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Abstract

Given an STS(v), we ask if there is a permutation of the points of the
design such that no � consecutive points in this permutation contain a
block of the design. Such a permutation is called an �-good sequenc-
ing. We prove that 3-good sequencings exist for any STS(v) with v > 3
and 4-good sequencings exist for any STS(v) with v > 71. Similar re-
sults also hold for partial STS(v). Finally, we determine the existence
or nonexistence of 4-good sequencings for all the nonisomorphic STS(v)
with v = 7, 9, 13 and 15.

1 Introduction

A Steiner triple system of order v is a pair (X,B), where X is a set of v points and
B is a set of 3-subsets of X (called blocks), such that every pair of points occur in
exactly one block. We will abbreviate the phrase “Steiner triple system of order v”
to STS(v).

It is well-known that an STS(v) contains exactly v(v−1)/6 blocks, and an STS(v)
exists if and only if v ≡ 1, 3 mod 6. The definitive reference for Steiner triple systems
is the book [4] by Colbourn and Rosa.

∗ D.R. Stinson’s research is supported by NSERC discovery grant RGPIN-03882.
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Suppose (X,B) is an STS(v). We ask if there is a permutation (or sequencing)
of the points in X so that no three consecutive points in the sequencing comprise
a block in B. That is, can we find a sequencing π = [x1 x2 · · · xv] of X such that
{xi, xi+1, xi+2} �∈ B for all i, 1 ≤ i ≤ v − 2? Such a sequencing will be termed a
3-good sequencing for the given STS(v).

More generally, for an integer � ≥ 3, we could ask if there is a sequencing of
the points such that no � consecutive points in the sequencing contain a block in B.
Such a sequencing will be termed �-good for the given STS(v). Obviously an �-good
sequencing is also m-good if 3 ≤ m ≤ �.

As an example, consider the STS(7) (X,B), whereX = Z7 and B = {013, 124, 235,
346, 450, 451, 562}. The sequencing [0 1 2 3 4 5 6] is easily seen to be 3-good. How-
ever, it is not 4-good, as the block 013 is contained in the first four points of the
sequencing. (Note that, here and elsewhere, we might write blocks {x, y, z} as xyz
if the context is clear.)

Actually, it is not difficult to see that the unique (up to isomorphism) STS(7)
does not have a 4-good sequencing. By relabelling points if necessary, suppose there
is a 4-good sequence for an STS(7) that begins [0 1 2 3]. There cannot be a block
contained in {0, 1, 2, 3}. Hence, without loss of generality, {0, 1, 4}, {0, 2, 5} and
{0, 3, 6} are blocks. This forces the remaining blocks to be {1, 2, 6}, {1, 3, 5}, {2, 3, 4}
and {4, 5, 6}. In particular, {4, 5, 6} is a block, so there is no way to complete the
sequence beginning [0 1 2 3] to a 4-good sequence.

A partial Steiner triple system of order v is a pair (X,B), where X is a set of
v points and B is a set of 3-subsets of X (called blocks), such that every pair of
points occur in at most one block. We will abbreviate the phrase “partial Steiner
triple system of order v” to partial STS(v) or PSTS(v). There are no congruential
restrictions on the values v for which PSTS(v) exist. We will also consider �-good
sequencings of PSTS(v).

The main results we prove in this paper are that every STS(v) with v > 3 has a
3-good sequencing, and every STS(v) with v > 71 has a 4-good sequencing. Similar
results are obtained for PSTS(v) as well. We also study 4-good sequencings of STS(v)
for v ≤ 15. We show that there is no 4-good sequencing of the STS(7) or STS(9),
but all STS(13) and STS(15) have 4-good sequencings.

We will use the following notation. Suppose (X,B) is an STS(v). Then, for any
pair of points x, y, let third(x, y) = z if and only if {x, y, z} ∈ B. The function third
is well-defined because every pair of points occurs in a unique block in B.

1.1 Background and motivation

Brian Alspach gave a talk entitled “Strongly Sequenceable Groups” at the 2018
Kliakhandler Conference, which was held at Michigan Technological University. In
this talk, among other things, the notion of sequencing diffuse posets was introduced
and the following research problem was posed:
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“Given a triple system of order n with λ = 1, define a poset P by letting
its elements be the triples and any union of disjoint triples. This poset is
not diffuse in general, but it is certainly possible that P is sequenceable.”

A sequenceable STS(v) (or PSTS(v)) is an STS(v) in which the points can be
ordered (i.e., sequenced) so that no t consecutive points can be partitioned into t/3
blocks, for any t ≡ 0 mod 3, t < v. The problem is studied in Alspach, Kreher
and Pastine [1] and in Kreher and Stinson [3]. In [3], it is shown that there is a
nonsequenceable STS(v) for all v ≡ 1 mod 6, v > 7.

One possible relaxation of the definition of sequenceable STS(v) would be to
require a sequencing of the points so that no t consecutive points can be partitioned
into t/3 blocks, for any t ≡ 0 mod 3, t ≤ w, where w < v is some specified integer.
Such an STS(v) could be termed w-semi-sequenceable.

A 3-semi-sequenceable STS(v) has a sequencing of the points so that no three
consecutive points form a block. This is identical to a “3-good sequencing.” As
noted above, we then generalize this notion to �-good sequencings and we consider
the cases � = 3 and � = 4 in detail.

Although we do not explicitly study w-semi-sequenceable STS in this paper,
we note the following connection between w-semi-sequenceable STS(v) and STS(v)
having �-good sequencings.

Theorem 1.1. Let u ≥ 1 be an integer. An STS(v) that has a (2u + 1)-good se-
quencing is 3u-semi-sequenceable.

Proof. Let π be a sequencing of the points of an STS(v) that is not 3u-semi-sequenceable.
Then, for some t ≡ 0 mod 3, there are t consecutive points in π that can be par-
titioned into t/3 blocks of the STS(v). Let these t points be denoted (in order)
x1, . . . , xt. Then

{x1, . . . , xt} =

t/3⋃

j=1

Bj,

where B1, . . . , Bt/3 are blocks in the STS(v). For 1 ≤ j ≤ t/3, let

mlo(j) = min{i : xi ∈ Bj}
and let

mhi(j) = max{i : xi ∈ Bj}.
Clearly there is a block Bj such that mlo(j) ≥ t/3. It also holds that mhi(j) ≤ t.
Therefore the block Bj ⊆ {xt/3, . . . , xt}, which means that the sequencing π is not
(2t/3 + 1)-good.

2 Existence of 3-good sequencings

In this section, we show that there is a 3-good sequencing for any STS(v) with v ≥ 7.
We prove this in three ways: by a counting argument, by using a greedy algorithm,
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and by relabelling the points of the design in a suitable way. The counting argument
and greedy algorithm can also be adapted to handle PSTS(v) with v > 3 (v > 5,
respectively).

2.1 A counting argument

Let (X,B) be an STS(v) on pointsX = {1, . . . , v}. For a sequencing π = [x1 x2 · · · xv]
of X, and for any i, 1 ≤ i ≤ v − 2, define π to be i-forbidden if {xi, xi+1, xi+2} ∈ B.
Let forbidden(i) denote the set of i-forbidden sequencings. Also, define a sequencing
to be forbidden if it is i-forbidden for at least one value of i and let forbidden denote
the set of forbidden sequencings. Clearly, a sequencing is 3-good if and only if it is
not forbidden.

Theorem 2.1. Suppose v > 3 and (X,B) is an STS(v) on points X = {1, . . . , v}.
Then there is a sequencing π = [x1 x2 · · · xv] of X that is 3-good for (X,B).
Proof. Clearly,

forbidden =
v−2⋃

i=1

forbidden(i).

For any given value of i, it holds that |forbidden(i)| = v!/(v−2). This follows because,
for any two points, xi and xi+1, the 3-subset {xi, xi+1, xi+2} ∈ B if and only if xi+2 =
third(xi, xi+1). So given any xi and xi+1, the probability that {xi, xi+1, xi+2} ∈ B is
1/(v − 2).

Next, by the union bound,

|forbidden| ≤
v−2∑

i=1

|forbidden(i)| = (v − 2)× v!

(v − 2)
= v! (1)

Equality in (1) would be obtained if and only if the sets forbidden(i), 1 ≤ i ≤ v − 2,
are pairwise disjoint.

We show that equality in (1) is impossible: Consider any two intersecting blocks
{a, b, c}, {c, d, e} ∈ B (here is where we use the assumption that v > 3). Then
any sequencing in which the first five symbols are a b c d e (in that order) is in
forbidden(1)∩ forbidden(3). Therefore, |forbidden| < v! and thus there exists a 3-good
sequencing.

Theorem 2.1 also holds for partial STS(v) when v > 3.

Theorem 2.2. Suppose v > 3 and (X,B) is a partial STS(v) on points X =
{1, . . . , v}. Then there is a sequencing π = [x1 x2 · · · xv] of X that is 3-good
for (X,B).
Proof. If (X,B) is an STS(v), then we are done by Theorem 2.1. Therefore, we
can assume there is at least one pair {a, b} that does not appear in any block in B.
Suppose xi = a and xi+1 = b. Then, for every possible xi+2, we have {xi, xi+1, xi+2} �∈
B. It then follows that |forbidden(i)| < v!/(v − 2) for all i.
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Now, when we apply the union bound, we have

|forbidden| ≤
v−2∑

i=1

|forbidden(i)| < (v − 2)× v!/(v − 2) = v!

and we are done.

2.2 A greedy algorithm

Theorem 2.1 and a slightly weaker version of Theorem 2.2 can also be proven using
a greedy algorithm. First, we consider the case where (X,B) is an STS(v), where
X = {x1, . . . , xv}. We begin by choosing any two distinct values for x1 and x2 and
then we attempt to define x3, x4, . . . , xv in turn, in such a way that we end up with
a 3-good sequencing. Thus, our strategy is to design a greedy algorithm.

Consider any i such that 3 ≤ i ≤ v − 1. We require the following conditions to
be satisfied:

1. xi �∈ {x1, . . . , xi−1}, and
2. xi �= third(xi−2, xi−1).

Thus, there are at most i values for xi that are ruled out. Because i ≤ v − 1, there
is at least one value for xi that satisfies the two required conditions.

After choosing x1, x2, . . . , xv−1 as described above, there is only one unused value
remaining for xv. But this might not result in a 3-good sequencing, if it happens that
{xv−2, xv−1, xv} ∈ B. However, in this case, it turns out that we can find a slight
modification of of the sequencing [x1 x2 · · · xv] that is 3-good, provided that v > 5.

Suppose we made sure to select x5 such that {x2, x3, x5} ∈ B, i.e., we define
x5 = third(x2, x3). This is an allowable choice for x5 because

• {x1, x2, x3} �∈ B and {x2, x3, x4} �∈ B, which implies that

x5 �∈ {x1, x2, x3, x4},

and

• {x3, x4, x5} �∈ B, because {x2, x3, x5} ∈ B and x2 �= x4.

Now, suppose we have a sequencing [x1 x2 · · · xv], where {x2, x3, x5} ∈ B, which
fails to be 3-good only because {xv−2, xv−1, xv} ∈ B (which is not allowed). Consider
the modified sequencing [y1 y2 · · · yv] obtained from [x1 x2 · · · xv] by switching x1

and xv. In order to show that [y1 y2 · · · yv] is a 3-good sequencing, we need to show
that

1. {yv−2, yv−1, yv} = {xv−2, xv−1, x1} �∈ B, and
2. {y1, y2, y3} = {xv, x2, x3} �∈ B.
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1. Choose a block {b, c, e} ∈ B, let a �= b, c, e and let d �= a, b, c, e.

2. Define x1 = a, x2 = b, x3 = c, x4 = d and x5 = e.

3. For i = 6 to v − 1 do define xi to be any element of X that is distinct from
the values x1, . . . , xi−1 and third(xi−2, xi−1).

4. Define xv to be the unique value that is distinct from x1, . . . , xv−1.

5. If {xv−2, xv−1, xv} ∈ B then interchange x1 and xv.

6. Return (π = [x1 x2 · · · xv]).

Figure 1: Algorithm to find a 3-good sequencing for a partial STS(v), (X,B)

To prove 1, we observe that {xv−2, xv−1, x1} �∈ B because {xv−2, xv−1, xv} ∈ B and
xv �= x1. To prove 2, we observe that {x2, x3, x5} ∈ B and xv �= x5 because v > 5.
Thus the sequencing [y1 y2 · · · yv] is 3-good.

The above-described process can also be carried out to find a 3-good sequencing
for any partial STS(v) with v > 5. The resulting algorithm is presented in Figure 1.

From the discussion above, we have the following theorem.

Theorem 2.3. Suppose that (X,B) is a partial STS(v) with v > 5. Then the Algo-
rithm presented in Figure 1 will find a sequencing π that is 3-good for (X,B).

2.3 Relabelling points

In this section, we give a short, elegant proof that an STS(v) with v ≥ 7 has a
3-good sequencing. This proof was pointed out to us by Charlie Colbourn (private
communication).

Given an STS(v) with v ≥ 7, say on points 1, . . . , v, relabel the points so that
the blocks containing 1 are

{1, 2, v}, {1, 3, 4}, {1, 5, 6}, . . . , {1, v − 2, v − 1}.
Then consider the sequencing [1 2 · · · v]. We observe the following, using the fact
that v ≥ 7:

{1, 2, 3} is not a block because {1, 2, v} is a block
{2, 3, 4} is not a block because {1, 3, 4} is a block
{3, 4, 5} is not a block because {1, 3, 4} is a block
{4, 5, 6} is not a block because {1, 5, 6} is a block
{5, 6, 7} is not a block because {1, 5, 6} is a block
etc.
{v − 3, v − 2, v − 1} is not a block because {1, v − 2, v − 1} is a block
{v − 2, v − 1, v} is not a block because {1, v − 2, v − 1} is a block.

Therefore this sequencing is 3-good.
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3 Existence of 4-good sequencings

For any integer � ≥ 3, it is tempting to conjecture that all “sufficiently large” STS(v)
have �-good sequencings. In this section, we prove this conjecture for the case � = 4.
Then, we present some results on 4-good sequencings of “small” STS(v) in Sec-
tion 3.1.

We might attempt to show the existence of a 4-good sequencing using any of the
three methods described in the previous section. It turned out that we were able
to do this using a greedy strategy similar to the algorithm presented in Figure 1.
In general, when we choose a value for xi, it must be distinct from x1, . . . , xi−1, of
course. It is also required that

xi �∈ {third(xi−3, xi−2), third(xi−3, xi−1), third(xi−2, xi−1)}.

There will be a permissible choice for xi provided that i − 1 + 3 ≤ v − 1, which is
equivalent to the condition i ≤ v − 3. Thus we can define x1, x2, . . . , xv−3 in such
a way that they satisfy the relevant conditions, and our task would be to somehow
fill in the last three positions of the sequencing, after appropriate modifications, to
satisfy the desired properties. We describe how to do this now, for sufficiently large
values of v.

Suppose that [x1 x2 · · · xv−3] is a 4-good partial sequencing of X = {1, . . . , v}
(that is, there is no block contained in any four consecutive points in the sequence
[x1 x2 · · · xv−3]). Let {α1, α2, α3} = X \ {x1, x2, . . . , xv−3}. Also, let

β1 = third(xv−5, xv−4),
β2 = third(xv−5, xv−3), and
β3 = third(xv−4, xv−3).

Clearly β1, β2 and β3 are distinct. Observe that xv−2 and xv−1 must be chosen so
that xv−2 �= β1, β2, β3 and xv−1 �= β3.

By permuting α1, α2, α3 if necessary, we can assume the following two conditions
hold:

α2 �= β3 (2)

and
xv−3 �= third(α2, α3). (3)

Now, define the following:

γ = third(α2, xv−3),
δ = third(α2, xv−4),
ε = third(α3, xv−3), and
η = third(α2, α3).

Next, suppose we define xv−2 = χ, xv−1 = α2 and xv = α3, where

χ �∈ {xv−5, xv−4, xv−3, β1, β2, β3, γ, δ, ε, η} (4)
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Table 1: Possible blocks in the last six elements of the sequencing

triple explanation
{xv−5, xv−4, xv−3} greedy algorithm ensures it is not a block
{xv−5, xv−4, χ} {xv−5, xv−4, β1} is a block and χ �= β1

{xv−5, xv−3, χ} {xv−5, xv−3, β2} is a block and χ �= β2

{xv−4, xv−3, χ} {xv−4, xv−3, β3} is a block and χ �= β3

{xv−4, xv−3, α2} {xv−4, xv−3, β3} is a block and α2 �= β3 by (2)
{xv−4, χ, α2} {xv−4, δ, α2} is a block and χ �= δ
{xv−3, χ, α2} {xv−3, γ, α2} is a block and χ �= γ
{xv−3, χ, α3} {xv−3, ε, α3} is a block and χ �= ε
{xv−3, α2, α3} this is not a block by (3)
{χ, α2, α3} {η, α2, α3} is a block and χ �= η.

is to be determined. Thus, the last six elements of the sequencing will be

xv−5 xv−4 xv−3 χ α2 α3.

There should be no block in B contained in any four consecutive points chosen
from these six points. We enumerate all the relevant triples and verify that none of
them are blocks in Table 1.

Suppose v ≥ 14. Our strategy is to define χ to be one of x1, x2, . . . , x8, in
such a way that (4) is satisfied. Note that v − 5 ≥ 9, so we are guaranteed that
χ �= xv−5, xv−4, xv−3. We can choose χ ∈ {x1, x2, . . . , x8} because at least one of
these eight values is not in the set {β1, β2, β3, γ, δ, ε, η}, which has size 7. Suppose
we take χ = xκ, where κ ∈ {1, 2, . . . , 8}. Then we redefine xκ = α1. Another way to
describe this process is to temporarily define xv−2 = α1 and then interchange xv−2

with xκ.

Now, when we initially choose x1, x2, x3, . . . , we have no idea which value α1 we
will be interchanging with xκ. So it is necessary to ensure that any value we “swap in”
will not result in a block being contained in four successive points of the sequencing.
Clearly we only have to worry about the first 8 + 3 = 11 points, x1, x2, x3, . . . , x11.

Define

Y =
{
third(xi, xj) : 1 ≤ i < j ≤ 11, |i− j| ≤ 3

} \ {x1, . . . , x11}.

(Note, in the definition of Y , that we do not care about pairs of points that are more
than three positions apart.) Denote the points in Y as y1, . . . , ym. It is not hard to
verify that m ≤ 27, because there are ten pairs xi, xj in {x1, . . . , x11} with j− i = 1,
nine pairs with j − i = 2 and eight pairs with j − i = 3.

Having already chosen x1, . . . , x11, we want to “pre-specify” some of the next
points. Due to the changes that are introduced, this part of the algorithm will be
referred to as the “modified greedy approach.” To be specific, we define x14 = y1,
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x16 = y2, . . . , x2m+12 = ym. Note that no three of the yi’s are contained in four
consecutive points of the sequencing, from x12 to x2m+12.

The following diagram might be helpful in the subsequent discussion:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

y1 x15 y2 x17 · · · x2m+7 ym−2 x2m+9 ym−1 x2m+11 ym

In this diagram, the red values have been defined and we need to determine the
black values. Let us consider how the greedy algorithm must be modified in order to
accomplish this. We have the following additional restrictions “looking ahead” when
choosing values for x12, x13, x15, . . . , x2m+11:

• each of x12, x13, x15, . . . , x2m+11 must be distinct from y1, . . . , ym;

• we require that {x11, x12, y1} �∈ B, so we must define

x12 �= third(x11, y1);

• we require that

{x11, x13, y1}, {x12, x13, y1}, {x13, y1, y2} �∈ B,
so we must define

x13 �= third(x11, y1), third(x12, y1), third(y1, y2);

• in the “general” case, for i = 2, . . . , m− 1, we require that

{x2i+9, x2i+11, yi}, {yi−1, x2i+11, yi}, {x2i+11, yi, yi+1} �∈ B,
so we must define

x2i+11 �= third(x2i+9, yi), third(yi−1, yi), third(yi, yi+1);

• finally, we require that

{x2m+9, x2m+11, ym}, {ym−1, x2m+11, ym} �∈ B,
so we must define

x2m+11 �= third(x2m+9, ym), third(ym−1, ym).

Of course, we need to ensure that the greedy algorithm can choose values for all
these xi’s.

Now consider what happens when we swap xκ with α1. The value α1 �∈ Y , so
α1 cannot form a block with any two of the points x1, . . . , x11. Because κ ≤ 8,
there are no blocks contained in any four consecutive points chosen from the first 11
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1. Determine x1, . . . , x11 using the greedy approach.

2. Fill in the values y1, . . . , ym and the determine the remaining values
x12, . . . , x2m+11 using the modified greedy approach.

3. Determine x2m+13, . . . , xv−3 using the greedy approach.

4. Define the values xv−2 = α1, xv−1 = α2, xv = α3 as described in the text, and
then swap xv−2 with xκ.

5. Return (π = [x1 x2 · · · xv]).

Figure 2: Algorithm to find a 4-good sequencing for an STS(v), (X,B)

points of the sequencing. At the opposite end, we have guaranteed that there are
no blocks contained in any four consecutive points chosen from the last six points of
the sequencing, because of the way that xκ was chosen.

Summarizing, the resulting algorithm has the high-level structure described in
Figure 2.

All the above steps can be carried out if we ensure that the first 2m+12 elements
of the sequencing do not overlap with the last six elements of the sequencing. Because
m ≤ 27, this condition is guaranteed to hold if v − 5 ≥ 2 × 27 + 12 + 1, or v ≥ 72.
So we have proven the following.

Theorem 3.1. Suppose v > 71 and (X,B) is an STS(v) on points X = {1, . . . , v}.
Then there is a sequencing π = [x1 x2 · · · xv] of X that is 4-good for (X,B).

A similar result can also be proven for PSTS(v) using this technique.

3.1 Results on 4-good sequencings of STS(v) for v ≤ 15

We have shown in Section 1 that there is no 4-good sequencing for the unique STS(7).
Here, we use a counting method to establish the same result, as well as an analogous
result for the unique STS(9).

Suppose we take the points of an STS(v) to be 1, . . . , v. Suppose, by relabelling
points if necessary, that [1 2 3 4 · · · v] a 4-good sequencing of an STS(v). We say
that a block B is of type i if |B ∩{1, 2, 3, 4}| = i. Clearly, we must have i ∈ {0, 1, 2}.

For i = 0, 1, 2, let bi denote the number of blocks of type i. Simple counting allows
us to determine the values b0, b1 and b2. First, because the sequencing is 4-good, we
have b2 =

(
4
2

)
= 6. Next, because each point appears in (v − 1)/2 blocks, we have

b1 = 4((v − 1)/2 − 3)) = 2v − 14. Finally, because the total number of blocks is
v(v − 1)/6, we have b0 = v(v − 1)/6− (2v − 14)− 6 = v(v − 1)/6− 2v + 8.

Now, if v = 7, we obtain b2 = 6, b1 = 0 and b0 = 1. The block of type 0 must
be {5, 6, 7}. Since these are the last three points of the sequencing, the sequencing
is not even 3-good. Therefore there is no 4-good sequencing of the STS(7).

If v = 9, we obtain b2 = 6, b1 = 4 and b0 = 2. If the sequencing is 4-good, then
any block B of type 0 must contain both 5 and 9 (if not, then B ⊆ {5, 6, 7, 8} or
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B ⊆ {6, 7, 8, 9}, neither of which can occur if the sequencing is 4-good). But there is
at most one block in the STS(v) that contains the pair {5, 9}, so b0 = 2 is impossible.
Therefore there is no 4-good sequencing of the STS(9).

However, for v = 13, 15, we quickly found 4-good sequencings of all the noniso-
morphic STS(v) by computer, by using a simple backtracking algorithm. We have
found such sequencings for the two nonisomorphic STS(13) and the 80 nonisomorphic
STS(15); these are presented in the Appendix.

4 Conclusion

For any integer � ≥ 3, let n(�) denote the smallest integer such that the following
property is satisfied:

any STS(v) with v > n(�) has an �-good sequencing. (5)

Also, define n(�) = ∞ if no integer satisfying (5) exists.
We conjecture that n(�) is finite for every integer � ≥ 3. Further, based on the

computational results from Section 3.1, we conjecture that n(4) = 9.
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Appendix: 4-good sequencings for STS(13) and STS(15)

We present 4-good sequencings for the two nonisomorphic STS(13) and the 80 non-
isomorphic STS(15). These designs are listed in the same order as in the Handbook
of Combinatorial Designs [2, Table 1.27 and 1.28].

Table 2: 4-good sequencings for the STS(13)

1: [0 1 3 6 2 4 7 8 5 9 b a c ] 2: [0 1 3 6 2 4 7 8 5 9 a b c ]

Table 3: 4-good sequencings for the STS(15)

1: [0 1 3 6 7 4 2 8 a 5 9 d c b e ] 2: [0 1 3 6 7 4 2 8 a 5 9 d b c e ]
3: [0 1 3 6 7 4 2 8 a 5 9 d b c e ] 4: [0 1 3 6 7 4 2 8 a 5 9 d b c e ]
5: [0 1 3 6 7 4 2 8 a 5 9 b c d e ] 6: [0 1 3 6 7 4 2 8 a 5 9 c d b e ]
7: [0 1 3 6 7 4 2 8 a 5 9 c b d e ] 8: [0 1 3 6 7 4 2 8 9 5 a d b c e ]
9: [0 1 3 6 7 4 2 8 9 5 a d c b e ] 10: [0 1 3 6 7 4 2 8 9 5 a c b d e ]
11: [0 1 3 6 7 4 2 8 9 a b 5 d c e ] 12: [0 1 3 6 7 4 2 8 9 5 a b c d e ]
13: [0 1 3 6 7 4 2 8 9 a b 5 d c e ] 14: [0 1 3 6 7 4 2 8 a 5 9 d b c e ]
15: [0 1 3 6 7 4 2 8 9 5 a b c d e ] 16: [0 1 3 6 7 4 2 8 a 5 9 d c b e ]
17: [0 1 3 6 7 4 2 8 9 a b 5 d c e ] 18: [0 1 3 6 7 4 2 8 9 5 a d b c e ]
19: [0 1 3 6 7 4 2 8 a 5 9 c e b d ] 20: [0 1 3 6 7 4 2 8 9 5 a b c d e ]
21: [0 1 3 6 7 4 2 8 9 a b 5 d c e ] 22: [0 1 3 6 7 4 2 8 9 5 a c d b e ]
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23: [0 1 3 6 7 4 5 8 2 9 a b c d e ] 24: [0 1 3 6 7 4 5 8 2 9 a b c d e ]
25: [0 1 3 6 7 4 5 8 2 9 a b c d e ] 26: [0 1 3 6 7 4 5 8 2 a b 9 c d e ]
27: [0 1 3 6 7 4 5 8 2 9 a b c d e ] 28: [0 1 3 6 7 4 5 8 2 9 a b c d e ]
29: [0 1 3 6 7 4 5 8 2 9 a b c d e ] 30: [0 1 3 6 7 4 5 8 2 9 a b c d e ]
31: [0 1 3 6 7 4 5 8 2 9 a b c d e ] 32: [0 1 3 6 7 4 5 8 2 9 a b c d e ]
33: [0 1 3 6 7 4 5 8 2 9 a b c d e ] 34: [0 1 3 6 7 4 5 8 2 9 a b c d e ]
35: [0 1 3 6 2 4 5 7 8 a 9 b c d e ] 36: [0 1 3 6 2 4 5 7 8 a 9 b c d e ]
37: [0 1 3 6 2 4 5 7 8 9 a b c d e ] 38: [0 1 3 6 2 4 5 7 8 9 a c b d e ]
39: [0 1 3 6 2 4 5 7 8 9 a c b d e ] 40: [0 1 3 6 2 4 5 7 8 a 9 b c d e ]
41: [0 1 3 6 2 4 5 7 8 9 a b c d e ] 42: [0 1 3 6 2 4 5 7 8 9 a b c d e ]
43: [0 1 3 6 2 4 5 7 8 9 a c b d e ] 44: [0 1 3 6 2 4 5 7 8 a 9 b c d e ]
45: [0 1 3 6 2 4 5 7 8 9 a b c d e ] 46: [0 1 3 6 2 4 5 7 8 9 a c b d e ]
47: [0 1 3 6 2 4 5 7 8 9 a c b d e ] 48: [0 1 3 6 2 4 5 7 8 9 a c b d e ]
49: [0 1 3 6 2 4 5 7 8 9 a b c d e ] 50: [0 1 3 6 2 4 5 7 8 9 a b c d e ]
51: [0 1 3 6 2 4 5 7 9 8 a b c d e ] 52: [0 1 3 6 2 4 5 7 9 8 a b c d e ]
53: [0 1 3 6 2 4 5 7 9 8 a b c d e ] 54: [0 1 3 6 2 4 5 7 8 9 a b c d e ]
55: [0 1 3 6 2 4 5 7 8 9 a b c d e ] 56: [0 1 3 6 2 4 5 7 9 8 a b c d e ]
57: [0 1 3 6 2 4 5 7 9 8 a b c d e ] 58: [0 1 3 6 2 4 5 7 9 8 a b c d e ]
59: [0 1 3 6 2 4 5 7 8 9 a b c d e ] 60: [0 1 3 6 2 4 5 7 8 9 a b c d e ]
61: [0 1 3 6 7 4 2 8 9 a b 5 d c e ] 62: [0 1 3 6 7 4 5 8 2 9 a b c d e ]
63: [0 1 3 6 7 4 5 8 2 9 a b c d e ] 64: [0 1 3 6 7 4 5 8 2 a 9 c b d e ]
65: [0 1 3 6 2 4 5 7 8 9 a b c d e ] 66: [0 1 3 6 2 4 5 7 9 8 a b c d e ]
67: [0 1 3 6 2 4 5 7 8 9 a b c d e ] 68: [0 1 3 6 2 4 5 7 8 9 a b c d e ]
69: [0 1 3 6 2 4 5 7 8 9 a b c d e ] 70: [0 1 3 6 2 4 5 7 8 9 a b c d e ]
71: [0 1 3 6 2 4 5 7 8 9 a b c d e ] 72: [0 1 3 6 2 4 5 7 8 9 a b c d e ]
73: [0 1 3 6 2 4 5 7 8 9 a b c d e ] 74: [0 1 3 6 2 4 5 7 8 9 a b c d e ]
75: [0 1 3 6 2 4 5 7 8 9 a b c d e ] 76: [0 1 3 6 2 4 5 7 8 9 a b c d e ]
77: [0 1 3 6 2 4 5 7 8 9 a b c d e ] 78: [0 1 3 6 2 4 5 7 8 9 a b c d e ]
79: [0 1 3 6 2 4 5 7 9 8 a b c d e ] 80: [0 1 3 6 2 5 7 4 8 a d 9 b c e ]
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