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 Abstract 

Oligodeoxynucleotides (ODNs) containing electrophilic groups are useful in many 

studies including antisense drug development and DNA/protein interaction. Due to the use 

of strong nucleophiles for cleavage and deprotection, traditional ODN synthesis methods 

are not suitable for their preparation. To solve this problem, a new ODN synthesis 

technology using the 1,3-dithiane-2-yl-methoxycarbonyl (Dmoc) function as protecting 

groups and linker has been developed. Furthermore,  Dmoc-derivatives were developed to 

demonstrate the feasibility of the technology. The Dmoc and Dmoc derivative functions 

are stable under all ODN synthesis conditions using the phosphoramidite chemistry. Upon 

oxidation of the sulfides in them, because of the drastically increased acidity of H-2, the 

groups and linker are readily cleaved under nearly non-nucleophilic conditions. Many 

sensitive electrophiles were able to be incorporated on DNA strands successfully using 

these technologies. These include but are not limited to sensitive thioester, ethyl ester, alkyl 

chloride, and α-chloroacetamide moieties. 
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Chapter 1 Introduction 

1.1 Oligodeoxynucleotides (ODNs) 

Oligodeoxynucleotides (ODNs) are single-stranded deoxyribonucleic acids, also 

known as DNA, which consist of four nucleotides – deoxythymidine (dT), deoxycytidine 

(dC), deoxyadenosine (dA), and deoxyguanosine (dG). All four nucleotides contain their 

respective nucleobase, a 2’-deoxribose sugar moiety, and are linked together in a 3’ to 5’ 

fashion via a phosphate diester backbone. DNA is found in every known living organism, 

including many viruses, which provides pathways for genetic coding, cellular signaling, 

and reproduction.  

1.2 Applications of ODNs 

Synthetic ODNs hold a variety of applications in the pharmaceutical world such as 

antisense drug development, [1] synthetic biology, [2] CRISPR genome editing, [3] as well as 

DNA data storage. [4] Currently, several FDA approved oligonucleotide based antisense 

drugs are on the market such as fomivirsen, mipomersen, etelplirsen, and nisinersen.  

1.3 Solid Phase ODN Synthesis  

Generally, a universal solid support consisting of a controlled pore glass (CPG) 

covalently bonded to a succinyl linker is used in conjunction with phosphoramidite 

monomers to synthesize the desired ODN lengths (typically ranging from 15 - 100 

nucleotides). The synthetic DNA cycle consists of four different routine steps. Initially, the 

acid-labile 4,4-dimethoxytrityl protecting group (DMTr) on the 5’ alcohol end is removed 

by the treatment with 3% dichloroacetic acid in dichloromethane. This process is crucial 
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to unmask the primary alcohol functional group which enables the first coupling step to 

occur. The 5’-OH group is then reacted with a phosphoramidite monomer along with 

activator 1H-tetrazole. The activator is needed to catalyze and displace the diisisopropyl 

amino group of the newly added phosphoramidite monomer which creates an enhanced 

leaving group. A phosphite triester is generated once the 5’-OH group successfully reacts 

and displaces the activated leaving group. However, since the reaction yield is not 

quantitative the unreacted free 5’-OH groups on the resin-bound nucleotide, called failure 

sequences, need to be masked so they do not interfere with the rest of the synthetic cycle. 

This is generally achieved by capping them with an excess of acetic anhydride catalyzed 

by N-methyl imidazole. The fourth and final step of the cycle consists of the oxidation of 

the phosphite triester to its more stable pentavalent state. This is accomplished by the 

addition of iodine in the presence of water and pyridine. The resultant phosphotriester 

serves as the backbone of the DNA strand. After the desired ODN length is obtained it 

needs to be cleaved off the solid support. The exo-amino groups of the nucleotides are 

usually pre-protected with acetyl or benzoyl (for dA and dC) and isobutyryl (for dG) 

groups. The succinyl linker on the resin as well as these exo-amino protecting groups can 

easily be removed with concentrated ammonium hydroxide solution at 55 °C for 12 hours. 

Additionally, Ultramild conditions have also been developed. In these cases, the exo-amino 

groups of the phosphoramidites are protected with acetyl (for dC), phenoxyacetyl (for dA), 

and isopropyl phenoxyacetyl (for dG). These more labile groups can be removed with 

concentrated ammonium hydroxide solution at room temperature in 2 hours or with 0.05M 

potassium carbonate in methanol at room temperature for 4 hours. However, these 



3 

deprotection and cleavage conditions are not suitable for ODNs containing nucleophile-

labile moieties.  

Scheme 1.1. Solid Phase ODN Synthesis 

1.4 Limitations of Solid Phase ODN Synthesis 

For most purposes, ODNs are synthesized solely using automated solid-phase 

methods. While there have been many advances in the protocols, the widely used method 

still has drawbacks. For instance, the detritylation step uses the abovementioned solution 

of dichloroacetic acid in dichloromethane. These acidic conditions make it impossible to 

incorporate acid-sensitive substrates on ODNs. Furthermore, the use of basic and 

nucleophilic conditions for cleavage and deprotection purposes prevent the practical 
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incorporation of electrophiles such as activated esters, aziridines, epoxides, α-halo 

substituted carbonyl functional groups, as well as alkyl halides. Therefore, there is a need 

for a new technology to overcome these challenges. 

1.5 The Need for Modified ODNs 

ODNs containing electrophilic functionalities are predicted to have wide applications 

in fields such as covalent cross-linking studies with messenger ribonucleic acid (mRNA) 

[5] and protein interactions. [6] Moreover, electrophiles anchored on DNA can enable the 

synthesis of model compounds which can aid in DNA damage findings such as methylation 

and demethylation studies. [7] Over the past several years, topics regarding the uptake, 

metabolism, as well as cellular trafficking of DNA has been noticeably studied. 

Particularly, there has been emerging interest in the hybridization of antisense 

oligonucleotides to mRNAs. The incorporation of electrophilic moieties on ODNs can 

successfully enable the formation of a covalent bond between the modified ODN and the 

target specific mRNA sequence. However, such DNA-based therapeutics are limited to the 

integration of the host genome’s plasmids. Additionally, there is currently no known 

commercially viable cross-linking agents available. [8] Thus, there is a strong necessity for 

nucleophile-labile ODNs. 

1.6 Current Methods to Modify ODNs and Their Drawbacks 

Currently, there are a small number of approaches mentioned in the literature. The first 

type attempts the functionalization of electrophilic moieties on ODN after cleavage and 

deprotection. [8] However, since functionalities are limited in organic chemistry this needs 
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to be developed on a case-by-case basis and is therefore restrictive. The idea to use 

protecting groups and linkers that can be cleaved under nearly neutral conditions have been 

mentioned in the literature. In such cases, palladium-removable allyl groups along with 

photo-labile linkers have been used. [9] However, transition metals such as palladium are 

expensive and difficult to remove. Furthermore, it is known that UV irradiation has the 

potential to damage DNA. There have also been attempts to use enzymatic reactions to 

access electrophilic ODNs. [10] This strategy has narrow applicable viability and is 

associated with high costs. 

1.7 Our Non-Nucleophilic Technology to Incorporate 
Electrophiles on ODN 

To overcome the aforementioned problems, we have developed a non-nucleophilic 

technology to install electrophiles on DNA strands. The following paragraphs briefly 

depict the concepts behind the original technology and its improved derivatives.  
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1.7.1 Dmoc Technology 

Figure 1.1. Dmoc Phosphoramidites and Dmoc Linker 

We have successfully developed a new technology that allows us to incorporate 

sensitive functionalities on ODNs. As shown in Figure 1.1, the technology is based on the 

design of 1,3-dithiane-2-yl-methoxycarbonyl (Dmoc) protecting groups (1.1-1.3) and 

linkers (1.4) used for ODN synthesis. The Dmoc based groups are stable under all standard 

ODN synthesis conditions. Once the desired ODN length is obtained, the cyanoethyl 

groups on the phosphate backbone are removed with DBU in acetonitrile at room 

temperature in 15 minutes. After inducing the beta elimination, the hydrophilic ODN 

backbone is revealed which can then be subjected to aqueous oxidative conditions to 

oxidize the sulfur moieties into their respective sulfoxide and sulfone states. Once 
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oxidation is completed, the Dmoc protecting groups and linker are cleaved under mild 

nearly non-nucleophilic conditions due to the drastically increased acidity of H-2 in the 

1,3-dithiane moieties. Thus, this technology enabled us to incorporate electrophiles on 

ODNs. Specifics are mentioned in the respective chapter section.  

1.7.2 Dmoc Dim Technology 

 

 

 

 

 

 

 

 

Figure 1.2. Dmoc Dim Phosphoramidites 

Since DBU is used to remove the cyanoethyl groups, some base-labile ODNs may 

not be compatible with our technology. Therefore, the Dmoc based protecting groups 

and linker were then further studied to eliminate the need for DBU in acetonitrile and, 

thus, improved the technology. As shown in Figure 1.2, we were able to replace the 
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cyanoethyl group with a 1,3-dithian-2-yl-methyl (Dim) moiety to mask the P(III) of the 

phosphoramidites (1.5-1.8). Therefore, this eliminated the need for DBU and reduced 

the post ODN work up to ultimately two steps – Oxidation of the 1,3-dithiane moieties 

followed by elimination. Utilizing the CPG Dmoc linker 1.4 along with the Dim 

modifications enabled us to incorporate additional electrophiles on ODNs. While 

satisfactory results were obtained using the Dmoc and Dim technology, we still 

experienced one major drawback – The induced oxidized elimination by-product was 

undergoing a 1,4-Michael Addition reaction with the free exo-amino groups on the 

DNA strands, as shown in Scheme 1.2.  

 

 

 

 

 

 

 

Scheme 1.2. Michael Addition of ODN with Dim Elimination By-Product 

Therefore, we needed to use aniline as both the base and a scavenger, as shown in Scheme 

1.3. Specifics are mentioned in the respective chapter section. 
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Scheme 1.3. Using Aniline as a Scavenger during ODN Work-Up 

1.7.3 dM-Dmoc Technology 

Figure 1.3. dM-Dmoc Phosphoramidite 

 Since aniline is a potential nucleophile, some ODNs containing nucleophile-labile 

functionalities may not be compatible with the abovementioned technology. Thus, we 

diverted our attention to modifying the exo-amino protecting groups to a more robust 

version. This modified technology uses a dimethyl Dmoc (dM-Dmoc) protecting group for 



10 

the phosphoramidites 1.10-1.12 (Figure 1.3). Indeed, experimental results showed that the 

dimethyl dim elimination by-product is too sterically hindered for the troublesome 1,4-

Michael Addition reaction to occur (Scheme 1.7). Thus, the usage of scavengers (such as 

aniline) were avoided and beta elimination was achieved by aqueous potassium carbonate 

solution (pH=8). 

 

 

 

 

 

 

 

Scheme 1.4. Post ODN Synthesis Work-Up Using dM-Dmoc 

However, some drawbacks were experienced via this technology as well – Particularly, 

premature cleavage of the dM-Dmoc protecting group during the ODN synthesis due to 

repetitive treatment of dichloroacetic acid in dichloromethane. This resulted in minor 

branched side sequences which we were able to resolve at the end. Specifics are mentioned 

in the respective chapter section.  
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Abstract 

Oligodeoxynucleotides (ODNs) containing electrophilic groups are useful in many 

studies including antisense drug development and DNA/protein interaction. Due to the use 

of strong nucleophiles for cleavage and deprotection, traditional ODN synthesis methods 

are not suitable for their preparation. To solve this problem, a new ODN synthesis 

technology using the 1,3-dithiane-2-yl-methoxycarbonyl (Dmoc) function as protecting 

groups and linker has been developed. The Dmoc function is stable under all ODN 

synthesis conditions using the phosphoramidite chemistry. Upon oxidation of the sulfides 

in them, because of the drastically increased acidity of H-2, the groups and linker are 

readily cleaved under nearly non-nucleophilic conditions. Five ODNs including one with 

a thioester group and another with an α-chloroamide function were successfully 

synthesized using the strategy. It is predicted that the technique could be adaptable for the 

synthesis of ODNs containing other electrophiles. 
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2.1 Introduction 

In traditional solid-phase oligodeoxynucleotide (ODN) synthesis, the amino groups 

on the nucleobases are protected with acyl groups that have to be removed with strongly 

nucleophilic reagents such as ammonium hydroxide. The widely used succinyl ester 

linkage is also cleaved under these conditions. For this reason, the methods are not suitable 

for the synthesis of ODN analogues that contain electrophilic functionalities. However, 

such analogues have found or are predicted to have wide applications in areas such as 

covalent cross-linking with messenger ribonucleic acid (mRNA) for antisense drug 

development,1 analysis of nucleic acid and protein interactions by detecting cross-linked 

fragments using mass spectrometry,2 and the synthesis of model compounds of sensitive 

nucleic acid intermediates in cells for deoxyribonucleic acid (DNA) damage and DNA 

methylation and demethylation studies.3 Current strategies for electrophilic ODN synthesis 

include two types. One type uses protecting groups and linkers cleavable under less basic 

or nearly neutral conditions. However, functions in organic chemistry suitable for the need 

are limited. Those used in the literature include the more base-labile phenoxyacetyl based 

groups and linker,4 the palladium-removable allyl groups,3b,5 and the photolabile o-

nitrobenzyl linker.3b,6 ODN synthesis methods using these functionalities for protecting 

and linking still have serious drawbacks. For example, the phenoxyacetyl groups and 

linkers are usually cleaved with dilute K2CO3 in methanol or aqueous ammonium 

hydroxide.4 These conditions are still strongly nucleophilic. Palladium is expensive and 

difficult to remove. UV irradiation can damage ODN. The second type uses traditional 

methods to make an ODN precursor, which is stable under nucleophilic conditions. After 

cleavage and deprotection, the electrophilic functionality is attached to or uncovered from 
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the precursor.1c−e, g−j These methods are inconvenient, have to be developed case by case, 

and are not always feasible. Besides the above two strategies, enzymatic reactions have 

also been used to access electrophilic ODNs.1a Drawbacks include narrow applications and 

high cost. Efforts were also made to search for conditions for ODN synthesis without 

nucleobase protection.7 An ideal linker cleavable under non-nucleophilic conditions 

remains to be developed, and the challenge of achieving complete O-phosphitylation over 

N-phosphitylation in the coupling step may be nontrivial. In this paper, we report our 

studies on use of the 1,3-dithian-2-ylmethoxycarbonyl (Dmoc) based protecting group and 

linker for ODN synthesis. Previously, this and the similar 2-(phenylthio)ethyl group had 

been studied for peptide synthesis and thymidine protection, but they have not been tested 

for ODN synthesis.8 We predicted that the Dmoc function would be stable under all ODN 

synthesis conditions. However, upon oxidation of the sulfides to sulfoxides or sulfones 

after synthesis, due to the drastically increased acidity of H-2, they could be cleaved under 

non-nucleophilic conditions. Using that technology, we successfully synthesized five 

ODNs including one containing a thioester and another containing an α-chloroacetyl 

function. The cleavage and deprotection were achieved in three steps under non-

nucleophilic conditions. These electrophilic groups would not survive the nucleophilic 

conditions such as NH4OH and K2CO3/MeOH, while incorporating them into ODNs is 

desirable due to their potential applications such as antisense drug development, sequence-

specific DNA alkylation, and DNA−protein interaction studies.1g,5a,9 We expect that the 

new method would be suitable for the synthesis of other electrophilic ODNs as well and, 

therefore, have a high impact in several research areas. 
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2.2 Results and Discussion 

To carry out an electrophilic ODN synthesis using the Dmoc function for protecting 

and linking, a Dmoc linker such as that in dT-Dmoc-CPG (controlled pore glass) 2.1 and 

the phosphoramidite monomers Dmoc-dC-amidite 2.2, Dmoc-dA-amidite 2.3, and Dmoc-

dG-amidite 2.4 are required (Figure 2.1).  

 

 

 

 

 

 

Figure 2.1. CPG with dT-Dmoc linker and Dmoc amidites 

The corresponding dT monomer is not required because thymidine does not have an amino 

group, and a commercial dT amidite (2.5) can be used. The preparation of CPG 2.1 is 

shown in Scheme 2.1. The anion generated by treating 1,3-dithiane with tBuLi was reacted 

with aldehyde 2.6 to give 2.7. Compound 2.7 was converted to 2.8 by reacting it with 1,1′-

carbonyldiimidazole in the presence of calcium hydride. Reaction of 2.9 with 5′-DMTr-dT 

using DBU as the base gave 2.10. Removal of the TBS group in 2.10 with TBAF afforded 

2.11 (not shown in Scheme 2.1). Attaching 2.11 to CPG to give 2.1 was achieved by 
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reacting 2.11 with succinic anhydride followed by incubation with amino CPG in the 

presence of DCC. Because we installed the 1,3-dithiane moiety at the side of the linkage 

instead of in the linkage, the construction of 2.1 is quite simple.  

 

 

 

 

Scheme 2.1. Synthesis of dT-Dmoc-CPG 

The synthesis of Dmoc amidite 2.2−2.4 is shown in Scheme 2.2. The amino groups of 5′-

DMTr-dC 2.12 and dA 2.13 were conveniently protected using (1,3-dithian-2-yl)methyl 4-

nitrophenylcarbonate (2.14)8c by first protecting the 3′-hydroxyl group with TMSCl 

temporarily followed by stirring the reactants at room temperature with DMAP as the 

catalyst. The products 2.15 and 2.16 were obtained in 100% and 57% yields, respectively. 

Phosphitylation of 2.15 and 2.16 using 2-cyano-N,N,N′,N′-

tetraisopropylphosphorodiamidite (2.17) gave the amidite monomers Dmoc-dC-amidite 

2.2 and Dmoc-dA-amidite 2.3, respectively, in excellent yields. However, when the same 

acylation method was used to synthesize Dmoc-dG, no desired product could be isolated 

probably due to the lower basicity of the amino group of dG.10 We tried several other 

conditions and finally settled with the following procedure. The O-protected dG 2.1811 was 

treated with excess tBuMgCl and 2.14 to give 2.19 in 44% yield. The silyl protecting group 
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was then removed by HF−pyridine,12 and without purification the product was reacted with 

DMTr-Cl to give 2.20 (not shown in Scheme 2.2) in 80% yield after flash chromatography. 

Compound 2.20 was phosphitylated using 2.17 to give Dmoc-dG-amidite 2.4 in 77% yield. 

With dT-Dmoc-CPG 2.1 and amidite monomers 2.2−2.4 in hand, before synthesizing 

electrophilic ODNs, we tested the technology by synthesizing three unmodified ODNs. 

 

 

 

 

 

 

 

 

 

 

 

Scheme 2.2. Synthesis of Amidite Monomers 
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They were 20-mers 5′ HO-TCA TTG CTG CTT ATA CCT CT-OH 3′ (2.20), 5′ HO-TCA 

TTG CTG CTT AGA CCG CT-OH 3′ (2.21), and 5′ HO-TTA GTA GGA CCT ACA CCT 

GT-OH 3′ (2.22). The conditions were the same as those in traditional ODN synthesis using 

the phosphoramidite chemistry. Concentration of the amidites was 0.1M. At the end of 

synthesis, the DMTr group was removed. According to the trityl assay, the coupling yields 

were not negatively affected by the Dmoc linker and protecting groups. For deprotection 

and cleavage, the 2-cyanoethyl groups were first removed by treating with DBU briefly 

(Scheme 2.3). The sulfides in Dmoc were then oxidized with NaIO4 at pH 2 in 3 h.13 The 

acidity of H-2 in Dmoc is now drastically increased. However, due to the acidic conditions, 

β-elimination did not occur at this stage as indicated by HPLC analysis of the supernatant. 

After removal of the supernatant, residue NaIO4 was washed away with water at pH 2. 

Final cleavage and deprotection of ODN were then induced with an aniline solution at pH 

8 (Scheme 2.3).  
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Scheme 2.3. ODN Deprotection and Cleavage 

The crude ODNs 2.20−2.22 were purified with RP HPLC. The profiles of crude and 

purified 2.20 are shown in Figure 2.2. Those of 2.21−2.22 are shown in the Supporting 

Information. All of the ODNs were analyzed with MALDI-TOF MS, which gave correct 

molecular masses (Supporting Information). We next decided to incorporate the 

nucleophile-sensitive thioester and α-chloroacetyl functions into ODNs. The thioester 

function was used as a phosphate masking group in ODN prodrugs. For the application, 

the thioester had to be kept intact during ODN synthesis, cleavage, and deprotection.5a,9 

ODNs containing an α-chloroacetyl function could find applications in sequence-specific 

alkylation and cleavage of DNA and other areas.1g−j We chose to incorporate the 

electrophilic groups into the middle of the sequences because it is more challenging than 
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attaching it to the 5′-end. The required amidites 2.23 and 2.24, which contained the 

thioester and α-chloroacetyl, respectively, were prepared according to Scheme 2.2. 

Compound 2.2514 was coupled with 5-(acetylthio)pentanoic acid (2.26)15 to give 2.27, 

which was phosphitylated to give amidite 2.23. Amidite 2.24 was also prepared from 2.25. 

Acylation of 2.25 with α-chloroacetyl chloride gave 2.28, which was phosphitylated to give 

2.22. Using the Dmoc-CPG 2.1 and amidites 2.2−2.4, we successfully incorporated 2.23 

and 2.24 into ODNs 5′ HO-TCA TTG CTG CTT A-X-A CCT CT−OH3′ (2.30) and 5′ HO-

TCA TTG CTG CTT A-Y-A CCT CT−OH 3′ (2.31), where X and Y are the thioester and 

α-chloroacetyl units introduced with 2.23 and 2.24, respectively. The sequences were 

derived from 2.20 by replacing a T with X or Y. The conditions for ODN synthesis and 

cleavage and deprotection were the same as described above.  
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Figure 2.2. RP HPLC profiles of ODN 2.20 and 2.29 

No modification of the procedure was needed except that a simpler precipitation method 

instead of size-exclusion chromatography was used to separate ODN from small molecules 

after ODN cleavage and deprotection. The ODNs were purified with RP HPLC. MALDI-

TOF MS analyses gave correct molecular masses (Supporting Information). The RP HPLC 

profiles of crude and purified 2.29 are in Figure 2.2. Those of 2.29 are shown in the 

Supporting Information. According to trityl assays, the coupling yields using the Dmoc 

amidites were excellent. To have a direct comparison of these amidites with commercial 

ones, we synthesized ODN 2.20 two times under identical conditions except that, in one 

time, 2.1−2.4 and commercial dT amidite were used and, in another, 2.1 and commercial 

dA, dC, dG and dT amidites were used (Supporting Information). In both syntheses, the 
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CPG 2.1 were used and were from the same batch with identical amounts. A portion of 

both ODNs on the same weight of CPG were cleaved and deprotected with concentrated 

NH4OH under identical conditions (the Dmoc group and linker can also be cleaved with 

NH4OH). RP HPLC analysis gave similar peak areas of full-length ODN. The OD260 values 

of purified ODNs were also very close. These experiments further confirmed that the Dmoc 

protecting groups did not have a negative effect on ODN synthesis efficiency. Cleavage 

and deprotection of the ODN synthesized with Dmoc amidites were also carried out under 

the oxidative conditions using the same amount of CPG as the above two experiments. 

However, the yield of ODN obtained was lower. Both HPLC peak area and OD260 values 

were about one-fourth of those for the experiments involving NH4OH cleavage and 

deprotection. The lower yield may be caused by the loss of ODN during removing aniline 

with Amicon centrifugal filter units. The three-step procedure and the order of the steps for 

cleavage and deprotection used in new technology are important. The removal of the 2-

cyanoethyl groups increases the hydrophilicity of ODNs, which is beneficial for oxidation 

in water in the next step. Performing oxidation under acidic conditions retains ODN on 

CPG, which allows easy removal of NaIO4. The acidic conditions in the oxidation step did 

not cause any noticeable depurination because treating unmodified ODNs from the 

technology with concentrated NH4OH did not give peaks of shorter ODNs in HPLC 

profiles. The excess aniline introduced in the last step is easy to remove due to its small 

size and high solubility in organic solvents. We achieved this by passing it through a size-

exclusion column. We also tested a precipitation method involving adding nBuOH to 

aqueous ODN solutions. ODN was precipitated, and aniline remained in the supernatant, 

which was removed with a pipette.16 Finally, ultrafiltration using an Amicon centrifugal 
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filter unit also proved effective. The Dmoc-based linker and protecting groups are well 

suited for electrophilic ODN synthesis. Before oxidation, H-2 in the function is not acidic 

in normal terms of organic chemistry (pKa∼ 31), which enables Dmoc to be stable during 

ODN synthesis. After oxidation, the pKa of H-2 is lowered to ∼12. Compared to the Fmoc 

protecting group, in which case the pKa of H-9 is ∼22 and the group can be removed by 

the weak base piperidine (pKa of conjugate acid ∼11), the Dmoc linker and protecting 

group were predicted to be readily cleavable under nearly neutral and non-nucleophilic 

conditions. Our results have shown that this is indeed the case. Compared to the ODN 

synthesis methods that used the allyl and o-nitrobenzyl functionalities, the Dmoc method 

does not require any expensive and difficult-to-remove transition metal and DNA-

damageable UV light for deprotection and cleavage. Instead, the readily available and 

easily removable NaIO4 and aniline can accomplish the task. We have successfully shown 

that the technology is suitable for the synthesis of ODNs containing thioester and α-

chloroacetyl amide, which we confirmed to be incompatible with the widely known mild 

deprotection conditions using K2CO3 in MeOH (Supporting Information). Besides these 

two electrophilic groups, other groups such as aldehydes,13 esters, activated esters, 

aziridines,1g epoxides, alkyl halides, vinyl purines,17 methides,18 and maleimides could be 

incorporated into ODNs as well. 

2.3 Conclusion 

In conclusion, we have developed a new ODN synthesis method using the Dmoc 

function as the linker and protecting group. Using the method, deprotection and cleavage 

are carried out in three steps under non-nucleophilic conditions, and therefore, it is useful 
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for the synthesis of electrophilic ODNs. Five sequences were successfully synthesized 

using the strategy. One of them contained a nucleophile-sensitive thioester, and another 

contained a sensitive α-chloroacetyl. The coupling yields wereexcellent. The products were 

purified with RP HPLC. MALDI-TOF MS analysis indicated that the ODNs had the 

correctstructure. We expect that the new technology will find applications in various 

research fields that need electrophilic ODNs. 

2.4 Experimental Section 

All reactions were performed in oven-dried glassware under a nitrogen atmosphere 

using standard Schlenk techniques. Reagents and solvents available from commercial 

sources were used as received unless otherwise noted. CH2Cl2, pyridine, and toluene were 

distilled over CaH2. THF was distilled over Na/benzophenone. Thin layer chromatography 

(TLC) was performed using Sigma-Aldrich TLC plates, silica gel 60F-254 over glass 

support, 0.25 μm thickness. Flash column chromatography was performed using Selecto 

Scientific silica gel, particle size 32-63 μm. 1H, 13C and 31P NMR spectra were measured 

on Varian UNITY INOVA spectrometer at 400, 100 and 162 MHz, respectively; chemical 

shifts (δ) were reported in reference to solvent peaks (residue CHCl3 at δ 7.24 ppm for 1H 

and CDCl3 at δ 77.00 ppm for 13C, and H3PO4 at δ 0.00 ppm for 31P). ODNs were 

synthesized on ABI 394 (2.20-2.22) and MerMade 6 (2.29-2.30) solid phase synthesizers. 

RP HPLC was performed on a JASCO LC-2000Plus System: pump, PU-2089Plus 

Quaternary Gradient; detector UV-2075Plus. A C-18 reverse phase analytical column (5 

μm diameter, 100 Å, 250 × 3.20 mm) was used. Solvent A: 0.1 M triethylammonium 

acetate, 5% acetonitrile. Solvent B: 90% acetonitrile. All profiles were generated by 
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detection of absorbance of ODN at 260 nm using the linear gradient solvent system: solvent 

B (0%-45%) in solvent A over 60 min followed by solvent B (45%-100%) in solvent A 

over 20 min at a flow rate of 0.5 mL/min. Lcaa-CPG (pore size 497 Å) was a gift from 

Prime Synthesis, Inc. D-SaltTM dextran desalting column (5K MWCO, 10 mL) was 

purchased from Pierce Biotechnology, Inc. Polyacrylamide desalting column (5K MWCO, 

10 mL) was from Thermo Scientific. Amicon® centrifugal filter units (3K NMWL) were 

purchased from Sigma-Aldrich.  

Compound 2.7 

To a solution of 1,3-dithiane (3.25 g, 27.1 mmol) in dry THF (50 mL) was added 

tBuLi (1.7 M in pentane, 16.0 mL, 27.1 mmol) dropwise at -78 °C. The mixture was stirred 

under nitrogen while warming to -40 °C gradually. After stirring at this temperature for 1 

h, it was cooled to -78 °C, and a solution of 2.6 (4.88 g, 22.6 mmol) in dry THF (30 mL) 

was added slowly via cannula. Stirring was continued at -78 °C for 15 min, and the reaction 

was then quenched with sat. NH4Cl (50 mL). The organic layer was separated and the 

aqueous layer was extracted with EtOAc (50 mL × 3). The combined organic layer was 

washed with water and brine, dried over anhydrous Na2SO4, filtered, and concentrated. 

Flash column chromatography (SiO2, 9:1 hexanes/EtOAc) gave 2.8 as a colorless oil (5.40 

g, 71%): Rf = 0.2 (9:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3) δ 0.02 (s, 6H, H-1), 

0.86 (s, 9H, H-2), 1.38-1.48 (m, 1H, H-3), 1.49-1.59 (m, 4H, H-3), 1.77-1.84 (m, 1H, H-

3), 1.89-1.98 (m, 1H, H-4), 2.01-2.10 (m, 1H, H-4), 2.43 (d, J = 3.6 Hz, 1H, H-5), 2.68-

2.78 (m, 2H, H-6), 2.86-2.94 (m, 2H, H-6), 3.59 (t, J = 10.4 Hz, 2H, H-7), 3.80-3.85 (m, 

1H, H-8), 3.88 (d, J = 6 Hz, 1H, OH); 13C NMR (100 MHz, CDCl3) δ -5.3, 18.3, 22.1, 25.7, 
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26.0, 28.0, 28.5, 32.6, 33.8, 52.5, 63.0, 72.2; HRMS (ESI) m/z calcd for C15H32O2S2SiH 

[M+H]+ 337.1691, found 337.1695. 

Compound 2.8 

Carbonyldiimidazole (2.61 g, 16.1 mmol), 2.7 (2.16 g, 6.4 mmol), CaH2 (90% 

grade, 0.75 g, 16.1 mmol) and dry toluene (100 mL) were combined and stirred at rt for 8 

h. The mixture was filtered, and the filtrate was concentrated. Flash column 

chromatography (SiO2, 3:1 hexanes/EtOAc) gave 2.8 as a thick oil (2.83 g, 100%): Rf = 

0.2 (3:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3) δ 0.01 (s, 6H, H-1), 0.82 (s, 9H, H-

2), 1.39-1.56 (m, 4H, H-3), 1.80-2.08 (m, 4H, H-3 and H-4), 2.67-2.78 (m, 2H, H-5), 2.84-

2.95 (m, 2H, H-5), 3.57 (t, J = 4 Hz, 2H, H-6), 4.10 (d, J = 4 Hz, 1H, H-7), 5.28-5.33 (m, 

1H, H-8), 7.04 (s, 1H, H-9), 7.40 (s, 1H, H-10), 8.12 (s, 1H, H-11); 13C NMR (100 MHz, 

CDCl3) δ -5.4, 18.2 21.7, 25.4, 25.8, 28.4, 28.6, 31.4, 32.2, 48.9, 62.4, 78.4, 117.2, 130.6, 

137.2, 148.3; HRMS (ESI) m/z calcd for C19H34N2O3S2SiH [M+H]+ 431.1858, found 

431.1858. 

Compound 2.9:  

5′-DMTr-thymidine (3.72 g, 6.8 mmol), 2.8 (1.96 g, 4.6 mmol) and DBU (0.21 g, 

0.20 mL, 1.4 mmol) and toluene (50 mL) were combined and stirred at rt. After 8 h, the 

mixture was concentrated and purified with flash column chromatography (SiO2, 3:1 

hexanes/EtOAc with 0.5% Et3N). Compound 2.9 was obtained as a white foam (3.14 g, 

76%): m.p. 81.2-82.6 °C; Rf = 0.45 (1:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3) δ 

0.00 (s, 6H, H-1), 0.84 (s, 9H, H-2), 1.31 (s, 3H, H-3), 1.36-2.00 (m, 8H, H-4), 2.34-2.74 

(m, 4H, H- 4), 2.80-2.89 (m, 2H, H-4), 3.41-3.47 (m, 2H, H-5), 3.57 (t, J = 8 Hz, 2H, H-
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6), 3.75 (s, 6H, H-7), 3.94 (d, J = 8 Hz, 1H, H-8), 4.20 (s, 1H, H-9), 4.91-4.96 (m, 1H, H-

10), 5.35 (d, J = 8 Hz, 1H, H- 10), 6.43 (dd, J = 4 Hz, 8 Hz, 1H, H-11), 6.79 (d, J = 8 Hz, 

4H, H-12), 7.18-7.31 (m, 8H, H-13), 7.31-7.33 (m, 1H, H-14), 7.54 (s, 1H, H-15), 8.08 (br 

s, 1H, NH); 13C NMR (100 MHz, CDCl3) δ -5.3, 11.6, 18.3, 21.7, 25.4, 26.0, 28.4, 28.6, 

31.6, 32.3, 37.9, 48.9, 55.3, 62.7, 63.7, 78.8, 78.9, 84.0, 84.3, 87.2, 111.5, 113.3, 127.2, 

128.0, 128.1, 130.1, 135.2, 135.3, 135.4, 144.2, 150.0, 154.3, 158.8, 163.3; HRMS (ESI) 

m/z calcd for C47H62N2O10S2SiNa [M+Na]+ 929.3513, found 929.3497. 

Compound 2.10:  

 
To a solution of 2.9 (1.47 g, 1.6 mmol) in THF (40 mL) at 0 °C was added TBAF (1.95 

mL, 1.0 M in THF, 1.9 mmol) dropwise. The mixture was stirred for 8 h while warming to rt. The 

contents were poured into a separation funnel and partitioned between EtOAc (40 mL) and H2O 

(40 mL). The aqueous layer was extracted with EtOAc (30 mL × 2). The combined organic layer 

was dried over anhydrous Na2SO4, filtered and concentrated. Flash column chromatography (SiO2, 

1:1 hexanes/EtOAc) gave 2.10 as a white foam (0.96 g, 75%): m.p. 90.6- 92.3 °C; Rf = 0.3 (1:3 

hexanes/EtOAc); 1H NMR (400 MHz, CDCl3) δ 1.35 (s, 3H, H-1), 1.41- 1.63 (m, 4H, H-2), 1.69-

1.81 (m, 2H, H-2), 1.89-2.08 (m, 2H, H-2), 2.37-2.44 (m, 1H, H-2), 2.56- 2.75 (m, 3H, H-2), 2.84-

2.93 (m, 2H, H-2), 3.42-3.51 (m, 2H, H-3), 3.61-3.65 (m, 2H, H-4), 3.77 (s, 6H, H-5), 3.98 (d, J = 

8 Hz, 1H, H-6), 4.24 (s, 1H, H- 7), 4.97-5.01 (m, 1H, H-8), 5.34 (d, J = 4 Hz, 1H, H-8), 6.42 (t, J 

= 4 Hz, 8 Hz, H-9), 6.82 (d, J = 8 Hz, 4H, H-10), 7.20-7.34 (m, 8H, H-11), 7.34-7.37 (m, 1H, H-

12), 7.58 (s, 1H, H-13), 8.78 (s, 1H, NH); 13C NMR (100 MHz, CDCl3) δ 11.6, 14.2, 21.0, 21.6, 

25.4, 28.4, 28.6, 31.6, 32.1, 38.0, 48.9, 55.2, 60.4, 62.4, 63.7, 78.7, 79.1, 83.7, 84.4, 87.2, 111.6, 

113.3, 127.2, 128.0, 128.1, 130.1, 130.1, 135.1, 135.2, 135.3, 144.2, 150.3, 154.2, 158.8, 158.8, 

163.5; HRMS (ESI) m/z calcd for C41H48N2NaO10S2 [M+Na]+ 815.2648, found 815.2636. 
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dT-Dmoc-CPG 2.1:  

A mixture of 2.10 (0.10 g, 0.13 mmol), succinic anhydride (0.05 g, 0.50 mmol), 

and DMAP (0.03 g, 0.25 mmol) in anhydrous pyridine (3 mL) was stirred at rt. After 2 

days, the contents were partitioned between EtOAc (5 mL) and H2O (5 mL). The organic 

layer was washed with sat. NaHCO3 and brine, dried over anhydrous Na2SO4, filtered, and 

concentrated. The residue was dissolved in dry DMF (3 mL) and mixed with amino-lcaa-

CPG (0.251 g, 0.027 mmol, 107 μmol/g, 497 Å, Prime Synthesis, Inc.) and DCC (0.027 

mL, 1.0 M in CH2Cl2, 0.027 mmol). After standing at rt for 2 days, the supernatant was 

removed, and the CPG was washed with pyridine (3 mL × 5). To the CPG was added a 

capping solution (0.1 M DMAP in pyridine/Ac2O, 9:1, v/v; 5 mL), and the mixture was 

allowed to stand at rt for 2 days. The supernatant was removed, and the CPG was washed 

with pyridine (3 mL × 5), MeOH (3 mL × 3), DMF (3 mL × 3) and acetone (3 mL × 5), 

and dried under vacuum. 

Compound 2.14:  

A solution of 5′-DMTr-dC (11, 2.60 g, 4.9 mmol) and TMSCl (1.60 g, 1.87 mL, 

14.7 mmol) in pyridine (50 mL) was stirred at rt for 30 min. Compound 13 (3.10 g, 9.8 

mmol) and DMAP (0.30 g, 2.5 mmol) in pyridine (15 mL) were added via cannula, and the 

mixture was stirred for 8 h. After cooling to 0 °C, H2O (10 mL) was added, and the mixture 

was stirred for 5 min. Concentrated NH4OH (15 mL) was then added, and the mixture was 

stirred at 0 °C for an additional 30 min. The content was poured into a separation funnel 

containing 5% NaHCO3 (30 mL), and extracted with CH2Cl2 (30 mL × 2). The extracts 

were dried over anhydrous Na2SO4, filtered and concentrated. Flash column 
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chromatography (SiO2, 1:2:5:2:2:1 hexanes/EtOAc/ Et2O/MeCN/MeOH/Et3N) gave 2.15 

as a white foam (4.02 g, 100%): m.p. 121.1- 123.4 °C; Rf = 0.32 (1:2:5:2:2:1 

hexanes/EtOAc/Et2O/MeCN/MeOH /Et3N); 1H NMR (400 MHz, CDCl3) δ 1.93-2.09 (m, 

2H, H-1), 2.21-2.27 (m, 1H, H-1), 2.41 (br s, 1H, OH), 2.62-2.96 (m, 5H, H-1), 3.37-3.41 

(m, 2H, H-2), 3.79 (s, 6H, H-3), 4.09 (t, J = 6 Hz, 1H, H-4), 4.46-4.48 (m, 4H, H- 5), 6.23 

(t, J = 6 Hz, 1H, H-6), 6.83 (d, J = 8 Hz, 4H, H-7), 6.96 (d, J = 8 Hz, 1H, H-8), 7.20-7.39 

(m, 9H, H-9), 8.23 (d, J = 8 Hz, 1H, H-10); 13C NMR (100 MHz, CDCl3) δ 15.4, 27.3, 

41.9, 42.8, 55.2, 62.6, 65.6, 70.7, 86.3, 86.9, 113.2, 127.0, 128.0, 128.1, 130.0, 135.3, 

135.4, 135.4, 144.2, 158.6, 162.1; HRMS (ESI) m/z calcd for C36H39N3O8S2H [M+H]+ 

706.2251, found 706.2249. 

Dmoc-dC-amidite 2.2:  

A round-bottom flask containing 2.15 (0.69 g, 1.0 mmol) and a magnetic stirring 

bar was evacuated and then refilled with nitrogen. The evacuation and nitrogen-filling 

cycle was repeated for two more times. Dry CH2Cl2 (10 mL), 2- cyanoethyl-N,N,N′,N′-

tetraisopropylphosphoramidite (2.17, 0.33 g, 0.34 mL, 1.09 mmol), and a solution of 1H-

tetrazole in CH3CN (0.45 M, 2.41 mL, 1.09 mmol) were added via syringes sequentially. 

After stirring at rt for 2 h, the mixture was concentrated to dryness by a nitrogen flow over 

its surface. The residue was purified with flash column chromatography (SiO2, 1:1 

hexanes/EtOAc) giving 2.2 as a white foam (800 mg, 89%): Rf = 0.32 (1:3 

hexanes/EtOAc); 1H NMR (400 MHz CDCl3) δ 1.14 (d, J = 6 Hz, 12H, H- 1), 1.90-2.07 

(m, 1H, H-2), 2.24-2.30 (m, 1H, H-2), 2.41 (t, J = 8 Hz, 2H, H-3), 2.64-2.71 (m, 4H, H-2), 

2.88-2.93 (m, 2H, H-2), 3.35-3.57 (m, 6H, H-4), 3.77 (s, 6H, H-5), 4.17-4.18 (m, 1H, H-
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6), 4.45-4.64 (m, 4H, H-7), 6.22 (t, J = 6 Hz, 1H, H-8), 6.81-6.88 (m, 5H, H-9, H-10), 7.22-

7.38 (m, 9H, H-11), 8.27 (d, J = 8 Hz, 1H, H-12); 13C NMR (100 MHz, CDCl3) δ 20.1, 

24.6, 27.2, 29.9, 40.8, 42.7, 43.3, 55.2, 58.1, 58.3, 61.9, 65.6, 71.6, 85.6, 86.8, 94.5, 113.2, 

117.3, 127.0, 127.9, 128.2, 129.6, 130.0, 130.1, 135.2, 135.3, 144.0, 144.3, 158.6, 162.0; 

31P NMR (162 MHz, CDCl3) δ 150.4; HRMS (ESI) m/z calcd for C45H56N5O9PS2H 

[M+H]+ 906.3336, found 906.3342. 

Compound 2.15:  

The procedure for 2.14 was used: White foam; yield 57%; m.p. 108.2-111.4 °C; Rf 

= 0.47 (1:2:5:2:2:1 hexanes/EtOAc/Et2O/MeCN /MeOH/Et3N); 1H NMR (400 MHz, 

CDCl3) δ 1.89- 2.04 (m, 2H, H-1), 2.50-2.97 (m, 6H, H-1), 3.37 (d, J = 4 Hz, 2H, H-2), 

3.72 (s, 6H, H-3), 4.09-4.16 (m, 1H, H-4), 4.16-4.19 (m, 1H, H-5), 4.52 (d, J = 4 Hz, 2H, 

H-5), 4.68-4.71 (m, 1H, H-5), 6.46 (t, J = 6 Hz, 1H, H-6), 6.73-6.75 (d, J = 8 Hz, 4H, H-

7), 7.12- 7.35 (m, 9H, H-8), 8.13 (s, 1H, H-9), 8.66 (s, 1H, H-10); 13C NMR (100 MHz, 

CDCl3) δ 25.4, 27.3, 40.2, 43.0, 55.2, 65.3, 72.2, 84.6, 86.2, 86.5, 113.1, 122.3, 126.9, 

135.5, 141.4, 149.2, 158.4; HRMS (ESI) m/z calcd for C37H39N5O7S2H [M+H]+ 730.2364, 

found 730.2366. 

 

Dmoc-dA-amidite 2.3:  

The procedure for 2.1 was used: White foam; yield 88%; Rf = 0.4 (1:1:1 

hexanes/EtOAc/Et3N); 1H NMR (400 MHz, CDCl3) δ 1.17 (d, J = 6 Hz, 12H, H-1), 1.94- 2.07 (m, 

1H, H-2), 2.41 (t, J = 8 Hz, 2H, H-3), 2.52-2.99 (m, 7H, H-2), 3.32-3.41 (m, 2H, H-4), 3.55-3.72 

(m, 4H, H-5), 3.76 (s, 6H, H-6), 4.13 (t, J = 8 Hz, 1H, H-7), 4.28-4.31 (m, 1H, H-8), 4.56 (d, J = 8 
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Hz, 2H, H-9), 4.74-4.79 (m, 1H, H-8), 6.45 (t, J = 6 Hz, 1H, H-10), 6.77 (d, J = 8 Hz, 4H, H- 11), 

7.16-7.37 (m, 9H, H-12), 8.16 (s, 1H, H-13), 8.68 (s, 1H, H-14); 13C NMR (100 MHz, CDCl3) δ 

20.4, 20.5, 24.7, 24.8, 25.7, 39.7, 43.2, 43.4, 55.4, 63.5, 65.6, 73.6, 73.8, 85.0, 86.2, 86.3, 86.7, 

113.3, 117.6, 122.7, 127.1, 128.0, 128.4, 130.3, 135.8, 135.8, 141.7, 144.7, 149.5, 150.8, 151.1, 

152.9, 158.7; 31P NMR (162 MHz, CDCl3) δ 150.0; HRMS (ESI) m/z calcd for C46H56N7O8PS2H 

[M+H]+ 930.3448, found 930.3441. 

Compound 2.19:  

To a solution of compound 2.17 (2.56 g, 5.04 mmol) in HMPA (5 mL) and THF 

(50 mL) was added tert-butylmagnesium chloride (1 M in THF, 15.1 mL, 15.1 mmol) 

dropwise at -78 °C. After addition, the mixture was allowed to warm to rt slowly, stirred 

at rt for 30 min, and then cooled to -78 °C again. A solution of 2.13 (3.97 g, 12.6 mmol) in 

THF (25 mL) was added dropwise. After stirring at rt for 8 h, the reaction was quenched 

with MeOH (8 mL). Volatiles were evaporated under reduced pressure. The residue was 

dissolved in EtOAc and washed sequentially with 0.15 M EDTA, saturated NaHCO3, and 

brine. The organic layer was dried over anhydrous Na2SO4, filtered and concentrated. Flash 

chromatography (SiO2, 19:1 CHCl3/MeOH) gave 2.18 (1.53 g, 44 %) as a white solid. To 

the solution of 2.18 (0.57 g, 0.83 mmol) in dry pyridine (10 mL) was added HF-pyridine 

(70%, 357 mg, 12.5 mmol) at 0 °C. After stirring at rt for 2 h, excess fluoride was quenched 

with MeOSiMe3 (1.30 g, 12.5 mmol) by stirring at rt for 8 h. Volatiles were evaporated 

under reduced pressure. The residue was co-evaporated with dry pyridine (5 mL × 3), and 

then dissolved in dry pyridine (20 mL). To the solution, dimethoxytrityl chloride (0.28 g, 

0.83 mmol) was added. After stirring at rt for 8 h, the mixture was partitioned between 
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CH2Cl2 and 5% NaHCO3. The organic layer was dried over anhydrous Na2SO4, filtered 

and concentrated. Flash chromatography (SiO2, 9:1 EtOAc/MeOH) gave 2.19 (1.06 g, 

80%) as a white foam: m.p. 159 – 161 °C; Rf = 0.2 (9:1 EtOAc/MeOH); 1H NMR (400 

MHz, CDCl3) δ 1.94-2.06 (m, 2H, H-1), 2.48- 2.59 (m, 2H, H-1), 2.63-2.96 (m, 4H, H-1), 

3.27-3.41 (m, 2H, H-2), 3.68 (s, 6H, H-3), 4.10 (t, J = 8 Hz, 1H, H-4), 4.15-4.18 (m, 1H, 

H-5), 4.57 (d, J = 8 Hz, 2H, H-6), 4.87-4.91 (m, 1H, H-5), 6.22 (t, J = 6 Hz, 1H, H-7), 6.68 

(dd, J = 9 Hz, 3 Hz, 4H, H-8), 7.07-7.33 (m, 9H, H-9), 7.68 (s, 1H, H- 10); 13C NMR (100 

MHz, CDCl3) δ 10.8, 14.2, 25.4, 27.0, 40.1, 42.6, 45.8, 55.2, 60.4, 64.3, 65.7, 71.7, 84.3, 

86.4, 86.5, 113.0, 120.9, 126.8, 135.7, 144.5, 148.4, 154.4, 155.8, 158.4; HRMS (ESI) m/z 

calcd for C37H39N5O8S2H [M+H]+ 746.2313, found 746.2311. 

Dmoc-dG-amidite 2.4:  

The procedure for 2.1 was used: White foam; yield 77%; Rf = 0.5 (29:1 

EtOAc/MeOH); 1H NMR (400 MHz, CDCl3) δ 1.12-1.15 (m, 12H, H-1), 1.97-2.03 (m, 

2H), 2.32-2.95 (m, 8H, H-2, H-3), 3.33 (d, J = 4 Hz, 2H, H-4), 3.51-3.63 (m, 4H, H-5), 

3.73 (s, 6H, H-6), 3.96 (t, J = 10 Hz, 1H, H-7), 4.24-4.47 (m, 1H, H-8), 4.50 (d, J = 8 Hz, 

2H, H-9), 4.68- 4.74 (m, 1H, H-8), 6.19 (t, J = 6 Hz, 1H, H-10), 6.73-6.76 (m, 4H, H-11), 

7.13-7.38 (m, 9H, H- 12), 7.74 (s, 1H, H-13); 13C NMR (100 MHz, CDCl3) δ 20.2, 20.3, 

24.5, 24.5, 24.6, 26.8, 39.4, 42.1, 43.2, 43.3, 55.2, 57.8, 58.0, 63.7, 65.6, 73.7, 73.8, 84.6, 

86.0, 86.3, 113.1, 117.3, 121.7, 126.9, 127.8, 128.0, 130.0, 135.7, 137.5, 144.5, 146.2, 

148.0, 153.0, 158.5; 31P NMR (162 MHz, CDCl3) δ 149.4; HRMS (ESI) m/z calcd for 

C46H56N7O9PS2H [M+H]+ 946.3397, found 946.3405. 

Compound 2.27:  
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To a solution of 5- (acetylthio)pentanoic acid (2.26, 100 mg, 0.57 mmol) in dry 

CH2Cl2 (10 mL) at 0 °C was added DCC (0.63 mL, 1.0 M in CH2Cl2, 0.63 mmol) dropwise 

under argon. After stirring at 0 °C for 20 min, compound 2.25 (223 mg, 0.57 mmol) in dry 

CH2Cl2 (10 mL) was added via cannula and the mixture was stirred for 12 h while warm 

to rt gradually. The content was poured into a separatory funnel containing 5% NaHCO3 

(20 mL), and extracted with CH2Cl2 (20 mL × 2). The extracts were dried over anhydrous 

Na2SO4, filtered and concentrated. Flash column chromatography (SiO2, 1:1:0.05 

hexanes/EtOAc/Et3N) gave 27 as a white sticky foam (240 mg, 77%): Rf = 0.35 (1:2 

hexanes/EtOAc); 1H NMR (400 MHz, CDCl3) δ 1.50-1.69 (m, 4H, H-1), 2.09 (t, J = 7.12 

Hz, 2H, H-2), 2.29 (s, 3H, H-3), 2.82 (t, J = 7.12 Hz, 2H, H-4), 3.09-3.22 (m, 3H, H- 5), 

3.49-3.55 (m, 1H, H-5), 3.76 (s, 6H, H-6), 3.84-3.88 (m, 1H, H-7), 5.85 (br t, J = 7.12 Hz, 

NH), 6.81 (d, J = 6.92 Hz, 4H, H-8), 7.19-7.41 (m, 9H, H-9); 13C NMR (100 MHz, CDCl3) 

δ 24.8, 28.8, 28.9, 30.9, 35.9, 43.2, 55.4, 64.9, 70.5, 86.4, 113.4, 127.1, 128.1, 128.3, 130.2, 

135.9, 144.8, 158.7, 174.0; HRMS (ESI) m/z calcd for C31H37NO6SNa [M+Na]+ 574.2239, 

found 574.2244. 

Compound 2.23:  

To the solution of 2.27 (100 mg, 0.21 mmol) in CH2Cl2 (2 mL) was added 

diisopropylammonium tetrazolide (54 mg, 0.32 mmol) and 2.16 (97 mg, 0.32 mmol), and 

the reaction mixture was stirred under nitrogen at rt for 2 h. The mixture was loaded onto 

a column (SiO2) and eluted with the solvent mixture EtOAc/hexanes/Et3N (20:20:1). 

Compound 2.23 was obtained as a pale yellow oil (130 mg, 82%): two diastereoisomers, 

Rf = 0.50 (20:20:1 EtOAc/hexanes/Et3N); 1H NMR (400 MHz, CDCl3) δ 1.01-1.31 (m, 
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12H, H-1), 1.45-4.68 (m, 4H, H-2), 2.04 (t, J = 6.7 Hz, 1H, H-3), 2.11 (t, J = 6.7 Hz, 1H, 

H-3), 2.29 (s, 3H, H-4), 2.44 (t, J = 6.3 Hz, 1H, H-5), 2.62 (t, J = 6.2 Hz, 1H, H-5), 2.82 (t, 

J = 7.1 Hz, 1H, H-6), 2.83 (t, J = 7.1 Hz, 1H, H- 6), 3.05-3.10 (m, 0.5H, H-7), 3.15-3.24 

(m, 1H, H- 7), 3.28-3.36 (m, 0.5H, H-7), 3.41-3.69 (m, 4H, H- 7), 3.69-3.80 (m, 1H, H-8), 

3.75 (s, 3H, H-9), 3.76 (s, 3H, H-9), 3.81-3.91 (m, 1H, H-8), 3.95-4.08 (m, 1H, H-10), 5.76 

(t, J = 5.6 Hz, 0.5H, NH), 6.05 (t, J = 5.2 Hz, 0.5H, NH), 6.79 (d, J = 7.6 Hz, 2H, H- 11), 

6.81 (d, J = 5.6 Hz, 2H, H-11), 6.16-7.29 (m, 7H, H-12), 7.41-7.43 (m, 2H, H-12); 31P 

NMR (162 MHz, CDCl3) δ 149.9, 150.3; HRMS (ESI) m/z calcd for C40H54N3O7PSNa 

[M+Na]+ 774.3318, found 774.3316. 

Compound 2.28:  

Triethylamine (0.267 mL, 1.92 mmol) was added to a solution of compound 2.25 

(630 mg, 1.6 mmol) in dry CH2Cl2 (15 mL) and cooled to -10 °C under argon. α-

chloroacetyl chloride was added dropwise over 5 min. The mixture was stirred for 12 h 

while warming to rt slowly. After concentration under reduced pressure, the residue was 

purified with flash column chromatography (SiO2, 1:1:0.05 hexanes/EtOAc/Et3N). 

Compound 2.28 was obtained as a white foam (160 mg, 21%): Rf = 0.30 (1:1 

hexanes/EtOAc). 1H NMR (400 MHz, CDCl3) δ 2.92 (br s, 1H, OH), 3.15-3.23 (m, 2H, H-

1), 3.28- 3.34 (m, 1H, H-1), 3.56-3.62 (m, 1H, H-1), 3.80 (s, 6H, H-2), 3.88-3.94 (m, 1H, 

H-3), 4.00 (s, 2H, H-4), 6.85 (d, J = 8.9 Hz, 4H, H-5), 6.91 (t, J = 5.4 Hz, 1H, NH), 7.20-

7.33 (m, 7H, H-6), 7.43 (dd, J = 11.2, 1.4 Hz, 2H, H-6); 13C NMR (100 MHz, CDCl3) δ 

42.7, 43.1, 55.4, 65.0, 70.0, 86.6, 113.4, 127.2, 128.1, 129.4, 135.9, 144.7, 158.8, 167.0; 

HRMS (ESI) m/z calcd for C26H28ClNO5Na [M+Na]+ 492.1554, found 492.1558. 
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Compound 2.24:  

The procedure for 2.23 was used: white foam; yield 78%; two diastereoisomers, Rf 

= 0.4 and 0.5 (2:1 EtOAc/hexanes); 1H NMR (400 MHz, CDCl3) δ 1.11-1.24 (m, 12H, H-

1), 2.41 (t, J = 6.5 Hz, 1H, H-2), 2.63 (t, J = 6.3 Hz, 1H, H-2), 3.05-3.09 (m, 0.5H, H-3), 

3.19-3.28 (m, 1H, H-3), 3.33-3.45 (m, 0.5H, H-3), 3.50-3.68 (m, 4H, H-3), 3.50-3.78 (m, 

1H, H-5), 3.76 (s, 3H, H-4), 3.77 (s, 3H, H-4), 3.84-3.94 (m, 1H, H-5), 3.96-4.15 (m, 3H, 

H-6, H-7), 6.70-6.83 (m, 4H, H-8), 7.17-7.48 (m, 9H, H-9); 31P NMR (162 MHz, CDCl3) 

δ 149.90, 149.94; HRMS (ESI) m/z calcd for C35H45ClN3O6PH [M+H]+ 670.2813, found 

670.2809. 

ODN synthesis, deprotection, cleavage and analysis:  

The ODNs were synthesized on ABI 394 (2.20-2.22, 60 mg CPG used) and 

MerMade 6 (2.29-2.30, 24 mg CPG used) synthesizers using dT-Dmoc-CPG 2.1, Dmoc 

amidites 2.2-2.4, amidites 2.23-2.24 and commercial dT amidite. The conditions suggested 

by synthesizer manufactures for 1 μmol synthesis were used in all cases. The average 

stepwise coupling yields for 2.20-2.22 were 98.6, 98.7, and 98.6%, respectively. Those for 

2.29-2.30 were not available as the MerMade synthesizer does not have the reading. After 

synthesis, the CPG was divided into ten (2.20-2.22) or four (2.29-2.30) equal portions. One 

portion was suspended in a solution of DBU in CH3CN (1:9 DBU/CH3CN, v/v, 500 μL), 

and was gently shaken at rt for 15 min. The supernatant was removed with a pipette, and 

the CPG was washed with CH3CN (200 μL × 3). To the CPG, an acidic NaIO4 solution 

(0.1 M in 970 μL H2O and 30 μL AcOH, pH 2) was added. After shaking in dark at rt for 

3 h, the supernatant was transferred into a centrifugal tube. The CPG was washed with 
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dilute acetic acid (3:97 AcOH/H2O, v/v, pH 2, 200 μL × 3). HPLC analysis of the 

supernatant and washes indicated that the ODN was not cleaved from CPG at this time. To 

the CPG was added a solution of aniline (3:97 aniline/H2O, v/v, 1 mL, pH 8), and the 

suspension was shaken at rt for 3 h. The supernatant was transferred into a centrifugal tube. 

The CPG was washed with water (200 μL × 3). For ODNs 2.20-2.22, the combined solution 

was concentrated to ~500 μL (but not to dryness, in some cases, no concentration was 

carried out), loaded onto a dextran or polyacrylamide desalting column (5K MWCO, 10 

mL), and eluted with H2O. Fractions containing ODN were combined and concentrated. 

The ODN was dissolved in 50 μL H2O, and 20 μL was injected into RP HPLC to generate 

the crude ODN trace. The major ODN peak was collected, concentrated, dissolved in 20 

μL water, and injected into HPLC to generate the pure ODN trace. In several trials, we 

used Amicon® centrifugal filter units to remove small molecules. The results were similar. 

For ODNs 2.29-2.30, the supernatant and water washes were combined and concentrated 

to ~50 μL (but not to dryness). To the solution, 500 μL nBuOH was added. The mixture 

was vortexed and centrifuged for 10 min. The supernatant was removed without disturbing 

with a pipette. The residue was dissolved in 50 μL H2O, and 20 μL was injected into RP 

HPLC to generate the crude ODN trace. The major ODN peak was collected, concentrated 

to dryness, dissolved in 20 μL H2O, and injected into HPLC to generate the pure ODN 

trace. All pure ODNs were analyzed with MALDI-TOF MS, and correct molecular masses 

were observed. 

ODN deprotection and cleavage protocol  

 

Standard procedure should be used for ODN synthesis. No modification of conditions is 

required. The deprotection and cleavage of 0.1 μmol crude ODN is used for the description of the 
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protocol.  

1. Place crude ODN on CPG in a 1.5 mL centrifugal tube. Add 500 μL DBU solution in 

CH3CN (1:9 DBU/CH3CN). Shake gently at rt for 15 min.  

2. Spin the tube gently and briefly to bring down CPG (and also the liquids). 

3. Remove the supernatant with a pipette. 

4. Wash the CPG with CH3CN (200 μL × 3). 

5. Add acidic NaIO4 solution (0.1 M in 970 μL H2O and 30 μL AcOH, pH 2). 

6. Wrap the tube with an aluminum foil, and gently shake at rt for 3 h. 

7. Transfer the supernatant to another centrifuge tube. Wash the CPG with dilute acetic acid 

(3:97 AcOH/H2O, v/v, 200 μL × 3. The ODN is still on CPG at this time, but keep the 

supernatant and washes in case that the ODN falls off. If it falls off, size-exclusion 

chromatography and Amicon® ultra filtration are options to separate ODN from NaIO4 

and other small molecules). 

8. Add aniline solution (3:97 aniline/H2O, 1 mL, pH 8) to the CPG, and shake at rt for 3 h. 

9. Transfer the supernatant to another centrifuge tube. Wash the CPG with water (200 μL × 

3). Combine the supernatant and washes. 

10. Concentrate (but do not completely dry) the supernatant and washes to ~50 μL and add 500 

μL nBuOH. Vortex for 30 sec and centrifuge for 10 min. 

11. Carefully remove the supernatant with a pipette. The residue is crude ODN, which can be 

purified with RP HPLC. 
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12. Alternatively, from step 9, load the combined supernatant and washes (concentration is not 

needed unless the volume exceeds 1.5 mL) onto a dextran desalting column (5K MWCO, 

10 mL), and elute with water. Combine the fractions containing ODN. Evaporate volatiles. 

The residue is crude ODN, which can be purified with RP HPLC. 
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Chapter 3 Sensitive ODN Synthesis Using Dim for 
Phosphate Protection 
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Abstract 

In traditional oligodeoxynucleotide (ODN) synthesis, phosphate groups are 

protected with 2-cyanoethyl group, and amino groups are protected with acyl groups. At 

the end of ODN synthesis, deprotection is achieved with strong bases and nucleophiles. 

Therefore, traditional technologies are not suitable for the synthesis of ODNs containing 

sensitive functionalities. To address the problem, we report the use of Dim and Dmoc 

groups, which are based on the 1,3‐dithian‐2‐yl-methyl function, for phosphate and amine 

protection for solid phase ODN synthesis. Using the new Dim-Dmoc protection, 

deprotection was achieved under mild oxidative conditions without using any strong bases 

and nucleophiles. As a result, the new technology is suitable for the synthesis of ODNs 

containing sensitive functions. To demonstrate feasibility, seven 20-mer ODNs including 

four that contain the sensitive ester and alkyl chloride groups were synthesized, purified 

with RP HPLC and characterized with MALDI-TOF MS. High purity ODNs were obtained 

in good yields 
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3.1 Introduction 

Synthetic oligodeoxynucleotides (ODNs) and their analogs have found wide 

applications in many areas. Examples include antisense drug development,1 DNA-protein 

interactions,2 nanotechnology,3,4  bioconjugation,5 CRISPR genome editing,6 DNA damage 

and repair,7 DNA methylation and demethylation,8 DNA data storage,9 and synthetic 

biology.10 It is projected that ODN analogs that contain sensitive functional groups have 

the potential to greatly expand the scope of the applications and bring about new research 

directions. Example sensitive ODN analogs include those containing functional groups 

such as alkyl halides, benzyl halide, allyl halides, α-halo amides, esters, activated esters, 

carbonates, thioesters, tosylates, sulfonic esters, sultones,  phosphates, α,β-unsaturated 

carbonyl compounds, epoxides, aziridines, maleimides, vinyl arenes, methides, vinyl 

ethers, acetals, and hemiacetals. These groups are generally stable under typical chemical 

and biological conditions and can co-exist with functional groups of natural ODNs. 

However, they cannot survive the harsh acidic and basic conditions used in traditional 

ODN synthesis and deprotection. Therefore, traditional ODN synthesis technologies 

cannot be used to synthesize such sensitive ODNs. Some efforts have been made to address 

the problem, but limited success has been achieved.11-20 Owing to the high potential of 

modified ODNs to bring transformative impact to many research areas, it is therefore 

significant to develop synthetic technologies that can be used to install any sensitive 

functional groups that are compatible with natural ODNs into any positions of ODNs. 
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Scheme 3.1 Deprotection of ODNs assembled with 2-cyanoethyl-Dmoc and Dim-Dmoc 

phosphoramidite monomers. 

To achieve this goal, we recently introduced the 1,3‐dithian‐2‐yl-methoxycarbonyl 

function (Dmoc) as amino protection groups and cleavable linker for solid phase ODN 

synthesis.21-23 Mainly due to the concern of low efficiency of inorganic oxidizing agents to 

penetrate into the relatively hydrophobic fully protected ODNs to oxidize the dithioketals 

for deprotection and cleavage, we used the 2-cyanoethyl group for phosphate protection. 

At the end of synthesis, deprotection and cleavage were achieved in three steps. First, the 

2-cyanoethyl groups were removed with the non-nucleophilic organic base DBU in 

acetonitrile (Scheme 3.1). This converted the hydrophobic fully protected ODN 3.1 into 

the hydrophilic 3.2. The hydrophilic anionic phosphate groups were believed to be 

beneficial for the inorganic oxidizing agent in water to penetrate into ODN in the next step. 

Second, the dithioketals in 3.2 were oxidized with sodium periodate to give 3.3. This 

drastically increased the acidity of H-2 in the 1,3-dithane function. Third, after washing 

away the inorganic materials, β-eliminations were induced with the weak base aniline, and 
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the ODNs were cleaved from the solid support and fully deprotected to give 3.4. In this 

paper, we report our results on the study of the feasibility of using the Dim instead of 2-

cyanoethyl function to protect the phosphate group. ODNs synthesized with this protection 

strategy should appear as 3.5 (Scheme 1). Deprotection and cleavage can then be achieved 

in two steps by oxidation of the dithioketals to give 3.6 followed by β-elimination. Besides 

reducing one step during deprotection, another advantage is that the use of the strong base 

DBU is avoided, which is expected to expand the scope of sensitive functions that can be 

incorporated into ODNs. Indeed, our results showed that the new protecting strategy was 

feasible, and the concern of inefficient oxidation of dithioketals in the relatively 

hydrophobic 3.5 was unnecessary. Using the new Dim-Dmoc technology, ODNs including 

those that contain sensitive functions can be synthesized in good yields and high purity 

under finely tuned but reliable conditions. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Dim-Dmoc phosphoramidite monomers and CPG with Dmoc linker 
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Scheme 3.2  Synthesis of Dim-Dmoc phosphoramidite monomers 
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3.2 Results and Discussion 

To use the Dim-Dmoc technology to synthesize ODNs, the phosphoramidite 

monomers 3.7a-d and the solid support with Dmoc linker 3.8 were needed (Figure 3.1). 

Preparation of 3.8 was reported previously.21 The synthesis of 3.7a-d is shown in Scheme 

3.2. Compound 3.9 in toluene was reacted with commercially available 

bis(diisopropylamino)chlorophosphine (3.10) in the presence of the amine base 

diisopropylamine at room temperature overnight under an inert atmosphere.24, 25 This gave 

the intermediate 3.11, which was not isolated. A nucleoside with 5'-OH protected with a 

4,4'-dimethoxytrityl (DMTr) or trityl group and amino group protected with the Dmoc 

group (3.12) and the activator diisopropylammonium tetrazolide (3.13) were dissolved in 

DCM. The intermediate 3.11 in the supernatant was transferred via a cannula with its 

inflow end wrapped with a copper wire-secured filter paper into the solution of 3.12 and 

activator. The reaction was allowed to proceed at room temperature overnight. The crude 

product was purified with flash column chromatography without aqueous workup. Good 

to excellent yields of the Dim-Dmoc phosphoramidites 3.7a-d were obtained (Scheme 3.2). 

With the Dim-Dmoc phosphoramidites in hand, we tested the feasibility of using them as 

building blocks for ODN synthesis under weakly nucleophilic and weakly basic 

deprotection and cleavage conditions by the synthesis of the unmodified ODN 3.14a 

(Figure 3.2). CPG with a Dmoc linker (3.8) was used as the solid support.21 The 

phosphoramidites 3.7a-d were used as nucleoside monomers. The syntheses were 

conducted on a MerMade 6 DNA synthesizer using typical scripts with some 

modifications. Briefly, detritylation was achieved with 3% DCA in DCM. In coupling, 0.1 

M solutions of 3.7a-d in acetonitrile were used with 5-(ethylthio)-1H-tetrazole as activator. 



50 

Capping was accomplished using 2-cyanoethyl N,N,N',N'-

tetraisopropylphosphorodiamidite with the same activator for coupling. Typical conditions 

involving iodine was used for oxidation. In the last coupling step, the 5'-trityl protected 

instead of 5'-DMTr protected phosphoramidite 3.7e was used to incorporate the nucleotide 

at the 5'-end of the ODN. The synthesis of 3.7e is shown in Scheme 3.2 and was similar as 

the synthesis of 3.7a-d. Deprotection and cleavage of ODN was achieved in two steps 

(Scheme 3.3). First, the dithioketal bonds in the Dim and Dmoc functions in the fully 

protected ODN 3.15 were oxidized with a solution of sodium periodate in water at room 

temperature to give 3.16. Excess oxidizing agents and other materials were simply removed 

by washing the CPG with water. Second, the CPG was suspended in a solution of aniline 

in water. This induced β-eliminations of the oxidized Dim and Dmoc functions in 3.16, 

which cleaved the ODN from CPG and gave ODN 3.17. At this stage, 3.17 was fully 

deprotected except for a trityl tag at its 5'-end, which was desirable for the purpose of 

assisting RP HPLC purification of the ODN. To remove small organic molecules, the ODN 

was precipitated from water with butanol. The residue was injected into RP HPLC to 

generate the profile of crude ODN, in which the tagged full-length ODN was well separated 

from other materials (Figure 3.3). The trityl-tagged ODN was collected and analyzed with 

HPLC giving a single peak (profile in supporting information). Removing the tag was 

achieved with 80% acetic acid, which is the typical condition for detritylation of DMTr-

tagged ODNs. The ODN with trityl tag removed was purified with RP HPLC, and the 

purified fully deprotected ODN was analyzed again with RP HPLC. As shown in Figure 

3.3, a single sharp peak was observed. The pure ODN 3.14a was analyzed with MALDI-

TOF MS. Correct molecular peak was found (Figure 3.4). The amount of pure ODN 
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obtained was estimated by UV, and an OD260 of 2.15 was given for a 0.52 µmol synthesis 

(supporting information). Besides 3.14a, two additional unmodified ODNs 3.14b-c were 

synthesized and analyzed under similar conditions to further confirm the viability of the 

new technology. Analysis data are in supporting information. 

Scheme 3.3 ODN deprotection and cleavage. 

 

Next, we tested the feasibility of the Dim-Dmoc technology for the synthesis of sensitive 

ODNs by incorporating the ester and alkyl chloride functions into ODNs. The synthesis of 

the required Dim phosphoramidite monomers (3.18a-b) is shown in Scheme 3.4. The 

known compound 3.19 was converted to 3.24 in five simple steps. Compounds 3.19 and 

3.24 were then converted to their corresponding Dim phosphoramidites 3.18a-b, 

respectively using the similar conditions for the synthesis of 3.7a-e. The phosphoramidites 
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3.18a-b contain the sensitive ethyl ester and alkyl chloride groups, which are sensitive to 

traditional ODN cleavage and deprotection conditions involving heating in a concentrated 

ammonium hydroxide solution. The alkyl chloride is also sensitive to bases via β-

elimination. The ODN sequences 3.14d-g (Figure 3.2) were selected for the studies, of 

which the long chain chloroalkane-containing 3.14f-g could provide a means to prepare 

protein-DNA conjugates via the bioorthogonal reaction between haloalkane dehalogenase 

and chloroalkanes.26 The ODNs were synthesized under the same conditions described for 

the synthesis of unmodified ODNs. Deprotection and cleavage conditions were also the 

same. RP HPLC profiles of crude and pure ODNs 3.14d and 3.14f are in Figure 3.3. Their 

MALDI-TOF MS spectra are in Figure 3.4. All other analytical data are in supporting 

information. The data proved that the Dim-Dmoc technology can be used to synthesize the 

sensitive ODNs that contain the ester and alkyl chloride functionalities in high yields and 

purity.  

 

 

 

 

 

 

Figure 3.2. ODN sequences 
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Figure 3.3. HPLC profiles. In the profiles of crude ODNs, the major peak at around 40 

minutes is the fully deprotected ODN with a 5'-trityl tag. In the profiles of pure ODNs, 

the single sharp peak is the fully deprotected ODN without a 5'-trityl tag. 
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Figure 3.4. MALDI-TOF MS of ODNs 3.14a, 3.14d and 3.14f. 
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Scheme 3.4. Synthesis of Dim phosphoramidites 3.18a-b that contain sensitive groups. 

 

The use of the Dim group to protect the phosphate groups in ODN synthesis has two 

advantages over the method in our previous reports,21-23 in which the 2-cyanoethyl group 

was used. First, the number of steps in deprotection and cleavage is reduced from three to 

two, which significantly simplifies the procedure. Second, the use of the strong organic 

base DBU to remove the 2-cyanoethyl groups is avoided, which can expand the scope of 

sensitive groups to be incorporated into ODNs. Earlier, our decision to use the 2-cyanoethyl 

group instead of Dim for phosphate protection was based on several considerations 

including the complex nature of chemical ODN synthesis, difficulty to make highly pure 

Dim phosphoramidites (3.7a-d) required for repeated use in a multistep linear synthesis 

with satisfactory overall yield, and as mentioned earlier the concern of inefficient oxidation 

of dithioketals during ODN deprotection and cleavage. ODN synthesis is a highly complex 

process. After careful engineering by many chemists in several decades, the standard 

procedure is robust. However, slight modification of the procedure can cause significant 

problems, and those problems are usually very difficult to diagnose and address. For the 
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synthesis of Dim phosphoramidites 3.7a-d, it was a concern too. Unlike their 2-cyanoethyl 

counterparts, which can be synthesized using the commercially available 2-cyanoethyl-

N,N,N',N'-tetraisopropylphosphordiamidite as the phosphitylation agent, these compounds 

have to be synthesized using a new phosphitylation agent such as 3.11, which is difficult 

to prepare and purify. For concerns on the inefficiency of oxidation of the dithioketals 

during ODN deprotection and cleavage, the fully protected ODNs on the CPG are relatively 

hydrophobic; which excludes the use of oxidizing agents that can only function in water. 

However, to oxidize multiple dithioketals with complete conversion, the reaction must be 

highly efficient, and thus the broadness of the scope of oxidizing agents that can be tested 

is important for the technology to be successful. Therefore, during our initial studies, we 

chose to use the much simpler and well established 2-cyanoethyl protection chemistry. 

Indeed, we met many problems during the studies. For example, at the beginning of the 

project, our RP HPLC profiles were messy. After testing many hypotheses, we finally 

found that one of the problems was cap exchange, in which the Dmoc groups used for 

amino protection were replaced by acyl groups during capping involving using reagents 

such as acetic anhydride under traditional capping conditions. This was counter intuitive 

because the donation of the lone pair of electrons from the oxygen atom to the carbonyl 

carbon in the Dmoc function would make the Dmoc protection more stable than acyl 

protections. Once the problem was diagnosed, it was solved elegantly by using the 

phosphorylation chemistry instead of the acylation chemistry for capping. The synthesis of 

3.7a-d and making them highly pure for ODN synthesis were indeed difficult too. We 

screened many conditions and were finally able to identify a procedure involving using 

toluene as the solvent and diisopropylamine as base to prepare the phosphitylation agent 
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3.11. With toluene and diisopropylamine, 3.11 was soluble while the side product 

diisopropylammonium salt was not. This allowed us to obtain 3.11 with sufficient purity 

for the phosphitylation reaction without aqueous workup and chromatography 

purification.24, 25 Of surprise was that the oxidation of dithioketals in the fully protected 

relatively hydrophobic 3.5 during ODN deprotection and cleavage was achieved with ease 

using the aqueous solution of sodium periodate. The efficiency was similar to the oxidation 

of 3.2, which was highly hydrophilic due to the anionic phosphate groups. Probably, the 

fully protected ODNs had limited but sufficient solubility in water for the oxidation 

reaction to occur at the outermost sphere of the ODN coated CPG. Once the dithioketals in 

the outermost layer were oxidized, the solubility increased, and the reaction   gradually 

penetrated into the inner layer and all dithioketals were oxidized efficiently. However, one 

observation still puzzles us. We synthesized a simple model oligosulfoxide compound, 

which contained six sulfoxide groups. We thought that this compound would be highly 

soluble in water. To our surprise, it was almost insoluble or had very limited solubility in 

any solvents including water.27 During the development of the technology, we found that 

using the trityl group instead of the DMTr group as the 5'-tag to assist RP HPLC 

purification was needed. When DMTr group was used, the tag was easy to fall off in the 

sodium periodate oxidation step. The trityl group was able to survive the conditions. 

Importantly, we found that the trityl group could be removed efficiently with 80% acetic 

acid under similar conditions used for removing the DMTr group after HPLC purification, 

which was inconsistent to the report that deprotection of trityl group required two days at 

room temperature.28 One concern on developing the Dim-Dmoc technology was the 

difficulty to identify selective oxidative conditions for the oxidation of phosphite triesters 
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to phosphate triesters during ODN synthesis and for oxidation of dithioketals during 

deprotection and cleavage. For the former, we were gratified to find that the standard iodine 

oxidation conditions were highly selective, and premature oxidation of the dithioketals had 

never been observed. For the latter, the sodium periodate solution elegantly accomplished 

an otherwise highly challenging task, which required highly efficient and selective 

oxidation of the multiple dithioketal groups while not damaging the ODNs via oxidation 

of the nucleobases and other portions of the molecules. 
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3.3 Conclusion 

In conclusion, a new method for solid phase ODN synthesis has been developed. The 

method uses Dim for phosphate protection, Dmoc for amino protection, and a Dmoc linker 

for anchoring the ODN to solid support. With the new protection and linking strategy, ODN 

deprotection and cleavage can be achieved under oxidative conditions without using any 

strong bases and nucleophiles. Therefore, the new method is suitable for the synthesis of 

ODN analogs containing base labile and electrophilic groups, a task that cannot be 

accomplished or is highly challenging to accomplish using traditional technologies. We 

expect that the new method will be able to provide a wide range of sensitive ODN analogs 

to researchers in research areas such as antisense drug development, DNA-protein 

interaction studies, nanotechnology  and bioconjugation. 
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3.4 Experimental Section 

General information:  

All reactions were performed in oven-dried glassware under argon using standard Schlenk 

techniques. Reagents and solvents available from commercial sources were used as 

received unless otherwise noted. Lcaa-CPG (pore size 497 Å) was purchased from Prime 

Synthesis. THF, toluene, and CH2Cl2 were dried using an Innovative Technology Pure-

Solv™ system. Pyridine and diisopropylamine were distilled over CaH2 under nitrogen. 

Compounds 3.12a-e were prepared according to reported procedure.21, 22, 29 Thin layer 

chromatography (TLC) was performed using Sigma-Aldrich TLC plates, silica gel 60F-

254 over glass support, 250 μm thickness. Flash column chromatography was performed 

using SiliCycle silica gel, particle size 40-63 μm. 1H, 13C and 31P NMR spectra were 

measured on a Varian UNITY INOVA spectrometer at 400, 100 and 162 MHz, 

respectively; chemical shifts (δ) were reported in reference to solvent peaks (residue CHCl3 

at δ 7.24 ppm for 1H and CDCl3 at δ 77.00 ppm for 13C) and to H3PO4 (δ 0.00 ppm for 31P). 

HRMS was obtained on a Thermo HR-Orbitrap Elite Mass Spectrometer. LRMS was 

obtained on a Thermo Finnigan LCQ Advantage Ion Trap Mass Spectrometer. MALDI-

TOF MS were obtained on Bruker’s microflex™ LRF MALDI-TOF System. ODNs were 

synthesized on a MerMade 6 solid phase synthesizer. RP HPLC was performed on a 

JASCO LC-2000Plus System: pump, PU-2089Plus Quaternary Gradient; detector UV-

2075Plus. A C-18 reversed phase analytical column (5 μm diameter, 100 Å, 250 × 3.20 

mm) was used. Solvent A: 0.1 M triethylammonium acetate, 5% acetonitrile. Solvent B: 

90% acetonitrile. All profiles were generated by detecting absorbance at 260 nm using the 
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linear gradient solvent system: solvent B (0%-45%) in solvent A over 60 min followed by 

solvent B (45%-100%) in solvent A over 20 min at a flow rate of 1.0 mL/min. 

Compound 3.7a: 

To a solution of 3.9 (1.57 g, 10.48 mmol, 1.5 eq.) and freshly distilled diisopropyl amine 

(9.85 mL, 69.9 mmol, 10 eq.) in dry toluene (25 mL) was added 

bis(diisopropylamino)chlorophosphine (3.10, 2.80 g, 10.48 mmol, 1.5 eq.) at rt under 

argon. After stirring overnight, the intermediate 3.11 in the supernatant was transferred into 

a solution of 3.12a (3.80 g, 6.99 mmol, 1 eq.) and diisopropylammonium tetrazolide (3.13, 

1.80 g, 10.48 mmol, 1.5 eq.) in dry DCM (50 mL) via a cannula with its inflow end wrapped 

with a copper wire-secured filter paper.  The reaction mixture was stirred overnight, and 

then concentrated to dryness. The residue was loaded directly on a column for flash column 

chromatography (SiO2, 1:1 hexanes/EtOAc with 5% Et3N).  Compound 3.7a was obtained 

as a white foam (5.04 g, 88%): Mixture of two diastereoisomers; Rf = 0.2 and 0.3 (SiO2, 

1:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3) δ 1.04-1.16 (m, 12H), 1.38 (s, 3H), 1.77-

1.87 (m, 1H), 1.96-2.07 (m, 1H), 2.28-2.42 (m, 1H), 2.45-2.58 (m, 1H), 2.60-2.69 (m, 2H), 

2.65-2.84 (m, 4H), 3.29-3.46 (m, 2H), 3.47-3.69 (m, 2H), 3.76 (s, 6H), 3.80-3.89 (m, 1H), 

4.04-4.23 (m, 1H), 4.74-4.77 (m, 1H), 6.38 (t, J = 5.76 Hz, 1H), 6.81 (dd, J = 8.81, 3.16 

Hz, 4H), 7.20-7.29 (m, 7H), 7.40 (d, J = 7.60 Hz, 2H), 7.60 (s, 0.5H), 7.63 (s, 0.5 H), 8.84 

(brs, 1H); 13C NMR (100 MHz, CDCl3) δ 12.1, 24.81, 24.88, 24.95, 25.0, 26.1, 26.2, 28.8 

(d, Jcp = 9.15 Hz), 29.0 (d, Jcp = 17.15 Hz), 40.5 (d, Jcp = 5.35 Hz), 40.6 (d, Jcp = 1.84 

Hz), 43.4 (d, Jcp = 3.38 Hz), 43.5 (d, Jcp = 3.41 Hz), 47.1 (d, Jcp = 7.04 Hz), 47.8 (d, Jcp 

= 6.77 Hz), 55.5, 63.3, 63.7, 64.8 (d, Jcp = 18.15 Hz), 65.0 (d, Jcp = 18.90 Hz), 73.6 (d, 



62 

Jcp = 15.59 Hz), 74.1 (d, Jcp = 15.19 Hz), 84.8, 85.0, 85.4 (d, Jcp = 6.69 Hz), 86.0 (d, Jcp 

= 2.83 Hz), 87.0, 87.1, 111.2, 113.4, 127.2, 128.1, 128.4, 130.4, 135.5, 135.6, 135.7, 136.0, 

136.1, 144.5, 144.6, 150.4, 158.8, 164.0; 31P NMR (162 MHz, CDCl3) δ 149.4, 149.6 

ppm; HRMS (ESI) m/z calcd for C42H55N3O8PS2 [M+H]+ 824.3168, found 824.3170.  

Compound 3.7b: 

The same procedure for 3.7a was used. Flash column chromatography (SiO2, 1:1 

hexanes/EtOAc with 5% Et3N) gave 3.7b as a white foam (1.25 g, 52%): Mixture of two 

diastereoisomers; Rf = 0.2 and 0.3 (SiO2, 1:2 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3) 

δ 1.04-1.26 (m, 12H), 1.72-1.84 (m, 2H), 1.90-2.09 (m, 4H), 2.30-2.47 (m, 2H), 2.59-2.74 

(m, 6H), 2.85-2.93 (m, 2H), 3.39-3.60 (m, 4H), 3.61-3.89 (m, 1H), 3.77 (s, 6H), 3.91-4.16 

(m, 2H), 4.17-4.22 (m, 1H), 4.40-4.49 (m, 1H), 6.18-6.22 (m, 1H), 6.81 (d, J = 7.4 Hz, 4H), 

7.18-7.29 (m, 7H), 7.7.39 (d, J = 7.60 Hz, 2H), 8.27-8.29 (m, 0.5H), 8.34-8.35 (m, 0.5H); 

13C NMR (100 MHz, CDCl3) δ 23.3 (d, Jcp = 2.21 Hz), 23.4 (d, Jcp = 1.59 Hz), 24.85, 

24.89, 24.92, 24.98, 25.1, 25.7, 25.9, 26.1, 26.2, 27.5, 27.6, 28.7 (d, Jcp = 13.00 Hz), 29.1 

(d, Jcp = 21.54 Hz), 41.2 (d, Jcp = 5.73 Hz), 41.5, 43.1, 43.4, 43.5, 45.4, 45.5, 47.1 (d, Jcp 

= 6.88 Hz), 47.7 (d, Jcp = 8.28 Hz), 55.5, 61.9, 62.4, 64.7 (d, Jcp = 19.91 Hz), 64.8 (d, Jcp 

= 18.5 Hz), 65.8, 65.9, 71.4 (d, Jcp = 9.27 Hz), 71.9 (d, Jcp = 10.13 Hz), 85.2 (d, Jcp = 

7.30 Hz), 86.1, 87.0, 94.5, 113.4, 127.2, 128.1, 128.4, 130.2, 130.3, 135.5, 135.6, 135.7, 

135.8, 144.3, 144.4, 144.9, 145.0, 151.9, 155.0, 158.7, 161.9, 162.0; 31P NMR (162 MHz, 

CDCl3) δ 149.2, 149.5; HRMS (ESI) m/z calcd for C47H62N4O9PS4 [M+H]+ 985.3137, 

found 985.3130.  
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Compound 3.7c: 

The same procedure for 3.7a was used. Flash column chromatography (SiO2, 1:1 

hexanes/EtOAc with 5% Et3N) gave 3.7c as a white foam (1.30 g, 68%): Mixture of two 

diastereoisomers; Rf = 0.3 and 0.4 (SiO2, 1:2 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3) 

δ 1.09-1.25 (m, 12H), 1.75-1.84 (m, 2H), 1.95-2.04 (m, 4H), 2.59-2.75 (m, 6H), 2.87-2.98 

(m, 4H), 3.31-4.00 (m, 4H), 3.75 (s, 6H), 4.00 (t, J = 6.48 Hz, 0.5H), 4.05-4.18 (m, 1.5H), 

4.21-4.27 (m, 0.5H), 4.30-4.39 (m, 0.5H), 4.55 (d, J = 7.1 Hz, 2H), 4.80-4.88 (m, 1H), 6.46 

(t, J = 6.5 Hz, 1H), 6.74-6.77 (m, 4H), 7.14-7.30 (m, 7H), 7.36 (d, J = 11.96 Hz, 2H), 8.16 

(s, 0.5H), 8.19 (s, 0.5H), 8.68 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 23.27 (d, Jcp = 2.57 

Hz), 23.33 (d, Jcp = 2.00 Hz), 24.86, 24.92, 24.99, 25.8, 26.1, 27.6, 28.8 (d, Jcp = 11.54 

Hz), 29.1 (d, Jcp = 14.52 Hz), 40.1 (d, Jcp = 14.77 Hz), 43.3, 43.4, 43.5, 45.45, 45.51, 47.2 

(d, Jcp = 7.48 Hz), 47.7 (d, Jcp = 7.55 Hz), 55.5, 63.4, 63.7, 64.7 (d, Jcp = 13.84 Hz), 65.4 

(d, Jcp = 18.48 Hz), 65.6, 73.9 (d, Jcp = 13.71 Hz), 74.0 (d, Jcp = 15.26 Hz), 84.8, 85.1, 

85.9, 86.4, 86.6, 86.7, 113.3, 122.6, 127.0, 128.0, 128.3, 130.2, 135.78, 135.85, 141.6, 

141.7, 144.67, 144.72, 149.2, 150.5, 151.06, 151.12, 152.8, 158.6; 31P NMR (162 MHz, 

CDCl3) δ 149.4, 149.6; HRMS (ESI) m/z calcd for C48H62N6O8PS4 [M+H]+ 1009.3249, 

found 1009.3255.  

Compound 3.7d: 

The same procedure for 3.7a was used. Flash column chromatography (SiO2, 8:1:1 

EtOAc/ACN/Et3N) gave 3.7d as a white foam (1.30 g, 68%): Mixture of two 

diastereoisomers; Rf = 0.2 and 0.3 (SiO2, 8:1:1 EtOAc/ACN/Et3N). 1H NMR (400 MHz, 
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CDCl3) δ 1.07-1.16 (m, 12H), 1.77-1.86 (m, 2H), 1.97-2.08 (m, 4H), 2.59-2.94 (m, 10H), 

3.25-3.31 (m, 2H), 3.52-3.58 (m, 2H), 3.75 (s, 6H), 3.58-4.21 (m, 2.5H), 4.29-4.32 (m, 

0.5H), 4.50 (d, J = 3.48 Hz, 1H), 4.52 (d, J = 3.44 Hz, 1H), 4.72-4.81 (m, 1H), 6.18-6.23 

(m, 1H), 6.72-6.78 (m, 4H), 7.16-7.30 (m, 7H), 7.37 (d, J = 7.04 Hz, 1H), 7.39 (d, J = 7.76 

Hz, 1H), 7.8 (s, 0.5H), 7.82 (s, 0.5H); 13C NMR (100 MHz, CDCl3) δ 24.86, 24.91, 24.94, 

24.98, 25.6, 26.1, 27.1, 28.88 (d, Jcp = 11.11 Hz), 29.16 (d, Jcp = 8.47 Hz), 39.9, 42.5, 

43.4, 43.5, 47.2 (d, Jcp = 6.85 Hz), 47.6 (d, Jcp =7.36 Hz), 55.5, 63.6, 63.9, 64.8 (d, Jcp = 

6.59 Hz), 65.0 (d, Jcp = 6.47 Hz), 66.0, 73.9 (d, Jcp = 11.09 Hz), 74.1 (d, Jcp = 16.48 Hz), 

84.3, 84.4, 85.7 (d, Jcp =6.62 Hz), 86.2 (d, Jcp = 2.85 Hz), 86.6, 113.3, 121.6, 127.0, 128.0, 

128.3, 128.4, 130.18, 130.24, 135.8, 135.9, 137.4, 137.5, 144.6, 144.7, 146.3, 148.30, 

148.32, 153.11, 153.13, 155.7, 158.6; 31P NMR (162 MHz, CDCl3) δ 148.9, 149.6; HRMS 

(ESI) m/z calcd for C48H62N6O9PS4 [M+H]+ 1025.3198, found 1025.3205.  

Compound 3.7e: 

The same procedure for 3.7a was used. Flash column chromatography (SiO2, 1:1 

hexanes/EtOAc with 5% Et3N) gave 3.7e as a white foam (233 mg, 87%): Mixture of two 

diastereoisomers; Rf = 0.2 and 0.3 (SiO2, 1:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3) 

δ 1.04-1.27 (m, 12H), 1.40 (s, 3H), 1.78-1.86 (m, 1H), 1.96-2.05 (m, 1H), 2.29-2.98 (m, 

8H), 3.30-3.99 (m, 5H), 4.05-4.25 (m, 1H), 4.74-4.81 (m, 1H), 6.38 (t, J = 7.1 Hz, 1H), 

7.18-7.35 (m, 9H), 7.36-7.45 (m, 6H), 7.56 (s, 0.5H), 7.60 (s, 0.5H), 9.11 (brs, 1H); 13C 

NMR (100 MHz, CDCl3) δ 12.1, 24.84, 24.88, 24.91, 24.95, 25.01, 26.1, 26.2, 28.8 (d, Jcp 

= 8.40 Hz), 29.0 (d, Jcp = 17.34 Hz), 40.4 (d, Jcp = 5.12 Hz), 40.6, 43.4, 43.5, 47.0 (d, Jcp 

= 7.16 Hz), 47.5 (d, Jcp = 7.43 Hz), 63.5, 63.9, 64.8 (d, Jcp = 17.88 Hz), 65.0 (d, Jcp = 
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18.41 Hz), 73.6 (d, Jcp = 15.28 Hz), 73.9 (d, Jcp = 14.43 Hz), 84.8, 85.0, 85.3 (d, Jcp = 

6.74 Hz), 85.9, 87.55, 87.61, 111.1, 111.2, 127.5, 128.1, 128.9, 135.9, 136.0, 143.5, 143.6, 

150.5, 164.1; 31P NMR (162 MHz, CDCl3) δ 149.4, 149.7; HRMS (ESI) m/z calcd 

C40H51N3O6PS2 [M+H]+ 764.2956, found 764.2960.  

Compound 3.20: 

To a suspension of lithium aluminum hydride (1.15 g, 30.29 mmol, 5 eq.) in dry THF (25 

mL) was added a solution of 3.19 (3.15 g, 6.06 mmol, 1 eq.) in dry THF (50 mL) dropwise 

via cannula at 0 °C under nitrogen. The reaction mixture was stirred for 3 h, and then 

quenched by dropwise addition of H2O (1.15 mL), 15% NaOH (1.15 mL), and H2O (3.45 

mL), sequentially. The white precipitate was removed by filtration over Celite. The filtrate 

was concentrated to dryness. Flash column chromatography (SiO2, 1:1 hexanes/EtOAc 

with 5% Et3N) gave 3.20 as a colorless oil (2.45 g, 80%): Rf = 0.2 (SiO2, 1:1 

hexanes/EtOAc); 1H NMR (400 MHz, CDCl3) δ 1.20-1.42 (m, 14H), 1.53 (p, J = 5.80 Hz, 

2H), 1.65 (brs, 1H), 2.45 (brs, 1H), 3.02 (dd, J = 9.28, 7.56 Hz, 1H), 3.16 (dd, J = 9.60, 

3.56 Hz, 1H), 3.59 (t, J = 6.6 Hz, 2H), 3.73-3.75 (m, 1H), 3.76 (s, 6H), 6.82 (d, J = 8.9 Hz, 

4H), 7.20 (tt, J = 7.40, 1.16 Hz, 1H), 7.28 (t, J = 7.24 Hz, 2H), 7.32 (d, J = 8.96 Hz, 2H), 

7.43 (d, J = 9.64 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 25.8, 26.1, 29.72, 29.78, 29.8, 

29.9, 33.0, 33.7, 55.5, 63.2, 67.9, 71.2, 86.2, 113.3, 126.9, 127.9, 128.3, 130.2, 136.2, 

145.0, 158.5; HRMS (ESI) m/z calcd for C32H43O [M+H]+ 507.3110, found 507.3122.  

Compound 3.21: 
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To a solution of 3.20 (2.06 g, 4.07 mmol, 1 eq.) in freshly distilled pyridine (50 mL) was 

added TsCl (0.814 g, 1.05 eq.) at 0 °C under nitrogen. The mixture was stirred at the same 

temperature for 8 h. The majority of pyridine was evaporated on a rotary evaporator under 

vacuum generated by an oil pump. The remaining content was poured into a separatory 

funnel containing 5% NaHCO3 (100 mL) and extracted with EtOAc (50 mL × 3). The 

extracts were dried over anhydrous Na2SO4, filtered, and concentrated. Flash column 

chromatography (SiO2, 2:1 hexanes/EtOAc with 5% Et3N) gave 3.21 as a pale-yellow oil 

(1.37 g, 51%): Rf = 0.4 (SiO2, 1:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3) δ 1.12-

1.41 (m, 14H), 1.61 (p, J = 6.72 Hz, 2H), 2.42 (s, 3H), 3.01 (t, J = 9.16 Hz, 1H), 3.16 (dd, 

J = 9.40, 3.28 Hz, 1H), 3.70-3.74 (m, 1H), 3.76 (s, 6H), 4.00 (t, J = 6.5 Hz, 2H), 6.81 (d, J 

= 8.8 Hz, 4H), 7.20 (t, J = 7.12 Hz, 1H), 7.26 (t, J = 4.80 Hz, 2H), 7.31 (d, J = 8.80 Hz, 

6H), 7.43 (d, J = 7.28 Hz, 2H), 7.77 (d, J = 8.32 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 

21.9, 25.6, 25.7, 29.1, 29.2, 29.60, 29.67, 29.8, 33.6, 55.5, 67.8, 70.9, 71.2, 86.2, 113.3, 

126.9, 127.9, 128.3, 129.9, 130.2, 133.4, 136.2, 144.7, 145.0, 158.5; HRMS (ESI) m/z 

calcd for C39H49O7S [M+H]+ 661.3199, found 661.3204.  

Compound 3.22: 

To a solution of 3.21 (6.78 g, 10.28 mmol, 1 eq.) in dry DMSO (25 mL) was added KCN 

(0.802 g, 12.34 mmol, 1.2 eq.) at rt under nitrogen. The reaction mixture was stirred at 60 

°C overnight. After cooling to rt, EtOAc (100 mL) was added, and the organic phase was 

washed with brine (100 ml), dried over anhydrous Na2SO4, filtered, and concentrated. 

Flash column chromatography (SiO2, 4:1 hexanes/EtOAc with 5% Et3N) gave 3.22 as a 

colorless oil (4.20 g, 79%): Rf = 0.2 (SiO2, 4:1 hexanes/EtOAc); 1H NMR (400 MHz, 
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CDCl3) δ 1.22-1.26 (m, 10H), 1.37-1.42 (m, 4H), 1.61 (p, d = 7.12 Hz, 2H), 2.27 (t, J = 

7.12 Hz, 2H), 2.41 (brs, 1H), 3.02 (dd, J = 9.24, 7.52 Hz, 1H), 3.16 (dd, J = 9.32, 3.32 Hz, 

1H), 3.76 (s, 6H), 6.81 (d, J = 8.9 Hz, 4H), 7.20 (t, J = 7.36 Hz, 1H), 7.28 (t, J = 7.76 Hz, 

2H), 7.32 (d, J = 8.48 Hz), 7.43 (d, J = 8.2 Hz); 13C NMR (100 MHz, CDCl3) δ 17.4, 25.7, 

25.8, 28.9, 29.0, 29.5, 29.7, 29.9, 33.7, 55.5, 67.9, 71.2, 86.3, 113.3, 120.0, 126.9, 127.95, 

127.98, 128.3, 130.2, 136.3, 145.0, 158.6; HRMS (ESI) m/z calcd for C33H42NO4 [M+H]+ 

516.3113, found 516.3120.  

Compound 3.23: 

To a suspension of lithium aluminum hydride (1.55 g, 40.8 mmol, 5 eq.) in dry THF (50 

mL) was added a solution of 3.22 (4.20 g, 8.16 mmol, 1 eq.) in dry THF (50 mL) dropwise 

via cannula at 0 °C under nitrogen. The mixture was stirred overnight while warming to rt 

gradually. The reaction was then quenched by dropwise addition of H2O (1.55 mL), 15% 

aq. NaOH (1.55 mL), and H2O (4.65 mL), sequentially. The white precipitate was removed 

by filtration over Celite and the filtrate was concentrated to dryness. Flash column 

chromatography (SiO2, 8:1:1 EtOAc/MeOH/Et3N) gave 3.23 as a pale-yellow oil (2.50 g, 

60%): Rf = 0.2 (SiO2, 8:1:1 EtOAc/MeOH/Et3N); 1H NMR (400 MHz, CDCl3) δ 1.15-1.49 

(m, 18H), 2.11 (brs, 2H), 2.67 (t, J = 7.08 Hz, 2H), 2.99 (dd, J = 9.08, 7.68 Hz, 1H), 3.14 

(dd, J = 9.28, 3.12 Hz, 1H), 3.70-3.73 (m, 1H), 3.77 (s, 6H), 6.81 (d, J = 8.84 Hz, 4H), 7.19 

(t, J = 6.56 Hz, 1H), 7.27 (t, J = 7.16 Hz, 2H), 7.30 (d, J = 8.64 Hz, 4H), 7.41 (d, J = 7.44 

Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 25.8, 27.2, 29.7, 29.82 (2C), 29.88, 29.9, 33.7 

(2C), 42.4, 55.5, 67.9, 71.2, 86.3, 113.3, 126.9, 128.0, 128.3, 130.2, 136.2, 145.0, 158.6; 

HRMS (ESI) m/z calcd for C33H46NO4 [M+H]+ 520.3426, found 520.3429.  
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Compound 3.24: 

To a solution of 3.23 (220 mg, 0.423 mmol, 1 eq.) and triethylamine (88 µL, 0.635 mmol, 

1.5 eq.) in dry DCM (15 mL) was added 6-chlorohexanoyl chloride (0.051 mL, 0.423 

mmol, 1 eq.) at -78 °C under nitrogen. The mixture was stirred for 1 h while warming to rt 

slowly. Water (15 mL) was added and the organic contents were extracted with DCM (15 

mL × 3). The extracts were combined and dried over anhydrous Na2SO4, filtered, and 

concentrated. Flash column chromatography (SiO2, 2:1 hexanes/EtOAc with 5% Et3N) 

gave 3.24 as a pale-yellow oil (0.134 g, 49%): Rf = 0.5 (SiO2, 1:1 hexanes/EtOAc); 1H 

NMR (400 MHz, CDCl3) δ 1.19-1.51 (m, 20H), 1.64 (p, J = 8.84 Hz, 2H), 1.75 (p, J = 6.68 

Hz, 2H), 2.14 (t, J = 7.36 Hz, 2H), 2.35 (brs, 1H), 3.00 (dd, J = 9.28, 7.60 Hz, 1H), 3.14 

(dd, J = 9.32, 3.32 Hz, 1H), 3.20 (q, J = 7.08 Hz, 2H), 3.50 (t, J = 6.60 Hz, 2H), 3.70-3.74 

(m, 1H), 3.76 (s, 6H), 5.49 (brs, 1H), 6.80 (d, J = 8.92 Hz, 4H), 7.19 (tt, J = 7.20, 2.12 Hz, 

1H), 7.26 (t, J = 7.76 Hz, 2H), 7.30 (d, J = 8.80 Hz, 4H), 7.41 (d, J = 8.72 Hz, 2H); 13C 

NMR (100 MHz, CDCl3) δ 25.3, 25.8, 26.8, 27.2, 29.6, 29.77, 29.79 (2C), 29.89, 29.97, 

32.6, 33.7, 36.9, 39.8, 45.1, 55.5, 67.9, 71.2, 86.3, 113.3, 126.9, 127.9, 128.3, 130.2, 136.3, 

145.0, 158.6, 172.6; HRMS (ESI) m/z calcd for C39H55ClNO5 [M+H]+ 652.3768, found 

652.3770.  

Compound 3.18a: 

The same procedure for 3.7a was used. Flash column chromatography (SiO2, 9:1 

hexanes/EtOAc with 5% Et3N) gave 3.18a as a colorless oil (412 mg, 79%): Mixture of 

two diastereoisomers; Rf = 0.6 and 0.7 (SiO2, 3:1 hexanes/EtOAc); 1H NMR (400 MHz, 
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CDCl3) δ 1.05 (d, J = 6.76 Hz, 3H), 1.11-1.35 (m, 23H), 1.45-1.79 (m, 3H), 1.79-1.95 (m, 

1H), 1.95-2.12 (m, 1H), 2.259 (t, J = 7.68 Hz, 1H), 2.263 (t, J = 7.48 Hz, 1H), 2.57-2.68 

(m, 1H), 2.69-2.89 (m, 3H), 2.96 (q, J = 2.96 Hz, 1H), 3.06 (q, J = 5.76 Hz, 1H), 3.22 (q, J 

= 5.20 Hz, 1H), 3.22 (q, J = 5.04 Hz),  3.47-3.65 (m, 2H), 3.65-3.80 (m, 1H), 3.766 (s, 3H), 

3.773 (s, 3H), 3.84-3.92 (m, 1H), 3.92-4.05 (m, 1H), 4.11 (q, J = 7.12 Hz, 2H), 4.10-4.21 

(m, 1H), 6.78 (d, J = 11.72 Hz, 2H), 6.81 (d, J = 7.48 Hz, 2H), 7.13-7.21 (m, 1H), 7.24 (t, 

J = 7.88 Hz, 1H), 7.26 (t, J = 7.20 Hz, 1H), 7.33 (d, J = 8.64 Hz, 2H), 7.35 (dd, J = 8.04, 

1.60 Hz, 2H), 7.45 (d, J = 5.08 Hz, 1H), 7.46 (d, J = 5.24 Hz, 1H); 13C NMR (100 MHz, 

CDCl3) δ 14.6, 24.84, 24.86, 24.91, 24.94, 25.00, 25.04, 25.07, 25.11, 25.17, 25.31, 25.34, 

25.39, 26.30, 26.34, 28.6 (d, Jcp = 7.00 Hz), 28.9 (d, Jcp = 8.96 Hz), 29.47, 29.51, 29.59, 

29.72, 29.76, 29.91, 30.02, 33.76, 33.9 (d, Jcp = 6.28 Hz), 34.7, 43.2 (d, Jcp = 4.18 Hz), 

43.4 (d, Jcp = 4.01 Hz), 46.9 (d, Jcp = 5.52 Hz), 47.3 (d, Jcp = 6.98 Hz), 55.5, 60.4, 64.9 

(d, Jcp = 7.38 Hz), 65.1 (d, Jcp = 18.48 Hz), 66.3 (d, Jcp = 1.82 Hz), 66.4 (d, Jcp = 3.34 

Hz), 73.7 (d, Jcp = 14.99 Hz), 74.3 (d, Jcp = 18.69 Hz), 85.9, 113.1, 126.7, 127.8, 128.45, 

128.53, 130.30, 130.37, 136.6, 136.7, 145.3, 145.4, 158.4, 174.0; 31P NMR (162 MHz, 

CDCl3) δ 149.0, 149.2; HRMS (ESI) m/z calcd for C45H67NO7PS2 [M+H]+ 828.4096, 

found 828.4099.  

Compound 3.18b: 

The same procedure for 3.7a was used. Flash column chromatography (SiO2, 1:1 

hexanes/EtOAc with 5% Et3N) gave 3.18b as a pale-yellow oil (294 mg, 86%): Mixture of 

two diastereoisomers; Rf = 0.2 and 0.3 (SiO2, 1:1 hexanes/EtOAc); 1H NMR (400 MHz, 

CDCl3) δ 1.03 (d, J = 6.80 Hz, 2H), 1.10-1.35 (m, 22H), 1.40-1.51 (m, 4H), 1.56-1.69 (m, 
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4H), 1.77 (p, J = 7.12 Hz), 1.81-1.94 (m, 1H), 1.95-2.10 (m, 3H), 2.15 (t, J = 7.44 Hz, 2H), 

2.56-3.15 (m, 6H), 3.21 (t, J = 6.80 Hz, 1H), 3.22 (t, J = 6.52 Hz, 1H), 3.52 (t, J = 6.64 Hz, 

2H), 3.55-4.18 (m, 4H), 3.76 (s, 1H), 3.77 (s, 3H), 4.35-4.57 (m, 2H), 5.47 (brs, 1H), 6.78 

(d, J  = 8.84 Hz, 2H), 6.80 (d, J  = 7.32 Hz, 2H), 7.13-7.21 (m, 1H), 7.21-7.28 (m, 2H), 

7.32 (dd, J = 6.52, 2.64 Hz, 2H), 7.34 (dd, J = 8.36, 1.72 Hz, 2H), 7.44 (dd, J = 5.44, 1.61 

Hz, 1H), 7.46 (dd, J = 7.20, 1.61 Hz); 13C NMR (100 MHz, CDCl3) δ 24.84, 24.86, 24.90, 

24.94, 25.00, 25.07, 25.11, 25.17, 25.28, 25.38, 25.6, 25.9, 26.1, 26.30, 26.34, 26.7, 26.8, 

27.0, 27.2, 27.3, 28.6, 28.7, 28.85, 28.88, 29.6, 29.81, 29.85, 29.88, 29.93, 29.99, 30.03, 

32.6, 33.79 (d, Jcp = 2.99 Hz), 33.86 (d, Jcp = 5.24 Hz), 36.9, 39.8, 43.2, 43.4, 45.1, 46.93 

(d, Jcp = 7.09 Hz), 47.29 (d, Jcp = 7.27 Hz), 55.5, 64.9 (d, Jcp = 17.44 Hz), 66.3 (d, Jcp = 

6.76 Hz), 74.4, 85.9, 113.2, 126.7, 127.8, 128.45, 128.53, 130.3, 136.6, 136.7, 145.3, 145.4, 

158.4, 172.6; 31P NMR (162 MHz, CDCl3) δ 149.0, 149.2; HRMS (ESI) m/z calcd for 

C50H77ClN2O6PS2 [M+H]+ 931.4649, found 931.4650 

ODN Synthesis, Cleavage and Deprotection, and Analysis: 

All ODNs were synthesized on dT-Dmoc-CPG (26 µmol/g loading, 20 mg, 0.52 µmol) 

using a MerMade 6 Synthesizer. Dim-Dmoc phosphoramidites were used as monomers. 

The conditions suggested by synthesizer manufacturer for 1 μmol synthesis were used 

except that coupling was optionally increased from 2 to 3 times and capping was achieved 

using 2-cyanoethyl-N,N,N',N'-tetraisopropylphosphordiamidite instead of acetic 

anhydride. Briefly, detritylation, DCA (3%, DCM), 90 sec × 2; coupling, phosphoramidite 

(3.7a-e, 3.18a or 3.18e, 0.1 M, MeCN), 5-(ethylthio)-1H-tetrazole (0.25 M, MeCN), 60 sec 

× 2 (or 3); capping, 2-cyanoethyl-N,N,N',N'-tetraisopropylphosphordiamidite (0.1 M, 
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MeCN) and 5-(ethylthio)-1H-tetrazole (0.25 M, MeCN), 60 sec × 3; oxidation, I2 (0.02 M, 

THF/pyridine/H2O, 70/20/10, v/v/v), 40 sec. For incorporating the last nucleoside, 3.7e 

instead of 3.7a was used. At the end of synthesis, the 5'-trityl group was kept on. The CPG 

was divided into 5 equal portions. One portion was gently shaken in a solution of aqueous 

NaIO4 (0.4 M, 1 mL) at rt for 3 h. The supernatant was removed with a pipette, and the 

CPG was rinsed briefly with water (1 mL × 4). To the CPG was added aqueous aniline 

solution (3%, 1 mL) and the mixture was shaken at rt for 3 h. The supernatant was 

transferred into a centrifugal tube, which was concentrated to ~100 μL. To the tube was 

added 1-butanol (900 μL). The tube was vortexed briefly and centrifuged (14.5K rpm, 5 

min). The supernatant was removed with a pipette carefully without sucking the ODN 

precipitate. The ODN was dissolved in H2O (100 μL) and ~35 μL was injected into RP 

HPLC to generate the crude ODN. Fractions of the major ODN peak at ~39 min were 

collected, concentrated to ~100 μL, and injected into HPLC to give the profile of purified 

trityl-tagged ODN. To the dried trityl-tagged ODN was added 1 mL of 80% AcOH, and 

the mixture was shaken gently at rt for 3 h. Volatiles were evaporated. The residue was 

dissolved in ~100 μL water and injected into RP HPLC. The major peak of de-tritylated 

ODN at ~21 min was collected and concentrated to dryness. The residue was the pure de-

tritylated ODN, which was dissolved in 100 μL water and injected into HPLC to generate 

the profile of pure de-tritylated ODN. The pure ODN was analyzed MALDI-TOF MS. 

Information about OD260 of the ODNs are provided in the UV spectra section of the 

Supporting Information. 
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Chapter 4 Electrophilic ODN Synthesis Using dM-
Dmoc  
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Abstract 

Solid phase synthesis of electrophilic oligodeoxynucleotides (ODNs) was achieved using 

dimethyl Dmoc (dM-Dmoc) as amino protecting groups. Due to the high steric hindrance 

of the 2-(propan-2-ylidene)-1,3-dithiane side product from deprotection, the use of excess 

nucleophilic scavengers such as aniline to prevent Michael addition of the side product to 

the deprotected ODN during ODN cleavage and deprotection was no longer needed. The 

improved technology was demonstrated by the synthesis and characterization of five ODNs 

including three modified ones. The modified ODNs contained the electrophilic groups 

ethyl ester, α-chloroamide, and thioester. Using the technology, the sensitive groups can 

be installed at any location within the ODN sequences without using any sequence- or 

functionality-specific conditions and procedures. 

 

 

 

 

 

 

 

 

 

 

 



79 

4.1 Introduction 

After over 60 years of intensive research, the challenges for chemical 

oligodeoxynucleotide (ODN) synthesis have been considered largely overcome. 1-4 

However, this is only true for unmodified ODNs at limited synthesis scales. For modified 

ODNs that contain sensitive functionalities including those that are unstable under acidic, 

basic and strongly nucleophilic conditions, many formidable challenges remain. 2 The 

reason is that during ODN synthesis using traditional technologies, the 5'-hydroxyl group 

of nucleoside monomers is protected with the 4,4'-dimethoxytrityl (DMTr) group, which 

has to be removed with an acid in each synthetic cycle. The exo-amino groups of 

nucleosides dA, dC and dG are protected with acyl groups, the nascent ODN is anchored 

to a solid support via a base- or nucleophile-cleavable linker, and in the most widely used 

phosphoramidite technology the phosphate groups are protected with the 2-cyanoethyl 

group. These protecting groups and the linker have to be cleaved under strongly basic and 

nucleophilic conditions. As a result, many sensitive groups including acetal, hemiacetal, 

vinyl ethers, enol ethers, aldehydes, esters, activated esters, thioesters, aziridines, epoxides, 

alkyl halides, α-halocarbonyls, vinyl purines, methides and maleimides cannot or are 

difficult to be incorporated into ODNs, or cannot be installed at the desired locations in the 

ODNs. For example, to synthesize oligos that contain the epigenetically modified 5-

formylcytosine, the aldehyde group had to be protected as a cyclic acetal instead of the 

more labile acyclic acetal. 5,6 The maleimide group was incorporated into ODNs as a Diels-

Alder adduct with dimethylfuran. Besides the need of an additional step for deprotection, 

only examples of 5'-end modification were given probably due to the instability of the 

adduct under acidic conditions during ODN synthesis. 7 
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In recent years, applications of ODNs have extended to emerging areas such as 

nanotechnology, [8,9] antisense drug development, 10-12 DNA damage and repair, 13,14 DNA 

methylation and demethylation, [15-18] DNA-protein interactions, 19,20 CRISPR genome 

editing, 21-23 DNA data storage, 24,25 synthetic biology, 26 bioconjugation, 27 and others. 28-

30 These applications frequently require modified ODNs that contain a wide variety of 

functional groups including those that cannot survive known ODN synthesis, cleavage and 

deprotection conditions. To meet these demands, some work on developing new 

technologies suitable for the synthesis of sensitive ODNs has been carried out. 28,31 A 

common method is to use more labile acyl functions such as the phenoxyacetyl group for 

amino protection and as linker to enable deprotection and cleavage under milder basic 

conditions. 32 The palladium-labile allyl groups were also used for amino protection. 33,34 

The o-nitro benzyl function was used as linker to enable photo cleavage. 34 However, these 

methods are still not ideal. The phenoxyacetyl group and linker still needs nucleophilic 

cleavage. Palladium is expensive and difficult to remove from ODN. Photo irradiation can 

damage ODN. The (p-nitrophenyl)ethyl (Npe) and (p-nitrophenyl)ethyloxycarbonyl 

(Npeoc) were also explored for sensitive ODN synthesis under non-nucleophilic 

conditions. 35-38 The requirement of the strong base - DBU in aprotic solvents over long 

hours in the presence of a nucleophilic scavenger for their cleavage could limit their 

application. In addition, in some cases the sequences synthesized by the method were short 

and the yields of the ODNs were low. 35-38 In the literature, there are also examples using 

post-synthesis modifications to introduce sensitive groups to ODNs. 12 However, these 

methods are case-specific, and their procedures are usually complicated. The ODN 

synthesis method without nucleobase protection could be considered for the incorporation 
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of sensitive functionalities into ODNs. 39 However, a linker that can be cleaved under mild 

conditions and is suitable for the purpose has not been identified. More seriously, high 

selectivity of O-phosphitylation over N-phosphitylation, which is crucial for practical 

applications especially for the synthesis of ODNs approaching 20-mer or longer, may not 

be easy to achieve. 

 

 

 

 

 

 

 

 

Scheme 4.1. Comparison of Dmoc and dM-Dmoc as nucleobase protecting groups for 

ODN synthesis. 

 

To develop a universal technology for the synthesis of ODNs that contain a wide 

variety of sensitive functionalities, we recently reported the use of 1,3-dithian-2-yl-

methoxycabonyl (Dmoc) as protecting groups and linkers for ODN synthesis. 40,41 Due to 

the low acidity of H-2 (pKa ~31) in the Dmoc function, these groups and linkers were 

expected to be stable under ODN synthesis conditions. However, once the dithioketal in 

the group is oxidized, the acidity of H-2 (pKa ~12) is drastically increased. 42,43 Considering 

that the widely used Fmoc protecting group, of which the H-9 has a pKa of ~22, 42 can be 

readily removed with a weak base such as piperidine, we hypothesized that the oxidized 
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Dmoc groups and linkers could be cleaved under weakly basic and non-nucleophilic 

conditions via β-elimination. Indeed, we found that the deprotection and cleavage could be 

achieved by oxidation with sodium periodate followed by treating with the mild base 

aniline at room temperature. Due to the mild deprotection and cleavage conditions, we 

concluded that the technology was suitable for the synthesis of sensitive ODNs that contain 

electrophilic groups. However, at the current state of art one drawback of the technology 

is that large excess aniline has to be used as a scavenger to prevent the deprotection side 

product 4.1 from reacting with the deprotected ODNs via Michael addition. Aniline is a 

weak nucleophile, but using large excess is not ideal for a technology aimed to be 

practically and universally useful. In this paper, we report the use of dimethyl Dmoc (dM-

Dmoc), which we previously studied for alkyl and aryl amine protections, 44 in place of 

Dmoc for nucleobase protection for ODN synthesis (Scheme 4.1). Due to the steric 

hindrance of the side product 4.2 from deprotection, we found that a nucleophilic scavenger 

was no longer needed during deprotection, and the β-elimination step could be achieved 

using the non-nucleophilic weak base potassium carbonate. 
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Figure 1: dM-Dmoc phosphoramidite monomers and CPG with Dmoc linker. 
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4.2 Results and Discussion 

 

To develop the dM-Dmoc electrophilic ODN synthesis technology, the 

phosphoramidite monomers 4.3a-c and the linker 4.4 (Figure 4.1) were needed. The 

construction of linker 4.4 was reported previously. 40 The synthesis of 4.3a-c is shown in 

Scheme 4.2. The reagent 4.5 needed for protecting the exo amino groups of nucleobases 

was prepared in two steps from 1,3-dithiane (4.6) according to a procedure we reported 

previously. 44 The dC phosphoramidite monomer 4.3a was synthesized from compound 

4.9. 45 The formation of the hindered O-tert-alkyl N-arylcarbamate 4.10 was found highly 

challenging. 44,46,47 We tried many conditions and finally found that acceptable yields could 

be achieved under the highly reactive conditions involving two equivalents LDA and one 

equivalent 4.5. The silyl protecting groups were then removed with TBAF giving 

compound 4.11 in 99% yield. Tritylation of 4.11 with DMTrCl gave 4.12, which was 

phosphitylated with reagents 4.13 and 4.14 to give the target monomer 4.3a (Scheme 4.2). 

The dA phosphoramidite monomer 4.3b was synthesized similarly starting from 4.15. 48 

The amino group of 4.15 was carbamylated with 4.5 in the presence of two equivalents 

LDA to give 4.16. The silyl groups were removed, and compound 4.17 was tritylated to 

give 4.18, which was phosphitylated to give 4.3b. The dG phosphoramidite monomer 4.3c 

had to be synthesized using slightly different procedure (Scheme 4.2). The amide function 

in the nucleobase in the silyl protected nucleoside 4.19. 45 was temporarily protected with 

TBSCl to give 4.20. 49 This intermediate was not isolated and the exo amino group was 

carbamylated directly with 4.5 in the presence of two equivalents LDA giving 4.21 in 55% 

yield. The silyl protecting groups were removed to give 4.22, which was tritylated to give 
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4.23 and phosphitylated to give the target monomer 4.3c (Scheme 4.2). As will be 

discussed later, we also needed the hydrophobic phosphoramidite 4.25 for developing the 

dM-Dmoc ODN synthesis technology. The compound was simply prepared from the 

commercially available 4.24 via phosphitylation using the reagents 4.13-14 (Scheme 4.2). 

Scheme 4.2. Synthesis of compound 4.5, 44 nucleoside phosphoramidite monomers 4.3a-

c and phosphoramidite capping agent 4.25. 
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To demonstrate the capability of the dM-Dmoc ODN synthesis technology for 

incorporating electrophilic groups, we also needed phosphoramidite monomers 4.26a-c, 

which contained the sensitive functionalities ester, α-chloroacetamide and thioester, 

respectively (Figure 2). The synthesis of 4.26b-c has been reported [40]. Scheme 3 shows 

the synthesis of 4.26a. The required 1,2-diol 4.28 was simply prepared from the 

commercially available 4.27 by esterification in ethanol. Cyclization or oligomerization of 

4.27 was not an issue for the transformation. The primary alcohol of 4.28 was selectively 

tritylated with DMTrCl to give 4.29, which was phosphitylated with 4.13 in the presence 

of 4.14 to give 4.26a. 

 

 

 

 

Figure 4.2. Structure of phosphoramidites containing electrophilic groups. 

 

 

 

 

 

 

Scheme 4.3. Synthesis of ester-containing phosphoramidite 4.26a. 
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With the required phosphoramidite monomers (4.3a-c) and linker (4.4) in hand, we decided 

to identify suitable conditions for ODN synthesis, deprotection and cleavage under non-

nucleophilic conditions by synthesizing the unmodified ODNs 4.30a-b (Figure 4.3). The 

syntheses were conducted at a scale of 0.52 µmol on a MerMade 6 DNA/RNA synthesizer. 

The dT-Dmoc-CPG (4.4) was used as the solid support. Detritylation was carried out under 

standard conditions suggested by the synthesizer manufacturer for 1 µmol synthesis. The 

0.1 M acetonitrile solutions of phosphoramidite monomers 4.3a-c and the commercially 

available 5'-DMTr β-cyanoethyl dT phosphoramidite were used for incorporating dA, dC, 

dG and dT nucleotides, respectively. The coupling conditions were standard except that in 

some cases, coupling was increased from two to three times. Capping failure sequences 

was achieved using the phosphoramidite 4.25 with 5-(ethylthio)-1H-tetrazole as activator 

instead of the typically used acetic anhydride. Oxidation was performed under standard 

conditions. The last nucleotide at the 5'-end of ODN was incorporated with a 5'-trityl 

nucleoside phosphoramidite instead of a 5'-DMTr counterpart. At the end of the synthesis, 

the 5'-trityl group was not removed. More details about the synthesis are given in the 

Experimental Section. For cleavage and deprotection under non-nucleophilic conditions, 

the ODN on CPG, which should appear as 4.31 (Scheme 4.4) with a 5'-trityl tag, was treated 

with a DBU solution in acetonitrile at room temperature briefly. This removed the β-

cyanoethyl phosphate protecting groups to give 4.32. HPLC analysis of the DBU solution 

did not found any ODN that was cleaved prematurely – an observation consistent with the 

slow rate of cleavage of succinyl-anchored ODNs from solid support under similar 

conditions. 50 The dithioketal groups in the dM-Dmoc and Dmoc functions of 4.32 were 

then oxidized with a solution of sodium periodate at room temperature to give 4.33. The 
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5'-trityl tag survived the conditions. It should be pointed out that some sulfoxides might be 

further oxidized to sulfones, which should not affect the overall results of the deprotection 

and cleavage procedure. Removal of the oxidized dM-Dmoc protection groups and 

cleavage of the oxidized Dmoc linker were achieved with a solution of the weak non-

nucleophilic base potassium carbonate at pH 8 at room temperature giving the fully 

deprotected 5'-trityl-tagged ODN 4.30 (Scheme 4.4). Purification of the ODN 4.30a was 

achieved in two steps – trityl-on RP HPLC followed by trityl-off RP HPLC. For trityl-on 

HPLC (profile a, Figure 4.4), the desired full-length 5'-trityl-tagged ODN appeared at 36-

39 minutes and was well separated from other peaks. This peak was collected, and analyzed 

with RP HPLC (profile b). The purified 5'-trityl-tagged ODN was detritylated with 80% 

acetic acid. Even though it was reported that removal of trityl groups from a primary 

alcohol required two days at room temperature with 80% acetic acid, 51 we found that our 

detritylation could reach completion or in some cases close to completion in three hours. 

After the acid was evaporated, the de-tritylated ODN was purified again with RP HPLC 

(profile c). The major peak at around 20 minutes was collected, the ODN from which 

showed a single sharp peak when analyzed with RP HPLC (profile d). The purified de-

tritylated ODN was further analyzed with polyacrylamide gel electrophoresis (PAGE), a 

single band was observed (Lane 1, Figure 4.5). The HPLC purified ODN was also analyzed 

with MALDI-TOF MS, molecular mass corresponding to correct ODN structure was found 

(Figure 4.6). The unmodified ODN 4.30b were synthesized, purified and analyzed under 

the same conditions. Its HPLC profiles and MS are in the Supporting Information, and 

PAGE image is in Figure 4.5. All the analytical data indicate that the ODNs were pure and 

had correct identity. 
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Figure 4.3. ODN sequences 4.30a-e. Their 5'-tritylated versions are labeled as 4.30a-tr, 

4.30b-tr, 4.30c-tr, 4.30d-tr, and 4.30e-tr, respectively. 

 

In the RP HPLC profiles of the crude 5'-trityl-tagged ODNs such as that for 4.30a-

tr (profile a, Figure 4.4), besides failure sequences at around 20 minutes, there were 

multiple peaks after 40 minutes. We believe that those peaks were from branched ODNs 

generated from the premature deprotection of dM-Dmoc groups during ODN synthesis. 

The dM-Dmoc protections, which contained a tertiary butyl carbamate moiety, were not 

completely stable under the acidic conditions needed for de-tritylation in each synthetic 

cycle. Once the protection was lost, in the coupling step, incoming phosphoramidites would 

react with the free amino groups, and branched ODNs would be produced. Fortunately, 

these branched ODNs had two or more 5'-trityl groups, and therefore were significantly 

more hydrophobic than the desired ODN. During RP HPLC, they were eluted significantly 

later than the desired ODN and could be easily removed. We believe that the branching 

problem was not caused by premature oxidation of the dM-Dmoc groups by iodine in the 
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oxidation step in ODN synthesis because the problem did not exist when Dmoc was used 

for ODN synthesis. 41 In addition, we also subjected 1,3-dithiane to the iodine oxidation 

conditions for over 24 hours, no oxidation could be detected. Before using 4.25 for capping 

and trityl group for 5'-tagging in ODN synthesis using 4.3a-c and 4.4, we tried to synthesize 

ODNs under standard conditions using acetic anhydride for capping and without tagging 

the 5'-end of ODNs. RP HPLC analyses showed that the peaks of the desired ODNs and 

branched sequences were very close and, in some cases, even overlapped, which made 

HPLC purification of the products difficult. A typical RP HPLC profile of ODNs 

synthesized in that manner is given in the Supporting Information. We therefore tried to 

keep the 5'-DMTr group at the end of solid phase synthesis to assist HPLC purification 

hypothesizing that the desired ODN with one DMTr group would be easy to be separated 

from any branched sequences that had two or more DMTr groups. This was indeed the 

case. A RP HPLC profile is given in the Supporting Information. However, the sodium 

periodate oxidation conditions used for ODN cleavage and deprotection were slightly 

acidic, and in most cases, we were not able to keep the DMTr groups. This problem made 

the method unreliable. We also tried to tag the ODN with the hydrophobic t-

butyldiphenylsilyl (TBDPS) group. In RP HPLC profiles, the desired TBDPS-tagged full-

length sequence was also separated very well from the branched sequences (Supporting 

Information). However, at this time we could not identify a mild condition to remove the 

tag after purification of the ODN. These experiments directed us to the use of the trityl tag 

to assist ODN purification as described above. The reason for us to use 4.25 instead of 

acetic anhydride for capping was based on two considerations. One was that if a branched 

sequence failed to react at one or more sites during coupling, capping with a hydrophobic 
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agent would still make the branched sequence more hydrophobic than the desired full-

length sequence. Another consideration was that with acetic anhydride for capping, 

chances existed for replacing the dM-Dmoc groups with acetyl group during capping due 

to the presence of acids such as pyridinium acetate and large excess of acetic anhydride. 

Once the capping exchange occurred, the ODN molecule with an acetyl group would not 

be useful because the acetyl group would not be deprotectable under the mild deprotection 

conditions. Using 4.25 for capping, such capping exchange would not occur. 

Scheme 4.4. ODN deprotection and cleavage under non-nucleophilic conditions. 

 

After identifying suitable conditions for the synthesis of unmodified ODNs under 

non-nucleophilic conditions using the dM-Dmoc technology, studying the feasibility of the 

technology for the synthesis of modified ODNs containing ester, α-chloroacetamide and 

thioester groups was pursued. These groups are sensitive to nucleophiles and cannot 
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survive the commonly used concentrated ammonium hydroxide deprotection and cleavage 

conditions. We have demonstrated that the so called UltraMild deprotection and cleavage 

conditions involving potassium carbonate in anhydrous methanol are incompatible with α-

chloroacetamide and thioester. 40 These findings are easily understandable because the 

species responsible for the cleavage and deprotection under UltraMild conditions is 

potassium methoxide, which is a strong nucleophile. The ODNs 4.30c-e were chosen as 

the targets for the current study. The synthesis, deprotection and cleavage conditions were 

the same as those for the unmodified ODNs. The electrophilic groups were introduced with 

4.26a-c, respectively. In all cases, we placed the groups in the middle of the sequences, 

which is significantly more challenging than placing them at the 5'-end. The fully 

deprotected crude ODNs 4.30c-e were purified and analyzed as described for 4.30a. The 

HPLC profiles of crude and pure 4.30c are given in Figure 4.4. Its PAGE and MALDI-

TOF MS images are in Figures 4.5 and 4.6, respectively. All analytical data for 4.30d-e are 

given in the Supporting Information. It is noted that aminolysis and hydrolysis of the 

sensitive groups in the ODNs, which were found to be a problem previously, 41 were 

successfully avoided by using the dM-Dmoc protection strategy. For all the five ODNs 

(4.30a-e), their OD260 after HPLC purification were determined (Supporting Information). 

They ranged from 2.32 to 6.68 for the 0.52 µmol syntheses. To have a direct comparison 

with standard ODN synthesis technology, we also synthesized 4.30a using commercial 

phosphoramidites and 0.52 µmol 4.4 (Supporting Information). After purification with RP 

HPLC, the OD of 4.30a was determined to be 8.30. With these data, we were able to 

conclude that the dM-Dmoc phosphoramidites had similar coupling efficiency as 
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commercial phosphoramidites and the overall yields of ODNs from the dM-Dmoc 

technology were at the same level of those from standard technologies. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. RP HPLC profiles of (a) crude 4.30a-tr, (b) pure 4.30a-tr, (c) crude 4.30a, 

(d) pure 4.30a, (e) crude 4.30c-tr, (f) pure 4.30c-tr, (g) crude 4.30c, (h) pure 4.30c. In 

profiles (a) and (e), the well-separated major peak before 40 minutes is the trityl-tagged 

full-length ODN. The peaks after 40 minutes are branched sequences with two or more 

trityl tags. 
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Figure 4.5. PAGE analyses of ODNs 4.30a-e. Lanes 1-5 are ODNs 4.30a-e, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. MALDI-TOF MS of (a) ODN 4.30a and (b) 4.30c. 
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The successful synthesis and HPLC purification of the above five ODNs 

demonstrated that dM-Dmoc is a viable choice for amino protection for electrophilic ODN 

synthesis. Compared with using Dmoc for ODN synthesis, the major advantage of using 

dM-Dmoc is that deprotection can be achieved without using any nucleophilic scavengers. 

Using Dmoc, during deprotection after sodium periodate oxidation, large excess aniline is 

needed to induce β-elimination (see Scheme 4.1) and to prevent the side product 4.1 from 

reacting with the deprotected ODN via Michael addition. 40 Aniline is a weak base and 

only mildly nucleophilic. Electrophiles that are compatible with ODNs but reactive toward 

it are rare. However, using large excess of aniline could be a significant drawback. For 

example, many electrophiles could be considered unreactive to it, but in the presence of 

large excess of it, problems might arise. In addition, its boiling point is high, alternative 

techniques other than simple evaporation has to be used for its removal. In order to 

accomplish our goal of developing a universally useful technology for electrophilic ODN 

synthesis, the dM-Dmoc technology is a logical extension of our previous effort. 40 Using 

dM-Dmoc, the side product of deprotection is 4.2. We believe that 4.2 could not react with 

the nucleophiles on ODNs including hydroxyl and amino groups. Even the reaction took 

place, a hindered four-substituted carbon centre would be formed. Because the Michael 

addition reaction is reversible, the adducts would easily fall apart to give back un-modified 

ODNs. Indeed, due to the use of dM-Dmoc, we were able to induce β-elimination with 

potassium carbonate in the absence of any scavenger under mild conditions. Besides the 

advantage of avoiding the use of excess aniline as a scavenger, in the new studies, we also 

found that the acetic acid used in our previous studies for sodium periodate oxidation could 

be omitted. In that report 40 for oxidation of the dithioketals in Dmoc, an acidic solution of 
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sodium periodate adjusted to pH 2 with acetic acid was used. Under those conditions, β-

elimination did not occur and the ODNs remained on the solid support during oxidation. 

This greatly facilitated the removal of excess sodium periodate and its reduced salts 

because they could be easily washed away with water. Otherwise, more expensive means 

such as size exclusion chromatography had to be used. In our new studies, we tested to 

perform the oxidation in the absence of acetic acid. We found that the pH of 0.4 M sodium 

periodate solution was around 4, and this solution did not cause premature β-elimination 

during oxidation. Therefore, the ODNs remained on the solid support under this 

significantly less acidic conditions. Because ODNs are inherently unstable under acetic 

conditions, avoiding the use of acetic acid and performing the cleavage and deprotection 

at nearly neutral pH could make the technology more useful. In addition, the scope of 

sensitive functionalities to be introduced to ODNs using the technology could be further 

extended. The finding of the stability of the Dmoc function in linker 4.4 after oxidation 

under nearly neutral conditions is also important for considering using the technology for 

oligoribonucleotides (ORNs) synthesis. One potential problem to use the technology for 

ORN synthesis is that during oxidation of the Dmoc and dM-Dmoc functions using sodium 

periodate, if the oxidized Dmoc in the linker were unstable, and the 2' and 3'-OH groups 

were exposed before sodium periodate were removed, the C-C bond between the 2' and 3' 

carbons could be cleaved. With the finding of the relatively high stability of the oxidized 

Dmoc function, we are more confident that the Dmoc associated technologies will be useful 

for ORN synthesis as well. 
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4.3 Conclusion 

 

In summary, we have extended the Dmoc-based electrophilic ODN synthesis 

technology to a new level, at which dM-Dmoc is used for protecting exo-amino groups of 

nucleobases. With this advancement, the previously used large excess aniline for 

scavenging the Michael acceptor side product during cleavage and deprotection was no 

longer needed. This makes the technology more convenient to use and could extend its 

scope on incorporating different sensitive functionalities into ODNs. In addition, we found 

that the sodium periodate oxidation step for cleavage and deprotection could be performed 

in the absence of acetic acid at nearly neutral conditions instead of previously used acidic 

conditions. Because ODNs and many functionalities are sensitive to acid, the significantly 

less acidic conditions will eliminate concerns of ODN damage and increase the scope of 

functionalities capable to be incorporated into ODNs. Using the technology, five ODNs 

including three modified ones containing the sensitive groups – ester, α-chloroamide and 

thioester – were successfully synthesized. We expect that the technology will become a 

useful tool for the synthesis of sensitive ODN analogs. 
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4.4 Experimental Section 

 

General information: 

All reactions were performed in oven-dried glassware under argon using standard 

Schlenk techniques. Reagents and solvents available from commercial sources were used 

as received unless otherwise noted. Lcaa-CPG (pore size 497 Å) was purchased from Prime 

Synthesis, Inc. Polyacrylamide desalting column (5K MWCO, 10 mL) was purchased from 

Thermo Scientific. THF and CH2Cl2 was dried using an Innovative Technology Pure-

Solv™ system. Pyridine, diisopropylamine and acetone were distilled over CaH2 under 

nitrogen. Thin layer chromatography (TLC) was performed using Sigma-Aldrich TLC 

plates, silica gel 60F-254 over glass support, 250 μm thickness. Flash column 

chromatography was performed using SiliCycle silica gel, particle size 40-63 μm. 1H, 13C 

and 31P NMR spectra were measured on a Varian UNITY INOVA spectrometer at 400, 

100 and 162 MHz, respectively; chemical shifts (δ) were reported in reference to solvent 

peaks (residue CHCl3 at δ 7.24 ppm for 1H and CDCl3 at δ 77.00 ppm for 13C) and to H3PO4 

(δ 0.00 ppm for 31P). HRMS was obtained on a Thermo HR-Orbitrap Elite Mass 

Spectrometer. LRMS was obtained on a Thermo Finnigan LCQ Advantage Ion Trap Mass 

Spectrometer. MALDI-TOF MS were obtained on Bruker’s microflex™ LRF MALDI-

TOF System. ODNs were synthesized on a MerMade 6 solid phase synthesizer. RP HPLC 

was performed on a JASCO LC-2000Plus System: pump, PU-2089Plus Quaternary 

Gradient; detector UV-2075Plus. A C-18 reversed phase analytical column (5 μm diameter, 

100 Å, 250 × 3.20 mm) was used. Solvent A: 0.1 M triethylammonium acetate, 5% 
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acetonitrile. Solvent B: 90% acetonitrile. All profiles were generated by detecting 

absorbance at 260 nm using the linear gradient solvent system: solvent B (0%-45%) in 

solvent A over 60 min followed by solvent B (45%-100%) in solvent A over 20 min at a 

flow rate of 1.0 mL/min. PAGE of ODNs was run in a gel slide casted with a stock solution 

prepared using the recipe – 62.5 mL 40% acrylamide and bis-acrylamide (19:1), 52.55 g 

urea, 6.25 mL 10 × TBE (tris/borate/EDTA) buffer, and suitable amount of DI water for a 

total 100 mL solution. The gel slide was casted with 7 mL of the stock solution, 70 µL 10% 

(NH4)2S2O4, and 7 µL TMEDA (tetramethylethylenediamine). Electrophoresis was run in 

10 × TBE buffer at 200 V by pre-run (without sample) for 30 min followed by actual run 

(with sample) for 90 min. The gel was stained with SYBR® Gold, and images were 

obtained with a BioRad Gel Doc™ XR+ Gel Documentation System. 

Compound 4.7: 1 

To a solution of 1,3-dithiane (4.6, 5.0 g, 41.6 mmol) in dry THF (100 mL) was slowly 

added nBuLi (2.5 M in pentane, 15.7 mL, 41.6 mmol) under argon at -78 °C. After stirring 

for 30 min, freshly distilled acetone (3.0 mL, 41.6 mmol) was added dropwise at -78 °C. 

The reaction was allowed to proceed for 8 h while warming to rt, and then quenched with 

saturated NH4Cl (75 mL). The mixture was extracted with EtOAc (50 mL × 2). The extracts 

were combined and dried over anhydrous Na2SO4, filtered, and concentrated. The residue 

was purified with flash column chromatography (SiO2, 4:1 hexanes/EtOAc) to afford 4.7 

as a white solid (6.24 g, 84%). 1 
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Compound 4.5: 1 

To a solution of 4.7 (6.4 g, 36 mmol) and pyridine (2.9 mL, 54 mmol) in DCM (100 mL) 

was added p-nitrophenyl chloroformate (4.8, 7.2 g, 36 mmol) at rt under argon. After 

stirring at rt for 8 h, the contents were poured into a separatory funnel and partitioned 

between EtOAc (40 mL) and H2O (80 mL). The aqueous layer was extracted with DCM 

(50 mL × 2). The combined organic layer was dried over anhydrous Na2SO4, filtered and 

concentrated. Flash column chromatography (SiO2, 9:1 hexanes/EtOAc) gave 4.5 as a 

white solid (10.0 g, 81%). 1 

Compound 4.10: 

To a solution of diisopropyl amine (1.2 mL, 8.5 mmol) in THF at -78 °C was added nBuLi 

(2.5 M in pentane, 3.2 mL, 8.1 mmol) and stirred for 30 min. The freshly prepared LDA 

solution was added via a cannula to a solution of 4.9 (1.9 g, 4.05 mmol) in THF (50 mL) 

at -78 °C. After stirring for 30 min, compound 4.5 was added as a solid under positive 

nitrogen pressure at -78 °C. The mixture was stirred for 8 h while warming to rt. The 

contents were poured into a separatory funnel and partitioned between EtOAc (40 mL) and 

H2O (40 mL). The aqueous layer was extracted with EtOAc (30 mL × 2). The combined 

organic layer was dried over anhydrous Na2SO4, filtered and concentrated. Flash column 

chromatography (SiO2, 1:1 hexanes/EtOAc) gave 4.10 as a white foam (2.33 g, 86%): Rf = 

0.6 (1:2 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3): δ 0.89-1.02 (m, 28H), 1.57 (s, 6H), 

1.71-1.78 (m, 1H), 2.00-2.04 (m, 1H), 2.23-2.28 (m, 1H), 2.46-2.53 (m, 1H), 2.76-2.86 (m, 

4H), 3.73 (d, J = 8.5 Hz, 1H), 3.93-3.97 (m, 1H), 4.09-4.12 (m, 1H), 4.27-4.33 (m, 1H), 

4.92 (s, 1H), 5.98 (d, J = 6.5 Hz, 1H), 7.05 (d, J = 7.4 Hz, 1H), 8.10 (d, J = 7.4 Hz, 1H); 
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13C NMR (100 MHz, CDCl3): δ 12.5, 13.12, 13.16, 13.6, 16.9, 17.10, 17.12, 17.2, 17.5, 

17.64, 17.67, 24.7, 25.9, 31.0, 39.9, 56.8, 60.0, 66.7, 85.2, 85.3, 85.7, 94.5, 143.9, 150.8, 

154.9, 162.6; HRMS (ESI): m/z calcd for C29H52N3O7S2Si2 [M + H]+ 674.2785, found 

674.2783. 

Compound 4.11: 

To the THF (10 mL) solution of 4.10 (800 mg, 1.19 mmol) at rt was added TBAF (1 M in 

THF, 3.0 mL, 3.0 mmol). The mixture was stirred for 1 h. THF was evaporated and the 

residue was loaded directly on a column. Flash column chromatography (SiO2, 9.5:0.5 

EtOAc/MeOH) gave 4.11 as a white foam (0.507 g, 99%): Rf  = 0.3 (9.5:0.5 

EtOAc/MeOH); 1H NMR (400 MHz, CD3OD): δ 1.60 (s, 6H), 1.70-1.77 (m, 1H), 2.04-

2.10 (m, 1H), 2.12-2.18 (m, 1H), 2.43-2.49 (m, 1H), 2.82-2.94 (m, 4H), 3.71 (dd, J = 12.1, 

3.8 Hz, 1H), 3.81 (dd, J = 12.1, 3.2 Hz, 1H), 3.96-3.99 (m, 1H), 4.33-4.37 (m, 1H), 4.81 

(s, 2H), 5.07 (s, 1H), 6.19 (t, J = 6.2 Hz, 1H), 7.22 (d, J = 7.5 Hz, 1H), 8.40 (d, J = 7.5 Hz, 

1H); 13C NMR (100 MHz, CD3OD): δ 24.0, 26.0, 30.7, 41.3, 56.8, 61.3, 70.4, 84.5, 87.3, 

88.2, 95.5, 144.4, 151.6, 156.4, 163.5; HRMS (ESI): m/z calcd for C17H24N3O6S2 [M - H]- 

430.1107, found 430.1112. 

Compound 4.12: 

To a solution of 4.11 (513 mg, 1.19 mmol) in pyridine (10 mL) at 0 °C was added DMTrCl 

(440 mg, 1.31 mmol) under positive nitrogen pressure. The mixture was stirred for 8 h 

while warming to rt. The volume of the mixture was reduced to about 2 mL under vacuum 

from an oil pump (small amount of pyridine was intentionally left to ensure basicity of the 

residue, which could help to avoid losing DMTr from product). The residue was partitioned 
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between 5 % Na2CO3 (30 mL) and EtOAc (30 mL). The aqueous layer was extracted with 

EtOAc (15 mL × 2). The combined organic layer was dried over anhydrous Na2SO4, 

filtered and concentrated to dryness. Flash column chromatography (SiO2, 9.5:0.5:0.5 

EtOAc/MeOH/Et3N) gave 4.12 as a white foam (523 mg, 60%): Rf  = 0.5 (9.5:0.5:0.5 

EtOAc/MeOH/Et3N); 1H NMR (400 MHz, CDCl3): δ 1.57 (s, 6H), 1.68-1.79 (m, 1H), 1.99-

2.03 (m, 1H), 2.14-2.21 (m, 1H), 2.67-2.73 (m, 1H), 2.80-2.83 (m, 4H), 3.31-3.34 (m, 1H), 

3.41-3.44 (m, 1H), 3.73 (s, 6H), 4.15 (d, J = 3.3 Hz,1H), 4.49 (d, J = 4.3 Hz, 1H), 4.93 (s, 

1H), 6.2 (t, J = 5.2 Hz, 1H), 6.79 (d, J = 8.3 Hz, 4H), 6.90 (d, J = 7.3 Hz, 1H), 7.16 (t, J = 

7.0 Hz, 1H), 7.25 (d, J = 8.6 Hz, 4H), 7.36 (d, J = 7.6 Hz, 2H), 8.03 (bs, 1H), 8.23 (d, J = 

7.4 Hz); 13C NMR (100 MHz, CDCl3): δ 24.8, 26.0, 31.1, 42.3, 55.4, 56.9, 62.9, 70.6, 85.1, 

86.7, 86.9, 87.4, 95.2, 113.5, 127.2, 128.2, 128.4, 130.1, 130.2, 135.7, 135.9, 144.4, 150.9, 

155.6, 158.7, 162.6; HRMS (ESI): m/z calcd for C38H44N3O8S2 [M + H]+ 734.2569, found 

734.2565. 

Compound 4.3a: 

To a solution of 4.12 (500 mg, 0.682 mmol) and diisopropylammonium tetrazolide (4.14, 

175 mg, 1.02 mmol) in DCM (10 mL) at rt was added 2-cyanoethyl N,N,N',N'-

tetraisopropylphosphorodiamidite (13, 325 µL, 1.02 mmol). After stirring at rt for 2 h, the 

reaction mixture was concentrated and loaded directly on a column. Flash column 

chromatography (SiO2, 4:1:0.25 EtOAc/hexanes/Et3N) gave 4.3a as a white foam (580 mg, 

91%): Mixture of two diastereoisomers; Rf = 0.3 and 0.4 (EtOAc); 1H NMR (400 MHz, 

CDCl3): δ 1.03 (d, J = 6.7 Hz, 2H), 1.11-1.20 (m, 12H), 1.23-1.30 (m, 3H), 1.61 (s, 6H), 

2.02-2.08 (m, 1H), 1.73-1.83 (m, 1H), 2.02-2.08 (m, 1H), 2.18-2.29 (m, 2H), 2.40 (t, J = 
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6.4 Hz, 1H), 2.57 (t, J = 6.4 Hz, 1H), 2.65-2.75 (m, 2H), 2.81-2.89 (m, 4H), 3.29-3.36 (m, 

1H), 3.45-3.60 (m, 5H), 3.78 (d, J = 3.5 Hz, 6H), 4.14-4.18 (m, 1H), 4.53-4.62 (m, 1H), 

4.92 (s, 1H), 6.20-6.26 (m 1H), 6.82 (t, J = 7.9 Hz, 5H), 7.26 (t, J = 7.7 Hz, 6H), 7.37 (t, J 

= 7.2 Hz, 2H), 8.17 (d, J = 8.0 Hz, 1H), 8.26 (d, J = 7.7 Hz, 1H); 13C NMR (100 MHz, 

CDCl3): δ 20.3, 24.7, 26.0, 31.0, 41.0, 41.4, 43.4, 55.4, 56.8, 58.5, 62.1, 62.5, 85.2, 85.7, 

87.0, 94.8, 113.4, 117.7, 128.1, 128.4, 128.5, 130.21, 130.26, 130.3, 135.6, 144.2, 150.8, 

155.0, 158.8, 162.4; 31P NMR (162 MHz, CDCl3): δ 149.7, 150.4; HRMS (ESI): m/z calcd 

for C47H61N5O9PS2 [M + H]+ 934.3648, found 934.3652. 

Compound 4.16: 

The procedure for synthesizing 4.10 was used. After flash column chromatography (SiO2, 

1:2 EtOAc/hexanes) 4.16 was afforded as a white foam in 53% yield: Rf = 0.5 (1:1 

EtOAc/hexanes); 1H NMR (400 MHz, CDCl3): δ 0.97-1.05 (m, 28H), 1.61 (d, J = 7.5 Hz, 

6H), 1.72-1.78 (m, 1H), 2.01-2.07 (m, 1H), 2.60-2.68 (m, 2H), 2.79-2.90 (m, 4H), 3.85-

3.88 (m, 1H), 4.01 (t, J = 4.0 Hz, 2H), 4.91 (q, J = 7.6 Hz, 1H), 5.14 (s, 1H), 6.28-6.30 (m, 

1H), 8.19 (s, 1H), 8.68 (s, 1H); 13C NMR (100 MHz, CDCl3): δ 12.7, 13.0, 13.2, 13.5, 17.0, 

17.1, 17.2, 17.3, 17.5, 17.5, 17.6, 17.6, 40.2, 56.9, 61.8, 69.8, 83.6, 84.7, 85.4,122.5, 141.3, 

149.4, 149.9, 150.2, 152.9; HRMS (ESI): m/z calcd for C30H52N5O6S2Si2 [M + H]+ 

698.2897, found 698.2896. 

Compound 4.17: 

The procedure for synthesizing 4.11 was used. After flash column chromatography (SiO2, 

9:1 EtOAc/MeOH) 4.17 was afforded as a white foam in 71% yield: Rf = 0.3 (9:1 
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EtOAc/MeOH); 1H NMR (400 MHz, CDCl3): δ 1.67 (s, 6H), 1.69-1.83 (m, 1H), 2.03-2.09 

(m, 1H), 2.34-2.37 (m, 2H), 2.84-2.90 (m, 4H), 2.93-3.08 (m, 1H), 3.81-3.97 (m, 2H), 4.24 

(s, 1H), 4.82 (s, 1H), 5.17 (s, 1H), 5.84-5.87 (m, 1H), 6.36-6.40 (m, 1H), 8.02 (s, 1H), 8.42 

(s, 1H), 8.73 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 24.9, 26.1, 31.2, 41.1, 57.1, 63.5, 

73.3, 85.0, 87.8, 89.7, 123.4, 142.4, 149.2, 150.1, 150.6, 152.5; HRMS (ESI): m/z calcd for 

C18H26N5O5S2 [M + H]+ 456.1375, found 456.1381. 

Compound 4.18: 

The procedure for synthesizing 4.12 was used. After flash column chromatography (SiO2, 

9:0.5:0.5 EtOAc/MeOH/Et3N) 4.18 was afforded as a white foam in 63% yield: Rf = 0.4 

(9.5:0.5 EtOAc/MeOH); 1H NMR (400 MHz, CDCl3): δ 1.60 (s, 6H), 1.67-1.75 (m, 1H), 

1.95-2.04 (m, 1H), 2.49-2.57 (m, 1H), 2.73-2.86 (m, 5H), 3.34 (d, J = 3.8 Hz, 2H), 3.67 (s, 

6H), 4.16-4.21 (m, 1H), 4.66-4.70 (m, 1H), 5.10 (s, 1H), 5.21 (s, 1H), 6.44 (t, J = 6.3 Hz, 

1H), 6.69 (d, J = 8.7 Hz, 4H), 7.07-7.21 (m, 7H), 7.30 (d, J = 8.0 Hz, 2H), 8.08 (s, 1H), 

8.63 (s, 1H), 8.99 (bs, 1H); 13C NMR (100 MHz, CDCl3): δ 24.9, 26.0, 31.1, 40.6, 55.4, 

57.0, 63.8, 72.3, 84.6, 84.9, 86.7, 113.3, 122.1, 127.1, 128.0, 128.2, 130.1, 141.3, 144.6, 

149.5, 149.9, 150.7, 152.9, 158.6; HRMS (ESI): m/z calcd for C39H44N5O7S2 [M + H]+
 

758.2682, found 758.2685. 

Compound 4.3b: 

The procedure for synthesizing 4.3a was used. After flash column chromatography (SiO2, 

2:1:0.15 EtOAc/hexanes/Et3N) 4.3b was afforded as a white foam in 77% yield: Mixture 

of two diastereoisomers; Rf = 0.3 and 0.4 (2:1 EtOAc/hexanes); 1H NMR (400 MHz, 
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CDCl3): δ 1.15-1.23 (m, 12H), 1.63 (s, 6H), 1.74-1.80 (m, 1H), 2.02-2.07 (m, 1H), 2.42 (t, 

J = 6.4 Hz, 1H), 2.57 (t, J = 6.4 Hz, 1H), 2.79-2.91 (m, 4H), 3.28-3.33 (m, 1H), 3.38-3.44 

(m, 2H), 3.54-3.60 (m, 2H), 3.75 (s, 6H), 3.79-3.87 (m, 1H), 4.08-4.14 (m, 1H), 4.24-4.29 

(m, 1H), 4.71-4.77 (m, 1H), 5.14 (s, 1H), 6.40-6.45 (m, 1H), 6.72-6.75 (m, 4H), 7.14-7.25 

(m, 7H), 7.33-7.35 (m, 2H), 8.11 (d, J = 9.5 Hz, 1H), 8.38 (bs, 1H), 8.65 (s, 1H); 13C NMR 

(100 MHz, CDCl3): δ 20.1, 20.7, 22.5, 23.4, 24.8, 25.0, 26.2, 31.3, 39.7, 45.3, 45.5, 45.8, 

55.4, 57.0, 58.5, 58.7, 63.6, 73.6, 74.4, 84.7, 84.7, 84.9, 86.0, 86.2, 86.7, 113.2, 117.6, 

122.4, 127.0, 127.9, 128.2, 130.1, 135.7, 141.3, 144.5, 149.2, 149.7, 150.8, 152.8, 158.6; 

31P NMR (162 MHz, CDCl3): δ 149.7, 149.9; HRMS (ESI): m/z calcd for C48H60N7O8PS2H 

[M + H]+ 958.3760, found 958.3769. 

Compound 4.21: 

The amide functionality in 4.19 was protected with a TBS group by reacting with TBSCl 

(3 equiv.) in the presence of imidazole (6 equiv.) in DCM at rt for 8 h. 2 The crude 

intermediate 4.20 was partitioned between DCM and NaH2PO4/Na2HPO4 buffer (pH 7) 

and further washed with the buffer two times. The organic phase was dried over Na2SO4, 

filtered and concentrated to dryness. After the crude intermediate was dried under high 

vacuum over Drierite, 4.20 was converted to 4.21 following the procedure for synthesizing 

4.10. The TBS group probably fell off during partition between EtOAc and saturated 

NH4Cl. After flash column chromatography (SiO2, 1:1 EtOAc/hexanes) 4.21 was afforded 

as a brown foam in 55% yield: Rf = 0.3 (1:1 EtOAc/hexanes); 1H NMR (400 MHz, CDCl3): 

δ 0.96-1.08 (m, 28H), 1.63 (s, 6H), 1.77-1.85 (m, 1H), 2.08-2.15 (m, 1H), 2.52-2.55 (m, 

2H), 2.85-2.92 (m, 4H), 3.81-3.85 (m, 1H), 3.94-4.04 (m, 2H), 4.71 (q, J = 7.4 Hz, 1H), 
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4.96 (s, 1H), 6.08 (t, J = 5.2 Hz, 1H), 7.82 (s, 1H); 13C NMR (100 MHz, CDCl3): δ 12.8, 

13.3, 13.4, 13.7, 17.20, 17.28, 17.3, 17.45, 17.47, 17.5, 17.6, 17.7, 17.8, 24.9, 26.0, 31.4, 

40.3, 57.0, 62.0, 70.2, 82.8, 85.4, 86.9, 121.5, 136.7, 146.7, 147.3, 151.8, 155.6; HRMS 

(ESI): m/z calcd for C30H52N5O7S2Si2 [M + H]+ 714.2847, found 714.2842.   

Compound 4.22: 

The pro-cedure for synthesizing 4.11 was used. After flash column chromatography (SiO2, 

4:1 EtOAc/MeOH) 4.22 was afforded as a brown foam in 80% yield: Rf = 0.2 (9:1 

EtOAc/MeOH); 1H NMR (400 MHz, CD3OD): δ 1.79 (s, 6H), 1.70-1.79 (m, 1H), 2.00-

2.10 (m, 1H), 2.39-2.44 (m, 1H), 2.60-2.70 (m, 1H), 2.85-2.92 (m, 4H), 3.22 (s, 1H), 3.70-

3.76 (m, 2H), 3.92-4.05 (m, 2H), 4.50-4.54 (m, 1H), 5.16 (s, 1H), 8.20 (s, 1H); 13C NMR 

(100 MHz, CD3OD): δ 23.6, 30.6, 40.4, 56.7, 61.8, 71.1, 84.3, 85.8, 88.0, 119.6, 138.2, 

148.0, 153.7, 156.3; HRMS (ESI): m/z calcd for C18H26N5O6S2 [M + H]+ 472.1324, found 

472.1326. 

Compound 4.23: 

The procedure for synthesizing 4.12 was used. After flash column chromatography (SiO2, 

9:0.5:0.5 EtOAc/MeOH/Et3N) 4.23 was afforded as a brown foam in 46% yield: Rf = 0.4 

(9.5:0.5 EtOAc/MeOH); 1H NMR (400 MHz, CDCl3): δ 1.58 (s, 6H), 1.68-1.77 (m, 1H), 

1.97-2.03 (m, 1H), 2.50-2.60 (m, 2H), 2.77-2.85 (m, 4H), 3.25-3.29 (m, 2H), 3.67 (s, 6H), 

4.14-4.22 (m, 1H), 4.69-4.76 (m, 1H), 4.93 (s, 1H), 6.23 (t, J = 6.2 Hz, 1H), 6.69 (d, J = 

8.7 Hz, 4H), 7.07-7.13 (m, 2H), 7.21 (d, J = 8.6 Hz, 4H), 7.31 (d, J = 7.3 Hz, 2H), 7.75 (s, 

1H); 13C NMR (100 MHz, CDCl3): δ 24.7, 25.9, 31.1, 40.6, 55.3, 60.6, 64.4, 72.0, 84.6, 
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86.5, 86.7, 113.2, 120.8, 127.9, 128.3, 130.1, 135.9, 137.7, 144.7, 147.1, 148.6, 152.7, 

155.9, 158.6; HRMS (ESI): m/z calcd for C39H44N5O8S2 [M + H]+ 774.2631, found 

774.2629.  

Compound 4.3c: 

The procedure for synthesizing 4.3a was used. After flash column chromatography (SiO2, 

9.5:0.5 EtOAc/Et3N) 4.3c was afforded as a brown foam in 76% yield: Mixture of two 

diastereoisomers; Rf = 0.4 and 0.5 (EtOAc); 1HNMR (400 MHz, CDCl3): δ 1.08-1.25 (m, 

12H), 1.59 (d, J = 7.9 Hz, 6H), 1.74-1.85 (m, 1H), 2.06-2.14 (m, 1H), 2.37-2.47 (m, 2H), 

2.68-2.74 (m, 1H), 2.83-2.91 (m, 4H), 3.26-3.32 (m, 2H), 3.49-3.60 (m, 2H), 3.74 (s, 6H), 

4.08-4.16 (m, 1H), 4.20-4.27 (s, 1H), 4.62-4.71 (m, 1H), 4.97 (s, 1H), 6.11-6.19 (m, 1H), 

6.75 (d, J = 8.4 Hz, 4H), 7.15-7.28 (m, 7H), 7.36-7.38 (m, 2H), 7.72 (s, 1H); 13C NMR 

(100 MHz, CDCl3): δ 20.2, 20.6, 23.10, 23.18, 24.7, 24.8, 26.0, 31.2, 39.7, 43.3, 43.5, 45.5, 

55.4, 56.8, 58.3, 63.9, 74.7, 84.9, 86.5, 86.6, 113.3, 117.6, 121.6, 127.1, 128.0, 130.1, 

135.8, 137.2, 137.5, 144.6, 144.7, 148.3, 152.1, 155.7, 158.7; 31P NMR (162 MHz, CDCl3) 

δ 149.5, 149.7; HRMS (ESI): m/z calcd for C48H61N7O9PS2 [M + H]+ 974.3709, found 

774.3715. 

Compound 4.25: 

The procedure for the synthesis of 4.3a was used. After flash column chromatography 

(SiO2, 4:1:0.25 hexanes/EtOAc/Et3N) 4.25 was afforded as a colorless oil in 88% yield: Rf 

= 0.3 (4:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3) δ 1.14-1.18 (m, 12H), 1.27-1.33 

(m, 6H), 1.55-1.61 (m, 4H), 2.56-2.63 (m, 4H), 3.53-3.63 (m, 4H), 3.74-3.86 (m, 4H), 7.14-
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7.16 (m, 3H), 7.23-7.25 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 20.6 (d, JC-P = 6.74 Hz), 

24.9, 26.2, 29.6 (d, JC-P = 18.72 Hz), 29.5, 29.7, 31.4, 31.5, 31.7, 36.2, 43.2 (d, JC-P = 12.35 

Hz), 58.5 (d, JC-P = 18.95 Hz), 63.9 (d, JC-P = 16.97 Hz), 117.8, 125.7, 128.3, 128.5, 143.0; 

31P NMR (162 MHz, CDCl3) δ 148.5; HRMS (ESI): m/z calcd for C23H40N2O2P [M+H]+ 

407.2827, found 407.2812. 

Compound 4.28: 

A solution of 4.27 (2.0 g, 9.17 mmol) and conc. H2SO4 (1 mL) in ethanol (100 mL) was 

stirred at reflux for 2 h. After cooling to rt, the reaction was quenched with 5% Na2CO3 

(20 mL) and ethanol was evaporated. The remaining material was partitioned between 

EtOAc (100 mL) and 5% Na2CO3 (50 mL). The organic phase was washed with 5% 

Na2CO3 (50 mL × 2), dried over anhydrous Na2SO4, filtered and concentrated. Flash 

column chromatography (SiO2, 1:1 hexanes/EtOAc) gave 4.28 as a colorless oil (1.72  g, 

76%): Rf = 0.2 (1:1 hexanes/EtOAc); 1H NMR (400 MHz, CD3OD): δ 1.22 (t, J = 7.1 Hz, 

3H), 1.30 (s, 10H), 1.42-1.50 (m, 2H), 1.54-1.60 (m, 2H), 2.27 (t, J = 7.4 Hz, 2H), 3.28 

(bs, 1H), 3.36-3.46 (m, 2H), 3.53 (bs, 1H), 4.08 (q, J = 7.1 Hz, 2H), 4.80 (s, 2H); 13C NMR 

(100 MHz, CD3OD): δ 13.3, 24.8, 25.4, 28.9, 29.1, 29.3, 29.5, 33.2, 33.9, 60.1, 66.2, 72.0, 

174.3; HRMS (ESI): m/z calcd for C13H27O4 [M + H]+ 247.1909, found 247.1907. 

Compound 4.29: 

The procedure for synthesizing 4.12 was used. After flash column chromatography (SiO2, 

3:2:0.25 hexanes/EtOAc/Et3N) 4.29 was afforded as a yellow oil in 99% yield: Rf = 0.8 

(1:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3): δ 1.20-1.28 (m, 10H), 1.35-1.45 (m, 
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2H), 1.53-1.63 (m, 2H), 2.26 (t, J = 7.3 Hz, 2H), 2.47 (bs, 1H), 2.98-3.04 (m, 1H), 3.13-

3.17 (m, 1H), 3.74 (s, 6H), 4.10 (q, J = 7.1 Hz, 2H), 6.81 (d, J = 8.8 Hz, 4H), 7.14-7.19 (m, 

2H), 7.26 (t, J = 7.8 Hz, 2H), 7.31 (d, J = 8.8 Hz, 4H), 7.43 (d, J = 5.8 Hz, 2H); 13C NMR 

(100 MHz, CDCl3): δ 14.4, 25.1, 25.6, 29.31, 29.39, 29.5, 29.7, 33.6, 34.5, 55.3, 60.3, 67.8, 

71.1, 86.2, 113.3, 126.9, 128.0, 128.3, 130.2, 136.3, 145.1, 158.6, 174.0; HRMS (ESI): m/z 

calcd for C34H44O6Na [M + Na]+ 571.3035, found 571.3031. 

Compound 4.26a: 

The procedure for synthesizing 4.3a was used. After flash column chromatography (SiO2, 

2:1:0.15 hexanes/EtOAc/Et3N) 4.26a was afforded as a colorless oil in 99% yield: Mixture 

of diastereoisomers; Rf = 0.6 and 0.7 (1:1 hexanes/EtOAc); 1H NMR (400 MHz, CDCl3): 

δ 1.05 (d, J = 6.7 Hz, 4H), 1.14-1.26 (m, 22H), 1.54-1.63 (m, 2H), 2.24-2.29 (m, 2H), 2.35-

2.39 (m, 1H), 2.59 (t, J = 6.5 Hz, 2H), 2.92-2.99 (m, 1H), 3.09-3.18 (m, 2H), 3.50-3.65 (m, 

3H), 3.76 (s, 6H), 3.91-3.99 (m, 1H), 4.11 (q, J = 7.1 Hz, 2H), 6.80 (t, J = 8.7 Hz, 4H), 

7.15-7.20 (m, 2H), 7.23-7.27 (m, 2H), 7.32 (d, J = 8.9 Hz, 4H), 7.45 (d, J = 7.0 Hz, 2H); 

13C NMR (100 MHz, CDCl3): δ 14.4, 20.3, 20.6, 24.6, 24.7, 24.8, 24.9, 25.0, 25.2, 25.3, 

29.3, 29.41, 29.44, 29.5, 29.7, 29.8, 33.6, 33.8, 34.5, 43.1, 43.3, 43.4, 55.3, 58.3, 58.6, 60.3, 

66.2, 66.5, 73.6, 73.7, 74.4, 74.6, 86.0, 86.1, 117.9, 126.81, 126.87, 127.8, 128.4, 128.5, 

130.2, 130.32, 130.36, 136.5, 145.3, 158.6, 174.0 ppm. 31P NMR (162 MHz, CDCl3): δ 

149.1, 149.7; HRMS (ESI): m/z calcd for C43H61N2O7PNa [M + Na]+ 771.4114, found 

771.4108. 
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Appendix A. Supporting Information for Chapter 2 

 

 

Synthesis of Oligonucleotides Containing Electrophilic Groups 
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Figure A.1. 1H NMR of Compound 2.7 
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Figure A.2. 13C NMR of Compound 2.7 
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Figure A.3. 1H NMR of Compound 2.8 
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Figure A.4. 13C NMR of Compound 2.8 
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Figure A.5. 1H NMR of Compound 2.9 
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Figure A.6. 13C NMR of Compound 2.9 
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Figure A.7. 1HNMR of Compound 2.10 

 

 

 

 

 

 

 

 

 



122 

 

Figure A.8. 13CNMR of Compound 2.10 
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Figure A.9. 1HNMR of Compound 2.14 
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Figure A.10. 13CNMR of Compound 2.14 
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Figure A.11. 1HNMR of Compound 2.2 

 

 

 

 

 

 

 



126 

 

Figure A.12. 13CNMR of Compound 2.2 
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Figure A.13. 31PNMR of Compound 2.2 
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Figure A.14. 1HNMR of Compound 2.15 
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Figure A.15. 13CNMR of Compound 2.15 
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Figure A.16. 1HNMR of Compound 2.3 
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Figure A.17. 13CNMR of Compound 2.3 
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Figure A.18. 31PNMR of Compound 2.3 
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Figure A.19. 1HNMR of Compound 2.19 
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Figure A.20. 13CNMR of Compound 2.19 
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Figure A.21. 1HNMR of Compound 2.4 
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Figure A.22. 13CNMR of Compound 2.4 
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Figure A.23. 31PNMR of Compound 2.4 
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Figure A.24. 1HNMR of Compound 2.27 
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Figure A.25. 13CNMR of Compound 2.27 



140 

 

Figure A.26. 1HNMR of Compound 2.23 
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Figure A.27. 31PNMR of Compound 2.23 
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Figure A.28. 31PNMR of Compound 2.28 
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Figure A.29. 13CNMR of Compound 2.28 

 

 

 

 

 

 

 

 

 



144 

 

Figure A.30. 1HNMR of Compound 2.24 
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Figure A.31. 31PNMR of Compound 2.24 
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Figure A.32. MALDI-TOF-MS of ODN 2.20 

 

 

 

 

 

 

 

 

 

MALDI TOF MS of ODN 2.20 
Calcd for C194H250N61O124P19 
[M]- 6008.02, found 6008.20 
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Figure A.33. MALDI-TOF-MS of ODN 2.21 
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Figure A.34. MALDI-TOF-MS of ODN 2.22 
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Figure A.35. MALDI-TOF-MS of ODN 2.29 
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Figure A.36. MALDI-TOF-MS of ODN 2.30 
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Figure A.37. RP-HPLC profile of crude ODN 2.21 

 

 

 

Figure A.38. RP-HPLC profile of pure ODN 2.21 
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Figure A.39. RP-HPLC profile of crude ODN 2.22 

 

 

 

Figure A.40. RP-HPLC profile of pure ODN 2.22 
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Figure A.41. RP-HPLC profile of pure ODN 2.22 

 

 

Figure A.42. RP-HPLC profile of crude ODN 2.30  
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Appendix B. Supporting Information for Chapter 3 

 

 

 

 

Sensitive ODN Synthesis Using Dim for Phosphate Protection 
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Figure B.1. 1HNMR of Compound 3.7a 
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Figure B.2. 13CNMR of Compound 3.7a 
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Figure B.3. 31PNMR of Compound 3.7a 
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Figure B.4. 1HNMR of Compound 3.7b 
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Figure B.5. 13CNMR of Compound 3.7b 
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Figure B.6. 31PNMR of Compound 3.7b 
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Figure B.7. 1HNMR of Compound 3.7c 
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Figure B.8. 13CNMR of Compound 3.7c 
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Figure B.9. 31PNMR of Compound 3.7c 
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Figure B.10. 1HNMR of Compound 3.7d 
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Figure B.11. 13CNMR of Compound 3.7d 
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Figure B.12. 31PNMR of Compound 3.7d 
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Figure B.13. 1HNMR of Compound 3.7e 
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Figure B.14. 13CNMR of Compound 3.7e 
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Figure B.15. 31PNMR of Compound 3.7e 
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Figure B.16. 1HNMR of Compound 3.20 
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Figure B.17. 13CNMR of Compound 3.20 
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Figure B.18. 1HNMR of Compound 3.21 
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Figure B.19. 13CNMR of Compound 3.21 
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Figure B.20. 1HNMR of Compound 3.22 
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Figure B.21. 13CNMR of Compound 3.22 
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Figure B.22. 1HNMR of Compound 3.23 
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Figure B.23. 13CNMR of Compound 3.23 
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Figure B.24. 1HNMR of Compound 3.24 
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Figure B.25. 13CNMR of Compound 3.24 
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Figure B.26. 1HNMR of Compound 3.18a 
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Figure B.27. 13CNMR of Compound 3.18a 
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Figure B.28. 31PNMR of Compound 3.18a 
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Figure B.29. 1HNMR of Compound 3.18b 
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Figure B.30. 13CNMR of Compound 3.18b 
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Figure B.31. 31PNMR of Compound 3.18b 
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Figure B.32. RP HPLC of compound 3.14a 

 

 

Figure B.33. RP HPLC of compound 3.14a 
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Figure B.34. RP HPLC of compound 3.14a 

 

Figure B.35. RP HPLC of compound 3.14a 
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Figure B.36. RP HPLC of compound 3.14b 

 

 

Figure B.37. RP HPLC of compound 3.14b 
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Figure B.38. RP HPLC of compound 3.14b 

 

 

Figure B.39. RP HPLC of compound 3.14b 
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Figure B.40. RP HPLC of compound 3.14c 

 

 

 

Figure B.41. RP HPLC of compound 3.14c 
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Figure B.42. RP HPLC of compound 3.14c 

 

 

Figure B.43. RP HPLC of compound 3.14c 

 

 

 

 



192 

Figure B.44. RP HPLC of compound 3.14d 

 

Figure B.45. RP HPLC of compound 3.14d 
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Figure B.46. RP HPLC of compound 3.14d 

 

Figure B.47. RP HPLC of compound 3.14d 
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Figure B.48. RP HPLC of compound 3.14e 

 

 

Figure B.49. RP HPLC of compound 3.14e 

 

 

 



195 

Figure B.50. RP HPLC of compound 3.14e 

 

Figure B.51. RP HPLC of compound 3.14e 
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Figure B.52. RP HPLC of compound 3.14f 

 

 

Figure B.53. RP HPLC of compound 3.14e 
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Figure B.54. RP HPLC of compound 3.14f 

 

 

 

Figure B.55. RP HPLC of compound 3.14f 
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Figure B.56. RP HPLC of compound 3.14g 

 

Figure B.57. RP HPLC of compound 3.14g 
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Figure B.58. RP HPLC of compound 3.14g 

 

Figure B.59. RP HPLC of compound 3.14g 
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Figure B.60. MALDI-TOF-MS of compound 3.14a 
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Figure B.61. MALDI-TOF-MS of compound 3.14a 
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Figure B.62. MALDI-TOF-MS of compound 3.14b 

 

 

 

 

 

 

 

 

 



203 

 

Figure B.63. MALDI-TOF-MS of compound 3.14b 
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Figure B.64. MALDI-TOF-MS of compound 3.14c 
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Figure B.65. MALDI-TOF-MS of compound 3.14c 
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Figure B.66. MALDI-TOF-MS of compound 3.14d 
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Figure B.67. MALDI-TOF-MS of compound 3.14d 
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Figure B.68. MALDI-TOF-MS of compound 3.14e 
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Figure B.69. MALDI-TOF-MS of compound 3.14e 
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Figure B.70. MALDI-TOF-MS of compound 3.14f 
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Figure B.71. MALDI-TOF-MS of compound 3.14f 
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Figure B.72. MALDI-TOF-MS of compound 3.14g 
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Figure B.73. MALDI-TOF-MS of compound 3.14g 
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Appendix C. Supporting Information for Chapter 4 

 

 

 

 

 

Electrophilic ODN Synthesis Using dM-Dmoc 
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Figure C.1. 1HNMR of Compound 4.10 
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Figure C.2. 13CNMR of Compound 4.10 
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Figure C.3. 1HNMR of Compound 4.11 
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Figure C.4. 13CNMR of Compound 4.11 
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Figure C.5. 1HNMR of Compound 4.12 
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Figure C.6. 13CNMR of Compound 4.12 
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Figure C.7. 1HNMR of Compound 4.3a 
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Figure C.8. 13CNMR of Compound 4.3a 
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Figure C.9. 31PNMR of Compound 4.3a 
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Figure C.10. 1HNMR of Compound 4.16 
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Figure C.11. 13CNMR of Compound 4.16 
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Figure C.12. 1HNMR of Compound 4.17 
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Figure C.13. 13CNMR of Compound 4.17 
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Figure C.14. 1HNMR of Compound 4.18 
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Figure C.15. 13CNMR of Compound 4.18 
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Figure C.16. 1HNMR of Compound 4.3b 
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Figure C.17. 13CNMR of Compound 4.18 
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Figure C.18. 31PNMR of Compound 4.3b 
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Figure C.19. 1HNMR of Compound 4.21 
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Figure C.20. 13CNMR of Compound 4.21 
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Figure C.21. 1HNMR of Compound 4.22 
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Figure C.22. 13CNMR of Compound 4.22 
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Figure C.23. 1HNMR of Compound 4.23 
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Figure C.24. 13CNMR of Compound 4.23 
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Figure C.25. 1HNMR of Compound 4.3c 
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Figure C.26. 13CNMR of Compound 4.3c 
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Figure C.27. 31PNMR of Compound 4.3c 
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Figure C.28. 1HNMR of Compound 4.25 
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Figure C.29. 13CNMR of Compound 4.25 
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Figure C.30. 31PNMR of Compound 4.25 
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Figure C.31. 1HNMR of Compound 4.28 
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Figure C.32. 13CNMR of Compound 4.28 
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Figure C.33. 1HNMR of Compound 4.29 
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Figure C.34. 13CNMR of Compound 4.29 
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Figure C.35. 1HNMR of Compound 4.26a 
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Figure C.36. 13CNMR of Compound 4.26a 
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Figure C.37. 31PNMR of Compound 4.26a 

 

 

 

 

 

Figure C.38. RP HPLC crude trityl-tagged ODN 5'-TTA TCC ACT TCC GTT CTA CT-

3’ (4.30a-tr). The peak at 35-39min corresponds to the trityl-tagged ODN. The peaks 

after 40min correspond to branched sequences. 
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Figure C.39. RP HPLC profile of purified trityl-tagged ODN 5'-TTA TCC ACT TCC 

GTT CTA CT-3' (4.30a-tr).CTA CT-3' (4.30a-tr). 

 

 

 

Figure C.40. RP HPLC profile of de-tritylated ODN 5'-TTA TCC ACT TCC GTT CTA 

CT-3' (4.30a). 
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Figure C.41. RP HPLC profile of pure de-tritylated ODN 5'-TTA TCC ACT TCC GTT 

CTA CT-3' (4.30a). 

 

 

 

 

 

 

 

 

Figure C.42. RP HPLC profile of crude trityl-tagged ODN 5'-TTA TCA AAC TTG TAA 

CCC CT-3' (4.30b-tr). The peak at 35-39 min corresponds to the trityl-tagged ODN. The 

peaks after 40 min correspond to branched sequences. 
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Figure C.43. RP HPLC profile of purified trityl-tagged ODN 5'-TTA TCA AAC TTG 

TAA CCC CT-3' (4.30b-tr). 

 

 

 

 

 

 

 

 

Figure C.44. RP HPLC profile of de-tritylated ODN 5'-TTA TCA AAC TTG TAA CCC 

CT-3' (4.30b). 
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Figure C.45. RP HPLC profile of pure de-tritylated ODN 5'-TTA TCA AAC TTG TAA 

CCC CT-3' (4.30b). 

 

 

 

 

 

 

 

Figure C.46. A typical RP HPLC profile of crude ODN (5'-CTA GAT AAC TCA TAG 

TAC TT-3') synthesized using 4.3a-c and 4.4 under standard conditions using acetic 

anhydride for capping and without 5'-tagging with hydrophobic groups such as trityl and 

DMTr groups. The peak between 19 and 21 min corresponds to the ODN. The peaks after 

21 min correspond to branched sequences. Because the desired ODN and branched 

sequences were very close, ODN purification was difficult. 
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Figure C.47. RP HPLC profile of the crude ODN 5'-DMTr-O-TTC CAT CCT AGA 

AAG CTC AT-3' synthesized using 4.3a-c and 4.4 under standard conditions using acetic 

anhydride for capping. At the end of synthesis, the DMTr group was not removed. 

Although not always possible, in this case, the DMTr protection survived the cleavage 

and deprotection conditions involving sodium periodate. The peak in the profile between 

43 and 45 min corresponds to the DMTr-tagged ODN. The peaks after 47 min correspond 

to branched sequences. The branched sequences have longer retention times because they 

have two or more 5'-ends and thus have two or more DMTr groups.  
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Figure C.48. A typical RP HPLC profile of crude ODN (5'-TBDPS-O-CTA GAT AAC 

TCA TAG TAC TT-3') synthesized using 4.3a-c and 4.4 under standard conditions using 

acetic anhydride for capping and tagged with a TBDPS group at the 5'-end. The TBDPS, 

which is the tBu(Ph2)Si- group, was introduced after solid phase synthesis (5'-DMTr 

group removed) and before cleavage and deprotection by soaking the CPG in 0.1 M 

tBu(Ph2)SiCl and 0.1 M imidazole in DMF (rt, 12 h). Cleavage and deprotection were 

then carried out as described in the article. The peak between 41 and 42 min corresponds 

to the tagged ODN. The peaks after 43 min correspond to branched sequences. The 

branched sequences have longer retention times because they have two or more 5'-ends 

and thus have two or more TBDPS groups. The approach separated the desired ODN 

from the branched sequences very well, but at this stage, we cannot identify a mild 

condition that is compatible with sensitive modifications on ODNs to remove the TBDPS 

group after the ODN is purified. 
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Figure C.49. RP HPLC profile of crude trityl-tagged ODN 4.30c-tr. The peak at 37-40 

min corresponds to the trityl-tagged ODN. The peaks after 40 min correspond to 

branched sequences. 

 

 

Figure C.50. RP HPLC profile of purified trityl-tagged ODN 4.30c-tr. 
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Figure C.51. RP HPLC profile of de-tritylated ODN 4.30c. 

 

 

Figure C.52. RP HPLC profile of purified de-tritylated ODN 4.30c. 
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Figure C.53. RP HPLC profile of crude trityl-tagged ODN 4.30d-tr. The peak at 37-40 

min corresponds to the trityl-tagged ODN. The peaks after 40 min correspond to 

branched sequences. 

 

 

Figure C.54. RP HPLC profile of purified trityl-tagged ODN 4.30d-tr. 
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Figure C.55. RP HPLC profile of de-tritylated ODN 4.30d. 

 

 

 

Figure C.56. RP HPLC profile of purified de-tritylated ODN 4.30d. 
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Figure C.57. RP HPLC profile of crude trityl-tagged ODN 4.30e-tr. The peak at 37-40 

min corresponds to the trityl-tagged ODN. The peaks after 40 min correspond to 

branched sequences. 

 

 

 

Figure C.58. RP HPLC profile of purified trityl-tagged ODN 4.30e-tr. 
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Figure C.58. RP HPLC profile of de-tritylated ODN 4.30e. 

 

Figure C.59. RP HPLC profile of purified de-tritylated ODN 4.30e. 
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Figure C.59. MALDI-TOF-MS of compound 4.30a-tr and 4.30a, respectively 
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Figure C.60. MALDI-TOF-MS of compound 4.30b-tr and 4.30b, respectively 
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Figure C.61. MALDI-TOF-MS of compound 4.30c-tr and 4.30c, respectively 
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Figure C.62. MALDI-TOF-MS of compound 4.30d-tr and 4.30d, respectively 
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Figure C.63. MALDI-TOF-MS of compound 4.30e-tr and 4.30e, respectively 
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