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Abstract 

West Africa has experienced extensive land use/land cover (LULC) change since the 
Sahel drought of the 1970s and 80s. Demographic changes, rapid urbanization, and other 
anthropogenic impacts on land cover in West Africa have potentially altered hydrological 

regimes. This work was undertaken while I served as a Peace Corps Volunteer in the 
Kedougou region of Senegal, an area that has experienced significant and rapid 

infrastructural improvements and urbanization since the early 2000s. The Gambia River 
flows near Kedougou, where flooding is an extensive problem, making access and 
livelihood practices difficult during the rainy season. Changes in climate and land use on 

hydrology have not been adequately assessed for this region, as well as many 
underdeveloped areas. A computational hydrological analysis is needed to understand 

recent and current conditions and forecast future impacts. The physically based and 
distributed Gridded Surface/Subsurface Hydrologic Analysis (GSSHA) model was 
employed to assess the effects of LULC change on inundation and local hydrology 

between 1992 and 2015. Urban area comprised 2.75 km2 of a 2,488-km2 watershed in 
2015, growing from nothing in 1992. Forest cover between 1992 and 2015 increased 6%, 

whereas shrubland decreased by 4%. The 2015 land cover results showed a 20% increase 
in peak discharge during high intensity precipitation events (≥100 m). However, during 
lower intensity storms, urbanization did not significantly impact local hydrology or 

streamflow. In fact, a reverse trend was observed, in which peak flow was ~ 25 m3/s 
higher during the 1992 land cover scenario. Increased runoff may have resulted from the 

vegetation loss influenced by the drought from the 1980s. When compared to Sentinel-1 
SAR imagery, GSSHA moderately overpredicted inundation extent.
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1 Introduction 
 Understanding the hydrological impact of land use and land cover (LULC) change 
is indispensable to water resource management, urban planning, and flood analysis. “The 

need for accurate hydrologic analysis and modeling tools has been rapidly increasing 
because of the growing complexity of operational hydrologic and hydraulic problems 

associated with population growth, rapid urbanization and expansion of agricultural 
activities” (El Hassan, 2012). Anthropogenic activities such as deforestation, overgrazing, 
agricultural expansion, and urbanization can considerably affect the LULC and hydrologic 

characteristics of a basin (OECD, 1991). Although biophysical conditions such as local 
climate, geology, soil, and vegetation are the primary characteristics that influence land 

cover and local hydrology, human behavior can exacerbate LULC change. This can have 
both immediate and long-term impacts on local hydrology. In the short term, “land use 
changes may disrupt the hydrologic cycle through increasing the water yield and runoff” 

(Croke et al., 2004). Urbanization reduces the amount of permeable land, which leads to 
increased runoff, streamflow/peak discharge, and flooding during extreme precipitation 

events. “In the long-term, the reductions in evapotranspiration and water recycling arising 
from land use changes may initiate a feedback mechanism that results in reduced rainfall” 
(Savenije, 1995). As populations and urban areas develop, human interactions with the land 

will only grow increasingly more complex. Therefore, hydrologic models should be utilized 
and regularly updated to simulate and monitor the impacts of LULC change. Forecasts of 

impacts of LULC change on hydrology is one important effort to decrease social 
vulnerability and increase local resiliency. 

Globally, many regions remain exceptionally vulnerable to flooding and drought 

hazards because they are underserved and lack resources for risk reduction and adaptation. 
West Africa, for example, has experienced extensive LULC change since the drought of the 

1970 and 80s. However, in-depth studies for specific countries are lacking. According to 
Aduah et al. (2017), “in the rainforest regions of southern West Africa, there remains a lack 
of knowledge on the hydrological impacts of land use changes at the local scale, despite 

land use changes being significant over the past three decades” (FAO, 2010, Aduah et al., 
2015). “Previous studies on hydrology in West Africa have been mainly undertaken in the 

semi-arid areas and the Sahel parts of the region that have vastly different vegetation and 
climate compared to the rainforest regions of the south” (Aduah et al., 2017). These studies 
acknowledged the various drivers of land use change and their associated effects (Welde et 

al., 2017, Koranteng et al., 2016, Tappan et al., 2004, Legesse et al., 2003). One study by 
Koranteng et al. (2016) used remote sensing products to predict future land use/land cover 

change up to the 2040 horizon. Others utilized different hydrologic models to analyze the 
effects of land use and land cover dynamics on multiple West African river basins (Welde 
et al., 2017, Legesse et al., 2003).  

West Africa is comprised of 16 countries, as defined by the United Nations. Senegal 
serves a special interest to the author for it is where he served as an Urban Agriculture 

Volunteer in the U.S. Peace Corps in 2016 and 2017. According to the World Bank, urban 
populations in Senegal have considerably increased since 1960. Between 1960 and 2017, 
the urban population of Senegal increased from approximately 740,000 inhabitants to 

7,200,000. Almost half (46%) of the total population currently live in urban areas, but this 
figure is projected to increase to 60% by 2030 (2016). Though urban migration is likely to 

increase, agriculture remains a prominent livelihood for a majority of the country.  
Agricultural activities take place between May and October due to the rains brought 

by the West African monsoon wind system. While beneficial for crops, this can pose a 
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threat to populations that reside near water bodies, in low elevations, or urban areas because 

of frequent flooding that occurs throughout the country. “Floods in Senegal have affected 
over 900,000 people and caused damage surpassing US$142 million since 1980” (GFDRR, 

2012). Many urban communities are at risk because of their location in coastal areas or 
proximity to one of the major river systems. High levels of rainfall variability, poor 
drainage infrastructure and shallow groundwater occurrence further increase the risk of 

inundation. Exposure to flooding has increased due to a history of rapid, unplanned, urban 
expansion into zones at risk (GFDRR, 2012).  

In recent years, the Kedougou region in Senegal has experienced rapid urbanization. 
Between 2002 and 2014, the Kedougou urban population increased from 16,500 residents 
to 39,000 (ANSD, 2014). Approximately, 25% of the regional Kedougou population lives 

in the urbanized capital, KG-même. Economic opportunities, instability in neighboring 
countries, and improved infrastructure are some factors that have influenced this growth. 

KG-même is in close proximity to the Gambia River and flooding is a major issue in the 
community during the rainy season. It limits travel and accessibility, destroys crops, and 
endangers livelihoods. Various groups (Bodian et al., 2018, Traore et al., 2014) have 

completed studies analyzing the effects of climate change on the Gambia River. The 
authors estimated future stream flows under different climate change scenarios downstream 

of KG-même, but did not consider the effects of LULC change. As stated by Rogger et al. 
(2017), “Land use change has, potentially, a very strong effect on floods as humans have 
heavily modified natural landscapes. Large areas have been deforested or drained, thus 

either increasing or decreasing antecedent soil moisture and triggering erosion. Hillslopes 
were modified for agricultural production, thus changing flow paths, flow velocities, and 

water storage, and consequently flow connectivity and concentration times.” During times 
of increased flow and large, convective rain events, the Gambia River is prone to higher 
flows and regular flooding. This study seeks to analyze how LULC change in KG-même 

has and will affect local hydrology, streamflow, and nearby inundation. 
Several hydrologic models have been used to assess the effects of land use change; 

however, determining which model to utilize can be difficult and tedious. Dwarakish and 
Ganasri (2015) reviewed the applicability of various models to analyze the effects of LULC 
change on hydrological processes. The authors concluded that, “the physically based semi-

distributed and distributed hydrologic simulation models are more suitable for studying the 
effect of land use change, as land use pattern is heterogeneous in nature” (Dwarakish and 

Ganasri, 2015). Though multiple physically based, fully distributed models exist, the 
Gridded Surface/Subsurface Hydrologic Analysis (GSSHA) model was chosen for 
simulations. The fully distributed GSSHA model is, “intuitively more realistic compared to 

a lumped model in terms of land use change and has been successfully applied to small- 
medium size watersheds with event-based and continuous configuration for predicting both 

stream flow” (Sith and Nadaoka, 2017). Additionally, the author participated in a seven-
week research program where he received extensive training from staff at the National 
Water Center using this model. The GSSHA model is utilized by NOAA in their National 

Water Model and continues to be employed for hydrological studies. 
Kedougou is ~740 km SE of the country capital, Dakar. Due to its location and 

population figures, it has historically been an overlooked and under resourced region. As of 
2008, it was distinguished from Tambacounda and became its own, nationally recognized 
region. The distinction from Tambacounda granted the local government of Kedougou 

political and administrative privileges they previously lacked. Site-specific research 
funding might become available from this recognition to support collecting quality data and 
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technical resources for Kedougou that are presently lacking. During his service, the author 

observed inundation throughout the region and realized the limitations this placed on 
residents, especially farmers. Through collaboration with the country’s Department of 

Hydrology and Dept. of Water and Forests, the author obtained rainfall data, soil data, and 
digitized past hydrologic studies for Kedougou. The data was validated and supplemented 
by SIEREM, an online climatic database for West Africa, as well as satellite/radar imagery. 

The methods used to obtain, implement, and analyze these data can be found in section 4. 
The 300-m resolution GSSHA model simulated two flood events of varying 

precipitations. The 63 mm rainfall event was complemented by hourly discharge data that 
assisted when comparing results to observed data. The second simulation consisted of a 100 
mm event that was compared to 20-m Synthetic Aperture Radar (SAR) flood imagery. 

Although data were limited by quality, this study aims to develop an accurate GSSHA 
model for an under resourced, but thriving community. Kedougou contains some of the 

most vulnerable, impoverished populations in Senegal. The author’s hope is that this 
research improves the resiliency of the Kedougou population and can be employed for 
future land use scenarios in Kedougou and elsewhere. 



 

4 

 

2 Background 
An estimated 39 languages are spoken in Senegal (Hargreaves et al., 2019). The 

many cultures represented in the country are infused with a history of abundant migration 

and (re)settlement. Before French colonization, various African and Muslim empires ruled 
Senegal. Several ethnic groups, such as the Wolof, Fulani, and Soninke cohabitated Senegal 

under these empires. Due to its proximity to the Atlantic Ocean, many people have 
historically migrated here; however, this also influenced French colonizers to establish a 
prominent trans-Atlantic slave-trade post in the past.  

Senegal is home to approximately 16 million people (ANSD, 2019). “It remains one 
of the most stable democracies in Africa and has a long history of participating in 

international peacekeeping and regional mediation” (CIA, 2019). Intra-continental 
migration continues to occur, but increased population growth and economic opportunities 
in Senegal have fueled urban migration. 

The country is located on the western most tip of Africa (Fig. 1). It is comprised of 
14 regions, each diverse in terms of population, culture, climate, and landscape. Of the 16 

million inhabitants, 23% live in the capital Dakar, 13% in Thies, 11% in Diourbel, and 
<10% in each of the other regions. Almost half (46.7%) of the population live in urban 
areas. Average annual urban population growth rate is expected to remain above 3% until 

2030 (Rouhana & Ranarifidy, 2016).  
 

 
Figure 1. Map of Senegal in relation to Africa with the country’s 14 regions (inset). 
Adapted from Google Earth Pro and Wetterberg & Gove (2011) (Map data: Google, 
CNES/Airbus, Landsat/Copernicus). 

 
As a United States Peace Corps volunteer, the author spent 2 years as an agricultural 

extension agent in Kedougou, Senegal. Much like states and counties in the U.S., Senegal is 

subdivided into regions and departments accordingly (Fig. 1). Regions possess local 
governments and have more political power and influence than departments. Prior to 2008, 

the entire region of Kedougou was considered a department of Tambacounda. However, it 
has now become its own region, allowing it political and administrative capabilities that it 
previously lacked. Kedougou is the fifth- largest region of Senegal with an area of 16,800 

km2 but is also the least populated region. Although Kedougou is currently the least 
populous region, it has experienced a population increase of 190% from ~63,000 residents 
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in 1976 to an estimated 184,275 in 2019 (Fig. 2). “The low population density in this area 

enabled movements of people from other populated zones for extensive agriculture and 
pastoralism purposes” (FAO, 2012). An estimated 60% of the Senegalese population 

depends on agriculture for their livelihood and the Kedougou environment is suitable.  
The 317 villages are scattered throughout Kedougou, but 2013 census data showed 

that urbanization has rapidly increased in recent years. Between 2002 and 2013, the percent 

of people residing in urban areas increased from 16% to 25% of the total Kedougou 
population (Beye et al., 2014). Urban migration has risen due to infrastructural 

improvements; during the author’s service, the Senegalese government constructed a bridge 
and several roads that eased access between departments. Unstable political circumstances 
in bordering countries (The Gambia, Guinea, and Mali) have also increased migration to the 

area (Beye et al., 2014). Additionally, there has been increased industrial and artisanal gold 
mining in Kedougou since 2009. “The gold deposits in Kedougou have not only attracted 

international companies but also vast numbers of small-scale and artisanal miners who 
migrated from neighboring countries to Senegal” (Prause, 2017). “The mining and 
agriculture sectors have potential for economic benefits, but the exploitation of these 

resources might include environmental risks that add to the existing problems of bush fires, 
overgrazing, deforestation and soil erosion” (FAO, 2012).  

Intensified environmental risks due to demographic change have the capacity to 
affect local hydrological systems. These risks, in addition to agricultural extension and 
urbanization, are major contributing factors to LULC change (OECD, 1991). Land use and 

land cover changes can have immediate and long-term impacts on local hydrology. In the 
short term, land use changes may disrupt the hydrological cycle through increasing the 

water yield and runoff (Croke et al., 2004). Increased runoff can expand and intensify 
inundation, thereby affecting agricultural livelihoods and personal property. In the long 
term, the reductions in evapotranspiration and water recycling arising from land use 

changes may initiate a feedback mechanism that results in reduced rainfall (Savenije, 
1995). If the anthropogenic activities associated with urbanization continues to change the 

Kedougou landscape, hydrological studies must be performed to help decrease flood, 
climate change, and water resource vulnerability. 
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Figure 2. Kedougou population change between 1976 and 2019. Accessed from   

the Senegal National Agency of Statistics and Demographics (ANSD). 

2.1 Geographic Setting 
Kedougou is located in the southeast of Senegal at 12.5605° N, 12.1747° W (Fig 3). 

As evidenced by the gold that is found in Kedougou, this region contains markedly 
different geology, soils and climate than most of the country. While there are gold deposits 

located in a window of Paleoproterozoic rocks north and east of the capital, much of the 
geology surrounding KG-même consists of metasediments and biotite-bearing granitoids 

(Diop et al., 2006). The highest altitudes of the country are found here (about 500 m at the 
mountains of Kedougou) and exist as plateaus and hills that are the important sources of the 
hydrographic network (FAO, 2012). Kedougou contains, “very shallow, loamy, gravelly, 

and highly leached ferruginous soils over laterite and Precambrian parent material” (Tappan 
et al., 2004). Additionally, Kedougou boasts some of the highest precipitation amounts in 

the country, averaging 1,100 to 1,450 mm per year (Diop et al., 2015). This rainfall helps 
preserve the abundant natural forests and wildlife found in Niokolo-Kobo National Park, 
which borders Kedougou to the northwest, along with Mali (E) and Guinea (S).  
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Figure 3. Kedougou is in the southeast of Senegal and is found near the conjunction of three countries- Senegal, Mali, and Guinea. The inset shows 

the urbanized capital of Kedougou and its proximity to the Gambia River. Adapted from Google Earth Pro (2019) (Map data: Google, CNES/Airbus, 
Landsat/Copernicus).
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Near the southern border of Kedougou, in Guinea, is the Fouta Djalon plateau. It is a 
mountainous region encompassing a 77,000-km2 area and is a series of stepped sandstone 

plateaus. The plateaus serve as watersheds for multiple West African rivers, including the 
Gambia River, Senegal River, and Niger River (Encyclopedia Britannica, 2012). The Fouta 
Djalon plateau is hydrologically vital to many West African communities. The Gambia 

River runs immediately adjacent to the capital, Kedougou-même (Fig. 4). The river 
originates in the Fouta-Djalon at an elevation of ~1,200 amsl. It travels 1,129 km through 

Kedougou and Tambacounda to its outlet in The Gambia. Between the Fouta Djalon 
plateau and Kedougou, the altitude decreases approximately 1,100 m. According to Diop et 
al. (2015), “this rather steep drop over 250 km, combined with the abundant rainfall, 

explains, for a catchment area of approximately 10,465 km2, the flows recorded at the 
Kedougou station which can reach and even exceed 1,000 m3/s.” Most of the annual 

precipitation arrives during May-October, often peaking in August. Figure 5 shows daily 
rainfall and Gambia River discharge from 1979-2003. Quality data were limited to these 
dates. 
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Figure 4. Map of KG-même showing hospitals and other important locations, major roads 

and streets, and residential areas. Some residential neighborhoods are within 200 m of the 
Gambia River. Accessed from OpenStreetMap, 2019.
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Figure 5. Daily rainfall and Gambia River discharge from 1979-2003
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3 Objectives and Scope 
 

Based on Figures 2 and 4, it is apparent that KG-même has become more 
urbanized and densely populated since 1976. To assess how land cover in the watershed 

changed over time, satellite imagery between 1992 and 2015 were compared. The year 
1992 was the earliest available global land cover dataset, so this was the land cover 

scenario used for calibration and pre-urbanization simulations. The 2015 land cover was 
the most recent image available and displayed how land cover transitioned.  

Urbanization is associated with increased runoff due to impermeable surfaces. 

Increased runoff, combined with inadequate drainage systems, enhances flood risk for an 
already vulnerable community, as experienced by the author and his colleagues. The 

Kedougou urban community remains at risk because limited hydrogeological data in the 
Gambia River watershed has complicated and restricted hydrologic research and 
proactive solutions. There is one rain gauge at the airport and one broken stream gauge in 

the Gambia River near KG-même. Considering these factors, the research objectives are 
as follows: 

 
1) Analyze land cover extent and class in the Gambia River watershed between 1992 

and 2015. 

2) Apply a GSSHA model to the Gambia River watershed to compare inundation 
extent and runoff impact due to LULC change 

3) Test the model by comparing simulated results to a known event, as well as 
satellite imagery 

4) Forecast future impacts of land use change on in the watershed at the 2050 

horizon 

Studies have shown that LULC change, especially urbanization, increases runoff, 
river discharge, and inundation depth and extent (Ligtenberg, 2017). In the future, climate 

change may exacerbate these effects as it can alter rainfall patterns, and increase storm 
frequency and intensity, thus increasing the potential for floods (Douglas et al., 2008). 

Rising temperatures are projected to cause more frequent and more intense extreme 
weather events detrimentally affecting communities that are already some of the most 
vulnerable and impoverished (Douglas et al., 2008). 

Due to previous research experience at NOAA’s National Water Center, the 
Gridded Surface/Subsurface Hydrologic Analysis (GSSHA) model was employed to 

simulate the hydrological effects of land use change. It is a physically based, distributed 
hydrologic model developed by the U.S Army Corps of Engineers. “It can simulate 
streamflow generated by various sources, such as snowmelt, runoff due to infiltration 

excess, or direction interactions between the stream and saturated groundwater” (Downer 
and Ogden, 2006). Additionally, the GUI and grid structure allow for multiple 

permutations of a storm event. In areas with limited data, this is beneficial because it 
eases manual calibration of individual parameters and saves time. Further information 
about the model is discussed in the Methods section.  
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Land use dynamics were projected to the 2050 horizon by comparing the number 
of land use class grid cells that transitioned from forest to urban cover between 1992 and 

2015. In GSSHA, grid cells maintain individual values that can be adjusted to correspond 
to a specific land cover. Between these 23 years, approximately 30 cells (2.70 km2) 

transitioned to urban land cover. To maintain the same rate of transition, 45 cells (4.05 
km2) adjacent to KG-même were converted to urban area, representing the 35-year 
difference (1.5x) between 2015 and 2050.  

Kedougou is a highly under resourced and underrepresented region. It was just 
recently recognized as its own region in 2008 and allowed certain administrative/political 

privileges. As time progresses, the Senegalese government and other organizations 
should be able to provide Kedougou with more attention and resources than previous 
years. If present demographic trends continue, this region has the potential to become a 

major place of demographic and economic interest. The goal is that this model be utilized 
for water resource management and future flood mitigation strategies in Kedougou-

même. Additionally, this model and methodology may be extended to other parts of 
Kedougou and Senegal. Kedougou is a place that should be served and represented more. 
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4 Methods 

Hydrological simulations occurred using the Gridded Surface/Subsurface 
Hydrologic Analysis model in the Watershed Modeling System (WMS). 300-m land 
cover data were obtained from the ESA website along with SOTER soil type 

characteristics and field/satellite-derived precipitation estimates. A 63 mm storm event 
from August 22, 2001 was simulated. Single storm events were modeled due to limited 

climactic data for long-term simulations. Additionally, previous modelling shows that the 
pattern of rare large floods is going to change much more than long-term average river 
flows in Africa (Douglas et al., 2008). GSSHA analyzed and calibrated the 63 mm 

rainfall event using the Gambia River’s stream gauge. Post-calibration, the model 
simulated two rainfall events- first was the 63 mm event used for calibration and 

comparisons to observed data. Second, a 100 mm event was simulated based on flood 
extents found in SAR imagery. Simulated flood output and extent were compared to 
Synthetic Aperture Radar (SAR) from a 2016 flood event. SAR and GSSHA comparisons 

showed that SAR-detected flooding was more expansive than the 63 mm rainfall event, 
so a larger intensity (100 mm) storm was initialized.  

GSSHA 
“GSSHA is a physically based, distributed-parameter, structured grid, hydrologic 

model developed by the U.S Army Corps of Engineers (USACE)” (Downer and Ogden, 

2006). THE USACE promotes GSSHA as a next generation model capable of simulating 
more complicated hydrologic/hydraulic situations such as land use change models, 

complex flows in a levee, or sediment transport within a watershed etc. (Downer et al. 
2002). The model incorporates several important 1D and 2D hydrologic components, as 
outlined in Appendix A. Additionally, GSSHA has the capability to predict flooding from 

multiple sources, including excess rainfall, storm surge, stream overbank discharge, and 
reservoir expansion/backwater (Downer and Ogden, 2006). 
 In this model, “the watershed is divided into cells that comprise a uniform finite 

difference grid” (Downer and Ogden, 2006). During an event, GSSHA spatially and 
temporally distributes rainfall over a watershed. The processes that occur before, during, 

and after a rainfall event are calculated for each grid cell and the responses from 
individual grid cells are integrated to produce the watershed response (Downer and 
Ogden, 2006). The GSSHA model is run in the Watershed Modeling System (WMS), 

which was developed at the Environmental Modeling Research Laboratory at Brigham 
Young University and is currently maintained by Aquaveo, LLC. This graphical user 

interface (GUI) makes the hydrologic model more accessible and user-friendly. Since 
GSSHA is a relatively new model, it continues to be updated by the USACE to improve 
the functionalities and efficiency of the model. There is an accessible GSSHA user 

manual online at “www.gsshawiki.com”. 
 

Geospatial Data 
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The GSSHA model requires spatial data in the form of Digital Elevation Models 
(DEMs), soil properties, land use coverage, and rainfall duration and intensity. The 

accuracy of GSSHA models is increased when utilizing hourly to sub-hourly 
precipitation data. In country, data access while was limited due to language barriers, 

transportation issues, and work schedules. The Direction de la Gestion et de la 
Planification des Ressources en Eau (DGPRE- Senegal Department of Hydrology) 
provided me with some research documents and rainfall records. These data were 

validated and supplemented by data obtained from other departments or sources. Various 
data products from different sources were integrated for model development.   

 
DEM Data 
 Kedougou is located at 12.5605° N, 12.1747° W, at the junction of the Mali and 

Guinea borders. The Gambia River originates in the Fouta Djallon mountain range of 
Guinea. A 30-m resolution ASTER DEM was retrieved from the EarthExplorer database. 

This DEM encompassed Kedougou and the Fouta Djallon plateau in Guinea. ArcMap 
10.4 was used to merge the multiple images into a single DEM. Due to the relatively flat 
topography found in Kedougou, the Arc Hydro tool in ArcMap 10.4 was employed to 

artificially “burn” the Gambia River into the DEM. During the stream delineation process 
in GSSHA, slight elevation changes (< 5-6 m) may not be detected accurately, thus 

affecting drainage patterns. “Stream burning is a common flow enforcement technique 
used to correct surface drainage patterns derived from digital elevation models” (DEM) 
(Lindsay, 2015). “The burn technique involves adjusting the elevations of grid cells that 

are coincident with the features of a vector hydrography layer” (Lindsay, 2015). After the 
burn process, Arc Hydro filled any remaining pits and sinks to ensure proper hydrologic 

simulation. 
 
Soil Type 

A detailed soil map of Senegal was obtained from the International Soil Reference 
and Information Centre (ISRIC) Soil and Terrain (SOTER) database. The SOTER 

database is composed of a map (in GIS polygon format) that delineates the SOTER map 
units accompanied by a database with terrain and soil data (ISRIC, 2019). Soil properties 
in the database consist of organic carbon, total nitrogen, pH, cation exchange capacity, 

base saturation, aluminum saturation, calcium-carbonate and gypsum content, 
exchangeable sodium, electric conductivity, bulk density and the sand, silt and clay 

fractions.  

Land Use/Land Cover  
 Datasets consisting of 300-m resolution, 21-class global land cover for every year 

between 1992 and 2015 were obtained from the CCI-LC viewer on the European Space 
Agency (ESA) website (ESA, 2014). “These datasets were compiled by several satellites, 

including MERIS, AVHRR, SPOT-VGT, and PROBA-V. The MERIS FR and RR 
archive from 2003 to 2012 was used to generate one unique baseline LC map” (ESA, 
2014). “Independently from this baseline, LC changes were detected at 1 km based on the 
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AVHRR time series between 1992 to 1999, SPOT-VGT time series between 1999 and 
2013 and PROBA-V data for years 2013, 2014 and 2015” (ESA, 2014).  

Changes detected at 1 km were mapped to a 300-m grid due to the resolution 
variability between sensors. The baseline LC map was then updated to produce 24 annual 

LC maps from 1992-2015. Since GSSHA cannot run continuously with dynamically 
changing land cover, maps from 1992 and 2015 were compared because they showed the 
largest LULC transitions. The land cover typology was defined using the Land Cover 

Classification System (LCCS) developed by the United Nations (UN) Food and 
Agriculture Organization (FAO). This LCCS was chosen so that it would also be 

compatible with the GLC2000, Glob Cover 2005 and 2009 products (ESA, 2014). 

Hydrometeorological Data 
Kedougou-même maintains one rain gauge at the nearby Kedougou airport. Daily 

rainfall data from 1918-2007 were obtained from the DGPRE and validated by SIEREM, 
Système d'Informations Environnementales sur les Ressources en Eau et leur 

Modélisation. SIEREM is an environmental information system for water resources in 
Africa, developed by HydroSciences, Montpellier, Vermont. It is considered the most 
important environmental information system on the African continent with 13,000 

measuring stations, 33,000 time series, and over 117 million records, from 1837 to 2015. 
“As precipitation is highly variable in space and time, a dense network of rainfall stations 

is needed” (Chintalapudi et al., 2012). However, “the accuracy of precipitation data is 
much lower in developing countries” (Pan et al., 2010). Limited rain gauges and coarse 
temporal resolutions can result in hydrologic inaccuracies. The GSSHA User’s Manual 

suggests avoiding precipitation data with a temporal resolution coarser than 1 hour 
(Downer & Ogden, 2006).  

Therefore, the temporal distribution of rainfall was determined by satellite 
imagery. The Integrated Multi-Satellite Retrievals for GPM (IMERG) data product was 
utilized to develop a design storm hyetograph. GSSHA can employ a hyetograph that 

models temporally varying, spatially uniform (single-gauge) rain events. “The IMERG 
data product intercalibrates, merges, and interpolates multiple satellite and 

microwave precipitation estimates, together with microwave-calibrated infrared (IR) 
satellite estimates, precipitation gauge analyses, and potentially other precipitation 
estimators at fine time and space scales for the Tropical Rainfall Measuring Mission 

(TRMM) and Global Precipitation Measurement (GPM) satellites over the entire globe” 
(NASA, 2019). This precipitation data is not only validated through several methods, but 

data is also available at a half-hour time step and 0.1° grid resolution. IMERG data 
products have been available since March 2014.  

According to Weather Underground, ~50 mm of precipitation occurred on August 

27 to 28, 2014 (Weather Underground, 2019). Hourly accumulated rainfall data were 
available for this storm event in NASA’s Giovanni database. Hourly images of the storm 

event were retrieved and imported to ArcMap 10.4 (Fig. 6) The Info tool was used to 
determine precipitation values for each grid cell. Rainfall values were averaged over to 
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time to develop a design storm hyetograph. The hyetograph distributes precipitation 
based on the ratio of rainfall per hour to accumulated rainfall. 

After the hyetograph was developed, accumulated rainfall from a 63 mm storm 
event on August 22, 2001 was used for simulation. This date was chosen because little to 

no rain preceded or succeeded this event for three days. The lack of precipitation before 
and after would minimize hydrological inaccuracies. Additionally, quality hourly 
discharge data were available for this event. 

 

 
Figure 6. IMERG hourly rainfall data 

Gambia River discharge data 
Kedougou maintains several gauging stations on the Gambia River and some of 

its tributaries. The KG-même gauging station maintained daily discharge values from 

1970-2003, before a flood washed out the station (Diop et al., 2015). Unfortunately, 
resources have not yet been allocated to fix this. The SIEREM database contained daily 

discharge data from 1970-2003. Data before the 1990s were explicitly recorded daily; 
however, after 1990, during intense precipitation events, discharge was recorded at a one 
to three-hour time step. This finer temporal resolution proved necessary for model 

calibration. 
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Document translation 
 Senegal is a Francophone country and much of the research, data, and information 

I received were in French. Google Translate was used for translation to English. 

GSSHA Model Creation 

Preprocessing 
 Several preprocessing procedures occurred before GSSHA model initialization. 
First, the datum and projected coordinate system established were WGS 84 UTM Zone 

28N. This projection encompassed both Kedougou and the Fouta Djallon plateau of 
Guinea. Next, the burned DEM was imported to WMS for flow direction and flow 

accumulation computations through the Topographic Parameterization Program 
(TOPAZ) included in WMS. Once TOPAZ calculated the stream network, an outlet was 
chosen to delineate the watershed.  

Outlet placement is an important consideration during model development 
because GSSHA produces a river hydrograph at the location, enabling calibration. For 

calibration purposes, the Kedougou gauging station was chosen as the initial outlet point. 
However, when this watershed was delineated, it did not encompass the town of 
Kedougou. Once soil and land cover parameters were calibrated utilizing this outlet point, 

a new outlet, encompassing the town, was chosen ~10-km downstream. After watershed 
delineation, the GSSHA model was selected and initialized. 

 
Grid Size and Stream Smoothing 
 After preprocessing, a 2D elevation grid of the DEM was created. Distributed 

models can have an extensive range of grid sizes; therefore, “the selection of an 
appropriate grid size requires consideration of both the available data and computational 

effort required” (Downer and Ogden, 2006). Smaller grids can increase model accuracy 
because they are less sensitive to sub-grid variability for Hortonian runoff (Ogden and 
Julien, 1993), but this may not equate to enhanced model performance. Computational 

demands are dependent on a myriad of factors that include grid size, watershed area and 
stream network density. “If the grid size of the model is halved, the memory required, 

and computational time increase by a factor of 4” (Downer and Ogden, 2006). A 300-m 
grid was chosen since it coincided with the spatial resolution of the land cover dataset. In 
addition, this grid size reduced computational demand and provided enough detail to 

display individual land cover types. 
 After grid generation, the stream network was adjusted and smoothed. The 

adjustment process ensured that the stream network was geographically accurate. The 
smoothing process involved redistribution of the vertices found in each stream and the 
adjustment of channel profiles to eliminate adverse slopes. Additionally, it ensured 

streambed elevations were lower than that of the adjacent land surface. This is critical in 
low gradient areas, such as Kedougou, because “streambed elevations should always be 

lower than adjacent surface elevations” (Downer and Ogden, 2006). Ideally, surveyed 
cross sections and riverbed profiles of the channel network would be used to smooth the 
streams; however, this data was not available for the study area.  
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Channel cross-section attributes for the streams were incorporated after the 
smoothing process. True channel cross sections were unavailable. Shapefiles of the 

watershed and stream network were exported from GSSHA to ArcMap 10.4. On the 
stream network, new points were created every 2 km using the Editor tool. At each of 

these points, the Ruler tool in ArcMap estimated channel width. The Info tool and DEM 
were used in conjunction to determine the riverbed profile by measuring the elevation on 
the banks and middle of the river. The 2 km point shapefile was then imported to GSSHA 

and nodes matching these points were created along the stream network. Node creation 
allows partitioning the drainage network into individual segments with their own 

corresponding attributes.  

Land Cover and Soil Type 
 The land cover and soil type GIS shapefiles were imported to GSSHA, clipped to 

the watershed boundary, and converted to coverage and index maps. Coverage maps 
assign spatially varying grid parameters by mapping the points, arcs, and polygons of a 

GIS coverage to an index map of unique land use, soil texture, or land use/soil texture 
IDs. Mapping tables that relate the parameter values of the IDs can then be developed. 
These tables attribute several different parameters for land use and soil type to each ID on 

an index map. Surface roughness (Manning’s N) coefficients for each land cover were 
unavailable in this dataset. Prior to model calibration, several coefficient values from 

literature were tested in a manual quasi-sensitivity analysis (Appendix B). 
  The SOTER database accompanied the soil data. During previous studies, 
saturated hydraulic conductivity demonstrated high sensitivity and output variability for 

the GSSHA model. Hydraulic conductivity (K) was determined with the Soil Water 
Characteristics tool in the USDA SPAW Hydrology and Water Budgeting program. This 

tool is used to simulate soil water tension, conductivity and water holding capability 
based on the soil texture, with adjustments to account for gravel content, compaction, 
salinity, and organic matter (USDA, 2019). The program is based on the soil-water 

retention curve, so it is important to remember they are estimations and may not reflect 
the true values at site. Saturated hydraulic conductivity, field capacity, wilting point, and 

residual saturation were obtained through the program (Appendix C). Unobtainable soil 
properties such as capillary head, porosity, and pore distribution index were assigned 
literature values based on soil texture.   

Precipitation 
 The hyetograph developed from IMERG data earlier simulated a 63 mm (average 

depth) rainfall event that occurred on 08/22/2001. Minimal rainfall was experienced three 
days prior and after this event. Since the hyetograph assumes a single gauge in the 
watershed, the model spatially distributed rainfall uniformly over the entire watershed for 

a 10-hour period.  
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Output and Calibration 
The chosen output parameters to display were inundation extent and maximum 

flooding. Additional information about the watershed hydrology is also automatically 
generated. Before simulation, GSSHA employs a cleanup option that detects errors and 

ensures the model can run. Once verified, simulations occurred with the 1992 land cover 
until antecedent streamflow conditions were reached. GSSHA has the capability to save 
discharge and water surface elevation values in each grid cell along the stream network. 

Once discharge reached a steady state of ~ 170 to 190 m3/s, the model was ready for 
calibration. 

 Calibrated parameters included Manning’s N for land cover surface roughness 
and channel roughness, saturated hydraulic conductivity (K), and initial soil moisture 
content. GSSHA offers a PEST-based calibration routine that determined values based on 

the 1992 land cover. Once calibration values were obtained from the Kedougou gauge 
outlet, they were saved as a text file and imported to another model in which the outlet 

point was 10-km downstream. The parameters were extrapolated to 2015 and 2050 and 
the model was simulated for 1992, 2015, and 2050. Land cover parameters were 
manually adjusted for improving the hydrograph accuracy and calibrated a second time 

(Appendix D). 
 

Testing 
The results of the GSSHA analysis were compared to Synthetic Aperture Radar 

(SAR) imagery, specifically the Sentinel-1 satellite. “The Sentinel-1 mission comprises a 

constellation of two polar-orbiting satellites, operating day and night performing C-band 
synthetic aperture radar imaging, enabling them to acquire imagery regardless of the 

weather” (ESA, 2019). This mission has a 12-day repeat cycle, thereby enhancing 
difficulty in obtaining flood data. However, images for pre-flood (08/06/16) and flood 
(08/18/16) conditions were obtained through the Vertex data portal maintained by the 

Alaska Satellite Facility (ASF). These images were processed in the ESA Sentinel 
Application Platform (SNAP). Once imported, the satellite images were clipped to 

encompass the river and area near Kedougou. Processing procedures for the radar 
imagery included radiometric calibration, terrain correction, and speckle filtering. The 
flood imagery was imported to ArcGIS for comparison to the GSSHA flood grid output. 

 Once a model is executed in GSSHA, the flood grid output displays maximum 
flooding in each grid cell at any given time. The flood grid was exported as an ASCII 

grid file to ArcGIS. The raster calculator was implemented for both raster files. The SAR 
flood imagery was adjusted to differentiate land and water. The flood grid was changed 
so that floods with a minimum height of 1 m would be displayed. These raster datasets 

were then converted to shapefiles and combined into one file through the Conversion and 
Union tools.   

 When comparisons were complete, it was apparent the rainfall event that occurred 
on 08/18/16 was a larger event than the 63 mm event run in the initial GSSHA model. 
However, Kedougou rainfall data for the date of the SAR imagery were unavailable. 

Thus, another GSSHA model was run, all parameters the same, except for precipitation. 
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The precipitation for this second event was 100 mm. This was done to verify if the 
GSSHA flood output would coincide with the full extent of the radar-derived flood event. 
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5 Results 

 The Gambia River generally flows north, until reaching KG-même where it turns 
NE. The watershed at the Kedougou outlet has an area of 2,488 km2. Approximately 72% 
of the watershed exists on the Guinean side of the border, identified by the steep drop in 

elevation. Figure 7 displays DEMs of the watershed and KG-même. Maximum elevation 
is found in the Fouta Djallon Plateau at ~1,530 m amsl. Multiple elevations were found in 

KG-même, ranging from ~100-140 m amsl. The elevation of the Gambia River drops 90 
m over a 90 km distance. Figure 8 displays the stream gradient. 

 

Figure 7. Elevations found in the Gambia River watershed. KG-même is shown in the 
inset. Adapted from ASTER DEM satellite imagery found on the EarthExplorer database 
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Figure 8. Elevation profile of the Gambia River. 

 Although most of the watershed exists in Guinea, soil data from the SOTER 

database was only available for Senegal. During the GSSHA process, dominant soils 
nearest to the Fouta Djallon plateau were extrapolated to grid cells south of the Kedougou 

border. In Kedougou, most of the soils were sandy loam (85.8%), followed by sandy clay 
loam (9.23%) which occur along the banks of the Gambia River. Silty loam (3.91%) and 
clay loam (1.08%) are also present in the area (Fig 9). Soils in the Guinea region were 

assumed as sandy loam, except for sandy clay loam near the river. Several hydrological 
parameters, such as hydraulic conductivity, were unavailable in the dataset. The Soil 

Water Characteristics program determined this and other parameters for each soil type. 
These values were utilized for the initial model run. Once calibration was complete, 
saturated K was adjusted to the values found in table 1. 

 

Table 1. Hydraulic parameters for the watershed soils. 

 
Saturated Hydraulic 

Conductivity 

(cm/hr) 

Wilting Point 

(% Vol) 

Field Capacity 

(% Vol) 

Bulk density 
(kg/cubic meter) 

Sandy Loam 2.17 17.1 31.6 1114 

Silty Loam 2.23 11.7 30.7 1165 

Sandy Clay Loam 1.41 16.7 30.3 1248 

Clay Loam 0.83 22.2 36.9 1168 
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Figure 9. SOTER soil types in Kedougou. Adapted from ASTER DEM satellite imagery 
and SOTER data products. 
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Figure 10 displays LULC change in the entire watershed between 1992 and 2015. 
The most significant land use changes occurred in the transition of shrub lands to open 

deciduous forest. Shrub lands are dominated by shrubs, grass and woody vegetation that 
is mainly used for grazing. These lands are preferred and essential to Pulaar cow animal 

herders, as the low-lying bushes provide nourishment for their livestock. Shrub land 
decreased from 29.29% of the watershed to 25.17% in 2015. Conversely, open deciduous 
forest increased from 60.15% to 66.31% between these two years. Other land covers 

changed by <2%. 
According to local residents, 20 years ago, KG-même was a village that consisted 

of several huts and forests interspersed with agricultural land. Figure 11 supports this 
information as it shows KG-même was completely forested in 1992. By 2015, land cover 
in KG-même was identified as urban area. Population growth and migration to KG-même 

resulted in new infrastructure, allowing it to be identified as a 2.75 km2 urban area in 

2015, as shown in Figure 11.
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       Figure 10. Figure Land cover in the Gambia River watershed between 1992 and 2015. Data accessed from ESA CCI-LC viewer. 
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      Figure 11. Land cover near KG-même between 1992 and 2015. Data accessed from ESA CCI-LC viewer.
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 Once the IMERG data products were analyzed, rainfall distribution over time was 
graphed and averaged for each of the 10 grid cells in the dataset (Figure 12). The result 

was a 10-hour storm event that occurred on 08/28/2014. Using these values, a design 
storm hyetograph was developed. It described the ratio of rain intensity per hour to the 

cumulative rainfall (Fig 13). The peak rainfall occurred approximately four hours after 
the storm event began. Storms of varying intensities and durations occur in Senegal and 
are difficult to discern due to the one rain gauge in the watershed. While the rain gauge 

provided daily rainfall data in order to establish total rainfall for an event, the hyetograph 
provided information on storm duration and distribution over time. 

 

Figure 12. IMERG hourly storm distribution for Kedougou. Precipitation amounts for 10 
grid cells overlaying the entire watershed were calculated for every hour of the storm. 
Average amounts of rainfall per hour were calculated and distributed over time as a 

fraction of total rainfall. 
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Figure 13. Kedougou design storm hyetograph displaying rainfall distribution over time 
 

GSSHA provided hydrograph data from the outlet point. For each of the 
simulations, Gambia River discharge was displayed from the beginning of the storm to 60 

hours post-event initiation. The Nash-Sutcliffe efficiency statistic was used to assess the 
accuracy of the GSSHA model. ‘It is a normalized statistic that determines the relative 
magnitude of the residual variance (“noise”) compared to the measured data variance 

(“information”)” (Nash and Sutcliffe, 1970). It is computed as shown in Equation 1. NSE 
ranges between −∞ and 1.0, 1.0 being the optimal value (Moriasi et al., 2007). “Values 

between 0.0 and 1.0 are generally viewed as acceptable levels of performance, whereas 
values less than 0.0 indicates that the mean observed value is a better predictor than the 
simulated value, which indicates unacceptable performance” (Moriasi et al., 2007). 

 

NSE = 1-[
∑ (𝑌𝑖

𝑜𝑏𝑠−𝑌𝑖
𝑠𝑖𝑚)

2
𝑛
𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠−𝑌𝑚𝑒𝑎𝑛)

2𝑛
𝑖=1

] 

 
Figure 14 compares the simulated and observed discharge at the Kedougou 

gauging station. As stated earlier, the outlet point at the gauging station was used for 
calibration only. The watershed did not encompass KG-même at this point. The NSE for 
the 1992 and 2015 simulations were determined to be -0.533 and -0.449, respectively. 

For a 63 mm event, simulated discharge reached a peak of 424 m3/s in 1992, whereas a 
peak of 416 m3/s was determined for 2015. These values were approximate to the 
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observed peak of 427 m3/s, although there was a pronounced lag time in the simulated 
data. 

 

 
Figure 14. Hydrograph at Kedougou gauging station. The two peaks found in the 

observed data are not observed in the model simulation. Both simulations were 
relatively close to observed peak discharge. 

 

The outlet point was moved 10-km downstream after calibration, and the 
hydrograph comparisons are shown in Figure 15. The NSE between the 1992 land cover 

and observed discharge was 0.103, whereas the 2015 and 2050 land covers had an NSE 
of 0.026 and -0.003. Increased urban land cover in the 2050 scenario may have affected 
the NSE value as urban area increased 1.5x its original size. Once the outlet point was 

moved downstream, the GSSHA model reached acceptable levels of performance for 
historic and present land use situations, according to the NSE (0.0-1.0). The simulated 

hydrographs follow the trend of the observed discharge, where multiple peaks and dips 
occur. However, only the 1992 land cover reached and even exceeded observed peak 
discharge at 432 m3/s. 
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Figure 15. Hydrograph of  KG-même downstream outlet. After moving the outlet 
downstream, there was more variation in the hydrographs. Though, only the 1992 event 

reach observed peak discharge, each hydrograph maintained similar undulation. 
 

Figure 16 displays the spatial extent and depth of inundation in the Gambia River 
watershed in 1992. These figures do not show floods occurring at the same time. They 
display maximum flood depth in each grid cell for any given point in time. Multiple 

tributaries of the river show flooding; however, along the main stretch of the Gambia 
river, flooding occurs near and just upstream of Kedougou. In 1992, before urbanization, 

maximum flood depth reached 4.29 m.  
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Figure 16. Kedougou inundation extent and depth (1992). These are the GSSHA results from a 63 mm rain event. It is evident 

that many of the tributaries for the Gambia River flood.  
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Figure 17 shows inundation during the 2015 land cover scenario. When compared to 1992, flooding and maximum flood depth 
were less severe. The year 2015 experienced a maximum overland depth of 4.16 m.  

 

 

Figure 17. Inundation extent and depth (2015). Same 63 mm event, but flooding and max depth are less intense in the 2015 

and 2050 scenarios. 
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Changes from forest or agricultural land to urban area were projected to 2050, at the same rate between 1992 and 2015. A 23-
year gap existed between 1992 and 2015, so urban area was increased 150% because of the 35-year gap between 2015 and 2050. 

Figure 18 shows the 2050 land cover scenario maintained nearly identical flood distribution and depth patterns as 2015. Maximum 
depth also reached 4.16 m. 

 

 

Figure 18. Inundation extent and depth (2050) . Similar to 2015 values.
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Figure 19 shows villages upstream of KG-même that would be affected by 
flooding. Some of these villages are significant due to larger village populations and 

important health outposts, such as Itato to the southwest and Fadiga to the west of KG-
même. Inundation in 1992 was more extensive and deeper than 2015 and 2050. 

 
   Figure 19. Upstream villages affected by inundation 
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After simulating the watershed, the GSSHA model was validated against SAR 
imagery from the Sentinel-1 Satellite. This mission maintains a 12 day repeat cycle 

causing pre and post flood images to be limited. Fortunately, the satellite observed a 
flooding event on 08/18/16 and was compared to an image on 08/06/16 shown in Fig. 20. 

Psomiadis (2016) explained, “The Sentinel-1 SAR data product utilizes the sensitivity of 
the backscatter signal to open water. Through radar intensity imagery, in the absence of 
wind, the specular reflection of C-band signals over open water means that the signal is 

significantly lower than average.” The Sentinel-1 mission cannot determine depth of 
flooding as it does extent. So, there is significant importance for these detailed hydrologic 

models. Figure 21 is the same flooded image, but displays waterbodies and inundation in 
red. 

 
Figure 20. 20 m resolution SAR based imagery of KG-même before and after a flood 

that occurred between 08/06/18 (left) and 08/18/18 (right). 
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Figure 21. Flooding of the Gambia River and other waterbodies shown in red. 
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Since the 1992 land cover scenario displayed more flooding, it was compared to the SAR-based inundation, as seen in the left 
image. Analysis showed that much of the simulated flood output correlated with observed data. However, the storm on 08/18/16 had 

more flooding downstream than the simulated 63-mm rainfall event. A 100-mm storm event using 1992 was run in GSSHA to assess 
flooding downstream of KG-même and is shown on the right.  

 

 
Figure 22. GSSHA output compared to observed flooding. The image on the left shows flooding from a 63-mm event in a 1992 land 
use scenario. The image on the right is from a 100 mm rain event , also during 1992. The yellow and green colors represent GSSHA 

simulated flood extent (>1 m). Outlet shown in light blue. Further studies should downscale the SAR imagery to better align with 
GSSHA output.
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In addition, the hydrograph for the 100 mm storm event showed opposite results 
from the less intense storm. The higher intensity, same duration storm caused a ~200 m3/s 

increase in peak discharge after urbanization. Peak discharge in 1992 was 1,086 m3/s, and 
was 1,263 in 2015. This was further validated as the 2050 land cover scenario also 

exceeded 1992 peak discharge. However, it was insignificantly different from the 2015 
land cover scenario, so it was not included in Figure 23. 

 
Figure 23. GSSHA verification simulations displayed that urbanization may increase 

runoff when there is a larger storm, ~100 mm of precipitation.  
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6 Discussion 

 Urbanization within this watershed has only occurred in KG-même. According to 
the land cover data, between 1992 and 2015, the urban area in KG-même grew to 2.75 
km2, still <1% of the 2,488 km2 watershed. Over 70% of the watershed is in the Fouta 

Djallon plateau. This heavily forested plateau contains sparsely located villages and has 
actually experienced an increase in foliage between 1992 and 2015. Literature review and 

precipitation trends indicate that a drought occurred in West Africa during the 1980s. 
According to Diop et al. (2015), there have been three major sequences of rainfall 
occurrence at the Kedougou gauging station:  

 
1. “1921-1968: overall surplus phase where annual totals are above average. The 

deficit years during this period correspond to the drought of the years 1941-1944 
with deficits of the order of 10%. 

2. 1968-1990: a very sharp decline in rainfall inputs culminated in 1983, a year with 

a deficit of 25%. Very few years in this sequence reach the inter-annual average 
of 1921-1968. 

3. 1990-2014: a gradual increase in rainfall despite the 2002 deficit” 
 

On average, between 1921 and 2014, the Gambia River basin received 1160-1540 

mm of rainfall. During the period from 1921 to 1967, it varied from 1650 mm to 1200 
mm. Between 1968 and 2014, it fluctuated between 1450 mm and 1100 mm. Over the 

last fifteen years, the increase in rainfall remains very low in the basin (Diop et al., 2015). 
The decrease in rainfall during 1968-1990 influenced vegetation patterns for the 

1992 land cover. Shrub land was 4.12% higher in 1992 than 2015. The reduction in 

rainfall caused forests to diminish and allowed the growth of shrubs and other drought-
resistant vegetation (Hanke et al., 2016). A higher percentage of shrubland may have 
resulted in increased river discharge and flood extent and depth. Figures 15-19 show that 

both peak discharge and maximum flood depth are larger in 1992 than 2015.  
Considering most of the watershed is in Guinea, LULC change would have to 

occur in the Fouta Djallon plateau to see a significant change in streamflow and 
inundation. Climate change can influence land cover patterns by both removing or 
preserving certain flora. Based on the model, it was evident that the drought that occurred 

before 1992 killed forest cover, but encouraged the growth of drought-resistant shrubs. 
The model showed that climate change influences land cover and increases runoff, 

evident during lower intensity storms.  
These results are comparable to previous studies that determined a phenomenon 

known as the “Sahelian paradox.” West Africa is differentiated by climate zones based on 

precipitation rates (Fig 21). “Average precipitation for the Guinean domain falls between 
1400-2700 mm, the Sudanian zone ranges from 950-1400 mm, and the Sahelian zone 

receives 450-1050 mm” (Ogungbenro and Morakinyo, 2014). “During the second half of 
the 20th century, the Sahel underwent a severe rainfall deficit, considered as the largest 
multi-decadal drought of the last century (Hulme et al., 2001; Nicholson et al., 1998), 
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with extreme droughts in 1972–1973 and again in 1983–1984 that strongly impacted 
ecosystems, water availability, fodder resources and populations living in these areas” 

(Nicholson, 2005). According to Gal et al. (2017), “responses induced by this deficit 
result in contrasted effects depending on the eco-climatic zone considered.” “If the 

Sudano-Guinean zone displayed an expected decrease of surface runoff following the 
drought, the opposite situation was observed in the Sahelian zone” (Descroix et al., 2009; 
Séguis et al., 2002, 2011). However, the Gambia River watershed is located in the 

Sudano-Guinean climate zone. The comparisons between the 1992 and 2015 land cover 
scenarios may support the notion that the Sahelian paradox was not limited to the Sahel. 

The lack of rainfall during these droughts affected the forest cover of Kedougou, 
resulting in increased runoff and streamflow during 1992 as opposed to 2015 (low 
intensity storms). 

 

 
 

Figure 24. Climate zones in West Africa. Each are differentiated by annual 
precipitation amounts, increasing further south. Accessed from the USGS website 

 

 Bodian et al. (2018), investigated the effects of climate change on the streamflow 
of the Gambia River basin. At the 2050 horizon, the authors determined that streamflow 

in the Gambia River basin would decrease 22 to 26%. Based on the GR4J hydrologic 
model used by the authors, a combination of temperature increase and annual rainfall 
decrease resulted in significant streamflow reduction. However, “GR4J does not consider 

the dynamics of land use in simulating discharge and the future impacts LULC change 
can have on runoff” (Bodian et al., 2018). Based on precipitation trends from the mid-

1980s to early 1990s (Fig. 6), decreased rainfall and drought have the capacity to alter 
land cover in a way that actually increases streamflow and downstream flooding. Climate 
change results in higher temperatures and lower rainfall, therefore average annual 

streamflow may be lower than previous years. However, climate change may alter land 
cover thereby reducing evapotranspiration and increasing streamflow and flooding during 

heavy precipitation events. While the annual average precipitation may decrease, climate 
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change induces more frequent extreme rainfall events which may increase food insecurity 
and shelter needs. 

 Contrarily, model testing showed that, during extreme precipitation events (~100 
mm), streamflow increased by approximately 20% in 2015. Flooding was extensive and 

continued downstream, in correlation with SAR data. The only parameter adjusted was 
rainfall amount; the output displayed an opposing situation to the first model run. Based 
on these results, it can be inferred that urbanization during large rainfall events does 

affect local hydrology by increasing surface runoff, discharge, and inundation. 
 

GSSHA 
 The pre-calibrated GSSHA model proved to be inaccurate due to NSE values of  
-0.533 (1992) and -0.449 (2015). However, once calibrated, NSE values proved that the 

simulation was sufficient with values of 0.103 (1992) and 0.026 (2015). Due to lack of 
data, estimation of precipitation trends were difficult. In the ~2,500 km2 watershed, the 

only reliable rain gauge with extensive data was found at the Kedougou airport. 
Additionally, only daily precipitation values were available. Stream gauge data were just 
as insufficient in terms of availability and temporal resolution. In order to properly 

calibrate the model, corresponding precipitation and discharge data were necessary. This 
data was only sufficient enough starting from the early 1990s to 2003. Using the IMERG 

data allowed the construction of a design storm hyetograph on a sub-hourly time scale. 
This precipitation method proved to provide the most accurate results, as the rain gauge 
method was limited due to the existence of one rain gauge in the watershed. Using the 

IMERG data, rain gauges were placed at the center of each cell; however, the distance 
between rain gauges and lack of upstream rainfall data did not provide accurate results. In 

addition, the uniform rainfall distribution method was inaccurate as there were difficulties 
and inaccuracies in determining how to distribute a daily rainfall amount over time. 
Calibration was possible due to the IMERG designed hyetograph and hourly Q values 

from the Kedougou stream gauge. 
 Calibrated parameters displayed some interesting results. All calibrated numbers 

were within the recommended minimum and maximum values for land cover, saturated 
hydraulic conductivity, and initial moisture content. Surface roughness values for land 
cover were similar to the associated values found in literature. In stark contrast, saturated 

hydraulic conductivity for soil types were vastly different from the Soil Water 
Characteristics estimated K. Sandy loam, 85% of the soil found in Kedougou, obtained 

calibrated values of 0.048 cm/hr. This corresponds to conductivity values found in clay 
soils. This anomaly may have been due to the existence of laterite in the area, especially 
in the Guinean parts of the watershed. “Bowé — laterite-capped plateaus that characterize 

much of Guinea’s landscapes — accounts for 13% of Guinea’s land surface” (USGS, 
2019). Soil moisture content was also determined through calibration. Manual 

adjustments were completed for improved accuracy. 
Manning’s roughness coefficient for land cover was both automatically and 

manually calibrated for higher accuracy. Each of these values was within the acceptable 

ranges of surface roughness found in Appendix B. Therefore, the largest sources of error 
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in this model may be due to rainfall distribution and saturated hydraulic conductivity. If 
rain gauges were more available and maintained in the mountains of Guinea and smaller 

villages in the area, this would improve model accuracy. Hydraulic conductivity was low, 
therefore decreasing infiltration rates and increasing runoff. The clay-like K values for 

sandy loam may have been due to the existence of laterite in the area or initial soil 
moisture content. August is the peak of rainy season in Kedougou, and it can be assumed 
that soils are thoroughly saturated before event occurrence. Calibrated soil moisture 

content was found to be ~45% of the total porosity in sandy loam. These errors may have 
increased runoff rates, while decreasing real world infiltration amounts. 

 

 
Figure 25. Nearly impermeable lateritic soils found Kedougou. These can 
be found extensively throughout Kedougou. 
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Recommendations and Future Work 
 GSSHA can model single-storm events well. Although it is also capable of long-

term simulations using multiple storm events, climactic data such as evapotranspiration 
rates, solar radiation, and humidity were unavailable for the study area. Future work may 

include simulating multiple rainfall events because of Senegal’s convective storm 
systems that can unexpectedly influence discharge. During the calibration of the GSSHA 
model, NSE values were negative, as seen in Figure 14. Two rain events may have 

occurred, resulting in the two visible peaks found in the calibration run. 
 Precipitation was the most important and difficult aspect to incorporate into the 

model because of quality and availability. Additionally, rainfall distribution is both 
spatially and temporally sensitive. Applying a uniform spatial distribution for rain in a 
~2,500 km2 has limitations in Senegal. Convective storm systems (high intensity, short 

duration) are common in Kedougou. This causes rainfall to be localized in some areas, 
which may result in hydrological inaccuracies. The flooding observed using SAR seems 

to have been caused by upstream storms as precipitation measured by the Kedougou rain 
gauge was 0 mm two days before and including 08/18/18, according to Weather 
Underground (Weather Underground, 2019). The GSSHA model could be enhanced if 

Senegal and Guinea worked together to maintain a relatively dense network of stream 
gauges in the Gambia River watershed. The temporal distribution of rain also had 

limitations as storms do not always last 10 hours. Storms at the same intensity, but 
shorter time period may better display the runoff and streamflow impact of urbanization. 

Limited data and time periods enhanced difficulty for model development and 

processes. Rainfall distribution over time was created utilizing satellite imagery from 
2014, daily rainfall and discharge values for calibration and single storm simulation were 

obtained for an event in 2001. Land cover for 1992 and 2015 were chosen to obtain the 
largest difference between land cover transition. Although several difficulties and 
limitations occurred during the GSSHA modeling process, the model worked well 

enough to slightly overpredict flood extent. However, this is a result of the grid resolution 
versus SAR resolution. SAR-based imagery maintains a 20 m resolution, but the GSSHA 

model employed a 300 m resolution in which if flooding occurs in a small part of a grid 
cell, the entire grid cell will be flooded.  

This research could be further improved if climate change were incorporated into 

single storm events. Scenarios could be developed combining precipitation rates, 
temperature increases, and vegetation data to predict vegetation reaction to specific 

climate changes. Additionally, this type of model could be used for urban planning, 
farmer assistance, and even health organizations. One of the biggest issues in Kedougou 
is malaria. Many non-governmental organizations work with the Kedougou community 

to lower the incidences of malaria related illnesses/deaths. Although computational time 
and demand would increase, a smaller grid size (<50 m), would provide highly specific 

data identifying more areas that flood as a result of the Gambia River, other streams in 
the river network, and direct precipitation.  

The presented research is a solid foundation for applying GSSHA to data scarce 

regions. Much of the data obtained was globally available and easily accessed. My hope 
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is that this research can provide the foundation to study ungauged, under resourced and 
unknown locations to better mitigate flood hazards and promote sustainability and 

resiliency. Also, the GSSHA model can be used in an interdisciplinary manner to assist 
different organizations and stakeholders. Through this integration of different disciplines, 

the most prevalent issues facing the community can be better handled and mitigated. 
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7 Conclusion 

Land cover between 1992 and 2015 in Kedougou did not change as expected. 
Initially, it was believed that shrubland would increase over time as global climate 
change has continually been exacerbated. However, compared to the drought of the 

1980s, forest cover has increased. Between 1992 and 2015, forests increased by 6%, 
whereas drought-resistant shrubland decreased by 4%. Based on land cover imagery, 

all of KG-même was forested in 1992. In the 23 years between land cover scenarios, 
urban area increased from nonexistent to 2.75 km2. This change was significant 
enough to be detected by ESA satellite imagery.  

GSSHA performed well for a hydrologic model considering limited data. The 
lower intensity flood event exhibited higher streamflow during the 1992 land cover 

scenario than 2015 and 2050. Much like the Sahel to the north, this “Sahelian 
paradox” was surprising. However, after analyzing and testing the data, it was 
apparent that pre-existing drought conditions influenced certain flora to die or thrive. 

The higher proportion of shrubland caused more surface runoff during the rain 
events. 

Conversely, it is apparent that the IMERG-design storm hyetograph was a good 
solution to rainfall distribution over time. The validation process showed overlap 
between the simulated flooding results and observed SAR flood extent. A higher 

precipitation event was simulated to determine if flooding extent reached the 
downstream boundaries found in the SAR data. Through this process, it was 

determined that the 2015 land cover scenario simulated a larger Q than 1992. 
Rainfall amount was the only variable adjusted, but results were contrary to the first 
model run. However, projecting urban area increase between 2015 and 2050 did not 

have a significant effect on runoff or inundation for either storm event. 
The GSSHA model performed accurately enough to determine how extreme 

precipitation events have affected and could affect Kedougou. Based on the 63 mm 

and 100 mm simulated storm events and 2050 land cover scenario, if urbanization in 
KG-même continues north or east of the town, it will not have a significant effect on 

discharge. However, if climate change affects flora in Guinea or more land use 
change occurs upstream (south) of KG-même, hydrologic analyses can be resumed 
with this model. 
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Appendix A. Processes and approximation techniques in 

GSSHA model 
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Appendix B. Overland Manning roughness coefficients 

(Downer and Ogden, 2006) 
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Appendix C. Rawls and Brakensiek Soil Parameter Estimates 

(Downer and Ogden, 2006) 
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Appendix D. Calibrated Land Cover and Soil Parameters 

 

 

 

 

 

 

 

 

 

Land Cover Manning's N

Agriculture 0.126

Mosaic vegetation (20-

50% agriculture) 0.140

Semi-decidous forest 0.119

Closed decidous forest 0.148

Open decidous forest 0.200

Mosaic rangeland (50-

70%) 0.050

Closed forest, reg. flooded 0.258

Urban 0.010

Sandy Loam Sandy Clay Loam Silty Loam Clay Loam

Hydraulic Conductivity 

(cm/hr) 0.048 0.05 0.0497 1

Capillary Head (cm) 11.01 21.85 16.68 20.88

Porosity (cm/cm) 0.453 0.398 0.501 0.464

Pore Index (m^3/m^3) 0.378 0.319 0.234 0.242

Residual Saturation 

(m^3/m^3) 0.579 0.529 0.56 0.559

Field Capacity (m^3/m^3) 0.316 0.303 0.307 0.369

Wilting Point (m^3/m^3) 0.171 0.167 0.117 0.222
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