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 Abstract 
Varied intracellular pH levels are critical for various physiological processes such as 

enzymatic activity, cell proliferation and apoptosis, ion transport, and muscle 

contraction. Cellular compartments, like lysosomes, must retain an acidic 

environment (pH ~ 4.5) to activate hydrolytic enzymes necessary for the breakdown 

of large biomolecules. Another cellular organelle, the mitochondria, provides the cell 

with energy and must retain an alkalis environment (pH ~ 8.0) for proper function. 

Substantial lysosomal and mitochondrial pH deviation is associated with cellular 

dysfunction and disease. Therefore, the precise detection of lysosomal and mitochondrial 

pH is essential to provide a better understanding of cellular physiological and 

pathological processes.  Due to their superior features, such as cheap and simple 

operation, high spatial and temporal resolution, and noninvasive fluorescence 

imaging, fluorescent probes are the ideal methodology to visualize and monitor 

lysosomal and mitochondrial pH variation.  

We have developed three morpholine-functionalized BODIPY-based fluorescent 

probes that can be used to monitor lysosomal pH. The fluorescent probes are highly 

fluorescent under basic conditions, but when exposed to an acidic environment the 

fluorescence is quenched via an electron donor photoinduced energy transfer. 

Moreover, we have developed and synthesized a series of sterically hindered 

fluorescent probes based on spirolactam ring modifications. These modifications 

were developed by introducing 2-aminophenylboronic acid pinacol ester to 



xv 

rhodamine B, a near-infrared rhodamine dye, and a near-infrared hemicyanine dye. 

The probes display high fluorescence under acidic conditions, but exhibit weak 

fluorescence under basic conditions due to the significant steric hindrance in the 

spirolactam ring. Since the probes were functional in an acidic environment, they 

were successfully applied for the sensing of lysosomal pH variations in living cells. 

We have also developed a NIR fluorescent probe to determine mitochondrial pH 

variations by incorporating an oxazolidine switch onto a near-infrared hemicyanine.  

The probe has the ability to rapidly switch from an oxazolidine moiety to a 

hemicyanine group when the pH level decreases from 10.0 to 5.0. This response to 

pH changes is reversible and has been successfully used to determine pH levels in 

mitochondria.  
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1 Introduction 

1.1 Fluorescence spectroscopy 

Chemical probes play essential roles in the investigation of biochemical processes, 

diagnosis of diseases, and the detection of hazardous compounds. In the last two decades, 

fluorescence spectroscopy, fluorescence imaging, and fluorescence indicators have 

become key tools in various disciplines of modern science and medicine. Some of these 

disciplines include molecular biology, clinical diagnostics, biochemistry, analytical and 

environmental chemistry, material science, and biotechnology. The implementation of 

chemical probes in scientific fields is due to the high sensitivity and simplicity of the 

operations of fluorescence1. 

 Basic definitions of fluorescence spectroscopy 

Fluorescence is a type of luminescence that emits photons from the singlet-excited state to 

the ground electronic state after absorbing light. In fluorescence, the spin multiplicity of 

the electron in the electronic excited state retains its diamagnetic properties to the electron 

in the ground state. Therefore, the lifetime of the excited state is relatively short (< 10-5 S).  

Phosphorescence, another type of luminescence, emits light as the electron returns to the 

ground state from the triplet-excited state. Phosphorescence mainly differs from 

fluorescence in the spin multiplicity of the electron in the triplet-excited state, which is 

paramagnetic to the electron in the ground state. Thus, a change in electron spin is required 

as the electrons return to the ground state resulting in a longer lifetime (milliseconds to 

seconds)2-4. 
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 The history of fluorescence spectroscopy 

In 1565 Nicolás Monardes, a Spanish physician and botanist, was the first to report the 

phenomenon of fluorescence. Monrades described a bluish glimmer of water infused from 

the wood of a small Mexican tree.  The wood was later named Lignum Nephriticum by 

botanist Charles de L’Écluse and was used in Europe as medicine for treating kidney 

ailment2, 5-6  

In 1845, Sir John Frederick William Herschel exposed a solution of quinine sulfate to 

sunlight and observed the emission of blue light.  In 1852 Sir George Gabriel Stokes, who 

had major contributions in the history of photoluminescence, named the phenomena of 

light emission as “fluorescence”. He also discovered “Stokes Shift”, which states that the 

wavelengths of emitted light are always longer than the wavelengths of absorbed light2, 6-

10. 

Professor Alexander Jablonski, the father of fluorescence spectroscopy, illustrated and 

described various molecular processes that can occur in the excited state between the 

absorption and emission of light through a diagram, namely the Jablonski Diagram (Figure 

1.1) 4. All of these contributions aided in the development of the most essential part of 

fluorescence sensing technology: the fluorophore. 
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Figure 1.1. The Jablonski diagram in which an electron is promoted to an excited state 

by the absorption of light, and emits radiation as it returns to the ground state.  

1.2 Organic fluorophores for fluorescent sensing and labeling 

 Background  

A fluorophore, also known as a fluorochrome or fluorescent probe, is the most essential 

component of fluorescence sensing technology. It is a molecule that absorbs a photon at a 

specific wavelength and re-emits the photon at a different wavelength11-12. Fluorophores 

are typically aromatic, planar or cyclic molecules with multiple π- bonds that are capable 

of converting chemical process, such as binding, reactions, and/or conformational changes, 

to detectable fluorescence signals. Fluorophores are divided into two main categories: 

intrinsic and extrinsic. Intrinsic biochemical fluorophores are those that can be found 
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naturally such as aromatic amino acids, NADH, flavins, derivatives of pyridoxyl, and 

chlorophyll. Extrinsic chemical fluorophores are moieties that are attached either by 

covalent or non-covalent linkages to the sample. This attachment provides fluorescence to 

non-fluorescent samples or changes the spectral properties of the sample. Extrinsic 

fluorophores include fluorescein, rhodamine, dansyl, DNA probes, and numerous other 

substances13. Since there is a limitation of diversely applicable intrinsic fluorophores, the 

need to develop and design extrinsic fluorophores for specific applications or targeted 

analytes is growing dramatically. 

 The structure of fluorescent probes 

Generally, the structure of a synthetic fluorescent probe consists of a fluorophore, a linker 

or spacer, and a recognition site that is also called a chelator, receptor, ligand, or binding 

site (Figure 1.2). The fluorophore is a signaling subunit that transforms the recognition 

events between the analyte and the binding site into a visible fluorescent or electrochemical 

readout. The linker or spacer is the moiety that links the fluorophore and the binding site. 

The length of the linker or spacer is highly dependent on the fluorescence modulation14-16. 

 

Figure 1.2. A schematic illustration of a typical fluorescent probe.  
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 Parameters for fluorescent probes 

There are several parameters that describe the characteristics of fluorescent probes. Those 

include absorption maxima (λabs), emission maxima (λem), Stokes shift, quantum yield (Φ), 

molar extinction coefficient (𝓔𝓔), brightness, and lifetime (𝜏𝜏). The definition for each term 

is described below.  

Absorption and emission maxima are the maximum absorption and emission wavelength 

of the fluorescent probe respectively.  

Stokes shift: is the difference between the maximum absorption (λabs) and maximum 

emission (λem) of the chromophores (Figure 1.3). Fluorescent probes that possess a large 

Stokes shift are preferable than those with a small Stokes shift. This is because the probes 

that contain a small Stokes shift are prone to self-quenching via energy transfer9.   
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Figure 1.3. An illustration of Stokes shift. 

The fluorescence quantum yield (Φ): is a measure for the efficiency of the fluorescent 

probe. It is determined by the ratio between the number of fluorescence photons emitted 

and the number of photons absorbed. 

𝝓𝝓𝒇𝒇 = 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 𝒐𝒐𝒐𝒐 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆
𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 𝑜𝑜𝑜𝑜 𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

              Eq. 1.2.3.1 

The molar extinction coefficient (𝓔𝓔): is a measurement of the light absorbing capacity of 

the fluorescent probe. Fluorescent probes with high molar extinction coefficients are 

considered efficient absorbers.  

Brightness: the brightness of the fluorophore is an important criterion for fluorescent 

imaging applications. It is proportional to the product of the extinction coefficient and 

quantum yield. 
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𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 ∝ 𝑛𝑛𝑛𝑛ℰ                          Eq. 1.2.3.2 

The lifetime (𝝉𝝉): is the average time a molecule spends in its excited state before it returns 

to the ground state through the emission of a photon. 

1.3 Fluorescence mechanisms and modulation 

The changes in fluorescence intensity and/or emission wavelength for fluorescent probes 

result from the interaction between the recognition site and the target analyte. There are 

many photophysical processes that can be involved when recognition of the analyte by the 

binding site occurs. These processes include quenching via collision, photoinduced 

electron transfer, energy transfer, etc. Therefore, it is very important to carefully design a 

fluorophore with a controlling fluorescence mechanism, e.g. a fluorescent switch on/off 

the property. This mechanism can respond to the presence of a certain analyte by changes 

in the analyte concentration and/or pH. The frontier molecular orbitals theory is utilized to 

explain these mechanisms. In the following section, the most commonly used mechanisms 

in the designing of fluorescent sensors will be briefly discussed. 

 Photoinduced electron transfer (PET) 

The PET mechanism is a process in which an electron is transferred between a fluorophore 

and a receptor. Many fluorescent probes based on the PET mechanism have been reported 

17-18. PET-based probes consist of a fluorophore that is linked to a chelator through a spacer. 

The chelator acts as a receptor, binding site, or recognition site. The spacer is a short 

aliphatic chain that causes an interruption in the π-electron system of the fluorescent probe 
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and the chelator. Activation of this mechanism is dependent on the presence and/or 

concentration of an analyte. When the analyte is absent, the electron is freely transferred 

between the fluorophore and chelator, causing the fluorescence to be quenched. However, 

in the presence of an analyte, the transfer of the electron from the fluorophore to the 

chelator is prohibited, causing the fluorescence of the sample to recover. 

PET can be divided into two types: reductive PET and oxidized PET. In reductive PET, 

also known as A-PET, the fluorophore is reduced and serves as the electron acceptor. Since 

the chelator is an electron-rich moiety, e.g. amine groups, it acts as the electron donor. In 

these sensors, the absence of an analyte will cause the highest occupied molecular orbital 

(HOMO) of the electron acceptor (fluorophore) to be lower than the HOMO of the electron 

donor (chelator). Photo-excitation of the fluorophore results in the promotion of an electron 

from the HOMO to its lowest unoccupied molecular orbital (LUMO). Subsequently, an 

electron on the HOMO of the chelator is transferred to the HOMO of the fluorophore 

resulting in the quenching of fluorescence (Figure 1.4). Therefore, the electron of the 

fluorophore is reduced, and the chelator is oxidized. When the analyte is bound to the 

chelator, the electron density of the chelator is significantly reduced. This reduction lowers 

its HOMO and prohibits the electron transfer to the fluorophore. This results in the electron 

on the LUMO of the fluorophore to be transferred to its HOMO, causing the fluorescence 

to be enhanced or switched “on”1, 19.  
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Figure 1.4 A schematic illustration of the reductive-PET mechanism based fluorescent 

probes. 

In oxidative PET, also called D-PET, the fluorophore serves as the electron donor and the 

chelator is the electron acceptor. In the absence of an analyte, the LUMO of the fluorophore 

is higher than that of the chelator. Consequently, the electron is transferred from the LUMO 

of the fluorophore to the chelator, resulting in the quenching of fluorescence. Once the 

analyte is bound to the chelator, the LUMO of the chelator is high enough to recover the 

fluorescence1 (Figure 1.5). Only a few fluorescent sensors based on oxidative-PET have 

been reported 20-22. 
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Figure 1.5 Schematic illustration of the oxidized-PET mechanism based fluorescent 

probes.  

 Intramolecular charge transfer (ICT) 

Sensors that contain ICT properties are designed to have electron-donating groups (e.D) π-

conjugated to electron-withdrawing groups (e.A) in the fluorophore “e.D-π-e.A”23 (Figure 

1.6). Upon photo-excitation, the ICT between the donor and acceptor moieties is activated, 

which results in a considerable increase in the dipole moment1, 24. The binding of the target 

analyte, either to the donor or acceptor moiety, will disrupt the ICT in the system. Thus, 

the e.D/e.A group is either enhanced or suppressed. The interaction of the target analyte 

with the e.D moiety will reduce the electron-donating ability of the donor. The suppression 
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of this ability will cause a blue shift in the absorption, accompanied with a decrease of the 

extinction coefficient and emission. In addition, the energy gap between the HOMO and 

LUMO of the fluorophore will be increased (Figure 1.6). Conversely, the binding of the 

analyte with the e.A. will enhance the electron-withdrawing character of the acceptor, 

resulting in a red shift in emission and absorption with an increase in the extinction 

coefficient. This will further result in a decrease in the energy gap between the HOMO and 

LUMO of the fluorescent probe25-26 (Figure 1.6). 

 

Figure 1.6 Schematic illustration of ICT mechanism based fluorescent probes. 

The main distinction between PET and ICT fluorescent probes is the difference in 

fluorescence response after the analyte interacts with the receptor. The PET sensors will 
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either quench or enhance the fluorescence signal without any spectral shifts in the presence 

or absence of the analyte. This phenomenon gives rise to the terms ‘on-off’ and ‘off-on’. 

Conversely, fluorescent probes based on the ICT mechanism display clear fluorescence 

and absorption band shifts upon analyte recognition. This property allows for the detection 

of any change at two different wavelengths, which is a ratiometric measurement. Due to 

the ratiometric measurement property of ICT-based fluorescent probes, many fluorescent 

sensors have been reported27-31.  

 Altering π-conjugation systems 

The most common and direct method to alter the spectroscopic properties of fluorophores 

is to change its π-conjugation system. Ideally, the recognition events of the target analyte 

will result in enhancing, disturbing, or reducing the π-conjugation of the sensors. When a 

chemical reaction, e.g. oxidation, reduction or nucleophilic attack reactions, occurs 

between the probe and the analyte a reduction and/or alteration of the π-conjugation is 

observed. These chemical reactions either enhance the conjugation of the functional groups 

or disturb the conjugation by forming sp3-hybridized carbons. Consequently, this will 

result in significant shifts in absorption and emission accompanied with changes in 

fluorescence intensity. Reductions of the π-conjugations have been widely applied to 

design and develop many fluorescent probes with dual-channel and/or ratiometric response 

features32. 

The enhancement of π-conjugations in fluorophore indicators can be achieved through the 

spirocyclization of the fluorophore. Xanthene derivatives, such as Rhodamines and 

Fluorescein, are classical examples of probes with spirocyclization properties. When the 
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spirolactam ring is closed, these probes are colorless and lack fluorescence. However, the 

recognition of the analyte activates the carbonyl group, which causes the spiro-ring to open 

and re-aromatize (Scheme 1.1). The π-conjugation is then rebuilt, resulting in the switching 

on of the fluorescence33. Spirocyclic fluorescent probes have been reported for a variety of 

analytes, including heavy metal ions 34-37, thiols38-39, and pH changes39.  

 

Scheme 1.1: The mechanism of spirolactam ring opening and closing in Rhodamine B.    

1.4 Required criteria for the efficacy of fluorescent probes  

The efficiency of fluorescence sensing is mainly dependent on the fluorescent probes. 

Therefore, there are several criteria that should be taken into consideration when designing 

and synthesizing fluorescent probes, such as appropriate optical and chemical properties 

for certain applications. 

 Basic criteria 

1) Selectivity and sensitivity: The recognition site on the probe must be able to 

selectively bind with a target analyte without interference from competing 

molecules. This will result in efficient measurement and sufficient fluorescent 
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signal. Therefore, the selectivity and sensitivity are the essential concern when 

designing fluorescent probes1, 14. 

2) Stability: The photo-stability and chemo-stability of fluorescent probes must 

remain stable when exposed to harmful stimuli such as chemo-bleaching and photo-

bleaching. Damage from these stimuli are irreversible and will result in permanent 

loss of fluorescent signal. Therefore, robust fluorescent probes are more desirable 

over unstable probes40. 

3) The brightness of fluorescence: Fluorescent probes that possess a high quantum 

yield and a large extinction coefficient at the excitation wavelength would have a 

high level of brightness (Eq.1.2.3.2).  Therefore, fluorescent probes that provide 

bright fluorescence are desired40.  

4) Turn-on fluorescence response: is the detected fluorescent signal that is generated 

through triggered chemical reactions by the target analyte. It is a much more 

favored design than turn-off fluorescence because the turn-on fluorescence 

enhances the signal-to-noise ratio (S/N). 

 Desired criteria of fluorescent probes for biological systems 

The criteria discussed above are the basic requirements for regular analytical samples. 

Synthetic fluorescent probes for living organisms have additional requirements due to the 

complicated and sensitive nature of biological systems.  

1) Good aqueous solubility and biocompatibility: Fluorescent probes that possess 

high hydrophobic moieties tend to aggregate and accumulate within the membrane 

of the cell causing a quench in the fluorescent signal. Therefore, fluorescent probes 
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for biological applications must be highly soluble in the cellular environment to 

allow permeability through the cell14, 41. 

2) Near-Infrared (NIR) wavelength absorption and emission: The NIR 

wavelength, also known as the “biological window”42,  ranges between 650 nm-

900 nm. Fluorescent probes that absorb or emit light in this wavelength minimize 

sample photodamage and cellular autofluorescence from endogenous biomolecules 

43. NIR fluorescent probes have the ability to reduce Raman and Rayleigh light 

scattering. Also, the fluorescence background of biological samples in the NIR 

region is very low, which results in a high signal-to-noise ratio. Additionally, it has 

the ability to deeply penetrate biological samples (1-2 cm), which facilitates in vivo 

detection. For all these merits, NIR fluorescent indicators are the perfect choice for 

in vivo imaging application1, 44.  

3) Ratiometric fluorescence response: is the measurement of fluorescence at two 

different excitation and/or emission wavelengths (dual-channel) simultaneously. 

This is especially important because it provides a high signal-to-noise ratio (S/N). 

Moreover, ratiometric fluorescence response is beneficial for intracellular 

measurements as it could eliminate any effects that are not related to the analyte of 

interest, e.g uneven cell thickness, unequal dye loading or distribution, dye leakage, 

photobleaching, etc1.   

To date, fluorescent sensors that satisfy all of the aforementioned standards have yet to be 

reported. Fluorescent probes that partially fulfill the standard requirements will be 

reviewed in the following section (1.5.1.) 
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1.5  Fluorescent probes for living cells  

The understanding of biological and biochemical processes is highly dependent on the 

ability to visualize and quantify these processes in the cellular context. Among many 

radioactive technologies, such as bioluminescence, electromagnetism, and 

electrochemistry, fluorescence microscopy has been the ideal choice for visualizing the 

biological events in a living system. Fluorescence microscopy has superior merits 

including great spatial and temporal sampling resolution, real-time monitoring, non-

invasiveness, high sensitivity and selectivity, and good membrane permeability45. Near-

infrared fluorescent probes are essential because they help prevent the autofluorescence in 

tissues that may occur at shorter wavelengths. They are also beneficial because they are 

relatively small in size, easily modifiable, tunable, and they can penetrate biological 

tissues. After the reporting of fluorescent Ca2+ indicators in the 1980s 10, many biosensors 

for maintaining biological conditions, such as metal ions18, 46, hydrogen peroxide45, 

hypochlorous acid, reactive oxygen17 and nitrogen species, thiol, and intracellular pH have 

been reported and applied in biological research. 

 The role of intracellular pH in biological systems 

Intracellular pH is a key parameter that regulates many biological processes such as cell 

proliferation, growth, apoptosis, vesicle trafficking, enzymatic activity, protein 

degradation, and cellular metabolism. Each subcellular compartment of eukaryotic cells, 

specifically the mitochondria and lysosome, possess a pH value in normal conditions. For 
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example, the pH of the mitochondria and lysosomal environment have a pH of 8.0 and 4.5-

5.0 respectively 47-48.  

1.5.1.1 The importance of lysosomal pH 

In eukaryotic cells, lysosomes form by budding off from the membrane of the trans-Golgi 

network and contain more than 50 degradative enzymes that have critical roles in cellular 

metabolism. The acidic environment (pH 4.5–5.5) of the lysosome activates its numerous 

hydrolytic enzymes to facilitate the degradation of old cell parts, microorganisms, and 

macromolecules. The deviation from the normal lysosomal pH causes defects in lysosomal 

function, which leads to lysosomal storage diseases49, cancer, and Alzheimer's disease50-51. 

Therefore, it is important to monitor the pH fluctuations of lysosomes in living cells to 

understand its pathological and physiological processes.   

  Reported molecular-based pH fluorescent probes 

Molecular-based pH probes that could help with the monitoring of lysosomal pH have been 

widely studied and reported. Some of the more influential probes have been highlighted in 

the following section.  

1.5.2.1 BODIPY-based fluorescent pH probes 

BODIPY dyes (4,4-difluoro-4bora-3a,4a-diaza-s-indacene) were fully recognized as 

fluorophore sensors for biological labels in the 1990s. Figure 1.7 represents the core 

structure of BODIPY 1. The excellent features of BODIPY-based fluorescent probes make 

them the most popular probes used for pH sensing among many highly fluorescent dyes. 
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These features include relatively high molar absorption coefficients and quantum yield, 

robustness, and stability against light and chemicals, narrow absorption and emission 

bandwidth with high peak intensities, good solubility, resistance toward self-aggregation 

in solutions, and high functionality at all positions. Therefore, developing NIR BODIPY 

derivatives by increasing the π-conjugated systems is achievable and feasible. 

 

Figure 1.7.  The molecular structure of the BODIPY core. 

In 2015, Zhang et. al developed and reported three NIR BODIPY-based fluorescent probes 

(Figure 1.8: Probes 1.1-1.3) for the sensitive detection of lysosomal pH. These probes 

respond to the lysosomal pH via the ICT and PET mechanism. Under basic conditions, the 

probes exhibit weak fluorescence due to the ICT from piperazine moieties to the BODIPY 

core. Alternatively, the lower nitrogen atoms of the piperazine substituents at positions 3,5 

of the BODIPY core lead to further quenching in the fluorescence via PET at a pH of 9.98. 

However, as the pH decreases from 9.98 to 2.20 the probes display strong fluorescence due 

to the protonation of the nitrogen atoms on the piperazine moieties. Thus, both the ICT and 

PET processes are suppressed52.  
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At pH 8.0, the fluorescence signals of aza-BODIPY fluorescent probe 1.4 (Figure 1.8) are 

quenched by the electron lone pair on the nitrogen and oxygen atoms of the phenol moieties 

due to the PET and ICT process. However, the fluorescence signals of the probe are 

restored when the pH decreases to 4.0. This is because the PET and/or ICT process is 

suppressed as the tertiary amines at positions 1 and 7 and the oxygen of the phenol moieties 

at 3,5 positions of the BODIPY core are protonated in the acidic pH53.  



20 

 

Figure 1.8. PET and/or ICT–based BODIPY fluorescent probes for pH detection52-53. 
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1.5.2.2 Cyanine-based fluorescent pH probes 

Cyanine-based sensors are considered the main source of organic long-wavelength 

fluorophores. These dyes absorb and emit light in the NIR region (600-900 nm) and display 

a high degree of photostability, low cytotoxicity, good water solubility, efficient quantum 

yield, and high molar extinction coefficient11, 54-55. These features have remarkably 

increased the usage of cyanine-based fluorescent probes in monitoring and investigating 

intracellular pH changes. The general molecular structure of cyanine dyes have two 

nitrogen heterocyclic rings separated by a conjugated chain of odd carbon atoms (Figure 

1.9a) 16, 18, 44, 56. The chemical structures of the molecules specifically the    number of 

carbon atoms in the conjugated chain determines the name of the cyanine. For example, 

three, five and seven carbon atoms in the conjugated chain denote trimethine cyanine 

(Cy3), pentamethine cyanine (Cy5) and heptamethine cyanine (Cy7), respectively 

(Figure1.9b)57.  Additionally, the optical properties of cyanine dyes are primarily 

dependent on the number of methane groups in the poly chain.  Each extension of the probe 

by one (CH=CH) moiety leads to a 100 nm shift of the maximum absorption and 

emission11, 58.  The dyes with (R=H) are known as norcyanine and they are sensitive to 

different pHs (Figure 1.9a). This is caused by the protonation of the amine group with the 

fluorophore core. Cyanine-based fluorescent sensors responsive to pH changes can be 

divided into two types. The first type features a non-N-alkylated indolium structure (Figure 

1.10). The second type is based on the PET mechanism (Figure 1.11)16, 54. The following 

subsections will briefly discuss the two types with some recent examples of each. 
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Figure 1.9. a). The general molecular structure of cyanine dyes, b). The structure of 

common cyanine dyes57. 

1.5.2.2.1 pH-Sensitive non-N-alkylated cyanines 

The resonance effect between the two nitrogen atoms of the heterocyclic aromatic rings 

determines the optical properties of cyanine dyes (Figure 1.10). These dyes are non-

fluorescent when the indole nitrogen is deprotonated. However, the protonation results in 

strong fluorescence.   

Cooper and co-workers reported Cy5 based pH probes (Figure 1.10: 1.5-1.8) are non-

fluorescent under a high pH value and are highly fluorescent under acidic condition (λmax 

abs = 645 nm; λmax em = 665nm)16, 44, 54. The Cy5 fluorescent probes (1.6-1.8) display a 

similar response in high proton concentration due to protonation and deprotonation of the 

nitrogen atom.  The Achilefu research group reported the non-N-alkylate Cy7 based pH 

indicator (1.9; Figure 1.10). This pH-sensitive probe fluoresces under acidic conditions 

around 800 nm due to the protonation of the indole nitrogen16, 44, 54, 59-60. 
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1.5.2.2.2 pH-Sensitive cyanine probes based on PET mechanism 

These probes consist of a cyanine fluorophore and a nitrogen-containing modulator.  The 

fluorescence is switched on or off by suppressing or permitting the PET process via 

protonation/deprotonation of the modulator18. The cyanine-based probe in 1.10 was 

reported by the Tang research group for pH sensing with the PET mechanism (Figure 

1.11)61.  This probe displays emission fluorescence at 615 nm under acidic conditions due 

to the protonation of nitrogen on the aniline moiety. However, under basic conditions, the 

fluorescence of the probe is quenched by the PET process61. Similarly, the protonation of 

the aniline nitrogen in probe 1.11 suppresses the PET mechanism resulting in fluorescence 

of the dye at 750 nm accompanied with a color change from green to blue 62. 

Nagano et al. reported cyanine sensors with diamino functional groups based on the PET 

mechanism (1.12-1.15, Figure 1.11). These probes can be employed as ratiometric pH 

probes since they display a 46-83 nm red shift in their maximum absorption at a lower 

pH63. 
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Figure 1.10.  a). The mechanism of protonation/ deprotonation of pH-sensitive non-N-

alkylated cyanine-based fluorescent probes; b). Reported cyanine-based fluorescent probes 

based on pH-sensitive non-N-alkylated16, 44, 54, 59-60. 
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Figure 1.11. The mechanism of PET pH- sensitive and some reported cyanine-based 

fluorescent probes61-63. 

1.5.2.3 Hemicyanine-based fluorescent pH probes 

Hemicyanines are members of the cyanine family. The general structure of hemicyanine 

consists of a positively charged nitrogenic heterocycle conjugated to a terminal moiety. 

This terminal group can be a hydroxyl, alkoxy, amino group, coumarin, or xanthene 

derivative. The hemicyanine structure is featured as a donor−π−acceptor (e.D−π− e.A) 
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system, in which the nitrogen atom acts as the electron acceptor and the terminal group (-

OH, -OCH3, or -NH2) acts as the electron donor16. 

The photophysical properties of fluorescent chemo-sensors can be improved and modified 

by hybridizing the hemicyanine scaffolds with other dyes. For example, in 2012 the Lin 

research group reported a unique, hybrid hemicyanine-rhodamine dye that contained a 

spirolactam on/off switching mechanism. By accompanying the rhodamine dye with the 

hemicyanine group, the NIR absorption and emission wavelength were enhanced64 (Figure 

1.12).  

 

Figure 1.12.  A representation of the Rhodamine-hemicyanine hybrid for pH sensing 

with spirolactam on/off switching mechanism64. 

After the unique design of rhodamine-hemicyanine hybrid probes for pH detection by the 

Lin group, many fluorophore sensors were reported. Vegesna et. al. reported four pH 

probes (1.17- 1.20) for the detection of lysosomal pH inside living cells. The probes were 
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conjugation of the probes were enhanced when the nitrogen atom was protonated and 

induced the opening of the spirolactam ring 
65. 

 

Figure 1.13.  The ring opening form of near-infra red fluorescent probes in responding to 

acidic pH65. 

1.5.2.4 Rhodamine-based fluorescent pH probes 

Rhodamine dyes (Rho) belong to a family of xanthene dyes and are among the oldest 

synthetic dyes used for the dying of fabrics. The general structure of xanthene and 

rhodamine are shown in Figure 1.14.  Rhodamine-based fluorescent probes and their 

derivatives are widely used in cell biology. This is due to their excellent photophysical 

properties such as good photostability, high extinction coefficients, high quantum yield, 

and long absorption and emission wavelengths. Additionally, Rho dyes have a very unique 

merit when undergoing structural changes between their spirocyclic (non-fluorescent) and 

ring-opening (fluorescent) forms in response to pH changes48, 66. This makes them ideal for 

fluorescent on/off switches for pH sensing. The general mechanism of spirolactam ring 

opening and closing is illustrated in scheme 1.1 in section 1.4.3. 
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Figure 1.14.  The molecular structure of xanthene (A) and rhodamine dyes (B)66. 

Some commercially available rhodamine dyes are rhodamine 6G (Rho 6G), rhodamine B 

(Rho B), and rhodamine 101 (Rho 101) (Figure 1.15). Rho B and Rho 101 are among the 

most commonly used and can exist in one of three forms, cationic, dipolar ionic 

(zwitterionic), and lactone, according to the pH or polarity of the solvents66 (Figure 1.16). 

For example, in an acidic environment, the carboxyl group of Rho B is protonated resulting 

in the cationic form. However, in basic solution Rho B is converted to the dipolar form due 

to the dissociation process. 

Figure 1.15.  The molecular structures of the classical rhodamine dyes; rhodamine 6G, 

rhodamine B, and rhodamine 10166. 
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Figure 1.16. The molecular structure of three forms of Rho B in equilibrium66. 

The fluorescence switching of Rho dyes make them widely applicable for lysosomal pH 

detection. For example, Lv et al. synthesized the RCE indicator fluorescent probe, which 

is Rho B-based and specific for lysosomal pH (Figure 1.17: Probe 1.21). The fluorescence 

signal of the probe enhances in an acidic environment 150-fold. The enhancement in the 

fluorescence intensity occurs at 584 nm as the pH decreases from 7.51 to 3.53 39.  Another 

fluorescent probe that is specific to lysosomal pH is the Lyso-hNR probe (Figure 1.17: 

Probe 1.22). This probe was synthesized and reported by the Niu research group. In an 

acidic environment the Lyso-hNR displayed NIR fluorescence at 650 nm. The high 

concentration of H+ in the acidic solution caused a 280-fold fluorescence enhancement 

from pH 7.0 to 4.067. Zhang and co-workers reported a ratiometric lysosomal pH 

fluorescent probe based on naphthalimide-rhodamine (RNL) (Figure 1.17: Probe 1.23). 

However, when the pH decreases from 7.2 to 4.20, the high concentration of protons results 

in the protonation of the piperazine nitrogen. Consequently, this leads to the opening of the 

spirolactam ring and an emission band at 529 nm resulting from the naphthalimide moiety 

is observed. Meanwhile, a new peak at 580 nm corresponding to the rhodamine moiety 

appears. The rhodamine moiety in its ring opening form is an effective energy acceptor. 
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Thus, fluorescence resonance energy transfer (FRET) from the donor (naphthalimide) to 

the acceptor (rhodamine) occurs (Probe 1.23, Figure 1.17)48. Similarly, Rho B-based 

fluorescent probe RML, (Probe 1.24) for lysosomal pH was non-fluorescent at pH 7.40 

due to its closed-ring form. The fluorescence signals enhance 80-fold as the pH decreases 

from 7.40 to 4.0, leading to protonation of the nitrogen on the morpholine moiety. This 

significant enhancement in the fluorescent intensities is induced by protonation causing the 

spirocyclic ring opening68. 

 

Figure 1.17.  An example of some of the reported rhodamine-based fluorescent probes 

for lysosome pH39, 48, 67-68.  
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1.6 Limitations and drawbacks of reported pH fluorescent 

probes 

Developing fluorescent probes for biosensing applications still requires improvement. This 

is because the reported fluorophores are partially fulfilling the desired criteria of the ideal 

chromophores for biological imaging (Section 1.3.2). For example, most of the reported 

BODIPY-based probes possess emissions < 700 nm that is still close to the visible region. 

Likewise, rhodamine-based fluorophores have short wavelength emissions (< 600 nm). 

This limitation dramatically restricts their applications for sensing and monitoring in 

biological systems. This is attributed to the strength of absorption and autofluorescence in 

biomolecules and organelles in the UV-Vis region. Moreover, light scattering and strong 

absorption in the UV-Vis region limit the penetration of the probes into living tissues. 

Another limitation of current UV-Vis fluorescent probes is the high autofluorescence that 

arises from the absorption of biomolecules in this region. This factor can lead to a low 

signal to noise ratio (S/N) due to high background noise, consequently reducing the ability 

to clearly visualize and recognize the fluorescence emission1, 69.  

Poor water solubility is another drawback in reported fluorescent probes. This problem 

usually arises from the large π-conjugation systems and the presence of aromatic rings. For 

instance, BODIPY dyes possess a hydrophobic core that brings a significant limitation of 

BODIPY-based pH sensors for living cell applications. Similarly, traditional cyanine dyes 

are less hydrophobic than BODIPY-based sensors, but they suffer from pale solubility in 

an aqueous environment.  Fluorescent probes with hydrophobic characteristics are 
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susceptible to undesired self-aggregation in aqueous solution, which quenches the 

fluorescence signal.  

Additionally, several drawbacks of reported cyanine probes limit their application for 

imaging. Some of these drawbacks include poor photostability, low quantum yield, and 

narrow Stokes shift55, 70. Besides the merit advantages of hemicyanine dyes like 

spirolactam structures, which allow for the switching process and NIR excitation and 

emission wavelength, hemicyanine dyes suffer from poor solubility in aqueous solution, 

self-aggregation, and fluorescence quenching in an aqueous environment.  

 For Rho-based fluorescent probes, the limited modification sites on their core structure 

minimize their usage in bioimaging applications. However, NIR Rho-based pH sensors 

have shown to be successful and applicable. 
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1.7 Research objective and aim  

The focus of this dissertation is to overcome the current limitation and challenges discussed 

in Section 1.6 and better apply BODIPY, rhodamine and hemicyanine dyes to fluorescence 

sensing. We plan to alleviate this knowledge gap by modifying and developing highly 

sensitive and selective BODIPY-based and spirolactam ring-based fluorescent probes 

based on traditional rhodamine and hemicyanine dyes for lysosomal pH detection.  To 

accomplish this goal, we plan to concentrate on two aspects: i) enhancing the water-

solubility of BODIPY dyes and ii) developing NIR fluorescent pH probes to monitor 

lysosomal and mitochondrial pH. 

In chapter 2, three BODIPY–based fluorescent probes (A-C) bearing morpholine residues 

at positions 4,4′ and 2,6 of the BODIPY core to selectively target lysosomes. To enhance 

their hydrophilicity and solubility in polar solvents, we will introduce ortho or meta 

substituent groups of tri(ethylene glycol)methyl ether on the meso-phenyl rings and at 

positions 1,7 of the BODIPY dyes. 

To further extended lysosomal pH monitoring, we plan to develop three fluorescent probes 

(A-C) with higher pKa values (chapter 3). These fluorescent probes will contain closed 

spirolactam ring configurations with high pKa values for lysosomal pH detection in living 

cells. We plan to introduce 2-aminophenylboronic acid pinacol ester to traditional 

rhodamine B, its near-infrared derivative, and near-infrared hemicyanine dyes, 

respectively, to improve the sensitivity response. By doing this, we believe the probes will 

show fast, reversible, selective and sensitive fluorescence responses to pH changes, and 

will be capable of sensing lysosomal pH variations in living cells. 
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In addition to lysosomal pH, we will develop a near-infrared hemicyanine fluorescent 

probe with a switch “on/off” feature for mitochondrial pH sensing (chapter 4). To 

overcome the insensitivity of hemicyanine dyes lacking pH-dependent spirolactam 

switches, we will introduce oxazolidine to probe A to achieve the switch-ability for 

mitochondrial pH variations. If the modification to Probe A is successful, we plan to further 

study its use for detecting pH changes in the mitochondria, and monitoring cell nutrient 

starvation and drug treatment. 
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2 Unusual Fluorescent Responses of Morpholine-
functionalized Fluorescent Probes to pH via 
Manipulation of BODIPY’s HOMO and LUMO Energy 
Orbitals for Intracellular pH Detection71 
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2.1 Introduction 
 

Intracellular pH (pHi) functions to regulate many cellular behaviors such as cell volume 

regulation, vesicle trafficking, cellular metabolism, cell membrane polarity, cellular 

signaling, and cell activation, growth, proliferation, apoptosis, enzyme activity, and protein 

degradation. The pHi inside cells may vary considerably among subcellular compartments 

such as the cytosol, mitochondria, endoplasmic reticulum, endosome, lysosome, and 

nucleus. The pHi in a typical mammalian cell can range from 4.7 in lysosome to 8.0 in 

mitochondria. The lysosomal acidic environment activates enzymes to facilitate the 

degradation of proteins during the cellular breakdown. Disruptive pHi variations in 

organelles can lead to dysfunction of the organelles that can result in pathophysiology in 

humans triggering cancer, stroke, and/or Alzheimer’s disease. Therefore, it is very 

important to monitor pH changes inside living cells in order to investigate cellular functions 

that can provide insight into physiological and pathological processes. Fluorescence-based 

techniques such as fluorescence microscopy and flow cytometry with high-resolution and 

high-throughput analysis have been widely used to investigate intact subcellular pH and 

possess many technical and practical advantages over other methods because of their high 

sensitivity, operational simplicity, and unrivaled spatial and temporal resolution. Many 

fluorescent probes for pH have been developed. However, only a few of them have been 

successfully used to monitor lysosomal pH inside living cells52, 54, 65, 72-76. Most fluorescent 

probes for lysosomal pH, including the commercial ones have used morpholine residues 

for their selective accumulation in acidic lysosomes through protonation of the tertiary 

amine groups in a cellular acidic environment77. The fluorescence enhancement results 
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from the suppression of photoinduced electron transfer (PET) of the tertiary amine attached 

to the probe77. Our hypothesis was that fluorescent probes based on morpholine could 

display unusual responses to pH if we could effectively manipulate HOMO and LUMO 

energy orbitals of fluorophores so that the tertiary amines from morpholine residues were 

unable to serve as electron donors to quench the fluorophore fluorescence via a-PET (“a” 

denotes fluorophore serving as an electron acceptor) mechanism in a basic condition while 

the protonated morpholine moieties can function as electron acceptors to quench the 

fluorescence of the fluorophores via d-PET (“d” denotes excited fluorophore serving as an 

electron donor) mechanism. In this paper, we reported three uncommon morpholine based 

fluorescent probes (A, B, and C) to detect pH by introducing morpholine residues to 

BODIPY dyes at 4,4′-positions and 2,6-positions, respectively (Scheme 2.1). The 

fluorescent probes display high fluorescence in basic condition. However, they exhibit very 

weak fluorescence in an acidic condition. The theoretical calculation showed that the 

LUMO energy of morpholine is higher than those of the BODIPY dyes while its HOMO 

energy is lower than those of the BODIPY dyes. As a result, morpholine is unable to serve 

as an electron donor or an electron acceptor to quench the BODIPY fluorescence in the 

neutral and basic conditions via PET mechanism. However, the protonation of tertiary 

amines of the morpholine residues in an acidic environment effectively decreases the 

LUMO energy which locates between the HOMO and LUMO energies of the BODIPY 

dyes, resulting in fluorescence quenching of the BODIPY dyes via the d-PET mechanism. 

These probes also possess great photostability and selectivity at different pH values. 

Among them, fluorescent probe C has more advantages for live cell fluorescence imaging 

because it possesses long emission wavelength, large Stokes shifts and high pKa near 
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physiological pH and displays turn-on fluorescence responses to the increasing 

intracellular pH, demonstrating the potential applications for noninvasive monitoring of 

pH changes inside of living cells. 

 

 

Scheme 2.1. Chemical structures of fluorescent probes A, B and C and their responses to 

acid and base. 
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2.2 Experimental section 

 Instrumentation 
1H NMR and 13C NMR spectra were collected by 400 MHz Varian Unity Inova NMR 

spectrophotometer instrument. 1H NMR and 13C NMR spectra were recorded in CDCl3 and 

DMSOd6 solutions. Chemical shifts (δ) were given in ppm with solvent residual peaks (1H: 

δ 7.26 for CDCl3, δ 2.50 for DMSO-d6; 13C: δ 77.3 for CDCl3) as internal standards. HRMS 

were measured with electrospray ionization (ESI) mass spectrometer. Absorption spectra 

were taken on a PerkinElmer Lambda 35 UV/vis spectrometer. Fluorescence spectra were 

recorded on a Jobin Yvon Fluoromax-4 spectrofluorometer. 

Materials.  Unless specifically indicated, all reagents and solvents were obtained from 

commercial suppliers and used without further purification. Compound 2 was prepared 

according to the reported literature78. 

Fluorescent Probe A. 1H NMR (400 MHz, CDCl3): δ 6.99 (d, J = 8Hz, 1H), 6.85 (d, J = 2 

Hz, 1H), 6.82 (dd, J = 2, 8 Hz, 1H), 6.00 (s, 2H), 4.21 (t, J = 5.2 Hz, 2H), 4.12 (t, J = 5.2 

Hz, 2H), 3.91 (t, J = 5.2 Hz, 2H), 3.86 (t, J = 5.2 Hz, 2H), 3.79−3.51 (m, 24H), 3.38 (s, 

3H), 3.36 (s, 3H), 3.28 (s, 4H), 2.73 (s, 6H), 2.56 (br, 8H), 1.45 (s, 6H). 13C NMR (100 

MHz, CDCl3): δ 155.1, 149.9, 149.5, 141.2, 130.1, 128.6, 121.5, 114.8, 114.6, 72.2, 71.2, 

71.0, 70.9, 70.8, 70.0, 69.3, 69.0, 67.2, 59.3, 52.7, 48.8, 16.5, 15.0. HRMS (ESI): calculated 

for C47H67BN4O10Na [M + Na]+, 881.4842; found, 881.4832. 

Fluorescent Probe B. 1H NMR (400 MHz, CDCl3): δ 6.95 (d, J = 8Hz, 1H), 3.59−3.55 (m, 

2H), 4.13 (t, J = 4.8 Hz, 2H), 4.01 (t, J = 4.8 Hz, 2H), 3.86 (t, J = 4.8 Hz, 2H), 3.74−3.28 
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(m, 32H), 3.15 (s, 4H), 2.52 (s, 6H), 2.31 (br, 8H), 1.42 (s, 6H). 13C NMR (100 MHz, 

CDCl3): δ 161.2, 156.8, 155.2, 141.1, 138.7, 131.5, 130.2, 126.2, 117.2, 106.5, 100.7, 72.1, 

72.0, 71.1, 71.0, 70.8, 70.7, 70.6, 70.4, 69.8, 69.2, 68.9, 67.8, 67.2, 59.2, 59.1, 53.5, 52.1, 

12.9, 11.8. HRMS (ESI): calculated for C43H64BF2N4O10 [M − H]−, 845.4792; found, 

845.4809. 

Fluorescent Probe C. 1H NMR (400 MHz, CDCl3): δ 7.18−7.09 (m, 3H), 6.77 (d, J = 8 

Hz, 2H), 6.45 (s, 1H), 5.90 (d, J = 16 Hz, 2H), 4.14 (t, J = 5.2 Hz, 4H), 4.07 (t, J = 5.2 Hz, 

4H), 3.90−3.40 (m, 72H), 3.38 (s, 3H), 3.37 (s, 6H), 3.36 (s, 3H), 3.34(s, 6H), 3.31 (s, 3H), 

3.23(brs, 4H), 2.62 (s, 6H), 2.50 (s, 8H). 13C NMR (100 MHz, CDCl3): δ 172.5, 161.3, 

157.8, 149.0, 148.9, 146.2, 142.7, 135.0, 131.3, 129.2, 124.3, 120.1, 114.4, 111.9, 106.7, 

100.3, 97.5, 71.9, 71.8, 71.0, 70.8, 70.7, 70.6, 70.5, 70.4, 70.2, 69.7, 68.8, 68.6, 58.9. 

HRMS (ESI): calculated for C85H128BF2N4O26 [M − H]−, 1669.8987; found, 1669.8971. 

 Optical measurement 

Citrate-phosphate-borate buffer (20 mM) was used for pH dependency and photostability 

measurements of fluorescent probes. To avoid the interference caused by metal− phosphate 

and metal−citrate binding interactions (forming precipitates of divalent cation phosphate 

and forming a complex of the metal− citrate), 10 mM KHP buffer (pH 4.0) and 10 mM 

HEPES (pH 7.4) buffer were used for selectivity measurements of fluorescent probes A-

C. 
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 Computational modeling 

Electronic properties of the chemical structures of the fluorescent probes were calculated 

using density functional theory (DFT) incorporating Hartree−Fock (HF) exchange with 

DFT exchange-correlation. In particular, the hybrid functional B3LYP79-80 and all-electron 

basis sets 6-311G (2d, 2p)81as implemented in the Gaussian09 suite of programs82 were 

used for full geometry optimization of the probes. HOMO and LUMO were calculated for 

the optimized geometries. All calculations were performed in a vacuum. 

 Live cell fluorescence imaging 

Human umbilical vein endothelial cells HUVEC-C (from ATCC) were plated on 12-well 

culture plates at 1 × 105 cells/well and were incubated at 37 °C in 5% CO2 incubator 

overnight. The next day, the medium was removed and cells were rinsed twice with 1× 

PBS (pH 7.4) followed by incubation with probe C for 2 h at 5, 15, or 25 μM concentration 

in fresh serumfree media containing 1 μM LysoSensor Green DND-189 (Life 

Technologies). Hoechst 33342 (Sigma-Aldrich) dye was added at 1 μg·mL−1, and the cells 

were further incubated for 10 min. After incubation, the medium was removed, and cells 

were gently rinsed with 1X PBS (pH 7.4) three times. The cells were treated with nigericin 

(5 μg·mL−1) in potassium rich PBS with pH ranging from 5.5 to 8.5 and incubated further 

for 15 min. Live cell images were acquired using an inverted fluorescence microscope 

(AMF-4306, EVOSfl, AMG) with DAPI filter for Hoechst 33342 (Sigma-Aldrich), GFP 

filter for LysoSensor Green, and RFP filter for fluorescent probe C. The fluorescence 

images were obtained at 40× magnifications. The exposure times for each filter were kept 
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constant. Colocalization analysis based on Pearson’s coefficient was done using the JACoP 

plugin from ImageJ83 . 

2.3 Results and discussion 

 Synthetic approach 

In order to prepare morpholine functionalized BODIPY-based fluorescent probes for pH, 

we incorporated morpholine moieties onto the BODIPY core at 4,4′-positions and 2,6-

positions while we introduced ortho- or meta-substituent group of tri(ethylene 

glycol)methyl ether on the meso-phenyl rings and at 1,7-positions of BODIPY dyes to 

enhance their hydrophilicity and solubility in polar solvents (Scheme2.2). Fluorescent 

probe A was prepared by replacing fluorine atoms of BOIDPY dye 1 at 4,4′-positions with 

4-prop- 2-ynyl-morpholine (2) (BODIPY dye 1 was synthesized according to our reported 

procedure84. In order to incorporate morpholine moieties to 2,6-positions of BODIPY core, 

formyl groups were introduced to BODIPY dye 3 (which was also synthesized according 

to our reported procedure)85-86 at 2,6- positions via two-step Vilsmeier−Haack reactions, 

affording 2, 6-diformyl BODIPY dye 4. Then a reductive amination of BODIPY dye 4 with 

morpholine was carried out by using sodium acetoxyborohydride to yield fluorescent probe 

B. To tune the BOIDPY core of fluorescence probe to a longer emission wavelength with 

smaller HOMO−LUMO energy gap, a Knoevenagel condensation of BODIPY dye 4 with 

benzaldehyde derivative (5) was conducted. The presence of formyl groups of BODIPY 

dye 4 at 2,6-positions initiated formation of distyryl bonds at 1,7-positions instead of 3,5- 

positions, yielding 2,6-diformyl-1,7-distyryl-BODIPY dye (6), which was confirmed by 

the clear disappearance of 1,7-dimethyl proton peak at 1.85 ppm and the preservation of 
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3,5-dimethyl proton peak at 2.92 ppm in 1H NMR spectrum of BODIPY dye 6 (please see 

Figures A.3 and A.7 in the Supporting Information). 

 

Scheme 2.2. Synthetic route to fluorescent probes A, B, and C. 

This is because the 1,7-dimethyl groups become activated by the introduction of formyl 

groups at 2,6-positions to BODIPY core, which has been discussed in our previous paper84. 

1,7-Distyryl BODIPY dye bearing morpholine groups at 2,6-positions (fluorescent probe 

C) was obtained by amination of BODIPY dye 6 with morpholine using sodium 

acetoxyborohydride in the same approach to prepare fluorescent probe B. Fluorescent 

probes A-C are easily dissolved in common organic solvents such as dichloromethane, 

ethanol, THF, DMF, and DMSO. They can also be readily dissolved in aqueous solution 

with the help of the small amount of polar organic solvent such as DMSO because of the 

hydrophilic features of tri(ethylene glycol)methyl ether residues and morpholine residues 

on the BODIPY cores. 
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 Optical properties 

Fluorescent probe A displays absorption and emission peaks of BODIPY dyes at 498 and 

508 nm in ethanol, respectively. The fluorescence quantum yield of probe A in ethanol is 

56%. Fluorescent probe B shows absorption and emission peaks at 515 and 529 nm with a 

fluorescence quantum yield of 8%, and exhibits 17 and 21 nm redshifts in absorption and 

emission spectra in ethanol, respectively, compared with fluorescent probe A. The redshifts 

in absorption and emission peaks of fluorescent probe B may be due to the enhanced 

electron donating effect of methylene groups with adjacent electron-donating tertiary 

amines from the morpholine groups at 2,6-positions to the BODIPY core compared with 

hydrogen atoms of fluorescent probe A at 2,6-positions, resulting in a decreased 

HOMO−LUMO energy gap. Compared with fluorescent probes A and B, the significant 

red shifts in both absorption and emission spectra were observed for fluorescent probe C 

with absorption and emission peaks at 565 and 652 nm in an ethanol solution, respectively, 

because of its significantly enhanced π-conjugation via its distyryl groups at 1,7-positions. 

In addition, we examined the optical properties of fluorescent 

probes A-C in aqueous solution at physiological pH (with 1% DMSO as cosolvent). 

Fluorescent probes A and B show similar absorption and emission bands in aqueous 

solution with negligible shifts compared with those in ethanol while fluorescent probe C, 

with an enlarged Stokes shifts of 115 nm in aqueous solution which is 28 nm larger than 

its Stokes shift of 87 nm in ethanol, was interestingly observed with 15 nm blue shift in 

absorption peak and 13 nm red shift in emission peak relative to its absorption and emission 

peaks in ethanol (see Table A1 in the Supporting Information). The fluorescence quantum 

yields of the fluorescent probes A−C significantly dropped from ethanol to buffer solution 
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(pH 7.4) as fluorescent probes show fluorescence quantum yields of 18%, 1.3%, and 0.32% 

in buffer solution compared with those of 56%, 8%, and 8.6% in an ethanol solution, 

respectively. The low fluorescence quantum yields of the fluorescent probes in aqueous 

solution may result from fluorescence self-quenching due to the potential dye aggregations 

in aqueous solution. 

 Optical responses of fluorescent probes to pH 

We investigated the pH effect of fluorescent probes A−C and their intermediates (BODIPY 

dyes 1, 4, and 6) in buffer solution. There were no obvious changes observed in both 

absorption and emission spectra of all intermediates 1, 4, and 6 in different pH conditions 

(see Figure A.11 in the Supporting Information). However, fluorescent probes A, B, and C 

exhibit very sensitive fluorescent responses to pH. They show very low fluorescence in 

acidic condition while most morpholine-functionalized fluorescent probes reported in the 

literature are highly fluorescent in acidic condition because of the prohibited a-PET effect 

from morpholine moiety to the fluorophore through the protonation of morpholine 

moiety87.  However, change of the pH from an acidic condition of 3.0 to a basic condition 

of 9.5 results in significant increases of fluorescence intensity of fluorescent probes A-C 

with 2.4-fold, 15.7-fold and 14.3-fold enhancements, respectively (Figure 2.1). This unique 

pH-dependent behavior of the probes is in agreement with our hypothesis that protonated 

morpholine moieties can function as electron acceptors to quench the fluorescence of the 

BODIPY dye via d-PET mechanism while the tertiary amines from morpholine residues 

are unable to serve as electron donors to quench the BODIPY dye fluorescence via a-PET 

mechanism when the HOMO and LUMO energy orbitals of the BODIPY dye are 
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controlled in a certain range. Fluorescent probe A shows a significant fluorescence 

intensity change between pH 4.0 and pH 6.2 with a pKa of 5.0 while the significant 

fluorescence changes of fluorescent probes B and C shift to the window between pH 4.5 

and 7.4 with the same pKa of 6.2 (Figure 2.1). The different pKa values indicate the 

different availability (or basicity) of the nitrogen lone-pair electrons on the morpholine 

moieties of the probes for protonation, where fluorescent probe A possesses the least 

availability due to the electron-withdrawing property of the alkyne groups adjacent to the 

morpholine moieties. In addition, 11 and 10 nm blue shifts in fluorescence and absorption 

spectra were observed for probe B, respectively, when pH decreases from 9.5 to 3.0. The 

blue shifts may arise from weaker electron donating effect of methylene groups with 

adjacent electron-withdrawing protonated tertiary amines from morpholine moieties at 2,6-

positions in an acid condition. The similar blue shifts (13 and 16 nm shifts in fluorescence 

and absorption, respectively) of probe C were also observed due to the same weaker 

electron-donating effect of methylene groups at 2,6-positions in an acid condition. In 

addition, the absorbance of probes A−C at 470, 480, and 535 nm respectively, which were 

used as the excitation wavelengths for their corresponding fluorescence spectra, display 

negligible changes under different pH values, (Figure2.1). This further indicates that the 

pH responses of the probes are mainly due to d-PET effect instead of the absorbance 

change. 
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Figure 2.1. Fluorescence (upper row) and absorption spectra (lower row) of fluorescent 

probes A−C (5 μM) in buffer solutions with different pH conditions (1% DMSO as 

cosolvent). Insets in the upper row: the corresponding curves of fluorescence intensity 

versus pH. 

 Theoretical modeling 

In order to further reveal the structural properties of the fluorescent probes, and more 

importantly, to verify the hypothesis that the fluorescent probes respond to pH via a 

modulation of d-PET effect from BODIPY core to protonated morpholine moieties in 

different pH conditions, we calculated the HOMOs and LUMOs of fluorescent probes A-

C, N-methylmorpholine and protonated N-methylmorpholine using density functional 

theory (DFTB3LYP/ 6-311G(2d,2p)). The obtained results are shown in Figure 2.2. The 

results show that fluorescent probe B has a slightly smaller HOMO−LUMO energy gap 

(2.97 eV) than that of fluorescent probe A (3.07 eV), indicating a mild electron donating 
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effect of methylene groups with adjacent electron donating tertiary amine groups to the 

BODIPY core at 2,6- positions. This is in accord with the spectra redshifts observed in 

absorption and emission spectra of fluorescent probe B relative to those of fluorescent 

probe A in a basic condition (Figure 2 and Table A.1 in the Supporting Information). 

Fluorescent probe C possesses the smallest energy gap (2.39 eV) among three probes; an 

increase in the HOMO and a decrease in the LUMO arise from the enhanced π-conjugation 

occurring via the distryl groups on the BODIPY core at 1,7- positions. The density 

distributions of HOMO- and LUMO electrons on the probes show that there are no π-

electrons spared onto the morpholine moieties for three probes (Figure 2.2), indicating that 

the morpholine moieties are isolated from π-conjugations of the BODIPY cores. We 

calculated the HOMO and LUMO energy of morpholine moieties before and after 

protonation using N-methylmorpholine as a model. As we expected, the calculated HOMO 

energy of morpholine moieties is lower than those of all three probes while its LUMO 

energy is higher than those of all three probes. This leads to a prohibited a-PET effect from 

morpholine moiety to the BODIPY cores. However, the protonation of the morpholine 

moiety in acidic condition dramatically reduces its HOMO and LUMO energies so that the 

LUMO energy of protonated morpholine moiety lies between the HOMO and LUMO 

energies of the probes. As a result, the protonated morpholine moiety is able to serve as an 

electron acceptor allowing for the electron transition be possible from the LUMO of the 

fluorescent probes A, B, or C to the LUMO of protonated morpholine moiety, resulting in 

the fluorescence quenching of the probes via a d-PET effect. 
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Figure 2.2. Comparisons of calculated HOMO and LUMO energies of fluorescent probes 

A-C, morpholine moiety (N-methylmorpholine), and protonated morpholine moiety 

(protonated N-methylmorpholine), as well as the electron density distributions in HOMO 

and LUMO of fluorescent probes A-C. 

 Selectivity and photostability 

Considering the potential binding events between amines and metal ions when applying 

the fluorescent probes in complex environments such as physiological condition, we 

further investigate the selectivity of fluorescent probes to pH over other metal ions. The 

results showed that 5 μM fluorescent probes A−C display excellent selective responses to 

pH over other metal ions because there is no significant change observed in terms of 

fluorescence intensity of the probes in the absence and presence of different metal ions 

(200 μM) such as K+, Na+, Mg2+ and Ca2+, Cu2+, Zn2+, Ni2+, Mn2+, Co2+, Fe2+ and Fe3+ 

in buffer solution at pH 4.0 and 7.4 (Figure 2.3: upper row). We also studied the 
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photostability of fluorescent probes A-C in both acidic (pH 4.0) and near neutral conditions 

(pH 7.4). Under 2-hour excitation (with an excitation wavelength of 470, 490, and 580 nm 

for fluorescent probes A-C, respectively), fluorescent probe A showed an excellent 

photostability with less than 1% decrease of fluorescence intensity within 2 h. Fluorescent 

probes B and C also showed very good photostability in pH 4.0. While in pH 

7.4, the fluorescence intensity of fluorescent probe B decreased by 7.5% in the first hour 

and further decreased by 2% in the second hour under excitation and fluorescent probe C 

had a gradual decrease by 3% in fluorescence intensity within 2-hour excitation (Figure 

2.3: lower row). 

 

Figure 2.3. Upper row: fluorescence responses of fluorescent probes A, B and C (5 μM) 

to pH at 4.0 and 7.4 in the absence and presence of various metal ions (200 μM) in buffer 

solutions (with 1% DMSO as co-solvent). Lower row: fluorescence intensities changes of 
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fluorescent probes A, B and C (5 μM) as a function of time in 2 hours under excitation in 

buffer solutions (1% DMSO as co-solvent) at pH 4.0 and 7.4. 

 In vitro cell imaging and intracellular pH detection 

In order to determine if the fluorescent probes could selectively detect intracellular pH 

changes in live cells, we chose the fluorescent probe C for live cell fluorescence imaging 

with normal endothelial (HUVEC-C) cells at different intracellular pH values. This is 

because fluorescent probe C has sensitive pH responses (14.3-fold enhancement from pH 

3.02 to pH 9.49), pKa value near physiological pH, deep-red emission that prevents the 

cell photo-damage, and large Stokes shift (115 nm in buffer solution at pH 7.4) that 

minimizes the potential interference caused by excitation signals. It should be noted that 

many reported morpholine-bearing fluorescent probes show labeling of lysosomes and 

other acidic organelles in mammalian cells due to their accumulative effect of tertiary 

amines on the morpholine moieties in acidic conditions.9 Therefore, to investigate whether 

our probe could respond to intracellular pH by identifying inherent acid compartments and 

determine concentration effect of the fluorescent probe on cell proliferation, we first 

incubated HUVEC-C cells with 5, 15, and 25 μM fluorescent probe C and compared with 

a well-known commercial lysosome probe, LysoSensor Green DND-189 that specifically 

labels the acidic organelles in cells. The results show that probe C exhibited very weak 

fluorescence signals in all three concentrations although slight fluorescence enhancements 

could be observed with increased probe concentrations (Figure 2.4).  
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Figure 2.4. Fluorescence images of HUVEC-C cells incubated with 5, 15, or 25 μM 

fluorescent probe C. HUVEC-C cells were incubated with fluorescent probe C for 2 h, post 

serum starvation (2 h) and imaged for colocalization with 1 μM LysoSensor Green and 1 

μg·mL−1 Hoechst 33342.stains. Images were acquired using the inverted fluorescence 

microscope (AMF-4306, EVOSfl, AMG) at 40× magnification; scale bars = 100 μm. 

 The merged fluorescence images show green-yellowish areas around the nucleus and 

many green-yellowish dot structures also can be observed by a careful examination (Figure 

2.4). The calculated Pearson’s coefficients of red (fluorescent probe C) and green 

(LysoSensor Green) channels are 0.92, 0.85, and 0.88 for 5, 15, and 25 μM probe C, 

respectively (please see Figures A.15−A.17 in the Supporting Information for 

cytofluorograms). The results indicate the area stained by the fluorescent probe C matches 

those stained by LysoSensor Green DND-189 in cells, which confirms fluorescent probe 

C mainly stained lysosomes or other acidic organelles in cells (Figure 2.4). Therefore, the 

weak fluorescence of probe C observed in the cells is able to be elucidated via a d- PET 

modulated fluorescence quenching by the protonated morpholine moieties under lysosomal 
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pH (4.5−5.5), which demonstrates feasible pH response of probe C to the inherent acidic 

environment in live cells. In order to examine the fluorescence responses of fluorescent 

probe C to different pH values inside of cells, we further incubated HUVEC-C cells with 

5, 15, and 25 μM fluorescent probe C in buffer solutions (K+ rich PBS) at pH 5.5, 6.5, 7.5, 

or 8.5 having nigericin (H+/K+ ionophore). Nigericin is a widely used ionophore for 

adjusting the intracellular pH (pHi) through equilibrating the intracellular and extracellular 

pHs. At all three concentrations, fluorescent probe C displayed very weak fluorescence at 

acidic pH (pH 5.5), whereas its fluorescence intensity showed gradual enhancement as 

intracellular pH increased from 5.5 to 8.5 (Figure 2.5). In addition, at each intracellular pH, 

higher probe concentration resulted in stronger fluorescence signals (Figure 2.5).  

 

Figure 2.5. Fluorescence images of HUVEC-C cells incubated with 5, 15, or 25 μM 

fluorescent probe C in buffers at different pH values of 5.5, 6.5, 7.5, or 8.5 having nigericin. 

Images were acquired using the inverted fluorescence microscope (AMF-4306, EVOSfl, 

AMG) at 40× magnification; scale bars = 100 μm. 
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These responses of fluorescent probe C to intracellular pH are in line with its optical 

responses to pH changes in buffer solutions (Figure 2.1), which further proved the d-PET 

mechanism of fluorescent probe C at different pH values in live cells. However, the 

commercial lysosome probe LysoSensor Green DND-189 did not exhibit any fluorescent 

responses to intracellular pH changes (please see Figures A.18−A.20 in the Supporting 

Information). We also investigated the toxicity of fluorescent probe C to HUVEC-C cells 

using the MTS assay (Figure 2.6). At low concentration of 5 μM, the fluorescent probe C 

provided more than 80% cell viability, when the concentration increased to 15 μM, the cell 

viability dropped to 60−70%, indicating the low to moderate toxicity of fluorescent probe 

C to the cells in this concentration range. However, fluorescent probe C at higher 

concentrations like 25 μM and 50 μM were very toxic to the cells as less than 10% cell 

viability was observed, which may limit the application of the probe C with this high 

concentration, and the reason for this toxicity is still under investigation. However, we are 

still able to effectively image and visualize pH changes by using a low concentration of 

probe C (with less than 15 μM) with the relatively low cellular toxicity. 
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Figure 2.6. Concentration effects of fluorescent probe C on cell proliferation measured by 

MTS assay. HUVEC-C cells were incubated with 5, 15, 25, or 50 μM fluorescent probe C 

for 48 h. To this, 20 μL of MTS reagent was added per well, and absorbance at 490 nm 

was to determine cell viability. Error bars indicate ± SD. 

2.4 Conclusion 

We have successfully prepared three pH sensitive morpholine functionalized fluorescent 

probes A−C. These probes display unusual pH responses in aqueous solutions with high 

fluorescence in basic conditions while they exhibit very weak fluorescence in acidic 

condition due to the d-PET effect from protonated morpholine moieties to the BODIPY 

cores. All three probes are photostable and display selective responses to pH over common 

metal ions. Fluorescent probe C provided a potential noninvasive method with deep-red 

fluorescence and low background for monitoring intracellular pH changes inside of living 

cells. 
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3.1 Introduction 

Various cellular processes including cell proliferation, cell growth, apoptosis, signal 

transduction, and cellular metabolism are very dependent on intracellular pH levels54, 65, 68, 

88-92.  Any pH variance from normal levels is often associated with cellular dysfunctions 

and serious diseases such as cancer and Alzheimer’s 54, 88, 92-94. The pH values inside cancer 

cells are different from those in normal cells 95. For example, the extracellular pH (pHex) 

of tumor tissues is often acidic and at pH values between 6.2 to 6.9. Lysosomes function 

to break down biological molecules under acidic pH values from 4.0 to 6 96-97. Abnormal 

lysosomal pH can lead to lysosomal storage disorders. Therefore, accurate determinations 

of intracellular pH values are important in order to understand various physical, biological 

and pathological progressions. Many fluorescent probes have been developed for detection 

of intracellular pH and they normally demonstrate high sensitivity, selectivity, real-time 

spatial imaging, minimal damaging effects, and simplicity of operation 18, 96-101.  Traditional 

rhodamine dyes and their near-infrared derivatives have been used to develop fluorescent 

probes based on spirolactam molecular switches for pH detection in living cells because of 

their outstanding photophysical properties including high molar extinction coefficients, 

high fluorescence quantum yield, excellent photostability, and a large signal-to-

background ratio 18, 100, 102-109. These fluorescent probes are highly fluorescent under acidic 

conditions and are non-fluorescent under neutral and basic pH conditions. Introducing 

steric hindrance by attaching bulky residues to traditional rhodamine and derivatives to 

facilitate the acid-activated opening of the closed spirolactam rings at higher pKa values 

has been studied. However, most fluorescent probes with closed spirolactam molecular 
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switches are still non-fluorescent under basic pH conditions 104-110. Therefore, it is 

important to overcome the non-fluorescent limitation of these fluorescent probes with 

closed spirolactam switches under basic pH conditions in order to take advantage of the 

outstanding photophysical properties of rhodamine and its derivatives.   

In this article, we detail the design and syntheses of three fluorescent probes (A-C), Scheme 1, 

bearing closed spirolactam ring configurations with high pKa values for lysosomal pH detection 

in living cells by introducing a significantly sterically bulky 2-aminophenylboronic acid 

pinacol ester to traditional rhodamine B and its near-infrared derivative, and near-infrared 

hemicyanine dyes, respectively, in order to improve the spectroscopic properties of the dyes. 

Probes B and C based on near-infrared rhodamine and hemicyanine dyes, with pKa values of 

5.45 and 6.97, display significant fluorescence peaks at 644 nm and 744 nm respectively under 

basic pH level of 8.8. Probe A similar to traditional rhodamine dyes is non-fluorescent with a 

pKa value of 5.81 under basic pH conditions.  Probes B and C display activated fluorescent 

responses to both acidic and basic intracellular pH ranges and are capable of monitoring acidic 

pH variations in lysosomes.  
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 Scheme 3.1. Chemical structures of fluorescent probes in responses to pH changes. 

3.2 Experimental section 

 Materials 

Unless specifically indicated, all reagents and solvents were obtained from commercial 

suppliers and used without further purification.  

3.2.1.1 Synthesis of fluorescent probe A 

Rhodamine B (0.498 g, 1.04 mmol) was dissolved in 10 mL of dry dichloromethane, Bop 

reagent (0.707g, 1.6 mmol) and 0.5 mL of trimethylamine were added to the solution. After 

the reaction was stirred for 30 min, 2-aminophenylboronic acid pinacol ester (0.300g, 1.36 

mmol) was added to the reaction mixture, the reaction mixture was stirred overnight at 

room temperature under a nitrogen atmosphere. The solvent was removed from the reaction 

mixture and the crude product purified by column chromatography using a four solvent 

Probe A

ON

N

N

O
BO

O

ON

N

N

O
BO O

Probe B

ON

N

H
N

O

B
O O

ON

N

H
N

O

B
O O

pKa 5.5

Probe C

BO
O

N

O

ON N

B
O O

H
N

O

ON N

pKa
 5.8

+ H+
+ OH- + H++ OH-

+ H++ OH-

Probe AH+ Probe BH+ Probe CH+

pKa 6.7



62 

system hexane/ dichloromethane /ethyl acetate/MeOH 5/3/1/0.18 resulting in the product 

as a light pink solid with 58% yield.  

1HNMR (400 MHz, CDCl3) δ: 7.99 (1H, d, J=6.88), 7.71 (1H, dd, J=5.92), 7.50 (3H, m), 

7.09 (2H, m), 6.92 (1H, m), 6.59 (1H, d, J=8.2), 6.57 (1H, d, J=8.88), 6.42 (2H, d, J= 2.44), 

6.14 (2H, dd, J= 2.52), 3.31 (8H, q, J= 7.08, 7.17), 1.44 (12H, s), 1.15 (13H, m); 13C NMR 

(75 MHz, CDCl3) δ: 167.54, 154.89, 152.15, 149.12, 131.57, 128.39, 127.98, 127.57, 

126.71, 125.85, 123.59, 123.35, 116.58, 108.22, 104.42, 98.05, 80.96, 69.89, 44.46, 29.88, 

26.44, 25.11, 12.78. 

3.2.1.2 Synthesis of fluorescent probe B 

Near-infrared rhodamine dye (4) was prepared by the condensation of 6-(dimethylamino)-

3,4-dihydronaphthalen-1(2H)-one (3) with 2-(4-(diethylamino)-2-

hydroxybenzoyl)benzoic acid in sulfuric acid at high temperature according to the literature 

111.  Near-infrared rhodamine dye (4) (100.0 mg, 0.21 mmol) was then dissolved in 5 mL 

of dry dichloromethane, trimethylamine 0.5 ml and Bop (140 mg, 0.32 mmol) added and 

the mixture stirred for 15 min.  2-Aminophenylboronic acid pinacol ester (95.0 mg, 0.21 

mmol) was dissolved in 2 ml of DCM and added to the reaction mixture and stirred at room 

temperature overnight under N2. The solvent was removed and crude was washed with 

water, extracted with DCM and dried over anhydrous sodium sulfate. The solvent was 

evaporated and the crude product was purified by column chromatography with 

dichloromethane/methanol (v/v) 50:1 and then (v/v) 20:1 producing the product as a blue 

solid in 20% yield.   
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1HNMR (400 MHz, Acetonitrile-d3) δ: 10.20 (1H, s), 8.21 (1H, d, J=8.4), 8.15 (1H, m), 

8.07 (1H, m), 7.79 (2H, m), 7.72 (1H, m), 7.60 (1H, m), 7.53 (1H, m), 7.33 (1H, m), 7.05 

(1H, m), 6.86 (1H, d, J=2.48), 6.80 (2H, m), 6.47 (1H, d, J=2.48), 3.54 (4H, q, J= 7.24 and 

7.24), 3.16 (4H, s), 2.87 (6H, s,s), 2.64 (4H, q, J= 9.12 and 8.88), 1.40 (12H, d, J= 2.92), 

1.27 (6H, m); 13CNMR (75 MHz, Acetonitrile-d3) δ: 164.51, 164.27, 158.99, 156.83, 

155.42, 153.49, 145.52, 144.27, 136.57, 135.37, 134.03, 133.03, 132.18, 131.27, 129.97, 

129.84, 129.34, 127.04, 126.42, 123.78, 120.97, 119.33, 115.20, 114.88, 112.28, 110.75, 

107.88, 96.43, 85.01, 45.79, 40.66, 37.80, 37.76, 37.12, 31.23, 30.00, 28.06,25.33, 25.29, 

24.39, 12.80.  

3.2.1.3 Synthesis of fluorescent probe C 

Near-infrared hemicyanine dye (8) were prepared by the condensation of Fisher aldehyde 

(7) with 9-(2-carboxyphenyl)-6-(diethylamino)-1,2,3,4-tetrahydroxanthylium percloride 

(6) 64, 112. Hemicyanine dye (8) (140 mg, 0.25 mmol) was then dissolved in dry 

dichloromethane (7 ml) and stirred under N2. Trimethylamine (0.5 mL) and Bop (110 mg, 

0.5 mmol) were added to the mixture.  After the reaction was stirred for 15 min, 2-

aminophenylboronic acid pinacol ester (114 mg, 0.52 mmol) in 2 ml of dichloromethane 

was added. This reaction mixture was stirred at room temperature overnight under N2. The 

solvent was removed and the crude product washed with water and brine solution, extracted 

with dichloromethane and dried over sodium sulfate. The solvent was evaporated and the 

crude product was purified by column chromatography with dichloromethane /methanol 

(v/v) 50:1 and then (v/v) 20:1 to produce the product as a green solid with 15% yield.  
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 1HNMR (400 MHz, Acetonitrile-d3) δ: 8.13 (1H, d, J=6 Hz), 8.04 (1H, m), 7.78 (2H, m), 

7.45 (2H, m), 7.33 (3H, m), 7.11 (1H, m), 6.82 (1H, m), 6.71 (2H, m), 6.12 (2H, d, J=12Hz), 

3.58 (3H, s), 3.53 (4H, m), 3.33 (1H, d, J= 6 Hz), 2.64 (2H, m), 2.37 (2H, t, J=6 Hz), 1.76 

(6H, s), 1.35 (8H,s), 1.29 (2H, d, J=4.83), 1.23 (5H, m), 1.13 (2H, s); 13CNMR (75 MHz, 

Acetonitrile-d3) δ: 175.08, 168.32, 152.57, 136.63, 133.23, 132.25, 130.59, 130.18, 129.38, 

128.90, 125.95, 124.30, 123.04, 119.70, 118.12, 116.58, 114.05, 112.68, 111.79, 96.90, 

92.58, 85.49, 74.67, 50.26, 45.64, 32.20, 28.45, 27.53, 25.27, 21.33, 12.70. 

 Optical measurement 

We investigated the effect of pH on the absorption spectra of the fluorescent probes. A 

citrate–phosphate buffer (0.1 M) was used for acidic pH and a carbonate-bicarbonate buffer 

(0.2 M) was used for basic pH. Ethanol 1.0% was used as a co-solvent. The photostability 

and selectivity measurements of the fluorescent probes were conducted under similar 

conditions to those employed for the investigation of the pH dependency. 

 Live cell imaging 

MDA-MB231 and HUVEC-C cells were obtained from ATCC and cultured according to 

published protocols 113.  For imaging experiments, cells were plated in 12 well plates at the 

seeding density of 1x105 cells/well and incubated overnight at 37 oC in a 5% CO2 incubator. 

The cells were then rinsed twice with 1x PBS and subjected to serum starvation for two 

hours. Incubation with probe A (5µM/10µM), B (5µM) and C (5µM) was carried out for 

one hour in fresh serum free media containing 1 µM Lysosensor green DND-189 (Life 

Technologies) at 37 °C. Hoechst 33342, a nuclear stain (1 µg/mL) was added to the cells 
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and allowed to incubate for 10 minutes. After incubation, cells were rinsed thrice with 

potassium rich PBS prepared at different pH values of 4.5, 5.5, 6.5, 7.5 or 8.5. The cells 

were further incubated with nigericin (1 µg/mL) for 5 minutes in potassium rich PBS 

buffers at different pHs 53, 114. Finally, the images were acquired using an inverted 

fluorescence microscope (AMF-4306, EVOSfl, AMG) at 60X magnification. 

 Computational details 

Models suitable for calculations for probes A-C and their protonated versions were 

obtained as described previously115 using Chem3d with MM2 minimization of energies116, 

followed by force field (UFF) calculations in Avogadro117. The molecular data were refined 

using density functional theory (DFT) employed with the APFD functional 118 and electron 

basis sets initially at the 6-31*g(d) level to convergence in Gaussian 16 119. The final model 

was conducted with 6-311+g(2d,p) basis sets for all structures. Imaginary frequencies were 

not obtained in any of the frequency calculations. The excited states were assessed on the 

basis of TD-DFT optimizations120 in a Polarizable Continuum Model (PCM) of water 121. 

Results were interpreted using GaussView 6 122 for all data and figures. The results of the 

calculations (including drawings of the  molecular orbitals discussed) are given in detail in 

the Supporting Information. 
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3.3 Results and discussion 

 Probe design and synthesis 

We chose traditional rhodamine and its near-infrared derivative, and near-infrared 

hemicyanine dye as fluorophore probes not only because of their excellent photophysical 

properties including high extinction coefficient, high fluorescence quantum yields, and 

excellent photostability,93, 111, 123 but also their easy functionalization with amine 

derivatives to form different unique spirolactam molecular switches for different sensing 

and imaging applications. In order to increase pKa values of the fluorescent probes, we 

selected a considerably sterically bulky molecule, 2-aminophenylboronic acid pinacol 

ester, to modify these fluorophores. Traditional rhodamine B, Scheme 2, is commercially 

available while a near-infrared rhodamine dye (4) was prepared by the condensation 

reaction of 6-(dimethylamino)-3,4-dihydronaphthalen-1(2H)-one (3) with 2-(4-

(diethylamino)-2-hydroxybenzoyl) benzoic acid (2) in sulfuric acid at high temperature 110. 

Near-infrared hemicyanine dye (8) was prepared by the condensation reaction of 2-(4-

(diethylamino)-2-hydroxybenzoyl) benzoic acid (2) with cyclohexanone (5) in sulfuric 

acid at high temperature, affording 9-(2-carboxyphenyl)-6-(diethylamino)-1,2,3,4-

tetrahydroxanthylium perchlorate (6) upon addition of perchloric acid, and followed by 

further condensation of intermediate (6) with Fisher’s aldehyde (7).  Fluorescent probes A, 

B and C were each prepared by coupling the carboxylic acid residues of rhodamine B, 

near-infrared rhodamine dye (4) and hemicyanine dye (8) respectively with 2-

aminophenylboronic acid pinacol ester (1) in the presence of benzotriazol-1-
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yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP) reagent in methylene 

chloride containing triethylamine, see Scheme 2.  The chemical structures of the probes 

were characterized by 1H and 13C NMR and electrospray ionization mass spectrometer 

(ESI-MS).  

Scheme 3.2.  Synthetic approach to prepare fluorescent probes A, B, and C. 

Absorption responses of the probes to pH changes 

We obtained the absorption spectra of the probes in 0.1 M citrate–phosphate (pH 2.0 to 

7.0) and phosphate-phosphate buffers (pH 7.0 to 10.8) containing 1% ethanol (Figure 3.1).  

Probe A displays no absorption above 400 nm at neutral and basic pH environments as it 
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retains a closed spirolactam configuration. Gradual pH decreases from 7.6 to 2.0 results in 

gradual absorbance increases of an absorption peak in now probe AH+ at 567 nm (Figure 

3.1).  Probe A has a pKa value of 5.8 based on a plot obtained by titration of absorption 

and pH, Figure B.16. Probe B has moderate absorption peak at 619 nm at basic pH 8.8, 

indicating that partial opening of the spirolactam ring configuration occurs under basic 

conditions due to the interactions between the sterically bulky 2-aminophenylboronic acid 

pinacol ester residue and the H atoms in the dihydronaphtyl moiety.  Decreases of pH from 

8.8 to 2.0 lead to substantial absorbance increases in the absorption peak at 619 nm.  Probe 

B was assessed to have a similar pKa value at 5.5 compared to probe A, Figure B.14.  Probe 

C exhibits noticeable a near-infrared absorption peak at 724 nm and two short absorption 

peaks at 538 nm and 387 nm at a basic pH level of 10.8.  Probe C responds to gradual pH 

decreases from 10.8 to 3.0 with significant absorbance increases of the near-infrared 

absorption peak, which is gradually blue shifted to a maximum of 10 nm upon attaining a 

pH of 3.0.  Probe C has the highest pKa value of 6.31 among the three probes. The different 

pKa values of the probes can be ascribed to differences in the magnitude of steric hindrance 

between the closed spirolactam moiety, xanthene and its derivative cores and also the 

different nature of the conjugation obtained upon protonation.  
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Figure 3.1. Absorption spectra of probes A, B, and C and their respective protonated 

versions in different pH buffers containing 1% ethanol. Citrate-phosphate buffers were 

used for pH values from 2.0 to 7.0 while phosphate buffers were employed for pH values 

from 7.0 to 10.8.  

We also evaluated fluorescence responses of the probes to pH changes in 0.1 M citrate-

phosphate or phosphate buffer solutions containing 1% ethanol (Figure 3.2). Via this 

method, probes A-C have pKa values of 5.81, 5.45 and 6.97, respectively as calculated 

using the Boltzmann equation, see Figs B.13-B.15.  These pKa values obtained via 

fluorescence measurements are in good agreement with those obtained by absorption but 

these data had better R2 values. Probe A based on traditional rhodamine B is non-

fluorescent under neutral and basic pH conditions as it contains a closed spirolactam ring. 

Probe A reacts to pH decreases from 6.8 to 2.0 with significant fluorescence increases at 

580 nm which is due to extended conjugation in the rhodamine moiety as a result of the 

opening of the spirolactam ring structure.  In contrast, probes B and C show moderate 

fluorescence peaks at 650 nm and 740 nm at pH 8.8 and 10.8, respectively. Under basic 

pH conditions, a small percentage of probes B and C may exist in the protonated ring-

opened spirolactam form. It may be possible for the larger steric hindrance (as described 
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above) in probe B to more than compensate for the slightly lower pKa value as compared 

to that in probe A, whereas probe C has the steric hindrance and the highest pKa value. 

Additionally, our previously reported probe containing a dihydronaphthyl moiety and an 

adjacent ethylenediamine instead of the much larger aminophenylboronic acid pinacol 

ester group exhibited a pKa of 5.15 and was only fluorescent under acidic conditions 124. 

Decreasing the pH from 8.8 to 2.0 (in probe B) and from 10.8 to 3.0 (in probe C) further 

activates ring opening of the spirolactam structures which significantly enhances 

fluorophore π-conjugation, and, consequently increases the fluorescence intensity of probe 

B and C at 650 nm and 740 nm, respectively.   

Figure 3.2. Fluorescence spectra of probes A, B, and C in different pH buffers containing 

1% ethanol after excitation at 530 nm, 560 nm, and 660 nm, respectively. Citrate-phosphate 

buffers were used for pH values from 2.0 to 7.0 while phosphate buffers were employed 

for pH values from 7.0 to 10.8. 

Calculations 

In order to understand the nature of any structural changes that the probes may experience 

upon protonation and to clarify the nature of the electronic transitions, theoretical 
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calculations were conducted in Gaussian 16119 using the Austin-Frisch-Petersson 

functional with dispersion (APFD)118. TD-DFT optimizations120 in a Polarizable 

Continuum Model (PCM) of water121 were employed to calculate excited states. Visible 

evidence of the hindrance between the 2-aminophenylboronic acid pinacol ester residue 

and an adjacent H atom in the dihydronaphtyl moiety in probes B and C is displayed in 

Figure 3. 

 

  

 

 

 Figure 3.3.  GaussView 122 drawings of probes B (left) and C (right) where the steric 

interactions are indicated with a    . 

Comparing the optimized geometries of the probes A-C to the protonated versions AH+-

CH+, as is presented in Figures: B.22 to B.28, Figures: B.33 to B.40 and Figures: B.45 to 

B.50 respectively, it is clear a more open structure was reached in the protonated probes as 

the N to C atom bond in the spirolactam ring breaks and the rhodamine part of the molecule 

become more conjugated. This can also be observed in the data listed in Table 3.1, which 

list a comparison of selected distances and reveals that shorter distances are obtained upon 
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protonation. Specifically, there is a shortening of the bond distances in going from probe 

A to probe AH+ as there is extended and equivalent resonance structures in the rhodamine 

moiety as the equal distances for 4-5 and 6-7 would indicate, see Table 3.1. 

However, due to the insertion of the dihydronaphtyl moiety in probes B and C, evidence 

of the resonance structure depicted in Table 3.1 for these molecules is present in the 

different distances calculated for the equivalent bond lengths, in particular between 1-2 and 

1-3.  Interestingly there was no difference between 4-5 and 6-7 for probe B but in probe C 

a difference was obtained possible signifying a more electron rich N atom at position 7.  

We find transitions for probes A and B occur in the UV range as excited state 6 in Table 

S4 and excited state 4 in Table B.8 occur at 300 and 327 nm, respectively. The addition of 

acid for these probes results in ring opening, a conjugated rhodamine moiety and a shift in 

the transition to the visible range calculated (expt) to be at 473 nm (567 nm) and 522 nm 

(619 nm) for probes AH+ and BH+ respectively. For probe C, a transition at 388 nm as 

excited state 2 in Table B12 was calculated and involved π to π* orbitals on the 

hemicyanine moiety as the MOs in Figs. B.48 and B.49 indicate. 

 

 

 

 



73 

Table 3.1. Comparison of equivalent bond distances in the probe A-C and their 

protonated versions. 

 

 
Bond distances Probe A Probe B Probe C 

1-2 1.503 1.498 1.498 
1-3 1.507 1.505 1.507 
4-5 1.366 1.366 1.367 
6-7 1.365 1.375 1.376 
8-9  1.455 1.454 

Bond distances Probe AH+ Probe BH+ Probe CH+ 
1-2 1.401 1.409 1.415 
1-3 1.398 1.384 1.377 
4-5 1.343 1.348 1.359 
6-7 1.343 1.348 1.349 
8-9  1.421 1.406 

The extended conjugation upon protonation to produce probe CH+ resulted in a transition 

at 591 nm (724 nm) listed as excited state 1 in Table B14. The nature of the conjugation is 

best summarized in an inspection of the current density diagrams, which illustrates the 

direction of the electron flow from the HOMO to the LUMO. The illustration shows that 

electron density originates from the N atoms located at either end of the bottom section of 

the illustrations and moves towards the middle. The 2-aminophenylboronic acid pinacol 

ester residues are not involved with these transitions. 
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AH+-ES1, 473 (567) nm 

172 → 173, 99.0% 

BH+-ES1, 522 (619) nm 

178 → 179, 98.8% 

CH+-ES1, 591 (724) nm 

203 → 204, 99.8% 

Figure 3.4. Current density difference illustrations as iso-surfaces for probe AH+ (left), 

BH+ (middle) and CH+ (right) as indicated for the excited states (ES) and the calculated 

and (experimental) wavelength. The composition of that specific ES together with 

percentage contribution is also indicated. Drawings of the molecular orbitals (MOs) are 

available in Supporting Information. The different density color scale ranges are ±7.562e-

5 for AH+, ±4.797e-5 for BH+ and ±6.454e-5 for CH+, see the scale at the top of the 

illustration with red negative and blue positive. 

The selectivity of the probes 

We investigated whether the probes react with 200 μM concentrations of various separate 

cations and anions in buffers at two different pH levels, namely, 2.0 and 7.4, see Fig. 3.5. 

There is no significant interference with probe responses to pH in the presence of cations 
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such as Al3+, Ca2+, Co2+, Cr3+, Cu2+, Fe3+, Hg2+, K+, Mg2+, Mn2+, Ni2+ and Zn2+ ions, or 

anions such as Cl-, Br-, SO3
2-, NO2

-, NO3
-, S2-, CO3

2- and HCO3
-. These results indicate that 

the probes maintain high selective fluorescence responses to pH without interference from 

these cations and/or anions.   

   

Figure 3.5. Fluorescence responses of probes A, B and C to pH in the absence and presence 

of cations and anions under excitation of 530 nm, 560 nm, and 660 nm, respectively. 

 Probe photostability and their reversible responses to pH 

We investigated the photostability of fluorescent probes A, B and C in a pH 2.4 buffer 

under three-hour continual excitation at 530 nm, 560 nm, and 660 nm, respectively. 

Fluorescent probes A-C showed excellent photostability with less than 4% decrease in 

fluorescence intensity during the three-hour excitation (Figure 3.6). In addition, probes A, 

B and C show reversible response to pH change between 7.4 and 2.4 (Figure 3.7).  
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Figure 3.6. Fluorescence intensity of probes A, B, and C in a pH 2.4 buffer under three-

hour continual excitation of 530 nm, 560 nm, and 660 nm. 

Figure 3.7. The reversible response of pH changes between pH 2.4 and 7.4 of probes A-

C under excitation of a wavelength of 530 nm, 560 nm, and 660 nm respectively. 

Low cytotoxicity of the probes 

An MTS assay was employed to evaluate the cytotoxicity of the probes with different 

concentrations from 5 μM to 50 μM for the viability of HeLa cells. We observed that cell 

viability values with 50 μM probes are higher than 82.3% suggesting no significant 

cytotoxicity occurs. Therefore, the low cytotoxicity and thus excellent biocompatibility 

allow for cellular imaging application (Figure 3.8).   
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Figure 3.8. Cytotoxicity of probes A, B, and C obtained by MTS assay. The HeLa cells 

were incubated with 0, 5, 10, 25, and 50 μM of probes A, B, and C for 48 h.  The relative 

cell viability was normalized to untreated cells and the cell viability has a linear 

relationship with the absorbance at 490 nm. The error bars indicate ± SD. 

 Live cell fluorescence imaging 

We conducted cellular imaging of the probes by costaining breast cancer cell line (MDA-

MB231) and human umbilical vein cells (HUVEC-C) with probes A, B and C, and a 

commercially available lysosome-targeting lysosensors Green DND-189 for co-

localization analysis to determine whether the probes are located in the organelles of living 

cells (Figure 3.9). The high Pearson’s colocalization coefficients of more than 0.92 

confirmed that the probes are localized in the lysosomes of living cells. 
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Figure 3.9. Fluorescence images of probes A, B, and C in HeLa cells were incubated with 

5 µM probe A, B, and C in pH 7.4 buffer. Lysosensor Green DND-189 (1 µM) was used 

for co-localization. The images were acquired using confocal fluorescence microscopy at 

200X magnification and the scale bar is 20 µm. The excitation of Lysosensor Green was 

488 nm and the images of Lysosensor Green were collected from 500 to 550 nm. For probe 

A and B, the excitation wavelength was 559 nm and the images were collected from 580 

to 630 nm. For probe C, the excitation wavelength was 635 nm and the images were 

collected from 720 to 770 nm 
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In order to quantitatively appraise fluorescence responses of the probes to intracellular pH 

changes, we incubated two different cell lines, breast cancer cell line (MDA-MB231) and 

HUVEC-C (see supplemental Figures B.56-B.61) with the probes in different pH buffers 

from pH 4.5, 5.5, 6.5, 7.5, to 8.5 in the presence of 1 µg/mL nigericin ionophore, which is 

employed to exchange K+ ions for H+ ions across most cellular membranes, and equilibrate 

intracellular pH with extracellular pH in buffer solutions104, 107-109, 114, 125-129. All cellular 

imaging for probe A were acquired by using an RFP light cube and for probes B and C, a 

CY5 light cube was used. The fluorescence intensity of probe A gradually becomes 

enhanced when the intracellular pH is lowered from 8.5 to 4.5 since pH decreases leads to 

the opening of closed spirolactam ring of probe A, and enhance the fluorescence of probe 

A with extended π-conjugation (Figures 10, B.56, B.60 and B.61). Probes B and C also 

respond to intracellular pH decreases from 8.5 to 4.5 with gradually fluorescence increases 

(Figures 11-12, B.57-B.61).   
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Figure 3.10. Fluorescence images of probe A in MDA-MB231 cells. MDA-MB231 cells 

were incubated with 10 µM probe A in buffers with different pH values ranging from pH 

4.5 to 8.5 in the presence of nigericin (1 µg/mL) for 1 h before imaging. Lysosensor Green 

DND-189 (1 µM) and Hoechst 33342 (1 µg/mL) were used for co-localization.  The images 

were acquired using an inverted fluorescence microscope (AMF-4306, EVOSfl, AMG) at 

60X magnification. 
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Figure 3.11. Fluorescence images of probe B in MDA-MB231 cells. MDA-MB231 cells 

were incubated with 5 µM probe B in buffers with different pH values ranging from pH 

4.5 to 8.5 in the presence of nigericin (1 µg/mL) for 1 h before imaging. Lysosensor Green 

DND-189 (1 µM) and Hoechst 33342 (1 µg/mL) were used for co-localization.  The images 

were acquired using an inverted fluorescence microscope (AMF-4306, EVOSfl, AMG) at 

60X magnification. 
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Figure 3.12. Fluorescence images of probe C in MDA-MB231 cells. MDA-MB231 cells 

were incubated with 5 µM probe C in buffers with different pH values ranging from pH 

4.5 to 8.5 in the presence of nigericin (1 µg/mL) for 1 h before imaging. Lysosensor Green 

DND-189 (1 µM) and Hoechst 33342 (1 µg/mL) were used for co-localization.  The images 

were acquired using an inverted fluorescence microscope (AMF-4306, EVOSfl, AMG) at 

60X magnification. 
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3.4 Conclusion 

Three lysosome-targeting fluorescent probes with high pKa values have been developed 

by coordination of the sterically bulky 2-aminophenylboronic acid pinacol ester to 

traditional rhodamine, a near-infrared rhodamine dyes, and a near-infrared hemicyanine 

dye to form closed spirolactam ring structures. The probes have low cytotoxicity, excellent 

reversible pH responses, and high selectivity to pH over cations and anions.  They have 

been applied to visualize intracellular pH changes in live cells.   
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4.1 Introduction 

Mitochondria possess double-membranes composed of phospholipid bilayers and proteins, 

and act as the energy-supplying organelle in almost all eukaryotic cells. Mitochondria have 

vital roles for cells metabolism such as regulating the cellular redox state, production of 

reactive oxygen species (ROS), regulation of Ca2+ homeostasis, regulation of the cell cycle 

and cell growth, and cellular death and apoptosis130-134. Under ideal physiological 

conditions, mitochondrial function under a slightly alkaline microenvironmental at a pH 

value of ~ 8.0 compared to the other subcellular compartments of the cell.135-136-137 These 

functions of the mitochondria depend on the pH level within the mitochondrial. Deviations 

of the normal mitochondrial pH is associated with mitochondrial dysfunction that is present 

with many human disorders such as neurodegenerative and neuromuscular diseases, 

obesity and diabetes, cancer and inherited mitochondrial disease133, 138-139. Therefore, an 

accurate and sensitive detection of mitochondrial pH will provide a better understanding 

of mitochondrial biology.  

Small organic fluorescent probes are the essential tool for bioanalysis and real-time 

bioimaging technologies because of their superior features of excellent sensitivity and high 

spatial resolution18, 132, 140. Fluorescent probes with near-infrared absorption and emission 

wavelengths have advantages of deep tissue penetration, low biological fluorescence 

background, and lest photodamage impact to live cells and tissues. Near-infrared 

hemicyanine and rhodamine dyes bearing spirolactam switches have been developed to 

monitor pH changes in live cells, and their pKa values significantly depend on bulky 

degrees of residues in spirolactam switches48, 64.  In order to monitor pH in mitochondria, 
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ideal fluorescent probes should possess mitochondria-targeting capability and high pKa 

values, which it is difficult to achieve by using spirolactam switches in hemicyanine and 

rhodamine dyes. In addition, fluorescent probes based on hemicyanine and rhodamine dyes 

with spirolactam switches are often used to detect pH changes in lysosomes instead of 

mitochondria because these neutral probes serve as weak bases and specifically accumulate 

in lysosomes.  With this in mind, we developed a near-infrared fluorescent probe (A) for 

the detection of pH changes in mitochondria by introducing an oxazolidine switch into a 

hemicyanine dye to overcome pH insensitivity of the near-infrared hemicyanine dyes 

without spirolactam switches. Under basic conditions, the hemicyanine dye undergoes a 

ring-closing reaction to form an oxazolidine switch, resulting in fluorescence quenching as 

the free hydroxyl group engages in a nucleophilic attack onto the indolenium moiety.  

Acidic pH effectively converts the oxazolidine switch into a hemicyanine moiety with 

significant π-conjugation through proton-activated oxazolidine ring-opening, and leads to 

gradual fluorescence enhancement at 725 nm and absorbance increases at 713 nm upon pH 

decreases from 10.0 to 5.0.  Probe A shows good photostability, good selectivity to pH, 

low cytotoxicity, and reversible fluorescence to pH changes with pKa value of 7.5(1). The 

probe has been successfully used to determine pH changes in mitochondria. 

 



88 

 

Scheme 4.1. Chemical structure of fluorescent probe with an oxazolidine switch in 

response to pH changes. 

4.2 Experimental  

 Materials 

Unless specifically indicated, all reagents and solvents were obtained from commercial 

suppliers and used without further purification. 6-(Diethylamino)-2,3-dihydro-1H-

xanthene-4-carbaldehyde (3) (283 mg, 1 mmol) and 1-(2-hydroxyethyl)-2,3,3-trimethyl-

3H-indol-1-ium salt (4) were prepared according to reported procedure. 

4.2.1.1 Synthesis of fluorescent probe A  

After 6-(diethylamino)-2,3-dihydro-1H-xanthene-4-carbaldehyde (3) (283 mg, 1 mmol) 

and 1-(2-hydroxyethyl)-2,3,3-trimethyl-3H-indol-1-ium (4) (204 mg, 1 mmol) were added 

to 10 mL of acetic anhydride, the mixture was stirred for 5 hours at 80 oC.  The reaction 

mixture was concentrated in vacuo and diluted with dichloromethane, washed by water and 

brine, dried over anhydrous Na2SO4.  The solution was filtered and the filtrate was 

concentrated. The residue was purified by using flash column chromatography through 

gradient elution with methanol to dichloromethane ratio from 5 % to 10 %, affording the 
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product as a green sold.  1HNMR (400 MHz, Chloroform-d) δ 8.48 (d, J = 14.1 Hz, 1H), 

7.49 (s, 1H), 7.43 – 7.34 (m, 3H), 7.23 (d, J = 1.2 Hz, 1H), 6.79 (dd, J = 9.0, 2.5 Hz, 1H), 

6.49 (d, J = 2.4 Hz, 1H), 6.23 (d, J = 14.2 Hz, 1H), 4.55 (d, J = 5.2 Hz, 2H), 4.50 (d, J = 

5.3 Hz, 2H), 3.53 (q, J = 7.1 Hz, 4H), 2.75 (t, J = 6.1 Hz, 2H), 2.70 (t, J = 6.0 Hz, 2H), 2.03 

(s, 2H), 1.87 (d, J = 0.7 Hz, 2H), 1.74 (s, 2H), 1.32 – 1.23 (m, 6H). 13CNMR (101 MHz, 

Chloroform-d) δ 170.68, 170.59, 163.54, 156.42, 142.33, 140.72, 130.01, 128.88, 125.59, 

122.43, 117.73, 116.01, 111.21, 77.50, 60.82, 60.62, 49.74, 45.47, 44.25, 29.98, 29.10, 

28.84, 24.93, 20.99, 20.92, 16.72, 12.72. MS/Z=469.4 

 Optical measurement 

A citrate–phosphate buffer (0.1 M) was used for acidic pH and a carbonate-bicarbonate 

buffer (0.2 M) was used for basic pH and a 10% ethanol as a co-solvent was used to 

investigate the effect of pH on the absorption spectra of the fluorescent probe. The 

photostability and selectivity measurements of the fluorescent probes were conducted 

under similar conditions to those employed for the investigation of the pH dependency. 

 Live cell imaging 

HeLa cells were seeded in 35 mm confocal glass bottom dishes (MatTek) with 1×105 cells 

per dish and cultured for 24 h before cellular imaging was conducted. For co-localization 

experiment, HeLa cells were incubated with 5 µM probe A, 1 µM Hoechst and either 1 µM 

Lysotracker Red or 1 µM Rhodamine 6G for 30 min, followed by washing the cells twice 

with PBS buffer before cellular imaging was performed. For visualization of intracellular 

pH changes, HeLa cells were rinsed with PBS buffer twice before they were incubated with 
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nigiricin (5 µg/ml) in different pH citric buffers ranging from  5.0, 6.0, 7.0, 8.0, 9.0 to 10.0 

for 30 min to equilibrate the intracellular and extracellular pH.109, 114, 126, 128-129, 141 The cells 

were further incubated with 10 µM probe A for 30 min and followed by rinsing the cells 

with FBS buffer twice before imaging was carried out.  The cells were imaged with a 200X 

objective lens for the colocalization study and with a 60X objective lens for the other 

imaging experiments. The fluorescence of nucleus dye Hoechst (blue channel) under 405 

nm excitation was collected emission from 425 nm to 475 nm; the fluorescence (red 

channel) of the probe under 635 nm excitation was collected from 725 nm to 775 nm. The 

fluorescence of commercial Lysotracker Red and Rhodamine 6G (green channel) under the 

excitation of 559 nm were collected from 600 nm to 650 nm. The images were further 

processed with Olympus FV10-ASW 3.1 viewer and Image Pro6. 

 Theoretical calculations 

Computer modelling of probes A and AH+ was accomplished using procedures published 

previously in order to establish base geometries 124. The molecular data were initially 

refined using density functional theory (DFT) employed with the B3LYP functional142 and 

electron basis sets initially at the 6-31*g(d) level to convergence in Gaussian 16119 in a 

Polarizable Continuum Model (PCM) of water.121 The final models were calculated with 

the APFD functional118  and 6-311+g(2d,p)143-144 basis sets. Imaginary frequencies were 

not obtained in any frequency calculations. The excited states were assessed on the basis 

of TD-DFT optimizations120 also in a PCM of water. Results were interpreted using 

GaussView 6122 for all data and figures. The results of the calculations (including drawings 
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of the molecular orbitals, MOs, discussed) are given in detail in the Supporting 

Information. 

4.3 Results and discussion 

 Probe design and synthesis 

Near-infrared hemicyanine molecules possess unique advantageous photophysical 

properties such as high fluorescence quantum yield, excellent chemical stability and 

photostability with near-infrared emission at 725 nm. However, hemicyanine dyes without 

spirolactam switches are insensitive to pH. In order to develop near-infrared fluorescent 

probes (N,N-diethylamino dihydroxanthene dye) for sensitive detection of mitochondrial 

pH, we introduced an oxazolidine switch to a near-infrared hemicyanine through a 

Knoevenagel condensation of 6-(diethylamino)-2,3-dihydro-1H-xanthene-4-carbaldehyde 

(3) with 1-(2-hydroxyethyl)-2,3,3-trimethyl-3H-indol-1-ium  salt (4) in acetic anhydride at 

80o C.  The oxazolidine switch activates upon immersion in mitochondrial pH producing a 

hemicyanine structure with π-conjugation of the fluorophore. 6-(Diethylamino)-2,3-

dihydro-1H-xanthene-4-carbaldehyde (3) was prepared by reacting β-bromoenal (2) 4-

(diethylamino)-2-hydroxybenzaldehyde (1) with Cs2CO3 in DMF solution at room 

temperature.  NMR and mass spectrometer have been used to characterize the probe.  
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Scheme 4.2.  Synthetic approach to prepare fluorescent probe AH+. 

 Optical responses of the probe to pH changes 

We investigated whether the probe can respond to pH changes as verified by absorption 

and fluorescence spectra in two different buffer solutions, 0.1 M citrate–phosphate (pH 

from 5.0 to 7.0) and phosphate-phosphate buffers (pH from 7.0 to 10.0) containing 10% 

ethanol (Figure 4.1).  Under basic pH 10.0 conditions, the dangling hydroxyl group reacts 

as a nucleophile with the indolenium moiety forming an oxazolidine switch through a ring-

closing reaction (Scheme 4.1). As a result, probe A shows low absorption at 713 nm, and 

weak fluorescence peak at 727 nm with fluorescence quantum yield of 29 (Figures 4.1 and 

4.2) at basic pH 10.0.  Gradual pH decreases from 10.0 to 5.0 result in significantly gradual 

absorbance increases at 713 nm and gradual fluorescence enhancement at 727 nm with 

fluorescence quantum yield of 31 at pH 5.0 because acidic pH effectively coverts the probe 

oxazolidine switch to hemicyanine structure with significantly extended π-conjugation 

(Figures 4.1 and 4.2).   
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Figure 4.1. Absorption spectra of 5 µΜ fluorescent  probe AH+ in different pH buffers 

containing 10% ethanol. Citrate-phosphate buffers were used for pH from 5.0 to 7.0 

while phosphate buffers were employed for pH from 7.0 to 10.0. 
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Figure 4.2. Fluorescence spectra of 5 µM fluorescent probe AH+ in different pH buffers 

containing 10% ethanol under excitation at 670 nm. Citrate-phosphate buffers were used 

for pH from 5.0 to 7.0 while phosphate buffers were employed for pH from 7.0 to 10.0. 

 Theoretical modeling 

The structures of probes A and AH+ were assessed in order to understand the nature of the 

p-delocalization that occurs in basic media and to speculate as to any other conformational 

changes that may be occurring. We find that for probe A as illustrated in Figs. 3 and S5, 

the rhodamine plane and that comprising the oxazolidine switch are at an acute angle of 

approximately 72o. Excited state calculations employing the TD-DFT calculation for six 

excited states reveal two possible transitions at 290.68 nm (i.e., excited state 6 in Table 

C.2) and 417 nm (i.e., excited state 1 in Table C.2).  The nature of the lower energy 

transition was depicted in the form of a current density plot, Figure 4.3 (left) that shows 

that the plane encompassing the oxazolidine ring is not involved in this transition. The 
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individual MOs from which the image for probe A in Figure 4.3 was derived are presented 

as Figures. C9 and C10. 

Figure 4.3. Current density illustrations as iso-surfaces of probes A (left) and AH+ (right). 

Red to blue areas indicate -ve to +ve values for the different density of 1.428e-4 for A and 

1.2023-2 for AH+.  

For probe AH+ as illustrated in Figure 4.3 and C11, there is a major conformation change 

when the oxazolidine ring switch is activated. Specifically, the planes formed by the 

rhodamine moiety and that for the hemicyanine are roughly coplanar (angle of 1.72o) as is 

evident in the overall delocalization in the current density image for probe AH+ depicted 

in Figure. 4.3. The MOs from which this image was obtained are given as Figures. C14 

and C15. The excited state calculation for six excited states revealed that two transitions as 

evident in Fig. S12 at 333.75 nm for excited state 4 and 593.26 nm for excited state 1 as 

listed in Table S4.  Clearly the transition at 593.26 nm (expt. 725 nm) results from the 

extended p-delocalization as a consequence of activation of the oxazolidine switch. 
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 Probe selectivity, photostability and pH responsive reversibility 

The possible interference of other analytes was tested by recording the fluorescence 

spectrum of probe A (5 µM ) in the absence and presence of high concentration (200 µM) 

of various essential metal ions such as Al3+, Fe3+, Fe2+, Cr3+, Ca2+, Co2+, Hg2+, Mg2+, Mn2+, 

Ni2+, Zn2+ K+, and Na+ ions, or I-, Br-, Cl-, SO3
2-, NO2

-, NO3
-, S2-, CO3

2- and HCO3. The 

results indicate that the probes maintain high selective fluorescence responses to pH 

without interference from these cations and/or anions (Figure 4.4). 

 

 
 

Figure 4.4. Fluorescent responses of 5 µM fluorescent probe A to pH at 5.0 and 10.5 in 

the absence and presence of different metal ions (200 µM), respectively.   

Fluorescent probe A was excited continuously at its optimal excitation (670 nm) for 5 min 

intervals and fluorescence intensity was measured every 5 min. The result indicates that 

probe A displayed a moderate photostability with less than 15% decrease in fluorescence 
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intensity under three-hour excitation (Figure 4.5A). Fluorescent probe A exhibits a 

reversible response to pH changes between 5.0 and 10.0 (Figure 4.5B).  

 

 
 

Figure 4.5. A). Photostability of 5 μM fluorescent probe A at pH 5.0 in 10% ethanol 

solution. Sample was exposed under respective optimal excitation wavelength (670 nm) 

and fluorescence intensities were measured at 5-min intervals., B). The reversible response 

of pH changes between pH 5.0 and 10.0 of 5 µΜ probes A under excitation of wavelength 

of 670 nm.  

 Probe cytotoxicity  
We evaluated cell cytotoxicity of the probe for its biocompatibility by the MTT assay.   The 

cytotoxicity of the probe increases slightly with the probe concentration with lower cell 

viability. High centration (50 µM) of the probe does not cause any considerable 

cytotoxicity because cell viability is still higher than 91%, indicating that the probe shows 

excellent biocompatibility and low toxicity (Figure 4.6).  
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Figure 4.6. Cytotoxicity and cell proliferation effect of probe was tested by MTT assay.  

The HeLa cells were incubated with different concentrations of the probe for 2 hours for 

mitochondria staining.  

 Selective staining of mitochondria 

We elevated the probe performance by testing its cell permeability.  We found out that the 

probe displayed excellent cell permeability. Probe A carrying a positive charge could be 

used to specifically target the negatively-charged matrix of mitochondria. We next 

performed colocalization imaging experiments in HeLa cells to observe intracellular 

distribution. The lysotracker Red and rhodamine 6G were used to confirm the specificity 

targeting mitochondria capability of probe A.  The probe fluorescence is impeccably 

overlapped with fluorescence mitochondria-targeting rhodamine 6G with Person 

correlation coefficient of 0.923 while the probe fluorescence shows poor Person correlation 
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coefficient of 0.631 with lysosome-targeting Lysotracker Red in HeLa cells. These results 

confirm that the probe exhibits excellent mitochondria selectivity.  

 

 

Figure 4.6. Confocal microscopic cellular images and merged images of the probe 

colocalized with Hoechst, and Lysotracker Red in HeLa cells. Colocalization scatterplot of 

the probe with Lysotracker Red. Scale bar: 20 μm. 
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Figure 4.7. Confocal microscopic cellular images and merged images of the probe 

colocalized with Hoechst, and rhodamine 6G in HeLa cells. Colocalization scatterplot of 

the probe with rhodamine 6G. Scale bar: 20 μm. 

In order to further demonstrate that the probe specifically stain mitochondria, we employed 

to treat HeLa cells with carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone) (FCCP), 

a uncoupler of oxidative phosphorylation in mitochondria after the cells were incubated 

with the probe. Our results show that FCCP treatment increases fluorescence intensity of 

the probe because FCCP can disrupt the mitochondrial H+ gradient and lead to acidification 

of mitochondria (Figure 4.8). 
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Figure 4.8. Confocal microscopic cellular images of HeLa cells with 10 µM probe A in 

absence and in the presence of 200 nM Carbonyl cyanide 4-

(trifluoromethoxy)phenylhydrazone) (FCCP) treatment. Scale bar: 50 µm. 

 Visualization of mitochondrial pH changes in live cells 

Since we demonstrated that the probe could selectively accumulate in mitochondria, we 

further studied whether the probe could be used to determine mitochondrial pH changes in 

live cells. We incubated HeLa cells with 10 µM probe A in different pH buffers containing 

5 µM nigericin, which was used to adjust intracellular pH to external buffer pH.  Our results 

show that gradual decreases of intracellular pH values from pH 10.0 to 5.0 significantly 

enhance cellular fluorescence of the probe, which is consistent with fluorescence responses 

of the probe to buffer pH changes (Figures 4.9 and 4.2) as acidic pH effectively converts 
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the oxazolidine switch into hemicyanine with significant π-conjugation through proton-

activated oxazolidine ring-opening.  

 

Figure 4.9. Confocal microscopic cellular images of HeLa cells with 10 µM probe A 

incubated in different pH buffers containing 5 µM nigericin. Scale bar: 50 µm. 

4.4 Conclusion  

We have successfully developed a near-infrared fluorescent probe by incorporating the 

oxazolidine switch into hemicyanine for specific targeting of mitochondria. Effective 

monitoring of mitochondrial pH changes in live cells is achieved through π-conjugation 

modulation between oxazolidine switch and hemicyanine structure upon pH changes.  
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5 Summary of the dissertation  
 

In summary, the ultimate goal of this dissertation was to develop near-infrared and water-

soluble fluorescent probes for the detection of pH variation in living cells.  BODIPY, 

rhodamine and hemicyanine dyes were used as scaffold platforms to construct small 

organic fluorescent probes for lysosomal and mitochondrial pH detection.  The 

fluorescence mechanisms are based on PET, ring opening and closing, and the oxazolidine 

switch. 

 

In chapter two, the hydrophilicity and solubility of BODIPY in polar solvent was enhanced 

by introducing ortho- or meta-substituent group of tri(ethylene glycol)methyl ether on the 

meso-phenyl rings and positions 1,7.  The morpholine moieties introduced at positions 4,4′ 

and 2,6 of the BODIPY dyes selectively targeted the lysosome. 

 

3,4-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzaldehyde  introduced at positions 1,7 

tuned the absorption and emission wavelength of the probe to the near infrared region. The 

fluorescent probes were highly fluorescence in natural and basic conditions. However, the 

probes displayed weak fluorescence under acidic conditions due to the d-PET effect from 

the protonated morpholine to the BODIPY dyes.  Probe C was successfully applied for 

monitoring lysosomal pH changes with low background and deep-red fluorescence.  

 

In order to further expand the scope of lysosomal pH monitoring, we developed three 

sterically hindered fluorescent probes-based on the spirolactam ring switch (A-C) with 
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high pKa values (chapter three). 2-aminophenylboronic acid pinacol ester was introduced 

to traditional rhodamine B, probe A, near infrared rhodamine derivative, probe B, and 

near infrared hemicyanine dye, probe C, to tune the pKa and facilitate spirolactam ring 

opening and closing. The probes were highly fluorescent under acidic condition due to the 

ring open form. Under basic and neutral conditions fluorescent probe A was non-

fluorescent as the spirolactam ring retained its closed form. However, probes B and C 

weakly fluoresced under both neutral and basic conditions, which indicated a partial 

opening of the ring due to the steric hindrance caused by the bulky 2-aminophenylboronic 

acid pinacol ester and the sp3 hybridized carbon on the dihydronaphtyl moiety. All probes 

possessed excellent water solubility, high biocompatibility, excellent reversibility, and 

high selectivity to pH. The probes were successfully applied to detect the lysosomal pH 

changes in living cells. 

 

Additionally, in chapter four we designed and synthesized a NIR fluorescent probe that 

possesses high biocompatibility, good photostability, selectivity, and water solubility for 

the effective detection of mitochondrial pH changes in living cells. The probe was prepared 

by combining an oxazolidine switch with a near-infrared hemicyanine dye, which allowed 

us to overcome the pH insensitivity of the dye. When we decreased the pH from 10.0 to 

5.0, the acidic environment expanded the π-conjugation of the probe and activated the 

fluorescence by converting the oxazolidine switch to hemicyanine. The positive charge of 

the probe acted as a mitochondrial targeting moiety and effectively monitored the 

mitochondrial pH 
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A Appendix A: Supporting information of chapter 2 
 

A.1 Synthesis 
A.1.1 Synthesis of fluorescent probe A: 

To a solution of compound 2 (0.9 mmol, 113 mg) in anhydrous THF (1 mL) was added 

ethylmagnesium bromide (0.9 mmol, 0.9 mL of 1.0 M solution). When the mixture was 

heated at 60 °C for 2 hours and cooled down to room temperature, this freshly made 

Grignard reagent was transferred to a Schlenk flask containing a solution of BODIPY dye 

1 (100 mg, 0.15 mmol) in anhydrous THF (2 mL) via cannula under nitrogen protection. 

The resulting mixture was stirred at 60 °C overnight until complete consumption of the 

starting material which was monitored by TLC plates. When water (10 mL) was added to 

the mixture, the resulting mixture was extracted with CH2Cl2 (25 mL). The organic layer 

was washed with water (50 mL) and brine solution (50 mL), dried over anhydrous Na2SO4 

and filtered. The filtrate was concentrated under reduced pressure and the crude product 

was purified by column chromatography using CH2Cl2/MeOH (9:0.5, v/v) as eluent to 

yield fluorescent probe A as orange oil (29 mg, 23%).  

BODIPY dye 4: A mixture of DMF (10.0 mL) and POCl3 (10.0 mL) was stirred in an ice 

bath for ten minutes under an argon atmosphere. The mixture was warmed to room 

temperature and further stirred for 35 minutes. After adding BODIPY dye 3 (600 mg, 0.93 

mmol) in ClCH2CH2Cl (70 mL) to the reaction mixture, the resulting mixture was stirred 

at 50 oC for two hours. The reaction mixture was cooled down to room temperature and 

then was slowly poured into saturated NaHCO3 aqueous solution at 0 oC in an ice bath. 
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The mixture was warmed to room temperature and was further stirred for 2 hours until no 

more bubble was generated. The mixture was then washed with water and brine solution. 

The organic layers were combined, dried over anhydrous Na2SO4, and concentrated under 

reduced pressure to give crude intermediate BODIPY dye. This crude intermediate 

BODIPY dye was used directly for the next step reaction without any purification. The 

BODIPY dye 4 was prepared from the crude product in the last step by the similar 

procedures but was run at higher temperature of 60 oC for 4 hours instead of 50 oC for 2 

hours. The crude product was purified by column chromatography using 

hexanes/CH2Cl2/acetone/EtOH (4/2/2/0.5, v/v/v/v) as eluent to yield BODIPY 4 as deep 

red oil (295 mg, overall yield: 45%). 1H NMR (400 MHz, CDCl3): δ 9.97 (s, 2H), 6.92 (d, 

J = 8 Hz, 1H), 6.63 ‒ 6.60 (m, 2H), 4.13 (t, J = 4.8 Hz, 2H), 4.02 (t, J = 4.8 Hz, 2H), 3.84 

(t, J = 4.8 Hz, 2H), 3.71 ‒ 3.58 (m, 8H), 3.50 ‒ 3.47 (m, 2H), 3.44 ‒ 3.28 (m, 11H), 3.25 

(s, 3H), 2.27 (s, 6H), 1.78 (s, 6H). 13C NMR (100 MHz, CDCl3): δ 185.8, 162.0, 159.9, 

156.4, 148.0, 145.2, 132.5, 129.4, 127.7, 114.9, 107.0, 100.9, 70.6, 69.6, 67.8, 59.0, 58.9, 

13.4, 11.6. HRMS (ESI): calculated for C35H47BF2N2O10Na [M+Na]+,727.3184; found, 

727.3196. 

A.1.2 Synthesis of fluorescent probe B 

A mixed solution of BODIPY 4 (100 mg, 0.14 mmol) and morpholine (75 mg, 0.84 mmol) 

in 30 mL dry ClCH2CH2Cl was stirred at 50 oC for 4 hours. When NaBH(OAc)3 (118 mg, 

0.56 mmol) and acetic acid (1 drop) were added to the flask at room temperature, the 

mixture was stirred overnight at room temperature, diluted with CH2Cl2 and washed with 

water and brine solutions. The organic layer was collected, dried over Na2SO4 and 



121 

concentrated in reduced pressure. The crude product was purified by column 

chromatograph using CH2Cl2/MeOH, (9/0.5, v/v) as eluent to obtain fluorescent probe B 

as deep orange oil (72 mg, 61%). 

BODIPY dye 6: When BODIPY dye 4 (88 mg, 0.125 mmol), compound 5 were dissolved 

in a mixture of toluene (30 mL), piperidine (0.2 mL) and acetic acid (0.2 mL), the reaction 

mixture was refluxed at 120 oC for 3 hours. Any water formed during the reaction was 

removed azeotropically by using a Dean-Stark apparatus. After the reaction was quenched 

by water (5 mL) at room temperature, the mixture was concentrated under reduced pressure 

and re-dissolved in CH2Cl2 (100 mL). It was then washed sequentially with saturated 

NH4Cl solution (100 mL), water (100 mL) and brine solution (100 mL), dried over 

anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and 

the crude product was purified by column chromatography using 

hexane/CH2Cl2/acetone/EtOH (3/3/2/0.7, v/v/v/v) as eluent to obtain BODIPY dye 6 as 

violet color oil (35 mg, 10.4%). 1H NMR (400 MHz, CDCl3): δ 9.88 (s, 2H), 7.10 (d, J = 8 

Hz, 1H), 6.64 ‒ 6.58 (m, 5H), 6.52 (d, J = 16 Hz, 2H), 6.43 (d, J = 2.4 Hz, 1H), 5.96 (d, J 

= 16 Hz, 2H), 4.14 (t, J = 4.8 Hz, 4H), 4.07 (t, J = 4.8 Hz, 4H), 3.94 ‒ 3.40 (m, 64H), 3.38 

‒ 3.32 (m, 18H), 3.30 (s, 3H), 2.91 (s, 6H). 13C NMR (100 MHz, CDCl3): δ 186.9, 161.9, 

159.8, 157.5, 150.0, 148.9, 147.5, 142.0, 140.0, 132.2, 131.1, 129.5, 126.4, 120.7, 116.9, 

115.0, 114.0, 112.6, 107.2, 100.2, 71.9, 71.7, 70.8, 70.7, 70.6, 70.5, 70.3, 69.6, 69.5, 68.7, 

58.9. HRMS (ESI): calculated for C77H111BF2N2O26Na [M+Na]+, 1551.7378; found, 

1551.7388. 
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A.2 Optical Measurement 
A.2.1 Quantum yield calculation 

The UV-Vis absorption spectra of fluorescent probes A, B and C for pH dependency, 

selectivity, photostability and solvent effect measurements were collected in the range from 

300 to 800 nm with increments of 1 nm. Their corresponding fluorescence spectra were 

collected at the excitation wavelength of 470 nm, 490 nm, and 580 nm for fluorescent 

probes A, B and C with increments of 1 nm, respectively. The excitation and emission slit 

widths were set up to 3 nm.  The concentration of the dye in each sample is 5 μM. 

Sulforhodamine 101 dye (Φf = 95% with excitation wavelength at 577 nm in ethanol)145 

was used as a reference standard to determine the fluorescence quantum yields of 

fluorescent probe C in ethanol and buffer solutions. Rhodamine 6G (Φf = 95% in 

ethanol)146-147 was used as a reference standard to determine the fluorescence quantum 

yields of fluorescent probes A and B in ethanol and buffer solutions. Both samples and 

references were freshly prepared under identical conditions. The fluorescence quantum 

yields were calculated using the following equation: 

𝜙𝜙𝑋𝑋 = 𝜙𝜙𝑠𝑠𝑠𝑠 �
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑋𝑋
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠

� �
𝜂𝜂𝑋𝑋2

𝜂𝜂𝑠𝑠𝑠𝑠2
� 

Where the subscripts ‘st’ and ‘X’ stand for standard and test, respectively, Φ is the 

fluorescence quantum yield, “Grad” represents the gradient from the plot of integrated 

fluorescence intensity versus absorbance and η is the refractive index of the solvent. 
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A.2.2 Determination of pKa by fluorometric titration 

The constants Ka of fluorescent probes A, B and C were determined in buffer solutions by 

fluorometric titration as a function of pH using the fluorescence spectra. The expression of 

the steady-state fluorescence intensity F as a function of the proton concentration has been 

extended for the case of a n: 1 complex between H+ and a fluorescent probe, which 

expressed by the equation as below148:  

𝐹𝐹 =
𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚[H+]𝑛𝑛 + 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝐾𝐾𝑎𝑎

𝐾𝐾𝑎𝑎 + [H+]𝑛𝑛
 

Fmin and Fmax stand for the fluorescence intensities at maximal and minimal H+ 

concentrations, respectively, and n is apparent stoichiometry of H+ binding to the probe 

which affects the fluorescent change. Nonlinear fitting of equation expressed above to the 

fluorescence titration data recoded as a function of H+ concentration with Ka and n as free 

adjustable parameters yields the estimated apparent constant of Ka. 

A.3 MTS assay: 

MTS assay was performed with HUVEC-C cells (from ATCC). The cells were plated at a 

density of 5,000 cells/well on a 96-well cell culture plate and incubated at 37 oC in 5% CO2 

incubator overnight. After incubation, the media was removed and the cells were washed 

with 1X PBS. Fresh media with 0 µM, 5 µM, 15 µM, 25 µM, or 50 µM of fluorescent 

probe C dissolved in DMSO (with less than <0.5% DMSO final concentration in media) 

were added to the wells and measured in 6 replicates for each dye concentration. Blanks 

used for background subtraction had everything else except the cells and were prepared at 

the same time. The plates were incubated at 37 oC in 5% CO2 incubator for 48 h. After the 
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48-hour incubation, 20 µL of MTS solution (from CellTiter 96 Aqueous Non-Radioactive 

Cell proliferation Assay (MTS) kit, Promega) was added to each well. The absorbance at 

490 nm was acquired after 4 h incubation at 37 oC, using an ELISA plate reader (BioTek 

Instruments, Inc.). Plots were normalized to control wells containing media and cells only. 

Table A.1. Optical properties of fluorescent probes A, B and C. 
 solvent λabs (nm) λem (nm) εmax (104 M-1cm-1) Φf (%) 

Probe A Ethanol 498 508 7.89 56 
Buffer (pH 7.4) 501 506 7.48 18 
Buffer (pH 4.0) 495 507 7.62 5.4 

Probe B Ethanol 515 529 10.03 8.0 
Buffer (pH 7.4) 511 523 7.86 1.3 
Buffer (pH 4.0) 502 514 9.74 0.14 

Probe C Ethanol 565 652 3.15 8.6 
Buffer (pH 7.4) 550 665 5.06 0.32 
Buffer (pH 4.0) 532 654 5.12 0.036 
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Figure A.1. 1H NMR spectrum of fluorescent probe A in CDCl3 solution. 

Figure A.2. 13C NMR spectrum of fluorescent probe A in CDCl3 solution. 
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Figure A.3. 1H NMR spectrum of BODIPY dye 4 in CDCl3 solution. 

Figure A.4. 13C NMR spectrum of BODIPY dye 4 in CDCl3 solution. 
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Figure A.5. 1H NMR spectrum of fluorescent probe B in CDCl3 solution. 

Figure A.6. 13C NMR spectrum of fluorescent probe B in CDCl3 solution. 
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Figure A.7. 1H NMR spectrum of BODIPY dye 6 in CDCl3 solution. 

Figure A.8. 13C NMR spectrum of BODIPY dye 6 in CDCl3 solution. 

 

0 .01 .02 .03 .04 .05 .06 .07 .08 .09 .010 .011 .0
ppm

-10020406080100120140160180200

ppm

O

O

O

O

O

O

O

O

N B N
F F

OO

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

N B N
F F

OO

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O



129 

 

Figure A.9. 1H NMR spectrum of fluorescent probe C in CDCl3 solution. 

 

Figure A.10. 13C NMR spectrum of fluorescent probe C in CDCl3 solution. 
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Figure A.11. Absorption and emission spectra of BODIPY dyes 1, 4 and 6 (5 μM) in buffer 

solution at different pH values. The inset graphs in upper row are the corresponding 

changes fluorescence intensity at peak wavelengths at different pH conditions.  
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Figure A.12. Absorption and emission spectra of fluorescent probe A (5 µM) in the 

presence of various metal cations (200 µM) in buffer solution at pH 4.0 (upper row) and 

pH 7.4 (lower row).  
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Figure A.13. Absorption and emission spectra of fluorescent probe B (5 µM) in the 

presence of various metal cations (200 µM) in buffer solution at pH 4.0 (upper row) and 

pH 7.4 (lower row).  



133 

 

Figure A.14. Absorption and emission spectra of fluorescent probe C (5 µM) in the 

presence of various metal cations (200 µM) in buffer solution at pH 4.0 (upper row) and 

pH 7.4 (lower row). 
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Figure A.15. Red and green channel cytofluorogram of fluorescence images of cells 

incubated with 5 μM fluorescent probe C and 1 μM LysoSensor Green DND-189 for 

verifying their co-localization.  

 

 

Figure A.16. Red and green channel cytofluorogram of fluorescence images of cells 

incubated with 15 μM fluorescent probe C and 1 μM LysoSensor Green DND-189 for 

verifying their co-localization.  
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Figure A.17. Red and green channel cytofluorogram of fluorescence images of cell 

incubated with 25 μM fluorescent probe C and 1 μM LysoSensor Green DND-189 for 

verifying their co-localization.  
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Figure A.18. Fluorescence images of HUVEC-C cells incubated with 5 μM fluorescent 

probe C at different intracellular pH values. Intracellular pH were tuned by using nigericin 

(5 μg∙mL-1) in 2 mL potassium rich PBS at different pH values (5.5, 6.5, 7.5, or 8.5). 

HUVEC-C cells were incubated with fluorescent probe C for 2 h and imaged for co-

localization with 1 μM LysoSensor Green and (1 μg∙mL-1) Hoechst 33342 stains. Images 

were acquired using the inverted fluorescence microscope (AMF-4306, EVOSfl, AMG) at 

40× magnification. 
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Figure A.19. Fluorescence images of HUVEC-C cells incubated with 15 μM fluorescent 

probe C at different intracellular pH values. Intracellular pH were tuned by using nigericin 

(5 μg∙mL-1) in 2 mL potassium rich PBS at different pH values (5.5, 6.5, 7.5, or 8.5). 

HUVEC-C cells were incubated with fluorescent probe C for 2 h and imaged for co-

localization with 1 μM LysoSensor Green and (1 μg∙mL-1) Hoechst 33342 stains. Images 

were acquired using the inverted fluorescence microscope (AMF-4306, EVOSfl, AMG) at 

40× magnification. 
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Figure A.20. Fluorescence images of HUVEC-C cells incubated with 25 μM fluorescent 

probe C at different intracellular pH values. Intracellular pH were tuned by using nigericin 

(5 μg∙mL-1) in 2 mL potassium rich PBS at different pH values (5.5, 6.5, 7.5, or 8.5). 

HUVEC-C cells were incubated with probe C for 2 h and imaged for co-localization with 

1 μM LysoSensor Green and (1 μg∙mL-1) Hoechst 33342 stains. Images were acquired 

using the inverted fluorescence microscope (AMF-4306, EVOSfl, AMG) at 40× 

magnification. 

 

 



139 

B Appendix B: Supporting information of chapter 3 
 

B.1 1H, 13C NMR and HRMS spectra of probes A, B, and C 

 

Figure B.1. 1H NMR spectrum of probe A based on rhodamine dye in CD3OD 

solution. 
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Figure B.2. 13C NMR spectrum of probe A based on rhodamine dye in CD3OD 

solution. 
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Figure B.3. High-resolution mass spectrum of probe A 
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Figure B.4. 1H NMR spectrum of probe B in acetonitrile-d3 solution. 
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Figure B.5. 13C NMR spectrum of probe B in acetonitrile-d3 solution. 
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Figure B.6. High-resolution mass spectrum of probe B 
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Figure B.7. 1H NMR spectrum of probe C based on hemicyanine dye in acetonitrile-

d3 solution. 
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Figure B.8. 13C NMR spectrum of probe C based on hemicyanine dye in acetonitrile-d3 

solution. 
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Figure B.9. High resolution mass spectrum of probe 
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B.2 Calculation of fluorescence quantum yields of probes A, 
B and C 

We chose rhodamine dye B, near-infrared rhodamine dye and near-infrared cyanine dye 

shown in Table B1 as fluorescent standard dyes to calculate fluorescence quantum yields 

of probes A, B and C, respectively.   

Table B.1. The standard fluorescent dyes such as rhodamine B, near-infrared rhodamine 

dye and near-infrared cyanine dye were used as fluorescent standard dyes to calculate the 

quantum yields of fluorescent probes A-C, respectively.   

The standard reference 
for probe A 

The standard reference 
for probe B 

The standard reference 
for probe C 

  

 
Rhodamine dye B (Φ = 
0.31 in water) 146 

Near-infrared rhodamine 
dye (Φ = 0.37 pH 7.4 PBS 
contacting 10% EtOH)111, 

149  

Hemicyanine dye (Φ = 
0.41 in EtOH)64 

The UV-Vis absorption spectra of probes A, B and C were collected in the range from 300 

to 800 nm with increments of 1 nm. The UV-Vis absorption spectra measured in freshly 

prepared buffer. Citrate-phosphate buffer was used for acidic pH 4.5, and PBS pH 7.4. The 

corresponding fluorescence spectra of probes A, B and C were collected under the 

excitation wavelength of 530 nm, 560 nm, and 660 nm, respectively. The excitation and 

emission slit widths were set to 4 nm. Rhodamine B, near-infrared rhodamine dye, and 

O

COOH

N N
ON

N

COOH

O

COOH

N

N
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near-infrared hemicyanine111, 149 were utilized as reference standards to calculate the 

fluorescence quantum yields of probe A, B, and C64 in ethanol and buffer solutions (Table 

B.1). The absorption and fluorescence spectra of the standard dyes listed in table B.1 were 

measured in pH 7.4 PBS buffer with 1% ethanol and in pH 4.5 citrate-phosphate buffer. 

The absorbance was kept between 0.05 and 0.1 in order to obtain optimized data. All the 

samples and references were freshly prepared under identical conditions. The fluorescence 

quantum yields were calculated according to literature4 using t equation 1 below64: 

𝜙𝜙𝐹𝐹(𝑋𝑋) = 𝜙𝜙𝐹𝐹(𝑆𝑆) �
𝐴𝐴𝑆𝑆𝐹𝐹𝑋𝑋
𝐴𝐴𝑋𝑋𝐹𝐹𝑆𝑆

� �𝜂𝜂𝑋𝑋
𝜂𝜂𝑆𝑆
�2         (1) 

Where 𝜙𝜙𝐹𝐹 is the fluorescence quantum yield, A is the absorbance at the excitation 

wavelength, F is the area under the corrected emission curve, and n is the refractive index 

of the solvents used. Subscripts S and X refer to the standard and to the unknown, 

respectively. 
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Table B.2. Optical properties of fluorescent probes A, B and C 

 
 Solvent λabs 

(nm) 
λem 
(nm) 

Stock Shift 
(nm) 

Фf 
(%) 

ε (105M-1 cm-1) 
 

 
Probe A 

Buffer 
(pH 7.4) 0 0 0 0 0 
Buffer 
(pH 4.5) 567 585 18 26 0.4 

 
Probe B 

Buffer 
(pH 7.4) 619 650 31 9 0.846 
Buffer 
(pH 4.5) 623 644 21 21 1.67 

 
Probe C 

Buffer 
(pH 7.4) 724 740 16 5 1.28 
Buffer 
(pH 4.5) 717 744 27 10 3.01 

B.3 Solvent effects on the probe fluorescence 

We investigated the effect of ethanol percentage in water-ethanol mixed solution on dye 

fluorescence intensity (Figure B.9-B.11). Increase of the percentages of ethanol from 1.0% 

to 40% resulted in enhancement of fluorescence intensity of the dyes because water 

increase percentages can effectively prevent fluorescence quenching due to dye 

aggregation in aqueous solutions. 
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Figure B.10. Fluorescence spectra of 5 μM probe A based rhodamine dye B in pH 

2.4 buffers with different percentages of ethanol. 

 

 
Figure B.11. Fluorescence spectra of 5 μM probe B based on near-infrared 

rhodamine dye in pH 7.4 buffers containing different percentages of ethanol. 
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Figure B.12. Fluorescence spectra of 5 μM probe C based on near-infrared cyanine 

dye in pH 7.4 buffers containing different percentages of ethanol. 

B.4 Determination of probe pKa values by fluorometric 
titration 

The pKa values of the fluorescent probes A, B and C were calculated by applying equation 

2 below150-151 through fluorometric titration as a function of pH, which were obtained by 

using the fluorescence spectra. The expression of the steady-state fluorescence intensity F 

as a function of the proton concentration has been extended for the case of n: 1 complex 

between H+ and a fluorescent dye.   

  (2) 

Fmin and Fmax stand for the fluorescence intensities at maximal and minimal H+ 

concentrations, respectively while n is apparent stoichiometry of H+ binding to the probes 
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A, B and C. Nonlinear fitting of equation expressed above to the fluorescence titration data 

was plotted as a function of H+ concentration. 

 

 

Figure B.13. Plot curve of fluorescence intensity of probe A versus pH. 
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Figure B.14. Plot curve of fluorescence intensity of probe B versus pH. 
 

 
Figure B.15. Plot curve of fluorescence intensity of probe C versus pH. 
 

B.5 Determination of pKa by Absorption titration  

 Figures B.S16-B.S19 show the results of the nonlinear regression of the λ at maximum 

absorption at 565 nm, 619 nm, and 714 nm of the fluorescent probes A, B and C, 

respectively, were calculated according to literature method affording a pKa values of 

5.8(2), 5.5(1), and 6.31(6)152-154  

𝑝𝑝𝑝𝑝𝑝𝑝 = log ��𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚−𝐴𝐴
𝐴𝐴−𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚

�� + 𝑝𝑝𝑝𝑝         (3) 
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Figure B.16. Plot curve of absorption spectra of probe A versus pH. 

 
 
 

 
 
Figure B.17. Plot curve of absorption spectra of probe B versus pH. 
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Figure B.18. Plot curve of absorption spectra of probe C versus pH. 
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Figure B.19. Absorption and fluorescence spectra of probe A in pH 2.0 buffer 

containing 1% ethanol. Stokes shift of probe A is 14 nm. 

 

 
Figure B.20. Absorption and fluorescence spectra of probe B in 2.0 buffer containing 

1% ethanol, Stokes shift of probe B is 23 nm. 
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Figure B.21. Absorption and fluorescence spectra of probe C in 2.0 buffer containing 

1% ethanol, Stokes shift of probe C is 31 nm 
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B.7 Computationally derived structures for probes A-C 

 
 

Figure B.22. Drawing of probe, A with atoms represented as spheres of arbitrary size 

(H-white, C-grey, N-blue and O-red) using the GaussView program. 

Table B.3. Atomic coordinates for probe A. 
Row Symbol X Y Z 
1 C -0.10443 -0.80064 -1.70019 
2 C -1.38118 -0.62082 -2.2518 
3 C -1.47088 -0.02141 -3.51111 
4 C 1.033489 -0.40502 -2.39731 
5 C -0.34255 0.418402 -4.19093 
6 C 0.913046 0.22108 -3.63055 
7 B -2.7 -1.07977 -1.5563 
8 O -3.81393 -1.4087 -2.2835 
9 C -4.74638 -2.02938 -1.35348 
10 C -4.30219 -1.41976 0.01252 
11 O -2.89055 -1.17167 -0.20885 
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12 C -6.16691 -1.69728 -1.76646 
13 C -4.50775 -3.53183 -1.43514 
14 C -4.46221 -2.34458 1.205139 
15 C -4.95116 -0.07275 0.305933 
16 C -0.53332 -3.59617 3.575962 
17 C 0.094652 -2.44964 4.071209 
18 C 0.508634 -1.43116 3.218554 
19 C 0.272532 -1.58268 1.864058 
20 C -0.34514 -2.71881 1.376758 
21 C -0.75827 -3.74346 2.21349 
22 C 0.62486 -0.64063 0.739456 
23 N 0.03776 -1.38747 -0.42252 
24 C -0.48936 -2.60016 -0.08731 
25 O -0.97891 -3.41475 -0.86054 
26 C 2.11691 -0.50134 0.576008 
27 C 2.690632 0.704991 0.192663 
28 O 1.963003 1.848845 0.025859 
29 C 0.668079 1.86471 0.466236 
30 C -0.00075 0.718166 0.88091 
31 C 0.072488 3.116414 0.467225 
32 C -1.24925 3.280636 0.911035 
33 C -1.91883 2.123997 1.377066 
34 C -1.30259 0.893421 1.348122 
35 C 2.97459 -1.5975 0.666384 
36 C 4.321464 -1.51043 0.393055 
37 C 4.899483 -0.27966 -0.00549 
38 C 4.041301 0.827995 -0.09466 
39 N 6.231921 -0.17397 -0.28446 
40 N -1.85845 4.503694 0.906092 
41 C -1.14884 5.706166 0.51688 
42 C -3.26396 4.657096 1.230134 
43 C -3.52003 4.878277 2.716262 
44 C 6.845392 1.1023 -0.59564 
45 C 7.10099 -1.33503 -0.31968 
46 C 7.712756 -1.67084 1.03526 
47 C 6.764305 1.46676 -2.07386 
48 C -1.16055 5.954173 -0.9876 
49 H -2.45123 0.112012 -3.95854 
50 H 2.012387 -0.59266 -1.974 
51 H -0.44075 0.900204 -5.1583 
52 H 1.805552 0.538986 -4.16 
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53 H -6.39364 -2.1696 -2.7249 
54 H -6.87315 -2.08084 -1.02589 
55 H -6.31934 -0.62265 -1.86845 
56 H -5.20983 -4.07695 -0.80079 
57 H -4.65603 -3.85862 -2.46688 
58 H -3.48742 -3.78226 -1.13628 
59 H -4.12811 -1.83568 2.112132 
60 H -5.51276 -2.61559 1.336101 
61 H -3.87632 -3.25611 1.090265 
62 H -6.01406 -0.18692 0.52779 
63 H -4.46709 0.373538 1.176007 
64 H -4.84067 0.615078 -0.53549 
65 H -0.84731 -4.37338 4.264715 
66 H 0.259828 -2.35332 5.139487 
67 H 0.996194 -0.54209 3.604853 
68 H -1.2461 -4.62429 1.809787 
69 H 0.661808 3.948006 0.104664 
70 H -2.92413 2.194628 1.769467 
71 H -1.85137 0.022445 1.683877 
72 H 2.561866 -2.55873 0.958383 
73 H 4.933317 -2.39571 0.502761 
74 H 4.395084 1.800276 -0.41039 
75 H -1.61714 6.545796 1.037857 
76 H -0.1236 5.659258 0.893826 
77 H -3.64125 5.508051 0.656053 
78 H -3.81745 3.787357 0.866722 
79 H -4.58888 5.004882 2.909452 
80 H -3.16379 4.031516 3.307879 
81 H -3.00355 5.775383 3.06816 
82 H 6.390651 1.881793 0.021594 
83 H 7.891134 1.048197 -0.28077 
84 H 6.549826 -2.18993 -0.71935 
85 H 7.892076 -1.1289 -1.04596 
86 H 8.371894 -2.53971 0.95644 
87 H 8.302808 -0.83101 1.411848 
88 H 6.93817 -1.89524 1.772556 
89 H 7.247163 2.429784 -2.26063 
90 H 7.265638 0.712242 -2.68595 
91 H 5.726203 1.534875 -2.40782 
92 H -0.62174 6.873819 -1.23153 
93 H -0.68955 5.128968 -1.52702 
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94 H -2.18547 6.054691 -1.35472 
 
Table B.4. Excitation energies and oscillator strengths for probe A.  
 
 Excited State   1:      Singlet-A      3.3804 eV  366.77 nm  f=0.0015  <S**2>=0.000 
     172 -> 173        0.70413 
 This state for optimization and/or second-order correction. 
 Total Energy, E(TD-HF/TD-DFT) =  -2040.96349687     
 Copying the excited state density for this state as the 1-particle RhoCI density. 
  
 Excited State   2:      Singlet-A      3.5452 eV  349.73 nm  f=0.0023  <S**2>=0.000 
     171 -> 173        0.69893 
  
 Excited State   3:      Singlet-A      3.8762 eV  319.86 nm  f=0.0415  <S**2>=0.000 
     172 -> 174        0.69819 
  
 Excited State   4:      Singlet-A      4.0560 eV  305.68 nm  f=0.0385  <S**2>=0.000 
     171 -> 174        0.65046 
     172 -> 176        0.19748 
  
 Excited State   5:      Singlet-A      4.0986 eV  302.51 nm  f=0.0584  <S**2>=0.000 
     171 -> 174       -0.13477 
     172 -> 175        0.65814 
     172 -> 176        0.19754 
  
 Excited State   6:      Singlet-A      4.1314 eV  300.10 nm  f=0.1238  <S**2>=0.000 
     171 -> 174       -0.15760 
     172 -> 175       -0.23567 
     172 -> 176        0.61971 
  
 Excited State   7:      Singlet-A      4.2445 eV  292.11 nm  f=0.0009  <S**2>=0.000 
     170 -> 173        0.59587 
     171 -> 175        0.31971 
     171 -> 176        0.13410 
     172 -> 178       -0.10243 
  
 Excited State   8:      Singlet-A      4.2499 eV  291.74 nm  f=0.0104  <S**2>=0.000 
     170 -> 173       -0.31303 
     171 -> 174       -0.12475 
     171 -> 175        0.28452 
     171 -> 176        0.39845 
     172 -> 178       -0.33311 
  
 Excited State   9:      Singlet-A      4.2767 eV  289.90 nm  f=0.0134  <S**2>=0.000 
     170 -> 173       -0.18888 
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     171 -> 175        0.55108 
     171 -> 176       -0.31307 
     172 -> 178        0.20001 
  
 Excited State  10:      Singlet-A      4.3976 eV  281.94 nm  f=0.0342  <S**2>=0.000 
     171 -> 176        0.21005 
     171 -> 178       -0.25667 
     172 -> 176       -0.11965 
     172 -> 177        0.50930 
     172 -> 178        0.30066 
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The FTIR spectra of the unprotonated and protonated fluorescent probes A-B (Figures 

B.23, B.29, B.34, B.41, B.46, and B.51) were calculated to confirm that the geometries of

the structures have been optimized to a suitable minimum. 

Figure B.23. Calculated (top) FTIR spectrum of probe A. 

Figure B.24. Calculated UV-Vis spectrum for probe A in water. 
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Figure B.25. MO for level 172 for probe A involved with the transition noted as Excited 

State 6 in Table B.4. 
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Figure B.26. MO for level 175 for probe A involved with the transition noted as Excited 

State 6 in Table B.4. 
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Figure B.27. MO for level 176 for probe A involved with the transition noted as Excited 

State 6 in Table B.4. 
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Figure B.28. Drawing of probe AH+ with atoms represented as spheres of arbitrary size 

(H-white, C-grey, N-blue and O-red) using the GaussView program. 

Table B.5. Atomic coordinates for probe AH+ 
Row Symbol X Y Z 
1 C 2.041321 -0.31722 2.412743 
2 C 3.337538 0.085829 2.029367 
3 C 3.97193 1.076515 2.782881 
4 C 1.414703 0.270263 3.512193 
5 C 3.351983 1.672312 3.870862 
6 C 2.071837 1.262695 4.22626 
7 B 4.079251 -0.50073 0.798573 
8 O 5.404141 -0.30627 0.54402 
9 C 5.669255 -0.82771 -0.79176 
10 C 4.500779 -1.84523 -0.99536 
11 O 3.455954 -1.2678 -0.15842 
12 C 5.609525 0.354886 -1.7489 
13 C 7.052488 -1.44843 -0.81941 
14 C 4.794701 -3.22719 -0.4295 
15 C 3.987936 -1.95673 -2.4175 
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16 C 0.170439 -4.74969 -0.59469 
17 C -0.72017 -4.40523 -1.60237 
18 C -1.32985 -3.15675 -1.59647 
19 C -1.05578 -2.24555 -0.58182 
20 C -0.16011 -2.5966 0.435525 
21 C 0.45323 -3.84365 0.419928 
22 C -1.64614 -0.89147 -0.61234 
23 N 1.431925 -1.3271 1.660282 
24 C 0.111113 -1.61462 1.535076 
25 O -0.79449 -1.12453 2.193866 
26 C -0.81784 0.219669 -0.81469 
27 C -1.3735 1.521117 -0.72899 
28 O -2.7022 1.695314 -0.5403 
29 C -3.52626 0.63007 -0.4029 
30 C -3.01553 -0.6937 -0.41492 
31 C -4.85461 0.912966 -0.21797 
32 C -5.78144 -0.13402 -0.02021 
33 C -5.27484 -1.47391 0.003249 
34 C -3.95267 -1.73023 -0.18202 
35 C 0.572233 0.147632 -1.0775 
36 C 1.3405 1.263143 -1.179 
37 C 0.776266 2.57023 -1.03467 
38 C -0.61791 2.660882 -0.82704 
39 N 1.54931 3.666534 -1.10069 
40 N -7.09071 0.113664 0.14826 
41 C -8.05345 -0.93728 0.457876 
42 C -7.6403 1.458645 0.034937 
43 C -7.61179 2.218289 1.354071 
44 C 2.973897 3.598155 -1.40455 
45 C 1.017029 5.000721 -0.85668 
46 C 0.473125 5.65625 -2.11846 
47 C 3.8257 3.373995 -0.164 
48 C -8.62817 -1.59317 -0.78948 
49 H 4.970196 1.389577 2.493074 
50 H 0.423295 -0.04992 3.797956 
51 H 3.858762 2.446295 4.43702 
52 H 1.573592 1.716502 5.077226 
53 H 6.32782 1.110934 -1.42684 
54 H 5.861352 0.051623 -2.76651 
55 H 4.619095 0.812963 -1.76133 
56 H 7.228617 -1.93037 -1.78402 
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57 H 7.808563 -0.67195 -0.68611 
58 H 7.178774 -2.19037 -0.0311 
59 H 3.872635 -3.81236 -0.42709 
60 H 5.532161 -3.75276 -1.0387 
61 H 5.166295 -3.16895 0.596042 
62 H 4.784178 -2.3086 -3.07749 
63 H 3.170405 -2.67975 -2.45745 
64 H 3.620352 -1.00251 -2.79476 
65 H 0.646348 -5.72425 -0.59601 
66 H -0.93872 -5.10604 -2.40075 
67 H -2.00813 -2.87547 -2.39497 
68 H 1.143564 -4.11146 1.213281 
69 H 2.025538 -1.71923 0.934529 
70 H -5.15256 1.951596 -0.19792 
71 H -5.94887 -2.30452 0.158157 
72 H -3.59851 -2.7541 -0.15913 
73 H 1.037096 -0.82309 -1.19503 
74 H 2.398278 1.144336 -1.35889 
75 H -1.12502 3.612676 -0.75574 
76 H -7.58862 -1.67314 1.115308 
77 H -8.8493 -0.47359 1.044675 
78 H -7.10427 2.000054 -0.74659 
79 H -8.66731 1.354124 -0.32147 
80 H -8.05037 3.210675 1.226358 
81 H -8.18477 1.690012 2.119965 
82 H -6.58989 2.339948 1.72017 
83 H 3.146785 2.824497 -2.15445 
84 H 3.240912 4.541041 -1.88612 
85 H 0.254372 4.944584 -0.07792 
86 H 1.831076 5.596941 -0.4388 
87 H 0.103623 6.659227 -1.89256 
88 H 1.253676 5.744841 -2.87801 
89 H -0.3488 5.076075 -2.54389 
90 H 4.884412 3.339222 -0.43011 
91 H 3.681986 4.182211 0.557254 
92 H 3.56497 2.437335 0.332212 
93 H -9.36375 -2.35159 -0.51134 
94 H -9.12486 -0.85551 -1.42448 
95 H -7.84517 -2.07502 -1.37947 
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Table B.6.  Excitation energies and oscillator strengths for probe AH+. 
  
 Excited State   1:      Singlet-A      2.6234 eV  472.61 nm  f=0.9828  <S**2>=0.000 
     172 -> 173        0.70358 
 This state for optimization and/or second-order correction. 
 Total Energy, E(TD-HF/TD-DFT) =  -2041.44587968     
 Copying the excited state density for this state as the 1-particle RhoCI density. 
  
 Excited State   2:      Singlet-A      3.0917 eV  401.03 nm  f=0.0078  <S**2>=0.000 
     171 -> 173        0.69641 
  
 Excited State   3:      Singlet-A      3.1996 eV  387.49 nm  f=0.0225  <S**2>=0.000 
     169 -> 173       -0.18512 
     170 -> 173        0.66697 
     171 -> 173        0.10920 
  
 Excited State   4:      Singlet-A      3.6915 eV  335.87 nm  f=0.0956  <S**2>=0.000 
     166 -> 173        0.11939 
     167 -> 173       -0.27224 
     168 -> 173       -0.32505 
     169 -> 173        0.51168 
     170 -> 173        0.11849 
     172 -> 174       -0.12229 
  
 Excited State   5:      Singlet-A      3.7684 eV  329.01 nm  f=0.0098  <S**2>=0.000 
     167 -> 173       -0.28468 
     168 -> 173       -0.35045 
     169 -> 173       -0.21731 
     172 -> 174        0.47522 
  
 Excited State   6:      Singlet-A      3.8070 eV  325.68 nm  f=0.1238  <S**2>=0.000 
     167 -> 173        0.19598 
     168 -> 173        0.26353 
     169 -> 173        0.33080 
     172 -> 174        0.50014 
  
 Excited State   7:      Singlet-A      4.0217 eV  308.29 nm  f=0.0011  <S**2>=0.000 
     167 -> 173        0.54611 
     168 -> 173       -0.44295 
  
 Excited State   8:      Singlet-A      4.0788 eV  303.98 nm  f=0.0047  <S**2>=0.000 
     166 -> 173        0.65830 
     172 -> 175       -0.16610 
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 Excited State   9:      Singlet-A      4.2076 eV  294.67 nm  f=0.1086  <S**2>=0.000 
     165 -> 173       -0.31046 
     166 -> 173        0.12989 
     172 -> 175        0.41997 
     172 -> 176        0.40457 
  
 Excited State  10:      Singlet-A      4.2496 eV  291.76 nm  f=0.0139  <S**2>=0.000 
     163 -> 173        0.14954 
     165 -> 173        0.11219 
     172 -> 175        0.49397 
     172 -> 176       -0.43162 
 
 

 

Figure B.29. Calculated (top) FTIR spectrum of probe AH+. 

 

Figure B.30. Calculated UV-Vis spectrum for probe AH+ in water. 
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Figure B.31. MO for level 172 for probe AH+ involved with the transition noted as 

Excited State 1 in Table B.6. 

 

 

Figure B.32. MO for level 173 for probe AH+ involved with the transition noted as Excited 

State 1 in Table B.6. 
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Figure B.33. Drawing of probe B with atoms represented as spheres of arbitrary size (H-

white, C-grey, N-blue and O-red) using the GaussView program. 

Table B.7. Atomic coordinates for probe B. 
Row Symbol X Y Z 
1 C -1.16672 1.303049 -0.75014 
2 C -0.00035 0.546961 -1.32624 
3 C 0.101849 -0.76556 -1.06142 
4 O -0.9087 -1.49804 -0.49828 
5 C -2.16269 -0.95763 -0.52392 
6 C -2.36319 0.402024 -0.74212 
7 C 1.133837 1.259481 -1.99892 
8 C 1.986662 0.307845 -2.83244 
9 C 2.316473 -0.96 -2.09852 
10 C 1.327953 -1.51832 -1.27587 
11 C -3.20459 -1.83598 -0.28682 
12 C -4.53167 -1.37574 -0.26339 
13 C -4.74461 -0.00051 -0.53047 
14 C -3.68216 0.849895 -0.75093 
15 C 3.531974 -1.597 -2.25537 
16 C 3.821155 -2.81239 -1.601 
17 C 2.813616 -3.36434 -0.78708 
18 C 1.594566 -2.72674 -0.63672 



175 

19 N -5.57356 -2.2214 -0.00549 
20 N 5.042618 -3.42711 -1.74943 
21 C -6.93074 -1.73416 0.15422 
22 C -5.3598 -3.63454 0.237548 
23 C -7.70762 -1.68051 -1.15569 
24 C -4.98889 -3.94686 1.683479 
25 C 5.397646 -4.50264 -0.85014 
26 C 6.133152 -2.68419 -2.34203 
27 N -0.82889 1.748037 0.655832 
28 C -0.79785 3.09757 0.8072 
29 O -0.57674 3.7076 1.847804 
30 C -0.85344 0.841441 1.748782 
31 C -2.10473 0.499442 2.257497 
32 C -2.22463 -0.44974 3.260636 
33 C -1.08491 -1.05922 3.769704 
34 C 0.161508 -0.68337 3.291876 
35 C 0.310926 0.274934 2.280066 
36 B 1.77056 0.675497 1.912982 
37 O 2.156139 1.559067 0.949371 
38 C 3.57435 1.814549 1.142069 
39 C 4.038979 0.556561 1.942538 
40 O 2.822598 0.162044 2.627799 
41 C 5.130245 0.825851 2.961505 
42 C 4.252582 1.979087 -0.20512 
43 C -1.38725 2.638471 -1.40576 
44 C -1.12324 3.667233 -0.51988 
45 C -1.7631 2.907964 -2.70999 
46 C -1.86654 4.239587 -3.10051 
47 C -1.59355 5.276519 -2.20505 
48 C -1.21861 4.997539 -0.89673 
49 C 4.428586 -0.61204 1.050444 
50 C 3.670585 3.108477 1.938813 
51 H 0.741154 2.044071 -2.65087 
52 H 1.736785 1.762631 -1.23862 
53 H 1.425329 0.035628 -3.7374 
54 H 2.899643 0.8054 -3.17023 
55 H -2.95358 -2.87099 -0.09798 
56 H -5.74803 0.402005 -0.56619 
57 H -3.87735 1.90466 -0.9186 
58 H 4.275576 -1.12737 -2.88741 
59 H 2.98739 -4.28571 -0.24691 
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60 H 0.844009 -3.16459 0.012382 
61 H -7.43604 -2.39819 0.860873 
62 H -6.91231 -0.75246 0.634708 
63 H -6.28132 -4.156 -0.03446 
64 H -4.59564 -4.00918 -0.44878 
65 H -8.72686 -1.3225 -0.98625 
66 H -7.22529 -1.0115 -1.87249 
67 H -7.76752 -2.67325 -1.60974 
68 H -4.83893 -5.02115 1.820664 
69 H -4.06936 -3.43337 1.974658 
70 H -5.78274 -3.62583 2.363245 
71 H 5.434223 -4.17798 0.199127 
72 H 4.686966 -5.32842 -0.92791 
73 H 6.377947 -4.88609 -1.12738 
74 H 5.893594 -2.3833 -3.36448 
75 H 6.386859 -1.78181 -1.76869 
76 H 7.012994 -3.32346 -2.38593 
77 H -2.98801 0.968407 1.840744 
78 H -3.20715 -0.71649 3.636443 
79 H -1.16707 -1.81338 4.545811 
80 H 1.053496 -1.13668 3.711445 
81 H 6.024121 1.208231 2.462382 
82 H 4.816082 1.549376 3.714079 
83 H 5.399089 -0.1035 3.468547 
84 H 5.330026 2.098182 -0.06585 
85 H 4.079948 1.120498 -0.85367 
86 H 3.877395 2.874536 -0.70575 
87 H -1.9719 2.10404 -3.40838 
88 H -2.16376 4.477751 -4.11667 
89 H -1.68044 6.305982 -2.53623 
90 H -1.01068 5.789643 -0.1852 
91 H 4.562309 -1.50228 1.668915 
92 H 3.655066 -0.82447 0.311841 
93 H 5.366365 -0.41868 0.525508 
94 H 3.156946 3.900652 1.389926 
95 H 3.195693 3.009079 2.917598 
96 H 4.709833 3.410144 2.083574 

 
 
 
 



177 

 
 
Table B.8. Excitation energies and oscillator strengths for probe B.  
 Excited State   1:      Singlet-A      3.3857 eV  366.20 nm  f=0.0024  <S**2>=0.000 
     178 -> 179        0.69791 
 This state for optimization and/or second-order correction. 
 Total Energy, E(TD-HF/TD-DFT) =  -2117.13022654     
 Copying the excited state density for this state as the 1-particle RhoCI density. 
  
 Excited State   2:      Singlet-A      3.4776 eV  356.52 nm  f=0.0117  <S**2>=0.000 
     178 -> 180        0.69882 
  
 Excited State   3:      Singlet-A      3.6765 eV  337.24 nm  f=0.0130  <S**2>=0.000 
     176 -> 179       -0.10110 
     177 -> 179        0.69249 
  
 Excited State   4:      Singlet-A      3.7853 eV  327.54 nm  f=0.2651  <S**2>=0.000 
     177 -> 180       -0.48571 
     178 -> 181        0.49448 
  
 Excited State   5:      Singlet-A      3.8083 eV  325.57 nm  f=0.1509  <S**2>=0.000 
     177 -> 180        0.50625 
     178 -> 181        0.47561 
  
 Excited State   6:      Singlet-A      3.9866 eV  311.00 nm  f=0.0945  <S**2>=0.000 
     178 -> 182        0.69277 
  
 Excited State   7:      Singlet-A      4.0599 eV  305.39 nm  f=0.0397  <S**2>=0.000 
     177 -> 181        0.67233 
     178 -> 181       -0.10129 
  
 Excited State   8:      Singlet-A      4.0983 eV  302.53 nm  f=0.0079  <S**2>=0.000 
     178 -> 183        0.58475 
     178 -> 184       -0.34977 
  
 Excited State   9:      Singlet-A      4.1756 eV  296.93 nm  f=0.1068  <S**2>=0.000 
     177 -> 183        0.11428 
     177 -> 184       -0.10551 
     178 -> 183        0.36540 
     178 -> 184        0.54778 
  
 Excited State  10:      Singlet-A      4.3001 eV  288.33 nm  f=0.0144  <S**2>=0.000 
     177 -> 182        0.69253 
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Figure B.34. Calculated (top) FTIR spectrum of probe B. 

 

 

 

Figure B.35. Calculated UV-Vis spectrum for probe B in water. 
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Figure B.36. MO for level 177 for probe B involved with the transition noted as Excited 

State 4 in Table B.8. 
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Figure B37. MO for level 178 for probe B involved with the transition noted as Excited 

State 4 in Table B.8. 
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Figure B.38. MO for level 180 for probe B involved with the transition noted as Excited 

State 4 in Table B. 8. 
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Figure B.39. MO for level 181 for probe B involved with the transition noted as Excited 

State 4 in Table B.8. 
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Figure B. 40. Drawing of probe BH+ with atoms represented as spheres of arbitrary size 

(H-white, C-grey, N-blue and O-red) using the GaussView program. 

Table B. 9. Atomic coordinates for probe BH+. 
Row Symbol X Y Z 
1 C 1.285801 0.51961 1.440934 
2 C 2.075912 -0.60118 1.256876 
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3 C 3.14398 -0.52775 0.360726 
4 O 3.427278 0.602448 -0.29412 
5 C 2.706333 1.73414 -0.10103 
6 C 1.604112 1.72036 0.776582 
7 C 1.886466 -1.88862 2.002702 
8 C 2.247379 -3.08718 1.136706 
9 C 3.594188 -2.92142 0.494298 
10 C 3.995083 -1.63006 0.078756 
11 C 3.09822 2.843161 -0.81009 
12 C 2.386231 4.05127 -0.66648 
13 C 1.281276 4.061658 0.241793 
14 C 0.913504 2.942312 0.927993 
15 C 4.400392 -4.00286 0.23706 
16 C 5.637208 -3.86507 -0.4426 
17 C 6.015698 -2.56298 -0.86917 
18 C 5.2101 -1.48567 -0.61559 
19 N 2.734452 5.160623 -1.34848 
20 N 6.427658 -4.93243 -0.67746 
21 C 1.953958 6.389262 -1.28974 
22 C 3.914137 5.19703 -2.20053 
23 C 2.381786 7.307305 -0.15313 
24 C 3.6321 4.722465 -3.61987 
25 C 7.683408 -4.78031 -1.38621 
26 C 6.030153 -6.25518 -0.23753 
27 N -2.38487 -0.13766 -0.18676 
28 C -1.3287 -0.54786 0.563149 
29 O -0.59179 -1.44213 0.164906 
30 C -3.27089 0.934125 0.030347 
31 C -2.77887 2.175375 0.424209 
32 C -3.6497 3.226625 0.663179 
33 C -5.01879 3.057757 0.483994 
34 C -5.49965 1.830838 0.05058 
35 C -4.64614 0.748066 -0.18562 
36 B -5.25017 -0.59412 -0.682 
37 O -6.58222 -0.88677 -0.61284 
38 C -6.78836 -2.1019 -1.39109 
39 C -5.37391 -2.76089 -1.35689 
40 O -4.50428 -1.59584 -1.24845 
41 C -5.00727 -3.54718 -2.59966 
42 C -7.88413 -2.92896 -0.74759 
43 C 0.118498 0.483896 2.353759 
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44 C -1.13673 0.04099 1.924786 
45 C 0.273123 0.94086 3.659423 
46 C -0.79751 0.929751 4.543038 
47 C -2.03935 0.470503 4.122729 
48 C -2.2074 0.039226 2.816187 
49 C -5.13257 -3.60103 -0.10983 
50 C -7.20921 -1.66536 -2.78849 
51 H 2.526555 -1.86933 2.894864 
52 H 0.855067 -1.96537 2.34521 
53 H 2.217703 -4.00769 1.723442 
54 H 1.495728 -3.1868 0.344089 
55 H 3.940222 2.746786 -1.48093 
56 H 0.731863 4.976823 0.412976 
57 H 0.092293 2.994051 1.633589 
58 H 4.063245 -4.98015 0.557709 
59 H 6.949416 -2.40786 -1.39243 
60 H 5.522823 -0.50003 -0.94126 
61 H 2.080364 6.89233 -2.25114 
62 H 0.893079 6.142636 -1.22123 
63 H 4.270893 6.229364 -2.21028 
64 H 4.710216 4.609883 -1.7381 
65 H 2.244923 6.82568 0.817911 
66 H 3.435768 7.579832 -0.24884 
67 H 1.791118 8.226511 -0.16574 
68 H 4.53932 4.781357 -4.22597 
69 H 3.280326 3.688329 -3.63026 
70 H 2.867314 5.344098 -4.09199 
71 H 8.36159 -4.1063 -0.85486 
72 H 8.164075 -5.75178 -1.46447 
73 H 7.527081 -4.39389 -2.39771 
74 H 5.097539 -6.57178 -0.71448 
75 H 6.807405 -6.96529 -0.50669 
76 H 5.896886 -6.28964 0.847653 
77 H -2.64861 -0.7972 -0.91151 
78 H -1.71116 2.316355 0.528457 
79 H -3.25271 4.187588 0.974279 
80 H -5.70084 3.881374 0.665676 
81 H -6.56489 1.69661 -0.11006 
82 H -4.00991 -3.97685 -2.48408 
83 H -5.71359 -4.36769 -2.74663 
84 H -5.01077 -2.92064 -3.49152 
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85 H -7.98219 -3.88846 -1.26114 
86 H -7.68259 -3.11755 0.306894 
87 H -8.83852 -2.40417 -0.82723 
88 H 1.243777 1.303286 3.981078 
89 H -0.65962 1.280196 5.560283 
90 H -2.87801 0.452825 4.810177 
91 H -3.17767 -0.30992 2.479864 
92 H -5.70762 -4.52831 -0.14285 
93 H -4.07255 -3.85701 -0.05392 
94 H -5.40174 -3.05571 0.797688 
95 H -7.44216 -2.52729 -3.41654 
96 H -8.10507 -1.04581 -2.71233 
97 H -6.42736 -1.07908 -3.27676 

 
Table B.10. Excitation energies and oscillator strengths for probe BH+.  
  
 Excited State   1:      Singlet-A      2.3762 eV  521.77 nm  f=0.9945  <S**2>=0.000 
     178 -> 179        0.70269 
 This state for optimization and/or second-order correction. 
 Total Energy, E(TD-HF/TD-DFT) =  -2117.61180338     
 Copying the excited state density for this state as the 1-particle RhoCI density. 
  
 Excited State   2:      Singlet-A      3.0835 eV  402.10 nm  f=0.1664  <S**2>=0.000 
     177 -> 179        0.68558 
  
 Excited State   3:      Singlet-A      3.2649 eV  379.75 nm  f=0.0053  <S**2>=0.000 
     176 -> 179        0.70314 
  
 Excited State   4:      Singlet-A      3.5843 eV  345.91 nm  f=0.0343  <S**2>=0.000 
     178 -> 180        0.69366 
  
 Excited State   5:      Singlet-A      3.7811 eV  327.90 nm  f=0.0008  <S**2>=0.000 
     174 -> 179        0.66244 
     175 -> 179        0.20083 
  
 Excited State   6:      Singlet-A      3.8298 eV  323.74 nm  f=0.0096  <S**2>=0.000 
     173 -> 179        0.61209 
     175 -> 179       -0.32762 
  
 Excited State   7:      Singlet-A      3.8823 eV  319.36 nm  f=0.0242  <S**2>=0.000 
     172 -> 179        0.31790 
     173 -> 179        0.13643 
     175 -> 179        0.28255 
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     178 -> 181        0.50137 
     178 -> 182        0.10159 
     178 -> 183        0.10889 
  
 Excited State   8:      Singlet-A      3.9584 eV  313.22 nm  f=0.0770  <S**2>=0.000 
     171 -> 179       -0.28634 
     173 -> 179        0.26530 
     174 -> 179       -0.17067 
     175 -> 179        0.44187 
     178 -> 181       -0.31939 
  
 Excited State   9:      Singlet-A      4.1086 eV  301.76 nm  f=0.0442  <S**2>=0.000 
     171 -> 179        0.37896 
     172 -> 179        0.33147 
     178 -> 181       -0.29674 
     178 -> 182        0.36017 
     178 -> 183       -0.10480 
  
 Excited State  10:      Singlet-A      4.1762 eV  296.88 nm  f=0.0286  <S**2>=0.000 
     169 -> 179        0.15181 
     170 -> 179       -0.13369 
     171 -> 179        0.47085 
     172 -> 179       -0.27116 
     173 -> 179        0.12766 
     175 -> 179        0.20625 
     178 -> 182       -0.25205 
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Figure B.41. Calculated (top) FTIR spectrum of probe BH+. 

 

 

 

Figure B.42. Calculated UV-Vis spectrum for probe BH+ in water. 
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Figure B.43. MO for level 178 for probe BH+ involved with the transition noted as 

Excited State 1 in Table B.10. 

 

 

 

Figure B.44. MO for level 179 for probe BH+ involved with the transition noted as Excited 

State 1 in Table B.10. 
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Figure B.45. Drawing of probe C with atoms represented as spheres of arbitrary size (H-

white, C-grey, N-blue and O-red) using the GaussView program. 

Table B.11. Atomic coordinates for probe C. 
Row Symbol X Y Z 
1 C 1.922208 2.624021 0.968682 
2 C 0.613213 3.156939 0.866837 
3 C -0.43974 2.239997 0.725719 
4 C -0.18952 0.875789 0.678911 
5 C 1.09017 0.352232 0.775377 
6 C 2.133843 1.263781 0.927343 
7 O -1.29637 0.093741 0.546193 
8 C 0.045806 -1.88341 0.513117 
9 C 1.332279 -1.12489 0.717924 
10 C -2.40729 -1.9469 0.188711 
11 C -2.33263 -3.43543 -0.02016 
12 C -1.16648 -4.05823 0.73691 
13 C 0.138435 -3.37343 0.361036 
14 N 0.385201 4.504396 0.900372 
15 C -0.9352 5.057116 0.672192 
16 C 1.450484 5.453896 1.157661 
17 C 2.192587 5.88548 -0.10219 
18 C -1.77762 5.154332 1.939335 
19 C -1.14862 -1.26298 0.43689 
20 C -6.18334 0.475009 -0.08628 
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21 C -7.66956 0.622831 -0.3102 
22 C -8.22568 -0.62847 -0.57214 
23 N -7.22633 -1.58966 -0.53707 
24 C -5.99818 -1.03253 -0.26184 
25 C -8.46408 1.748571 -0.28677 
26 C -9.83499 1.619401 -0.52959 
27 C -10.3787 0.366605 -0.791 
28 C -9.58409 -0.77952 -0.81738 
29 C -5.81853 0.93541 1.331196 
30 C -5.41201 1.274578 -1.14469 
31 C -7.42657 -2.99651 -0.7553 
32 C -3.56205 -1.23994 0.104928 
33 N 2.335651 -1.47727 -0.33403 
34 C 3.379479 -2.22853 0.138325 
35 C 3.199159 -2.31726 1.597836 
36 C 2.041179 -1.64922 1.946568 
37 C 4.006248 -2.92742 2.545586 
38 C 3.616088 -2.84231 3.875611 
39 C 2.444056 -2.16713 4.230429 
40 C 1.638908 -1.56748 3.267049 
41 O 4.276687 -2.71931 -0.53576 
42 C 2.261815 -1.01037 -1.662 
43 C 3.405203 -0.47761 -2.27748 
44 B 4.772239 -0.25157 -1.55912 
45 O 5.967719 -0.37901 -2.21256 
46 C 6.967204 0.305593 -1.4085 
47 C 6.319436 0.304028 0.015373 
48 O 4.900854 0.251958 -0.29427 
49 C 6.594648 1.550843 0.837323 
50 C 6.656949 -0.93547 0.834191 
51 C 8.285533 -0.4384 -1.5036 
52 C 7.111644 1.702231 -1.99973 
53 C 3.29896 -0.05254 -3.6035 
54 C 1.054542 -1.0779 -2.35318 
55 C 2.094846 -0.10627 -4.29492 
56 C 0.969684 -0.61255 -3.65873 
57 C -4.85784 -1.76947 -0.17959 
58 H 2.777822 3.280204 1.059141 
59 H -1.47174 2.558599 0.662785 
60 H 3.148886 0.886412 0.978472 
61 H -2.21747 -3.64756 -1.09276 
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62 H -3.27123 -3.90488 0.28538 
63 H -1.10821 -5.13039 0.528081 
64 H -1.33143 -3.94723 1.814946 
65 H 0.40863 -3.62574 -0.67502 
66 H 0.956171 -3.75511 0.98059 
67 H -0.80413 6.050616 0.234491 
68 H -1.44875 4.463674 -0.08933 
69 H 1.001815 6.32475 1.643773 
70 H 2.143743 5.032139 1.889896 
71 H 2.974219 6.611109 0.139214 
72 H 1.506612 6.351192 -0.8149 
73 H 2.660697 5.030413 -0.59582 
74 H -1.92929 4.170402 2.389547 
75 H -2.75875 5.583688 1.718571 
76 H -1.28797 5.791573 2.680615 
77 H -8.03389 2.724729 -0.08243 
78 H -10.474 2.495736 -0.5146 
79 H -11.4434 0.272157 -0.97966 
80 H -10.027 -1.74694 -1.02431 
81 H -4.75227 0.821466 1.531313 
82 H -6.07606 1.990633 1.453154 
83 H -6.3705 0.360737 2.078137 
84 H -5.66405 2.334828 -1.06082 
85 H -4.3329 1.172423 -1.0222 
86 H -5.67576 0.939438 -2.15014 
87 H -8.48125 -3.19371 -0.92809 
88 H -6.86109 -3.33877 -1.62705 
89 H -7.10468 -3.57161 0.117766 
90 H -3.48576 -0.17216 0.257373 
91 H 4.911894 -3.44621 2.250723 
92 H 4.223091 -3.30116 4.64885 
93 H 2.158981 -2.11174 5.276128 
94 H 0.725536 -1.04983 3.542019 
95 H 6.105772 1.462755 1.810174 
96 H 7.668117 1.663522 1.007651 
97 H 6.222578 2.451187 0.348179 
98 H 7.70439 -0.92521 1.142685 
99 H 6.035515 -0.94375 1.731908 
100 H 6.451059 -1.84968 0.277391 
101 H 8.668509 -0.38306 -2.52509 
102 H 9.025047 0.017277 -0.84058 
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103 H 8.176918 -1.48879 -1.23326 
104 H 7.887106 2.273579 -1.48559 
105 H 7.39205 1.614673 -3.0516 
106 H 6.17288 2.258217 -1.94253 
107 H 4.180948 0.349579 -4.09327 
108 H 0.180397 -1.49304 -1.86864 
109 H 2.035117 0.245865 -5.31955 
110 H 0.020001 -0.66248 -4.18189 
111 H -4.93857 -2.83719 -0.35187 
     

Table B.12. Excitation energies and oscillator strengths for probe C.  
 
 Excited State   1:      Singlet-A      2.9092 eV  426.18 nm  f=0.0224  <S**2>=0.000 
     203 -> 204        0.70060 
 This state for optimization and/or second-order correction. 
 Total Energy, E(TD-HF/TD-DFT) =  -2388.56316867     
 Copying the excited state density for this state as the 1-particle RhoCI density. 
  
 Excited State   2:      Singlet-A      3.1951 eV  388.04 nm  f=1.3814  <S**2>=0.000 
     203 -> 205        0.69965 
  
 Excited State   3:      Singlet-A      3.3156 eV  373.95 nm  f=0.0042  <S**2>=0.000 
     202 -> 204        0.70100 
  
 Excited State   4:      Singlet-A      3.5969 eV  344.70 nm  f=0.0076  <S**2>=0.000 
     202 -> 205        0.69817 
  
 Excited State   5:      Singlet-A      3.6920 eV  335.82 nm  f=0.0019  <S**2>=0.000 
     203 -> 206        0.69566 
  
 Excited State   6:      Singlet-A      3.7689 eV  328.96 nm  f=0.0067  <S**2>=0.000 
     203 -> 207        0.52779 
     203 -> 208        0.43336 
     203 -> 209        0.11684 
  
 Excited State   7:      Singlet-A      3.8279 eV  323.89 nm  f=0.1772  <S**2>=0.000 
     203 -> 207       -0.44810 
     203 -> 208        0.51909 
     203 -> 209        0.11947 
  
 Excited State   8:      Singlet-A      4.0133 eV  308.93 nm  f=0.0253  <S**2>=0.000 
     201 -> 204        0.55573 
     203 -> 208        0.10498 
     203 -> 209       -0.38716 
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 Excited State   9:      Singlet-A      4.0213 eV  308.32 nm  f=0.0397  <S**2>=0.000 
     201 -> 204        0.38454 
     203 -> 208       -0.13261 
     203 -> 209        0.55714 
  
 Excited State  10:      Singlet-A      4.0996 eV  302.43 nm  f=0.0305  <S**2>=0.000 
     201 -> 204        0.11135 
 202 -> 206        0.68589 
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Figure B.46. Calculated (top) FTIR spectrum of probe C. 

 

Figure B.47. Calculated UV-Vis spectrum for probe C in water. 
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Figure B.48. MO for level 203 for probe C involved with the transition noted as Excited 

State 2 in Table B.12. 

 

Figure B.49. MO for level 205 for probe C involved with the transition noted as Excited 

State 2 in Table B.12. 
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Figure B.50. Drawing of probe CH+ with atoms represented as spheres of arbitrary size 

(H-white, C-grey, N-blue and O-red) using the GaussView program. 

Table B.13. Atomic coordinates for probe CH+. 
Row Symbol X Y Z 
1 C -0.1024 3.696445 0.760643 
2 C 1.148025 3.620102 0.075566 
3 C 1.857871 2.407506 0.168184 
4 C 1.34409 1.364287 0.9053 
5 C 0.108787 1.418547 1.563825 
6 C -0.58964 2.638579 1.475767 
7 O 2.093033 0.239102 0.965581 
8 C 0.461722 -0.85632 2.322651 
9 C -0.33958 0.261161 2.243704 
10 C 2.61433 -1.92647 1.677848 
11 C 2.192351 -3.16485 2.439327 
12 C 0.68156 -3.336 2.466887 
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13 C 0.030657 -2.09408 3.053802 
14 N 1.642213 4.67531 -0.62313 
15 C 0.795027 5.824252 -0.91392 
16 C 2.870791 4.47744 -1.39537 
17 C 3.455245 5.728882 -2.02274 
18 C -0.17582 5.576713 -2.06138 
19 C 1.714833 -0.84602 1.669636 
20 C 6.692225 -2.39354 -0.20698 
21 C 7.879275 -1.90943 -0.99933 
22 C 7.665814 -0.59344 -1.39088 
23 N 6.419778 -0.17747 -0.90871 
24 C 5.799148 -1.15922 -0.22255 
25 C 9.04544 -2.55754 -1.34987 
26 C 9.997211 -1.86696 -2.10173 
27 C 9.768423 -0.54969 -2.48827 
28 C 8.593961 0.113212 -2.13862 
29 C 7.129232 -2.76183 1.218484 
30 C 6.032517 -3.58126 -0.92246 
31 C 5.866109 1.14007 -1.12542 
32 C 3.859953 -1.94702 1.059816 
33 N -3.58047 -0.25194 -0.18672 
34 C -2.7218 -0.66753 0.782543 
35 C -2.82964 -0.08692 2.155804 
36 C -1.68389 0.281241 2.869622 
37 C -4.07495 -0.04026 2.778861 
38 C -4.18958 0.373221 4.097044 
39 C -3.05525 0.761092 4.798922 
40 C -1.8106 0.717397 4.184797 
41 O -1.92094 -1.56636 0.554131 
42 C -4.48948 0.821298 -0.18877 
43 C -5.764 0.642268 -0.75262 
44 B -6.22129 -0.68971 -1.40744 
45 O -7.5252 -0.97288 -1.69877 
46 C -7.52098 -2.17258 -2.5265 
47 C -6.17139 -2.84578 -2.12596 
48 O -5.3563 -1.69018 -1.77138 
49 C -5.4907 -3.61889 -3.23765 
50 C -6.27698 -3.70466 -0.87277 
51 C -8.75349 -2.99983 -2.21821 
52 C -7.54808 -1.70776 -3.97695 
53 C -6.64887 1.725558 -0.73348 
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54 C -4.11482 2.058469 0.328494 
55 C -6.29469 2.947556 -0.18097 
56 C -5.01683 3.110319 0.344129 
57 C 4.546104 -0.9705 0.335975 
58 H -0.68925 4.603122 0.724237 
59 H 2.804129 2.257081 -0.32862 
60 H -1.52906 2.74158 2.006974 
61 H 2.668504 -4.03923 1.987485 
62 H 2.566792 -3.10757 3.470234 
63 H 0.408547 -4.21768 3.052596 
64 H 0.308628 -3.49106 1.448509 
65 H -1.0571 -2.16563 3.012287 
66 H 0.30437 -1.99853 4.112799 
67 H 0.263811 6.108806 -0.00502 
68 H 1.442229 6.669146 -1.13992 
69 H 3.620081 4.057624 -0.71839 
70 H 2.692402 3.724288 -2.17531 
71 H 4.398082 5.457348 -2.50264 
72 H 2.810647 6.159 -2.79184 
73 H 3.673332 6.496429 -1.27637 
74 H -0.78521 6.465531 -2.24297 
75 H 0.362461 5.339472 -2.98258 
76 H -0.84628 4.743 -1.83811 
77 H 9.223215 -3.58511 -1.04874 
78 H 10.9203 -2.35944 -2.38731 
79 H 10.51567 -0.02443 -3.07359 
80 H 8.429088 1.138258 -2.44835 
81 H 6.291323 -3.10824 1.824109 
82 H 7.868817 -3.5642 1.172621 
83 H 7.584385 -1.90474 1.718739 
84 H 5.160995 -3.94859 -0.37979 
85 H 5.717682 -3.30121 -1.92964 
86 H 6.751702 -4.39922 -1.00303 
87 H 5.661977 1.627 -0.16989 
88 H 6.580335 1.744962 -1.67557 
89 H 4.943397 1.07417 -1.7057 
90 H 4.375215 -2.89411 1.180644 
91 H -3.67186 -0.91271 -0.95171 
92 H -4.95832 -0.33961 2.22536 
93 H -5.16324 0.395128 4.574355 
94 H -3.13695 1.096196 5.827442 
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95 H -0.922 1.020834 4.728348 
96 H -4.56308 -4.06007 -2.86678 
97 H -6.1373 -4.4302 -3.58039 
98 H -5.2522 -2.9806 -4.08834 
99 H -6.82636 -4.62652 -1.07258 
100 H -5.27192 -3.97052 -0.53894 
101 H -6.7769 -3.16918 -0.0624 
102 H -9.64872 -2.46363 -2.54014 
103 H -8.71448 -3.94792 -2.76009 
104 H -8.8438 -3.21104 -1.1527 
105 H -7.60965 -2.55623 -4.66104 
106 H -8.42733 -1.07911 -4.13175 
107 H -6.66003 -1.12221 -4.22593 
108 H -7.63694 1.595624 -1.1641 
109 H -3.11008 2.196143 0.704567 
110 H -6.99962 3.771914 -0.17353 
111 H -4.71151 4.067715 0.754075 
112 H 4.088482 -0.00565 0.193454 

 
 
 
Table B.14. Excitation energies and oscillator strengths for probe CH+.  
  
 Excited State   1:      Singlet-A      2.0968 eV  591.31 nm  f=0.9396  <S**2>=0.000 
     203 -> 204        0.70630 
 This state for optimization and/or second-order correction. 
 Total Energy, E(TD-HF/TD-DFT) =  -2389.03411121     
 Copying the excited state density for this state as the 1-particle RhoCI density. 
  
 Excited State   2:      Singlet-A      2.8582 eV  433.78 nm  f=0.2253  <S**2>=0.000 
     202 -> 204        0.68916 
     203 -> 206       -0.10100 
  
 Excited State   3:      Singlet-A      3.2317 eV  383.65 nm  f=0.0024  <S**2>=0.000 
     201 -> 204        0.70470 
  
 Excited State   4:      Singlet-A      3.3249 eV  372.89 nm  f=0.0780  <S**2>=0.000 
     203 -> 205        0.69494 
  
 Excited State   5:      Singlet-A      3.6229 eV  342.23 nm  f=0.1536  <S**2>=0.000 
     196 -> 204       -0.16190 
     200 -> 204        0.36636 
     203 -> 206        0.54930 
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 Excited State   6:      Singlet-A      3.7176 eV  333.51 nm  f=0.1938  <S**2>=0.000 
     200 -> 204        0.57352 
     203 -> 206       -0.36709 
  
 Excited State   7:      Singlet-A      3.8225 eV  324.35 nm  f=0.0190  <S**2>=0.000 
     196 -> 204        0.12178 
     197 -> 204        0.56899 
     198 -> 204        0.11791 
     199 -> 204        0.34552 
     203 -> 207       -0.12483 
  
 Excited State   8:      Singlet-A      3.8442 eV  322.52 nm  f=0.0831  <S**2>=0.000 
     199 -> 204        0.11167 
     203 -> 207        0.65214 
     203 -> 208        0.12953 
  
 Excited State   9:      Singlet-A      3.9056 eV  317.45 nm  f=0.0976  <S**2>=0.000 
     195 -> 204       -0.12709 
     196 -> 204        0.21858 
     197 -> 204       -0.26125 
     198 -> 204       -0.28362 
     199 -> 204        0.46324 
     202 -> 206       -0.10576 
     203 -> 206        0.11866 
  
 Excited State  10:      Singlet-A      3.9391 eV  314.75 nm  f=0.0063  <S**2>=0.000 
     197 -> 204       -0.24548 
     198 -> 204        0.58204 
     199 -> 204        0.19294 
     203 -> 209       -0.18762 
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Figure B.51. Calculated (top) FTIR spectrum of probe CH+. 

Figure B.52. Calculated UV-Vis spectrum for probe CH+ in water. 
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Figure B.53. MO for level 203 for probe CH+ involved with the transition noted as 

Excited State 1 in Table B.14. 

 

 

Figure B.54. MO for level 204 for probe CH+ involved with the transition noted as 

Excited State 1 in Table B.14. 
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B.8 Cell culture and fluorescence imaging 

 

Figure B.56. Fluorescence images of Probe A in HUVEC-C cells. HUVEC-C cells were 

incubated with 10 µM probe A at different pH values ranging from pH 4.5 to 8.5 in 

presence of nigericin (1 µg/mL) for 1 h before imaging. Lysosensor Green DND-189 (1 

µM) and Hoechst 33342 (1 µg/mL) was used for co-localization. The images were acquired 

using an inverted fluorescence microscope (AMF-4306, EVOSfl, AMG) at 60X 

magnification. 
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Figure B.57. Fluorescence images of Probe B in HUVEC-C cells. HUVEC-C cells were 

incubated with 5 µM probe B at different pH values ranging from pH 4.5 to 8.5 in presence 

of nigericin (1 µg/mL) for 1 h before imaging. Lysosensor Green DND-189 (1 µM) and 

Hoechst 33342 (1 µg/mL) was used for co-localization. The images were acquired using 

an inverted fluorescence microscope (AMF-4306, EVOSfl, AMG) at 60X magnification. 
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Figure B.58. Fluorescence images of Probe C in HUVEC-C cells. HUVEC-C cells were 

incubated with 5 µM probe C at different pH values ranging from pH 4.5 to 8.5 in presence 

of nigericin (1 µg/mL) for 1 h before imaging. Lysosensor Green DND-189 (1 µM) and 

Hoechst 33342 (1 µg/mL) were used for co-localization.  The images were acquired using 

an inverted fluorescence microscope (AMF-4306, EVOSfl, AMG) at 60X magnification. 
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Figure B.59. Fluorescence images of Probe A in MDA-MB231 cells. MDA-MB231 cells 

were incubated with 5 µM probe A at different pH values ranging from pH 4.5 to 8.5 in 

presence of nigericin (1 µg/mL) for 1h before imaging. Lysosensor Green DND-189 (1 

µM) and Hoechst 33342 (1 µg/mL) was used for co-localization. The images were acquired 

using an inverted fluorescence microscope (AMF-4306, EVOSfl, AMG) at 60X 

magnification. 
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Figure B.60. Fluorescence images of Probe A/B/C in MDA-MB231 cells. MDA-MB231 

cells were incubated with 10 µM probe A and 5 µM of Probe B/C at different pH values 

ranging from pH 4.5 to 8.5 in presence of nigericin (1 µg/mL) for 1 h before imaging. The 

images were acquired using an inverted fluorescence microscope (AMF-4306, EVOSfl, 

AMG) at 60X magnification. Probe A images were acquired using RFP light cube and CY5 

light cube was used for Probe B/C.   
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Figure B.61. Fluorescence images of Probe A/B/C in HUVEC-C cells. HUVEC-C cells 

were incubated with 10 µM probe A and 5 µM of Probe B/C at different pH values ranging 

from pH 4.5 to 8.5 in presence of nigericin (1 µg/mL) for 1 h before imaging. The images 

were acquired using an inverted fluorescence microscope (AMF-4306, EVOSfl, AMG) at 

60X magnification. Probe A images were acquired using RFP light cube and CY5 light 

cube was used for Probe B/C. 

 

 

 



210 

C Appendix C: Supporting information of chapter 4 
C.1 NMR and ESI-MS spectra of probe A 
C.1.1 1H NMR Spectra for probe A 

 

Figure C.1. 1H NMR spectra of probe A in a chloroform-d solution. 
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C.1.2 13C NMR spectra for probe A 

 

Figure C.2. 13C NMR spectra of probe A in a chloroform-d solution. 
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C.1.3 ESI-MS spectra for probe A 

 

Figure C.3. Electrospray Ionization mass spectrums of probe A. 
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C.2 Calculation 
C.2.1 Calculation of quantum yield 

We chose the near-infrared hemicyanine dye shown in Figure S3 as fluorescent standard 

dye64 to calculate fluorescence quantum yields of probes A.  

 

Hemicyanine dye (Φ = 0.41 in EtOH)  

Figure C.3: The structure of near- infrared hemicyanine64. 

The UV-Vis absorption spectrum of probe A was collected in the range from 300 to 800 

nm with increments of 1 nm. The UV-Vis absorption spectra measured in freshly prepared 

buffer. Citrate-phosphate buffer was used for acidic pH 5.0, and phosphate buffer for pH 

10.7. The fluorescence spectrum of probe A was collected under the excitation wavelength 

of 670 nm. The excitation and emission slit widths were set to 5 nm. NIR hemicyanine was 

chosen as reference standards to calculate the fluorescence quantum yields of probe A, in 

ethanol and buffer solutions (Figure C.3). The absorption and fluorescence spectrum of the 

standard dye was measured in pH 7.4 PBS buffer with 10% ethanol. The absorbance and 

fluorescence spectra of the probe A was measured in pH 5.0 citrate-phosphate buffer and 

in pH 10.7 phosphate buffer containing 10% EtOH. The absorbance was kept between 0.05 

and 0.1 in order to obtain optimized data. The probe samples and reference were freshly 

O

COOH

N

N



214 

prepared under identical conditions. The fluorescence quantum yields were calculated 

according to literature using the equation 1 below64 : 

ΦF(X) = ΦF(S) (ASFX / AXFS) (nX /nS)2             (1) 

Where ΦF is the fluorescence quantum yield, A is the absorbance at the excitation 

wavelength, F is the area under the corrected emission curve, and n is the refractive index 

of the solvents used. Subscripts s and x refer to the standard and to the unknown, 

respectively. 

C.2.2 Calculation of pKa value by fluorometric titration 

The fluorometric titration as a function of pH was obtained fluorescence spectra.  The 

equation (2) below was used to calculate the pKa value of probe A.  

         (2)
 

The expression of the steady-state fluorescence intensity F as a function of the proton 

concentration has been extended for the case of n: complex between H+ and a fluorescent 

dye.  Where Fmin and Fmax are the fluorescence intensities at maximal and minimal H+ 

concentrations, respectively.  

n is apparent stoichiometry of H+ binding to the probe A. Nonlinear fitting of equation 

expressed above to the fluorescence titration data was plotted as a function of H+ 

concentration150-151. 
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Figure C.4. Plot curve of fluorescence intensity of probe A versus pH. 

C.3 Solvents Effect 

The effect of ethanol percentage was investigated in water-ethanol mixed solution on dye 

fluorescence intensity (Figure S4). Increase of the percentages of ethanol from 10% to 90% 

resulted in enhancement of fluorescence intensity of the dyes because water increase 

percentages can effectively prevent fluorescence quenching due to dye aggregation in 

aqueous solutions.  
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Figure C.5. Fluorescence spectra of 5 μM probe A in pH 5.0 buffers with different 

percentages of ethanol. 
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C.4 Computationally derived structures for probe A and AH+ 

 

Figure C.6. Drawing of probe A with atoms represented as spheres of arbitrary size (H-

white, C-grey, N-blue and O-red) using the GaussView program. 
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Table C.1. Atomic coordinates for probe A. 
Row Symbol X Y Z 

1 C 5.065562 -0.30195 0.231392 
2 C 3.918238 -1.1465 0.093227 
3 C 2.655842 -0.51606 0.026288 
4 C 2.570472 0.857508 0.108113 
5 C 3.691188 1.695034 0.248157 
6 C 4.948799 1.060704 0.30816 
7 O 1.328055 1.402961 0.032912 
8 C 1.107847 2.734944 0.080026 
9 C 2.208399 3.618407 0.21323 
10 C 3.47284 3.086059 0.292677 
11 C -0.22955 3.161402 -0.01656 
12 C -0.4802 4.657831 -0.00213 
13 C 0.703405 5.460642 -0.52496 
14 C 1.956349 5.098755 0.261899 
15 C -1.3436 2.329105 -0.09771 
16 C -1.44635 0.936341 -0.05956 
17 N 4.038025 -2.50149 0.029835 
18 C 5.348935 -3.1135 -0.15602 
19 C 2.849696 -3.2905 -0.31294 
20 C 2.999117 -4.79088 -0.13598 
21 C 5.839974 -3.04814 -1.59754 
22 C -2.64245 0.23876 -0.12328 
23 C -4.06793 0.769153 -0.23452 
24 C -4.86679 -0.51027 -0.22335 
25 C -3.99988 -1.59284 -0.11677 
26 N -2.68327 -1.11415 -0.07904 
27 C -6.23192 -0.71838 -0.28953 
28 C -6.71414 -2.02998 -0.24242 
29 C -5.83195 -3.10373 -0.12632 
30 C -4.45217 -2.9037 -0.05959 
31 C -4.45013 1.626452 0.982585 
32 C -4.29159 1.521784 -1.55506 
33 C -1.5289 -1.9787 0.048135 
34 C -1.10646 -2.12267 1.502644 
35 O 0.054533 -2.92997 1.504442 
36 H 6.057687 -0.73129 0.266281 
37 H 1.741027 -1.07871 -0.09343 
38 H 5.840598 1.672691 0.408444 
39 H 4.328261 3.750475 0.389404 
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Row Symbol X Y Z 
40 H -1.37601 4.87539 -0.59212 
41 H -0.70675 4.979214 1.024217 
42 H 0.499696 6.532647 -0.44503 
43 H 0.860348 5.240429 -1.58812 
44 H 2.835042 5.629837 -0.11595 
45 H 1.832084 5.40953 1.308209 
46 H -2.27694 2.876612 -0.18611 
47 H -0.5422 0.357509 0.04278 
48 H 6.059746 -2.64612 0.526935 
49 H 5.282479 -4.14878 0.175449 
50 H 2.030745 -2.96412 0.328549 
51 H 2.552468 -3.06533 -1.34825 
52 H 2.028251 -5.25478 -0.32872 
53 H 3.714325 -5.24028 -0.82917 
54 H 3.290911 -5.05344 0.884998 
55 H 6.820545 -3.52354 -1.69084 
56 H 5.149922 -3.56559 -2.27037 
57 H 5.930477 -2.01398 -1.94166 
58 H -6.92092 0.117394 -0.37411 
59 H -7.78302 -2.21377 -0.2923 
60 H -6.22068 -4.11683 -0.08422 
61 H -3.77821 -3.74774 0.040142 
62 H -3.88934 2.561422 1.020171 
63 H -5.51325 1.874639 0.932159 
64 H -4.27199 1.083253 1.913689 
65 H -3.71512 2.446922 -1.60169 
66 H -4.0121 0.901822 -2.41011 
67 H -5.34914 1.779607 -1.65286 
68 H -1.7752 -2.95251 -0.3764 
69 H -0.71222 -1.57685 -0.55485 
70 H -0.90405 -1.13474 1.935272 
71 H -1.91692 -2.5848 2.080605 
72 H 0.349497 -3.06125 2.410781 
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Table C.2. Excitation energies and oscillator strengths for probe A.  
 

Excited 
State 

Nature E (eV) λ (nm) f Orbital 
transitions 

Normalized 
coefficient 

1 Singlet-A 2.9705 417.39 0.5427   126 ->127 0.70254 
2 Singlet-A 3.8205 324.52 0.0945   124 ->127          

125 ->127         
126 ->128          
126 ->129         

0.12029 
-0.16699 
0.49384 
-0.44206 

3 Singlet-A 3.9032 317.65 0.0432   124 ->127         
125 ->127          
126 ->128          
126 ->130         
 

-0.27488 
0.45655 
0.10080 
-0.42340 

4 Singlet-A 4.0144 308.85 0.0071   124 ->127          
125 ->127     

0.55750 
0.41595 

5 Singlet-A 4.1347 299.86 0.0063   126 ->128          
126 ->129          

0.48025 
0.51226 

6 Singlet-A 4.2653 290.68 0.3107   124 ->127         
125 ->127          
126 ->129         
126 ->130          
126 ->132        

-0.28800 
0.27224 
-0.11983 
0.50848 
-0.10521 
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The FTIR spectra of the unprotonated and protonated fluorescent probe A (Figures C.7 and 

C.12) were calculated to confirm that the geometries of the structures have been optimized 

to a suitable minimum.  

 

 

Figure C.7. Calculated (top) FTIR spectrum of probe A. 

 

 

 

Figure C.8. Calculated UV-Vis spectrum for probe A in water. 
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Figure C.9. MO for level 126 for probe A involved with the transition noted as Excited 

State 1 in Table C2.  

 

Figure C.9. MO for level 127 for probe A involved with the transition noted as Excited 

State 1 in Table C2. 
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Figure C.11. Drawing of probe AH+ with atoms represented as spheres of arbitrary size 

(H-white, C-grey, N-blue and O-red) using the GaussView program. 

Table C3. Atomic coordinates for probe AH+. 
Row Symbol X Y Z 
1 C 5.065562 -0.30195 0.231392 
2 C 3.918238 -1.1465 0.093227 
3 C 2.655842 -0.51606 0.026288 
4 C 2.570472 0.857508 0.108113 
5 C 3.691188 1.695034 0.248157 
6 C 4.948799 1.060704 0.30816 
7 O 1.328055 1.402961 0.032912 
8 C 1.107847 2.734944 0.080026 



224 

Row Symbol X Y Z 
9 C 2.208399 3.618407 0.21323 
10 C 3.47284 3.086059 0.292677 
11 C -0.22955 3.161402 -0.01656 
12 C -0.4802 4.657831 -0.00213 
13 C 0.703405 5.460642 -0.52496 
14 C 1.956349 5.098755 0.261899 
15 C -1.3436 2.329105 -0.09771 
16 C -1.44635 0.936341 -0.05956 
17 N 4.038025 -2.50149 0.029835 
18 C 5.348935 -3.1135 -0.15602 
19 C 2.849696 -3.2905 -0.31294 
20 C 2.999117 -4.79088 -0.13598 
21 C 5.839974 -3.04814 -1.59754 
22 C -2.64245 0.23876 -0.12328 
23 C -4.06793 0.769153 -0.23452 
24 C -4.86679 -0.51027 -0.22335 
25 C -3.99988 -1.59284 -0.11677 
26 N -2.68327 -1.11415 -0.07904 
27 C -6.23192 -0.71838 -0.28953 
28 C -6.71414 -2.02998 -0.24242 
29 C -5.83195 -3.10373 -0.12632 
30 C -4.45217 -2.9037 -0.05959 
31 C -4.45013 1.626452 0.982585 
32 C -4.29159 1.521784 -1.55506 
33 C -1.5289 -1.9787 0.048135 
34 C -1.10646 -2.12267 1.502644 
35 O 0.054533 -2.92997 1.504442 
36 H 6.057687 -0.73129 0.266281 
37 H 1.741027 -1.07871 -0.09343 
38 H 5.840598 1.672691 0.408444 
39 H 4.328261 3.750475 0.389404 
40 H -1.37601 4.87539 -0.59212 
41 H -0.70675 4.979214 1.024217 
42 H 0.499696 6.532647 -0.44503 
43 H 0.860348 5.240429 -1.58812 
44 H 2.835042 5.629837 -0.11595 
45 H 1.832084 5.40953 1.308209 
46 H -2.27694 2.876612 -0.18611 
47 H -0.5422 0.357509 0.04278 
48 H 6.059746 -2.64612 0.526935 
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Row Symbol X Y Z 
49 H 5.282479 -4.14878 0.175449 
50 H 2.030745 -2.96412 0.328549 
51 H 2.552468 -3.06533 -1.34825 
52 H 2.028251 -5.25478 -0.32872 
53 H 3.714325 -5.24028 -0.82917 
54 H 3.290911 -5.05344 0.884998 
55 H 6.820545 -3.52354 -1.69084 
56 H 5.149922 -3.56559 -2.27037 
57 H 5.930477 -2.01398 -1.94166 
58 H -6.92092 0.117394 -0.37411 
59 H -7.78302 -2.21377 -0.2923 
60 H -6.22068 -4.11683 -0.08422 
61 H -3.77821 -3.74774 0.040142 
62 H -3.88934 2.561422 1.020171 
63 H -5.51325 1.874639 0.932159 
64 H -4.27199 1.083253 1.913689 
65 H -3.71512 2.446922 -1.60169 
66 H -4.0121 0.901822 -2.41011 
67 H -5.34914 1.779607 -1.65286 
68 H -1.7752 -2.95251 -0.3764 
69 H -0.71222 -1.57685 -0.55485 
70 H -0.90405 -1.13474 1.935272 
71 H -1.91692 -2.5848 2.080605 
72 H 0.349497 -3.06125 2.410781 

 

 

 

 

 

 

 

 

 



226 

Table C4. Excitation energies and oscillator strengths for probe AH+. 

 
Excited 

State 
Nature E (eV) λ (nm) f Orbital 

transitions 
Normalized 
coefficient 

1 Singlet-
A 

2.0899 593.26 0.7993 126 ->127 0.70631 

2 Singlet-
A 

2.8527 434.62 0.2023 125 ->127 
126 ->128 

0.68787 
0.12101 

3 Singlet-
A 

3.6147 343.00 0.1318 122 ->127 
124 ->127 
126 ->128 

 

-0.24296 
-0.42811 
0.49106 

4 Singlet-
A 

3.7149 333.75 0.3055 124 ->127 
125 ->127 
126 ->128 

0.53865 
-0.10258 
0.41981 

5 Singlet-
A 

3.9046 317.54 0.0383 123 ->127 
126 ->129 

0.66762 
-0.16028 

6 Singlet-
A 

3.9614 312.98 0.1464 122 ->127 
123 ->127 
125 ->128 
126 ->128 
126 ->130 

0.58588 
0.11095 
-0.22459 
0.19025 
-0.14800 
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Figure C.12. Calculated (top) FTIR spectrum of probe AH+. 

 

 

Figure C.13. Calculated UV-Vis spectrum for probe AH+ in water. 
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Figure C.13. MO for level 126 for probe AH+ involved with the transition noted as 

Excited State 1 in Table C4. 
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Figure C.14. MO for level 127 for probe AH+ involved with the transition noted as 

Excited State 1 in Table C4. 
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	Abstract

	Varied intracellular pH levels are critical for various physiological processes such as enzymatic activity, cell proliferation and apoptosis, ion transport, and muscle contraction. Cellular compartments, like lysosomes, must retain an acidic environme...
	We have developed three morpholine-functionalized BODIPY-based fluorescent probes that can be used to monitor lysosomal pH. The fluorescent probes are highly fluorescent under basic conditions, but when exposed to an acidic environment the fluorescenc...
	We have also developed a NIR fluorescent probe to determine mitochondrial pH variations by incorporating an oxazolidine switch onto a near-infrared hemicyanine.  The probe has the ability to rapidly switch from an oxazolidine moiety to a hemicyanine g...

	1. BODIPY
	2. e.A
	3. e.D
	4. Cy3
	5. Cy5
	6. Cy7
	7. NIR
	8. PET
	9. ICT
	10. HOMO
	11. LUMO
	1 Introduction
	1.1 Fluorescence spectroscopy
	Chemical probes play essential roles in the investigation of biochemical processes, diagnosis of diseases, and the detection of hazardous compounds. In the last two decades, fluorescence spectroscopy, fluorescence imaging, and fluorescence indicators ...
	1.1.1 Basic definitions of fluorescence spectroscopy
	Fluorescence is a type of luminescence that emits photons from the singlet-excited state to the ground electronic state after absorbing light. In fluorescence, the spin multiplicity of the electron in the electronic excited state retains its diamagnet...
	Phosphorescence, another type of luminescence, emits light as the electron returns to the ground state from the triplet-excited state. Phosphorescence mainly differs from fluorescence in the spin multiplicity of the electron in the triplet-excited sta...

	1.1.2 The history of fluorescence spectroscopy
	In 1565 Nicolás Monardes, a Spanish physician and botanist, was the first to report the phenomenon of fluorescence. Monrades described a bluish glimmer of water infused from the wood of a small Mexican tree.  The wood was later named Lignum Nephriticu...
	In 1845, Sir John Frederick William Herschel exposed a solution of quinine sulfate to sunlight and observed the emission of blue light.  In 1852 Sir George Gabriel Stokes, who had major contributions in the history of photoluminescence, named the phen...
	Professor Alexander Jablonski, the father of fluorescence spectroscopy, illustrated and described various molecular processes that can occur in the excited state between the absorption and emission of light through a diagram, namely the Jablonski Diag...
	Figure 1.1. The Jablonski diagram in which an electron is promoted to an excited state by the absorption of light, and emits radiation as it returns to the ground state.


	1.2 Organic fluorophores for fluorescent sensing and labeling
	1.2.1 Background
	A fluorophore, also known as a fluorochrome or fluorescent probe, is the most essential component of fluorescence sensing technology. It is a molecule that absorbs a photon at a specific wavelength and re-emits the photon at a different wavelength11-1...

	1.2.2 The structure of fluorescent probes
	Generally, the structure of a synthetic fluorescent probe consists of a fluorophore, a linker or spacer, and a recognition site that is also called a chelator, receptor, ligand, or binding site (Figure 1.2). The fluorophore is a signaling subunit that...
	Figure 1.2. A schematic illustration of a typical fluorescent probe.

	1.2.3 Parameters for fluorescent probes
	There are several parameters that describe the characteristics of fluorescent probes. Those include absorption maxima (λabs), emission maxima (λem), Stokes shift, quantum yield (Φ), molar extinction coefficient (𝓔), brightness, and lifetime (𝜏). The...
	Absorption and emission maxima are the maximum absorption and emission wavelength of the fluorescent probe respectively.
	Stokes shift: is the difference between the maximum absorption (λabs) and maximum emission (λem) of the chromophores (Figure 1.3). Fluorescent probes that possess a large Stokes shift are preferable than those with a small Stokes shift. This is becaus...
	Figure 1.3. An illustration of Stokes shift.
	The fluorescence quantum yield (Φ): is a measure for the efficiency of the fluorescent probe. It is determined by the ratio between the number of fluorescence photons emitted and the number of photons absorbed.
	,𝝓-𝒇.=,𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒑𝒉𝒐𝒕𝒐𝒏𝒔 𝒆𝒎𝒊𝒕𝒕𝒆𝒅-𝑵𝒖𝒎𝒃𝒆𝒓 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑.              Eq. 1.2.3.1
	The molar extinction coefficient (𝓔): is a measurement of the light absorbing capacity of the fluorescent probe. Fluorescent probes with high molar extinction coefficients are considered efficient absorbers.
	Brightness: the brightness of the fluorophore is an important criterion for fluorescent imaging applications. It is proportional to the product of the extinction coefficient and quantum yield.
	𝑩𝒓𝒊𝒈𝒉𝒕𝒏𝒆𝒔𝒔∝𝑛𝜙ℰ                          Eq. 1.2.3.2
	The lifetime (𝝉): is the average time a molecule spends in its excited state before it returns to the ground state through the emission of a photon.


	1.3 Fluorescence mechanisms and modulation
	The changes in fluorescence intensity and/or emission wavelength for fluorescent probes result from the interaction between the recognition site and the target analyte. There are many photophysical processes that can be involved when recognition of th...
	1.3.1 Photoinduced electron transfer (PET)
	The PET mechanism is a process in which an electron is transferred between a fluorophore and a receptor. Many fluorescent probes based on the PET mechanism have been reported 17-18. PET-based probes consist of a fluorophore that is linked to a chelato...
	PET can be divided into two types: reductive PET and oxidized PET. In reductive PET, also known as A-PET, the fluorophore is reduced and serves as the electron acceptor. Since the chelator is an electron-rich moiety, e.g. amine groups, it acts as the ...
	Figure 1.4 A schematic illustration of the reductive-PET mechanism based fluorescent probes.
	In oxidative PET, also called D-PET, the fluorophore serves as the electron donor and the chelator is the electron acceptor. In the absence of an analyte, the LUMO of the fluorophore is higher than that of the chelator. Consequently, the electron is t...
	Figure 1.5 Schematic illustration of the oxidized-PET mechanism based fluorescent probes.

	1.3.2 Intramolecular charge transfer (ICT)
	Sensors that contain ICT properties are designed to have electron-donating groups (e.D) π-conjugated to electron-withdrawing groups (e.A) in the fluorophore “e.D-π-e.A”23 (Figure 1.6). Upon photo-excitation, the ICT between the donor and acceptor moie...
	Figure 1.6 Schematic illustration of ICT mechanism based fluorescent probes.
	The main distinction between PET and ICT fluorescent probes is the difference in fluorescence response after the analyte interacts with the receptor. The PET sensors will either quench or enhance the fluorescence signal without any spectral shifts in ...

	1.3.3 Altering π-conjugation systems
	The most common and direct method to alter the spectroscopic properties of fluorophores is to change its π-conjugation system. Ideally, the recognition events of the target analyte will result in enhancing, disturbing, or reducing the π-conjugation of...
	The enhancement of π-conjugations in fluorophore indicators can be achieved through the spirocyclization of the fluorophore. Xanthene derivatives, such as Rhodamines and Fluorescein, are classical examples of probes with spirocyclization properties. W...
	Scheme 1.1: The mechanism of spirolactam ring opening and closing in Rhodamine B.


	1.4 Required criteria for the efficacy of fluorescent probes
	The efficiency of fluorescence sensing is mainly dependent on the fluorescent probes. Therefore, there are several criteria that should be taken into consideration when designing and synthesizing fluorescent probes, such as appropriate optical and che...
	1.4.1 Basic criteria
	1) Selectivity and sensitivity: The recognition site on the probe must be able to selectively bind with a target analyte without interference from competing molecules. This will result in efficient measurement and sufficient fluorescent signal. Theref...

	1.4.2 Desired criteria of fluorescent probes for biological systems

	1.5  Fluorescent probes for living cells
	The understanding of biological and biochemical processes is highly dependent on the ability to visualize and quantify these processes in the cellular context. Among many radioactive technologies, such as bioluminescence, electromagnetism, and electro...
	1.5.1 The role of intracellular pH in biological systems
	Intracellular pH is a key parameter that regulates many biological processes such as cell proliferation, growth, apoptosis, vesicle trafficking, enzymatic activity, protein degradation, and cellular metabolism. Each subcellular compartment of eukaryot...
	1.5.1.1 The importance of lysosomal pH

	1.5.2  Reported molecular-based pH fluorescent probes
	Molecular-based pH probes that could help with the monitoring of lysosomal pH have been widely studied and reported. Some of the more influential probes have been highlighted in the following section.
	1.5.2.1 BODIPY-based fluorescent pH probes
	BODIPY dyes (4,4-difluoro-4bora-3a,4a-diaza-s-indacene) were fully recognized as fluorophore sensors for biological labels in the 1990s. Figure 1.7 represents the core structure of BODIPY 1. The excellent features of BODIPY-based fluorescent probes ma...
	Figure 1.7.  The molecular structure of the BODIPY core.
	In 2015, Zhang et. al developed and reported three NIR BODIPY-based fluorescent probes (Figure 1.8: Probes 1.1-1.3) for the sensitive detection of lysosomal pH. These probes respond to the lysosomal pH via the ICT and PET mechanism. Under basic condit...
	At pH 8.0, the fluorescence signals of aza-BODIPY fluorescent probe 1.4 (Figure 1.8) are quenched by the electron lone pair on the nitrogen and oxygen atoms of the phenol moieties due to the PET and ICT process. However, the fluorescence signals of th...
	Figure 1.8. PET and/or ICT–based BODIPY fluorescent probes for pH detection52-53.
	1.5.2.2 Cyanine-based fluorescent pH probes
	Figure 1.9. a). The general molecular structure of cyanine dyes, b). The structure of common cyanine dyes57.
	1.5.2.2.1 pH-Sensitive non-N-alkylated cyanines

	The resonance effect between the two nitrogen atoms of the heterocyclic aromatic rings determines the optical properties of cyanine dyes (Figure 1.10). These dyes are non-fluorescent when the indole nitrogen is deprotonated. However, the protonation r...
	Cooper and co-workers reported Cy5 based pH probes (Figure 1.10: 1.5-1.8) are non-fluorescent under a high pH value and are highly fluorescent under acidic condition (λmax abs = 645 nm; λmax em = 665nm)16, 44, 54. The Cy5 fluorescent probes (1.6-1.8) ...
	1.5.2.2.2 pH-Sensitive cyanine probes based on PET mechanism

	These probes consist of a cyanine fluorophore and a nitrogen-containing modulator.  The fluorescence is switched on or off by suppressing or permitting the PET process via protonation/deprotonation of the modulator18. The cyanine-based probe in 1.10 w...
	Figure 1.10.  a). The mechanism of protonation/ deprotonation of pH-sensitive non-N-alkylated cyanine-based fluorescent probes; b). Reported cyanine-based fluorescent probes based on pH-sensitive non-N-alkylated16, 44, 54, 59-60.
	Figure 1.11. The mechanism of PET pH- sensitive and some reported cyanine-based fluorescent probes61-63.
	1.5.2.3 Hemicyanine-based fluorescent pH probes
	Hemicyanines are members of the cyanine family. The general structure of hemicyanine consists of a positively charged nitrogenic heterocycle conjugated to a terminal moiety. This terminal group can be a hydroxyl, alkoxy, amino group, coumarin, or xant...
	The photophysical properties of fluorescent chemo-sensors can be improved and modified by hybridizing the hemicyanine scaffolds with other dyes. For example, in 2012 the Lin research group reported a unique, hybrid hemicyanine-rhodamine dye that conta...
	Figure 1.12.  A representation of the Rhodamine-hemicyanine hybrid for pH sensing with spirolactam on/off switching mechanism64.
	After the unique design of rhodamine-hemicyanine hybrid probes for pH detection by the Lin group, many fluorophore sensors were reported. Vegesna et. al. reported four pH probes (1.17- 1.20) for the detection of lysosomal pH inside living cells. The p...
	Figure 1.13.  The ring opening form of near-infra red fluorescent probes in responding to acidic pH65.
	1.5.2.4 Rhodamine-based fluorescent pH probes
	Rhodamine dyes (Rho) belong to a family of xanthene dyes and are among the oldest synthetic dyes used for the dying of fabrics. The general structure of xanthene and rhodamine are shown in Figure 1.14.  Rhodamine-based fluorescent probes and their der...
	Figure 1.14.  The molecular structure of xanthene (A) and rhodamine dyes (B)66.
	Some commercially available rhodamine dyes are rhodamine 6G (Rho 6G), rhodamine B (Rho B), and rhodamine 101 (Rho 101) (Figure 1.15). Rho B and Rho 101 are among the most commonly used and can exist in one of three forms, cationic, dipolar ionic (zwit...
	Figure 1.15.  The molecular structures of the classical rhodamine dyes; rhodamine 6G, rhodamine B, and rhodamine 10166.
	Figure 1.16. The molecular structure of three forms of Rho B in equilibrium66.


	1.6 Limitations and drawbacks of reported pH fluorescent probes
	Developing fluorescent probes for biosensing applications still requires improvement. This is because the reported fluorophores are partially fulfilling the desired criteria of the ideal chromophores for biological imaging (Section 1.3.2). For example...
	Poor water solubility is another drawback in reported fluorescent probes. This problem usually arises from the large π-conjugation systems and the presence of aromatic rings. For instance, BODIPY dyes possess a hydrophobic core that brings a significa...

	1.7 Research objective and aim
	The focus of this dissertation is to overcome the current limitation and challenges discussed in Section 1.6 and better apply BODIPY, rhodamine and hemicyanine dyes to fluorescence sensing. We plan to alleviate this knowledge gap by modifying and deve...


	2 Unusual Fluorescent Responses of Morpholine-functionalized Fluorescent Probes to pH via Manipulation of BODIPY’s HOMO and LUMO Energy Orbitals for Intracellular pH Detection71
	71The content of this chapter was published ACS Sens., 2016, 1 (2), pp 158–165
	2.1 Introduction
	2.2 Experimental section
	2.2.1 Instrumentation
	1H NMR and 13C NMR spectra were collected by 400 MHz Varian Unity Inova NMR spectrophotometer instrument. 1H NMR and 13C NMR spectra were recorded in CDCl3 and DMSOd6 solutions. Chemical shifts (δ) were given in ppm with solvent residual peaks (1H: δ ...
	Materials.  Unless specifically indicated, all reagents and solvents were obtained from commercial suppliers and used without further purification. Compound 2 was prepared according to the reported literature78.
	Fluorescent Probe A. 1H NMR (400 MHz, CDCl3): δ 6.99 (d, J = 8Hz, 1H), 6.85 (d, J = 2 Hz, 1H), 6.82 (dd, J = 2, 8 Hz, 1H), 6.00 (s, 2H), 4.21 (t, J = 5.2 Hz, 2H), 4.12 (t, J = 5.2 Hz, 2H), 3.91 (t, J = 5.2 Hz, 2H), 3.86 (t, J = 5.2 Hz, 2H), 3.79−3.51 ...
	Fluorescent Probe B. 1H NMR (400 MHz, CDCl3): δ 6.95 (d, J = 8Hz, 1H), 3.59−3.55 (m, 2H), 4.13 (t, J = 4.8 Hz, 2H), 4.01 (t, J = 4.8 Hz, 2H), 3.86 (t, J = 4.8 Hz, 2H), 3.74−3.28 (m, 32H), 3.15 (s, 4H), 2.52 (s, 6H), 2.31 (br, 8H), 1.42 (s, 6H). 13C NM...
	Fluorescent Probe C. 1H NMR (400 MHz, CDCl3): δ 7.18−7.09 (m, 3H), 6.77 (d, J = 8 Hz, 2H), 6.45 (s, 1H), 5.90 (d, J = 16 Hz, 2H), 4.14 (t, J = 5.2 Hz, 4H), 4.07 (t, J = 5.2 Hz, 4H), 3.90−3.40 (m, 72H), 3.38 (s, 3H), 3.37 (s, 6H), 3.36 (s, 3H), 3.34(s,...

	2.2.2 Optical measurement
	Citrate-phosphate-borate buffer (20 mM) was used for pH dependency and photostability measurements of fluorescent probes. To avoid the interference caused by metal− phosphate and metal−citrate binding interactions (forming precipitates of divalent cat...

	2.2.3 Computational modeling
	2.2.4 Live cell fluorescence imaging
	Human umbilical vein endothelial cells HUVEC-C (from ATCC) were plated on 12-well culture plates at 1 × 105 cells/well and were incubated at 37  C in 5% CO2 incubator overnight. The next day, the medium was removed and cells were rinsed twice with 1× ...


	2.3 Results and discussion
	2.3.1 Synthetic approach
	In order to prepare morpholine functionalized BODIPY-based fluorescent probes for pH, we incorporated morpholine moieties onto the BODIPY core at 4,4′-positions and 2,6-positions while we introduced ortho- or meta-substituent group of tri(ethylene gly...

	2.3.2 Optical properties
	2.3.3 Optical responses of fluorescent probes to pH
	We investigated the pH effect of fluorescent probes A−C and their intermediates (BODIPY dyes 1, 4, and 6) in buffer solution. There were no obvious changes observed in both absorption and emission spectra of all intermediates 1, 4, and 6 in different ...

	2.3.4 Theoretical modeling
	In order to further reveal the structural properties of the fluorescent probes, and more importantly, to verify the hypothesis that the fluorescent probes respond to pH via a modulation of d-PET effect from BODIPY core to protonated morpholine moietie...
	Figure 2.2. Comparisons of calculated HOMO and LUMO energies of fluorescent probes A-C, morpholine moiety (N-methylmorpholine), and protonated morpholine moiety (protonated N-methylmorpholine), as well as the electron density distributions in HOMO and...

	2.3.5 Selectivity and photostability
	Considering the potential binding events between amines and metal ions when applying the fluorescent probes in complex environments such as physiological condition, we further investigate the selectivity of fluorescent probes to pH over other metal io...
	7.4, the fluorescence intensity of fluorescent probe B decreased by 7.5% in the first hour and further decreased by 2% in the second hour under excitation and fluorescent probe C had a gradual decrease by 3% in fluorescence intensity within 2-hour exc...
	Figure 2.3. Upper row: fluorescence responses of fluorescent probes A, B and C (5 μM) to pH at 4.0 and 7.4 in the absence and presence of various metal ions (200 μM) in buffer solutions (with 1% DMSO as co-solvent). Lower row: fluorescence intensities...

	2.3.6 In vitro cell imaging and intracellular pH detection
	In order to determine if the fluorescent probes could selectively detect intracellular pH changes in live cells, we chose the fluorescent probe C for live cell fluorescence imaging with normal endothelial (HUVEC-C) cells at different intracellular pH ...
	Figure 2.4. Fluorescence images of HUVEC-C cells incubated with 5, 15, or 25 μM fluorescent probe C. HUVEC-C cells were incubated with fluorescent probe C for 2 h, post serum starvation (2 h) and imaged for colocalization with 1 μM LysoSensor Green an...
	The merged fluorescence images show green-yellowish areas around the nucleus and many green-yellowish dot structures also can be observed by a careful examination (Figure 2.4). The calculated Pearson’s coefficients of red (fluorescent probe C) and gr...
	Figure 2.5. Fluorescence images of HUVEC-C cells incubated with 5, 15, or 25 μM fluorescent probe C in buffers at different pH values of 5.5, 6.5, 7.5, or 8.5 having nigericin. Images were acquired using the inverted fluorescence microscope (AMF-4306,...
	These responses of fluorescent probe C to intracellular pH are in line with its optical responses to pH changes in buffer solutions (Figure 2.1), which further proved the d-PET mechanism of fluorescent probe C at different pH values in live cells. How...
	Figure 2.6. Concentration effects of fluorescent probe C on cell proliferation measured by MTS assay. HUVEC-C cells were incubated with 5, 15, 25, or 50 μM fluorescent probe C for 48 h. To this, 20 μL of MTS reagent was added per well, and absorbance...


	2.4 Conclusion
	We have successfully prepared three pH sensitive morpholine functionalized fluorescent probes A−C. These probes display unusual pH responses in aqueous solutions with high fluorescence in basic conditions while they exhibit very weak fluorescence in a...


	3 Fluorescent Probes with High pKa Values Based on Traditional, Near-infrared Rhodamine, and Hemicyanine Fluorophores for Sensitive Detection of Lysosomal pH Variations
	3.1 Introduction
	Various cellular processes including cell proliferation, cell growth, apoptosis, signal transduction, and cellular metabolism are very dependent on intracellular pH levels54, 65, 68, 88-92.  Any pH variance from normal levels is often associated with ...
	In this article, we detail the design and syntheses of three fluorescent probes (A-C), Scheme 1, bearing closed spirolactam ring configurations with high pKa values for lysosomal pH detection in living cells by introducing a significantly sterically b...
	Scheme 3.1. Chemical structures of fluorescent probes in responses to pH changes.

	3.2 Experimental section
	3.2.1 Materials
	Unless specifically indicated, all reagents and solvents were obtained from commercial suppliers and used without further purification.
	3.2.1.1 Synthesis of fluorescent probe A
	Rhodamine B (0.498 g, 1.04 mmol) was dissolved in 10 mL of dry dichloromethane, Bop reagent (0.707g, 1.6 mmol) and 0.5 mL of trimethylamine were added to the solution. After the reaction was stirred for 30 min, 2-aminophenylboronic acid pinacol ester ...
	1HNMR (400 MHz, CDCl3) δ: 7.99 (1H, d, J=6.88), 7.71 (1H, dd, J=5.92), 7.50 (3H, m), 7.09 (2H, m), 6.92 (1H, m), 6.59 (1H, d, J=8.2), 6.57 (1H, d, J=8.88), 6.42 (2H, d, J= 2.44), 6.14 (2H, dd, J= 2.52), 3.31 (8H, q, J= 7.08, 7.17), 1.44 (12H, s), 1.15...
	3.2.1.2 Synthesis of fluorescent probe B
	Near-infrared rhodamine dye (4) was prepared by the condensation of 6-(dimethylamino)-3,4-dihydronaphthalen-1(2H)-one (3) with 2-(4-(diethylamino)-2-hydroxybenzoyl)benzoic acid in sulfuric acid at high temperature according to the literature 111.  Nea...
	1HNMR (400 MHz, Acetonitrile-d3) δ: 10.20 (1H, s), 8.21 (1H, d, J=8.4), 8.15 (1H, m), 8.07 (1H, m), 7.79 (2H, m), 7.72 (1H, m), 7.60 (1H, m), 7.53 (1H, m), 7.33 (1H, m), 7.05 (1H, m), 6.86 (1H, d, J=2.48), 6.80 (2H, m), 6.47 (1H, d, J=2.48), 3.54 (4H,...
	3.2.1.3 Synthesis of fluorescent probe C
	Near-infrared hemicyanine dye (8) were prepared by the condensation of Fisher aldehyde (7) with 9-(2-carboxyphenyl)-6-(diethylamino)-1,2,3,4-tetrahydroxanthylium percloride (6) 64, 112. Hemicyanine dye (8) (140 mg, 0.25 mmol) was then dissolved in dry...
	1HNMR (400 MHz, Acetonitrile-d3) δ: 8.13 (1H, d, J=6 Hz), 8.04 (1H, m), 7.78 (2H, m), 7.45 (2H, m), 7.33 (3H, m), 7.11 (1H, m), 6.82 (1H, m), 6.71 (2H, m), 6.12 (2H, d, J=12Hz), 3.58 (3H, s), 3.53 (4H, m), 3.33 (1H, d, J= 6 Hz), 2.64 (2H, m), 2.37 (2...

	3.2.2 Optical measurement
	We investigated the effect of pH on the absorption spectra of the fluorescent probes. A citrate–phosphate buffer (0.1 M) was used for acidic pH and a carbonate-bicarbonate buffer (0.2 M) was used for basic pH. Ethanol 1.0% was used as a co-solvent. Th...

	3.2.3 Live cell imaging
	MDA-MB231 and HUVEC-C cells were obtained from ATCC and cultured according to published protocols 113.  For imaging experiments, cells were plated in 12 well plates at the seeding density of 1x105 cells/well and incubated overnight at 37 oC in a 5% CO...

	3.2.4 Computational details
	Models suitable for calculations for probes A-C and their protonated versions were obtained as described previously115 using Chem3d with MM2 minimization of energies116, followed by force field (UFF) calculations in Avogadro117. The molecular data wer...


	3.3 Results and discussion
	3.3.1 Probe design and synthesis
	We chose traditional rhodamine and its near-infrared derivative, and near-infrared hemicyanine dye as fluorophore probes not only because of their excellent photophysical properties including high extinction coefficient, high fluorescence quantum yiel...
	Scheme 3.2.  Synthetic approach to prepare fluorescent probes A, B, and C.

	3.3.2 Absorption responses of the probes to pH changes
	We obtained the absorption spectra of the probes in 0.1 M citrate–phosphate (pH 2.0 to 7.0) and phosphate-phosphate buffers (pH 7.0 to 10.8) containing 1% ethanol (Figure 3.1).  Probe A displays no absorption above 400 nm at neutral and basic pH envir...
	Figure 3.1. Absorption spectra of probes A, B, and C and their respective protonated versions in different pH buffers containing 1% ethanol. Citrate-phosphate buffers were used for pH values from 2.0 to 7.0 while phosphate buffers were employed for pH...
	We also evaluated fluorescence responses of the probes to pH changes in 0.1 M citrate-phosphate or phosphate buffer solutions containing 1% ethanol (Figure 3.2). Via this method, probes A-C have pKa values of 5.81, 5.45 and 6.97, respectively as calcu...
	Figure 3.2. Fluorescence spectra of probes A, B, and C in different pH buffers containing 1% ethanol after excitation at 530 nm, 560 nm, and 660 nm, respectively. Citrate-phosphate buffers were used for pH values from 2.0 to 7.0 while phosphate buffer...

	3.3.3 Calculations
	In order to understand the nature of any structural changes that the probes may experience upon protonation and to clarify the nature of the electronic transitions, theoretical calculations were conducted in Gaussian 16119 using the Austin-Frisch-Pete...
	Figure 3.3.  GaussView 122 drawings of probes B (left) and C (right) where the steric interactions are indicated with a    .
	Comparing the optimized geometries of the probes A-C to the protonated versions AH+-CH+, as is presented in Figures: B.22 to B.28, Figures: B.33 to B.40 and Figures: B.45 to B.50 respectively, it is clear a more open structure was reached in the proto...
	However, due to the insertion of the dihydronaphtyl moiety in probes B and C, evidence of the resonance structure depicted in Table 3.1 for these molecules is present in the different distances calculated for the equivalent bond lengths, in particular...
	We find transitions for probes A and B occur in the UV range as excited state 6 in Table S4 and excited state 4 in Table B.8 occur at 300 and 327 nm, respectively. The addition of acid for these probes results in ring opening, a conjugated rhodamine m...
	Table 3.1. Comparison of equivalent bond distances in the probe A-C and their protonated versions.
	The extended conjugation upon protonation to produce probe CH+ resulted in a transition at 591 nm (724 nm) listed as excited state 1 in Table B14. The nature of the conjugation is best summarized in an inspection of the current density diagrams, which...
	Figure 3.4. Current density difference illustrations as iso-surfaces for probe AH+ (left), BH+ (middle) and CH+ (right) as indicated for the excited states (ES) and the calculated and (experimental) wavelength. The composition of that specific ES toge...

	3.3.4 The selectivity of the probes
	We investigated whether the probes react with 200 μM concentrations of various separate cations and anions in buffers at two different pH levels, namely, 2.0 and 7.4, see Fig. 3.5. There is no significant interference with probe responses to pH in the...
	Figure 3.5. Fluorescence responses of probes A, B and C to pH in the absence and presence of cations and anions under excitation of 530 nm, 560 nm, and 660 nm, respectively.

	3.3.5 Probe photostability and their reversible responses to pH
	We investigated the photostability of fluorescent probes A, B and C in a pH 2.4 buffer under three-hour continual excitation at 530 nm, 560 nm, and 660 nm, respectively. Fluorescent probes A-C showed excellent photostability with less than 4% decrease...
	Figure 3.6. Fluorescence intensity of probes A, B, and C in a pH 2.4 buffer under three-hour continual excitation of 530 nm, 560 nm, and 660 nm.
	Figure 3.7. The reversible response of pH changes between pH 2.4 and 7.4 of probes A-C under excitation of a wavelength of 530 nm, 560 nm, and 660 nm respectively.

	3.3.6 Low cytotoxicity of the probes
	An MTS assay was employed to evaluate the cytotoxicity of the probes with different concentrations from 5 μM to 50 μM for the viability of HeLa cells. We observed that cell viability values with 50 μM probes are higher than 82.3% suggesting no signifi...
	Figure 3.8. Cytotoxicity of probes A, B, and C obtained by MTS assay. The HeLa cells were incubated with 0, 5, 10, 25, and 50 μM of probes A, B, and C for 48 h.  The relative cell viability was normalized to untreated cells and the cell viability has ...

	3.3.7 Live cell fluorescence imaging
	We conducted cellular imaging of the probes by costaining breast cancer cell line (MDA-MB231) and human umbilical vein cells (HUVEC-C) with probes A, B and C, and a commercially available lysosome-targeting lysosensors Green DND-189 for co-localizatio...
	Figure 3.9. Fluorescence images of probes A, B, and C in HeLa cells were incubated with 5 µM probe A, B, and C in pH 7.4 buffer. Lysosensor Green DND-189 (1 µM) was used for co-localization. The images were acquired using confocal fluorescence microsc...
	In order to quantitatively appraise fluorescence responses of the probes to intracellular pH changes, we incubated two different cell lines, breast cancer cell line (MDA-MB231) and HUVEC-C (see supplemental Figures B.56-B.61) with the probes in differ...
	Figure 3.10. Fluorescence images of probe A in MDA-MB231 cells. MDA-MB231 cells were incubated with 10 µM probe A in buffers with different pH values ranging from pH 4.5 to 8.5 in the presence of nigericin (1 µg/mL) for 1 h before imaging. Lysosensor ...
	Figure 3.11. Fluorescence images of probe B in MDA-MB231 cells. MDA-MB231 cells were incubated with 5 M probe B in buffers with different pH values ranging from pH 4.5 to 8.5 in the presence of nigericin (1 µg/mL) for 1 h before imaging. Lysosensor G...
	Figure 3.12. Fluorescence images of probe C in MDA-MB231 cells. MDA-MB231 cells were incubated with 5 M probe C in buffers with different pH values ranging from pH 4.5 to 8.5 in the presence of nigericin (1 µg/mL) for 1 h before imaging. Lysosensor G...


	3.4 Conclusion
	Three lysosome-targeting fluorescent probes with high pKa values have been developed by coordination of the sterically bulky 2-aminophenylboronic acid pinacol ester to traditional rhodamine, a near-infrared rhodamine dyes, and a near-infrared hemicyan...
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	4.1 Introduction
	Mitochondria possess double-membranes composed of phospholipid bilayers and proteins, and act as the energy-supplying organelle in almost all eukaryotic cells. Mitochondria have vital roles for cells metabolism such as regulating the cellular redox st...
	Small organic fluorescent probes are the essential tool for bioanalysis and real-time bioimaging technologies because of their superior features of excellent sensitivity and high spatial resolution18, 132, 140. Fluorescent probes with near-infrared ab...
	Scheme 4.1. Chemical structure of fluorescent probe with an oxazolidine switch in response to pH changes.

	4.2 Experimental
	4.2.1 Materials
	Unless specifically indicated, all reagents and solvents were obtained from commercial suppliers and used without further purification. 6-(Diethylamino)-2,3-dihydro-1H-xanthene-4-carbaldehyde (3) (283 mg, 1 mmol) and 1-(2-hydroxyethyl)-2,3,3-trimethyl...
	4.2.1.1 Synthesis of fluorescent probe A
	After 6-(diethylamino)-2,3-dihydro-1H-xanthene-4-carbaldehyde (3) (283 mg, 1 mmol) and 1-(2-hydroxyethyl)-2,3,3-trimethyl-3H-indol-1-ium (4) (204 mg, 1 mmol) were added to 10 mL of acetic anhydride, the mixture was stirred for 5 hours at 80 oC.  The r...

	4.2.2 Optical measurement
	A citrate–phosphate buffer (0.1 M) was used for acidic pH and a carbonate-bicarbonate buffer (0.2 M) was used for basic pH and a 10% ethanol as a co-solvent was used to investigate the effect of pH on the absorption spectra of the fluorescent probe. T...

	4.2.3 Live cell imaging
	HeLa cells were seeded in 35 mm confocal glass bottom dishes (MatTek) with 1×105 cells per dish and cultured for 24 h before cellular imaging was conducted. For co-localization experiment, HeLa cells were incubated with 5 µM probe A, 1 µM Hoechst and ...

	4.2.4 Theoretical calculations
	Computer modelling of probes A and AH+ was accomplished using procedures published previously in order to establish base geometries 124. The molecular data were initially refined using density functional theory (DFT) employed with the B3LYP functional...


	4.3 Results and discussion
	4.3.1 Probe design and synthesis
	Near-infrared hemicyanine molecules possess unique advantageous photophysical properties such as high fluorescence quantum yield, excellent chemical stability and photostability with near-infrared emission at 725 nm. However, hemicyanine dyes without ...
	Scheme 4.2.  Synthetic approach to prepare fluorescent probe AH+.

	4.3.2 Optical responses of the probe to pH changes
	We investigated whether the probe can respond to pH changes as verified by absorption and fluorescence spectra in two different buffer solutions, 0.1 M citrate–phosphate (pH from 5.0 to 7.0) and phosphate-phosphate buffers (pH from 7.0 to 10.0) contai...
	Figure 4.1. Absorption spectra of 5 fluorescent probe AH+ in different pH buffers containing 10% ethanol. Citrate-phosphate buffers were used for pH from 5.0 to 7.0 while phosphate buffers were employed for pH from 7.0 to 10.0.
	Figure 4.2. Fluorescence spectra of 5 M fluorescent probe AH+ in different pH buffers containing 10% ethanol under excitation at 670 nm. Citrate-phosphate buffers were used for pH from 5.0 to 7.0 while phosphate buffers were employed for pH from 7.0 ...

	4.3.3 Theoretical modeling
	4.3.4 Probe selectivity, photostability and pH responsive reversibility
	Figure 4.4. Fluorescent responses of 5 M fluorescent probe A to pH at 5.0 and 10.5 in the absence and presence of different metal ions (200 M), respectively.
	Fluorescent probe A was excited continuously at its optimal excitation (670 nm) for 5 min intervals and fluorescence intensity was measured every 5 min. The result indicates that probe A displayed a moderate photostability with less than 15% decrease ...
	Figure 4.5. A). Photostability of 5 μM fluorescent probe A at pH 5.0 in 10% ethanol solution. Sample was exposed under respective optimal excitation wavelength (670 nm) and fluorescence intensities were measured at 5-min intervals., B). The reversible...

	4.3.5 Probe cytotoxicity
	We evaluated cell cytotoxicity of the probe for its biocompatibility by the MTT assay.   The cytotoxicity of the probe increases slightly with the probe concentration with lower cell viability. High centration (50 µM) of the probe does not cause any c...
	Figure 4.6. Cytotoxicity and cell proliferation effect of probe was tested by MTT assay.  The HeLa cells were incubated with different concentrations of the probe for 2 hours for mitochondria staining.

	4.3.6 Selective staining of mitochondria
	We elevated the probe performance by testing its cell permeability.  We found out that the probe displayed excellent cell permeability. Probe A carrying a positive charge could be used to specifically target the negatively-charged matrix of mitochondr...
	Figure 4.6. Confocal microscopic cellular images and merged images of the probe colocalized with Hoechst, and Lysotracker Red in HeLa cells. Colocalization scatterplot of the probe with Lysotracker Red. Scale bar: 20 μm.
	Figure 4.7. Confocal microscopic cellular images and merged images of the probe colocalized with Hoechst, and rhodamine 6G in HeLa cells. Colocalization scatterplot of the probe with rhodamine 6G. Scale bar: 20 μm.
	In order to further demonstrate that the probe specifically stain mitochondria, we employed to treat HeLa cells with carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone) (FCCP), a uncoupler of oxidative phosphorylation in mitochondria after the cells...
	Figure 4.8. Confocal microscopic cellular images of HeLa cells with 10 µM probe A in absence and in the presence of 200 nM Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone) (FCCP) treatment. Scale bar: 50 µm.

	4.3.7 Visualization of mitochondrial pH changes in live cells
	Since we demonstrated that the probe could selectively accumulate in mitochondria, we further studied whether the probe could be used to determine mitochondrial pH changes in live cells. We incubated HeLa cells with 10 µM probe A in different pH buffe...
	Figure 4.9. Confocal microscopic cellular images of HeLa cells with 10 µM probe A incubated in different pH buffers containing 5 µM nigericin. Scale bar: 50 µm.


	4.4 Conclusion
	We have successfully developed a near-infrared fluorescent probe by incorporating the oxazolidine switch into hemicyanine for specific targeting of mitochondria. Effective monitoring of mitochondrial pH changes in live cells is achieved through π-conj...


	5 Summary of the dissertation
	Additionally, in chapter four we designed and synthesized a NIR fluorescent probe that possesses high biocompatibility, good photostability, selectivity, and water solubility for the effective detection of mitochondrial pH changes in living cells. The...
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	A.1 Synthesis
	A.1.1 Synthesis of fluorescent probe A:



	To a solution of compound 2 (0.9 mmol, 113 mg) in anhydrous THF (1 mL) was added ethylmagnesium bromide (0.9 mmol, 0.9 mL of 1.0 M solution). When the mixture was heated at 60  C for 2 hours and cooled down to room temperature, this freshly made Grign...
	BODIPY dye 4: A mixture of DMF (10.0 mL) and POCl3 (10.0 mL) was stirred in an ice bath for ten minutes under an argon atmosphere. The mixture was warmed to room temperature and further stirred for 35 minutes. After adding BODIPY dye 3 (600 mg, 0.93 m...
	A.1.2 Synthesis of fluorescent probe B

	A mixed solution of BODIPY 4 (100 mg, 0.14 mmol) and morpholine (75 mg, 0.84 mmol) in 30 mL dry ClCH2CH2Cl was stirred at 50 oC for 4 hours. When NaBH(OAc)3 (118 mg, 0.56 mmol) and acetic acid (1 drop) were added to the flask at room temperature, the ...
	BODIPY dye 6: When BODIPY dye 4 (88 mg, 0.125 mmol), compound 5 were dissolved in a mixture of toluene (30 mL), piperidine (0.2 mL) and acetic acid (0.2 mL), the reaction mixture was refluxed at 120 oC for 3 hours. Any water formed during the reaction...
	A.2 Optical Measurement
	A.2.1 Quantum yield calculation


	The UV-Vis absorption spectra of fluorescent probes A, B and C for pH dependency, selectivity, photostability and solvent effect measurements were collected in the range from 300 to 800 nm with increments of 1 nm. Their corresponding fluorescence spec...
	,𝜙-𝑋.=,𝜙-𝑠𝑡.,,,𝐺𝑟𝑎𝑑-𝑋.-,𝐺𝑟𝑎𝑑-𝑠𝑡...,,,𝜂-𝑋-2.-,𝜂-𝑠𝑡-2...
	Where the subscripts ‘st’ and ‘X’ stand for standard and test, respectively, Φ is the fluorescence quantum yield, “Grad” represents the gradient from the plot of integrated fluorescence intensity versus absorbance and η is the refractive index of the ...
	A.2.2 Determination of pKa by fluorometric titration

	The constants Ka of fluorescent probes A, B and C were determined in buffer solutions by fluorometric titration as a function of pH using the fluorescence spectra. The expression of the steady-state fluorescence intensity F as a function of the proton...
	𝐹=,,𝐹-𝑚𝑖𝑛.,,,H-+..-𝑛.+,𝐹-𝑚𝑎𝑥.,𝐾-𝑎.-,𝐾-𝑎.+,,,H-+..-𝑛..
	Fmin and Fmax stand for the fluorescence intensities at maximal and minimal H+ concentrations, respectively, and n is apparent stoichiometry of H+ binding to the probe which affects the fluorescent change. Nonlinear fitting of equation expressed above...
	A.3 MTS assay:

	MTS assay was performed with HUVEC-C cells (from ATCC). The cells were plated at a density of 5,000 cells/well on a 96-well cell culture plate and incubated at 37 oC in 5% CO2 incubator overnight. After incubation, the media was removed and the cells ...
	Table A.1. Optical properties of fluorescent probes A, B and C.
	Figure A.1. 1H NMR spectrum of fluorescent probe A in CDCl3 solution.
	Figure A.2. 13C NMR spectrum of fluorescent probe A in CDCl3 solution.
	Figure A.3. 1H NMR spectrum of BODIPY dye 4 in CDCl3 solution.
	Figure A.4. 13C NMR spectrum of BODIPY dye 4 in CDCl3 solution.
	Figure A.5. 1H NMR spectrum of fluorescent probe B in CDCl3 solution.
	Figure A.6. 13C NMR spectrum of fluorescent probe B in CDCl3 solution.
	Figure A.7. 1H NMR spectrum of BODIPY dye 6 in CDCl3 solution.
	Figure A.8. 13C NMR spectrum of BODIPY dye 6 in CDCl3 solution.
	Figure A.9. 1H NMR spectrum of fluorescent probe C in CDCl3 solution.
	Figure A.10. 13C NMR spectrum of fluorescent probe C in CDCl3 solution.
	Figure A.11. Absorption and emission spectra of BODIPY dyes 1, 4 and 6 (5 μM) in buffer solution at different pH values. The inset graphs in upper row are the corresponding changes fluorescence intensity at peak wavelengths at different pH conditions.
	Figure A.12. Absorption and emission spectra of fluorescent probe A (5 M) in the presence of various metal cations (200 M) in buffer solution at pH 4.0 (upper row) and pH 7.4 (lower row).
	Figure A.13. Absorption and emission spectra of fluorescent probe B (5 M) in the presence of various metal cations (200 M) in buffer solution at pH 4.0 (upper row) and pH 7.4 (lower row).
	Figure A.14. Absorption and emission spectra of fluorescent probe C (5 M) in the presence of various metal cations (200 M) in buffer solution at pH 4.0 (upper row) and pH 7.4 (lower row).
	Figure A.15. Red and green channel cytofluorogram of fluorescence images of cells incubated with 5 μM fluorescent probe C and 1 μM LysoSensor Green DND-189 for verifying their co-localization.
	Figure A.16. Red and green channel cytofluorogram of fluorescence images of cells incubated with 15 μM fluorescent probe C and 1 μM LysoSensor Green DND-189 for verifying their co-localization.
	Figure A.17. Red and green channel cytofluorogram of fluorescence images of cell incubated with 25 μM fluorescent probe C and 1 μM LysoSensor Green DND-189 for verifying their co-localization.
	Figure A.18. Fluorescence images of HUVEC-C cells incubated with 5 μM fluorescent probe C at different intracellular pH values. Intracellular pH were tuned by using nigericin (5 μg∙mL-1) in 2 mL potassium rich PBS at different pH values (5.5, 6.5, 7.5...
	Figure A.19. Fluorescence images of HUVEC-C cells incubated with 15 μM fluorescent probe C at different intracellular pH values. Intracellular pH were tuned by using nigericin (5 μg∙mL-1) in 2 mL potassium rich PBS at different pH values (5.5, 6.5, 7....
	Figure A.20. Fluorescence images of HUVEC-C cells incubated with 25 μM fluorescent probe C at different intracellular pH values. Intracellular pH were tuned by using nigericin (5 μg∙mL-1) in 2 mL potassium rich PBS at different pH values (5.5, 6.5, 7....
	B Appendix B: Supporting information of chapter 3
	B.1 1H, 13C NMR and HRMS spectra of probes A, B, and C


	Figure B.1. 1H NMR spectrum of probe A based on rhodamine dye in CD3OD solution.
	Figure B.2. 13C NMR spectrum of probe A based on rhodamine dye in CD3OD solution.
	Figure B.3. High-resolution mass spectrum of probe A
	Figure B.4. 1H NMR spectrum of probe B in acetonitrile-d3 solution.
	Figure B.5. 13C NMR spectrum of probe B in acetonitrile-d3 solution.
	Figure B.6. High-resolution mass spectrum of probe B
	Figure B.7. 1H NMR spectrum of probe C based on hemicyanine dye in acetonitrile-d3 solution.
	Figure B.8. 13C NMR spectrum of probe C based on hemicyanine dye in acetonitrile-d3 solution.
	Figure B.9. High resolution mass spectrum of probe
	B.2 Calculation of fluorescence quantum yields of probes A, B and C

	We chose rhodamine dye B, near-infrared rhodamine dye and near-infrared cyanine dye shown in Table B1 as fluorescent standard dyes to calculate fluorescence quantum yields of probes A, B and C, respectively.
	Table B.1. The standard fluorescent dyes such as rhodamine B, near-infrared rhodamine dye and near-infrared cyanine dye were used as fluorescent standard dyes to calculate the quantum yields of fluorescent probes A-C, respectively.
	The UV-Vis absorption spectra of probes A, B and C were collected in the range from 300 to 800 nm with increments of 1 nm. The UV-Vis absorption spectra measured in freshly prepared buffer. Citrate-phosphate buffer was used for acidic pH 4.5, and PBS ...
	,𝜙-𝐹(𝑋).=,𝜙-𝐹(𝑆).,,,𝐴-𝑆.,𝐹-𝑋.-,𝐴-𝑋.,𝐹-𝑆...,,,𝜂-𝑋.-,𝜂-𝑆...2         (1)
	Where ,𝜙-𝐹. is the fluorescence quantum yield, A is the absorbance at the excitation wavelength, F is the area under the corrected emission curve, and n is the refractive index of the solvents used. Subscripts S and X refer to the standard and to th...
	Table B.2. Optical properties of fluorescent probes A, B and C
	B.3 Solvent effects on the probe fluorescence

	We investigated the effect of ethanol percentage in water-ethanol mixed solution on dye fluorescence intensity (Figure B.9-B.11). Increase of the percentages of ethanol from 1.0% to 40% resulted in enhancement of fluorescence intensity of the dyes bec...
	Figure B.10. Fluorescence spectra of 5 μM probe A based rhodamine dye B in pH 2.4 buffers with different percentages of ethanol.
	Figure B.11. Fluorescence spectra of 5 μM probe B based on near-infrared rhodamine dye in pH 7.4 buffers containing different percentages of ethanol.
	Figure B.12. Fluorescence spectra of 5 μM probe C based on near-infrared cyanine dye in pH 7.4 buffers containing different percentages of ethanol.
	B.4 Determination of probe pKa values by fluorometric titration

	The pKa values of the fluorescent probes A, B and C were calculated by applying equation 2 below150-151 through fluorometric titration as a function of pH, which were obtained by using the fluorescence spectra. The expression of the steady-state fluor...
	(2)
	Fmin and Fmax stand for the fluorescence intensities at maximal and minimal H+ concentrations, respectively while n is apparent stoichiometry of H+ binding to the probes A, B and C. Nonlinear fitting of equation expressed above to the fluorescence tit...
	Figure B.13. Plot curve of fluorescence intensity of probe A versus pH.
	Figure B.14. Plot curve of fluorescence intensity of probe B versus pH.
	Figure B.15. Plot curve of fluorescence intensity of probe C versus pH.
	B.5 Determination of pKa by Absorption titration

	Figures B.S16-B.S19 show the results of the nonlinear regression of the λ at maximum absorption at 565 nm, 619 nm, and 714 nm of the fluorescent probes A, B and C, respectively, were calculated according to literature method affording a pKa values of...
	𝑝𝐾𝑎=,log-,,,,𝐴-𝑚𝑎𝑥.−𝐴-𝐴−,𝐴-𝑚𝑖𝑛....+𝑝𝐻.         (3)
	Figure B.16. Plot curve of absorption spectra of probe A versus pH.
	Figure B.17. Plot curve of absorption spectra of probe B versus pH.
	Figure B.18. Plot curve of absorption spectra of probe C versus pH.
	B.6 Stokes Shifts of probes A, B and C.

	Stokes shift is the difference between the maximum absorption λabs and maximum emission λem of a fluorophore. The Stokes shifts for the fluorescent probes A-C were calculated by taking the differences between the maximum absorption peak and the maximu...
	Figure B.19. Absorption and fluorescence spectra of probe A in pH 2.0 buffer containing 1% ethanol. Stokes shift of probe A is 14 nm.
	Figure B.20. Absorption and fluorescence spectra of probe B in 2.0 buffer containing 1% ethanol, Stokes shift of probe B is 23 nm.
	Figure B.21. Absorption and fluorescence spectra of probe C in 2.0 buffer containing 1% ethanol, Stokes shift of probe C is 31 nm
	B.7 Computationally derived structures for probes A-C

	Figure B.22. Drawing of probe, A with atoms represented as spheres of arbitrary size (H-white, C-grey, N-blue and O-red) using the GaussView program.
	Table B.3. Atomic coordinates for probe A.
	Table B.4. Excitation energies and oscillator strengths for probe A.
	Excited State   1:      Singlet-A      3.3804 eV  366.77 nm  f=0.0015  <S**2>=0.000
	172 -> 173        0.70413
	This state for optimization and/or second-order correction.
	Total Energy, E(TD-HF/TD-DFT) =  -2040.96349687
	Copying the excited state density for this state as the 1-particle RhoCI density.
	Excited State   2:      Singlet-A      3.5452 eV  349.73 nm  f=0.0023  <S**2>=0.000
	171 -> 173        0.69893
	Excited State   3:      Singlet-A      3.8762 eV  319.86 nm  f=0.0415  <S**2>=0.000
	172 -> 174        0.69819
	Excited State   4:      Singlet-A      4.0560 eV  305.68 nm  f=0.0385  <S**2>=0.000
	171 -> 174        0.65046
	172 -> 176        0.19748
	Excited State   5:      Singlet-A      4.0986 eV  302.51 nm  f=0.0584  <S**2>=0.000
	171 -> 174       -0.13477
	172 -> 175        0.65814
	172 -> 176        0.19754
	Excited State   6:      Singlet-A      4.1314 eV  300.10 nm  f=0.1238  <S**2>=0.000
	171 -> 174       -0.15760
	172 -> 175       -0.23567
	172 -> 176        0.61971
	Excited State   7:      Singlet-A      4.2445 eV  292.11 nm  f=0.0009  <S**2>=0.000
	170 -> 173        0.59587
	171 -> 175        0.31971
	171 -> 176        0.13410
	172 -> 178       -0.10243
	Excited State   8:      Singlet-A      4.2499 eV  291.74 nm  f=0.0104  <S**2>=0.000
	170 -> 173       -0.31303
	171 -> 174       -0.12475
	171 -> 175        0.28452
	171 -> 176        0.39845
	172 -> 178       -0.33311
	Excited State   9:      Singlet-A      4.2767 eV  289.90 nm  f=0.0134  <S**2>=0.000
	170 -> 173       -0.18888
	171 -> 175        0.55108
	171 -> 176       -0.31307
	172 -> 178        0.20001
	Excited State  10:      Singlet-A      4.3976 eV  281.94 nm  f=0.0342  <S**2>=0.000
	171 -> 176        0.21005
	171 -> 178       -0.25667
	172 -> 176       -0.11965
	172 -> 177        0.50930
	172 -> 178        0.30066
	The FTIR spectra of the unprotonated and protonated fluorescent probes A-B (Figures B.23, B.29, B.34, B.41, B.46, and B.51) were calculated to confirm that the geometries of the structures have been optimized to a suitable minimum.
	Figure B.23. Calculated (top) FTIR spectrum of probe A.
	Figure B.24. Calculated UV-Vis spectrum for probe A in water.
	Figure B.25. MO for level 172 for probe A involved with the transition noted as Excited State 6 in Table B.4.
	Figure B.26. MO for level 175 for probe A involved with the transition noted as Excited State 6 in Table B.4.
	Figure B.27. MO for level 176 for probe A involved with the transition noted as Excited State 6 in Table B.4.
	Figure B.28. Drawing of probe AH+ with atoms represented as spheres of arbitrary size (H-white, C-grey, N-blue and O-red) using the GaussView program.
	Table B.5. Atomic coordinates for probe AH+
	Table B.6.  Excitation energies and oscillator strengths for probe AH+.
	Excited State   1:      Singlet-A      2.6234 eV  472.61 nm  f=0.9828  <S**2>=0.000
	172 -> 173        0.70358
	This state for optimization and/or second-order correction.
	Total Energy, E(TD-HF/TD-DFT) =  -2041.44587968
	Copying the excited state density for this state as the 1-particle RhoCI density.
	Excited State   2:      Singlet-A      3.0917 eV  401.03 nm  f=0.0078  <S**2>=0.000
	171 -> 173        0.69641
	Excited State   3:      Singlet-A      3.1996 eV  387.49 nm  f=0.0225  <S**2>=0.000
	169 -> 173       -0.18512
	170 -> 173        0.66697
	171 -> 173        0.10920
	Excited State   4:      Singlet-A      3.6915 eV  335.87 nm  f=0.0956  <S**2>=0.000
	166 -> 173        0.11939
	167 -> 173       -0.27224
	168 -> 173       -0.32505
	169 -> 173        0.51168
	170 -> 173        0.11849
	172 -> 174       -0.12229
	Excited State   5:      Singlet-A      3.7684 eV  329.01 nm  f=0.0098  <S**2>=0.000
	167 -> 173       -0.28468
	168 -> 173       -0.35045
	169 -> 173       -0.21731
	172 -> 174        0.47522
	Excited State   6:      Singlet-A      3.8070 eV  325.68 nm  f=0.1238  <S**2>=0.000
	167 -> 173        0.19598
	168 -> 173        0.26353
	169 -> 173        0.33080
	172 -> 174        0.50014
	Excited State   7:      Singlet-A      4.0217 eV  308.29 nm  f=0.0011  <S**2>=0.000
	167 -> 173        0.54611
	168 -> 173       -0.44295
	Excited State   8:      Singlet-A      4.0788 eV  303.98 nm  f=0.0047  <S**2>=0.000
	166 -> 173        0.65830
	172 -> 175       -0.16610
	Excited State   9:      Singlet-A      4.2076 eV  294.67 nm  f=0.1086  <S**2>=0.000
	165 -> 173       -0.31046
	166 -> 173        0.12989
	172 -> 175        0.41997
	172 -> 176        0.40457
	Excited State  10:      Singlet-A      4.2496 eV  291.76 nm  f=0.0139  <S**2>=0.000
	163 -> 173        0.14954
	165 -> 173        0.11219
	172 -> 175        0.49397
	172 -> 176       -0.43162
	Figure B.29. Calculated (top) FTIR spectrum of probe AH+.
	Figure B.30. Calculated UV-Vis spectrum for probe AH+ in water.
	Figure B.31. MO for level 172 for probe AH+ involved with the transition noted as Excited State 1 in Table B.6.
	Figure B.32. MO for level 173 for probe AH+ involved with the transition noted as Excited State 1 in Table B.6.
	Figure B.33. Drawing of probe B with atoms represented as spheres of arbitrary size (H-white, C-grey, N-blue and O-red) using the GaussView program.
	Table B.7. Atomic coordinates for probe B.
	Table B.8. Excitation energies and oscillator strengths for probe B.
	Excited State   1:      Singlet-A      3.3857 eV  366.20 nm  f=0.0024  <S**2>=0.000
	178 -> 179        0.69791
	This state for optimization and/or second-order correction.
	Total Energy, E(TD-HF/TD-DFT) =  -2117.13022654
	Copying the excited state density for this state as the 1-particle RhoCI density.
	Excited State   2:      Singlet-A      3.4776 eV  356.52 nm  f=0.0117  <S**2>=0.000
	178 -> 180        0.69882
	Excited State   3:      Singlet-A      3.6765 eV  337.24 nm  f=0.0130  <S**2>=0.000
	176 -> 179       -0.10110
	177 -> 179        0.69249
	Excited State   4:      Singlet-A      3.7853 eV  327.54 nm  f=0.2651  <S**2>=0.000
	177 -> 180       -0.48571
	178 -> 181        0.49448
	Excited State   5:      Singlet-A      3.8083 eV  325.57 nm  f=0.1509  <S**2>=0.000
	177 -> 180        0.50625
	178 -> 181        0.47561
	Excited State   6:      Singlet-A      3.9866 eV  311.00 nm  f=0.0945  <S**2>=0.000
	178 -> 182        0.69277
	Excited State   7:      Singlet-A      4.0599 eV  305.39 nm  f=0.0397  <S**2>=0.000
	177 -> 181        0.67233
	178 -> 181       -0.10129
	Excited State   8:      Singlet-A      4.0983 eV  302.53 nm  f=0.0079  <S**2>=0.000
	178 -> 183        0.58475
	178 -> 184       -0.34977
	Excited State   9:      Singlet-A      4.1756 eV  296.93 nm  f=0.1068  <S**2>=0.000
	177 -> 183        0.11428
	177 -> 184       -0.10551
	178 -> 183        0.36540
	178 -> 184        0.54778
	Excited State  10:      Singlet-A      4.3001 eV  288.33 nm  f=0.0144  <S**2>=0.000
	177 -> 182        0.69253
	Figure B.34. Calculated (top) FTIR spectrum of probe B.
	Figure B.35. Calculated UV-Vis spectrum for probe B in water.
	Figure B.36. MO for level 177 for probe B involved with the transition noted as Excited State 4 in Table B.8.
	Figure B37. MO for level 178 for probe B involved with the transition noted as Excited State 4 in Table B.8.
	Figure B.38. MO for level 180 for probe B involved with the transition noted as Excited State 4 in Table B. 8.
	Figure B.39. MO for level 181 for probe B involved with the transition noted as Excited State 4 in Table B.8.
	Figure B. 40. Drawing of probe BH+ with atoms represented as spheres of arbitrary size (H-white, C-grey, N-blue and O-red) using the GaussView program.
	Table B. 9. Atomic coordinates for probe BH+.
	Table B.10. Excitation energies and oscillator strengths for probe BH+.
	Excited State   1:      Singlet-A      2.3762 eV  521.77 nm  f=0.9945  <S**2>=0.000
	178 -> 179        0.70269
	This state for optimization and/or second-order correction.
	Total Energy, E(TD-HF/TD-DFT) =  -2117.61180338
	Copying the excited state density for this state as the 1-particle RhoCI density.
	Excited State   2:      Singlet-A      3.0835 eV  402.10 nm  f=0.1664  <S**2>=0.000
	177 -> 179        0.68558
	Excited State   3:      Singlet-A      3.2649 eV  379.75 nm  f=0.0053  <S**2>=0.000
	176 -> 179        0.70314
	Excited State   4:      Singlet-A      3.5843 eV  345.91 nm  f=0.0343  <S**2>=0.000
	178 -> 180        0.69366
	Excited State   5:      Singlet-A      3.7811 eV  327.90 nm  f=0.0008  <S**2>=0.000
	174 -> 179        0.66244
	175 -> 179        0.20083
	Excited State   6:      Singlet-A      3.8298 eV  323.74 nm  f=0.0096  <S**2>=0.000
	173 -> 179        0.61209
	175 -> 179       -0.32762
	Excited State   7:      Singlet-A      3.8823 eV  319.36 nm  f=0.0242  <S**2>=0.000
	172 -> 179        0.31790
	173 -> 179        0.13643
	175 -> 179        0.28255
	178 -> 181        0.50137
	178 -> 182        0.10159
	178 -> 183        0.10889
	Excited State   8:      Singlet-A      3.9584 eV  313.22 nm  f=0.0770  <S**2>=0.000
	171 -> 179       -0.28634
	173 -> 179        0.26530
	174 -> 179       -0.17067
	175 -> 179        0.44187
	178 -> 181       -0.31939
	Excited State   9:      Singlet-A      4.1086 eV  301.76 nm  f=0.0442  <S**2>=0.000
	171 -> 179        0.37896
	172 -> 179        0.33147
	178 -> 181       -0.29674
	178 -> 182        0.36017
	178 -> 183       -0.10480
	Excited State  10:      Singlet-A      4.1762 eV  296.88 nm  f=0.0286  <S**2>=0.000
	169 -> 179        0.15181
	170 -> 179       -0.13369
	171 -> 179        0.47085
	172 -> 179       -0.27116
	173 -> 179        0.12766
	175 -> 179        0.20625
	178 -> 182       -0.25205
	Figure B.41. Calculated (top) FTIR spectrum of probe BH+.
	Figure B.42. Calculated UV-Vis spectrum for probe BH+ in water.
	Figure B.43. MO for level 178 for probe BH+ involved with the transition noted as Excited State 1 in Table B.10.
	Figure B.44. MO for level 179 for probe BH+ involved with the transition noted as Excited State 1 in Table B.10.
	Figure B.45. Drawing of probe C with atoms represented as spheres of arbitrary size (H-white, C-grey, N-blue and O-red) using the GaussView program.
	Table B.12. Excitation energies and oscillator strengths for probe C.
	Excited State   1:      Singlet-A      2.9092 eV  426.18 nm  f=0.0224  <S**2>=0.000
	203 -> 204        0.70060
	This state for optimization and/or second-order correction.
	Total Energy, E(TD-HF/TD-DFT) =  -2388.56316867
	Copying the excited state density for this state as the 1-particle RhoCI density.
	Excited State   2:      Singlet-A      3.1951 eV  388.04 nm  f=1.3814  <S**2>=0.000
	203 -> 205        0.69965
	Excited State   3:      Singlet-A      3.3156 eV  373.95 nm  f=0.0042  <S**2>=0.000
	202 -> 204        0.70100
	Excited State   4:      Singlet-A      3.5969 eV  344.70 nm  f=0.0076  <S**2>=0.000
	202 -> 205        0.69817
	Excited State   5:      Singlet-A      3.6920 eV  335.82 nm  f=0.0019  <S**2>=0.000
	203 -> 206        0.69566
	Excited State   6:      Singlet-A      3.7689 eV  328.96 nm  f=0.0067  <S**2>=0.000
	203 -> 207        0.52779
	203 -> 208        0.43336
	203 -> 209        0.11684
	Excited State   7:      Singlet-A      3.8279 eV  323.89 nm  f=0.1772  <S**2>=0.000
	203 -> 207       -0.44810
	203 -> 208        0.51909
	203 -> 209        0.11947
	Excited State   8:      Singlet-A      4.0133 eV  308.93 nm  f=0.0253  <S**2>=0.000
	201 -> 204        0.55573
	203 -> 208        0.10498
	203 -> 209       -0.38716
	Excited State   9:      Singlet-A      4.0213 eV  308.32 nm  f=0.0397  <S**2>=0.000
	201 -> 204        0.38454
	203 -> 208       -0.13261
	203 -> 209        0.55714
	Excited State  10:      Singlet-A      4.0996 eV  302.43 nm  f=0.0305  <S**2>=0.000
	201 -> 204        0.11135
	202 -> 206        0.68589
	Figure B.46. Calculated (top) FTIR spectrum of probe C.
	Figure B.47. Calculated UV-Vis spectrum for probe C in water.
	Figure B.48. MO for level 203 for probe C involved with the transition noted as Excited State 2 in Table B.12.
	Figure B.49. MO for level 205 for probe C involved with the transition noted as Excited State 2 in Table B.12.
	Figure B.50. Drawing of probe CH+ with atoms represented as spheres of arbitrary size (H-white, C-grey, N-blue and O-red) using the GaussView program.
	Table B.13. Atomic coordinates for probe CH+.
	Table B.14. Excitation energies and oscillator strengths for probe CH+.
	Excited State   1:      Singlet-A      2.0968 eV  591.31 nm  f=0.9396  <S**2>=0.000
	203 -> 204        0.70630
	This state for optimization and/or second-order correction.
	Total Energy, E(TD-HF/TD-DFT) =  -2389.03411121
	Copying the excited state density for this state as the 1-particle RhoCI density.
	Excited State   2:      Singlet-A      2.8582 eV  433.78 nm  f=0.2253  <S**2>=0.000
	202 -> 204        0.68916
	203 -> 206       -0.10100
	Excited State   3:      Singlet-A      3.2317 eV  383.65 nm  f=0.0024  <S**2>=0.000
	201 -> 204        0.70470
	Excited State   4:      Singlet-A      3.3249 eV  372.89 nm  f=0.0780  <S**2>=0.000
	203 -> 205        0.69494
	Excited State   5:      Singlet-A      3.6229 eV  342.23 nm  f=0.1536  <S**2>=0.000
	196 -> 204       -0.16190
	200 -> 204        0.36636
	203 -> 206        0.54930
	Excited State   6:      Singlet-A      3.7176 eV  333.51 nm  f=0.1938  <S**2>=0.000
	200 -> 204        0.57352
	203 -> 206       -0.36709
	Excited State   7:      Singlet-A      3.8225 eV  324.35 nm  f=0.0190  <S**2>=0.000
	196 -> 204        0.12178
	197 -> 204        0.56899
	198 -> 204        0.11791
	199 -> 204        0.34552
	203 -> 207       -0.12483
	Excited State   8:      Singlet-A      3.8442 eV  322.52 nm  f=0.0831  <S**2>=0.000
	199 -> 204        0.11167
	203 -> 207        0.65214
	203 -> 208        0.12953
	Excited State   9:      Singlet-A      3.9056 eV  317.45 nm  f=0.0976  <S**2>=0.000
	195 -> 204       -0.12709
	196 -> 204        0.21858
	197 -> 204       -0.26125
	198 -> 204       -0.28362
	199 -> 204        0.46324
	202 -> 206       -0.10576
	203 -> 206        0.11866
	Excited State  10:      Singlet-A      3.9391 eV  314.75 nm  f=0.0063  <S**2>=0.000
	197 -> 204       -0.24548
	198 -> 204        0.58204
	199 -> 204        0.19294
	203 -> 209       -0.18762
	Figure B.51. Calculated (top) FTIR spectrum of probe CH+.
	Figure B.52. Calculated UV-Vis spectrum for probe CH+ in water.
	Figure B.53. MO for level 203 for probe CH+ involved with the transition noted as Excited State 1 in Table B.14.
	Figure B.54. MO for level 204 for probe CH+ involved with the transition noted as Excited State 1 in Table B.14.
	B.8 Cell culture and fluorescence imaging

	Figure B.56. Fluorescence images of Probe A in HUVEC-C cells. HUVEC-C cells were incubated with 10 µM probe A at different pH values ranging from pH 4.5 to 8.5 in presence of nigericin (1 µg/mL) for 1 h before imaging. Lysosensor Green DND-189 (1 µM) ...
	Figure B.57. Fluorescence images of Probe B in HUVEC-C cells. HUVEC-C cells were incubated with 5 µM probe B at different pH values ranging from pH 4.5 to 8.5 in presence of nigericin (1 µg/mL) for 1 h before imaging. Lysosensor Green DND-189 (1 µM) a...
	Figure B.58. Fluorescence images of Probe C in HUVEC-C cells. HUVEC-C cells were incubated with 5 µM probe C at different pH values ranging from pH 4.5 to 8.5 in presence of nigericin (1 µg/mL) for 1 h before imaging. Lysosensor Green DND-189 (1 µM) a...
	Figure B.59. Fluorescence images of Probe A in MDA-MB231 cells. MDA-MB231 cells were incubated with 5 µM probe A at different pH values ranging from pH 4.5 to 8.5 in presence of nigericin (1 µg/mL) for 1h before imaging. Lysosensor Green DND-189 (1 µM...
	Figure B.60. Fluorescence images of Probe A/B/C in MDA-MB231 cells. MDA-MB231 cells were incubated with 10 µM probe A and 5 µM of Probe B/C at different pH values ranging from pH 4.5 to 8.5 in presence of nigericin (1 µg/mL) for 1 h before imaging. Th...
	Figure B.61. Fluorescence images of Probe A/B/C in HUVEC-C cells. HUVEC-C cells were incubated with 10 µM probe A and 5 µM of Probe B/C at different pH values ranging from pH 4.5 to 8.5 in presence of nigericin (1 µg/mL) for 1 h before imaging. The im...
	C Appendix C: Supporting information of chapter 4
	C.1 NMR and ESI-MS spectra of probe A
	C.1.1 1H NMR Spectra for probe A



	Figure C.1. 1H NMR spectra of probe A in a chloroform-d solution.
	C.1.2 13C NMR spectra for probe A

	Figure C.2. 13C NMR spectra of probe A in a chloroform-d solution.
	C.1.3 ESI-MS spectra for probe A

	Figure C.3. Electrospray Ionization mass spectrums of probe A.
	C.2 Calculation
	C.2.1 Calculation of quantum yield


	We chose the near-infrared hemicyanine dye shown in Figure S3 as fluorescent standard dye64 to calculate fluorescence quantum yields of probes A.
	Hemicyanine dye (Φ = 0.41 in EtOH)
	Figure C.3: The structure of near- infrared hemicyanine64.
	The UV-Vis absorption spectrum of probe A was collected in the range from 300 to 800 nm with increments of 1 nm. The UV-Vis absorption spectra measured in freshly prepared buffer. Citrate-phosphate buffer was used for acidic pH 5.0, and phosphate buff...
	ΦF(X) = ΦF(S) (ASFX / AXFS) (nX /nS)2             (1)
	Where ΦF is the fluorescence quantum yield, A is the absorbance at the excitation wavelength, F is the area under the corrected emission curve, and n is the refractive index of the solvents used. Subscripts s and x refer to the standard and to the unk...
	C.2.2 Calculation of pKa value by fluorometric titration

	The fluorometric titration as a function of pH was obtained fluorescence spectra.  The equation (2) below was used to calculate the pKa value of probe A.
	(2)
	The expression of the steady-state fluorescence intensity F as a function of the proton concentration has been extended for the case of n: complex between H+ and a fluorescent dye.  Where Fmin and Fmax are the fluorescence intensities at maximal and m...
	n is apparent stoichiometry of H+ binding to the probe A. Nonlinear fitting of equation expressed above to the fluorescence titration data was plotted as a function of H+ concentration150-151.
	Figure C.4. Plot curve of fluorescence intensity of probe A versus pH.
	C.3 Solvents Effect

	The effect of ethanol percentage was investigated in water-ethanol mixed solution on dye fluorescence intensity (Figure S4). Increase of the percentages of ethanol from 10% to 90% resulted in enhancement of fluorescence intensity of the dyes because w...
	Figure C.5. Fluorescence spectra of 5 μM probe A in pH 5.0 buffers with different percentages of ethanol.
	C.4 Computationally derived structures for probe A and AH+

	Figure C.6. Drawing of probe A with atoms represented as spheres of arbitrary size (H-white, C-grey, N-blue and O-red) using the GaussView program.
	Table C.1. Atomic coordinates for probe A.
	Table C.2. Excitation energies and oscillator strengths for probe A.
	The FTIR spectra of the unprotonated and protonated fluorescent probe A (Figures C.7 and C.12) were calculated to confirm that the geometries of the structures have been optimized to a suitable minimum.
	Figure C.7. Calculated (top) FTIR spectrum of probe A.
	Figure C.8. Calculated UV-Vis spectrum for probe A in water.
	Figure C.9. MO for level 126 for probe A involved with the transition noted as Excited State 1 in Table C2.
	Figure C.9. MO for level 127 for probe A involved with the transition noted as Excited State 1 in Table C2.
	Figure C.11. Drawing of probe AH+ with atoms represented as spheres of arbitrary size (H-white, C-grey, N-blue and O-red) using the GaussView program.
	Table C3. Atomic coordinates for probe AH+.
	Table C4. Excitation energies and oscillator strengths for probe AH+.
	Figure C.12. Calculated (top) FTIR spectrum of probe AH+.
	Figure C.13. Calculated UV-Vis spectrum for probe AH+ in water.
	Figure C.13. MO for level 126 for probe AH+ involved with the transition noted as Excited State 1 in Table C4.
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	-1.9719
	H
	87
	-4.11667
	4.477751
	-2.16376
	H
	88
	-2.53623
	6.305982
	-1.68044
	H
	89
	-0.1852
	5.789643
	-1.01068
	H
	90
	1.668915
	-1.50228
	4.562309
	H
	91
	0.311841
	-0.82447
	3.655066
	H
	92
	0.525508
	-0.41868
	5.366365
	H
	93
	1.389926
	3.900652
	3.156946
	H
	94
	2.917598
	3.009079
	3.195693
	H
	95
	2.083574
	3.410144
	4.709833
	H
	96
	Z
	Y
	X
	Symbol
	Row
	1.440934
	0.51961
	1.285801
	C
	1
	1.256876
	-0.60118
	2.075912
	C
	2
	0.360726
	-0.52775
	3.14398
	C
	3
	-0.29412
	0.602448
	3.427278
	O
	4
	-0.10103
	1.73414
	2.706333
	C
	5
	0.776582
	1.72036
	1.604112
	C
	6
	2.002702
	-1.88862
	1.886466
	C
	7
	1.136706
	-3.08718
	2.247379
	C
	8
	0.494298
	-2.92142
	3.594188
	C
	9
	0.078756
	-1.63006
	3.995083
	C
	10
	-0.81009
	2.843161
	3.09822
	C
	11
	-0.66648
	4.05127
	2.386231
	C
	12
	0.241793
	4.061658
	1.281276
	C
	13
	0.927993
	2.942312
	0.913504
	C
	14
	0.23706
	-4.00286
	4.400392
	C
	15
	-0.4426
	-3.86507
	5.637208
	C
	16
	-0.86917
	-2.56298
	6.015698
	C
	17
	-0.61559
	-1.48567
	5.2101
	C
	18
	-1.34848
	5.160623
	2.734452
	N
	19
	-0.67746
	-4.93243
	6.427658
	N
	20
	-1.28974
	6.389262
	1.953958
	C
	21
	-2.20053
	5.19703
	3.914137
	C
	22
	-0.15313
	7.307305
	2.381786
	C
	23
	-3.61987
	4.722465
	3.6321
	C
	24
	-1.38621
	-4.78031
	7.683408
	C
	25
	-0.23753
	-6.25518
	6.030153
	C
	26
	-0.18676
	-0.13766
	-2.38487
	N
	27
	0.563149
	-0.54786
	-1.3287
	C
	28
	0.164906
	-1.44213
	-0.59179
	O
	29
	0.030347
	0.934125
	-3.27089
	C
	30
	0.424209
	2.175375
	-2.77887
	C
	31
	0.663179
	3.226625
	-3.6497
	C
	32
	0.483994
	3.057757
	-5.01879
	C
	33
	0.05058
	1.830838
	-5.49965
	C
	34
	-0.18562
	0.748066
	-4.64614
	C
	35
	-0.682
	-0.59412
	-5.25017
	B
	36
	-0.61284
	-0.88677
	-6.58222
	O
	37
	-1.39109
	-2.1019
	-6.78836
	C
	38
	-1.35689
	-2.76089
	-5.37391
	C
	39
	-1.24845
	-1.59584
	-4.50428
	O
	40
	-2.59966
	-3.54718
	-5.00727
	C
	41
	-0.74759
	-2.92896
	-7.88413
	C
	42
	2.353759
	0.483896
	0.118498
	C
	43
	1.924786
	0.04099
	-1.13673
	C
	44
	3.659423
	0.94086
	0.273123
	C
	45
	4.543038
	0.929751
	-0.79751
	C
	46
	4.122729
	0.470503
	-2.03935
	C
	47
	2.816187
	0.039226
	-2.2074
	C
	48
	-0.10983
	-3.60103
	-5.13257
	C
	49
	-2.78849
	-1.66536
	-7.20921
	C
	50
	2.894864
	-1.86933
	2.526555
	H
	51
	2.34521
	-1.96537
	0.855067
	H
	52
	1.723442
	-4.00769
	2.217703
	H
	53
	0.344089
	-3.1868
	1.495728
	H
	54
	-1.48093
	2.746786
	3.940222
	H
	55
	0.412976
	4.976823
	0.731863
	H
	56
	1.633589
	2.994051
	0.092293
	H
	57
	0.557709
	-4.98015
	4.063245
	H
	58
	-1.39243
	-2.40786
	6.949416
	H
	59
	-0.94126
	-0.50003
	5.522823
	H
	60
	-2.25114
	6.89233
	2.080364
	H
	61
	-1.22123
	6.142636
	0.893079
	H
	62
	-2.21028
	6.229364
	4.270893
	H
	63
	-1.7381
	4.609883
	4.710216
	H
	64
	0.817911
	6.82568
	2.244923
	H
	65
	-0.24884
	7.579832
	3.435768
	H
	66
	-0.16574
	8.226511
	1.791118
	H
	67
	-4.22597
	4.781357
	4.53932
	H
	68
	-3.63026
	3.688329
	3.280326
	H
	69
	-4.09199
	5.344098
	2.867314
	H
	70
	-0.85486
	-4.1063
	8.36159
	H
	71
	-1.46447
	-5.75178
	8.164075
	H
	72
	-2.39771
	-4.39389
	7.527081
	H
	73
	-0.71448
	-6.57178
	5.097539
	H
	74
	-0.50669
	-6.96529
	6.807405
	H
	75
	0.847653
	-6.28964
	5.896886
	H
	76
	-0.91151
	-0.7972
	-2.64861
	H
	77
	0.528457
	2.316355
	-1.71116
	H
	78
	0.974279
	4.187588
	-3.25271
	H
	79
	0.665676
	3.881374
	-5.70084
	H
	80
	-0.11006
	1.69661
	-6.56489
	H
	81
	-2.48408
	-3.97685
	-4.00991
	H
	82
	-2.74663
	-4.36769
	-5.71359
	H
	83
	-3.49152
	-2.92064
	-5.01077
	H
	84
	-1.26114
	-3.88846
	-7.98219
	H
	85
	0.306894
	-3.11755
	-7.68259
	H
	86
	-0.82723
	-2.40417
	-8.83852
	H
	87
	3.981078
	1.303286
	1.243777
	H
	88
	5.560283
	1.280196
	-0.65962
	H
	89
	4.810177
	0.452825
	-2.87801
	H
	90
	2.479864
	-0.30992
	-3.17767
	H
	91
	-0.14285
	-4.52831
	-5.70762
	H
	92
	-0.05392
	-3.85701
	-4.07255
	H
	93
	0.797688
	-3.05571
	-5.40174
	H
	94
	-3.41654
	-2.52729
	-7.44216
	H
	95
	-2.71233
	-1.04581
	-8.10507
	H
	96
	-3.27676
	-1.07908
	-6.42736
	H
	97
	Z
	Y
	X
	Symbol
	Row
	0.968682
	2.624021
	1.922208
	C
	1
	0.866837
	3.156939
	0.613213
	C
	2
	0.725719
	2.239997
	-0.43974
	C
	3
	0.678911
	0.875789
	-0.18952
	C
	4
	0.775377
	0.352232
	1.09017
	C
	5
	0.927343
	1.263781
	2.133843
	C
	6
	0.546193
	0.093741
	-1.29637
	O
	7
	0.513117
	-1.88341
	0.045806
	C
	8
	0.717924
	-1.12489
	1.332279
	C
	9
	0.188711
	-1.9469
	-2.40729
	C
	10
	-0.02016
	-3.43543
	-2.33263
	C
	11
	0.73691
	-4.05823
	-1.16648
	C
	12
	0.361036
	-3.37343
	0.138435
	C
	13
	0.900372
	4.504396
	0.385201
	N
	14
	0.672192
	5.057116
	-0.9352
	C
	15
	1.157661
	5.453896
	1.450484
	C
	16
	-0.10219
	5.88548
	2.192587
	C
	17
	1.939335
	5.154332
	-1.77762
	C
	18
	0.43689
	-1.26298
	-1.14862
	C
	19
	-0.08628
	0.475009
	-6.18334
	C
	20
	-0.3102
	0.622831
	-7.66956
	C
	21
	-0.57214
	-0.62847
	-8.22568
	C
	22
	-0.53707
	-1.58966
	-7.22633
	N
	23
	-0.26184
	-1.03253
	-5.99818
	C
	24
	-0.28677
	1.748571
	-8.46408
	C
	25
	-0.52959
	1.619401
	-9.83499
	C
	26
	-0.791
	0.366605
	-10.3787
	C
	27
	-0.81738
	-0.77952
	-9.58409
	C
	28
	1.331196
	0.93541
	-5.81853
	C
	29
	-1.14469
	1.274578
	-5.41201
	C
	30
	-0.7553
	-2.99651
	-7.42657
	C
	31
	0.104928
	-1.23994
	-3.56205
	C
	32
	-0.33403
	-1.47727
	2.335651
	N
	33
	0.138325
	-2.22853
	3.379479
	C
	34
	1.597836
	-2.31726
	3.199159
	C
	35
	1.946568
	-1.64922
	2.041179
	C
	36
	2.545586
	-2.92742
	4.006248
	C
	37
	3.875611
	-2.84231
	3.616088
	C
	38
	4.230429
	-2.16713
	2.444056
	C
	39
	3.267049
	-1.56748
	1.638908
	C
	40
	-0.53576
	-2.71931
	4.276687
	O
	41
	-1.662
	-1.01037
	2.261815
	C
	42
	-2.27748
	-0.47761
	3.405203
	C
	43
	-1.55912
	-0.25157
	4.772239
	B
	44
	-2.21256
	-0.37901
	5.967719
	O
	45
	-1.4085
	0.305593
	6.967204
	C
	46
	0.015373
	0.304028
	6.319436
	C
	47
	-0.29427
	0.251958
	4.900854
	O
	48
	0.837323
	1.550843
	6.594648
	C
	49
	0.834191
	-0.93547
	6.656949
	C
	50
	-1.5036
	-0.4384
	8.285533
	C
	51
	-1.99973
	1.702231
	7.111644
	C
	52
	-3.6035
	-0.05254
	3.29896
	C
	53
	-2.35318
	-1.0779
	1.054542
	C
	54
	-4.29492
	-0.10627
	2.094846
	C
	55
	-3.65873
	-0.61255
	0.969684
	C
	56
	-0.17959
	-1.76947
	-4.85784
	C
	57
	1.059141
	3.280204
	2.777822
	H
	58
	0.662785
	2.558599
	-1.47174
	H
	59
	0.978472
	0.886412
	3.148886
	H
	60
	-1.09276
	-3.64756
	-2.21747
	H
	61
	0.28538
	-3.90488
	-3.27123
	H
	62
	0.528081
	-5.13039
	-1.10821
	H
	63
	1.814946
	-3.94723
	-1.33143
	H
	64
	-0.67502
	-3.62574
	0.40863
	H
	65
	0.98059
	-3.75511
	0.956171
	H
	66
	0.234491
	6.050616
	-0.80413
	H
	67
	-0.08933
	4.463674
	-1.44875
	H
	68
	1.643773
	6.32475
	1.001815
	H
	69
	1.889896
	5.032139
	2.143743
	H
	70
	0.139214
	6.611109
	2.974219
	H
	71
	-0.8149
	6.351192
	1.506612
	H
	72
	-0.59582
	5.030413
	2.660697
	H
	73
	2.389547
	4.170402
	-1.92929
	H
	74
	1.718571
	5.583688
	-2.75875
	H
	75
	2.680615
	5.791573
	-1.28797
	H
	76
	-0.08243
	2.724729
	-8.03389
	H
	77
	-0.5146
	2.495736
	-10.474
	H
	78
	-0.97966
	0.272157
	-11.4434
	H
	79
	-1.02431
	-1.74694
	-10.027
	H
	80
	1.531313
	0.821466
	-4.75227
	H
	81
	1.453154
	1.990633
	-6.07606
	H
	82
	2.078137
	0.360737
	-6.3705
	H
	83
	-1.06082
	2.334828
	-5.66405
	H
	84
	-1.0222
	1.172423
	-4.3329
	H
	85
	-2.15014
	0.939438
	-5.67576
	H
	86
	-0.92809
	-3.19371
	-8.48125
	H
	87
	-1.62705
	-3.33877
	-6.86109
	H
	88
	0.117766
	-3.57161
	-7.10468
	H
	89
	0.257373
	-0.17216
	-3.48576
	H
	90
	2.250723
	-3.44621
	4.911894
	H
	91
	4.64885
	-3.30116
	4.223091
	H
	92
	5.276128
	-2.11174
	2.158981
	H
	93
	3.542019
	-1.04983
	0.725536
	H
	94
	1.810174
	1.462755
	6.105772
	H
	95
	1.007651
	1.663522
	7.668117
	H
	96
	0.348179
	2.451187
	6.222578
	H
	97
	1.142685
	-0.92521
	7.70439
	H
	98
	1.731908
	-0.94375
	6.035515
	H
	99
	0.277391
	-1.84968
	6.451059
	H
	100
	-2.52509
	-0.38306
	8.668509
	H
	101
	-0.84058
	0.017277
	9.025047
	H
	102
	-1.23326
	-1.48879
	8.176918
	H
	103
	-1.48559
	2.273579
	7.887106
	H
	104
	-3.0516
	1.614673
	7.39205
	H
	105
	-1.94253
	2.258217
	6.17288
	H
	106
	-4.09327
	0.349579
	4.180948
	H
	107
	-1.86864
	-1.49304
	0.180397
	H
	108
	-5.31955
	0.245865
	2.035117
	H
	109
	-4.18189
	-0.66248
	0.020001
	H
	110
	-0.35187
	-2.83719
	-4.93857
	H
	111
	Z
	Y
	X
	Symbol
	Row
	0.760643
	3.696445
	-0.1024
	C
	1
	0.075566
	3.620102
	1.148025
	C
	2
	0.168184
	2.407506
	1.857871
	C
	3
	0.9053
	1.364287
	1.34409
	C
	4
	1.563825
	1.418547
	0.108787
	C
	5
	1.475767
	2.638579
	-0.58964
	C
	6
	0.965581
	0.239102
	2.093033
	O
	7
	2.322651
	-0.85632
	0.461722
	C
	8
	2.243704
	0.261161
	-0.33958
	C
	9
	1.677848
	-1.92647
	2.61433
	C
	10
	2.439327
	-3.16485
	2.192351
	C
	11
	2.466887
	-3.336
	0.68156
	C
	12
	3.053802
	-2.09408
	0.030657
	C
	13
	-0.62313
	4.67531
	1.642213
	N
	14
	-0.91392
	5.824252
	0.795027
	C
	15
	-1.39537
	4.47744
	2.870791
	C
	16
	-2.02274
	5.728882
	3.455245
	C
	17
	-2.06138
	5.576713
	-0.17582
	C
	18
	1.669636
	-0.84602
	1.714833
	C
	19
	-0.20698
	-2.39354
	6.692225
	C
	20
	-0.99933
	-1.90943
	7.879275
	C
	21
	-1.39088
	-0.59344
	7.665814
	C
	22
	-0.90871
	-0.17747
	6.419778
	N
	23
	-0.22255
	-1.15922
	5.799148
	C
	24
	-1.34987
	-2.55754
	9.04544
	C
	25
	-2.10173
	-1.86696
	9.997211
	C
	26
	-2.48827
	-0.54969
	9.768423
	C
	27
	-2.13862
	0.113212
	8.593961
	C
	28
	1.218484
	-2.76183
	7.129232
	C
	29
	-0.92246
	-3.58126
	6.032517
	C
	30
	-1.12542
	1.14007
	5.866109
	C
	31
	1.059816
	-1.94702
	3.859953
	C
	32
	-0.18672
	-0.25194
	-3.58047
	N
	33
	0.782543
	-0.66753
	-2.7218
	C
	34
	2.155804
	-0.08692
	-2.82964
	C
	35
	2.869622
	0.281241
	-1.68389
	C
	36
	2.778861
	-0.04026
	-4.07495
	C
	37
	4.097044
	0.373221
	-4.18958
	C
	38
	4.798922
	0.761092
	-3.05525
	C
	39
	4.184797
	0.717397
	-1.8106
	C
	40
	0.554131
	-1.56636
	-1.92094
	O
	41
	-0.18877
	0.821298
	-4.48948
	C
	42
	-0.75262
	0.642268
	-5.764
	C
	43
	-1.40744
	-0.68971
	-6.22129
	B
	44
	-1.69877
	-0.97288
	-7.5252
	O
	45
	-2.5265
	-2.17258
	-7.52098
	C
	46
	-2.12596
	-2.84578
	-6.17139
	C
	47
	-1.77138
	-1.69018
	-5.3563
	O
	48
	-3.23765
	-3.61889
	-5.4907
	C
	49
	-0.87277
	-3.70466
	-6.27698
	C
	50
	-2.21821
	-2.99983
	-8.75349
	C
	51
	-3.97695
	-1.70776
	-7.54808
	C
	52
	-0.73348
	1.725558
	-6.64887
	C
	53
	0.328494
	2.058469
	-4.11482
	C
	54
	-0.18097
	2.947556
	-6.29469
	C
	55
	0.344129
	3.110319
	-5.01683
	C
	56
	0.335975
	-0.9705
	4.546104
	C
	57
	0.724237
	4.603122
	-0.68925
	H
	58
	-0.32862
	2.257081
	2.804129
	H
	59
	2.006974
	2.74158
	-1.52906
	H
	60
	1.987485
	-4.03923
	2.668504
	H
	61
	3.470234
	-3.10757
	2.566792
	H
	62
	3.052596
	-4.21768
	0.408547
	H
	63
	1.448509
	-3.49106
	0.308628
	H
	64
	3.012287
	-2.16563
	-1.0571
	H
	65
	4.112799
	-1.99853
	0.30437
	H
	66
	-0.00502
	6.108806
	0.263811
	H
	67
	-1.13992
	6.669146
	1.442229
	H
	68
	-0.71839
	4.057624
	3.620081
	H
	69
	-2.17531
	3.724288
	2.692402
	H
	70
	-2.50264
	5.457348
	4.398082
	H
	71
	-2.79184
	6.159
	2.810647
	H
	72
	-1.27637
	6.496429
	3.673332
	H
	73
	-2.24297
	6.465531
	-0.78521
	H
	74
	-2.98258
	5.339472
	0.362461
	H
	75
	-1.83811
	4.743
	-0.84628
	H
	76
	-1.04874
	-3.58511
	9.223215
	H
	77
	-2.38731
	-2.35944
	10.9203
	H
	78
	-3.07359
	-0.02443
	10.51567
	H
	79
	-2.44835
	1.138258
	8.429088
	H
	80
	1.824109
	-3.10824
	6.291323
	H
	81
	1.172621
	-3.5642
	7.868817
	H
	82
	1.718739
	-1.90474
	7.584385
	H
	83
	-0.37979
	-3.94859
	5.160995
	H
	84
	-1.92964
	-3.30121
	5.717682
	H
	85
	-1.00303
	-4.39922
	6.751702
	H
	86
	-0.16989
	1.627
	5.661977
	H
	87
	-1.67557
	1.744962
	6.580335
	H
	88
	-1.7057
	1.07417
	4.943397
	H
	89
	1.180644
	-2.89411
	4.375215
	H
	90
	-0.95171
	-0.91271
	-3.67186
	H
	91
	2.22536
	-0.33961
	-4.95832
	H
	92
	4.574355
	0.395128
	-5.16324
	H
	93
	5.827442
	1.096196
	-3.13695
	H
	94
	4.728348
	1.020834
	-0.922
	H
	95
	-2.86678
	-4.06007
	-4.56308
	H
	96
	-3.58039
	-4.4302
	-6.1373
	H
	97
	-4.08834
	-2.9806
	-5.2522
	H
	98
	-1.07258
	-4.62652
	-6.82636
	H
	99
	-0.53894
	-3.97052
	-5.27192
	H
	100
	-0.0624
	-3.16918
	-6.7769
	H
	101
	-2.54014
	-2.46363
	-9.64872
	H
	102
	-2.76009
	-3.94792
	-8.71448
	H
	103
	-1.1527
	-3.21104
	-8.8438
	H
	104
	-4.66104
	-2.55623
	-7.60965
	H
	105
	-4.13175
	-1.07911
	-8.42733
	H
	106
	-4.22593
	-1.12221
	-6.66003
	H
	107
	-1.1641
	1.595624
	-7.63694
	H
	108
	0.704567
	2.196143
	-3.11008
	H
	109
	-0.17353
	3.771914
	-6.99962
	H
	110
	0.754075
	4.067715
	-4.71151
	H
	111
	0.193454
	-0.00565
	4.088482
	H
	112
	Z
	Y
	X
	Symbol
	Row
	0.231392
	-0.30195
	5.065562
	C
	1
	0.093227
	-1.1465
	3.918238
	C
	2
	0.026288
	-0.51606
	2.655842
	C
	3
	0.108113
	0.857508
	2.570472
	C
	4
	0.248157
	1.695034
	3.691188
	C
	5
	0.30816
	1.060704
	4.948799
	C
	6
	0.032912
	1.402961
	1.328055
	O
	7
	0.080026
	2.734944
	1.107847
	C
	8
	0.21323
	3.618407
	2.208399
	C
	9
	0.292677
	3.086059
	3.47284
	C
	10
	-0.01656
	3.161402
	-0.22955
	C
	11
	-0.00213
	4.657831
	-0.4802
	C
	12
	-0.52496
	5.460642
	0.703405
	C
	13
	0.261899
	5.098755
	1.956349
	C
	14
	-0.09771
	2.329105
	-1.3436
	C
	15
	-0.05956
	0.936341
	-1.44635
	C
	16
	0.029835
	-2.50149
	4.038025
	N
	17
	-0.15602
	-3.1135
	5.348935
	C
	18
	-0.31294
	-3.2905
	2.849696
	C
	19
	-0.13598
	-4.79088
	2.999117
	C
	20
	-1.59754
	-3.04814
	5.839974
	C
	21
	-0.12328
	0.23876
	-2.64245
	C
	22
	-0.23452
	0.769153
	-4.06793
	C
	23
	-0.22335
	-0.51027
	-4.86679
	C
	24
	-0.11677
	-1.59284
	-3.99988
	C
	25
	-0.07904
	-1.11415
	-2.68327
	N
	26
	-0.28953
	-0.71838
	-6.23192
	C
	27
	-0.24242
	-2.02998
	-6.71414
	C
	28
	-0.12632
	-3.10373
	-5.83195
	C
	29
	-0.05959
	-2.9037
	-4.45217
	C
	30
	0.982585
	1.626452
	-4.45013
	C
	31
	-1.55506
	1.521784
	-4.29159
	C
	32
	0.048135
	-1.9787
	-1.5289
	C
	33
	1.502644
	-2.12267
	-1.10646
	C
	34
	1.504442
	-2.92997
	0.054533
	O
	35
	0.266281
	-0.73129
	6.057687
	H
	36
	-0.09343
	-1.07871
	1.741027
	H
	37
	0.408444
	1.672691
	5.840598
	H
	38
	0.389404
	3.750475
	4.328261
	H
	39
	-0.59212
	4.87539
	-1.37601
	H
	40
	1.024217
	4.979214
	-0.70675
	H
	41
	-0.44503
	6.532647
	0.499696
	H
	42
	-1.58812
	5.240429
	0.860348
	H
	43
	-0.11595
	5.629837
	2.835042
	H
	44
	1.308209
	5.40953
	1.832084
	H
	45
	-0.18611
	2.876612
	-2.27694
	H
	46
	0.04278
	0.357509
	-0.5422
	H
	47
	0.526935
	-2.64612
	6.059746
	H
	48
	0.175449
	-4.14878
	5.282479
	H
	49
	0.328549
	-2.96412
	2.030745
	H
	50
	-1.34825
	-3.06533
	2.552468
	H
	51
	-0.32872
	-5.25478
	2.028251
	H
	52
	-0.82917
	-5.24028
	3.714325
	H
	53
	0.884998
	-5.05344
	3.290911
	H
	54
	-1.69084
	-3.52354
	6.820545
	H
	55
	-2.27037
	-3.56559
	5.149922
	H
	56
	-1.94166
	-2.01398
	5.930477
	H
	57
	-0.37411
	0.117394
	-6.92092
	H
	58
	-0.2923
	-2.21377
	-7.78302
	H
	59
	-0.08422
	-4.11683
	-6.22068
	H
	60
	0.040142
	-3.74774
	-3.77821
	H
	61
	1.020171
	2.561422
	-3.88934
	H
	62
	0.932159
	1.874639
	-5.51325
	H
	63
	1.913689
	1.083253
	-4.27199
	H
	64
	-1.60169
	2.446922
	-3.71512
	H
	65
	-2.41011
	0.901822
	-4.0121
	H
	66
	-1.65286
	1.779607
	-5.34914
	H
	67
	-0.3764
	-2.95251
	-1.7752
	H
	68
	-0.55485
	-1.57685
	-0.71222
	H
	69
	1.935272
	-1.13474
	-0.90405
	H
	70
	2.080605
	-2.5848
	-1.91692
	H
	71
	2.410781
	-3.06125
	0.349497
	H
	72
	Normalized coefficient
	Orbital transitions
	f
	λ (nm)
	E (eV)
	Nature
	Excited State
	0.70254
	126 ->127
	0.5427  
	417.39
	2.9705
	Singlet-A
	1
	0.12029
	124 ->127         
	0.0945  
	324.52
	3.8205
	Singlet-A
	2
	-0.16699
	125 ->127        
	0.49384
	126 ->128         
	-0.44206
	126 ->129        
	-0.27488
	124 ->127        
	0.0432  
	317.65
	3.9032
	Singlet-A
	3
	0.45655
	125 ->127         
	0.10080
	126 ->128         
	-0.42340
	126 ->130        
	0.55750
	124 ->127         
	0.0071  
	308.85
	4.0144
	Singlet-A
	4
	0.41595
	125 ->127    
	0.48025
	126 ->128         
	0.0063  
	299.86
	4.1347
	Singlet-A
	5
	0.51226
	126 ->129         
	-0.28800
	124 ->127        
	0.3107  
	290.68
	4.2653
	Singlet-A
	6
	0.27224
	125 ->127         
	-0.11983
	126 ->129        
	0.50848
	126 ->130         
	-0.10521
	126 ->132       
	Z
	Y
	X
	Symbol
	Row
	0.231392
	-0.30195
	5.065562
	C
	1
	0.093227
	-1.1465
	3.918238
	C
	2
	0.026288
	-0.51606
	2.655842
	C
	3
	0.108113
	0.857508
	2.570472
	C
	4
	0.248157
	1.695034
	3.691188
	C
	5
	0.30816
	1.060704
	4.948799
	C
	6
	0.032912
	1.402961
	1.328055
	O
	7
	0.080026
	2.734944
	1.107847
	C
	8
	0.21323
	3.618407
	2.208399
	C
	9
	0.292677
	3.086059
	3.47284
	C
	10
	-0.01656
	3.161402
	-0.22955
	C
	11
	-0.00213
	4.657831
	-0.4802
	C
	12
	-0.52496
	5.460642
	0.703405
	C
	13
	0.261899
	5.098755
	1.956349
	C
	14
	-0.09771
	2.329105
	-1.3436
	C
	15
	-0.05956
	0.936341
	-1.44635
	C
	16
	0.029835
	-2.50149
	4.038025
	N
	17
	-0.15602
	-3.1135
	5.348935
	C
	18
	-0.31294
	-3.2905
	2.849696
	C
	19
	-0.13598
	-4.79088
	2.999117
	C
	20
	-1.59754
	-3.04814
	5.839974
	C
	21
	-0.12328
	0.23876
	-2.64245
	C
	22
	-0.23452
	0.769153
	-4.06793
	C
	23
	-0.22335
	-0.51027
	-4.86679
	C
	24
	-0.11677
	-1.59284
	-3.99988
	C
	25
	-0.07904
	-1.11415
	-2.68327
	N
	26
	-0.28953
	-0.71838
	-6.23192
	C
	27
	-0.24242
	-2.02998
	-6.71414
	C
	28
	-0.12632
	-3.10373
	-5.83195
	C
	29
	-0.05959
	-2.9037
	-4.45217
	C
	30
	0.982585
	1.626452
	-4.45013
	C
	31
	-1.55506
	1.521784
	-4.29159
	C
	32
	0.048135
	-1.9787
	-1.5289
	C
	33
	1.502644
	-2.12267
	-1.10646
	C
	34
	1.504442
	-2.92997
	0.054533
	O
	35
	0.266281
	-0.73129
	6.057687
	H
	36
	-0.09343
	-1.07871
	1.741027
	H
	37
	0.408444
	1.672691
	5.840598
	H
	38
	0.389404
	3.750475
	4.328261
	H
	39
	-0.59212
	4.87539
	-1.37601
	H
	40
	1.024217
	4.979214
	-0.70675
	H
	41
	-0.44503
	6.532647
	0.499696
	H
	42
	-1.58812
	5.240429
	0.860348
	H
	43
	-0.11595
	5.629837
	2.835042
	H
	44
	1.308209
	5.40953
	1.832084
	H
	45
	-0.18611
	2.876612
	-2.27694
	H
	46
	0.04278
	0.357509
	-0.5422
	H
	47
	0.526935
	-2.64612
	6.059746
	H
	48
	0.175449
	-4.14878
	5.282479
	H
	49
	0.328549
	-2.96412
	2.030745
	H
	50
	-1.34825
	-3.06533
	2.552468
	H
	51
	-0.32872
	-5.25478
	2.028251
	H
	52
	-0.82917
	-5.24028
	3.714325
	H
	53
	0.884998
	-5.05344
	3.290911
	H
	54
	-1.69084
	-3.52354
	6.820545
	H
	55
	-2.27037
	-3.56559
	5.149922
	H
	56
	-1.94166
	-2.01398
	5.930477
	H
	57
	-0.37411
	0.117394
	-6.92092
	H
	58
	-0.2923
	-2.21377
	-7.78302
	H
	59
	-0.08422
	-4.11683
	-6.22068
	H
	60
	0.040142
	-3.74774
	-3.77821
	H
	61
	1.020171
	2.561422
	-3.88934
	H
	62
	0.932159
	1.874639
	-5.51325
	H
	63
	1.913689
	1.083253
	-4.27199
	H
	64
	-1.60169
	2.446922
	-3.71512
	H
	65
	-2.41011
	0.901822
	-4.0121
	H
	66
	-1.65286
	1.779607
	-5.34914
	H
	67
	-0.3764
	-2.95251
	-1.7752
	H
	68
	-0.55485
	-1.57685
	-0.71222
	H
	69
	1.935272
	-1.13474
	-0.90405
	H
	70
	2.080605
	-2.5848
	-1.91692
	H
	71
	2.410781
	-3.06125
	0.349497
	H
	72
	Normalized coefficient
	Orbital transitions
	f
	(nm)
	E (eV)
	Nature
	Excited State
	0.70631
	126 ->127
	0.7993
	593.26
	2.0899
	Singlet-A
	1
	0.68787
	125 ->127
	0.2023
	434.62
	2.8527
	Singlet-A
	2
	0.12101
	126 ->128
	-0.24296
	122 ->127
	0.1318
	343.00
	3.6147
	Singlet-A
	3
	-0.42811
	124 ->127
	0.49106
	126 ->128
	0.53865
	124 ->127
	0.3055
	333.75
	3.7149
	Singlet-A
	4
	-0.10258
	125 ->127
	0.41981
	126 ->128
	0.66762
	123 ->127
	0.0383
	317.54
	3.9046
	Singlet-A
	5
	-0.16028
	126 ->129
	0.58588
	122 ->127
	0.1464
	312.98
	3.9614
	Singlet-A
	6
	0.11095
	123 ->127
	-0.22459
	125 ->128
	0.19025
	126 ->128
	-0.14800
	126 ->130

