growth when grown 

with L. maackii microbes. Acer negundo's response to the L. maackii microbiome was 

statistically indistinguishable from the sterile control. This difference in microbial effects 

demonstrates that established L. maackii individuals likely alter the soil microbiome. Acer 

negundo's lack of inhibition by L. maackii soil microbes was unexpected, however. 

Impacts of soil microbial communities on plants in co-culture. 

In marked contrast to seedlings grown in isolation, there was a much different relationship 

between seedling growth and microbial community identity when grown in co-culture (Fig. 4). 

In co-culture, site and seedling species was significant, but not which soil microbial community 

was used. While most (9/12) plants grown individually were inhibited by live microbes, all but 

one group of plants grown in co-culture had a neutral (7 /12) or positive (4/12) relationship with 

live microbial communities. Half of the L. maackii microbe treatments (3/6) had a positive 

effect and the remaining were neutral relative to the biomass of sterile controls. Only in A. 

negundo soil from the eastern sub-site was the inhibition of A. negundo growth seen in plants 

grown alone maintained. In that same soil, L. maackii seedlings increased in growth, leading to 

a significant soil community x species interaction. 

Soil community composition 

Although community composition at the phylum and order levels appear to be quite consistent 

across all samples, resolution at the family level revealed clear variation across microbial 
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communities. The prevalence of many families fluctuated between samples, as two families 

were not detected and some accounted for a significant portion of other soil communities. The 

least diverse community was from the WN (West-ACNE) inocula which contained only 29 of the 

35 most common families representing the most common 50% of microbe families found 

overall. 

Microbial composition varied greatly across sampling locations and species (Fig 5 & 6) 

for both prokaryotic and eukaryotic components. The differences between the communities 

were mapped using a PCoA (principal coordinates analysis). Using R the PCoA plots were 

overlaid with a two-dimensional heat map representing relative Shannon-Wiener diversity. This 

analysis reveals that both soil history (species origin) and site are likely important determinants 

of microbiome make up. For both the prokaryotic and eukaryotic community, variation is more 

strongly associated with site. 

Shannon diversity was correlated with both PCoA axes in each ordination. In both cases 

points lower and to the right have the lowest Shannon diversity while those towards the top 

left have the highest. For example, WN is the furthest to the right and low because its 

composition was most different from the others and had the lowest Shannon diversity. L. 

maackii soils always had a higher Shannon diversity than A. negundo soils and soils from the 

western site had consistently lower Shannon diversity than other sites. 

Discussion 
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The Enemy Release hypothesis suggests that exotic species may benefit from a loss of natural 

enemies. This loss of enemies often leads to increased vigor in the invaded range, allowing 

species to become invasive (Colautti et al. 2004; Agrawal et al. 2008). Enemy release is thought 

to be a factor behind Lonicera maackii invasion (Lieurance and Cipollini 2012, 2013). It is likely 

that L. maackii has few natural enemies in newly invaded areas. Expectation of enemy release 

would be that non-native species should experience relatively fewer antagonistic interactions 

with soil microbes than associated native species, which retain their full complement of 

antagonistic soil organisms (Andonian et al. 2012; Dawson and Schrama 2016). However, the 

data from the greenhouse experiments do not support enemy release as an explanation for 

continued L. maackii success. Exotic plants tend to acquire new enemies over time (Diez et al. 

2010) potentially explaining why L. maackii was inhibited by its own microbiome more than by 

the A. negundo microbiome. 

Data from the isolated seeding response experiment indicates that the soil microbiomes 

of L. maackii and A. negundo vary significantly in their influence on seedling growth. Lonicera 

maackii was inhibited significantly by both the A. negundo and L. maackii microbe communities 

but Acer negundo was only inhibited by its own microbes. Acer negundo is the dominant native 

tree at the study site, therefore its natural enemies would would be expected to be abundant 

throughout the site. This is the likely mechanism for Acer negundo self-inhibition at the study 

site. Conversely in the Rhone valley of France where Acer negundo is highly invasive, adult acer 

trees were found to promote the growth of seedlings (Girel et al. 2010). This stark difference 

between native and invaded ranges is evidence that enemy release is likely a factor for A. 

negundo invasiveness (Reinhart and Callaway 2009). 
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Lonicera maackii on the other hand is a relatively new invader. Interestingly, Acer 

negundo was not inhibited by the L. maackii microbiome but by its own microbiome. This 

suggest that L. maackii cultures a unique soil community where A. negundo enemies are less 

abundant. It is likely that soils directly adjacent to L. maackii plants have accumulated this 

community over time displacing disused microbes antagonistic to A. negundo. This would in

turn generate microbiome conditions advantageous to A. negundo. 

When grown in co-culture, seedling growth of both species almost always showed a 

neutral or positive association with soil microbes regardless of their source. This result is in 

marked contrast to the predominately antagonistic effects observed in the first experiment. 

The only difference between the experiments was that in the second experiment multiple 

species share a single pot. This results in a unique suite of biotic interactions determined by the 

initial inocula and selective pressures exerted by both plants (Bever et al. 1997). The reversal of 

soil microbiome effects could be due to reduction of plant-plant competition brought about by 

a limited plant-microbiome interaction. In other words, the direct negative impacts of the 

microbe community on each plant is outweighed by the indirect effect of reduced competition 

caused by harm that the microbe community causes to its plant competitor. However, as plants 

were overall larger in the second experiment, any competition appears minimal. 

Another possible mechanism is the microbe-culturing effect of individual plant species. 

When grown in isolation, a soil microbial community unique to that plant species only was 

generated via interactions between the seedling and the inoculum. When grown together with 

overlapping root systems, the single inoculum will interact with both plant species: preventing 

dominance of the soil microbial community by specialist species of either plant species. 
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Furthermore, soil microbial communities may directly interact, further altering composition and 

therefore biotic impacts. (Czaran et al. 2002; Hibbing et al. 2010; Kinkel et al. 2010). As 

seedlings often occur in mixed assemblages the effects in mixed culture appear more relevant 

to the natural systems being invaded. 

Regardless of the mechanism (plant-plant, plant-microbe, microbe-microbe, etc.), the 

net effects are altered when L. maackii and A. negundo were grown together. Plant-microbe 

interactions can mitigate negative environmental effects on plant growth. This mitigating effect 

of microbial co-culture may be important for plant community diversity and long-term 

persistence of less competitive plants (Kinkel et al. 2010; Bezemer et al. 2018). 

In the case of lonicera maackii invasion, plant-microbe interactions are likely integral to 

success, but indirectly. While enemy release was not shown to occur, plant-microbe 

interactions in co-culture proved to be advantageous for L. maackii in 5/6 microbiomes tested, 

despite strong inhibition when grown in isolation. This complex soil-mitigated interaction helps 

explain how a plant that with seemingly vulnerable seedling can be such an aggressive invader 

in riparian systems. 
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Figure 1. Experimental design to determine microbiome effect on seedling growth in isolation. Each 

species (ACNE & LOMA) were grown singly in a 164 ml cone-tainer inoculated with either live LOMA, live 

ACNE or sterilized field soil. To isolate abiotic effects all inoculum consisted of a 50:50 mixture of LOMA 

& ACNE soils where either one or both portions sterilized. This experiment was further replicated with 

inoculum from three sites (East, Central, and West). 
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Figure 2. Experimental design to determine microblome effects on seedlings grown in co-culture. 

Three A. negundo (An) & three L. maackii (Lm) seedlings were grown together with either live L. maackii, 

live A. negundo or sterilized field soil. To isolate a biotic effects all inoculum consisted of a 50:50 mixture 

of both soil inocula where either one or both portions were sterilized. This experiment was replicated six 

times per treatment and further replicated with inoculum from three sites (East, Central, and West). 
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Figure 3. Plant response to mlcrobiome grown Individually. Bars represent the mean In (response ratio) 

of each species to each control (sterilized) soil. Error bars represent the SEM of each sample (n=?). 

Asterisks (*) denote samples that vary significantly from their respective control (i.e. O). 
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Figure 4. Plant response to mlcroblome grown in co-culture. Bars represent the mean In (response 

ratio) of each species to each control (sterilized) soil. Error bars represent the SEM of each sample. 

Asterisks (*) denote samples that vary significantly from their respective control (i.e. O) 
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Figure S. PCoA of ordination of prokaryotic community composition of L. maackii {L) and A. negundo 

{A) inocula from each collection site (E, C and W). Points representing each community are plotted 

based on a two-dimensional model. Each axis was correlated with Shannon diversity and represented in 

an overilaying heat map where darker regions represent communities of higher Shannon diversity. 
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Figure 6. PCoA of ordination of eukaryotic community composition of L. maackii (L) and A. negundo 

(A) inocula from each collection site (E, C and W). Points representing each community are plotted 

based on a two-dimensional model. Each axis was correlated with Shannon diversity and represented in 

an ovenlaying heat map where darker regions represent communities of higher Shannon diversity. 
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Table 1. Effects of site and soil microbiome identity on A. negundo and L. maackii biomass when grown 

in isolation. Data analyzed are In{ response ratios) for each sample relative to its control. 

Significant P values indicated in bold. Model R2= 0.098 for A. negundo and 0.198 for L. maackii. 

Response 

Acer negundo 

Site 

Microbiome 

Site*Microbiome 

Residuals 

Lonicera maackii 

Site 

Microbiome 

Site*Microbiome 

Residuals 

df 

2 

2 

4 

171 

2 

2 

4 

171 

MS 

0.1024 

2.0182 

0.2189 

0.1215 

0.0019 

0.5309 

0.1123 

0.0819 

F p 

0.842 0.4325 

16.603 <0.0001 

1.802 0.1307 

0.024 0.9763 

6.476 0.0019 

1.370 0.2464 
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Table 2. Effects of site soil microbiome identity and species on A. negundo and L. maackii biomass when 

grown in co-culture. R2= 0.870 

Response df MS F p 

Site 2 20232 5.458 0.0053 

Microbiome 2 5275 1.446 0.241 

Sp. 1 2513058 689.147 2.2e-16 

Site:Microbiome 4 11179 3.066 0.020 

Site:Sp. 2 8373 2.296 0.107 

Microbiome:Sp. 2 7251 1.989 0.143 

Site:Microbiome:Sp. 2 10071 2.762 0.0032 

Residuals 90 3647 
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Table 3. Soil Microbiome make-up by OUT Phylum 

Phylum Fraction 

El EN Cl CN WI WN 

Prokaryote 
Actinobacteria 0.2722 0.2497 0.2560 0.2513 0.2495 0.2383 

Proteobacteria 0.2052 0.2614 0.2461 0.2420 0.2452 0.1989 

Unknown Bacteria 0.2549 0.2234 0.2209 0.2160 0.2199 0.1321 

Acido/JJacteria 0.1311 0.1546 0.1290 0.1541 0.1118 0.1530 

Verrucomicrobia 0.0343 0.0304 0.0351 0.0383 0.0649 0.1370 

Firmicutes 0.0328 0.0190 0.0168 0.0242 0.0454 0.0856 

Planctomycetes 0.0203 0.0209 0.0282 0.0287 0.0219 0.0428 

Crenarchaeota 0.0243 0.0133 0.0229 0.0159 0.0278 0.0052 

Unknown Archaea 0.0133 0.0065 0.0248 0.0093 0.0000 0.0000 

Bacteroidetes 0.0044 0.0065 0.0095 0.0111 0.0053 0.0009 

Gemmatimonadetes 0.0041 0.0079 0.0072 0.0051 0.0056 0.0037 

Nitrospirae 0.0011 0.0027 0.0015 0.0018 0.0019 0.0012 

Chloroflexi 0.0022 0.0027 0.0011 0.0018 0.0003 0.0009 

Armatimonadetes 0.0000 0.0008 0.0008 0.0006 0.0000 0.0003 

Chlamydiae 0.0000 0.0000 0.0000 0.0000 0.0006 0.0000 

Eukaryote 
Ascomycota 0.6656 0.5778 0.6250 0.6501 0.6836 0.5476 

Basidiomycota 0.1297 0.1912 0.1536 0.1584 0.0786 0.1675 

Unknown 0.1081 0.1131 0.1141 0.1109 0.1193 0.1582 

Mucoromycota 0.0710 0.0860 0.0866 0.0605 0.0863 0.0875 

Chytridiomycota 0.0210 0.0255 0.0165 0.0170 0.0281 0.0303 

Amoebozoa 0.0023 0.0037 0.0031 0.0022 0.0026 0.0029 

Blastocladiomycota 0.0021 0.0023 0.0010 0.0006 0.0012 0.0057 

Ciliophora 0.0001 0.0002 0.0001 0.0001 0.0000 0.0002 

Aphelida 0.0001 0.0001 0.0000 0.0000 0.0004 0.0000 
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