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Preface

This dissertation is a collection of four manuscripts that have been prepared for

publication. They have been formatted to conform to a single style, but otherwise

appear as published or as prepared for submission. Publication status is recorded as

a footnote on the first page for each relevant chapter. Supplementary information is

included as a chapter appendix when possible, otherwise it is described in Appendix

B.

The first manuscript, Chapter 2 of this dissertation “ForestSim: Spatially Ex-

plicit Agent-Based Modeling of Non-Industrial Forest Owner Policies,” appears in

SoftwareX. The article concerns the development of an agent-based modeling tool

to evaluate forest policies. I am the primary author of the article and developed

the ForestSim agent- based modeling platform. Dr. Mark Rouleau assisted in the

preparation and editing of the manuscript that appears in this dissertation.

I am the sole author of the second manuscript (Chapter 3), “Life Cycle Assess-

ment of the Production of Gasoline and Diesel from Forest Residues Using Integrated

Hydropyrolysis and Hydroconversion” The manuscript has been published by the

International Journal of Life Cycle Assessment. The article describes a life cycle

assessment of a proposed biorefinary in Ontonagon, Michigan.

Chapter 4 contains the third manuscript, “Integration of Agent-Based Modeling

and Life Cycle Sustainability Assessment for the Comprehensive Assessment of Bio-

fuels.” This paper is in preparation for submission to Journal of Cleaner Production.

I am the sole author of the manuscript, which argues for the broader integration of

agent-based modeling and life cycle sustainability assessment, as well as containing a

case study that builds upon Chapters 2 and 3.

The fourth manuscript (Chapter 5), “Development of an Agent-Based Model to

Predict the Fate of Organic Contaminants Degradation in Aqueous-Phase Advanced

xv



Oxidation Processes,” is in preparation for submission to Environmental Modeling

& Software. This article concerns the development and testing of an agent-based

model to study advanced oxidation processes. I am the sole developer of the pro-

gram described as well as all algorithms that are not otherwise attributed. Divya

Kamath and Dr. Daisuke Minakata conducted all the laboratory experiments de-

scribed, while I was responsible for the computational modeling. Dr. Minakata led

the development of the acetone reaction pathways used in the model. The version

of the manuscript that appears in this dissertation was prepared by myself. The

chapter incorporates material submitted to the National Science Foundation and a

chapter of Erica Coscarelli’s Masters thesis [1], which was attributed to myself, Divya

Kamath, Erica Coscarelli, Dr. Rouleau and Dr. Minakata. Some of the funding for

this project came from the National Science Foundation grant CBET-1435926 and a

student research grant from the Great Lakes Research Center.

Also included in this dissertation is “Forest Ownership Patterns in the Western

Upper Peninsula of Michigan, USA,” which appears as Appendix A. I am the sole

author of the work which is based upon the data processing conducted in part for

Chapters 3 and 4. I am also the sole author of the descriptive information about

the Western Upper Peninsula region, contained therin, that may be of interest to

other scholars. The material contained in Appendix A is intended for submission to

Landscape & Urban Planning as a research note.
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Abstract

This dissertation examines the application of agent-based modeling (ABM) to com-

plex systems with the intent of developing a means of overcoming limitations present

in existing tools. This is done though the development of two ABMs intended to

address complex systems present in the fields of sustainability studies and chemistry.

After introductory information, Chapters 2 - 4 of this dissertation address the lim-

itations of tools intended to project the environmental, economic, and social impacts

of woody biomass based biofuels. Chapter 2 begins by discussing the limitations in

tools to study timber harvest decision making and its impact upon the landscape, and

develops an ABM platform to address this gap. Next, Chapter 3 presents a life cycle

assessment (LCA) of a proposed biorefinery in Ontonagon, Michigan is conducted.

This study acts as a benchmark benchmark for the case study presented in Chap-

ter 4, where an argument for the integration of ABM and life cycle sustainability

assessment (agent-based LCSA) is presented. The argument is followed by a case

study demonstrating the applicability of the technique. The case study finds that

while Ontonagon is a promising site for a biorefinery, there are concerns regarding

the quantity of woody biomass that may be delivered as a feedstock and potential

impacts upon regional wetlands.

Chapter 5 of this dissertation addresses the limitations of models of advanced

oxidation processes (AOPs) using ordinary differential equations (ODEs). We argue

that these limitations can be addressed by modeling the AOP as a complex system,

including the complete elementary reaction pathway using ABM. To demonstrate the

applicability of this novel approach, an ABM is developed and two in silico studies

of acetone degradation induced by hydroxyl radicals are performed. We found that

when using a comprehensive list of elementary reaction pathways, the ABM was

able to replicate concentration curves for major chemical species in our laboratory
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study. As a novel application of ABM to AOPs we conclude that the technique shows

considerable promise.
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Chapter 1
Introduction

1.1 Introduction

Complex systems are prevalent throughout all fields of scientific inquiry and

are limiting factors in current models used for projecting future states in the

systems. These limitations typically manifest as a result of the tools that are unable to

properly model the system, which is necessary when studying current or future system

level behavior (e.g., greenhouse gas emissions, or changes in chemical concentrations).

One means of overcoming this limitation is through the application of agent-based

modeling (ABM), a computational technique in which software “agents” represent

heterogeneous actors in a system. By using ABM it is possible to allow a system to

be studied as interactions of its constituent parts. This dissertation examines two

complex systems in service of a broader question: “How can ABM be used to address

the limitations in existing tools used to study complex systems?”

In addressing the first complex system, this dissertation asks: “How can the lim-

itations of existing sustainability assessment tools be addressed when projecting the

environmental, economic, and social impacts of woody biomass based biofuels?” Bio-

fuels are a useful case study since they have the potential to act as one part of a

renewable energy portfolio to sustainably address renewable energy goals [2]. At the
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same time it remains unclear if a sufficient supply of woody biomass feedstocks for

biofuel can be acquired [3], without excessive negative impacts (e.g., loss of ecosys-

tem services, habitat loss, etc.) [4]. As sustainable biofuels are a result of complex

interactions between humans and the environment, it is necessary to model future

states of these interactions to determine if the biofuels are indeed sustainable.

For the second complex system considered, this dissertation asks: “How advanced

oxidation processes (AOPs) can be modeled to address the limitations of existing

techniques?” Developing better tools to study AOPs is critical, since improving the

understanding of intermediate by-products in AOPs would have immediate applica-

tions in the design of water treatment processes [5]. The study of AOPs requires a

means of projecting future states of the AOP treatment process so that the concen-

trations of intermediate by-products can be measured. As a result, addressing this

question impacts the field of chemistry, but also relates to the long-term sustainability

of the existing environment as a result of the use of AOPs in water treatment.

1.2 Background

1.2.1 Complex Systems and Agent-Based Modeling

In order to understand the limitations of tools used to study complex systems, it is

necessary to review why complex systems are studied and what makes them difficult

to model. Nature is fundamentally a collection of complex systems constructed by

interactions between entities such as energies, atoms, and molecules. A definition of

complex systems begins with complexity: studying elements of the system does not

necessarily give rise to an understanding of how the system will behave over time [6].

As succinctly stated by Thurner et al. [7, p. 22], “complex systems are co-evolving

multilayer networks.” Complexity may be described quantitatively via the amount

information needed to describe the current state of the system [8], but it may also be

possible to describe the fundamental behavior of the system using a very short list
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of rules. This is beautifully illustrated by Conway’s Game of Life [9]: a system that

can be described using four rules and an initial pattern of cells, but whose long-term

behavior may be that of a universal Turing machine [10]. Finally, an important class

of complex systems is complex adaptive systems, in which members of the system

exhibit the ability to learn and adapt over time in response to stimuli [11]. These are

of particular note to sustainability science, since individuals and societies may alter

their behavior over time in response to prior events.

Complex systems are characterized by a number of key features, namely: non-

linearity, feedback loops, and emergence [6, 8, 12–14]. These features can be broken

down as follows. First, nonlinearity means that the behavior of the system is not

proportional to the inputs and, although unlikely, small changes may result in im-

pacts up to and including collapse of the system as a whole (i.e., the classic Butterfly

Effect). Second, feedback loops reinforce behaviors of the system, meaning that com-

ponents such as variables may be amplified (positive feedback) or dampened (negative

feedback) in response to the inputs. Finally, emergence may be defined as “stable

macroscopic patterns arising from [local interactions]” [15, p. 35]. Defining emergence

in this manner is important since it offers insight into how these emergent patterns

can be studied, namely by examining the local interactions that occur. With these

definitions in mind, complex systems become more apparent. The relationships be-

tween predators and prey are one of the classic examples since both populations are

interdependent, but reductions in land may reduce the total population for both [16].

The complexity associated with complex systems, and complex adaptive systems,

makes modeling them difficult and it is only through computing that we are able

to simulate them directly [7]. While equations have been used to describe complex

systems, these are simplifications that prevent a complete understanding of the sys-

tem [17]. For example, equation-based models are incapable of explaining emergent

properties of a system, such a flocking patterns [18]. Agent-based modeling addresses

these limitations by simulating complex systems through the description of agents’
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interactions with the environment and amongst themselves [15, 19]. This allows study

of the emergent behavior since it will manifest at the system level when agent interac-

tions are correctly described [15, 20]. This is of particular relevance when attempting

to project possible outcomes for a system when the results are not known (e.g., mar-

ket response to a new product), but individual decision making can be described

beforehand.

The ability of ABM to study complex systems has been demonstrated by prior

scholarship, typically focused on studying interactions between humans and the en-

vironment, or social patterns that result from social interactions. One of the seminal

arguments for the use of ABM in the study of social patterns was written by [6] who

draw linkages between ABM, complexity theory, and organization science. A similar

argument for social simulation was written by [21], who noted that the behaviors

of societies are emergent, necessitating the use of ABM. Expanding beyond social

interactions, [22] discuss human-environment interactions as a complex adaptive sys-

tem and argue for the application of ABM, before demonstrating its application in

studying how panda habitat degradation. In a later work, [23] reviews the application

of ABM in the context of coupled human and natural systems (CHANS), noting a

connection to complexity theory and how various ABMs capture elements of a com-

plex system. A similar connection to complex systems is made by [24] who note that

consideration of spatio-temporal relationships in forest management can be evaluated

using complex systems theory, necessitating the use of ABM to study the relation-

ships. This is similar to an earlier argument made by [25] in a review of simulations for

ecosystem management. Another application of ABM is land-use/land-cover change

(LUCC), where [26] note the linkages to complex systems and use ABM to study

the roles that households have in driving LUCC. Finally, in a later work, [27] argue

that ABM has an advantage in studying LUCC over pattern-mimicking models since

land transfers that may impact decision making can be incorporated, echoing con-

nections to nonlinearity in feedback loops in complex systems. Underscoring all of
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the aforementioned works is the argument that ABM is the appropriate technique to

be applied to a complex system; although as noted by [28], ABM may face technical

barriers in its application (e.g., processing of data generated).

1.2.2 Modeling Complex Systems for Sustainability Science

Agent-based modeling is of particular relevance to the field of sustainability science

since human-environmental regimes are fundamentally complex systems. As noted

by [29], two of the characteristics of sustainable regimes are resilience and desirability

to human societies, which can be described as properties, or products, of complex

systems. Resilience is defined as “the degree to which the system can adjust to dis-

turbances without shifting to a new regime” [29, p. 278], and is a product of the

nonlinearity and feedback loops associated with a complex system. Likewise, the de-

sirability of the regime refers to how desirable the system is to humans (e.g., local

access to forests, or overall pleasing atmospheric temperatures). Since this desirability

is based upon the collective attitudes of the occupants of the system (i.e., humans), it

is an inherently emergent property of the regime. Thus, while human-environmental

regimes are complex systems, a common shortcoming of existing sustainability as-

sessment tools is that they typically work with snapshot and aggregate data [30–32].

Recalling that an important aspect of complex systems are emergent behaviors that

manifest over time, the problem with snapshots and aggregate data is that may fail

to appropriately account for changes over time or localized impacts [33]. This is of

particular concern when attempting to discover “tipping points” in which a system

may accelerate into an unrecoverable state [34] or, into a new human-environmental

regime that is habitable, but not as desirable (e.g., warmer global temperatures).

These limitations are incorporated into one of the core questions of sustainability

science by [35] who stated,

How can the dynamic interactions between nature and society - includ-

ing lags and inertia - be better incorporated into emerging models and
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conceptualizations that integrate the Earth system, human development,

and sustainability? [35, p. 641]

One means of addressing the limitations of snapshot and aggregate data is through

the incorporation of ABM to project possible system states, or to generate data for

assessment tools. This is the approach taken by scholars looking to incorporate ABM

and LCA [36, 37]. Life cycle assessment (LCA) is a tool for holistically assessing the

environmental impacts of a product’s entire life cycle, and it can be expanded out

into life cycle sustainability assessment (LCSA) by incorporating social and economic

indicators [30]. An early example of this is Davis et al. [38] who combined ABM with

LCA to evaluate how actors respond to changing circumstances when confronted with

different sources of energy. The authors offered a proof-of-principle demonstration of

a Dutch energy marketplace, with agents adjusting their choice of energy production

based upon source global warming potential. Similarly, [39] developed a proof-of-

concept ABM that fed land-use data into an LCA of switchgrass biofuel feedstocks.

A more recent example was given by [40], who used an ABM to develop the life cycle

inventory of an LCSA. Their synthetic proof-of-concept example of the technique fo-

cused on green building development, but failed to make use of spatial data generated

by the model. While these and other studies (see [41–43]) demonstrate that scholarly

interest is developing to combine ABM and LCA or LCSA, there still is considerable

work to be done.

1.2.3 Modeling Complex Systems for Chemistry

While chemistry is described as “the science of equilibria” [7, p. 9], this approach

becomes problematic when attempting to gain a greater insight into reactions and

reflects a history of abstracting inherently complex systems away [44]. This is es-

pecially relevant with AOPs, a chemical treatment processes in which organic con-

taminants are removed through the use of hydroxyl radicals [45, 46]. The ability of

AOPs to eliminate contaminants makes them highly attractive for water treatment,
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but the complexity of the reactions elude laboratory understanding and intermedi-

ate by-products can be more toxic than parent contaminates [47]. These challenges

are further compounded by the hundreds of thousands of chemicals in commercial

use. Therefore, modeling is an attractive means of studying AOPs, and mechanistic

models have been developed (see [48–50]). These approaches have been limited in

that they can be time-intensive to solve and produce unstable numerical solutions

(i.e., concentration profiles) that are highly sensitive to initial conditions. These is-

sues are a byproduct of the complex system manifest in the chemistry of the AOPs.

ABM may address these limitations since it offers the ability to completely describe

AOP reaction pathways at the molecular (i.e., individual) level and allows for con-

centration profiles to be produced as an emergent product of the system. Despite the

benefits associated with studying AOPs in this fashion, ABM has remained relatively

unexplored in the study of AOPs and in the broader field of chemistry, with some

limited work done in biochemistry to explore the applications of ABM in the context

of intracellular reactions (see [51–53]).

1.3 Structure of Dissertation
Chapters 2 through 4 address the research question,“How can the limitations of exist-

ing sustainability assessment tools be addressed when evaluating the environmental,

economic, and social impacts of woody biomass based biofuels?” This question is ul-

timately answered in Chapter 4 with the development and application of agent-based

LCSA. However, doing so required an appropriate platform upon which to develop the

ABM, and a means of validating the results of the case study.These tasks are acom-

plished in Chapters 2 and 3, respectively. Furthermore, while the research question

concerns woody biomass based biofuels, a specific case study involving the proposed

development of an integrated hydropyrolysis and hydroconversion (IH2) biorefinery

in Ontonagon, Michigan was used to frame the question.
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In Chapter 2 the need for an appropriate platform is addressed through the de-

velopment of ForestSim, a spatially-explicit ABM platform intended for bioenergy

sustainability assessment and forest management policy analysis. This chapter also

briefly argues that existing ABM tools (e.g., MASON [54] and NetLogo [55]) are

limited and a tailored ABM platform is more appropriate for practitioners since it

reduces the programming necessary for model development.

Chapter 3 conducts a life cycle assessment (LCA) to validate the results of the

agent-based LCSA against, and asks the question: “What are the potential environ-

mental impacts and energy return on investment (EROI) of IH2 fuels manufactured in

Ontonagon, Michigan?” This work is necessary since a common question and critique

of ABM is if the results are an accurate representation of real-world processes (see

[56, 57]). The LCA described in the chapter is conducted using inventory data derived

from a geographic information systems analysis of the region surrounding Ontonagon

as well as previously published studies of relevant industries. The study also makes

extensive use of a prior survey of logging and transportation operations in the Upper

Peninsula region of Michigan along with adjacent counties in Wisconsin to inform the

life cycle inventory [58, 59]. The results of the LCA suggest that fuels would have

a favorable environmental impact and EROI, but there were concerns that the site

selected may have insufficient feedstocks.

Chapter 4 develops an agent-based LCSA as a solution to the limitations in eval-

uating the environmental, economic, and social impacts of woody biomass-based bio-

fuels. The chapter begins with the argument that the integration of ABM and LCSA

is necessary, citing the known issues in assessment due to complex systems, as well as

the scholarly discourse calling for improvements in tools. A methodological approach

to agent-based LCSA is then presented using the theoretical underpinnings from ISO

14040 [60]. Finally, the chapter returns to the proposed IH2 biorefinery in Ontonagon

as a case study implementation of the technique. The case study found that envi-

ronmental impacts were in line with the LCA, supporting the results, but sufficient
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feedstocks are a continued concern. As a methodological approach to the integration

of ABM and LCSA, this chapter contributes to the broader research agenda through

the advancement of the discourse and development of the technique.

Chapter 5 completes the collection of manuscripts and addresses the research

question, “How can AOPs be modeled that addresses the limitations of existing tech-

niques?” Existing mathematical approaches are limited by the complex chemistry

involved, which is attributable to the underlying complex system. By developing an

ABM approach to studying AOPs, the chapter argues that a more comprehensive -

if not complete - model of the chemistry can be constructed. The chapter explores

the key components of an ABM that was developed to study AOPs highlighting the

molecular simulation and algorithms necessary to support the simulation. Valida-

tion of the model is then explored along with results from a case study of UV/H2O2

treatment of acetone.
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Chapter 2
ForestSim: Spatially Explicit Agent-Based

Modeling of Non-Industrial Forest Owner

Policies

Robert Zupko and Mark Rouleau1

1 The material contained in this chapter has been adapted for publication in SoftwareX
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Abstract
Bioenergy from woody biomass is an important part of a sustainable energy

portfolio. However, sustainable portfolios are complicated when non-industrial

private forest (NIPF) owners own much of the biomass in a given region. Success

and sustainability of bioenergy often depends on policies to encourage biomass

harvesting without negatively impacting socio-environmental relations. We present

ForestSim, an extension to MASON for bioenergy policy analysis using agent-based

simulation to assess the sustainability of alternative forest management policies.

Spatially-explicit models of NIPF agents embedded within forested landscapes and

respond to forest management policies. The modifiable computational framework

allows policy makers to conduct “thought experiments” to assess the feasibility of

alternative forest management policies at little to no cost prior to implementation.

ForestSim enables policy-makers and policy researchers to design and conduct highly

tailored computational experiments to produce results that non-technical audiences,

such as the general public and fellow policy-makers/researchers, can easily interpret

and understand.

Keywords: Agent-Based Modeling - Policy Modeling - Forest Modeling - Environ-

mental Impacts - Land-Use Change

2.1 Introduction and Background

The sustainable production of bioenergy from woody biomass requires forest man-

agement policies that can anticipate complex social, environmental, and eco-

nomic impacts [61]. This is particularly true in regions with forests divided among
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many non-industrial private forest (NIPF) owners because their highly decentral-

ized land-use decision-making has major consequences for the sustainability of bioen-

ergy. Various policies and incentives exist to encourage sustainable forest manage-

ment practices on NIPF owner lands [62, 63]. Policy instruments that attempt to

encourage biomass harvesting are critical to bioenergy sustainability because they

influence not only the availability and reliability of biomass feedstocks, but also re-

gional land-use and land-cover change patterns. This is why such instruments must

be carefully crafted to avoid unintended conflicts with the environment and other

social values while ensuring economically feasible bioenergy production. This paper

describes ForestSim, an extension to MASON [54] that enables researchers and policy

makers to simulate and assess the broad sustainability impacts of alternative forest

management policies for NIPF owner biomass harvesting.

At its core, ForestSim is a spatially-explicit agent-based model (ABM) platform

designed for NIPF owner policy experimentation. ForestSim simulates the decentral-

ized biomass harvesting activities of thousands of individual NIPF agents, embedded

within real landscapes, and the forest growth dynamics that result from NIPF owner

land use change. ForestSim uses Geographic Information Systems (GIS) based par-

cel boundary and land cover maps to define a regional forest landscape. It then uses

information obtained from NIPF owner harvesting literature and regional forest man-

agement surveys to design the agent decision making schema for the individual agents

occupying actual forested properties. Within this ABM environment, ForestSim al-

lows users to design and experiment with alternative forest management policies to

assess and compare the sustainability impacts of NIPF agents reacting to alternative

harvesting incentives (or disincentives) and the socio-natural feedback that occurs

over the course of a simulation. The end product is a sustainability assessment score-

card used to compare the long-run effectiveness of competing forest management

policies across the social, environmental, and economic sectors of a given region.
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ForestSim was developed in response to the lack of a platform for bioenergy policy

experimentation. Specifically, ForestSim integrates tools and techniques from three

primary areas: biomass estimation, forest growth modeling, and ABM simulation for

land use change. ForestSim development begins with biomass estimation, a critical

starting point for any bioenergy development project, because it determines the fea-

sibility of maintaining a bioenergy industry in a given region (i.e., the region either

possesses sufficient biomass or not). ForestSim applies forest growth modeling to en-

sure that agents are able to respond to a realistic environment with forest growth and

regrowth patterns impacting their decision making. Finally, by building ForestSim

as an extension to MASON we are able to leverage it as a robust platform for ABM

already in use for land use, land-use change (LULUC) models.

ForestSim’s design goals were to:

• Provide a flexible and modifiable platform for policy analysis, specifically in the

areas of: forest management, bioenergy development, and conservation;

• Provide a basic forest growth model with the means for it to be replaced with

other researcher specified, or region specific models;

• Provide a flexible and modifiable means of modeling forest owner (i.e., agent)

land use decision making;

• Provide a flexible and modifiable means of capturing time-series and geographic

model data for the purposes of sustainability assessment; and

• Provide an extension that does not diminish the computationally efficient op-

eration of MASON.

Unlike MASON [54] and NetLogo [55], ForestSim is a simplified modeling environment

that provides a preconstructed model that can be adjusted to address specific research

questions. This prebuilt environment eliminates much of the time needed to develop a

MASON model, reducing the time spent on software development and allowing more

time for productive research activities. However, a limited degree of programming is

14



needed for specific details such as agent (e.g., a NIPF owner) decision making and

forest growth models. Additionally, to ensure that models are geographically relevant,

appropriate GIS data need to be provided to the model. An example of how ForestSim

is modified appears later in this paper. ForestSim is a unique contribution to the

forest modeling community because it helps streamline the process for developing

policy simulations.

Next, we will discuss how ForestSim relates to other tools and techniques that

apply for forest policy modeling. That is followed by an overview of the software

architecture and a proof-of-concept model.

2.2 Relation to Existing Tools and Techniques
Biomass availability is commonly estimated in the literature using multi-criteria GIS

analyses [64, 65], which has largely superseded aerial photography analysis of the

past [66]. Multi-criteria GIS analysis evaluates forest cover conditions with respect

to access to transportation networks and other quality indicators (i.e., species type,

slope, soil quality, etc.) int order to estimate a volume of economically harvestable

biomass [67–69], or useable wood fuel [70], in a given region. This approach typically

assumes that all non-protected forested land (i.e. any forest that is not withdrawn

from harvesting for conservation purposes) is “available” for harvest. The problem

with this approach is that it produces over-inflated biomass estimates for regions with

high numbers of NIPF owners because, although all estimated biomass is “available”

in theory, the actual amount of “available” biomass depends on the varied willingness-

to-harvest of diverse NIPF owners [71]. To overcome this problem, ForestSim uses

information on the willingness to harvest of NIPF owners within the region to adjust

its biomass estimates in accordance with social reality.

ForestSim also integrates forest growth models. Forest growth modeling is neces-

sary for ForestSim to project biomass estimates into the future, capturing the change
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over time that occurs when forests respond to NIPF owner harvesting and vice-versa.

Two methods of forest growth modeling exist in the literature today: individual

tree and whole-stand modeling [72, 73]. ForestSim adopts the whole-stand model-

ing approach because the overarching policy analysis goal is to assess the regional

sustainability impacts of bioenergy development (e.g., aggregate biomass volumes,

habitat disconnectivity, acres of open-access land, etc.) not the impacts of harvesting

on individual forest parcels. It is important to note that existing tools, such as the US

Forest Service’s Forest Vegetation Simulator (FVS), are already available to conduct

some similar analysis tasks [e.g. 74–77]. However, none of these existing tools have

the ability to incorporate heterogeneous harvest decision-making or adaptive manage-

ment (e.g. agents changing harvest behaviors in response to social, environmental,

or economic stimuli). This is because most forest growth models rely on systems

dynamic modeling [78], which makes it impossible to model individual-level NIPF

owner dynamics. ForestSim, on the other hand, uses the ABM simulation environ-

ment to conduct its analysis, which eliminates the need to assume forest growth takes

place under a homogeneous regional forest management regime. ForestSim is also ag-

nostic about its underlying forest growth model, making it possible for researchers

and policymakers to “plug-and-play” with any forest growth model of interest while

conducting policy experiments.

Finally, ForestSim leverages the ABM aspects of MASON as a simulation for

land-use change. ABM simulation is becoming an increasingly popular method for

investigating the complex interactions of humans and the natural environment [e.g.

24, 79–82]. Unlike traditional analytical methods, ABM simulation makes it possible

to model the interactions of spatially-explicit, heterogeneous, and adaptive individuals

[17]. This is critical for modeling land-use change because most large-scale land-

use patterns emerge from the localized decisions of highly diverse actors [27, 83,

84]. This is also important for sustainability assessment because it permits a more

realistic representation of sustainability than the simplistic balance-sheet approach of
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traditional techniques like Life Cycle Analysis [i.e. 39]. Sustainability in an ABM is

the emergent product of localized interactions across space, time, and various sectors

of society and nature [23, 85] rather than a simple tally of individual sustainability

indicators.

These are the reasons why the ABM approach is becoming increasingly attrac-

tive in bioenergy research [86, 87]. However, up to this point, most bioenergy ABMs

have focused solely on modeling the land-use impacts of bioenergy development (also

most have focused entirely on bioenergy crops as opposed to woody biomass) while

overlooking broader sustainability concerns, such as value conflicts that cross envi-

ronmental, social, and economic boundaries [88]. ForestSim advances this existing

work by providing researchers and policymakers a modifiable platform for policy ex-

perimentation that can assess broad bioenergy sustainability concerns.

2.3 ForestSim Architecture and Execution

2.3.1 Overview

ForestSim was written in Java using - and as an extension to - the open-source multi-

agent simulation library MASON [54] and its GIS library extension GeoMASON [89].

MASON provides basic simulation functionality for ForestSim, such as a graphical

user interface to control the simulation and modify experimental parameters, charting

features to track key simulation outcomes, a GIS shapefile display to depict land-use

change, and a scheduler to coordinate agent activation.

Architecturally, the two major software classes are the simulation agents and the

agent environment. The primary agents in ForestSim represent spatially embedded

private forest owners (NIPF agents). Each agent is assigned a forested parcel (a

GIS polygon) with a specified forest cover using digitized property and land cover

maps. The agent environment then consists of a set of forest stands (a GIS raster

grid built upon National Land Cover Data from the USGS) assigned to each forested
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parcel that indicates current forest growth. Throughout the course of the simulation,

forest stands grow in accordance with natural tree growth dynamics and regrow in

response to harvesting. During each simulation round, NIPF agents can manipulate

(i.e. harvest) all or some of the individual forest stands that lie within the property

boundaries of their assigned parcel. Harvest decisions are made based upon one of

two NIPF owner decision-making schemas prominent in the literature: economic

optimizers (i.e., timber harvesters) or multi-objective owners (MOOs) [see 90, 91].

Economic optimizing agents seek to increase the market value of their forest with the

goal of maximizing harvest profits, while MOO agents attempt to balance economic

gains against potential losses to alternative ecosystem services due to harvesting.

Finally, three global agents are included in the simulation to provide support services

that represent various aspects of a regional forest products or bioenergy supply

chain: logging agents to harvest parcels, trucking agents to transport raw materials

to processing facilities, and refinery agents to purchase and process raw materials

into bioenergy. These major classes are all outlined in greater detail in the next

section.

2.3.2 ForestSim Architecture

As mentioned above and shown in Figure 2.1, the two major classes of Forest-

Sim are the abstract ParcelAgent class and the concrete Environment class. The

ParcelAgent class is an abstract class that provides users with a basic template for

designing NIPF agents. This template includes the general attributes that all NIPF

agents share in common (e.g. property size, neighbors, owner type, etc.) and a

standard framework for agent decision-making with abstract methods for voluntary

incentive programs (VIP) enrollment and harvesting. When an NIPF agent is acti-

vated, the simulation scheduler invokes the agent’s step method which first calls the

doPolicyOperation method (see Listing 2.1) to determine whether or not to enroll

in a VIP designed to encourage biomass harvesting. The general doPolicyOperation
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Figure 2.1: Basic overview of ForestSim architecture

method provided in the ParcelAgent class first checks to see if a VIP is active, then

determines if the agent meets the participation requirements (e.g., minimum acreage,

minimum stocking levels, minimum land tenure, etc.). If so, then enrolls the agent’s
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Listing 2.1: An example of a doPolicyOperation function for a parcel agent
function doPolicyOperation()
1. Is a policy active?

1.1. No, return
2. Do I qualify for the policy?

2.1. Do I do I have enough acres?
2.1.1. No, return

2.2. Is my current stocking high enough?
2.2.1. No, return

2.3. Have I owned the land long enough?
2.3.1. No, return

3. Should I enroll in the policy?
3.1. Does the policy conflict with my values?

3.1.1. Yes, return
3.2. Does this policy make economic sense to me?

3.2.1. No, return
4. Enroll in the policy

Listing 2.2: An example of a doHarvestOperation function for a parcel
agent

function doHarvestOperation()
1. Do I have enough harvestable stands?

1.1. No, return
2. Am I enrolled in a VIP?

2.1. Am I completed to harvest?
2.1.1. Yes, request the harvest
2.1.2. Investigate harvest consequences
2.1.3. Return

3. Request a bid from a logging company
4. Does the bid meet my financial goals?

4.1 No, return
5. Request the harvest
6. Investigate harvest consequences

property in the VIP so long as biomass harvesting is both economically viable and

does not conflict with the agent’s ownership values. Once the doPolicyOperation

method is complete, the agent’s step method then calls the doHarvestOperation

method to determine whether or not to harvest (this occurs regardless of the agent’s

status in a VIP). The general doHarvestOperation method (see Listing 2.2) first
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checks to see if there are any stands on the agent’s property with sufficient stock-

ing levels to be harvested and, if so, the agent harvests if required by a VIP (the

financial consequences of this decision also impact future VIP enrollments) or har-

vests if expected timber profits exceed costs. It should be noted that this general

framework is intended to serve as a template only. Users are encouraged to design

child ParcelAgent classes with more specific behaviors for VIP enrollment and har-

vesting tailored to various ownership types active in their study region (we provide a

demonstration of this agent customization feature in our case study below).

When an NIPF agent decides to harvest, ForestSim uses a number of global sup-

port agents to coordinate various aspects of the biomass supply chain beyond the

forest owner. The NIPF agent simply registers a request to harvest a specified num-

ber of stands with a Harvester agent whose role is similar to that of a logging

company. By default, the Harvester agent uses a first-in-first-out priority queue to

process harvest requests and stores the results for later use. The Harvester agent is

only able to execute a limited (user-specified) number of harvests in a given round (all

harvests unexecuted are shifted to the next simulation round). Once again, users are

free to modify the Harvester decision-making schema to accommodate more complex

harvest scheduling algorithms based upon their own needs. ForestSim also provides

users with modifiable class interfaces to model more complex scenarios beyond the

harvest stage, if needed. These include a transporter agent that plays the role of a

trucking company moving the harvest to market, and a processor agent that plays

the role of the final consumer who purchases biomass to generate bioenergy.

After all NIPF and support agents have been activated in a given round, the

MASON scheduler then calls the Environment class. This class updates the status of

individual forest stands throughout the region. The Environment class is linked to

the Forest class, which contains an array of Stand objects. Each Stand represents

a patch of forest cover that is tied to a single pixel in a raster-based GIS land-cover

map (the dimensions of each Stand depend on the GIS data provided by the user).
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The Forest class uses its GrowthModel interface to determine how much each

“undisturbed” stand will grow in a given round. By default, ForestSim provides

a generic model (i.e., GenericGrowthModel class) of even-aged whole stands with

incremental annual growth [72]. Users are free to implement any growth model that

suits their local forest conditions or to make use of the default generic forest growth

model of ForestSim. The GenericGrowthModel uses Perlin noise [92] to generate

initial growth levels that resemble natural forests (see calculateInitialStands),

and then growStand to apply annual periodic growth to the forest.

2.3.3 Model Inputs

ForestSim requires users to provide four inputs in order to run a simulation. First,

users must provide spatial information to define their geographic location of interest.

ForestSim requires polygon-based GIS parcel maps to define property boundaries for

the NIPF agents and raster-based GIS land cover type data (e.g., USGS National

Land Cover Data) to determine where forest growth is possible within the region as

well as current forest growth at specified locations. Second, users must specify an

appropriate tree growth model to be used in the GrowthModel interface to simulate

stand growth during a model run. ForestSim does not provide a “generic” growth

model due to the variation that exists between regional environments. This approach

ensures that the underlying growth model is the best representation possible of the

environment and goals of the end-user. Third, users must decide how many links

in the biomass supply chain they would like to simulate. The default setting is to

simulate only up to the point of harvest but not beyond. Finally, users can also

extend the ParcelAgent abstract class if necessary to tailor the doPolicyOperation

and doHarvestOperation methods to better represent the local decision-making

rules of different NIPF owner types in their study region.

22



2.3.4 Model Execution

Two major processes make up the overall ForestSim operation flow. The first is the

model initialization process, which is shown in Figure 2.2. The process:

1. Geographic information system land cover and parcel information is loaded from

the paths indicated in the model configuration.

2. The abstract initialize method is invoked to allow for any additional GIS

data to be loaded into the model.

3. The environment is initialized by calculating the initial forest stands through

the GrowthModel interface via the calculateInitialStands method.

Figure 2.2: Sequence diagram of model initialization
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4. NIPF agents are sequentially initialized in proportions supplied by the user and

randomly assigned a parcel in the landscape and assigned to a parcel with the

probabilities being determined by model configuration.

5. The marketplace is initialized and agents added to the schedule as needed.

5.1. The order of the agents in the marketplace is randomized before scheduling

with a Fisher-Yates shuffle [93].

6. The environment agent is added to the schedule.

7. If a Scorecard can be generated, it is added to the schedule via the

AggregationStep agent.

The initialization process is followed by the main simulation loop. This may take

the form of either an aggregate simulation (Figure 2.3) or a marketplace simulation

(Figure 2.4). An aggregate simulation proceeds as follows:

Figure 2.3: Aggregate Simulation Loop
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Figure 2.4: Marketplace Simulation Loop

1. ParcelAgent objects are sequentially activated by MASON. Agents that elect

to harvest their parcel pass the request to the Harvester agent.

2. The Harvester agent is then invoked, which then processes the requests for

harvests, up to the user imposed limit. For parcels the agent is able to harvest,

woody biomass is removed, the forest stand attributes are updated to reflect

the harvest, and woody biomass is reported.

3. When the parcel is harvested, the NIPF agent is informed that it took place.

4. The Environment agent is invoked, which ensures that the forest stands are

updated to reflect the growth that occurred in the simulation timestep.

5. The object that implements the Scorecard interface is invoked to allow the

simulation to collect any data that is needed to prepare a sustainability score-

card.
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A marketplace simulation is similar, but differs in that before the Environment

agent is invoked, the agents that are part of the market place are first invoked in the

following order shown in Figure 2.4.

2.3.5 Model Outputs

ForestSim uses a scorecard concept to drive analytical outputs during a simulation.

At the end of each time step, ForestSim first calls the Scorecard and then checks to

see if the model has run to completion. The Scorecard provides end-users with a

way of collecting information from the model’s state (e.g., woody biomass harvested,

carbon sequestration, etc.) with the intent of developing a sustainability assessment

(or policy assessment) scorecard tailored to the management interests of the user.

After the Scorecard has been called, ForestSim either proceeds to the next time step

or terminates the model.

2.4 Model Demonstration

2.4.1 Motivation

The current section uses a proof-of-concept case study to demonstrate how ForestSim

can be used for policy experimentation. In this example, we explore the sustainability

impacts of using VIPs to encourage biomass harvesting [see 94, 95]. The policy

analysis goal is to determine the different impacts that alternative VIP incentive

mechanisms have on the three classic pillars of sustainability: the economic, the

environmental, and the social (more on these below).

We chose this example to demonstrate ForestSim’s capabilities for two reasons.

First, the decentralized nature of VIP regulation warrants a methodological tool that

can adequately model the interactions of heterogeneous and adaptive actors. This is
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Figure 2.5: Map of Houghton County and NIPF owner parcels

due to individual forest owners voluntarily agreeing to adhere to certain forest man-

agement practices in exchange for a financial or other rewards. Second, this example

allows us to illustrate why the bottom-up ABM approach to modeling emergent phe-

nomenon is significantly better at analyzing sustainability impacts than alternative

policy analysis methods.

One of the fundamental problems with establishing a bioenergy system is ensur-

ing a sufficient and reliable supply of biomass. Additionally, many forested regions

throughout the world divide forest ownership among a multitude of individual private

forest owners, further complicating matters. This means that biomass supply greatly

depends upon the highly decentralized decision making of heterogeneous and adaptive

actors. In situations such as these, policymakers often use VIPs to encourage actors
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to adopt their preferred management practice, and to achieve coordinated regional

outcomes [96]. In our proof-of-concept example, we compare the sustainability im-

pacts of no-VIP incentivization to two alternative VIP incentivization mechanisms:

individual-based rewards or an agglomeration bonus. Traditional VIPs often reward

landowners individually for their own program participation, yet current research sug-

gests that adding an agglomeration bonus to reward landowners for the participation

of their neighbors can increase enrollment rates and produce even better manage-

ment outcomes at the regional level [97]. Our case study explores this issue through

a proof-of-concept demonstration of ForestSim that shows how alternative incentive

mechanisms impact regional sustainability indicators beyond the simple metric of

program enrollment rates and the specific indicators targeted by the VIP itself.

For demonstration purposes, we chose to conduct our policy experiments in the

context of Houghton County, in the Upper Peninsula of Michigan (USA). It is ap-

proximately 80% forested, with a mix of hardwood species that are generally fully

stocked, with low annual removal rates [98]. Houghton County also faces one of the

highest utility rates in the country, making it a prime candidate for bioenergy con-

version. Forest ownership in the region is nearly evenly distributed among industrial

(35%), public (30%), and private (33%) (or, NIPF) owners [99]. This makes Houghton

County a good test case for the effectiveness of VIPs designed to encourage biomass

harvesting.

This case study tracks the following sustainability indicators with relevance to

stakeholders in the Houghton County region, and to illustrate how different dimen-

sions of sustainability can be assessed. These indicators are:

• Economic: The primary economic sustainability concern in this example centers

on biomass supply. We consider our bioenergy system economically sustainable

so long as a steady and reliable supply of biomass is available to fuel a hypo-

thetical 10 megawatt (MW) power plant. We assume a feedstock 613,000 bone
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dry tons of woody biomass is required annually based upon prior case studies

[100–102].

• Social: Whitetail deer hunting is an extremely popular recreation activity in

Houghton County that relies heavily on use of the region’s forests [90]. Access

to public and private lands for hunting is critical to the sustainability of this

activity. That is why VIPs in the region often require program participants to

provide open access to their land to the general public, which is replicated in

our model. Therefore, we assume our bioenergy system is more sustainable the

greater the amount of open access land that is available.

• Environmental: Finally, biomass harvesting can cause obvious harm to the en-

vironment if done irresponsibly. Forests provide a number of ecosystem services

that are critical to environmental regulatory functions, such as carbon seques-

tration. Therefore, the final sustainability indicator that we track is the carbon

sequestration capability of the region’s forests as it changes over time due to

harvesting and new growth. We consider our bioenergy system to be sustain-

able so long as there is no major net loss of carbon sequestration levels across

the region.

2.4.2 Preparation

As stated above, ForestSim requires two GIS-based user inputs to begin policy experi-

mentation: parcel boundaries and land cover data. For our demonstration, we use a a

digitized parcel boundary map obtained from the Houghton County Tax Equalization

department for the year 2012. We also used the latest National Land Cover Database

GIS raster file from the year 2011 [103] to depict current forest cover. Finally, we

overlaid our parcel boundary map on top of our NLCD land cover map to identify

privately owned forested properties of greater than 10 acres in size. We then filtered

out all other properties for the purposes of this demonstration because these other
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parcels would be ineligible for the biomass VIP of interest in our case study. Char-

acteristic species were selected for the region based upon U.S. Forest Service data

[98] and assigned based on NLCD codes (i.e., Red Maple (Acre rubrum) for decid-

uous forests and woody wetlands, Eastern White Pine (Pinus strobus) for evergreen

forests.

Since this is a proof-of-concept model, we elected to implement a minimalist

schema, shown in Table 2.1, and to only track the biomass that is harvested. We

designed our economic optimizer agents to be perfectly rational with respect to har-

vest profits (i.e., homo economicus). For the model 30% of the parcels are allocated to

these economic optimizers. The remaining 70% of the parcels are allocated to MOOs,

who are designed to be economically naive in that they often pass up profitable har-

vest opportunities under the assumption that they prefer to manage for some other

non-financial goal at these times. In both cases, the agent is provided with a parcel

of land that has at least ten acres of forest. Economic agents prefer to harvest a

minimum of 40 acres, unless enrolled in a VIP upon which they will harvest smaller

parcels. Harvester agents were limited to harvesting 2500 parcels per year, effectively

ensuring it did not represent a barrier to NIPF owner activity.

Table 2.1
Decision Making Schema of Non-Industrial Private Forest Owner Agents

Economic Optimizer Agent Multi-Objective Owner Agent

Always harvest when minimal harvest
conditions are met and profitable

May harvest when minimal harvest con-
ditions are met and profitable

Harvest when the highest net present
value can be achieved

Harvest when the bid exceeds the mini-
mum they are willing to accept

Join voluntary incentive program when
economically advantageous

May join voluntary incentive program if
economically advantageous and they are
willing to harvest

Entire parcel is harvested
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When agents in the model wish to harvest, they request a stumpage bid. This

stumpage bid is based upon the expected quantity of harvested woody biomass and

the value of the given species present in the parcel. The stumpage value for Red Maple

(Acre rubrum) was set at the rate of $479.75 which is based upon the 2016 stumpage

rate by volume for Baraga Forest Management Unit which contains Houghton County

[104]. Likewise, the stumpage value for White Pine (Pinus strobus) was set at the

rate of $100 which is based upon the stumpage rate by volume for Gwinn Forest

Management Unit which is located in the Central Upper Peninsula region. Economic

agents project the growth of the forest in their parcel and schedule a harvest for the

timestep with the highest net present value. In contrast, MOOs will solicit a bid and

harvest if the bid exceeds the minimum they are willing to accept. The minimum is

set when the agent is created and is randomly drawn from a normal distribution with

a mean of $523.23 and a standard deviation of $123.12 [71].

The VIPs in the model are intentionally simple. Both VIPs incentivize harvesting

through a tax incentive (i.e., a millage bonus). However, the agglomeration bonus

offers a higher incentive if any of the neighboring properties are also enrolled. Both

VIPs require that the NIPF owner harvest their property before they can withdraw

from the VIP. This approximates a tax clawback or property lien intended to prevent

free-riders [94].

2.4.3 Execution and Results

For our proof-of-concept model we allowed the model to run for two hundred years.

The VIP was introduced at the sixty year mark to allow for model burn-in and initial

NIPF owner harvesting to take place. The model was repeated a total of two hundred

times for each of the three policies prior to analysis.

Figure 2.6 shows the mean harvested biomass in metric tons (MT) dry weight

under each of the three policy scenarios. The above-ground biomass is calculated
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Figure 2.6: Harvested biomass in metric tons (MT) dry weight

using a generalized equation for trees in the United States [105]. Biomass volumes in

all three scenarios oscillate with changes in natural forest growth as expected. Also

as expected, both VIP scenarios generate greater biomass volumes than the no-VIP

scenario. Nevertheless, the amount of biomass harvested in all three scenarios is

insufficient to meet the annual needs of a hypothetical 10 MW woody biomass plant

and the agglomeration bonus appears not to be noticeably different than the millage

bonus in this regard. From this we can conclude that financial incentivization alone
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is insufficient to ensure the economic feasibility of bioenergy production in Houghton

County.

Figure 2.7 shows the mean forest carbon sequestration on the basis of the car-

bon content of vegetation [106] for all three policy scenarios. As expected, both

VIP scenarios result in a lower aggregate carbon sequestration capacity than the no-

VIP scenario. This result is not surprising given that both VIP scenarios were also

Figure 2.7: Forest carbon sequestration in metric tons of CO2 (MTCO2)
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producing more biomass and, hence, inducing greater harvesting rates that reduce

carbon sequestration capacity. It is, however, interesting to note that carbon seques-

tration capacity remains slightly higher under the agglomeration bonus than under

the millage bonus regime. From this we can conclude that VIP incentivization does

in fact have negative consequences for carbon sequestration capacity. Yet, one should

not read too much into this conclusion because determining whether the benefits of

bioenergy outweigh the costs in this setting requires that a calculation of the total

carbon impact of the entire biomass life cycle, which is beyond the scope of this simple

demonstration.

Finally, Figure 2.8 shows the impact on the availability of public access to recre-

ational lands through open access acreage to forested land under all three policy

scenarios. The impact of no-VIP incentivization is somewhat trivial in this case be-

cause our simple demonstration assumes that NIPF agents must enroll in a VIP to

make their forested land available to the public (more accurately, open access is a

requirement of VIP enrollment). Therefore, the no-VIP scenario produces zero acres

of open access forested land.

Under the two VIP scenarios, however, we see that significantly more open access

acreage is made available under the agglomeration bonus than the millage bonus

regime, particularly after the first generation of harvesting (approximately 40 years).

This result is likely due to the greater attractiveness of the financial incentive available

through the agglomeration bonus to neighbors enrolled in the same program that is

not available to enrollees of the millage bonus program, as current VIP literature

supports [91].

From this, we can conclude that the agglomeration bonus is the most sustainable

policy alternative based on our rather simplified sustainability assessment example.

Both VIP scenarios are more economically sustainable than the no-VIP scenario (al-

beit insufficient to power a 10 MW plant) but the agglomeration bonus is able to
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Figure 2.8: Open access to forest

generate comparable biomass volumes with a lower negative impact on environmen-

tal sustainability (carbon sequestration capacity) and a greater positive impact on

social sustainability (open access acreage).
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2.5 Discussion
The case study presented in the previous section was intended for demonstration pur-

poses only. The goal was to simply demonstrate the policy analysis and sustainability

assessment capabilities of ForestSim. Through this demonstration it was possible to

see how ForestSim can be used to track sustainability assessment criteria that fall

into each of the three classic pillars of sustainability so as to compare the impacts of

alternative policy scenarios on NIPF owner harvesting. New users should be able to

easily replicate this demonstration for any case study region of interest without mod-

ifications to ForestSim using only the required regional data (land cover and property

boundaries) necessary to geolocate their simulation. This exercise will give new users

a chance to orient themselves to the software while also providing a code structure

that is easily modifiable for more sophisticated model runs once user are familiar with

the ForestSim environment.

One of the most valuable features of ForestSim is its flexible architecture. Forest-

Sim enables user to develop highly complex policy analysis experiments incrementally

and over time. This development approach allows users to validate the underlying

mechanisms of various sub-models in isolation of each other prior to integrating these

sub-models and increasing the level of simulation complexity. For example, to avoid

unnecessarily overcomplicating the demonstration above, the case study example was

conducted with the default Harvester agent settings using a simplified First-In-First-

Out harvest priority queue and no transportation or bioenergy production agents.

This made it possible to validate the role of VIP incentivization on NIPF owner

biomass harvesting without the additional complicating factor of harvest bidding,

harvest scheduling, transportation logistics, or biomass purchasing. The flexibility

of the ForestSim architecture also allows users to experimentally control various as-

pects of their policy design, social setting, environmental conditions, and economic

relations to perform complex thought experiments that would be impossible in real
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life. Users can also modify any or all aspects of the agent decision-making schema

across all agent types to determine how such changes impact biomass harvesting rates

or any other sustainability assessment criteria. This flexibility also means that users

can tailor ForestSim to the unique features of their study region without having to

design and implement their own model from scratch. Such a tool is invaluable to

interdisciplinary research teams that possess some level of computational capability

but are more interested in the policy or sustainability outcomes ForestSim permits

them to generate with little to no computational effort. By helping to reduce some of

the programmatic burden that is needed to develop complex models, ForestSim can

occupy a useful place in the forest management policy community and ignite future

innovative research endeavors.

2.6 Conclusion
In this paper we presented ForestSim, an agent-based simulation for bioenergy pol-

icy analysis and sustainability assessment. We used a simple case study to demon-

strate the main features of ForestSim in an effort to determine which voluntary in-

centive program would be the most sustainable for encouraging biomass harvesting

in Houghton County, Michigan, USA. We also discussed how and why ForestSim

could be a valuable tool for the forest management policy and research communi-

ties. ForestSim is a free open source project under an MIT license and is available at

https://github.com/forestsim-mtu/forestsim.
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Chapter 3
Life Cycle Assessment of the Production of

Gasoline and Diesel from Forest Residues

Using Integrated Hydropyrolysis and

Hydroconversion

Robert Zupko1

1 Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Berlin
Heidelberg The International Journal of Life Cycle Assessment (Life cycle assessment of the pro-
duction of gasoline and diesel from forest residues using integrated hydropyrolysis and hydrocon-
version, Robert Zupko), ©2019, advance online publication, 29 March 2019 (doi: 10.1007/s11367-
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Abstract
Purpose: Renewable gasoline and diesel can be produced through integrated

hydropyrolysis and hydroconversion (IH2) using renewable feedstocks such as woody

biomass from logging residues. This study assesses the potential environmental

impacts of IH2 process fuels manufactured in Ontonagon, Michigan to determine

their environmental impacts and if these manufactured fuels will meet regulatory

requirements. The energy return on investment (EROI) is also calculated for

comparison to other renewable fuels.

Methods: A cradle-to-grave life cycle assessment was conducted using regional

forestry, timber harvest, and transportation data from the region. Regional geo-

graphic data was used to determine service areas that may provide woody biomass.

The service areas were then developed into inventory data based upon the type and

distribution of potential woody biomass feedstocks. Survey data from loggers in the

region were used to ensure that harvest types were allocated in accordance with

regional activity. Remaining inventory items were derived from existing data in the

literature, or existing life cycle inventory databases. This study uses a functional

unit of one megajoule of gasoline or diesel produced using the IH2 process and

assessed several environmental indicators as well as EROI.

Results and discussion: Fuels produced generate approximately 88% less greenhouse

gas (GHG) emissions when compared to petroleum gasoline and diesel, allowing the

fuels to meet regulatory requirements. Electricity used in preparation of feedstock

and manufacturing, along with fuels used in transport of feedstocks, account for

92.19% of the energy used in production of IH2 gasoline and diesel. This results in

a calculated EROI 4.19 and 4.31 per kilogram of diesel and gasoline, respectively;

which compares favorably to previous assessments of cellulosic ethanol that use

similar feedstocks. This study demonstrates that while environmental impacts and

EROI are sensitive to site selection, there is a sufficient GHG emission reduction
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such that IH2 fuels are capable of meeting regulatory requirements.

Conclusions: Fuels produced at the facility result in a reduction in GHG emissions,

but better site selection may result in less fuel being used in transportation. Reducing

the quantity of electricity needed in n-th generation facilities would also reduce

environmental impacts while improving the EROI. The energy mix used to supply

IH2 facilities should also be considered during the planning process. Finally, future

research may be needed to ensure feedstocks recovered from logging operations

match expectations.

Keywords: Carbon Footprint - Biofuels - Woody Biomass - Energy Return on In-

vestment - Hydropyrolysis - Gasoline - Diesel

3.1 Introduction

Gasoline and diesel fuels produced using the integrated hydropyrolysis and hy-

droconversion (IH2) process from renewable feedstocks have the potential to

address a number of existing concerns (see [107, 108]) with first generation biofuels

as well as meeting regulatory goals. The Renewable Fuel Standard (RFS) as well

as the Energy Independence and Security Act (EISA) of 2007 have mandated that

approximately 80 billion liters of second generation or higher renewable fuels, with a

life cycle greenhouse gas (GHG) emissions at least 50% lower than than petroleum

counterparts, be blended with transportation fuels by 2022 [109]. IH2 process fuels

are categorized as second generation biofuels since they rely upon feedstocks such as

woody biomass (e.g., logging residues, short rotation crops, etc.), corn stover, or algae

[110]. Additionally, while ethanol blends can be used to meet regulatory targets, IH2

process gasoline and diesel are inherently compatible with their petroleum counter-

parts [111] making them an attractive means of meeting these regulatory goals.
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While there is a growing body of literature evaluating the impacts of biofuels (see

[108, 112, 113]), work focused on assessing the IH2 process or other broader catalytic

hydropyrolysis techniques has been limited. This is likely attributable to the recent

development of the process with [111] acting as the seminal publication followed by

a comprehensive technical report by [114]. While the technical report includes a car-

bon footprint assessment, feedstocks are assumed to be a mix of forest materials (e.g.,

wood chips, underutilized roundwood, etc.) and mill residues from northern Wiscon-

sin limiting its applicability. Following these early publications, [115] conducted the

first preliminary life cycle assessment (LCA) of the diesel and gasoline products from

the IH2 process. Their study evaluated the greenhouse gas (GHG) emissions of four

possible feedstocks: microalgae, bagasse, corn stover, and timber products from ex-

isting logging. The results of the study were encouraging with the authors noting a

30 to 96% GHG savings depending upon the selection of feedstock. The work was

followed by [116] who conducted a carbon footprint analysis to evaluate the impact of

integration with a petroleum refinery in Memphis, Tennessee along with the role that

feedstock selection plays. In their case study, the refinery would supply the H2 needed

for hydropyrolysis and hydroconversion as opposed to internal production using C1-

C3 coproducts. Possible biomass feedstocks include corn stover and forest residues

which are broadly defined to include logging residues, unmerchantable roundwood,

and mill residues. [116] also produced encouraging results showing a 67 to 90% GHG

reduction when compared to petroleum fuels. However, the site selection required

that forest residues be transported between 113 and 132 km. As such, the results are

difficult to evaluate in the context of a facility that is closer to the harvests.

From a broader standpoint, [117] conducted an evaluation of the current state-of-

the-art in the conversion of lignocellulosic biomass and included catalytic processes

in the evaluation. The report noted that more work was needed in the develop-

ment of catalysts, and their techno-economic evaluation projected n-th generation
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plant economics of approximately $0.92/liter gasoline equivalent ($3.50/gallon gaso-

line equivalent) by 2022. [118] evaluated catalytic hydropyrolysis in the context of

plant designs that incorporate carbon capture and storage technologies and found

that carbon negative outcomes were possible in some scenarios. However, the au-

thors noted that there are a number of key issues that need to be addressed before

the evaluated technologies would be in use.

To date there has been no systematic assessment of the environmental impacts, or

energy return on investment (EROI) of a first generation facility and its regionally-

specific supply chain. As a result of this lack of systematic assessments, it also

remains unclear if IH2 facilities will meet RFS requirements once sited. This is a

regulatory concern since prior work has shown that biofuels are sensitive to their

supply chain, and excessive environmental impacts and negative EROIs can apply to

specific facilities [108, 113, 119]. One means of alleviating these concerns are to ensure

that facilities are located close to their primary source of feedstocks, although this may

increase the distance that products must travel to a blending terminal. This is the

approach taken in the case of the proposed IH2 biorefinery in Ontonagon, Michigan by

SynSel Energy Incorporated [120–122]. Ontonagon is a rural community in a heavily

forested part of Michigan. The location was selected in part to allow the facility to be

close to existing logging activity which will supply wood waste as a feedstock. While

there is considerable interest from the local community, the environmental impacts

remain uncertain. Furthermore, it is not known if the facility will produce fuels that

meet regulatory requirements.

In this study, a cradle-to-grave LCA is conducted to evaluate the environmental

impacts and EROI of the Ontonagon IH2 biorefinery using a systematic accounting

of the collection, chipping, and transport of logging residues as a woody biomass

feedstock. Regional transportation networks, land cover data, and property ownership

data is used to determine the likely sources of feedstocks, offering greater insight into

their impact. This study evaluates the environmental impact of manufactured fuels,
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cumulative energy demand of key manufacturing stages, and the overall EROI. The

results are evaluated in the context of the RFS to determine if fuels produced will

meet the regulatory requirements. Additionally, insights into facility placement are

possible and suggestions for improvements to future n-th generation facilities are

provided.

3.2 Methodology

3.2.1 Goal and scope definition

The goal of this study is to conduct a cradle-to-grave assessment of an IH2 biofuels

facility based in Ontonagon, Michigan using the LCA methodology outlined in ISO

14040 [60]. The system boundary includes feedstock collection (chipped woody

biomass), transport, processing (size reduction and drying), fuel production, waste

treatment, transport, and consumption of manufactured fuels (see Figure 3.1). The

functional unit is one megajoule (MJ) of gasoline or diesel produced through the

IH2 process. Ammonia/Ammonia Sulfate produced is accounted for as a co-product,

but credits were not assigned due to the lack of clarity regarding a consumer of the

product or the transportation logistics that would be involved. Likewise, woody

biomass generated is treated as a co-product of timber operations with allocations

Figure 3.1: System boundary of the IH2 process
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assigned based upon the forest type. All input data was collected and entered into

SimaPro 8.5 [123] for simulation (see Electronic Supplementary Material 3 for com-

prehensive inputs)2, along with inventory data for the US from the DATASMART

Life Cycle Inventory Package [124] and the U.S. Life-Cycle Inventory [125], as well

as the TRACI 2.1 V1.04, IPCC GWP 1.03, Cumulative Energy Demand 1.10; and

Greenhouse Gas Protocol 1.02 [126] packages were used to conduct the assessment.

3.2.2 IH2 Description

Integrated hydropyrolysis and hydroconversion (IH2) is a form of catalytic hy-

dropyrolysis and produces hydrocarbon fuels (e.g. gasoline and diesel) from sources

such as woody biomass (i.e., forest residues, logging residues, or slash) from timber

harvests [111, 115, 116]. Fuels from the IH2 process are a direct substitution for

petroleum-based fuels and may be incorporated into existing distribution networks,

although blending is generally expected due to higher octane ratings for IH2 fuels

[114]. The process is briefly described as follows: following aggregation, drying, and

resizing of feedstocks, they are introduced via feedstock hopper into a hydropyrolysis

reactor based upon a fluidized bed reactor (see Figure 3.2). During the reaction

Figure 3.2: Simplified overview of the IH2 process

2 See Appendix B
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the feedstocks are devolatized and a light hydrocarbon vapor product is produced

along with C1-C3 gases, H2O, COx, and biochar. The reactor is pressurized to

20-35 bar to induce the reactions; and hydrogen is introduced to reduce the oxide

content of the final fuel. Biochar is continuously removed from the reactor to quench

reactions. Hydropyrolysis vapors are then directed to the hydroconversion reactor

with a catalyst that induces additional hydrodeoxygenation and hydrogenation to

take place. Condensation is used to recover hydrocarbon vapors through the use

of a distillation column to separate gasoline and diesel fuels. The C1-C3 gases

can either be burned as fuel to generate electricity, or used in the generation of

H2 gas for circulation back into the hydropyrolysis reactor. In the case of woody

biomass feedstocks, ammonia/ammonium sulfate can be recovered as a coproduct

which has possible applications as a fertilizer or as an industrial chemical feedstock

[115]. Finally, the highly endothermic nature of the IH2 process results in significant

amounts of steam that can be redirected to drive compressors, generators, or assist

in feedstock drying.

3.2.3 Regional Description

Ontonagon is a rural village in the Western Upper Peninsula (WUP) region of Michi-

gan. The WUP region consists of the counties of Gogebic, Ontonagon, Houghton,

Keweenaw, Baraga, and Iron. The village receives power from the Upper Peninsula

Power Company (UPPCO), whose energy mix is a combination of owned facilities

and power purchased from the regional grid of Michigan, Illinois, Indiana, Ohio and

Wisconsin (Tables S1 and S2, Electronic Supplementary Material 2).3 The region

borders Lake Superior and is heavily forested, with approximately 13,343 sq.km of

forested land and includes approximately 2,722 sq.km of woody wetlands that may

be unsuitable for commercial logging (see Section 3.7). Ownership of forested land

is divided between state, federal, and private lands. Approximately 4,898 sq.km of
3 See Appendix B
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private lands have been registered as commercial forests with the State of Michigan.

These commercial forests contain approximately 4,544 sq.km of actual forested land

(i.e., land that is characterized by tree cover) and account for about 34% of the total

forested land in the region. Owners of these lands receive a tax incentive from the

state with the stipulation to have a at least forty contiguous acres of forest as well

as a forest management plan with intent to conduct commercial harvests [127]. Since

commercial harvests are conducted on these lands they can be assumed to have forest

roads that service them, although such roads may be privately owned and not appear

on regional maps. The region contains nine sawmills and one veneer mill that serve

as the primary consumers of merchantable timber [128] while the IH2 facility would

be the primary consumer of woody biomass produced during timber harvests.

The first step in this study was to determine the extent of the region that would

supply woody biomass to the IH2 facility by conducting a GIS analysis using ArcGIS

10.3.1 [129]. This involved a network analysis using state road network data [130]

to identify service areas from zero to 165 km in 33 km steps. The selection of the

165 km extent of the analysis compares favorably to responses from loggers regarding

their travel distance and captures the approximately 73% of responses for distances

between zero and 144.84 km (120 mi) [58, 59]. Approximately 15% of respondents

reported traveling 144.84 to 193.121 km (90 to 120 mi) and is partially captured by the

Table 3.1
Summary of the maximum potential harvestable biomass (excluding woody
wetlands) along with transportation inventory and service area allocations

Service Area Total Biomass
(dry t)

Inputs
Fuel Use
(L/load)

Lubricants
(L/load)

Grease
(kg/load) Allocation

0 - 33 km 6,570,839 37.08 0.05 0.02 7.45%
34 - 66 km 17,380,859 74.16 0.11 0.03 19.72%
67 - 99 km 34,811,538 111.24 0.16 0.05 39.50%
100 - 132 km 17,122,830 148.31 0.21 0.07 19.43%
133 - 165 km 12,254,466 185.39 0.26 0.09 13.90%
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upper bounds of 165 km. Parcels registered as commercial forests were then selected

based upon their geographic distance from the facility using the same zero to 165 km

pattern. The service area and commercial forests were merged, and state parks were

removed due to the lack of logging on them (see Figure 3.3). The identified service

areas were then used to clip land cover data from the National Land Cover Database

[103]. A count of forested land pixels (i.e., deciduous forest, evergreen forests, and

mixed forest) was then taken for each zone. Woody wetlands were excluded from the

analysis on the assumption that complications associated with harvesting [131] would

significantly limit their impact. Finally, the data was aggregated and estimates for

the distribution of feedstocks calculated, which acts as the basis of woody biomass

production as well as transportation distances (see Table 3.1).

3.2.4 Energy Return on Investment

The energy return on investment (EROI), sometimes referred to as the energy return

on energy invested (ERoEI), is the ratio between the total energy returned by a fuel

versus the total energy needed to manufacture and deliver the fuel to consumers

[132]. In this study the extended EROI approach outlined by [133] is used in which

the energy delivered to society is divided by the total energy required to manufacture,

transport, and use the energy. Formally this is defined as,

EROI = Energyout

Energyin

(3.1)

Where Energyout is the potential energy of one kilogram of the fuel and Energyin

is the total energy input from the system boundary. For the potential energy the

values of 46.536 MJ/kg and 45.575 MJ/kg where used for conventional gasoline and

low-sulfur diesel, respectively [134]. As EROI has been used in studies of petroleum-

based transportation fuels as well as biofuels (see [113, 132, 135], this approach allows

the IH2 fuels to be properly compared to prior work as well as assessing their potential

environmental impact.
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Figure 3.3: Map of the study region depicting the major highways leading
from Ontonagon along with the service area boundaries used to determine
the distribution of woody biomass sources

3.3 Life Cycle Inventory

3.3.1 Feedstock Production

While the IH2 process can use a variety of biomass feedstocks as an input, plans for

the Ontonagon facility call for woody biomass as the feedstock. Woody biomass is

generated during timber operations and consists of the non-merchantable portion of

the stem, branches, and roots. Woody biomass is also distinct from coarse woody

debris (or coarse woody material) which is deadwood from natural processes [131].

Typically woody biomass is left on site to act as a soil abatement to prevent erosion,
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or used during harvesting operations to prevent soil compaction [136]. To be used as

a biomass feedstock it must be first collected and chipped to reduce its bulk before

transport. Good forestry practice guidelines and state laws can limit the amount that

can be collected by mandating that a percentage, typically between 10 and 45%, be

retained on site [131]. Currently Michigan’s Department of Natural Resources does

not specify a precise figure [137], so a baseline of 30% was selected based upon good

forestry practice guidelines.

The quantity of woody biomass that is generated during timber operations is

dependent upon both the species of tree being harvested as well as the productivity

of harvesting operations. In order to estimate the quantity of above-ground woody

biomass that a single tree could produce, equations from [105] were used to derive

the ratio between merchantable biomass (mbm) and woody biomass (bm) (Equations

3.3 - 3.4).

bm = Exp(β0 + β1ln(dbh)) (3.2)

mbm = bm ∗ Exp(α0 + α1

dbh
) + Exp(γ0 + γ1

dbh
) (3.3)

ratio = bm−mbm
mbm

(3.4)

Where β0 and β1 are the parameters for the appropriate species group, α0 and α1 are

the parameters for the species group stem wood, and γ0 and γ1 are the parameters for

the stem bark as listed in [105]. This ratio is then applied to the harvest productivity

on the basis of merchantable biomass in tonnes per system hour to determine woody

biomass production in tonnes per system hour.

Harvesting is assumed to follow patterns established by a survey of Michigan

loggers that intended to study the potential for a cellulosic ethanol facility in the

Upper Peninsula of Michigan [58, 59]. The analysis focused on cut-to-length and
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feller buncher harvester operations which accounted for the majority of treatments

applied (i.e., 30% selective cut, 70% shelterwood cut, and clear cutting). Feller

buncher harvester operations involve whole tree harvesting and result in slash being

aggregated at a landing where trees are delimited, topped, and bucked [136]. In

contrast, cut-to-length operations involve the tree being delimited and cut into

specified log lengths immediately after being felled. Residues can then either be

piled in front of the harvester as a mat to protect the soil, or alongside, for later

collection. In the case of either operation, woody biomass would be chipped prior to

being loaded into a chip van. Since the survey by Abbas et al. [58] indicates that

chipping rarely occurs, this study assumes that loggers will respond to the demand

and begin chipping woody biomass to supply the IH2 facility. As a proxy for usage

data, a survey by Spinelli and Magagnotti [138] was used to estimate materials used

in chipping. Based upon the distribution of harvester operations, it was estimated

that 315 L/day of diesel along with 0.494 kg/day of blades would be consumed

(Table S6, Electronic Supplementary Material 2).4 In order to simplify this study,

logger productivity and woody biomass generation was calculated on the basis of

the operation, treatment, and forest types found within the zones delimited by

the network analysis (Table S5, Electronic Supplementary Material 2).5 This data

was then aggregated into a single inventory item using the distribution of harvest

operations and treatment types (see Table 3.2) and standing wood was used as

the input from nature. This study continues the assumption set forth by [59] that

harvesters will work an eight hour day with a steady rate of production and fuel use

throughout the day. Finally, impacts and credits associated with replanting are not

accounted for since the majority of harvesting is focused on stands grown through

natural processes [59].

4 See Appendix B
5 ibid.
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Table 3.2
Allocation of woody biomass sources based upon the harvesting process

and expected daily production

Productivity (t system h) AllocationTimber Woody Biomass

Cut-to-length
30% cut 7.48 2.71 28%
70% cut 9.04 3.28 23%
Clearcut 11.96 4.34 25%

Feller-buncher
30% cut 7.81 2.84 8%
70% cut 10.13 3.68 9%
Clearcut 14.33 5.21 7%

3.3.2 Feedstock Transportation

Following chipping of woody biomass during timber operations, chip vans are used

to transport them to the receiving facility. Transportation of green wood chips was

allocated on the basis of the biomass distributions in the regional service areas.

The inputs are outlined in Table 3.1 based upon the chip vans profile developed for

Michigan by [59].

3.3.3 IH2 Production

IH2 production has two major steps. First, feedstocks are prepared, requiring

on-site transport of materials, drying, and size reduction prior to being fed into the

IH2 process (see Table 3.5). In accordance with previous studies (see [115, 116]),

combustion of biochar from the IH2 process along with energy from the regional grid

is used to reduce the moisture content of feedstocks to 20% prior to further size

reduction. Following preparation, the feedstocks are introduced to the IH2 process

which involves the materials and energy flows previously outlined in the literature

[115, 116]. Table 3.3 outlines these inputs with the assumption that waste streams

are assumed to be directed to municipal sanitary landfills or water treatment facilities.

52



Table 3.3
Inventory for feedstock preparation and IH2 fuel manufacturing

Item Total

Feedstock
Preparation

Inputs

Yard
equipment

Diesel,
low-sulphur

1376 L/d

Lubricants 121 L/d
Grease 163 kg/d

Feedstock
processing
and
drying

Electricity (size
reduction)

29840 kWh

Electricity
(drying)

25513 kWh

Green Woodchips, on site 1816 t
Output Processed Feedstock 908 t

Manufacturing

Inputs

Processed Feedstock 1000 t
Electricity 60 MWh
Cooling Water 3085 t
Boiler Feedwater 5630 t
Inerting Gas (N2) 120 kg

Outputs

Renewable Gasoline 169040 kg
Renewable Diesel 80420 kg
Ammonia/Ammonia Sulfate 2000 kg
Sour Water 538 t
Cooling Tower Blowdown 1329 t
Ash 3840 kg

3.3.4 Product Transport and Use

While it is possible that gasoline and diesel produced will be consumed close to the

Ontonagon facility, the majority is likely to be transported to a larger market. Green

Bay and Superior, Wisconsin were selected as candidate locations due to existing

blending terminals and proximity to rail and water based transport. Following

selection the relevant distances calculated and inventory proxies for regional rail

and Great Lakes Barges were selected (see Appendix 3.7). Following delivery at
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the terminal, delivery to the pump follows GREET [139] model assumptions. Once

received by one of the markets it is assumed that usage patterns will be consistent

with patterns typically found in the United States [140].

3.3.5 Life Cycle Impact Assessment

Previous work within the WUP region has identified a robust set of sustainability

criteria and indicators of interest to local residents [141, 142]. These criteria and

indicators compare favorably with criteria that are generally selected for bioenergy

systems [143] and form the basis of the life cycle impact methods selected. The In-

tergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report Global

Warming Potential (GWP) for both 20- and 100-year time spans were selected in

recognition of local concerns about GHG emissions and to allow a baseline compari-

son to other fuels [144]. To allow a direct comparison to prior work by [116] the GHG

emissions were also captured, allowing the GHG reduction compared to petroleum

gasoline and diesel to be evaluated. The Tool for the Reduction and Assessment of

Chemical and Other Environmental Impacts (TRACI) was developed by the U.S.

Environmental Protection Agency (EPA) and allows for broader pollution categories

such as ozone depletion, global warming, human health criteria, smog formation, acid-

ification, and eutrophication [145]. This study uses the updated 2.1 version which

incorporates additional impact assessments and aligns with local concerns regarding

air and water quality [146]. Finally, the cumulative energy demand (CED) necessary

to produce the gasoline and diesel was calculated so the total energy return on invest-

ment (EROI) could be compared to other fuels as well as addressing a local economic

concern.
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Table 3.4
Results of the TRACI assessment per MJ of IH2 process gasoline and diesel

Diesel Gasoline
Impact category Unit Mean SD Mean SD
Ozone depletion g CFC-11 eq 1.40E-06 4.35E-08 1.36E-06 4.14E-08
Global warming g CO2 eq 1.05E+01 2.96E-01 1.02E+01 2.52E-01
Smog g O3 eq 8.02E-01 8.10E-02 7.80E-01 7.73E-02
Acidification g SO2 eq 8.11E-02 2.72E-03 7.89E-02 2.52E-03
Eutrophication g N eq 2.64E-02 3.93E-04 2.56E-02 3.51E-04
Carcinogenics CTUh 2.23E-09 2.21E-11 2.16E-09 3.02E-11
Non carcinogenics CTUh 3.50E-09 3.16E-11 3.39E-09 4.08E-11
Respiratory effects g PM2.5 eq 3.22E-03 1.34E-04 3.11E-03 1.06E-04

3.4 Results
The IPCC GWP of IH2 process gasoline and diesel was found to be similar when

evaluated along 20- and 100-year time frames with the delivery site and method

accounting for much of the variation. Gasoline showed a 20 year potential of 13.23 ±

0.27 g CO2 equiv/MJ and a 100 year potential of 10.44 ± 0.25 CO2 equiv/MJ. Diesel

showed a 20 year potential of 13.65 ± 0.31 g CO2 equiv/MJ and a 100 year potential

of 10.78 ± 0.3 g CO2 equiv/MJ. This pattern continued for the results of the TRACI

assessment (see Table 3.4) in which the environmental and human impacts of the

fuels are similar and largely attributable to the diesel fuels and energy mix used in

feedstock processing and manufacturing. Generally the impacts are low enough that

they are unlikely to be of concern; however, since logging residues are not currently

used in the region [59] the impact of smog, acidification, and eutrophication due to

their collection and transport may represent a long term concern for residents of the

region that would be directly attributable to the IH2 facility.

In accordance with the RFS, the consumption of fuels was assumed to be carbon

neutral due to carbon sequestration during regrowth of biomass when compared to

petroleum fuels [147]. As a result, the GHG emissions calculated using Greenhouse
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Figure 3.4: Comparison of life cycle GHG emissions between petroleum
fuels and IH2 fuels

Table 3.5
Life Cycle GHG Emissions comparison with petroleum fuels

IH2 Fuels1 Petroleum Fuels2

g CO2 equiv/MJ Diesel Gasoline Diesel Gasoline Diesel Gasoline
Feedstock 5.68 5.54 10.38 10.14 7.54 8.3
Fuel Production 4.69 4.57 4.69 4.57 9.05 9.27
Fuel Transport 0.71 0.62 0.71 0.62 0.85 1.03
Fuel Use 72.7 72.6
Total 11.08 10.73 15.78 15.33 90.14 91.2
1:1 Displacement
GHG Reduction 87.71% 88.23% 82.49% 83.19%

1:0.5 Displacement
GHG Reduction 75.42% 76.47% 64.99% 66.38%

1. Fuel transport mean based upon on regional blending terminals, see Table 3.7
2. Data source: NTEL DOE/NETL-2009/1346 [140]
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Gas Protocol 1.02 [126] was quite low (see Figure 3.4 and Table 3.5) and the results

were in line with the results of the IPCC GWP over 100-year timeframes. Since

standing wood is used as the input from nature, a basic estimate of the impact of land-

use change is incorporated along with CO2 uptake. Land-use change was estimated

to account for 3.41x10-5 ± 1.29x10-6 g CO2 equiv/MJ for diesel and 3.27x10-5 ±

1.14x10-6 g CO2 equiv/MJ for gasoline. The results also incorporate an estimated

CO2 uptake of -0.39 g/MJ for diesel and -0.38 g/MJ for gasoline. One of the biggest

sources of variability was due to transportation of the products to a blending facility.

In the case of diesel, 0.53 and 0.89 g CO2 equiv/MJ were produced for transport by

rail to Green Bay and Superior respectively, while 1.02 and 0.39 g CO2 equiv/MJ was

produced when transported by water. Gasoline resulted in slightly lower impacts with

0.52 and 0.87 g CO2 equiv/MJ produced when transported by rail to Green Bay and

Superior respectively and 0.78 and 0.31 g CO2 equiv/MJ when transported by water.

When compared to baseline scenarios for petroleum fuels [140] the GHG emissions

represent an approximately 88% GHG reduction. While these results assume a one-to-

one comparison per the RFS, this may not be a realistic comparison since the actual

displacement may only be 1:0.5 [148]. In the case of IH2 fuels, a 1:0.5 displacement

would result in a 75.42% and 76.47% reduction in GHG emissions for diesel and

gasoline, respectively, when applying the same assumptions as Table 3.5.

Two variables examined in the context of GHG emissions were the impact of soil

carbon loss due to harvesting and the regional energy grid mixture versus the national

average. While a full accounting of the impact that timber harvests would have upon

soil carbon loss is beyond the scope of this study, an estimate was done using the

biomass distributions from the U.S. Forest Service [149] for Northern Lake States

species (see Table S7, Electronic Supplementary Information 2).6 Assuming that an

8% loss of soil carbon due to harvesting [150], which is emitted to the atmosphere

as CO2, GHG emissions increased by 4.7 g CO2 equiv/MJ for diesel and 4.6 g CO2

6 See Appendix B
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equiv/MJ for gasoline. This would result in the GHG reduction being approximately

83% for the fuels. However, these figures likely represent a high estimate of the soil

carbon loss since only data from clear-cut impacts was used and re-sequestration of

soil carbon during forest regrowth is not considered. Likewise, when the national grid

mix for the United States is substituted for the regional grid mix, the GHG emissions

fall by 2.11 g CO2 equiv/MJ for diesel and 2.05 g CO2 equiv/MJ for gasoline. This

implies that an energy grid mixture closer to the national average would result in a

90% GHG reduction when compared to petroleum fuels.

As with previous indicators, the CED of the fuels are heavily influenced by trans-

portation fuels and the regional energy grid. To produce one kilogram of diesel 10.88

± 0.19 MJ was consumed and similarly gasoline required 10.8 ± 0.17 MJ. For both

fuels only 0.31 MJ of the energy required came from renewable sources. Likewise,

for both fuels approximately 35.7% of the CED is due to feedstock collection and

Figure 3.5: Distribution of CED involved with production of one kg of IH2

gasoline or diesel including component CED and percentage

58



transport, 28.5% is electricity used during feedstock processing, 28.0% is electricity

used during manufacturing (see Figure 3.5). The calculated EROI for the fuels was

4.19 ± 0.07 for diesel and 4.31 ± 0.07 for gasoline with the variation attributable to

delivery location and method.

3.5 Discussion
As a first-generation facility, it is expected that there are process inefficiencies that

result in a higher environmental impact than would be seen in an n-th generation

facility. The EROI of the fuels is just outside the low-end estimate for cellulosic

ethanol ranges of 4.4 to 6.6 [108] and quite competitive when compared to corn ethanol

whose EROI may not exceed one [151]. Given that approximately 56.5% of the CED

is due to electricity consumed during feedstock processing and manufacturing, process

improvements to n-th generation facilities could result in the EROI being competitive

with cellulosic ethanol. Additionally, a significant amount of the energy invested is

due to the collection of feedstocks. A best case scenario would be to have access

to feedstocks in the entire 165 km service area resulting in about 86,000 sq.km of

potentially harvestable land. However, only approximately 9,250 sq.km of harvestable

land was identified (Table S4, Electronic Supplementary Material 2).7 While this

would increase to 11,500 sq.km if woody wetlands are included, it only represents

about 13% of the theoretical maximum due to the presence of Lake Superior. Better

site selection allowing for more woody biomass to be harvested in the area around the

facility would reduce the amount of fuel needed to transport feedstocks resulting in a

better EROI as well as reducing the GWP and GHG emissions. This would also help

to address the impacts identified by the TRACI assessment since diesel consumed

during the transport of feedstocks is a contributing factor.

While biochar from the IH2 process can be used as an energy source for feedstock

drying, the process still has significant energy demands. As a result, the major source
7 See Appendix B
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of GHG emissions and GWP of the fuels comes from fossil fuels consumed during

manufacturing processes since coal and natural gas are significant components of a

regional energy mix that is supplemented by oil fired facilities as needed (Table S1,

Electronic Supplementary Material 2).8 Previous studies have assigned credits for

ammonia/ammonium sulfate on the assumption that it could be sold as a synthetic

nitrogen fertilizer which would offset some of the grid’s impact [115, 116]. However,

Fan et al. [116] only reported a -0.31 to -0.32 g CO2 equiv/MJ indicating that the

offset may not be that significant and process improvements reducing electricity use or

development of renewable energy sources in the region may result in greater GHG and

GWP reductions. Despite these concerns, fuels produced by the facility still exceed

the 50% reduction in GHG emissions target set by the RFS. When the estimated 88%

reduction for the site is considered along with the 86 to 95% reduction from previous

studies [115, 116], there is some evidence to suggest that the IH2 process using woody

biomass as a feedstock may have a significant GHG reduction inherent to the process.

While further research is needed to confirm this, such a reduction would imply other

factors of site selection (e.g., local infrastructure, markets, tax incentives, etc.) may

be more significant as long as sufficient woody biomass is present as a feedstock.

One potential limitation of this study is the assumption that 70% of the woody

biomass generated during logging operations would be recoverable. While this study

assumes that 36% of the woody biomass consumed would be from selective harvests,

use of slash during logging operations might result in little to none being available

as feedstock. However, that loss might be offset by non-merchantable saw logs being

chipped as a feedstock during shelterwood and clearcut harvesting. This represents

an area of future work since regional harvesting patterns as a whole may change in

response to the demand for woody biomass.

Another possible source of error in GHG and GWP reductions is the role that land-

use change would play due to timber harvesting along with the harvesting in and of

8 See Appendix B
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itself [152]. While the estimate conducted as part of this study shows that there may

be as much as a 30% difference due to the effects of soil carbon loss, quantifying

the effect of timber harvests on soil carbon is difficult. Meta-analyses have shown

anywhere from a negligible effect on soil carbon [153] to an average loss of 8% soil

carbon [150], which can be expected to recover over 50 to 70 years. The recovery

is consistent with the Covington Curve [154] which describes soil organic carbon

dynamics and finds that after approximately 65 years the total carbon may be higher

than at the time of harvest depending on local conditions. Further complicating the

issue is the uncertainty in soil recovery following timber harvests, the possibility of soil

carbon migrating into mineral soils, and careful harvesting negating soil impacts [155].

Dependency on local conditions is a consistent theme in the literature since the actual

impacts on the soil are likely site specific (see [156, 157]). As such, this study assumed

the standard forest ecosystem estimates by the U.S. Forest Service [149] which shows

no impact on soil organic carbon following clear-cut treatment or stand regrowth on

forest land in the Northern Lake States. Additionally, it should also be noted that

no land-use changes are expected as a result of this operation (i.e., harvested land

returns to forest after regrowth); supporting the assumption that soils will recover

from any short term losses. This assumption is also consistent with carbon neutrality

due to sequestration during regrowth of biomass [147]. However, the validity of this

assumption may represent an avenue for future research and possible critique of the

RFS.

While the RFS conducts a one-to-one comparison (i.e., replacement) of biofuels

to their petroleum counter parts, this assumption may be erroneous due to increases

in market consumption of fuels (i.e., rebounding) (see [148, 158]). In the event of re-

bounding, overall energy demand increases, reducing the impact that renewable fuels

would have. While this study is consistent with the RFS guidelines in evaluating the

life cycle GHG emissions, changes to the policy may be necessary to address these as-

sumptions. The effects of rebounding may also be quite significant since conventional
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biofuels (i.e., corn ethanol) may only result in a 50% displacement of the petroleum-

equivalent fuel [148]. As such, future studies should account for rebounding in order

to make a robust assessment of the life cycle impacts. However, since IH2 fuels are a

direct substitution of petroleum counterparts, ethanol fuels may not be an appropri-

ate proxy for rebounding effects and additional research as they are introduced into

the marketplace may be needed.

3.6 Conclusions
The primary goal of this study was to assess the environmental impacts of IH2 fuels

manufactured in Ontonagon, Michigan to see if they met RFS requirements, as well

as determining the EROI so it can be contextualized against other renewable fuels.

While this study shows that IH2 fuels show considerable promise in addressing RFS

requirements, considerable opportunities still exist for improvements. The manufac-

turing process is quite energy intensive and represent a possible area of improvement

in n-th generation facilities. Considerations for the sources of electricity supplying

facilities also need to be made since energy grid mixtures have a significant impact

upon GWP and GHG emissions during manufacturing. While this study shows that

delivery of the fuels to blending terminals does introduce some variability in the im-

pacts, the Ontonagon location compares favorably with the baseline values for the

transport of petroleum fuels. When siting facilities, planners need to be ensure that

regional feedstocks are maximized while at the same time minimizing the distance

feedstocks must travel. This also implies that future work is needed to ensure that

quantity and source of woody biomass feedstocks delivered meet the expectations

drawn from existing logging operations.
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Supplementary Material

3.A Regional Description
Summary information for the Western Upper Peninsula (WUP) was calculated using

ArcGIS 10.3.1 using data from the National Land Cover Database (NLCD) [103],

Michigan County Maps [159], and Michigan Commercial Forest Maps [160]. The area

and total potential biomass in the region was calculated as follows. First, the NLCD

was clipped to the counties that make up the region. The count of pixels for deciduous

forest, evergreen forest, mixed first, and woody wetlands was taken and the regional

biomass estimate per acre [98] was applied (see Table 3.6).

Table 3.6
Summary of Region and its Commercial Forests

Region Commercial Forests
Area (sq.km) Biomass

(dry t)
Area (sq.km) Biomass

(dry t)
Deciduous Forest 7,018.84 66,871,404.95 2,819.34 26,860,998.25
Evergreen Forest 1,467.83 13,984,607.43 269.14 2,564,213.41
Mixed Forest 2,134.44 20,335,654.14 626.97 5,973,375.19
Woody Wetlands 2,721.79 25,931,657.93 828.63 7,894,685.26
Total 13,342.90 127,123,324.45 4,544.08 43,293,272.11
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Commercial forests data for the WUP was determined by first clipping the

statewide commercial forests to just those in the WUP counties. A sum of the reg-

istered acreage was then taken to arrive at the estimate of 4,898 sq.km. The forest

area and biomass estimate was then calculated using the same process as was applied

to the region.

3.B Transportation Analysis
Following manufacturing, IH2 fuels need to be delivered to a blending terminal before

it can ultimately be delivered to end users. The November 2018 Terminal Control

Locations Directory [161] was used to identify possible sites. Green Bay and Su-

perior, Wisconsin were selected due to their proximity to Ontonagon, Michigan as

well as their rail and waterway access. Green Bay hosts a terminal operated by U.S.

Oil along with the Port of Green Bay. The terminal is equipped with facilities to

products via pipeline, rail, truck, and Great Lakes Barges [162]. Superior, WI hosts

Table 3.7
Distance that IH2 fuels travel to a blending terminal from Ontonagon,

Michigan

Operation Transport
Method

Distance
(km)

Inventory Items

To Green Bay
Rail 341.35 Transport, freight, rail, diesel,

with particle filter US* US-EI U

Water 929.22 Transport, barge tanker/US- US-
EI U

To Superior
Rail 636.2 Transport, freight, rail, diesel,

with particle filter US* US-EI U

Water 278.25 Transport, barge tanker/US- US-
EI U

To Pump Road 48.28
Transport, combination truck,
short haul, diesel powered, East
North Central/tkm/RNA
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the Superior Terminal which is operated by Enbridge Energy and is adjacent to Du-

luth, Minnesota which hosts the Port of Duluth-Superior. The Superior Terminal is

part of the Enbridge Northern Gateway Pipelines and the Husky Superior Refinery

is located nearby. While Superior is focused on pipeline transport and delivery, the

concentration of services in the area makes it a contender for deliveries in the event

of future upgrades.

To determine the transportation distance of finished products from Ontonagon to

targeted terminals, the Network Analysis tool from ArcGIS 10.3.1 was used. First,

US State Boundaries [163] where used as a base map and limited to the states of

Michigan, Minnesota, and Wisconsin. Transportation data from USA Railroads [164]

Figure 3.6: Shortest rail and shipping routes from Ontonagon to major
blending facilities
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and the Commercial Waterway data for the Great Lakes Basin [165], which is derived

from National Waterway Network data [166], was used after being clipped to the

relevant region. The shortest network was then calculated to each location following

both railroad and shipping lanes (Figure 3.6) and is summarized in Table 3.7.
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Chapter 4
Integration of Agent-Based Modeling and

Life Cycle Sustainability Assessment for

the Comprehensive Assessment of Biofuels

Robert Zupko1

1 The material in this chapter has been prepared for submission to Journal of Cleaner Production
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Abstract
Biofuels, such as those derived from woody biomass, are being developed as one part

of a renewable energy portfolio; however, it remains unclear if they can be sustainably

developed. Limitations in existing tools to project the impacts of biofuels projects not

only limits considering the sustainability of the projects, but determining the quantity

of woody biomass feedstocks that may be delivered to a biorefinery or bioenergy facil-

ity that is dependent upon the marketplace for supply. This manuscript argues that

the integration of agent-based modeling (ABM) and life cycle sustainability assess-

ment (LCSA) to form agent-based LCSA addresses these concerns. To demonstrate

the applicability of the method, a case study of a proposed biorefinery in Ontonagon,

Michigan, USA is conducted. The case study uses an ABM to model the expected

harvest decision making of forest owners and the decision making of loggers to deter-

mine if they were willing to supply woody biomass to the biorefinery under a number

of different price points. The results from the ABM were used to inform inventory

data for projections of environmental impacts, and also projected sustainable impacts

for economic and social concerns. The results of the case study show that while On-

tonagon is a promising site for a biorefinery, the quantity of woody biomass delivered

is a concern along with potential impacts to wetlands in the region. Ultimately, the

case study demonstrates the applicability of the method and its application in future

research.

Highlights
• Argument for combining agent-based modeling and life cycle sustainability as-

sessment.

• Presentation of an approach to agent-based life cycle sustainability assessment.

• Case study of woody biomass based biofuels using integrated approach pre-

sented.
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• Case study supports previous LCA findings, projects economic impacts for re-

gion.

• Supply of feedstocks may not meet requirements for facility operations.

Keywords: Agent-Based Modeling - Life Cycle Assessment - Life Cycle Sustainabil-

ity Assessment - Biofuels - Forests

4.1 Introduction

Anthropogenic climate change is an “unprecedented slow-motion global emer-

gency” [167] that requires new thinking, approaches, and policies to avoid

adverse outcomes in the future. One climate mitigation strategy that continues to

develop is a transition from nonrenewable fossil fuels to renewable energy sources,

such as woody biomass. Projections show that woody biomass, and biofuels manu-

factured using woody biomass, may meet 14% to 18% of the world’s energy needs by

2050 [2]. However, it remains unclear if a sufficient supply of woody biomass feed-

stocks for biofuel can be acquired [3] without excessive negative impacts (e.g., loss

of ecosystem services, habitat loss, reduced carbon sequestration, etc.) [4]. These

concerns are further compounded by limitations of existing sustainability assessment

tools that make it difficult to project the impacts of biofuel projects before they are

implemented.

The purpose of this manuscript is to demonstrate how the integration of agent-

based modeling (ABM) and life cycle sustainability assessment (LCSA) allows sus-

tainably projections to be made for biorefineries in development. Incorporation of

ABM and LCSA into a single method, agent-based LCSA is necessary, since it allows

for limitations in both ABM and LCSA to be overcome. Fundamentally LCSA is lim-

ited by its inability to properly project the interactions between humans and nature

as part of a complex system. This results in data that is not available when eval-

uating regional potential for the development of biofuels, or though the application
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of aggregate (i.e., national scale inventory data) that that neglects localized impacts.

While ABM allows the generation of appropriate data by projecting the interactions

between humans and nature, it is limited through the lack of a clear approach to

sustainability assessment. Thus, the development of agent-based LCSA allows these

limitations to be overcome, resulting in a valuable method for evaluating regional

potential for woody biomass based biofuels.

This paper is structured primarily in two parts. Part one begins with a justification

for the development of agent-based LCSA in Section 4.2, drawing upon the relevant

literature. This is followed by a description of the generic methodological approach

to agent-based LCSA, in Section 4.3. Part two of this paper concerns a case study

application of agent-based LCSA examining a proposed biorefinery in Ontonagon,

Michigan, in Section 4.4. The results of this case study are discussed in Section 4.5,

along with some broader implications, followed by concluding remarks.

4.2 Agent-Based LCSA

4.2.1 Justification

The objective of sustainability assessment is to evaluate a system to determine if it

can continue to operate in its current capacity or if changes to the system are needed

[168]. One significant complication in conducting sustainablity assessments is the

complexity of the systems being assessed with many biological, ecological systems,

and actors operating at different scales [169]. Thus, landscapes are complex mosaics

of inter-connected ecosystem services that impact human well-being and vice-versa

in multiple ways [170]. The possibility of a “catastrophic shift” in the system due to

unsustainable practices or self-reinforcing loops could be exacerbated by the demands

upon the ecosystem for bioenergy feedstocks [171, 172]. Similarly, [173] discusses

complex systems from the standpoint of “runaway sociocultural niche construction,”

in which societies and ecosystems form reinforcing feedback loops that directly impact
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each other. They argue that agent-based virtual laboratories are needed to apply

generative social science techniques (see [20]) to study these feedback loops. Taken

together, these concerns may be seen as fundamental issues in assessing the resilience

of the system. Resilience, in this context, is defined as “. . . the degree to which the

system can adjust to disturbances without shifting to a new regime” [29, p. 278] (which

is a product of the nonlinearity and feedback loops intrinsic to complex systems).

Ultimately a tool intended for use by decision makers must evaluate biofuels as part

of a complex system, including as much of the product life cycle as possible to ensure

that an accurate determination of long and short-term consequences for sustainability

can be made.

One means of assessing the impact of biofuels is LCSA, which builds upon exist-

ing environmentally-focused life cycle assessments (LCAs) by incorporating life cycle

costing (LCC) and social LCA (s-LCA) [30]. In applying LCSA, environmental indi-

cators (e.g., GHG emissions) are evaluated alongside economic (e.g., energy return on

investment, or EROI) and social indicators (e.g., protection of heritage sites). These

indicators are evaluated for the entire lifecycle, such as cradle-to-gate or cradle-to-

grave. As a result, LCSA allows for sustainability assessments to evaluate the “triple

bottom line” of environmental, economic, and social concerns [174]. While the triple

bottom line may not be truly inclusive of all sustainability concerns related to biofuels

[175], it is sufficient to ensure that practitioners are assessing multiple aspects of the

impacts of biofuel development and not just a single concern from a global perspective

with a social component. As such, LCSA encourages a more participatory approach

to the development of sustainability indicators used (see [141, 142, 176]). This partic-

ipatory approach also has the potential to mitigate environmental and social justice

concerns.

Complicating the application of LCSA to the assessment of biofuels is their depen-

dence upon feedstocks (e.g., woody biomass) that is the result of diverse interactions
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between landowners and ecosystems. These diverse interactions necessitate incorpo-

ration of not only spatial information, but a representation of social diversity. First,

localized spatial information offers greater accuracy and regionality (not only for pre-

dictive assessments but also for existing product cycles) [33]. Second, actors within a

landscape have heterogeneous behavior that alter not only material flows or demands

for goods, but also generats “hot spots” of disproportionate negative impacts based

upon the location of actors within the landscape (see [177–179]). Both of these factors

contribute to impacts, as well as the life cycle inventory (LCI) data to be used in the

LCSA (where the LCI is the inventory of flows to and from nature as a result of a

product’s life cycle). However, unless the LCI data is generated using a regionally

appropriate approach, the results of the LCSA may be misleading or incorrect.

One means of generating this LCI data is through the use of ABM to project

how humans and nature interact, and to capture these interactions as inventory data.

ABM is a computational technique in which software “agents” represent heteroge-

neous actors in a system. It allows complex systems (i.e., human and environment

interactions) to be modeled from the “bottom up” [15, 19]. Recalling the need for

landowners to supply feedstocks, the ABM allows diverse decision making to be in-

cluded (e.g., conservation goals, economic goals, etc.) as well responses to local

conditions (e.g., distance to a biorefinery, or the presence of wetlands) to ensure that

LCI data is appropriate to the region. This argument is shared by [40] who aruge

that as a result of the top-down and aggregate nature of LCSAs, spatial, temporal,

and emergent dynamics of a system may not be accounted for, a deficiency that can

be addressed by using an ABM to generate LCI data. Finally, while the application

of ABM and LCA has been limited, recent critical reviews have noted that their

combination allows for more robust LCI data when complex systems are considered

[36, 37].

One key limitation to ABM is that sustainability assessment and life cycle thinking

is not intrinsic to ABM. Thus, while models can incorporate sustainability indicators,
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ABM does not require it. This is a result of ABM being developed as a methodological

approach to study complex systems, with a particular emphasis on complex social

systems [15], and not in the context of sustainability assessment. One means of

addressing this limitation is through the grounding of LCA in formalities such as ISO

14040 [60], which draws upon life cycle thinking. Life cycle thinking is valuable aspect

of LCA since it mandates identification of the full scope (i.e., life cycle) of products

impacts, which has secondary effects such as helping to mitigate “burden shifting”

[180]. Likewise, the framework to LCA provided by ISO 14040 is flexible enough

to incorporate ABM. However, LCA in and of itself is narrow (i.e., environmental

focus) compared to the broader view of LCSA. As a result, LCSA is preferred in

the development of agent-based LCSA since the practitioner is encouraged to take a

holistic view of the system being modeled (i.e., incorporation of an agent’s actions,

the life cycle of the product being evaluated, and interplay inherent between the two).

This holistic view is particularly compelling when evaluating the impacts of biofuels

projects which can have societal and ecosystems impacts [181, 182].

4.2.2 Prior Approaches

One of the first attempts at developing an agent-based LCSA was by [38] who studied

evolving energy infrastructure systems and the role taxes play in energy markets. In

their proof-of-concept, agents adjusted decision making based upon a carbon dioxide

tax that was, in turn, calculated based upon a simplified LCA of energy sources. The

authors found that ABM and LCA could be effectively combined to give insights into

how a dynamic system could evolve over time. However, one limitation is that this

model failed to integrate spatial information. In a similar study, [42] incorporated

ABM and LCA to study mobility policies and electric vehicles. The authors noted

that the micro-scale simulation of an ABM helped to avoid bias introduced due to

aggregate macroscale LCI data. In the context of biofuels, [41] developed an ABM in

which agents representing farmers fed into an LCA to study the adoption of switch-

grass as a biofuel feedstock. The authors demonstrated that the ABM could be a
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proxy source for social and economic indicators (i.e., crop adoption and profitability)

while also projecting environmental impacts using LCA using ABM data.

4.3 Generic Methodological Approach
ISO 14040 [60] offers a means of operationalizing agent-based LCSA as a methodology

and calls for connected phases of goal and scope definition, inventory analysis, and

impact assessment. (all of which are subject to interpretation intended to improve

quality of the LCA) (see Figure 4.1). To illustrate this for agent-based LCSA, the

modeler must consider how the ABM will be coupled to the LCSA. As noted by

[36], an ABM can feed data into an LCA, the LCA can feed information into the

ABM, or data can flow in both directions. However, the modeler must also consider

the landscape they are studying. For example, in the case of a biorefinery, multiple

actors may ultimately drive the quantity of feedstocks delivered to a facility. While

commercial forest owners may be primarily concerned with the economics of a harvest,

non-industrial private forest (NIPF) owners may consider economics as well as social

perceptions of a harvest (see Figure 4.2). These social perceptions are driven in part

Figure 4.1: Summary of agent-based life cycle assessment phases
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by observing previous harvests that took place and result in NIPF owners being less

likely to harvest. Thus, while feedstocks produced may be used as part of the LCI,

the impacts of the actors upon the landscape also result in feedback loops which

may influence the outcome of the study over time. Identifying these feedback loops

and landscape impacts helps to refine the scope of the LCSA. Ultimately this means

that actors and landscapes that are appropriate for inclusion in the ABM must be

incorporated into the LCSA. Furthermore, as development of agent decision making

is critical to ABM development [183]; metrics relevant to agent decision making (e.g.,

profitability of harvests) also play a role in indicator selection. Where possible, the

ABM may actually be the source for these results when the impact assessment is

conducted, since agents may be queried for model development and execution.

Thus, the development of the agent-based LCSA may follow the same phases as

the prototypical LCA. First, the product life cycle defines the broad system boundary

Figure 4.2: Summary of interactions between forest owners, loggers, and
the landscape
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being assessed. An evaluation of the actors and landscapes in the system boundary

helps to delimit the boundaries of the ABM to be developed vice versa in the produce

life cycle. This allows the practitioner to assess the relevance of possible impacts of

the product (e.g., greenhouse gas, or GHG, emissions) and assess modeling goals to to

ensure proper alignment with the assessment. Next, inventory analysis determines the

flows from nature to the product and vice versa. The planned ABM may be evaluated

to determine if the model contains appropriate sources or sinks for flows, or if they

may be abstract entities (e.g., biomass harvested from a simulated forest or pollution

emitted to waterway). Furthermore, recalling the coupling of the ABM to the LCSA,

considerations for agent decision making may be developed throughout the process.

For example, the role that agents have in generating inputs (e.g., timber harvests), or

responding to landscape impacts, highlights the need for the LCI and agent decision

making to be considered in tandem. Likewise, impact assessment may proceed from

the material and energy flows associated with the LCA, but also from agent decision

making and variables being considered by the agents (e.g., a count of agents declining

to supply feedstocks as an economic indicator). Aggregation of these variables from

the ABM may then ultimately result in an indicator for critical evaluation. Finally,

per ISO 14040, an interpretive process throughout the LCA would also apply to the

ABM during model development and execution.

4.4 Case Study

4.4.1 Introduction

The purpose of this case study is to evaluate the potential impacts that an inte-

grated hydropyrolysis and hydroconversion (IH2) biorefinery would have on Onton-

agon, Michigan and the surrounding region. Ontonagon was selected due to existing

commercial interest in constructing a biorefinery in the village [120, 122]. In the

process of conducting this case study, the application of agent-based LCSA is also
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demonstrated. One complication in presenting this case study is that while descrip-

tions of both ABM and LCA have been formalized [184, 185], the combination of the

two has not. Since the Overview, Design concepts, and Details (ODD) protocol [185]

doesn’t appropriately capture the full scope of an LCSA, the case study is presented

using the LCA structure [184] with relevant aspects of the ABM highlighted. The

complete description of the ABM is included in Appendix 4.A.

4.4.2 Goal and Scope

The goal of this agent-based LCSA is to conduct a cradle-to-grave assessment a

proposed IH2 biorefinery located in Ontonagon, Michigan. This study builds upon

the LCA conducted by [186] and incorporates the same system boundary of feedstock

collection and transportation; manufacturing, transport, and use of IH2 fuels; and

disposal of any waste products (see Figure 4.3). As with the predecessor study,

ammonia/ammonia sulfate is accounted for as a co-product, but credits were not

assigned for it. Life cycle assumptions outlined in the Renewable Fuel Standard

(RFS) regarding biomass regrowth and sequestration of carbon released during the

use of IH2 fuels are also incorporated [147]. Unlike the precursor study [186], issues

related to market rebounding effects or soil carbon were excluded from the study

scope.

The functional unit is one megajoule (MJ) of gasoline or diesel produced through

the IH2 process. An ABM is used to produce data for woody biomass production

and transportation data. The environment of the ABM is the forested landscape

which consists of 30 m2 forest stands contained within parcel boundaries registered

as commercial forests with the State of Michigan under Michigan law [160, 187]. Two

primary types of agents are present in the ABM: forest owners who are responsible for

deciding to harvest the forest stands, and loggers who decide if woody biomass should

be collected, transported, and sold to the biorefinery. One run of the ABM consists of

fifty years with each time step representing one year. To minimize model variance, the
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Figure 4.3: Boundary of the agent-based LCSA case study

mean results from fifty model runs were used for the LCI. Data from the ABM as well

as inventory items were entered into SimaPro 8.5 [123], and the DATASMART Life

Cycle Inventory Package [124] and U.S. Life-Cycle Inventory [125] databases provided

additional inventory data. In addition to indicators from the ABM, the Cumulative

Energy Demand 1.10 and Greenhouse Gas Protocol 1.02 packages in SimaPro were

used to conduct the assessment [126].

4.4.3 IH2 Description

The IH2 process utilizes organic feedstocks, such as woody biomass, to produce hy-

drocarbon fuels (i.e., gasoline and diesel) [114]. These fuels are a direct substitute

for petroleum counterparts and are compatible with existing blending and distribu-

tion systems. The IH2 process is briefly summarized as follows: following feedstock

aggregation, drying, and resizing, they are introduced to a hydropyrolysis reactor.

The reactor produces hydropyrolysis vapors that are directed to a hydroconversion

reactor where hydrodeoxygenation and hydrogenation take place in the presence of a

catalyst. Hydropyrolysis by-products are either discharged (e.g., H2O and COx) or

redirected for other uses by the biorefinery (e.g., biochar and C1-C3 gases). Previ-

ous LCAs of the process found the processes results in approximately 86% to 95%
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fewer greenhouse gas (GHG) emissions compared to petroleum counter parts, with

a significant degree of variability accounted for by location conditions and facility

configurations [114–116, 186]. An LCA conducted for the Ontonagon facility sup-

ported these findings. However, it was unclear if sufficient feedstocks to support the

facility would be generated by harvesting activity within an acceptable distance [186].

This is a significant concern since the positive environmental value of using biomass

decreases the farther feedstocks must travel to a biorefinery to bioenergy facility.

4.4.4 Regional Description

Ontonagon is a rural community located in the Western Upper Peninsula (WUP)

region of Michigan which consists of Gogebic, Ontonagon, Houghton, Keweenaw,

Baraga, and Iron County. The region contains 13,343 km2 of forested land. Tourism

is a major part of the depressed economy [186, 188], but the forested landscape

also makes the region an attractive target for a biorefinery. However, it is unknown

if a facility can be sufficiently supplied with local feedstocks. The likely source for

feedstocks is commercial forests registered with the State of Michigan, which accounts

for about 34% of forests in the region. Owners of registered commercial forests agree

follow a formal forest management plan, which includes harvesting, in exchange for

a tax incentive [187]. Analysis of the registry indicates that twenty-four commercial

entities own approximately 4,031 km2 of the 4,898 km2 (about 82%) of registered

commercial forests in the region [160]. The remainder of registered commercial forests

are held by 816 NIPF owners that consist of family forests as well as other entities

(e.g., non-profit organizations, trusts, etc.). Public access to registered commercial

forests is a condition of the program, resulting in a number of trails crossing them

(see Figure 4.4). As a result, improperly managed timber harvests could negatively

affect public perceptions of the biorefinery, the industry, or adversely impact tourism

in the region.
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Figure 4.4: Study region with trails, roads, and registered commercial
forests
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4.4.5 Life Cycle Inventory

The inventory for this case study is based upon previous studies of IH2 process fuels

(see [114–116, 186]) as well as the results of the ABM. The ABM is used to generate

LCI data based upon woody biomass collected (see Section 4.4.5.1) and transported

to the biorefinery (see Section 4.4.5.2). A summary of key aspects of the model follows

in the context of the life cycle stages, while a complete description using the ODD

protocol [185], can be found in Appendix 4.A.

4.4.5.1 Feedstock Production

The Ontonagon facility plans to use chipped woody biomass from timber harvests as

the primary feedstock for the IH2 process. Woody biomass is produced during logging

operations and consists of the non-merchantable potion of the stem and branches. To

be used as a biomass feedstock, it must be collected and chipped to reduce its bulk

before transport. Since woody biomass may be used during harvest operations to

prevent soil compaction, or used as a soil abatement, the ABM assumes that 30%

of it is retained on site, consistent with the previous study [186]. Furthermore, the

quantity of woody biomass produced during a harvest is dependent upon the species

and maturity of the tree. When a forest owner (i.e., agent) elects to harvest, the

merchantable timber and woody biomass is calculated on a per stand basis by the

ABM using equations developed by [105] (see Appendix 4.A). Since woody biomass

is a co-product of logging operations for saw logs, impacts associated with harvesting

are allocated to both the merchantable biomass (i.e., the stem of the tree) as well as

the woody biomass. The allocation is calculated based upon the percentage of the

above-ground biomass for the tree of the merchantable biomass and woody biomass.

Since the biorefinery only generates a new market for woody biomass, no changes

to harvest decision making is anticipated. This is a reasonable assumption since the

market value of merchantable biomass as pulpwood or saw logs greatly exceeds its
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value as woody mass, thus it is unlikely forest owners will harvest exclusively for

woody biomass.

The decision to harvest for timber is made by commercial forest agents who man-

age parcels that are owned by commercial entities, while NIFP agents are assigned all

other parcels. These agents may manage multiple parcels of land, which is consistent

with ownership patterns. Harvest decision making was based literature data for for-

est owners in the WUP and similar regions (see [71, 91, 189, 190]). As registrants in

Michigan’s Commercial Forest Program, it is assumed that agents are economically

motivated and seek to produce a profit from their forested land. Since the commercial

forest program requires harvesting, social barriers to harvesting such as psychological

distance [191], or family legacies and community networks [91] are not considered by

the ABM.

Harvest decision making both commercial forest and NIPF agents seek to harvest

a minimum of softwood saw logs (i.e., minimum DBH of 22.86 cm). Commercial

forest agents also target a consistent area (i.e., patch size) for each year of the model

as well. The patch is determined by the total area of forests they control, less a

reserve percentage, divided by the number of years they are planning for. When the

agents are activated they proceed to harvest the largest contiguous area of forest,

with the highest value harvest. During this process wetlands are discounted (i.e.,

assigned value of zero) due to the complications associated with harvesting them.

In the event that no saw timber is available to be harvested, they will decline to

harvest that year. Woody biomass is then made available for the logger to sell. If the

target patch is greater than a single parcel, they will continue this process until the

target patch size is met, or no more saw timber remains. In contrast, NIPF agents

randomly select one of their parcels to be bid on. The bid is evaluated to determine

if it exceeds their target profit, which is set at model initialization from the range of

N ($1292.38, $304.11) per hectare [71]. If the bid is acceptable, the agent will request

the harvest takes place and offers woody biomass to the logger at price set at model

84



initiation from the range N ($73.80, $55.28) per hectare [71, 189]. More complete

details can be found in Appendix 4.A.

Agents representing loggers are responsible for conducting requested timber har-

vests, as well as determining if woody biomass will be collected and sold. The delivered

price for chipped woody biomass is fixed at the start of the model. Five price points

were examined: $5.00, $6.25, $7.50, $8.75, and $10.00 per chipped green ton. The

minimum price point was selected based the rate currently expected by managers of

commercial forestland [189]. Loggers are presumed to be willing to collect and sell the

woody biomass if the payment exceeds their costs by a given margin. Five scenarios

were considered for the margin: fixed rates of 5%, 10%, 15%, and 20%, along with

variable rates drawn from U(5%, 20%) each activation. These margins were selected

due to being within the range of profits by loggers [192] while also allowing for con-

cerns such as fluctuating fuel prices to be absorbed by the model. The costs to the

logger for the woody biomass are the sum of the labor and fuel associated with the

collection, chipping, and transportation of woody biomass from the job site to the

biorefinery, as well as any payment to the landowner.

Table 4.1
Aggregated inventory item for annual woody biomass production

Item Quantity

Nature Standing wood From ABM, green tons

Logging

Diesel 36.63 L/hr * [hours logging]
Gasoline 0.11 L/hr * [hours logging]
Grease 0.1 kg/hr * [hours logging]
Lubricants 2.69 L/hr * [hours logging]

Chipping Diesel 25.5 L/hr * [hours chipping]
Steel blades 0.06175 kg/hr * [hours chipping]

Outputs Chipped woody biomass From ABM, green tons
Saw logs, cut-to-length From ABM, green tons
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At the end of each ABM time step, the results of agent harvesting are aggregated

to generate the inventory data (see Table 4.1). Since the ABM does not distinguish

between different harvesting systems, the inventory is based upon proportional usage

using data from regional studies [58] (see Table S1, Electronic Supplementary Mate-

rial).2 The hourly consumption rates are then multiplied by the total system hours

recorded by the ABM for logging and chipping operations, ensuring that impacts are

appropriately attributed to collection of the woody biomass.

4.4.5.2 Feedstock Transport

Chipped woody biomass is loaded on chip vans that then deliver the material to

the IH2 facility. As with feedstock production, transportation is aggregated on an

annual basis for the inventory data. Inventory data for transportation are calculated

assuming a round trip basis (i.e., from worksite to biorefinery and back) with both

the total distance traveled and hours worked being tracked. The inventory is based

upon the chip van used in [186] with the consumption of diesel (1.78 km/L), grease

(1,257.14 km/kg), and lubricants (3,771.43 km/kg) being accounted for.

4.4.5.3 IH2 Production, Product Transportation, and Use

Following delivery of chipped woody biomass to the IH2 facility, the inventory follows

the same assumptions as [186]. Briefly this entails the following. First, the regional

energy grid is used which deviates from national averages by having a greater reliance

on fossil fuels. Second, manufactured IH2 fuels may be transported to the nearest

blending terminal in Superior or Green Bay, Wisconsin by either Great Lakes Barge

or railroad. Finally, following delivery to the blending terminal, product use will

follow the same usage pattern as the GREET model for the United States [139].

4.4.6 Life Cycle Impact Assessment

The assessment indicators selected for this case study were drawn from the predeces-

sor LCA [186] as well as regional concerns identified by the local community [141, 142].
2 see Appendix B
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Six assessment indicators were selected (see Table 4.2) and were verified against the

results of the expert survey by [143] to ensure that global concerns where not over-

looked. The assessment indicators incorporate results drawn directly from the ABM

(e.g., wetland disturbance, aesthetics, etc.), as well as supplementary analysis using

LCI data (e.g., GHG emissions).

The environmental impacts of the biorefinery are assessed through the GHG emis-

sions and wetland disturbance. GHG emissions were selected due to their use in RFS

assessments [147], and to allow the IH2 fuels to be compared to their petroleum coun-

terparts. As there are approximately 2,722 km2 of wetlands in the WUP region, and

829 km2 within the area designated as commercial forests, disturbances to them are

a concern due to ecosystem impacts. This concern is shared by local residents [141].

To monitor the impacts to wetlands, the total area of harvests impacting wetlands,

as indicated by NCLD data (see Appendix 4.B), is tracked by the ABM.

Table 4.2
Indicators selected for impact assessment

Principle Criteria Indicator Method

Environment

Air and GHGs GHG Emissions Greenhouse Gas
Protocol

Ecosystems and
wildlife habitat

Wetland
Disturbance

Regional analysis
and monitoring in
ABM

Economic
Economic viability EROI Extended EROI
Competition for
resources

Availability of
woody biomass

Results from ABM

Social

Cultural value Aesthetics, forest
cover

Regional analysis
and monitoring in
ABM

Contributions to
local economy

Employment Labor required to
produce woody
biomass
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Two economic indicators were selected: the energy return on energy invested

(EROI) was selected along with availability of woody biomass. The EROI is calculated

using the extended EROI approach by [133]. This approach evaluates the total energy

returned to society (Energyout), by the total energy required to produce that energy

(Energyin), or,

EROI = Energyout

Energyin

(4.1)

The cumulative energy demand to produce the IH2 fuel, as calculated by SimaPro, is

used for Energyin while conventional gasoline is assumed to produce 46.536 MJ/kg

when consumed and 45.575 MJ/kg for low-sulfur diesel [134]. While residents of

the region have a number of economic concerns [142], sufficient supply as woody

biomass was selected for this case study due to its criticality in facility operations.

The developers of the IH2 biorefinery, SynSel, have indicated that they intend to use

“. . . 1,900 tons of wood waste per day and [produce] 90,000 gallons of synthetic fuel

. . . ”3 [121]. This equates to an annual consumption of approximately 574,550 green

tons per 8,000 hours of operation, where 8,000 is a typical target up-time for planning

purposes. The quantity of woody biomass produced during logging and delivered to

the biorefinery is tracked by the ABM, the basis for assessing the availability of woody

biomass.

Assessment of social concerns is a challenge for this case study, since some key con-

cerns identified by WUP residents are either unlikely to be affected by the biorefinery

(e.g., access to recreation areas), or cannot be assessed a priori (e.g., work condi-

tions). Community concerns within the parameters of the study are employment and

aesthetics [141]. While employment may be considered an economic concern, it ef-

fectively acts as a hybrid indicator due to the significant role it plays in society and

sustainable development [193, 194]. Employment was therefore treated as a social

3 1,723.651 metric tons of green woody biomass to produce 340,687.06 liters of fuels
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indicator for this study and is assessed based upon the increased demand for labor

directly attributable to woody biomass collection, processing, and transport.

Local residents also indicate that they value forest aesthetics [141, 142], but qualifi-

cations of the subjective impacts of clear-cutting can be quite variable (see [195–197]).

However, the spatial coupling of the ABM does allow the identification of harvesting

that may take place within possible view of the public. Given the public tendency

to view the results of recent logging as having a “negative” aesthetic value, [195]

accounting for harvesting visual by the public is a reasonable means of assessing the

aesthetic impacts. As a result, this study designated a buffer zone along roads and

trails as “visually sensitive” (see Appendix 4.B) to account for the impacts of har-

vesting. The total area of the buffer zone is approximately 2,313 km2 for the WUP

region and 356 km2 is within registered commercial forests. The aggregate harvest

that takes place within this buffer is tracked by the ABM and reported as having a

likely negative impact upon forest aesthetics.

Table 4.3
Comparison of production of chipped woody biomass and potential

biorefinery operations under various woody biomass pricing scenarios

Price per Green Ton
$5.00 $6.25 $7.50 $8.75 $10.00

Logger, hr 5, 156.27±
807.35

6, 924.70±
905.05

9, 750.01±
592.20

11, 805.92±
651.64

12, 311.39±
661.40

Driver, hr 8, 015.55±
725.86

13, 058.21±
1, 218.28

23, 443.31±
1, 541.65

32, 016.47±
2, 099.59

34, 316.08±
2, 591.96

Biomass,
green tons

229, 917.90±
35, 999.54

308, 772.39±
40, 356.15

434, 752.87±
26, 406.34

526, 425.94±
29, 056.46

548, 964.73±
29, 491.90

Biomass, %
of potential

41.87%±
5.96%

56.33%±
4.84%

79.43%±
1.73%

95.66%±
1.47%

99.09%±
0.42%

Ops, hr 3, 201± 501 4, 299± 562 6, 053± 368 7, 330± 405 7, 644± 411
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4.4.7 Results

Following execution and analysis of the ABM for all price points (see Section 4.4.8),

the results of the $8.75 per green ton with variable logger margins scenario was used

for the assessment. This price point is reasonable considering it is the lowest rate at

which 80% operational hours per year is met. The life cycle GHG emissions for the

IH2 fuels was calculated at 10.76 ± 0.03 g CO2 equiv/MJ for diesel and 10.43 ± 0.02 g

CO2 equiv/MJ for gasoline. The results are tightly bound with diesel having a range

of 10.72 to 10.8 g CO2 equiv/MJ and gasoline has a range of 10.39 to 10.46 g CO2

equiv/MJ over the 50 year time frame of the ABM (Figure 4.5). When evaluated

under RFS guidelines, there is an 88.06% reduction in GHG emissions for diesel and

an 88.56% reduction for gasoline. These figures are quite similar to the previous

study using an aggregation approach which found 11.08 g CO2 equiv/MJ for diesel

and 10.73 g CO2 equiv/MJ for gasoline [186].

Figure 4.5: Fluctuations in EROI over the course of the model for diesel
and gasoline
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Production of 1 kg of diesel was found to have a cumulative energy demand (CED)

of 9.57 ± 0.2 MJ for an EROI of 4.76 ± 0.05. Similarly 1 kg of gasoline required 9.5 ±

0.18 MJ of energy resulting in an EROI of 4.9 ± 0.06. Similar to the GHG emissions,

the cumulative energy demands have a fairly tight range of 9.37 to 9.7 MJ for diesel

and 9.3 to 9.63 MJ per kg of diesel and gasoline produced, respectively (see Figure

4.6). The EROI represents a fairly significant increase of 13.6% for diesel and 13.69%

for gasoline over the previous study. As the manufacturing assumptions remain un-

changed, this is attributable to the improvements in calculating the woody biomass

collection and transportation due to the ABM accounting for variance between years

(as opposed to an allocation model).

Availability of woody biomass is a concern for the biorefinery as there is significant

variance in the quantity delivered under the various price points (see Table 4.3).

Over the 50 year period of the ABM an average of 118,556 system hours of logging

Figure 4.6: Fluctuations in GHG emissions of the course of the model for
diesel and gasoline
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operations resulted in 1,971,688.28 ± 93,846.77 green tons of removals yielding in

550,285 ± 28,278 harvestable green tons of woody biomass with 526,425 ± 29,056

green tons delivered (95.66% of total possible). This would result in sufficient supply

for 7,330± 405 hours of production by the biorefinery, or about 83.68% uptime. While

this is short of the 8,000 hours commonly used for planning, it may be acceptable given

the first-generation nature of the facility and the need to work with solid materials as

a feedstock. Furthermore, the fact that the ABM failed to meet the target of 139,318

system hours of logging within the bounds of the registered commercial forests allows

for the possibility of additional feedstocks from logging on other forested lands. Under

the $8.75 per green ton scenario, 11,805.92 additional hours of work for loggers would

be generated and 32,016.47 hours for drivers of chip vans. In total this would result

in $927,564.20 in additional wages being paid, assuming national averages for hourly

pay (see Appendix 4.A). While this represents a positive contribution to the local

economy, quantifying the results in terms of the number of jobs created is difficult

because the totals are low enough to potentially be absorbed by existing employed

persons (e.g., part-time employees moving to full-time employment).

Given a typical total annual harvest of 5,147.85 ± 563.67 hectare, the ABM

projects that 517.08 ± 134.69 hectare of wetlands (about 10% of the land harvested)

and 128.35 ± 17.61 hectare of visually sensitive forest (about 2.5% of the land har-

vested) would be impacted each year (see Figure 4.7). In aggregate over 50 years,

the ABM projected that 31.21% of wetlands within registered commercial forests

and 9.5% of wetlands in the WUP are impacted by logging operations. Additionally,

18.02% trails within registered commercial forests and 2.77% of trails in the WUP are

impacted. As these impacts are coupled to the underlying timber operations, they

are consistent throughout all of the scenarios evaluated (see Section 4.4.8). While

the aesthetic impacts to the landscape can be mitigated through the use of visual

buffers during the time of harvest, the wetland impacts are more concerning. These

wetland impacts occurs despite a model basis against harvesting them (e.g., no value
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Figure 4.7: Annual harvesting, wetlands, and visual impact in hectares at
$8.75 per green ton, other prices exhibit a similar pattern

for timber in wetlands) (see Section 4.A.7.3), implying that timber harvests inevitably

impacts wetlands in the region.

4.4.8 Sensitivity Analysis

Sensitivity analysis of the model began with adjustments to the economic parameters

(i.e., price per green ton and logger margins). This informed not only the conditions

for the assessment (see Section 4.4.7), but also how the model responds to changes in

prices or logger margins. As shown in Table 4.4, the EROI, CED, and GHG emissions

are fairly consistent across all of the price points. Some trends are apparent in the

results and a negative linear relationship exists for CED and GHG emissions, while

EROI has a positive one. These relationships are likely due to the allocation of

impacts used in the LCA, since the percentage is unchanged by lower delivery rates

of woody biomass. While the allocation could be adjusted so that only woody biomass
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consumed is used, this is inappropriate since the intent of the biorefinery is to use the

woody biomass that is a co-product of harvesting activities.

While it is expected that loggers will have variable margins, the model uses a

uniform distribution to produce sufficient stochasticity, while a normal distribution

is more likely (i.e., loggers are likely to be targeting a common profit margin for their

business). Since U(5%, 20%) results in a mean of 12.5% and a variance of 0.19%,

the variable margins used the model approximate a fixed margin of 12.5%. This

is demonstrated by the results in Table 4.5 where $7.50 per green ton was offered

for woody biomass. To evaluate the behavior of the model different margins, fixed

margins of 5%, 10%, 15% and 20% were evaluated when $7.50 per green ton was

offered. The results of this evaluation show that the model behaves in an intuitive

manner with higher margins leading to lower deliveries (and vice versa). When $7.50

per green ton is offered, the model projects a negative linear relationship that is well

described by a linear regression (R2 = 0.998). This is consistent with the positive

linear relationship in the model between prices and operations at $8.75 per green

ton, with variable margins (R2 = 0.993). This implies that the ABM may be used

to construct economic models that would be useful to developers of biorefineries or

bioenergy facilities, although care is required to ensure that the model’s assumptions

were in line with the region.

Table 4.4
Calculated EROI, CED, and GHG emissions for diesel and gasoline at

various price points

Diesel Gasoline
EROI CED GHG Emissions EROI CED GHG Emissions

$ 5.00 4.52 10.09 10.91 4.65 10.01 10.58
$ 6.25 4.49 10.16 10.93 4.62 10.08 10.59
$ 7.50 4.69 9.71 10.81 4.83 9.64 10.47
$ 8.75 4.77 9.56 10.76 4.90 9.49 10.43
$10.00 4.77 9.55 10.76 4.91 9.48 10.43
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Table 4.5
Comparison of production of chipped woody biomass and potential

biorefinery operations under various logger margins at $7.50 per green ton

Targeted Margin
5% 10% 15% 20% Variable

Logger, hr 11, 025.15±
561.15

10, 209.27±
542.93

9, 239.25±
577.39

8, 282.45±
643.31

9, 750.01±
592.20

Driver, hr 28, 593.80±
1, 769.90

25, 197.88±
1, 848.91

21, 293.71±
1, 675.69

17, 665.33±
1, 550.88

23, 443.31±
1, 541.65

Biomass,
green tons

491, 611.51±
25, 021.67

455, 231.34±
24, 209.34

411, 978.33±
25, 745.70

369, 314.33±
28, 685.39

434, 752.87±
26, 406.34

Biomass, %
of potential

89.81%±
1.77%

83.03%±
1.75%

74.98%±
2.10%

67.21%±
2.82%

79.43%±
1.73%

Ops, hr 6, 845± 348 6, 339± 337 5, 736± 358 5, 142± 399 6, 053± 368

Next, the sensitivity of the model to the site of the biorefinery was evaluated using

five alternative sites in the WUP region: Bruce Crossing, Copper Harbor, Greenland,

L’Anse, and Toivola (see Figure 4.8). Copper Harbor was selected since it is one of

the farthest points away from Ontonagon, while L’Anse has previously been identified

as an ideal location [198]. The remaining sites were selected due to their proximity

to major roads and forests in the region. Following calculation of the transportation

distances for the alternative sites (see Appendix 4.B), the model was run using variable

margins and $8.75 per green ton of feedstock delivered. Across all scenarios the timber

harvest was consistent, and Copper Harbor had the least woody biomass delivered

(see Table 4.6) while the results for Greenland are similar to Ontonagon. Interestingly,

while L’Anse is not as central to the study region as Ontonagon or Greenland, woody

biomass deliveries are only nominally lower. Furthermore, despite Bruce Crossing’s

proximity to Ottawa National Forest, biomass delivery rates were unexpectedly low.

This is likely attributed to Bruce Crossing lacking immediate proximity to registered

commercial forests.
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Figure 4.8: Alternative sites for a biorefinery used for sensitivity analysis

Finally, the sensitivity of the model to the area of the commercial forests was

evaluated by using state and federal lands as a proxy for additional industrial forests.

Parcels were included where owned by the State of Michigan, the Michigan Depart-

ment of National Resources, or the federal government (e.g., “U.S. Government”),

regardless of whether harvesting is permitted or not in practice. The parcels were

then aggregated based upon the owner (see Figure 4.9) and the model was then run

using variable margins and $8.75 per green ton of feedstock delivered. The model

projected a total of 134,283.76 ± 3,661.06 system hours of logging with 1,342,837.57

± 36,610.56 green tons of timber harvested per year. In contrast to the other sce-

narios, the annual harvest limit was met or exceeded for some years. Additionally,
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Table 4.6
Sensitivity of the model to alternative sites for a biorefinery, at $8.75 per

green ton with variable margins.

Possible Alternative Sites
Bruce

Crossing
Copper
Harbor

Greenland L’Anse Toivola

Logger, hr 10,430.70
± 409.82

10,086.02
± 437.12

11,813.45
± 507.18

11,538.85
± 559.35

10,739.54
± 401.36

Driver, hr 25,792.05
± 798.17

24,988.17
± 874.25

27,006.25
± 1,158.28

25,475.21
± 1,289.09

26,316.00
± 692.31

Timber,
green tons

1,185,492.13
± 71,761.99

1,184,308.59
± 71,180.01

1,183,899.17
± 74,444.85

1,185,499.24
± 77,493.27

1,185,803.92
± 70,368.81

Biomass,
green tons

465,104.93
± 18,273.87

449,735.66
± 19,491.38

526,761.74
± 22,614.94

514,517.48
± 24,941.42

478,875.89
± 17,896.81

Biomass, %
of potential

84.59% ±
1.52%

81.88% ±
1.88%

95.95% ±
0.95%

93.61% ±
1.51%

87.06% ±
1.39%

Ops, hr 6,476 ±
254

6,262 ±
271

7,335 ±
315

7,164 ±
347

6,668 ±
249

579,359.50 ± 26,382.11 green tons of woody biomass (96.93% ± 1.13% of total possi-

ble) were projected to be delivered to the biorefinery resulting in 8,067 ± 367 hours

of operation. This shows that the model is sensitive to the total area of the registered

commercial forests and supports the conclusion that supply is a concern if facility

managers are solely dependent upon harvest in commercial forests.

4.4.9 Validation

Model validation is a typical aspect of ABM development [56], but in the case of this

agent-based LCSA, the lack of similar operating IH2 biorefinaries prevents valida-

tion against a known standard. However, one possibility for validation is to use proxy

data from sites such as the cellulosic ethanol biorefinery that was planned for Kinross,

Michigan [199]. As part of the facility planning, an assessment of timber harvests in

the region supplying the facility was conducted and annual removals where found to

be approximately 3.6 million green tons [200]. While this figure is significantly higher
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Figure 4.9: Parcels used when evaluating the sensitivity of the model to
the total area of the commercial forests
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than the approximately 2.0 million green tons projected by the model, the assessment

includes both the Eastern Upper Peninsula and northern portions of the lower penin-

sula of Michigan. As such, the results for the Kinross study are questionable given

the Mackinac Bridge acting as a “choke point” for deliveries from the Upper Lower

Peninsula to Kinross, Michigan.

Another possibility for model verification is comparison against forest loss as re-

vealed by Landsat imagery, which informs the Global Forest Change (GFC) data set

[201]. To conduct the assessment, the GFC data was clipped to the WUP region

and the latitude of Ontonagon, Michigan (46.8711°N) was used to convert the GFC

pixels, in arc-seconds, to meters. The GFC data showed a measured losses for the

years 2001 to 2018 of 4,302.24 ± 1,310.35 hectares per year, with harvesting increas-

ing closer to the year 2018 (see Figure 4.10). While the mean of the GFC losses is

below the 5,147.85 ± 563.67 hectares per year projected by the model, it is within

Figure 4.10: Annual forest loss, in hectares, in the Western Upper Penin-
sula region, as determined using Global Forest Change data [201]
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the range of permissible values and doesn’t exceed the maximum single year loss of

6,943.14 hectares in the GFC data. This supports the overall validity of the model,

although the mean harvesting projected may be considered to be optimistic with a

percent error of approximately 20% against the GFC data. However, if the trend of

increased harvests from 2014 to 2018 continues or represents a new baseline average

of 5,508.40 ± 1,129.78, the model results would in fact be slightly low compared to

the GFC data with a percent error of about -6.5%.

4.5 Discussion

4.5.1 Case Study

The results of the case study offers indicate that an IH2 biorefinery may be successful

if sited in Ontonagon, Michigan. The GHG emissions are consistent with previous

studies [114–116, 186] and continue to support the conclusion that IH2 fuels will meet

RFS requirements. Additionally, an improvement in the EROI is projected due to

a better understanding of the feedstock sources allowed by the ABM. Economically

the major concern for the facility would be ensuring a constant and consistent supply

of feedstocks that meet the facility’s uptime targets. Since the model projects that

registered commercial forests are unlikely to supply sufficient feedstocks for 8,000

hours of annual operation, planners need to explore how the gap may be closed.

Additionally, since the model uses a time step of a full year, the actual supply may

be inconsistent throughout the year and significant on-site storage may be needed.

Finally, while the model projects an increase in work for loggers and truck drivers,

it may not be significant enough to generate many new, full-time, jobs within those

fields.

In the context of the landscape as a whole, the projected impacts to wetlands

within registered commercial forests are significant over the fifty year time span ex-

amined. While these may not be as a result of woody biomass harvests specifically,

100



impacts to them are attributed to the IH2 fuels as a result of the feedstocks used.

This attribution is consistent with life cycle thinking and is something that facility

operators would need to be mindful of if they wish to use feedstocks with minimal

environmental impacts. Furthermore, changes in policy that prevent logging in wet-

lands or avoidance of them by loggers would reduce the quality of feedstocks that are

supplied under this model. As with the projections for the quantity of feedstocks,

this supports the recommendation that facility operators develop additional sources

of feedstocks. While the impacts on aesthetics due to harvesting in visually sensitive

areas is fairly low in the context of total area, the impact that these harvests have

may be quite high if they are in heavily traveled areas. While not an aspect of this

study, travel information could be incorporated into future models to determine the

high travel areas. However, aesthetic impacts may also be mitigated completely if

visual buffers are mandated since harvesting could shift to other available forested

land.

Interpretation of the results of the agent-based LCSA must be done with a note of

caution. While extremely precise figures are being generated as a result of the model,

these are fundamentally projections that are the result of multiple iterations of the

model due to the underlying stochasticity. As such, the results need to be interpreted

with an awareness of the sensitivity of the model. However, this is typical with any

LCA [184].

Another limitation of this study is that rebound effects were not evaluated, a

significant concern when evaluating biofuels [148, 158, 202]. While a basic projection

of the rebound effects can be conducted (see [186]), a more appropriate application of

agent-based LCSA would be to incorporate a marketplace for the biofuels and allow

agents to respond to these changes. This could be done at the level of just the loggers

and biorefinery operations (i.e., increase or decrease price paid for woody biomass

in response to market forces). However, a more appropriate application would be to

include the consumers of the fuels, allowing rebounding effects to be studied. However,
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such a model is beyond the scope of this case study since it would expand the scope

of the agents involved.

4.5.2 Broader Implications

Recalling the objective of this manuscript to demonstrate how agent-based LCSA

allows sustainablity projections to be made for biorefineries in development, the re-

sults of the case study demonstrate the effectiveness of the technique. While some of

the conclusions from the case study may be intuitive (e.g., use of visual buffers will

have minimal impact upon the overall supply of woody biomass), others such as the

quantity of woody biomass projected to be supplied are quite significant to biorefin-

ery and bioenergy siting. Furthermore, replication of the GHG emissions from the

previous LCA in the region [186] acts as a form of cross-validation of the approach

demonstrating its ability to yield useful results.

McKone et al. [203] noted several “grand challenges” for the LCA of biofuels.

These grand challenges include our understanding of feedstock production, spatial

heterogeneity, accounting for changes over time, and the uncertainty and variability

associated with assessments of biofuels. The case study demonstrated that agent-

based LCSA is capable of addressing some of these grand challenges. First, the

model allows for a better understanding of the source and production of feedstocks, as

noted by the price and margin scenarios performed. Second, the ABM is generating

LCI data based upon projected harvesting in a virtual landscape, allowing spatial

heterogeneity to be incorporated into the results. Likewise, the ABM allows time

to be a factor in the assessment and trends over time to be assessed. Finally, the

underlying stochasticity of the processes involved are accounted for in the model,

allowing stakeholders and policy makers additional information when considering the

role that biofuels may play within their communities.
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4.6 Conclusion
Biofuels are commonly cited as one component of climate change mitigation strate-

gies, but determining if they can meet projected needs without adverse impacts is a

complicated endeavor. The development of biofuels takes place within in a complex

system in which the interactions of multiple parties (e.g., landowners, feedstock har-

vesters, facility operators, etc.) along with the landscape play a role in their successful

development. While techniques such as ABM and LCSA may be capable of evaluating

the sustainability of components of this complex system, they are each limited. Their

integration into agent-based LCSA overcomes these limitations. The case study of

the proposed IH2 biorefinery in Ontonagon, Michigan demonstrates the applicability

of the technique to project possible impacts. While the site is promising, there are

concerns related to the feedstock supply and impacts to wetlands in the region.
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Supplementary Material

4.A Agent-Based Model
This section provides a description of the agent-based model (ABM) used in

the case study described in Section 4.4. This description follows the ODD

(Overview, Design concepts, Details) protocol [185, 204] The model is built upon

the ForestSim ABM platform [205] which drives the overall architecture of the

model (see Figure 4.11). The source code for the model can be found at

https://github.com/rjzupkoii/cabals/tree/master/model under the MIT License.

4.A.1 Purpose

The primary purpose of this model is to generate life cycle inventory (LCI) data and

sustainability indicators for a life cycle sustainability assessment (LCSA) of an inte-

grated hydropyrolysis and hydroconversion (IH2) biorefinery in Ontonagon, Michigan.

This is accomplished by modeling the decision making that plays a role in the col-

lection, processing and transport of woody biomass to the biorefinery as well as the

forested environment. Since the model is intended to evaluate the sustainability im-

pacts of the refinery, a fifty year time span was selected since it slightly exceeds the

forty years typically used for planning large capital projects. During model execu-

tion, data related to the location and quantity of woody biomass is produced for the

LCI allowing for a more accurate understanding of the environmental impacts of the
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Figure 4.11: Summary UML diagram of the key classes in the ABM

IH2 fuels. In addition to LCI data, the model also captures information related to

the estimated labor involved with harvests, if selling woody biomass is profitable for

agents, and so forth, allowing economic and social impacts to be determined.

4.A.2 Entities, state variables, and scales

4.A.2.1 Agents

The model contains two types of agents: forest owners who manage one or more

forested parcels, and loggers who harvest parcels and determine if woody biomass
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is to be collected and sold. Forest owners represent either commercial forest owners

(i.e., commercial entities engaged in industrial forestry), or NIFP owners (i.e., smaller

commercial entities, non-profits, or family forests), both of whom may own multiple

forested parcels. These agents determine when trees are harvested, which in turn

determines the quantity of woody biomass that is available for collection and sale to

the biorefinery. Commercial forest agents have the state variable target harvest in

hectares which is used to determine the size of a harvest. The target harvest size

is determined by the number of years and percent forest reserve, which are given

at initialization (see Section 4.A.5). NIPF owners have several state variables given

at model initialization that influence harvest decision making. The target harvest in

hectares determines how large of a harvest they commit to. The minimum profit per

hectare determines if a bid will be rejected or not. Finally, the woody biomass bid

per green ton determines the price at which they are willing to sell woody biomass.

The second type of agent in the model is loggers who harvest the forest when

requested by forest owners, and then determine if the woody biomass produced during

the harvest is to be collected and sold to the biorefinery. Two types of loggers are

included in the model, a commercial logger that operates in forests managed by

commercial forests agents, and a NIPF logger that operates in NIPF forests. Both

types inherit from an abstract logger class that contains the primary logic for bidding

and harvesting (see Section 4.A.7.3). Both types of loggers share two state variables.

The first is a markup which is set at initialization and determines the markup applied

when determining if woody biomass sales are profitable (see Section 4.A.7.3). The

second is an annual limit set at initiation that determines how many hours loggers

may work each time step, which is tracked by the current hours.

4.A.2.2 Spatial Units

The model is mapped to the geographic coordinates of the WUP region and includes

the counties of Gogebic, Ontonagon, Houghton, Keweenaw, Baraga, and Iron County.

Within these coordinates are parcels, representing registered commercial forests with
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the State of Michigan. These parcels, in turn, contain forest stands where each stand

is a 30 m2 pixel.

4.A.2.3 Environment

The forested landscape is the primary environment of the model, this is further divided

into 30 m2 pixels that represent forest stands. The forest stands are managed by

ForestSim which provides such data as the species of trees, mean DBH and height of

trees, and so forth. This data is provided to ForestSim during model initialization

(see Section 4.A.5).

4.A.3 Process overview and scheduling

Each time step of the model represents one year and is managed by ForestSim which

also controls the growth of the forested environment. During model execution, each

time step proceeds in the following fashion:

1. Forest owners are activated and decide if they will harvest or not.

2. If the agent harvests then,

2.1. The appropriate logger is activated.

2.2. The harvest is performed.

2.3. The logger determines if they can collect and sell the woody biomass at a

profit.

2.4. If the woody biomass is sold, this is noted for later data collection

3. Once all forest owners have been activated, data collection takes place.

3.1. Harvesting done by the loggers is recorded, and totals reset.

3.2. The quantity of woody biomass sold is recorded, and totals reset.

4.A.4 Design concepts

4.A.4.1 Basic principles

The overall design of the model, in terms of the agents, their decision making, and

the environment, was informed both by the literature describing forest owners in
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the WUP (see [88, 91, 190]) and sustainability indicators selected for the LCSA (see

Section 4.4.6). The technical design of the model is informed by object-oriented

programming principles as well as the architecture of ForestSim. The decision making

for both commercial forests owners and NIPFs is similar, so an abstract class contains

the core logic while the concrete class is invoked by agents during model execution.

As a simplification, when agents did not need to be spatially embedded, a singleton

pattern was used to minimize model overhead.

The model only contains parcels that have been registered as commercial forests

with the State of Michigan [160]. As a result, two simplifications can be made with

regards to agent decision making. First, agents will attempt harvest some, if not

all, all of their forested land over the course of model execution. This is justified by

the requirement that registered commercial forests have a forest management plan

that includes harvesting [127]. Second, agents act as economic optimizers that are

seeking to either maximize their profits at time of harvest, or ensure a continuous

income from harvesting. This is justified by studies that indicate that NIPFs have

minimum acceptable bid ranges that influence their decision making (see [71, 189])

and is intuitive in the case of registered commercial forests managed as industrial

forests. However, the limited harvest rates in the region, with growth exceeding

harvesting [206], justify a conservative approach in the model to harvest decision

making since harvesting should not exceed these growth rates. Finally, materials

published by developers of the IH2 biorefinery indicate they believe that existing

harvesting activities will be sufficient to supply the facility (see [121]). As such, the

introduction of the facility is assumed to create a market for woody biomass, but

will not impact harvest decision making otherwise. This is justified by the low value

of woody biomass, so maintaining existing patterns of harvesting pulpwood and saw

logs will be unchanged.

Forests in the WUP are predominantly even-aged, medium-to-fully stocked, and

of sufficient DBH to be harvested as saw logs [206]. However, individual parcels
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and stands may have been previously harvested, have different conditions affecting

growth, and so forth, which influence the decision to harvest. As a result, the model

is initialized with a forest that closely resembles the current state of forests in the

region as determined by land cover data [103, 207] and U.S. Forest Service reports

[206]. Following initialization of the environment, it is assumed that stands will grow

in a matter consistent with the average rate of growth for the species. The use of

species averages for regrowth introduces some error into the model over time due to the

variance in real ground conditions affecting growth. However, this is not a significant

concern since the comparatively short period of assessment (i.e., fifty years) limits

most agents to one and at most two harvests per stand due to tree growth rates.

4.A.4.2 Emergence

The model is concerned with two forms of emergence. First, sufficient supply of

feedstocks for the biorefinery are an emergent property of logging, along with the

collection and transport of woody biomass. Second, the model assumes that sustain-

ability is an emergent property of interactions between forest owners, loggers, and

the landscape. This arises on the basis of the environmental, economic, and social

impacts on the region, as assessed using the criteria outlined in Section 4.4.6.

4.A.4.3 Objectives

Agents representing forest owners seek to maximize economic returns when harvesting

the parcels under their control. Commercial forest owners seek the highest value har-

vest across all their parcels. NIPF owners are somewhat näıve in that they randomly

select a parcel to be bid upon each time step. The näıvety of NIPF owners allows

for a degree of stochasticity that acts as a proxy for influences on harvest decision

making, such as peer influence [190]. Finally, the loggers of commercial and NIPF

forests seek to maximize profits when determining if woody biomass is to be sold.
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4.A.4.4 Sensing

Forest owners are able to access the parcels that they control and use the area of these

parcels to determine the size of harvests. When requesting a bid for a timber harvest,

the logger agents are able to access a “timber marketplace” (see Section 4.A.7.5) that

contains the current rates for timber products. Loggers are also aware of the total

logging (i.e., total system hours) that has taken place each time step, which allows

them to limit their operations to the configured maximum system hours per time

step.

4.A.4.5 Interaction

Three forms of interaction take place in the model. First, forest owners interact

with the parcels they control to collect descriptive information such as area, which

is used to determine harvest sizes. Second, forest owners may interact with loggers

who determine the bid for a harvest. Finally, loggers interact with parcels and forest

stands when a harvest is requested by a forest owners to conduct the timber harvest

and determine if woody biomass is to be collected.

4.A.4.6 Stochasticity

Initiation and growth of the forest, while based upon forestry models for species in

the region, contain a degree of variation upon initialization to account for natural

variation in tree growth. Prices within the marketplace are also initialized with some

variation based upon the standard deviations of data from the State of Michigan

[208]. This allows for some degree of variance in pricing which in turn influences if

NIPF owners will harvest, or not. Finally, NIPF owners who control multiple parcels

randomly select the parcel that receives a bid each time step.

4.A.4.7 Observation

In order to supply LCI data, as well as capturing sustainability indicators, a number

of observations are made of the model each time step which is shown in Table 4.7.
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These observations are used for one of two purposes: one, to generate LCI data for

the LCSA; and two, as an impact assessment indicator.

4.A.5 Initialization

The order of operations for model initialization is controlled by ForestSim, which

starts by first requesting the model initialize the forested landscape (see Listing 4.1).

This is done by loading the NLCD raster data, and the pixel data for deciduous and

mixed forests are mapped to Red Maple (acer rubrum), evergreen forest to Eastern

Table 4.7
Observations made during model execution

Source Observation Purpose

Harvesters

Woody Biomass Produced,
green tons

Total woody biomass produced dur-
ing harvesting

Woody Biomass Recovered,
green tons

Total woody biomass sold, LCI item

Woody Biomass Recovery
Labor, hours

Impact assessment indicator, total
additional labor to recover woody
biomass

Aboveground Biomass,
green tons

Indicates total aboveground biomass
impacted, used to determine LCI al-
locations

Merchantable Timber,
green tons

Indicates total timber production in
the region, used to determine LCI
allocations

Visual Impact, hectares Impact assessment indicator, total
area of visually sensitive areas har-
vested each year

Wetlands Impact, hectares Impact assessment indicator, total
area of wetlands harvested each year

Transporter

Distance Traveled, km Total distance traveled transporting
chipped woody biomass, LCI item

Woody Biomass Trans-
ported, green tons

Total chipped woody biomass trans-
ported, LCI item
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Listing 4.1: Pseudo-code for initialization of the forested environment
1. Load GIS data
2. Load stocking guides
3. FOR ndx = 0 to map width

3.1 FOR ndy = 0 to map height
3.1.1 SET code to nlcd[ndx, ndy]
3.1.2 IF code is not forest THEN CONTINUE
3.1.3 SET species to CALL nlcdMapping(code)
3.1.4 SET dbh to CALL calculateDbh(ndx, ndy)
3.1.5 SET treeCount to CALL calculateTrees(ndx, ndy)
3.1.6 Update forest with species, dbh, and treeCount

White Pine (pinus strobus), and woody wetlands to Yellow Birch (betula alleghanien-

sis). This mapping was selected based upon Michigan Forest Canopy data in the

study region [209], with the most common species selected for each pixel type. Fol-

lowing species mapping, the LANDFIRE height data is loaded and the height (HT )

is noted at each pixel. Chapman-Richards equations [210, 211] are then solved for

the DBH, using the stand height, where DBH is in cm, and HT is in meters.

DBH = −
ln
(

1− ht−1.37
a

1
c

)
b

(4.2)

Since this equation loses predictive value as HT approaches the maximum height

for the species, the DBH is capped at the predicted value for the maximum height of

the species. Once the DBH is calculated, the number of trees is extrapolated based

upon the stocking tables for the species. The values for fully stocked stands is used as

the baseline since the region is predominantly fully-stocked [206]. This figure is then

skewed by plus or minus twenty percent as a proxy for natural stand stochasticity.

Following the generation of the forested landscape, agents are embedded in the

landscape which required overriding the default method that ForestSim uses. The

model embedded agents in the landscape as seen in Listing 4.2. First, the parcel map

is loaded into memory and a hash table structure is used to track the owners. The
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Listing 4.2: Pseudo-code for assignment of agents to parcels
1. Load parcels
2. SET owners as Map<Id, Agent>
3. FOR parcel in parcels

3.1 IF parcel boundaries are invalid THEN CONTINUE
3.2 SET id to parcel.ownerId
3.3 IF NOT owners.contains(id) THEN

3.3.1 SET agent to CALL createAgent(parcel.type)
3.3.2 Add id and agent to owners

3.4 SET agent to owners.get(id)
3.5 CALL agent.addParcel(plat)

4. SET ids to owners.keys()
5. SET ids to shuffle(ids)
6. FOR id in ids

6.1 SET agent to owners.get(id)
6.2 CALL schedule(agent)

parcels in the parcel map are then iterated through and the owner id is extracted.4

The boundaries of the parcel are checked to ensure that they align with NLCD data,

and if they are not the parcel is discarded. If the owner id exists in the hash table,

then the parcel is assigned to the existing agent. Otherwise, a new agent is generated

based upon the plat type (see Section 4.B). Once all parcels have been assigned, agents

are shuffled using a Fisher-Yates shuffle [93] and scheduled as repeating entities. This

ensures that they will be called by ForestSim once per time step. Upon completion

of forest generating and agent assignments, the marketplace is initialized by loading

the relevant data and randomly selecting a normally distributed value based upon

the range indicated.

4.A.6 Input Data

Table 4.8 contains all of the input values that are used during model execution;

however, a couple additional notes are warranted. First, the markup variable used

in the ABM improves accuracy by ensuring that marginally profitable actions (ex.,

4 This occurs when the polygon for a parcel doesn’t completely surround any pixels of the raster
data. This affects 18 of the 8,390 parcels in the model and the parcels are under 8093.71 m2 (2 ac)
in area implying a minimum impact on the model overall.
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Table 4.8
Initialization values and data sources used as inputs to the model

Entity Attribute Initialization

Logger

Chipper Fuel 25.5 L/h [138]
Chipping Rate 44.59 green t per h [138]
Diesel Cost National average of $0.84/L ($3.178/gal) [212]
Limit Annual limit of 139,318 system h, regardless

of requesting agent type, may be exceeded
for harvests in progress (Table S3, Electronic
Supplementary Material; [206])

Logger Pay $19.15/h based upon national average [213]
Markup 5%, 10%, 15%, 20%, and variable U(5%, 20%)
Productivity 10 t system h (Table S1, Electronic Supple-

mentary Material)

Transporter

Capacity 24 green tons (12 dry tons) [186]
Driver Pay $21.91/h based upon national average [214]
Truck Fuel 1.78 km/L [59]
Truck Speed 88.5 km/h (55 mph speed limit)

Commercial
Forest Agent

Minimum DBH Softwood saw timber, 22.86 cm or larger
Planning Period 50 years
Timber Reserve 30% of the forest (70% is harvested)

NIPF Agent

Harvest Patch N (19, 15) hectare [58], or entire parcel,
whichever is smaller

Minimum DBH Softwood saw timber, 22.86 cm or larger
Timber Profit Minimum of N ($1292.38, $304.11) hectare

[215]
Timber Residues
Profit

Minimum of N ($73.80, $55.28) hectare [215]
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loggers will not provide woody biomass if they only expect $1.00 as a profit) are not

done. Markups are commonly used by contractors to avoid cost overburdens [216], and

these may also impact logging operations (e.g., equipment repairs, fuel fluctuations,

insurance, etc.). Second, annual harvest limits are based upon total timber harvests

in the WUP region; less harvests that took place in Ottawa National Forest (see

Table S3, Electronic Supplementary Material; [206, 217]). Data from 2014 sales was

used to ensure conformance with the aggregated data on Michigan forest removals.

The rates of production for chipping along with fuel use are based upon the data

in [138], using the assumption that 1 m3 has a dry weight of 380 kg (see Table S2,

Electronic Supplementary Material).5 Finally, marketplace data is based upon bids

published by the State of Michigan for timber harvests on state lands [208]. Model

inputs were generated by selecting sales data of relevant species that took place in the

WUP region, as well as Upper Peninsula and statewide averages. The values were

then weighted using the total volume and the median and standard deviation was

calculated based upon the weighted volume and variance (see Table S4, Electronic

Supplementary Material).6

4.A.7 Submodels

4.A.7.1 Forest Growth

At the end of each time step ForestSim grows each forested stand by calling a method

implemented in the model. For each stand an even-aged whole stand growth approach

is used [72], in which the DBH for the stand is increased by a normally distributed

value centered on typical annual growth for the species. Growth is capped when

the maximum DBH for the species is reached. In the event that the stand is over-

stocked, up to 10% of the trees may be thinned in accordance with natural processes.

When a harvest takes place, stands are replanted by ForestSim to ensure that model

assumption remain consistent.
5 see Appendix B
6 ibid.
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Table 4.9
Summary of species and equations used in model

Species Equation Source

Red Maple
(acer rebrum)

Above ground biomass [105]
Stem wood to biomass ratio [105]
DBH to height, Wykoff functional form [218]
Height to DBH [219]

White Pine
(pinus strobus)

Above ground biomass [105]
Stem wood to biomass ratio [105]
DBH to height, Curtis-Arney equation [218]
Height to DBH [219]

Yellow Birch
(betula alleghaniensis)

Above ground biomass [105]
Stem wood to biomass ratio [105]
DBH to height, Wykoff functional form [218]
Height to DBH [220]

Table 4.9 outlines the equations that are used in the model along with the relevant

sources. The equation for above ground biomass is used during logging to determine

how much woody biomass is produced. The remainder of the equations are used

for initialization of the forest or as part of forest growth. Descriptive data for the

species such as maximum heights or typical annual growth were based upon North

American sources [66, 221, 222]. As these equations are in bone dry tons, green tons

are approximated by doubling the weight which is consistent with biomass bids [189].

4.A.7.2 Harvest Decision Making

While both commercial forest agents and NIPF owners seek to harvest each time step,

their decision making is slightly different. In the case of commercial forest agents,

the first time they are called in the first time step, they determine how much forested

land they control. This sum is used to calculate the annual harvest target, less the

quantity of their land being held in reserve. This reserve value is used as a proxy

circumstances that would prevent all their forested land from being harvested (e.g.,
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for marginal lands that may be prohibitive to harvest). During model execution, the

agent will then harvest their parcels until the annual target is met, the logging limit

is met, or all eligible timber has been harvested, as determined by the commercial

forest logger (see Section 4.A.7.3).

In contrast to commercial forest agents, NIPFs randomly select one of their parcels

and request a bid based upon the patch size assigned at initialization. The bid is

then checked against their desired profit. A harvest is requested if the bid exceeds

the desired profit. In the case of both commercial forest agents and NIPF owners,

the bid they receive on a harvest is based upon the total price paid for pulpwood,

sawtimber, and cull wood in the harvested patch, with values derived from State of

Michigan timber sales. For sawtimber, the total board footage is based upon Scribner

Decimal C log rule with a 10.0 inch (25.4 cm) top diameter in bark due to State of

Michigan bids for the Upper Peninsula [208].

4.A.7.3 Harvest Operations

Both the commercial forest and NIPF logger are derived from the same abstract logger

class. The abstract logger class contains two key methods: a means of finding the

highest value contiguous patch when a bid is requested, and means of harvesting in the

patch. When a forest owner requests a bid for a patch, the best patch on the parcel is

first found using the greedy algorithm in Listing 4.3. Briefly the algorithm works as

follows. First a grid is overlaid on the parcel where each square is one hectare. While

the size of the squares may be larger, or smaller, one hectare is used since target

NIPF profits are quoted in hectares (see [71]). The average DBH of forest stands

in the square is calculated from for all values greater than the minimum DBH the

agent wishes to harvest. By only adding stands with a DBH greater than the agents

target DBH for harvesting, a penalty is introduced for the square when most stands

are smaller than the target size. Likewise, since points containing wetlands are not

included, and the agent avoids harvesting them as a proxy for legal complications in

their harvest. Since lower value products may be taken during a harvest, or wetlands
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Listing 4.3: Algorithm for finding the highest value patch to be bid on
1. IF patchSize >= parcelSize THEN RETURN parcel
2. Divide the parcel into an evenly sized grid
3. FOR stand in parcel

3.1 Increment point count for section in grid
3.2 IF stand.type = wetland THEN CONTINUE
3.3 IF stand.dbh >= minimumDBH THEN

3.3.1 Add stand.dbh to total for section in grid
4. FOR point in grid

4.1 Calculate mean DBH at point and store in grid
4.2 IF mean DBH at point is less than target THEN

4.2.1 SET point value to zero and CONTINUE
4.3 IF mean is largest seen THEN SET point to location

5. SET patch to List<Point>
6. Add location to patch
7. WHILE sum(patch) < target size

7.1 IF no more selections THEN RETURN patch
7.2 WITH largest adjacent square

7.2.1 Add square to patch
7.2.2 SET location to square

may be impacted, allowing for a section of the harvest to potentially contain low value

stands improves the overall realism of the harvest selection. Following examination

of the stands, the average DBH of the squares is calculated. During this step the

largest square noted which acts as the starting point for the patch. The largest

adjacent square is then selected until the total area is equal to the target patch size,

or no more selections are possible. The squares selected are then returned as the best

patch to be bid on.

When a harvest is requested, a check is first made to see if the annual logging

limit has been met or exceeded. If so, the harvest does not take place. Otherwise,

all of the stands in the patch are clear-cut and replanted with 300 seedlings per acre

by the underlying ForestSim harvest method. The results of this harvest are then

reported back to the logger, and these results are used to determine if woody biomass

will be collected and sold to the biorefinery. This is done by determining if profits

exceed costs and margins:
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profit = (biomass ∗ rate)− (collection+ transport) ∗ (1 +margin) (4.3)

Where collection is the cost of collecting and chipping the woody biomass, and trans-

port is the cost of transportation to the refinery and back to the job site. The markup

margin is a percentage; biomass is the total woody biomass in green tons; and rate

is the bid offered per green ton. Collection cost is determined as follows:

collection = biomass

rate
∗ fuel ∗ fuelCost (4.4)

Where rate is the rate of chipping in green tons per hour, fuel is the rate of fuel

consumption in liters per hour, and fuelCost is in liters. Finally, the transport cost

is determined:

totalDistance =
⌈
biomass

capacity

⌉
∗ distance ∗ 2 (4.5)

cost = totalDistiance

kmph
∗ hourlyPay + totalDistance

fuelConsumption
∗ fuelCost (4.6)

Where the chip van capacity is measured in green tons; distance is from the job site

to the biorefinery in kilometers; and the remaining variables are self-explanatory.

4.A.7.4 Transportation

To account for the transportation of woody biomass, a conceptually abstract trans-

porter manages the process. While actual transportation logistics is managed by

multiple chip vans, drivers, and so forth, for the purposes of sustainability assessment

the model only needs to produce aggregate results for each time step. To manage

this, a transporter singleton tracks the quantity of chipped woody biomass that is

transported to the biorefinery each time step using the state variables, distance and
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total weight. Upon the decision to sell woody biomass to the biorefinery, the logger

provides the location of the parcel being harvested along with the weight of the woody

biomass, which is used to update the running total. At the end of each time step, the

running total is reset.

4.A.7.5 Timber Marketplace

As a proxy for a real marketplace, a “timber marketplace” concept is incorporated in

the model as central location for the price offered for pulpwood and saw logs. The

key method in the timber marketplace calculates a bid for a forested stand. The bid

returned is based upon the species of tree in the stand, DBH, height of trees, and price

as determined at model initialization. In the event that the stand is wetlands, a value

of zero is returned to reinforce the model bias against harvesting woody wetlands.

4.B Data Processing and Preparation
This section provides an overview of the preparation and processing of geographic

information systems (GIS) data that was used in the case study. First, parcel data

from the State of Michigan depicting the registered commercial forests [160] was

prepared so agents could be spatially coupled to the natural landscape. The polygon

data was first clipped to the Western Upper Peninsula (WUP) region based upon

the county boundaries [159]. Next, the parcels were annotated as commercial forests

(CF), family forests (FF), and all others (NIPF) based upon inspection of parcel

ownership data, as well as cross-referencing parcels with previous annotation work

(see Appendix A). This was done in order to calculate described data for the region

as well as ensuring that agents would be assigned parcels based upon their actual

ownership patterns. The near geodesic distance was calculated from the centroid

of each parcel to the biorefinery in Ontonagon, Michigan and stored as a polygon

attribute for use during model execution.
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Following preparation of parcel data, land cover raster files were then prepared to

inform the generation of the forested landscape. First, parcel data was dissolved into

a mask which could be used to extract land cover raster data for the study region.

This mask was used to prepare the LANDFIRE vegetation height data [207] and

National Landcover Database (NLCD) data [103].

In order to account for forest aesthetics as an assessment indicator (see Section

4.4.6), a raster file was generated for the model that would designate visually sensitive

areas. This was done by first merging all of the relevant Michigan Department of

Natural Resources (DNR) trails (e.g., ATV, bicycle, equestrian, hiking, motorcyce,

ski, and snowmobile trails; ORV routes; and railtrails) from the State of Michigan’s

GIS Open Data website [223–231] into a single polygon file. The polygon data was

then merged with road network data [232] and clipped to the WUP region. A 50 m

buffer was then created around all trails and roads, and was selected since it is within

the bounds of a 200 ft. buffer that is typically recommended. This buffer was dissolved

into a single entity and used to create a raster file that could be checked by the model

to determine if a harvested pixel was in the zone (see Figure 4.12).

The last step in preparing GIS data for the ABM was to ensure that that the

extents were uniform, raster pixels were consistently sized, and geographic coordi-

nates were consistent. This was done by ensuring that raster files (i.e., NLCD data,

LANDFIRE data, and visual buffer data) were aligned to the extents of the parcel

map. To do so the raster files were projected to the same NAD 1983 UTM Zone 16N

projection as the parcel data. Raster files were then clipped to the same extent and

undersized files were increased to match the target size. A second projection was then

performed to ensure that raster pixels were 30 by 30 meters.

Finally, since harvesting is limited by the number of hours loggers can work per

year, the total system hours per year was calculated based upon the harvesting re-

ported by the U.S. Forest Service [206]. The Western Upper Peninsula Forest Inven-

tory and Analysis (FIA) region includes the counties of Marquette and Dickinson and
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Figure 4.12: Map of the visual buffer created for the model

the total logging was adjusted to exclude them. This was done by calculating the

total forested land per county by summing the count of woody wetlands, deciduous,

evergreen, and mixed forest NLCD pixels and multiplying by 30 m2. Then, assum-

ing that logging patterns would follow geographic patterns defined by the forested

land, county boundaries [159] used to define the relevant region and NLCD data was

clipped to the counties. The total area of NLCD pixels was then tabulated and the

forest allocation was then calculated (see Table S2, Electronic Supplementary Mate-

rial). Harvest removals [206] were then adjusted to exclude known harvesting that

took place in Ottawa National Forest [217].
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Chapter 5
Development of an Agent-Based Model to

Predict the Fate of Organic Contaminants

Degradation in Aqueous-Phase Advanced

Oxidation Process

Robert Zupko, Divya Kamath, Mark Rouleau, and Daisuke Minakata1

1 The material in this chapter is intended for submission to Environmental Modeling & Software
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Abstract
Advanced oxidation processes (AOPs) can treat organic contaminants in wastewater;

however, care is needed since intermediate by-products of the process can be more

toxic than the parent contaminant. Transformation by-products can be studied in

laboratory settings, but the number of chemical species make this approach imprac-

tical. Typically concentration profiles of a target contaminant and transformation

byproducts are predicted by solving ordinary differential equations (ODEs), which

are very stiff and challenging to numerically solve. In this study we develop a novel

agent-based model (ABM) to study intermediate radicals and stable by-products in-

volved in peroxyl radical biomolecular decay in AOPs. The model is discussed along

with the results of two in silico studies. Using a comprehensive list of elementary reac-

tion pathways, the model replicates concentration profiles for major chemical species

observed by the experiment. As a novel application of ABM to AOPs, we conclude

that the technique shows considerable promise.

Keywords: agent-based modeling - advanced oxidation processes - water treatment

5.1 Introduction

The presence of trace organic contaminants in both natural waterways and in

treated water and wastewater is alarmingly high [233]. These contaminants

can also have serious but uncertain toxicological risks to both human health and

natural ecosystems [234]. While there are efforts by researchers and policy makers

to develop a better understanding of these contaminants [235, 236]; treatment of

contaminants is also needed due to de facto [237] and planned water-reuse projects

[238].

One means of remediating contaminants in water and wastewater treatment pro-

cesses is the use of advanced oxidation processes (AOPs). AOPs have the ability
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to destroy known and emerging organic contaminants through the creation of hy-

droxyl radicals in aqueous phase solutions at ambient temperature and atmospheric

pressure [45, 46]. Hydroxyl radicals produced react rapidly with electron rich sites

of organic contaminants resulting in degradation through a series of chain-reactions.

When AOPs are appropriately designed, a target organic contaminant is mineralized

into water and carbon dioxide. The complexity of AOPs reaction pathways makes

it difficult to predict the formation of intermediate radicals and by-products, which

may be more toxic than the parent compounds. While it is possible to study the re-

actions and by-products of AOPs in a laboratory setting, the hundreds of thousands

of chemicals in commercial use and production make laboratory studies untenable as

a means of producing reaction pathways for all contaminants. As a result, there has

been significant research into the development of a predictive model that can deter-

mine intermediate radicals and by-products (see Section 5.2.1). Such a model would

greatly aid in the development of AOPs and help guide assessment of potentially toxic

chemicals in manufacturing processes.

The purpose of this manuscript is to address the limitations in existing approaches

to studying AOPs (i.e., ordinary differential equations) through the development of

an agent-based model (ABM) of the chemical entities and their reactions involved in

an AOP. The use of an ABM allows us to reduce the complexity in conducting in

silico studies by overcoming the issues that lead to ODEs that are stiff to solve, and

have a tendency to produce unstable numerical solutions. Our ABM demonstrates

that it?s possible to comprehensively model the reactions involved an AOP as a

complex system, allowing for approximation of the expected results. Furthermore,

these solutions can be reached in approximately half an hour on desktop computing

environments. This paper proceeds as follows, in Section 5.2 we provide a review

of previous approaches to AOPs in silico and discuss the benefits of using an ABM

to study AOPs. Section 5.3 discusses the design of the ABM for AOPs in several

parts. This section includes a molecular simulation that was developed, followed by
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highlighting key aspects of the model?s implementation. The section concludes with

a discussion of the model validation. Then, in Section 5.4, we examine the application

of the ABM to study acetone degradation induced by hydroxyl radicals followed by

discussion and concluding remarks in Sections 5.5 and 5.6 respectively.

5.2 Background

5.2.1 Previous approaches to in slico AOP models

Generally the literature reflects two approaches to modeling AOPs: conventional

steady-state/non-steady-state models, and kinetic descriptions of the system with-

out steady state approximations. Studies involving conventional steady-state/non-

steady-state models are typically constructed with the intent of addressing a specific

problem. In the case of [239] the authors used a kinetic model of UV/H2O2 processes

with a steady-state approximation to predict final concentrations of 1,2-dibromo-3-

chloropropane (DBCP), ultimately finding that the degradation of DBCP follows

pseudo-first-order kinetics irrespective of experimental conditions (e.g., variations in

pH, concentrations of hydrogen peroxide, dissolved organic matter, or alkalinity).

[240] also used steady-state approximation to estimate both time-based and fluence-

based rate constants for N-nitrosodimethylamine (NDMA) degradation resulting from

both photolysis and hydroxyl radical induced reactions respectively. Their calculated

rate constants were found to be consistent with experimental observations. This work

was followed by [5] who derived a similar model by including the photolysis of tar-

get compounds. They then calculated the estimated removal efficiency from both

photolysis and the hydroxyl radical induced reactions for more than 100 emerging

contaminants. Their study also included a cluster analysis and classification of those

compounds based upon the hydroxyl radical reaction rate, quantum yields, and mo-

lar absorptivity. Finally, [48] developed UV/H2O2 process models with steady-state

approximations for various flow type reactors (e.g., completely mixed batch reactors,
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complexity mixed flow reactors, plug flow reactors, tank-in-series reactors, etc.) with

a disperse flow model [241] using MathCAD. These models were able to calculate the

steady-state concentrations of hydroxyl radicals, the removal efficiency, and energy

efficiency per removal of order, given any specified target compound and other water

quality parameters.

While there has been some success with the aforementioned steady-state/non-

steady-state models, the most detailed level of modeling in the literature involves

models with complete kinetic description of the systems without steady-state approx-

imations [49]. In these models all reactions in the system are considered and rate

equations are written for all chemical species. Additionally, reactions are modeled

at the sub-microsecond timescale in contrast to typical UV/H2O2 processes which

typically take place on the order of minutes. These models result in a set of stiff

differential equations whose integration may require 108-1012 steps depending upon

the number of ODEs assigned [49].

One of example of these complex models was developed by [242] who used

ACUCHEM software [243] to develop a UV/H2O2 kinetic model. However, this model

was limited since ACHUCHEM does not consider acid-base equilibrium, variable pho-

tolysis rates, or complex flow reactor kinetics. However it is critical to simulate pH

changes in a solution since the pH of a solution can drop as organic compounds

are oxidized into mineral acids, carbon dioxide, or acidic intermediates during the

UV/H2O2 process. To address these concerns, [244] developed a dynamic kinetic

model of the UV/H2O2 process in a completely mixed batch reactor with non-steady

state approximation, which included known elementary chemical and photochemical

reactions along with literature reported photochemical parameters with chemical re-

action rate constants. In the model the target organic compound(s) would react with

hydroxyl radicals, carbonate radicals, phosphorus radicals, superoxide, and hydroper-

oxyl radicals while including scavenging reactions of hydroxyl radicals with alkalinity,

phosphorus buffers, and carbonate radicals. In order to account for changes in pH
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over time, the model tracks the net charge balance of anions and cations. Ultimately

the model solves a set of very stiff ODEs for all identified species using Gear’s Method

[245] by adapting a package designed by [246]. The resulting kinetic model was val-

idated against experimental studies by [247] and [239]’s pseudo-steady-state model.

One limitation was that the scavenging reaction by natural organic matter (NOM)

was not included in [244] but was included in the resulting AdOx™ software [248] that

was developed and enables users to select various reactor types, flow conditions, and

UV lamps. The AdOx software also includes functionality for tracer studies making

it possible to estimate removal efficiency of target compounds using a disperse flow

model of a physical reactor. The AdOx software was used in a study by [249] to evalu-

ate the efficiency of a UV/H2O2 process for the removal of methyl tert-butyl ether and

tert-Butyl alcohol from a drinking water source, demonstrating the applicability of

these complex models to water treatment objectives. [250] compared the pseudo-first-

order rate constants of DBCP from the Sim-pSS model, pseudo-steady-state model,

and AdOx kinetic model with those from [239] under various experimental conditions

and found that the AdOx kinetic model was more accurate than the other two mod-

els. The authors concluded that this was due to AdOx more accurately modeling

containment destruction due realistic changes in hydroxyl radical concentrations over

time from the initial pH and hydrogen peroxide concentrations.

Finally, [251] also developed a kinetic model of UV and UV/H2O2 processes in a

collimated beam system employing monochromatic low pressure UV lamp and later

developed a similar kinetic model for polychromatic medium-pressure UV lamps [252].

These kinetic models were used to predict the water quality impacts of the UV and

UV/H2O2 process on treated wastewater. Both models assigned rate constants for

forward and backward reactions to account for equilibrium reactions and avoided

the use of steady-state approximation to account for the changes in solution pH.

The models were validated with their own experiments for the degradation of thirty-

six pharmaceuticals in the presence of bicarbonate, nitrate, and NOM. However it
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was found that the model consistently predicted the degradation for five compounds

when compared to experiment observations due to pH effects during photolysis and

the radical scavenging of the NOM. These two kinetic models were later combined

with a computational fluid dynamics model to predict the degradation of a group of

thirty-five pharmaceuticals in a pilot-scale UV/H2O2 reactor [50].

5.2.2 Advantages of agent-based modeling of AOPs

The key limitation of the AOP models reviewed is that they are dependent upon

underlying ODEs that are stiff to solve and have a tendency to produce unstable

numerical solutions. The stiffness of the solutions are attributable to the dramatic

differences in reaction rates (i.e., the product of the reaction rate constant and the

concentration) that often vary by more than 10 orders of magnitude in an AOP

(i.e., 10 M-1 s-1 vs. 1010 M-1 s-1). Whereas the unstable numerical solutions are

a consequence of the lumped reactions that often occur in studies of AOPs. The

unstable numerical solutions are of particular interest since these are a consequence

of the feedback loops that are inherent in the underlying chemical reactions (i.e.,

products of reactions being reactants in previous or subsequent reactions). While

lumped reactions may allow AOPs to be studied using ODEs, elimination of them

from the model also results in solutions that do not reflect the actual reactions that

are taking place.

One means of addressing the limitations of models of AOPs (e.g., lumped ele-

mentary reactions), is to model the AOP as a complex system. While chemistry is

infrequently studied as a complex system [7, 44], the underlying processes involved

in an AOP share the characteristics of a complex system; namely, nonlinearity, feed-

back loops, and emergence. If the concentration profiles of an AOP are viewed as

the emergent property of the system, then the nonlinearity and feedback loops are

intuitively correlated to the elementary reaction pathways in an AOP.
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In order to examine AOPs from the perspective of a complex system, we develop

an agent-based model (ABM) to simulate the complex reactions and resulting by-

products. ABM is a computational modeling technique in which individual software

“agents” are used to represent entities in the system (i.e., chemical species) that

interact with other agents and the environment in which they are embedded [15].

Upon execution of the model it is possible to observe how agent interactions result

in complex patterns at the system level, while avoiding complex systems of equa-

tions required to replicate system level behaviors. This can also be quite useful for

“theory testing” in which the ABM is used to verify an understanding of a system

by replicating the observed behavior of the system in the simulation [15, 28]. Since

ABM is focused on modeling interactions at the entity level, iteratively incorporat-

ing reactions is possible and as a result the technique offers a promising solution to

advance AOP modeling over other existing techniques. Effectively, the completeness

of the reactions used in the ABM is only limited by the overall understanding of

the elementary reaction pathways. While the use of ABM is fairly new to chemical

modeling, there has been increasing interest in using ABM to explore biochemical

systems such as intracellular signaling and reactions [51, 52], biomolecular modeling

[53], and complex biochemistry [253].

5.3 Agent-Based Model of Advanced Oxidation

Processes

5.3.1 Introduction

A more technical discussion of the model now follows and is organized in two parts.

First, the details of the molecular simulation are discussed and the underlying math-

ematical models for the relevant chemical reactions are detailed. Then, in Section
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5.3.3, relevant computational aspects of the model are highlighted which either devi-

ate from typical ABM development, or were a necessary aspect of ensuring that the

model runs on typical desktop computers.

5.3.2 Molecular Simulation

The molecular simulation encapsulates the relevant aspects of the underlying chem-

istry (i.e., movement and reactions) as well as model initialization. As components of

an ABM, the chemical entities are the agents, while the environment is a simulated

space within the reactor in which the AOP is taking place. This simulated space is a

to-scale (i.e., nanometre) limited by the number of agents the model is configured to

run with by the user. The model assumes that the reactor continues to be well mixed

(i.e., circulation is present) and that UV can uniformly reach all parts of the reaction.

These considerations allow the model to assume that any part of the reactor can be

modeled as a representation of the processes involved.

5.3.2.1 Initialization

Prior to the start of chemical reactions, the model is initialized using the list of

chemical entities and molar concentrations provided by the user. In order to convert

these molar concentrations to a count of chemical entities, a statistical normalization

is applied:

normalizer = 1
v1 + v2 + ...+ vn

(5.1)

moleculesi = vi ∗ normalizer ∗ target (5.2)

scalar = normalizer ∗ target (5.3)

Where vi is the number of moles for a given compound; target is the maximum

number of total molecules; and moleculesi is the quantity of the given molecule. The
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scalar value is also used when the count of chemical entities are converted back to

molar concentrations on model termination. It is also during model initialization that

the size of the simulated space is calculated:

d = 3

√
molecules

8x10−5 ∗Na

(5.4)

Where molecules is the number of molecules in the simulation; Na is Avogadro’s con-

stant; and d is the length of the simulated space along one edge in meters. Equation

5.4 is in turn derived from the parameters of the reference implication of [254], which

was used for model verification (see Section 5.3.6) and results in the constant 8x10−5.

5.3.2.2 Reactions

The model simulates the relevant chemical reactions in AOPs, namely: photolysis,

bimolecular reactions, unimolecular decay, and acid dissociation, which occur in that

order. This order of operations ensures that low probability reactions (i.e., pho-

tolysis and bimolecular reactions) may occur before high probability reactions (i.e.,

unimolecular decay and acid dissociation) within the context of a serial computing

environment. Acid dissociation is resolved at the end of each time step since the total

number of molecules in needed before the relevant calculations can be performed.

Likewise, the model assumes that unimolecular decay will occur within a given time

step when the reaction is defined. This requires that bimolecular reactions and pho-

tolysis come first so the conditions can be checked to see if those reactions may occur.

Bimolecular reactions and photolysis may occur in any order and here photolysis was

selected to go first since it starts the UV/H2O2 reaction starts the processes being

studied.

(1) Photolysis: Photolysis, specifically the UV/H2O2 reaction, is assumed to follow

a zero-th order kinetic rate constant, which we obtained through the experiment
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outlined in Section 5.4.1. This allows the probability of hydrogen peroxide undergoing

a reaction to be calculated as follows:

m = rate ∗ volume ∗ scalar ∗∆t ∗ 10−3

60 (5.5)

Pr(molecule) = q1 − (m ∗∆t+ q0)
q1

(5.6)

Where rate is the experimentally determined decay rate in liters per minute; volume

is the volume of the experimental reactor in liters; scalar is the value calculated in

Equation 5.3; ∆t is the simulation time step in seconds; and q0 and q1 are the quantity

of molecules at time steps zero and one, respectively. This probability is then applied

to each time step, to each hydrogen peroxide chemical entity in the model.

(2) Bimolecular Reaction: Bimolecular reactions are modeled according to an inter-

action radius r, as governed by the reaction rate k and diffusion rate kdiff :

kchem = k ∗ kdiff

k + kdiff

(5.7)

r = 3

√
3kchem∆t
4π103Na

(5.8)

These equations are based upon prior work by [52] and the interaction radius the

boundary of a sphere wherein the presence of the appropriate chemical entities im-

plies the reaction occurs. As demonstrated by [52] the size of the sphere is determined

by the total volume occupied by reactions that occur in the given time span ∆t given

the reaction rate k. We expand upon the work of [52] by incorporating the diffusion

rate, yielding kchem (Equation 5.7), prior to the calculation of r (Equation 5.8). This

approach to the bimolecular reaction allows the simulation to occur with the desig-

nated ∆t as opposed to requiring that the collusion of chemical entities be modeled
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(i.e., sub-microsecond time spans for ∆t) while still incorporating the underlying ki-

netics. Furthermore, while the radius may be seen as a crisp boundary, it is more

appropriate to consider it probabilistically [254, p. 54] with the likelihood of a reaction

occurring the closer the two reactants are. To account for this the complementary

Gauss error function is incorporated as part of the bimolecular reaction algorithm (see

Algorithm 5.1), and used to determine the probability by which a reaction occurs.

The algorithm for bimolecular reactions may be summarized as follows (see Al-

gorithm 5.1). First, the provided chemical entity is checked to see if it is the center

of the interaction radius sphere as determined by the reaction registry (see Section

5.3.3), if it is not then the function returns. This check is a result of the interaction

radius describing the volume of the resulting reaction, so only one of the involved

reactants needs to be checked. Next, each possible reactant for the given chemical

entity is checked in a loop. First the interaction boundary radius is calculated using

Equations 5.7 - 5.8. The simulated space around the chemical entity is checked for a

reactant within the given radius. If no reactant is found, or the reactant returned (i.e.,

chemical entity) was already activated this time step, the loop proceeds to checking

the next reaction. Checking to see if the reactant returned has already been active

the time step is necessary since its continued presence in the model means that it

could not find an appropriate reactant on its time step. Again recalling the equation

describing the resulting volume, once a chemical entity has been checked in a given

time step and a reaction does not occur, it cannot be in the volume of the reaction.

The Euclidean Distance of the chemical entity and reactant is then calculated and

the complementary Gauss error function is applied to determine the likelihood that

the reaction will occur.

(3) Unimolecular Decay: In the event that neither photolysis nor bimolecular reac-

tions occur, unimolecular decay takes place if defined for the chemical entity. Since

the model assumes that unimolecular decay will always occurs within the given ∆t,
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Listing 5.1: Pseudo-code of bimolecular reaction function in ChemSim
function bimolecularReaction(entity)
1. IF [entity] is not center of sphere THEN RETURN
2. FOR EACH [reaction] involving [entity]

2.1 [radius] = calculateBoundary([reaction].[k])
2.2 [reactant] = space.find([reaction].[reactant], [radius])
2.3 IF no [match] THEN CONTINUE
2.4 IF [match] has been activated THEN CONTINUE
2.5 [distance] = euclideanDistance([entity], [reactant])
2.6 IF random.gaussian() < erfc([distance] / [radius]) THEN

2.61. Do reaction

the products of the reaction are simply introduced into the model while the reactant

is removed.

(4) Acid dissociation: Acid dissociation (i.e., pKa balancing) reactions which takes

place at the end of each time step. These reactions occur at the end of each time step

since, recalling the serial nature of the model, the quantity of chemical entities must

be fixed before the quantities can be updated per Equations 5.10 - 5.13. Assuming

reactions are defined as follows:

HA⇔ A− +H+ (5.9)

The quantity of agents in the model is calculated as follows:

quantityA− = countA− ∗ 10−pKa

10−pH
(5.10)

quantityA− = quantityA− > countA− then countA− else quantityA− (5.11)

quantityH+ = quantityA− (5.12)

quantityHA = countHA − quantityA− (5.13)
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Where pKa is the acid dissociation quantity, pH is the overall acidity or basicity, and

countA− is the quantity of the molecule in the model. The calculated quantity then

represents the number of chemical entities that need to be removed, or added, to the

model. The number of chemical entities is then adjusted as needed by removing, or

adding, entities at random locations to ensure a well-mixed solution.

5.3.2.3 Movement

As chemical entities are not static in space, Brownian motion is approximated through

movement along a random vector for each entity, each time step. This is done by

selecting a random direction of movement, along which entities then move. In the

event an entity encounters the boundaries of the simulated space, the movement is

clipped to the bounds of the space. As a baseline, a speed of approximately 590

nm/s with some random noise is used. While slow compared to the average speed of

molecules in water at room temperature (i.e., 590 m/s), this value is consistent with

the minimum speed found by [254] required to ensure proper mixing of the simulated

space, which is the ultimate objective of the simulated movement.

5.3.3 Simulation Engine

The simulation engine consists of all parts of the model’s architecture (see Figure 5.1)

that are not directly associated with stimulating the chemical entities or reactions.

While an ABM can be described in terms of the agents, their environment, and so

forth (see [185]), the simulation engine contains significant computational approaches

and implementation decisions that are a necessary part of the molecular simulation

and performant execution of the model. Specifically, the following are deviations from

a typical ABM implementation: the scheduler which is responsible for the order of

execution of the chemical entities, the sparse lattice containing the simulated space,

and a “reaction registry” that contains all of the reactions possible in the model. In

addition to these deviations, the model also performs a rudimentary form of garbage

collection by allowing stale references to chemical entities to persist after they are
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consumed in a reaction. While this increases the memory requirements of the model

during execution, the trade-off is that compute overhead related to searching for the

destroyed chemical entities across all data structures is eliminated.

5.3.3.1 Scheduler

A scheduler was written for the model to ensure that the chemical entities were

activated each time step, allowing the molecular simulation to take place. Since the

model runs in a serial manner (i.e., each chemical entity is activated once, in order, per

time step) it is necessary to ensure that the scheduler is computationally efficient and

incorporates randomization of the order to prevent modeling bias due to activation

order. The schedule is a deque array backed by a list array to receive entities for

the next time step, which allows for constant time insertion and retrieval as well

as a variable number of chemical entities per time step. Each time step chemical

entities are popped from the deque array, checked to see if they have not already

been used in a reaction, and checked for movement and reaction operations, and then

flagged to indicate its time step is complete until the next round. This last step

is required to ensure proper execution of bimolecular reactions (see Algorithm 5.1).

Upon exhaustion of the deque array (i.e., the end of a time step), the list array is

shuffled using a Fisher-Yates shuffle [93] copied to the deque array (i.e., the new time

step).

5.3.3.2 Sparse Lattice

The sparse lattice tracks the location of all chemical entities in the simulated space

and offers a means of locating them to determine if a bimolecular reaction should

occur. During model execution chemical entities either undergo a reaction, which

results in the creation of inserting and deletion of chemical entities, or move to a

new location. As a result of these constant updates, the tree-based data structured

typical of spatial datasets (e.g., kd-tree, R-tree, etc.) incur performance penalties due
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Figure 5.1: UML diagram of the core ChemSim classes.
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to the mutability involved [255]. To address these problems, the simulated space is

represented as a sparse lattice, reducing the memory footprint of the model.

The sparse lattice is divided into two parts: the agent’s location in space, and

the agent’s relationship with other agents of the same type. These are stored using

array-based hashmaps as three structures: 1) a spatial integer lattice, 2) an entity

(i.e., agent) map, and 3) a tag map containing queues of like types of agents. This

is similar to neighbor lists and Verlet neighbor lists [256]. However, as implemented,

the structure lacks distance information as part of the data structure and represents

a distinct implementation. Since queues are inefficient to scan each time a chemical

entity is destroyed to a reaction, the maps may contain references to chemical entities

that no longer exist. When these destroyed chemical entities are encountered, the

objects are disposed of.

During initialization the structures are constructed in memory, with arrays pre-

allocated for twice the number of agents the model has at initialization. During model

execution, entities are stored based upon a hashing scheme by [257],

hash(x, y, z) = ((x ∗ p1)⊕ (y ∗ p2)⊕ (z ∗ p3)) mod n (5.14)

Where x, y, z ∈ Z, p1, p2, p3 ∈ PRIME, and n is the size of the allocated array for

the values. This ensures a uniform distribution of the entities across the memory

allocated, and that probing can be used to determine if agents are nearby (i.e. within

the known bounds of a radius r). The drawback to probing is that it is efficient only

total points in the sphere is less than the entities to be searched. In these situations

the simulation scans the appropriate tab map for agents within the correct Euclidean

distance of a target chemical entity.
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5.3.3.3 Reaction Registry

The reaction registry contains all of the chemical reactions that can take place in the

model and provides the function of agent decision making in the ABM. In addition

to providing a single point for checking what reactions can occur in the model, the

reaction registry also ensures the consistent selection of the chemical entities that act

as the center of the bimolecular reactions. Consistent selection is needed since the

same reactant may appear in multiple reactions (e.g., A + B → C and A + D → E)

thus, by limiting chemical entities that are used a the center (e.g., A in the previous

example) once the chemical entity has been checked for all possible reactions, it can

safely be excluded from reactions for the rest of the time step. Conversely, by not

being used as the center of the interaction radius the chemical entity can be excluded,

upon checking for any other reactions.

5.3.4 Simulation Execution Overview

Execution of ChemSim requires that two input files are first prepared by the user.

First, the starting conditions (i.e., reactor size, UV/H2O2 photolysis rate, starting

chemical species, concentrations, and reactions) for the simulated reactor needs to

described. Second, the complete list of reaction pathways to be modeled needs to be

prepared and reactions in the model are evaluated in the order they appear in the

input file. Execution of the model then proceeds in the following manner:

1. Model initialization takes place

1.1. Starting chemical entities and concentrations are read from input files

1.2. Reactions lists are read from input files

1.3. The reaction registry is generated

1.4. The number of starting chemical entities is calculated and added to the

model

2. Simulation runs for the designated number of time steps

2.1. Each chemical entity is activated in the scheduled order
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2.1.1. The chemical entity attempts to perform a reaction and is removed

from the simulation if one occurs

2.1.2. Otherwise the chemical entity moves to a new location

2.2. Any pKa reactions are calculated and the molecule counts balanced2

2.3. The schedule for the next time step is generated

5.3.5 Implementation Details

The ABM was developed in Java 8 and contains some source code from the MASON

Multiagent Simulation Toolkit [54]. The Xoroshiro128+ pseudo-random number gen-

erator [258] in the DSI Utilities library [259] is used for high performance random

numbers. Additionally, fastutil [260] is used for preallocated, high performance hash

maps. The simulations described in the case studies were conducted on a Late 2013

iMac (2.9 GHz Intel Core i5, 8 GB 1600 MHz DDR3). The source code for the simu-

lation is available on GitHub under an MIT license at https://github.com/forestsim-

mtu/chemsim

5.3.6 Model Verification

The basic correctness of the model was checked by using the results the two-particle

interactions tests described by [254] as a known standard. While the intent of Pogson

is ultimately a model of intracellular chemical interactions, their work begins with

a verification of the ABM against general reaction kinetics and includes a reference

implementation of the model in Matlab [254, p. 120-127]. This reference implemen-

tation is in turn verified by ODE solutions for the specific chemical systems. The

general approach of Pogson’s ABM is based upon matrix operations to determine

which agents may undergo a reaction as well as bulk movement operations. This

deviates significantly from ChemSim which uses a strictly serial approach to agent

operations. As a result, replication of general reaction kinetics tests performed by

2 Recall that pKa reactions occur at the end of the time step
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[254] ensures that the model has correctly implemented the general reaction kinetics

and that constants selected for the model are also appropriate.

Verification of the model began with the digitization of graphical results [254, p.60]

using WebPlotDigitizer [261] since tabular data was not available. The two-particle

interaction parameters were modeled using the simple abstract reaction A + B →

C with the reaction rate of 106 M-1 S-1. A reactor size of 1 L containing a starting

concentration of 50 nM of A, B starting at 30 nM, with 1600 agents (i.e., chemical

entities), and a time step of 1 second was used for the simulation. The mean absolute

percentage error (MAPE) of the results was then calculated based upon the digitized

data from [254]:

MAPEi =

(∑Ni
j=1
|Cexp,j−Ccal,j|

Cexp,j

)
Ni

(5.15)

Where i indicates the species (i.e., A, B, or C); N is the number of data points for the

species; and Cexp,j and Ccal,j indicate the experimental, and calculated concentrations

for the species i, respectively. As shown in Figure 5.2, the results of the model are

consistent with [254], and the overall MAPE of 5.27% ± 6.93% is within the bounds

of error due to digitization. Additionally, much of the error is due to the B molecule

which had a MAPE of 10.05% ± 9.71% (largely due to differences in the count towards

the end of the simulation, also known as the “curse of small numbers”). In contrast,

the A molecule MAPE was 2.07% ± 1.19% and C was 3.47% ± 2.61%.
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Figure 5.2: Comparison of results between [254] and ChemSim.

5.4 Case Study of Acetone Degradation Induced

by Hydroxyl Radicals in UV/H2O2 AOP

5.4.1 Experiments

A benchtop photoreactor was used to perform UV/H2O2 AOP for a test target com-

pound, acetone. The photoreactor was comprised of four Wheaton Roller Bottles with

a volume of 1.8 L surrounding a low pressure Atlantic UV lamp with a wavelength

of 254 nm, based upon the spectral distribution provided for the lamp by Ace Glass

Inc. A quartz immersion well was used to circulate water around the lamp to prevent

overheating and reactor vessels were surrounded by circulating water to maintain a
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Table 5.1
Experimentally measured acetone by-products

Conc.
(mM)

Acetone Acetic
Acid

Hydrogen
Peroxide

Formic
Acid

Oxalic
Acid

Min

0 1.2850 - 10.8726 0.0008 -
30 0.9536 0.1874 9.5794 0.0869 0.0001
60 - 0.2980 - 0.1053 0.0018
90 0.7963 0.4083 - 0.1034 0.0067
150 0.3676 0.5186 - 0.0846 0.0289
180 0.4300 0.5489 5.5621 0.0744 0.0472
210 0.3029 0.5733 - 0.0630 0.0745
263 0.1895 0.5774 4.0723 0.0502 0.1147
300 0.1287 0.5634 - 0.0424 0.1452
323 0.0452 0.5479 3.1997 0.0381 0.1628
370 0.0433 0.4802 - 0.0280 0.1802
420 0.0083 0.4561 1.8475 0.0237 0.2177
480 - 0.3736 - 0.0159 0.2289

constant temperature. The entire photoreactor was contained in a glass box covered

by aluminum foil to prevent the escape of UV light. Each reactor vessel was equipped

with a magnetic stir plate and stir rod to ensure that completely mixed conditions

were maintained and a dye study was conducted to verify the conditions. During

experiments the desired organic compound and hydrogen peroxide were added to the

reactor vessels and sampled at desired time steps. Samples were placed in amber vials

when drawn and stored at 4°C until they could be analyzed using gas chromatography,

high performance liquid chromatography, and ion chromatography.

ACS grade chemicals were obtained from Sigma-Aldrich for both the experimen-

tal solutions (acetone and hydrogen peroxide) and stock solutions (oxalic acid, formic

acid, acetic acid, glyoxylic acid, pyruvaldehyde 40% weight in solution, and pyruvic

acid); along with formaldehyde from Fisher Scientific. Experimental solutions were

prepared using MilliQ water (resistance > 18.2 MΩ.cm) obtained from a Millipore

purification system and 10 mM hydrogen peroxide to 1 mM of acetone along with
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parachloro benzoic acid (pCBA) solution, 0.25 µM, was also added as a probe com-

pound for hydroxyl radicals. Stock solutions were made for desired concentrations

and diluted to create standard solutions in the anticipated concentration range for

calibration curves.

During actual UV photolysis experiments only one photoreactor was used. Light

intensity in the reactor was measured to be 5.16x10−7 Einstein/L-s using ferriox-

alate actinometry and temperature controls kept the photoreactor within 1°C of the

initial temperature. As a result, kinetics were observed to be those occurring at

room temperature. Acetone, formaldehyde, and pyruvic aldehyde were measured via

derivatization with 2,4-dinitrophenyl hydrazine followed by analyses using a UHPLC

2000 series Dionex equipped with a reverse phase C-18 column (4.5 mm x 250 mm)

using acetonitrile and water in a gradient flow condition at 0.8 mL/min as the mobile

phase. Retention times for formaldehyde, acetone, and pyruvate were 10.1 min, 21.1

min, and 14 min, respectively using this method. Concentrations of pCBA were also

determined using this system and reverse phase HPLC with a C-18 column although a

different eluent with 45% of acetonitrile and 55% of 10 mM H 3 PO 4 was used to find

a retention time of 7.8 min at a 254 nm wavelength for pCBA. To determine the con-

centration of hydrogen peroxide, 2,9-dimethyl-1,10-phenanthroline (DMP) method

was used for a diluted sample to ensure that concentrations were within the valid

µM range. Ion chromatography with a Dionex ICS 2100 series equipped with an

ion-exchange column was used to determine concentration of organic anions, acetate,

formate, pyruvate and oxalate. Finally, total organic carbon (TOC) was determined

using a TOC analyzer, GE sievers. The results of this study are presented in Table 1

and are the basis of the assessment of the in silico studies.

5.4.2 Lumped reactions in silico study

To study the intermediate radicals and stable by-products generated during AOPs we

developed an ABM that we colloquially call ChemSim, for UV/H2O2. Using Figure
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Figure 5.3: Visualizations showing ChemSim during model execution.

5.3 as a guide, the simulation may summarized as follows. First, starting from the

upper left and proceeding left-to-right, top-to-bottom, the model is initialized with

hydrogen peroxide (blue) and the initial contaminant (teal) as a well-mixed solution.

Also shown are the hydroxyl radicals that form shortly after the model starts (red)

due to the UV/H2O2 photolysis reaction. As model execution proceeds, the hydroxyl

radicals which rapidly react to form byproducts (gray) with the contaimate being

gradually eliminated. Following the exhaustion of hydrogen peroxide, the final steady-

state may still contain the initial contaminate and byproducts, although chemical

reactions typically cease once hydroxyl radicals are no longer created.
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Figure 5.4: Predicted concentration profiles following acetone degradation
induced by hydroxyl radicals using lumped reaction pathways, note that
significant deviation from experimental concentrations is present.

Following basic validation of the ABM, the ability of the model to assess concen-

tration profiles using lumped reactions was assessed. Acetone was selected due to its

toxicity as well as being a simple compound. This allows it to be a “stepping stone” to

studies involving more complex contaminants. Despite the simple structure, acetone

has a complex reaction pathway when treated using UV/H2O2 processes with at least

88 reactions predicted before mineralization [262].

One of approaches to studying acetone degradation induced by hydroxyl radicals

is through the use of lumped reactions that incorporate multiple steps as part of a

single reaction. To explore the use of lumped reactions (see Table 5.2 for reactions),
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Table 5.2
Lumped UV/H2O2 reactions for AOP treatment of acetone.

Reactant Reaction Rate (Ratios) Source

H2O2 + hv → HO• -2.38x10−2 M s
CH3COCH3 + HO• → •CH2COCH3 1.0x108 M-1s-1 [263]
•CH2COCH3 + O2 → •O–CH2COCH3 5.0x109 M-1s-1 [262]
•OO–CH2COCH3 + •OO–CH2COCH3 →
2 •O–CH2COCH3 + O2

1.0x109 M-1s-1 (15%) [262]

•OO–CH2COCH3 + •OO–CH2COCH3 →
H2O2 + 2 CH3COCHO

1.0x109 M-1s-1 (25%) [262]

•OO–CH2COCH3 + •OO–CH2COCH3 →
CH3COCHO + CH3COCH2OH + O2

1.0x109 M-1s-1 (60%) [262]

•O–CH2COCH3 → •COCH3 + HCHO 1.4x106 s-1 [262]
CH3COCHO + HO• → CH3COCOOH 5.0x108 M-1s-1 [264]
CH3COCOOH + HO• → CH3COOH 1.0x107 M-1s-1 [262]
CH3COCH2OH + HO• → HCHO 1.0x108 M-1s-1 [262]
HCHO + HO• → HCOOH 1.0x108 M-1s-1 [262]
CH3COOH + HO• → HOCCOOH +
HCOOH

1.6x107 M-1s-1 [265]

HOCCOOH + HO• → HOOCCOOH 1.9x108 M-1s-1 [266]
HOOCCOOH + HO• → CO2 1.4x106 M-1s-1 [267]
HCOOH + HO• → CO2 4.5x107 M-1s-1 [265]

the model was configured for their use with a photolysis rate of -0.0238 M-1 S-1 that

was calculated using the results from the laboratory study (see Section 5.4.1). The

remaining parameters were then set to kdiff of 1.1x1010, 1.8 L for the reactor volume,

and a 0.02 mol concentration of hydrogen peroxide and 0.0023 mol for acetone. The

starting limit for chemical entities in the model was 100,000 resulting in 89,686 hy-

drogen peroxide entities and 10,313 acetone entities being generated in a 12,757 nm3

simulated space. Following execution of the mode five species were evaluated against

their experimental measurements (i.e., acetone/CH3COCH3, acetic acid/CH3COOH,

hydrogen peroxide/H2O2, formic acid/HCOOH, and oxalic acid/HOOCCOOH) and
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two assessments of the results were made using the experimental results from the

laboratory study. Along with the MAPE, the sample deviation (SD) was calculated:

SDi =

√√√√√ 1
Ni − 1

Ni∑
j=1

[
Cexp,j − Ccal,j

Cexp,j

]2

(5.16)

Where the variables are the same as the MAPE calculation.

This case study resulted in an overall MAPE of 82.06% for the system (acetone =

74.31%, acetic acid = 80.44%, hydrogen peroxide = 63.45%, formic acid = 115.18%,

oxalic acid= 63.57%) as well as high SD for most species (acetone = 2.48, acetic acid

= 2.91, hydrogen peroxide = 1.70, formic acid = 2.55, oxalic acid= 0.04). Signifi-

cantly, the concentration profiles calculated did not match the experimental results

(see Figure 5.4). However, this outcome was not unexpected: indeed it is consistent

with the behavior of an ABM. Recall that one of the applications of ABM is to con-

duct theory testing. These results show that the use of lumped reaction pathways in

the model are problematic and that more complete reaction pathways are required.

5.4.3 Comprehensive pathways in silico study

The next study conducted using the model was performed using recently developed

elementary reaction pathways [262]. For this study the objectives were two-fold: first,

to replicate the experimentally observed second order reaction kinetics for acetone

using complete reaction pathways; second, to evaluate the predicted by-products

against the experimental measures. Additionally, the running time of the ABM was

logged to evaluate the running time of the model.

The first step in the study was to prepare the reaction list for the model. To

do so the elementary reaction pathways [262] were adjusted to assume a neutral

pH and the authors calculated the branching ratios not present in [262]. Table 5.3
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Table 5.3
Elementary reaction pathways for acetone degradation induced by hydroxyl

radicals

no. Reaction Rate M-1 s-1 (Ratio)

0 H2O2 + hv → 2 HO• -2.38x10−2

1 CH3COCH3 + HO• → •CH2COCH3 + H2O 1.10x108

2 •CH2COCH3 + O2 → •OOCH2COCH3 2.00x109

3 •OOCH2COCH3 + •OOCH2COCH3 →

CH3COCH2OOOOCH2COCH3

1.40x109 (1%)

4 •OOCH2COCH3 + •OOCH2COCH3 →

2 •OCH2COCH3 + (3) O2

1.40x109 (37.6%)

5 •OOCH2COCH3 + •OOCH2COCH3 →

2 CH3COCHO + H2O2

1.40x109 (53.6%)

6 •OOCH2COCH3 + •OOCH2COCH3 →

CH3COCHO + CH3COCH2OH + (3) O2

1.40x109 (1%)

7 •OOCH2COCH3 + •OOCH2COCH3 →

CH3COCHO + CH3COCH2OOOH

1.40x109 (1%)

8 •OOCH2COCH3 + •OOCH2COCH3 →
•OCH2COCH3 + HO2

• + CH3COCHO

1.40x109 (5.8%)

9 •OOCH2COCH3 + HO2
• →

CH3COCH2OH + (3) O + (3) O2

1.20x107

10 •OCH2COCH3 + HO2
• → CH3COCH2OH +

(3) O2

1.00x106

12 •OCH2COCH3 + •OCH2COCH3 →

CH3COCHO + CH3COCH2OH

2.20x103

13 •OCH2COCH3 → •CH(OH)COCH3 9.75x105 (28%)

14 •OCH2COCH3 → •COCH3 + HCHO 9.75x105 (72%)
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Table 5.3 continued from previous page

no. Reaction Rate M-1 s-1 (Ratio)

15 •COCH3 + O2 → •OOCOCH3 2.50x109

16 CH3COCH(OH)2 + HO• →
•CH2COCH(OH)2 + H2O

1.20x108

17 CH3COCH(OH)2 + HO• →
•C(OH)2COCH3 + H2O

1.50x108

18 •C(OH)2COCH3 + O2 →
•OOC(OH)2COCH3

7.40x108

19 •OOC(OH)2COCH3 → HO2
• +

CH3COCOO–

8.00x103

20 CH3COCOO– + HO• → •CH2COCOO– +

H2O

3.90x107

21 CH3COCOO– + HO• →
•OC(OH)(CH3)COO–

1.00x107

22 CH3COCOO– + H2O2 → CH3COO– +

CO2 + H2O

1.10x10−1

23 CH3COCHO + HO• → •OC(OH)(CH3)CHO 7.43x107

24 CH3COCHO + HO• → •CH2COCHO + H2O 5.00x108

25 CH3COCHO + H2O2 → CH3COO– +

HCOO– + H2O

2.00e-01

26 CH3COCH2OH + HO• →
•CH2COCH2OH + H2O

1.00x108

27 CH3COCH2OH + HO• →
•CH(OH)COCH3 + H2O

5.00x108

28 •OOCOCH3 + •OOCOCH3 →

2 •OCOCH3 + (3) O2

8.30x109
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Table 5.3 continued from previous page

no. Reaction Rate M-1 s-1 (Ratio)

29 •OOCOCH3 + HO2
• → CH3COO– + (3) O +

(3) O2

2.00x106

30 •OOCOCH3 → HO2
• + CH2CO 1.82 s

31 CH2CO + H2O → CH3COO– 4.40x101

32 •OCOCH3 → •CH3 + CO2 1.00x106

33 •CH3 + O2 → •OOCH3 2.80x109

34 •OOCH3 + •OOCH3 → 2 •OCH3 + (3) O2 3.40x108 (50%)

35 •OOCH3 + •OOCH3 → 2 HCHO + H2O2 3.40x108 (50%)

36 •OOCH3 + •OOCH3 → HCHO + CH3OH +

(3) O2

1

37 •OOCH3 + HO2
• → CH3OH + (3) O + (3) O2 1.00x107

38 •OOCH3 + •OOCH2COCH3 → •OCH3 +
•OCH2COCH3 + (3) O2

4.00x108

39 •OOCH3 + •OOCH2COCH3 →

CH3COCHO + CH3OH + (3) O2

1

40 •OOCH3 + •OOCH2COCH3 → H2O2 +

HCHO + CH3COCHO

1.00x107

41 •OCH3 → •CH2OH 5.00x105

42 CH3OH + HO• → •CH2OH + H2O 9.60x108

43 •CH2OH + O2 → •OOCH2OH 1.20x109

44 CH2(OH)2 + HO• → •CH(OH)2 + H2O 1.00x109

45 •CH(OH)2 + O2 → •OOCH(OH)2 4.50x109

46 •OOCH2OH + •OOCH2OH →

2 •OCH2OH + (3) O2

8.90x108

47 •OOCH2OH + •OOCH2OH → 2 HCOO– 1.60x109
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Table 5.3 continued from previous page

no. Reaction Rate M-1 s-1 (Ratio)

48 •OOCH2OH + •OOCH2OH → CH2(OH)2 +

HCOO–

1

49 •OOCH2OH + HO2
• → CH2(OH)2 + (3) O +

(3) O2

2.00x106

50 •OOCH2OH → HO2
• + HCHO 48.1 s

51 •OCH2OH + •OCH2OH → HCOO– +

CH3(OH)2

1.60x109

52 •OCH2OH → HCHO + HO• 1.00x106

53-54 HCOO– + HO• → •COO– + H2O 2.40x109

55 •COO– + O2 → •OOCOO– 1.00x1010

56 •OOCOO– + •OOCOO– → •OCOO– +

(3)O2

8.70x109

57 •OCOO– + •OCOO– → CO2 + (3) O2 7.80x109

58-59 CH3COO– + HO• → •CH2COO– + H2O 1.00x108

60 •CH2COO– + O2 → •OOCH2COO– 2.00x109

61 •OOCH2COO– + •OOCH2COO– →

2 •OCH2COO– + (3) O

5.80x108 (50%)

62 •OOCH2COO– + •OOCH2COO– →

2 HOCCOO– + H2O2

5.80x108 (50%)

63 •OOCH2COO– + •OOCH2COO– →

HOCCOO– + HOCH2COO–

1

64 •OOCH2COO– + HO2
• → HOCH2COO– +

(3) O + (3) O2

1.00x105

65 •OCH2COO– + •OCH2COO– →

HOCCOO– + HOCH2COO–

7.30x109
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Table 5.3 continued from previous page

no. Reaction Rate M-1 s-1 (Ratio)

66 •OCH2COO– → •COO– + HCHO 1.00x106

67-68 HOCCOO– + HO• → •COCOO– + H2O 2.60x109

69 •COCOO– + O2 → •OOCOCOO– 3.30x109

70 •OOCOCOO– + •OOCOCOO– → (3) O2 +

–OOCCOO–

5.00x108

71 •OOCOCOO– + HO2
• → –OOCCOO– +

(3) O + (3) O2

2.00x106

72-74 –OOCCOO– + HO• → •OOCCOO– + H2O 1.60x108

75 •CH(OH)COCH3 + O2 →
•OOCH(OH)COCH3

9.50x108

76 •OOCH(OH)COCH3 + •OOCH(OH)COCH3

→ CH3COCOO– + CH3COCH(OH)2

5.80x106

77 •OOCH(OH)COCH3 + •OOCH(OH)COCH3

→ 2 •OCH(OH)COCH3 + (3) O2

1.70x109

78 •OOCH(OH)COCH3 + •OOCH(OH)COCH3

→ H2O2 + CH3COCOO–

3.00x108

79 •OOCH(OH)COCH3 + HO2
• →

CH(OH)2COCH3 + (3) O + (3) O2

2.00x106

80 •OOCH(OH)COCH3 → CH3COCHO +

HO2
•

2.2

81 •OCH(OH)COCH3 + •OCH(OH)COCH3 →

CH3COCOO– + CH3COCH(OH)2

1.00x103

82 •OCH(OH)COCH3 → HCOO– + •COCH 1.00x106

83 •OOCH(OH)2 + •OOCH(OH)2 →

2 •OCH(OH)2 + (3) O2

7.90x107 (50%)
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Table 5.3 continued from previous page

no. Reaction Rate M-1 s-1 (Ratio)

84 •OOCH(OH)2 + •OOCH(OH)2 →

2 HOC(OH)2 + H2O2

7.90x107 (50%)

85 •OOCH(OH)2 + •OOCH(OH)2 →

CH(OH)3 + HOC(OH)2

1

86 •OOCH(OH)2 → •HO2 + HCOO– 8.70x103

87 •OOCH(OH)2 + HO2
• → CH(OH)3 +

(3) O + (3) O2

2.00x106

88 •OCH2OH → HCOO– + HO• 6.30x105

89 •OOCCOO– + •OOCCOO– → 4 CO2 8.26x109

90 H2O2 + HO• → HO2
• + H2O 2.70x107

91 H2O2 + HO2
• → HO• + H2O + O2 5.00x10−1

92 H2O2 + O2
•– → HO• + OH– + O2 1.30x10−1

93 HO• + HO2
– → HO2

• + OH– 7.50x109

94 HO• + HO2
• → H2O + O2 6.60x109

95 HO• + HO• → H2O2 5.50x109

96 HO2
• + O2

•– → H2O2 + O2 8.86x107

97 HO2
• + HO2

• → H2O2 + O2 7.61x105

98 H2O2 ⇔ HO2
– + H+ pKa = 11.6

99 HO2
• ⇔ O2

•– + H+ pka = 4.8

lists the reactions used for the study and follows the same numbering convention as

[262]. Reaction 11 was excluded due to the slow reaction rate and the rest of the

CH2=C+OCH3 reactions were not included in the study. A range indicates the use

of a single reaction assuming a constant pH of seven. Reaction 89 is based upon

calculations by the authors, while reactions 90 through 99 are from [268]. Finally,

since the model attempts reactions in the order they are read, we sorted the reaction
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list to have the faster reactions first. To account for the hydroxyl cage effect, hydroxyl

radicals produced as result of photolysis (i.e., Reaction 0) each have a 70% chance of

entering the model. The model was then run using the same parameters outlined in

Section 5.4.2 and the MAPE and SD calculated.

In contrast to the lumped reactions, the concentration profiles calculated using the

elementary reaction pathways are consistent with the experimental data (see Figure

5.5). The numerical results of the study also show promise as well, despite showing

a fairly high error rate for the MAPE (overall = 80.39%, acetone = 84.04%, acetic

acid = 19.55%, hydrogen peroxide = 11.15%, formic acid = 61.17%, oxalic acid =

193.63%) and SD (acetone = 2.64, acetic acid = 0.60, hydrogen peroxide = 0.03,

formic acid = 2.30, oxalic acid = 4.89). The predicted concentration profile for hy-

drogen peroxide had the best fit to experimental data overall. The next is acetone

until about 300 minutes into the model where it deviates from the experimental data.

Acetic acid starts with a close fit to experimental data, but deviates at about 120

minutes with lower predicted concentrations than were observed. Formic acid is con-

sistently under predicted by the model, but the behavior of the curve is consistent

with the experimental results (i.e., rapid peak followed by long decay). Similarly,

oxalic acid follows the observed behavior of the experimental data, but is generally

under predicted throughout the model starting at 180 minutes. Prior to that, the

model over predicts which may lead to the MAPE and SD being high given an exper-

imental measurement of 9.58x10−5 mM at 30 minutes. When that value is excluded,

the numerical results for oxalic acid drop considerably (MAPE = 102.71%, SD =

1.35). Execution of the model took on average 27 minutes 41 seconds, over 10 runs

with a standard deviation of 2 minutes 38 seconds on a Late 2013 iMac (2.9 GHz

Intel Core i5, 8 GB 1600 MHz DDR3).
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Figure 5.5: Predicted concentration profiles following acetone degradation
induced by hydroxyl radicals using elementary reaction pathways, note that
while there are deviations in the calculated concentrations, the concentration
profiles are consistent with experimental data.

5.4.4 Sensitivity Analysis

Sensitivity analysis for the model was conducted in two phases and complete details

can be found in the Supplementary Material. For the first phase the reaction rates

were adjusted between 2x and 0.5x for select reactions (see Table 5.4) and the model

was run using the same parameters outlined in Section 5.4.3. During this analysis it

was observed that the concentrations for formic acid and acetic acid were both found

to be significantly dependent upon the rate constants for hydroxyl radicals. Addition-

ally, the formation of HOCCOO– was found exhibit significant fluctuations which is
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likely attributable to the number of agents in the model since HOCCOO– fluctuated

between 50 and 200 agents. This implies that the model has some sensitivity to the

number of agents for chemical species with very low concentrations.

Since reductions in the reaction rate for reactions no. 58-59, no. 53-54, and no.

72-74 resulted in the sample deviation for oxalic acid being significantly reduced, a

second phase of sensitivity analysis was conducted. For this evaluation, the reaction

rates for reactions no.53-54, no.58-59, and no.72-74 were set to 6.0x108 M-1 s-1, 5.0x107

M-1 s-1, and 8.0x107 M-1 s-1, respectively. Reaction rates were then adjusted between

2x and 0.5x for select reactions (see Table 5.6). Under these scenarios the SD was

found to improve significantly against the baseline scenario (see Table 5.7) supporting

the conclusion the formation of by-products are significantly dependent upon the rate

constants for hydroxyl radicals.

5.5 Discussion
One significant observation from the model is that while the concentration profile

for acetone tends to align with the experimental data until about 300 minutes into

the model. This holds for both the baseline results (see Section 5.4.3) as well as

during sensitivity analysis. The exact cause of this remains somewhat elusive. While

the sensitivity analysis revealed that the by-products are very sensitive to hydroxyl

radical rate constants, in the case of the acetone reaction, variations in the reaction

rate resulted in the concentration profile deviating significantly from the experimental

values. However, in the case of scenario 19b (i.e., reactions no. 3 through 8 having

k reduced by 0.5x) acetone had a SD at 1.16 (SD of 0.31 for 0 through 300 minutes)

with good agreement with experimental measurements. This implies that acetone

degradation is at least influenced by subsequent reactions and that some of the error

be a result of measurement error during the experiment.
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While the results of the model are promising, more work can be done to improve

the overall fidelity. First, while the elementary reaction pathways were adjusted to

assume a neutral pH, during an AOP the pH is expected to fluctuate and accounting

for this will likely improve the results. Second, we used a probabilistic approximation

of the photolysis reaction based upon experimental results. The significant devia-

tion in concentration profiles for lumped pathways and elementary reaction pathways

indicates that incorporation of scavenging reactions is necessary in order to predict

the hydrogen peroxide concentrations. While this indicates that the results are more

than just the model fitting the experimental results, it is also quite limited since

it requires experimental data to calculate the photolysis rate. As such, further re-

search is needed to model photolysis based upon the underlying photo-physical and

photochemical behavior in the context of the ABM.

5.6 Conclusion
The use of ABM to study AOPs is a novel application and even in the context of

chemical modeling the application of ABM has remained quite limited. However, as

we have demonstrated, ABM has the potential to address the limitations in existing

approaches to studying AOPs by modeling the chemical entities and relevant reac-

tions. While the numeric errors for the elementary reaction pathways where high, the

predicted concentration profiles were consistent with the behavior of the experimental

concentrations. This shows considerable promise for ABM in the context of AOPs

and warrants further investigation of the technique.
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Supplementary Material

5.A Sensitivity Analysis

5.A.1 Part I

The first part of the sensitivity analysis evaluated the response of the model to ad-

justments in the reaction rate for key reactions as outlined in scenarios number 1a

though 11b (see Table 5.4). Since it was observed that formic acid and acetic acid

were significantly dependent upon the rate constants for hydroxyl radicals (see Table

5.5), additional scenarios were conducted to verify this. The results of these scenarios

are included as Figures 5.16 through 5.21.

5.A.2 Part II

For the second part of the sensitivity analysis, the sensitivity of formic acid and acetic

acid were significantly dependent upon the rate constants for hydroxyl radicals was

further evaluated. This was done by adjusting the reaction rate for reactions no. 53-

54, no. 58-59, and no. 72-74 (see Table 5.3) to 6.0x108 M-1 s-1, 5.0x107 M-1 s-1, and

8.0x107 M-1 s-1, respectively. These settings were then used to generate the baseline

calculated concentration profiles for figures 5.22 - 5.32. The scenarios outlined in

Table 5.6 were then run to generate the sample deviation (See Table 5.7) and the

plots.
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Table 5.4
Adjustments to reaction rates for the first part of the sensitivity analysis

Scenario No. Description

1a Reaction No. 1: 2 times k
1b Reaction No. 1: 1/2 times k
2a Reaction No. 2: 2 times k
2b Reaction No. 2: 1/2 times k
3a Reactions No. 3-8: 2 times k
3b Reactions No. 3-8: 1/2 times k
4a Reaction No. 9: 2 times k
4b Reaction No. 9: 1/2 times k
5a Reactions No. 13-14: 2 times k
5b Reactions No. 13-14: 1/2 times k
6a Reaction No. 29: 2 times k
6b Reaction No. 29: 1/2 times k
7a Reactions No. 58-59: 2 times k
7b Reactions No. 58-59: 1/2 times k
8a Reactions No. 53-54: 2 times k
8b Reactions No. 53-54: 1/2 times k
9a Reactions No. 71: 2 times k
9b Reactions No. 71: 1/2 times k
10a Reactions No. 72-74: 2 times k
10b Reactions No. 72-74: 1/2 times k
11a Reactions No. 67-68: 2 times k
11b Reactions No. 67-68: 1/2 times k
12 Reactions No. 58-59, 53-54, and 72-74: 2 times k
13 Reactions No. 58-59, 53-54, and 72-74: 0.5 times k
14 Reactions No. 58-59: 0.5 times k, No. 53-54 and 72-74: 0.25

times k
15 Reactions No. 58-59: 0.5 times k, No. 53-54: 0.4 times k, and

72-74: 0.1 times k
16 Reactions No. 58-59: 0.5 times k, No. 53-54: 0.4 times k, and

72-74: 0.05 times k
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Table 5.5
Calculated sample deviation for first sensitivity analysis versus

experimental results

Compound
Scenario No. Acetone Acetic Acid Hydrogen

Peroxide
Formic

Acid
Oxalic

Acid
1a 1.01 0.04 0.01 2.44 9.68
1b 7.62 1.39 0.07 2.40 6.12
2a 2.42 0.58 0.03 2.34 6.86
2b 2.34 0.57 0.02 2.34 7.20
3a 2.62 0.60 0.00 2.31 6.73
3b 2.44 0.63 0.03 2.36 5.69
4a 1.61 0.68 0.11 2.41 7.79
4b 1.41 0.74 0.13 2.46 7.66
5a 2.44 0.61 0.03 2.37 8.21
5b 2.58 0.61 0.03 2.36 10.47
6a 2.31 0.61 0.05 2.36 10.28
6b 2.43 0.60 0.03 2.34 8.26
7a 2.75 1.66 0.01 2.32 22.92
7b 2.00 0.50 0.06 2.37 1.82
8a 2.36 0.58 0.02 2.85 9.67
8b 2.25 0.55 0.03 1.20 8.07
9a 2.50 0.64 0.03 2.32 7.34
9b 2.57 0.62 0.03 2.33 6.49
10a 2.55 0.63 0.03 2.35 7.09
10b 2.50 0.64 0.04 2.33 8.50
11a 2.62 0.57 0.04 2.23 9.00
11b 2.33 0.55 0.05 2.39 4.01
12 2.93 1.67 0.00 2.87 12.37
13 2.18 0.50 0.06 1.29 3.94
14 2.15 0.45 0.06 0.78 2.80
15 1.85 0.49 0.05 0.94 2.48
16 1.96 0.53 0.08 0.85 1.96
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Table 5.6
Adjustments to reaction rates for the second part of the sensitivity analysis

Scenario No. Description

17a Reaction No. 1: 2 times k
17b Reaction No. 1: 1/2 times k
18a Reaction No. 2: 2 times k
18b Reaction No. 2: 1/2 times k
19a Reactions No. 3-8: 2 times k
19b Reactions No. 3-8: 1/2 times k
20a Reaction No. 9: 2 times k
20b Reaction No. 9: 1/2 times k
21a Reactions No. 13-14: 2 times k
21b Reactions No. 13-14: 1/2 times k
22a Reaction No. 29: 2 times k
23b Reaction No. 29: 1/2 times k
23a Reactions No. 58-59: 2 times k
23b Reactions No. 58-59: 1/2 times k
24a Reactions No. 53-54: 2 times k
24b Reactions No. 53-54: 1/2 times k
25a Reactions No. 71: 2 times k
25b Reactions No. 71: 1/2 times k
26a Reactions No. 72-74: 2 times k
26b Reactions No. 72-74: 1/2 times k
27a Reactions No. 67-68: 2 times k
27b Reactions No. 67-68: 1/2 times k
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Table 5.7
Calculated sample deviation for second sensitivity analysis versus

experimental results

Compound
Scenario No. Acetone Acetic Acid Hydrogen

Peroxide
Formic

Acid
Oxalic

Acid
17a 1.32 1.27 0.02 0.37 3.01
17b 7.31 0.53 0.09 0.36 0.28
18a 2.06 0.45 0.08 0.85 0.04
18b 1.26 0.38 0.16 0.25 4.33
19a 2.07 0.51 0.06 0.70 1.39
19b 1.16 0.45 0.16 0.30 3.14
20a 1.80 0.37 0.07 0.72 0.82
20b 1.92 0.33 0.07 0.72 0.07
21a 2.02 0.38 0.07 0.78 0.17
21b 1.89 0.36 0.06 0.92 0.66
22a 1.97 0.41 0.05 0.91 0.38
22b 2.02 0.30 0.06 0.85 0.07
23a 2.35 0.69 0.05 0.92 4.07
23b 1.66 1.21 0.10 0.60 1.88
24a 2.02 0.35 0.07 1.39 1.46
24b 1.75 0.36 0.08 5.38 1.22
25a 1.96 0.33 0.07 0.87 0.25
25b 2.00 0.33 0.06 0.66 0.06
26a 2.13 0.36 0.06 0.83 1.30
26b 1.96 0.33 0.07 0.80 1.55
27a 2.06 0.31 0.06 0.84 0.33
27b 1.94 0.35 0.07 0.74 0.50
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Figure 5.6: Scenario Number 1a and 1b
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Figure 5.7: Scenario Number 2a and 2b
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Figure 5.8: Scenario Number 3a and 3b
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Figure 5.9: Scenario Number 4a and 4b
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Figure 5.10: Scenario Number 5a and 5b
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Figure 5.11: Scenario Number 6a and 6b
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Figure 5.12: Scenario Number 7a and 7b
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Figure 5.13: Scenario Number 8a and 8b
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Figure 5.14: Scenario Number 9a and 9b
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Figure 5.15: Scenario Number 10a and 10b
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Figure 5.16: Scenario Number 11a and 11b
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Figure 5.17: Scenario Number 12
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Figure 5.18: Scenario Number 13
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Figure 5.19: Scenario Number 14
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Figure 5.20: Scenario Number 15
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Figure 5.21: Scenario Number 16
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Figure 5.22: Scenario Number 17a and 17b
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Figure 5.23: Scenario Number 18a and 18b
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Figure 5.24: Scenario Number 19a and 19b
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Figure 5.25: Scenario Number 20a and 20b
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Figure 5.26: Scenario Number 21a and 21b
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Figure 5.27: Scenario Number 22a and 22b
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Figure 5.28: Scenario Number 23a and 23b
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Figure 5.29: Scenario Number 24a and 24b
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Figure 5.30: Scenario Number 25a and 25b
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Figure 5.31: Scenario Number 26a and 26b
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Figure 5.32: Scenario Number 27a and 27b
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Chapter 6
Conclusion

6.1 Introduction

This dissertation is ambitious, with a broad goal to show how agent-based mod-

eling (ABM) can be applied to two different complex systems to overcome the

limitations of existing tools seeking to project future states in the systems, which is

framed as the question: “How can ABM be used to address the limitations in existing

tools used to study complex systems?” As a result of this goal, the works in Chapters

2 - 5 touch upon the fields of sustainability science, chemistry, and the practice of

ABM and contributes to each area as a result. First, Chapter 2 addresses a need for

an ABM platform that can conduct simulated policy experiments in which various

policy instruments may be tested and impacts projected and evaluated. Next, in

Chapter 3, the LCA provides a standard against which the results of an agent-based

life cycle sustainability assessment (agent-based LCSA) can be evaluated against. The

aforementioned agent-based LCSA is the culminating contribution in Chapter 4, and

leverages ABM to addresses the limitations of existing sustainability assessment tools

when projecting the environmental, economic, and social impacts of woody biomass

based biofuels. Finally, in Chapter 5, the development of an ABM to study advanced
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oxidation processes (AOPs) addresses the limitations of existing techniques by pro-

jecting concentration profiles based upon a comprehensive list of elementary reaction

pathways. Ultimately, his dissertation also points to several possibilities for future

work with broad impacts upon scientific discourse and discovery.

6.2 Contributions

6.2.1 Contributions to sustainability science

Chapter 2 describes the agent-based model (ABM) platform, ForestSim, and is a

necessary component of the case study application of agent-based LCSA described

in Chapter 4. While the immediate application of ForestSim is the aforementioned

agent-based LCSA, it was also designed for forest management policy experimentation

as well as broader bioenergy sustainability assessment studies. Sustainable production

of bioenergy from forest resources requires policies that can anticipate complex social,

environmental, and economic impacts. Since these impacts may require years to

manifest, the use of computer modeling to project possible policy impacts may help

to avoid future policy failures. ForestSim supports this goal by offering a means to

conduct simulated policy experiments in which various policy instruments may be

tested and impacts projected and evaluated.

Chapter 3 presents the results of a life cycle assessment (LCA) conducted for the

proposed integrated hydropyrolysis and hydroconversion (IH2) biorefinery in Onton-

agon, Michigan. The complete life cycle impacts of IH2 fuels is still incomplete and the

manuscript advances out understanding of the impacts. The calculation of the energy

return on investment (EROI) also contributes to the broader discussion concerning

the replacement of petroleum derived fuels with fuels from renewable sources. This

LCA also assists in the development of the agent-based LCSA and is a component of

the case study described in Chapter 4.
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In Chapter 4, ABM and life cycle sustainability assessment (LCSA) are inte-

grated to form a new methodological approach: agent-based LCSA. The argument

presented draws upon the current discourse regarding the limitations of existing tools,

and advances it by arguing that the integration of ABM and LCSA (i.e., agent-based

LCSA) addresses these limitations. As the literature reflects the preliminary devel-

opment of the approach, an operationalization is outlined using ISO 14040 [60] as the

basis. While contextualized against a backdrop of biofuels to provide examples for the

reader, the intent is that methodology is generic in its application. The second half of

the chapter develops a case study application of agent-based LCSA. This contributes

to the literature by reinforcing the results of Chapter 3 through their replication using

a different methodological approach and cross-validation of agent-based LCSA. The

results of the case study further contribute to the literature. While the immediate

application of the results case study may be limited to Ontonagon, Michigan and the

Western Upper Peninsula region, the means by which the feedstock projections are

made are applicable to site selection for projects requiring large capital expenditure

that are dependent upon resources from the local community for their process inputs.

Finally, the implications of the aesthetic impacts of logging (i.e., the visual buffers

assessed), and the annual impacts upon wetlands due to logging, present an area of

concern for policy makers in the region. Ultimately this chapter contributes to the

broader purpose of this dissertation through the development of agent-based LCSA

to project future states of the system being studied.

6.2.2 Contributions to chemistry

The application of ABM to study UV/H2O2 processes in Chapter 5 represents a

novel contribution to the study of AOPs and advances the possibilities of projecting

future states of chemical reactions. Furthermore, as a novel application of ABM,

there is a possibility for advancements to other applications of models of chemical

interactions and molecular dynamics, although that work is beyond the scope of

this dissertation. While the ABM presented in this dissertation builds upon prior
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work through the bimolecular reaction model used (see [52, 254]), other applications

are primarily limited to biological models and intracellular signaling pathways (see

[51, 269]). This may be partially attributed to the seminal article examining the NF-

κB signaling pathway [52]. As such, the ABM has considerable flexibility in terms of

the reactions incorporated. So, while the focus of Chapter 5 was UV/H2O2 processes,

the ABM is not limited to just this application.

6.2.3 Contributions to the practice of agent-based modeling

While not the intent of this dissertation, the development of the ABMs contributes

to the common body of knowledge that ABM practitioners draw upon when imple-

menting (i.e., deciding the software implementation and programming) their models.

This is due to the decision to apply an ABM to a research problem being fairly

simple compared to designing the model (i.e., identifying the agents, environment,

variables, decision making, and so forth) and implication of the ABM. For example,

the justification to use an ABM to study a complex system can be generalized in

three steps:

1. Identify the aspects of the research question that share the characteristics of a

complex system.

2. Identify how those characteristics manifest as limitations in existing tools, or

prevent existing tools from fully modeling the problem.

3. Discuss the ways that ABM addresses those limitations by allowing the complex

system to be modeled.

This approach is used in Chapter 4 and 5 when explaining why an ABM is better

suited for assessing the impacts of woody biomass based biofuels and AOPs, respec-

tively. However, once the decision to use an ABM has been made and justified, and

the model is designed, the practitioner is still faced with the issue of implementa-

tion. With tools such as NetLogo [55] the practitioner is limited to the capabilities
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of the tools selected for use. While practitioners may not commonly encounter such

problems, this dissertation offers practitioners insight beyond the ability to see how

ABMs were implemented in this dissertation.

First, ForestSim, as presented in Chapter 2 offers contributions to the border com-

munity of ABM practitioners. While tools such as MASON [54] and GeoMason [89]

offers the means of developing ABMs that incorporate geographic data, their integra-

tion and use requires a degree of technical expertise. ForestSim provides a modeling

platform that integrates ABM along with spatial coupling of agents (e.g., forest own-

ers) with parcel boundaries and landscape data (e.g., National Land Cover Database

[103] and LANDFIRE [207]). As a result, ForestSim alleviates some underlying tech-

nical concerns (e.g., parallel processing of landscape data) allowing researchers to

focus more on the development of an agent’s environment and decision making.

Further contributions are a result of the ABM developed for AOPs in Chapter

5, specifically, the treatment of space (i.e., the sparse lattice structure) and some

commentary on problems addressed during model construction. The sparse lattice

structure is quite significant within the context of the model as the simulation of

100,000 chemical entities requires that approximately 13 µm3 of space for the envi-

ronment.1 The size of the environment is relevant since the use of the interaction

radius in the model requires an efficient means of storing the location of agents and

finding other agents. To address these requirements, the sparse lattice data structure

was developed and is time and space efficient at approximately O(n) and O(mn), re-

spectively. This minimizes the amount of time spent searching for possible reactants

and allows the model to increase the number of agents simulated, a requirement for

model accuracy.

1 To put this in context, assuming 13,000 nm3 is implemented using a multi-dimensional matrix data
structure, and only 32 bits of data is needed per point, about 8.8 TB of memory would be needed
for storage.
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The reaction registry in the AOP ABM also overcomes a critical issue in devel-

opment that is hinted at in the source code included in [254]: namely, an increasing

number of chemical entities and possible reactions results in a combinatorial explo-

sion. As a result, while agent actions may be summarized as “move” and “react,”

it is not possible to program all of the relevant reactions into the agents themselves.

This is overcome in Chapter 5 by using a method for agent decision making and for

arbitrary lists of reactions to be loaded into the model. This is counterintuitive to

how agent decision making is typically presented (i.e., programmed as part of the

agent) and that optimizations can take place in code by hashing compound names

that are friendly to chemists (e.g., C3H6O or acetone) into values that can be ef-

ficiently compared by the computer. This approach also allows the model to take

advantage of pathway awareness to prevent, or eliminate, products that have no sub-

sequent reaction (i.e., they can be counted, but it is not necessary to add them to the

simulation).

6.3 Future Work
As an ABM platform, there are limited directions that ForestSim can be taken as

a discrete entity, although continued work to add new features is always an option.

However, as demonstrated by its use in Chapter 4, ForestSim has a strong possibility

of being a productive entity as part of other research projects. In contrast, the LCA

conducted in Chapter 3 offers several possible directions for future work. First, the

extent of soil organic carbon loss due to timber harvests is presently unknown and

is difficult to quantify as part of an LCA. While there is literature to support the

assumption that soil organic carbon will be replenished during the regrowth cycle, it

may be inappropriate to assume complete restoration. LCAs evaluating the impacts

of woody biomass based biofuels would benefit from work done to fully quantify the

loss and restoration of forest carbon sinks. As a result of these concerns, Chapter 3

raises some questions about the Renewable Fuel Standard (RFS). While a critique of
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the RFS was beyond the scope of the chapter, and indeed this dissertation, examining

the RFS in the context of rebounding effects and carbon sequestration is necessary if

it is to remain the standard by which biofuels are measured.

The agent-based LCSA developed in Chapter 4 presents considerable opportu-

nities for future work as a methodological advancement. First, while intuitive, this

approach has applications beyond just the woody biomass based biofuels used in the

case study. Effectively, any LCA or LCSA conducted that is projecting impacts and

there are heterogenetic actors and spatial decision making plays a significant role.

One of the more interesting applications of the approach, although not explored in

this dissertation, is to generate geographic information systems (GIS) data so that

land-use/land-use change (LU/LUC) can be fully explored. While the techniques

used in Chapter 4 (i.e., GIS data for visual buffers and wetlands) are appropriate to

projecting the impacts quantitatively, GIS data may allow for qualitative assessments

to be made by members of the community though data visualizations. There have

been some explorations of this in the context of local knowledge and LU/LUC (see

[270]). Also worth highlighting are the values of the projections of woody biomass

feedstocks that the model produced. While possible using other approaches, if a bio-

fuel or biorefinery operator does not have a secure source of feedstocks (e.g., contracts

with industrial forests or short rotation crops) then these projections have value when

informed by local data (e.g., parcel ownership, survey data, etc.).

The ABM of AOPs, as presented in Chapter 5, offers a considerable opportunity

for future work by effectively opening up a new line of enquiry in the study of AOPs.

As discussed in Chapter 5 ordinary differential equations are the primary means of

studying AOPs; however, the technique is limited due to compute times and the

stiff nature of the equations. By overcoming several key barriers in developing an

ABM-based approach, there is increased flexibility in AOP studies. For example, the

ABM allows for reaction pathways to iteratively adjusted and results to be evaluated

in a reasonable amount of time. While not used to full effect in the UV/H2O2 case
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study, it is possible to use Monte Carlo techniques to adjust values until predicted

concentration profiles are within an acceptable margin of experimental data. When

combined with the prediction of reaction pathways based upon molecular graph and

network analysis techniques [271], it may be possible to solely use computational

techniques to study AOP treatments. This likely represents a broad research agenda

as more immediate questions arose from the development of the model. However, the

implications of such a research agenda are considerable since effective integration of

reaction pathway prediction with ABM to calculate concentration profiles may allow

for AOP treatments for emergent organic contaminants to be generated without the

need for extensive laboratory experimentation.

The ABM in Chapter 5 owes a great deal of its performance to the underlying

sparse lattice data structure and there exists room for improvement in the implemen-

tation. Currently the data structure represents a trade-off between mutability (i.e.,

update and insert operations) and searching with a preference for minimizing opera-

tions needed to mutate the data structure. While some tree-based spatial data struc-

tures were examined during the development of the model, the expected performance

penalties due to tree mutations were found [255]. Likewise, the space complexity of

the data structure is largely driven by very conservative estimates about the amount

of space needed. Currently the model over-allocates memory on the conservative

assumption that the number of molecules during module execution may exceed the

initial amount by a considerable margin. However, this was not extensively tested

and careful study of the behavior of the ABM under various reaction pathways may

allow for a more efficient use of space. Ultimately, improvements in the time and

space complexity of the data structure allows for more agents to be used in models,

or parameters to be tested in the same amount of time.
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Appendix A
Forest Ownership Patterns in the Western

Upper Peninsula of Michigan, USA

A.1 Introduction

There is increasing scholarship focused on the Western Upper Peninsula (WUP)

region of Michigan, USA to gain insight into how the forests are managed (see

[88, 91, 190]). Such studies are joined by research into the potential for biofuel devel-

opment in the state of Michigan (see [90, 198, 272]) which highlight the suitability of

the region for biofuels. The WUP is approximately 16,000 sq.km. and consists of the

counties of Baraga, Gogebic, Houghton, Iron, Keweenaw, and Ontonagon. While the

WUP is heavily forested, the economy is depressed with tourism being the primary

sector [188]. This has led to some speculation that woody biomass-based biofuels

could be an economic driver for the region [273]. One potential barrier to this devel-

opment is the prevalence of family forests (i.e., forest ownership by individuals and

families) and more broadly non-industrial private forests (NIPF) (i.e., private forests

lacking woody processing facilities) in the region, cited as controlling approximately

one-third of the forested land [91, 274]). While studies show that family forests in the

region are typically against harvesting [91] it may be required to meet the feedstock
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requirements if biofuels are developed. Tax incentivization programs such as Michi-

gan’s Commercial Forest Lands [127] can encourage harvesting, but the requirement

for 40 acres (161,874 sq.m) of forested land might eliminate a significant number of

landowners. However, family forests are by no means the only actor in the regional

landscape as commercial concerns, government agencies, and trusts own significant

quantities of forested land.

This appendix summarizes the work done to prepare parcel data for use in the

studies described in this dissertation. This work contributes to the current scholarship

by conducting an improved accounting of the forest ownership patterns that will be

of interest to scholars studying family forests, biofuels, and land-use, land-use change

patterns in the region or similar regions in the United States. Land-use characteristics

are based upon the National Land Cover Database (NLCD) 2011 dataset [103]. The

results of this study are compared to previous national surveys of forest owners and

possible directions for future scholarship are noted.

A.2 Methods
Parcel data was collected from WUP counties and aggregated into a single map in

ArcGIS 10.6.1 [275] containing a total of 65,461 parcels representing 15,724 sq.km

of land as bounded by the counties (see Figure A.1). Valid ownership records were

extracted and parcel references to towns and physical features were discarded. Du-

plicated records resulting from ownership of multiple parcels were eliminated and a

unique id was assigned to each owner. An ArcPy script was then used to look for

additional duplication based upon differences in county entries (e.g., “John and Jane

Doe” versus “John Doe et ux”). The Levenshtein Distance [276] - or similarity score

- between the names was calculated when matching addresses were found. Scores

above 0.548356696 were assumed to be matches based upon the statistical threshold

min, determined by,
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min = avg(score) + α ∗ σ(score) (A.1)

Once the matches were identified, the records were updated with the relevant

parent record and source of match (e.g., name or address records). Upon consolidation

of ownership records, labels were assigned based upon the scheme outlined in Table

A.1. Family forests where commonly verified with visual inspection of the ownership

record and specific labels were not assigned if classification could not be made.

The second phase of the study focused on assessing the parcel characteristics

using the NLCD 2011 dataset and the Commercial Forest Land registry [160]. First

parcels smaller than one acre were removed since they cannot meet the minimum

area to qualify as forest [274]. Next, the Commercial Forest Land registry was used

to identify commercial forests based upon centroid intersection. The Tabulate Areas

Table A.1
Ownership Labels and Scheme for Assignment

Label Description

Native American Parcel owner is local Native American community (ex., “Ke-
weenaw Bay Indian Community”), or records indicated land
held in trust by government for Native Americans.

Federal Parcel ownership is associated with the “US Government” or a
federal agency.

State Parcel ownership is associated with the “State of Michigan” or
a state agency.

Municipal Parcel ownership is associated with the county (e.g. “Houghton
County”), local community (e.g., “Houghton Township”),
or local community services (e.g., “Houghton-Portage Twp
Schools”).

Commercial Parcel appears in Commercial Forest Lands [127] .
Family Forest Parcel has at least one acre (4046.86 sq.m) of forest and owner

appears to an individual or family.
Trust Parcel ownership record clearly indicates association with a

trust (ex., “Doe Family Trust”), the owner is listed as a trustee,
or the organization is a 501(c)(3) registered non-profit.
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tool was then used to calculate the area in each parcel by NLCD code and the results

were aggregated into forest (NLCD codes 41, 42, and 43 for deciduous, evergreen,

and mixed forest respectively) and woody wetlands (NLCD code 90) for evaluation.

Following aggregation, parcels with less than one acre of forest were removed and

unlabeled parcels with at least one acre of forested land were manually reviewed to

determine if they fit into any of the categories. Finally, parcels were clipped to ensure

they were bound to the counties lines [159].

A.3 Results and Discussion
Following analysis, a total of 39,119 parcels remained, accounting for control of about

10,910 sq.km of forests and 2,680 sq.km of wetlands (see Table A.2, Figure A.2).

The parcels account for 15,367 sq.km of land or about 98% of the total area. Land

ownership is approximately 30% federal, 23% family forests, and 28% registered as

commercial forest independent of any other attributes. Across all ownership patterns,

6,231 parcels and 3,712 sq.km of forests were found to be registered in the Commercial

Forest program with an additional 3,745 parcels and 1,369 sq.km of forests eligible

for registration (see Table A.3).

Table A.2
Summary of labels applied in sq.km; commercial forests represent

properties that are solely registered as such.

Count Forest Wetlands Total

Native American 120 18 3 23
Federal 2,546 3,418 857 4,620
State 1,911 868 256 1,249
Municipal 790 203 79 325
Commercial Forest 4,776 3,332 706 4,336
Family Forest 24,498 2,280 563 3,553
Trust 1,796 242 69 369
Mixed / Corporate 2,682 549 147 892
Total 39,119 10,910 2,680 15,367
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Table A.3
Breakdown of Commercial Forest registration and eligible parcels in sq.km

Commercial Forests Eligible Parcels
Count Forest Wetlands Total Count Forest Wetlands Total

Commercial 4,749 3,326 704 4,328
Family 1,199 304 90 432 2,654 810 117 1,085
Trust 154 51 9 64 298 109 20 147
Others 129 32 16 52 40 13 2 16
Mixed/
Corporate

793 437 93 665

Total 6,231 3,712 819 4,876 3,785 1,369 232 1,913

Forest ownership is generally dominated by a minority of entities (e.g., govern-

ments, timber companies, etc.) who control a minimum of one sq.km of forest and

collectively control approximately 77% and 12,047 sq.km of the total land. Excluding

federal, state, and local governments, 624 entities (e.g., corporations, trusts, and pri-

vate individuals) control more than one sq.km of forest with a mean of 2,340 sq.km.

As shown in Table A.4, the majority of family forest owners (about 53%) own between

80,937.1 to 404,686 sq.m (20 and 100 acres) with the average family forest being ap-

proximately 121,406 sq.m (30 acres). NIPFs were estimated using the Commercial

Forest Land registry by excluding properties listed as “Forest Industry” (see Figure

A.3) resulting in a total of 31,080 parcels in the region, with 3,712 sq.km of forest

and 5,695 sq.km of total land. It is important to note that quantity of NIPFs may

be off by as much as 15% due to parcels potentially owned by the forest industry not

being labeled as such (i.e., appearing as “Mixed/Corporate”). However, given the

prevalence of the industry’s participation with the Commercial Forest Land program

in the region, failure to register a parcel may also imply that logging may not be

possible on the land.

The extent of federal holdings in the WUP is not surprising due to presence of

Isle Royale and Ottawa National Forest. Likewise, state and municipal holdings are

also consistent with parks such as Porcupine Mountains Wilderness State Park.
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Table A.4
Family Forest holdings, in acres with breaks based upon total forest owned

using patterns established by [277] and [274].

Count Forest Wetlands Total Percent Total

1 to <10 7,388 33,095 23,986 88,350 5.87%
10 to <20 3,292 48,151 19,534 91,733 8.55%
20 to <50 5,150 166,171 36,221 251,088 29.49%
50 to <100 1,882 130,847 23,417 189,173 23.22%
100 to <200 710 95,893 16,651 133,860 17.02%
200 to <500 184 51,996 10,415 71,938 9.23%
500 to <1,000 34 22,404 4,296 30,498 3.98%
1,000 to <5,000 10 14,900 4,643 21,226 2.64%

Interestingly, family forest ownership patterns break with the national averages

found in Family Forest Owners of the United States, 2006 [277] and National Wood-

land Owner Survey (NWOS) [274], which found that the majority would have one

and nine acres of forest. Rates are similar to those found in the NWOS breakout for

the state of Michigan [278]; although, ownership is more concentrated in the 20 to

49 acres range at 31.33% than the state rate of 26.2%. Since family forests control

approximately 21% of the total forests in the region, they have the potential to be

regionally significant actors in forest conservation or timber production. Likewise,

since family forests are part of the broader NIPF classification [277], collective man-

agement of 34% of the region’s forests by NIPFs also underscores their importance in

the region.

A.4 Conclusions
The data that is presented here represents an improved understanding of the forest

ownership patterns in the WUP region. While ownership is largely dominated by

a minority of entities such as the federal government and industrial forests; family

forests and NIPFs are also extremely common highlighting the need for scholars to

understand their motivations. Also noteworthy is a significant number of parcels
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that eluded easy classification (i.e., “Mixed/Corporate” parcels) that, when combined

with trusts, account for about 7% of forests in the region and almost one-third of the

parcels and 40% of the forest eligible for registration as Commercial Forest Land.

Understanding why the forests are not registered may be useful to policy makers

seeking to increase enrollment in the program or understand the possible limits of

timber-based economy in the region.
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Figure A.1: Parcels in the WUP labeled by county, note that Isle Royale
is not shown.
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Figure A.2: Parcels in the WUP labeled with ownership type, note that
Isle Royale is not shown.
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Figure A.3: Likely NIPF parcels in the WUP, note that “Commercial
Forests” indicates enrollment in the Commercial Forest Lands program.
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Appendix B
Guide to Supplementary Information

B.1 Chapter 3

Two additional files were included with the manuscript that do not appear in this

dissertation. The first is referred to as “Electronic Supplementary Material 2”

in the manuscript and consists of the file ESM2_Calculations_and_Analysis.xlsx.

The file consists of several spreadsheets that were used to prepare calculations for

the life cycle assessment. The second file is referred to as “Electronic Supplementary

Material 3” in the manuscript and consists of the file ESM3_SimaPro_Inputs.xlsx.

The file consists of several spreadsheets that were exported by SimaPro as a backup.

In order to replicate the work it would be necessary to export the spreadsheets to

individual files for import into SimaPro, or re-enter the data.

B.2 Chapter 4
One additional file was included with the manuscript hat does not appear in this

dissertation. In the chapter it is referred to as “Electronic Supplementary Material

2”, and corresponds to the file ESM2_Calculations_and_Analysis.xlsx. The file
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contains several spreadsheets that were used to prepare calculations for the agent-

based model as well as illustrating some of the algorithms used to prepare the initial

forested environment.
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Appendix C
Sample ChemSim Output

The following is the abbreviated console output of ChemSim when running the in sil-

ico study described in Chapter 5, Section 5.4.3. Since most of the logging is redundant

during model execution, only the first three steps and last step are included.

ChemSim 0.7 / 60b8f6c

Max Memory: 4294967296b
Molecule Size: 384b
Staring Molecule Limit: 1E5 (38400000b)

delta T (sec): 1.0
Inital pH: 7.0
Reactor Dimensions (nm): 12757, 12757, 12757

Reactions: experiment/ems.csv [2019-05-09 - 16:04:10]
*COO- + O2 -> *OOCOO-, r = 1276 (bimolecular)
*OOCOO- + *OOCOO- -> *OCOO- + (3)O2, r = 1244 (bimolecular)
*OOCOCH3 + *OOCOCH3 -> *OCOCH3 + *OCOCH3 + (3)O2, r = 1233 (bimolecular)
*OOCCOO- + *OOCCOO- -> CO2 + CO2 + CO2 + CO2, r = 1232 (bimolecular)
*OCOO- + *OCOO- -> CO2 + (3)O2, r = 1219 (bimolecular)
HO* + HO2- -> HO2* + OH-, r = 1209 (bimolecular)
*OCH2COO- + *OCH2COO- -> HOCCOO- + HOCH2COO-, r = 1203 (bimolecular)
HO* + HO2* -> H2O + O2, r = 1178 (bimolecular)
HO* + HO* -> H2O2, r = 1133 (bimolecular)
*CH(OH)2 + O2 -> *OOCH(OH)2, r = 1082 (bimolecular)
*COCOO- + O2 -> *OOCOCOO-, r = 1002 (bimolecular)
*CH3 + O2 -> *OOCH3, r = 960 (bimolecular)
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HOCCOO- + HO* -> *COCOO- + H2O, r = 941 (bimolecular)
*COCH3 + O2 -> *OOCOCH3, r = 931 (bimolecular)
HCOO- + HO* -> *COO- + H2O, r = 921 (bimolecular)
*CH2COCH3 + O2 -> *OOCH2COCH3, r = 875 (bimolecular)
*CH2COO- + O2 -> *OOCH2COO-, r = 875 (bimolecular)
*OOCH(OH)COCH3 + *OOCH(OH)COCH3 -> *OCH(OH)COCH3 + *OCH(OH)COCH3 + (3)O2,

r = 836 (bimolecular)
*OOCH2OH + *OOCH2OH -> HCOO- + HCOO-, r = 821 (bimolecular)
*OCH2OH + *OCH2OH -> HCOO- + CH3(OH)2, r = 821 (bimolecular)
*OOCH2COCH3 + *OOCH2COCH3 -> CH3COCH2OOOOCH2COCH3, r = 790 (bimolecular,

0.01)
*OOCH2COCH3 + *OOCH2COCH3 -> *OCH2COCH3 + *OCH2COCH3 + (3)O2, r = 790

(bimolecular, 0.376)
*OOCH2COCH3 + *OOCH2COCH3 -> CH3COCHO + CH3COCHO + H2O2, r = 790

(bimolecular, 0.536)
*OOCH2COCH3 + *OOCH2COCH3 -> CH3COCHO + CH3COCH2OH + (3)O2, r = 790

(bimolecular, 0.01)
*OOCH2COCH3 + *OOCH2COCH3 -> CH3COCHO + CH3COCH2OOOH, r = 790

(bimolecular, 0.01)
*OOCH2COCH3 + *OOCH2COCH3 -> *OCH2COCH3 + HO2* + CH3COCHO, r = 790

(bimolecular, 0.058)
*CH2OH + O2 -> *OOCH2OH, r = 754 (bimolecular)
CH2(OH)2 + HO* -> *CH(OH)2 + H2O, r = 714 (bimolecular)
CH3OH + HO* -> *CH2OH + H2O, r = 705 (bimolecular)
*CH(OH)COCH3 + O2 -> *OOCH(OH)COCH3, r = 702 (bimolecular)
*OOCH2OH + *OOCH2OH -> *OCH2OH + *OCH2OH + (3)O2, r = 689 (bimolecular)
*C(OH)2COCH3 + O2 -> *OOC(OH)2COCH3, r = 650 (bimolecular)
*OOCH2COO- + *OOCH2COO- -> *OCH2COO- + *OCH2COO- + (3)O, r = 602

(bimolecular, 0.5)
*OOCH2COO- + *OOCH2COO- -> HOCCOO- + HOCCOO- + H2O2, r = 602 (bimolecular,

0.5)
CH3COCHO + HO* -> *CH2COCHO + H2O, r = 574 (bimolecular)
CH3COCH2OH + HO* -> *CH(OH)COCH3 + H2O, r = 574 (bimolecular)
*OOCOCOO- + *OOCOCOO- -> (3)O2 + -OOCCOO-, r = 574 (bimolecular)
*OOCH3 + *OOCH2COCH3 -> *OCH3 + *OCH2COCH3 + (3)O2, r = 535 (bimolecular)
*OOCH3 + *OOCH3 -> *OCH3 + *OCH3 + (3)O2, r = 508 (bimolecular, 0.5)
*OOCH3 + *OOCH3 -> HCHO + HCHO + H2O2, r = 508 (bimolecular, 0.5)
*OOCH(OH)COCH3 + *OOCH(OH)COCH3 -> H2O2 + CH3COCOO-, r = 487 (bimolecular)
-OOCCOO- + HO* -> *OOCCOO- + H2O, r = 397 (bimolecular)
CH3COCH(OH)2 + HO* -> *C(OH)2COCH3 + H2O, r = 389 (bimolecular)
CH3COCH(OH)2 + HO* -> *CH2COCH(OH)2 + H2O, r = 361 (bimolecular)
CH3COCH3 + HO* -> *CH2COCH3 + H2O, r = 351 (bimolecular)
CH3COCH2OH + HO* -> *CH2COCH2OH + H2O, r = 340 (bimolecular)
CH3COO- + HO* -> *CH2COO- + H2O, r = 340 (bimolecular)
HO2* + O2*- -> H2O2 + O2, r = 327 (bimolecular)
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*OOCH(OH)2 + *OOCH(OH)2 -> *OCH(OH)2 + *OCH(OH)2 + (3)O2, r = 314
(bimolecular, 0.5)

*OOCH(OH)2 + *OOCH(OH)2 -> HOC(OH)2 + HOC(OH)2 + H2O2, r = 314
(bimolecular, 0.5)

CH3COCHO + HO* -> *OC(OH)(CH3)CHO, r = 308 (bimolecular)
CH3COCOO- + HO* -> *CH2COCOO- + H2O, r = 249 (bimolecular)
H2O2 + HO* -> HO2* + H2O, r = 220 (bimolecular)
*OOCH2COCH3 + HO2* -> CH3COCH2OH + (3)O + (3)O2, r = 168 (bimolecular)
CH3COCOO- + HO* -> *OC(OH)(CH3)COO-, r = 158 (bimolecular)
*OOCH3 + HO2* -> CH3OH + (3)O + (3)O2, r = 158 (bimolecular)
*OOCH3 + *OOCH2COCH3 -> H2O2 + HCHO + CH3COCHO, r = 158 (bimolecular)
*OOCH(OH)COCH3 + *OOCH(OH)COCH3 -> CH3COCOO- + CH3COCH(OH)2, r = 132

(bimolecular)
*OOCOCH3 + HO2* -> CH3COO- + (3)O + (3)O2, r = 93 (bimolecular)
*OOCH2OH + HO2* -> CH2(OH)2 + (3)O + (3)O2, r = 93 (bimolecular)
*OOCOCOO- + HO2* -> -OOCCOO- + (3)O + (3)O2, r = 93 (bimolecular)
*OOCH(OH)COCH3 + HO2* -> CH(OH)2COCH3 + (3)O + (3)O2, r = 93 (bimolecular)
*OOCH(OH)2 + HO2* -> CH(OH)3 + (3)O + (3)O2, r = 93 (bimolecular)
*OCH2COCH3 + HO2* -> CH3COCH2OH + (3)O2, r = 73 (bimolecular)
*OCOCH3 -> *CH3 + CO2, r = 73 (unimolecular)
*OCH2OH -> HCHO + HO*, r = 73 (unimolecular)
*OCH2COO- -> *COO- + HCHO, r = 73 (unimolecular)
*OCH(OH)COCH3 -> HCOO- + *COCH, r = 73 (unimolecular)
*OCH2COCH3 -> *CH(OH)COCH3, r = 73 (unimolecular, 0.28)
*OCH2COCH3 -> *COCH3 + HCHO, r = 73 (unimolecular, 0.72)
HO2* + HO2* -> H2O2 + O2, r = 67 (bimolecular)
*OCH2OH -> HCOO- + HO*, r = 63 (unimolecular)
*OCH3 -> *CH2OH, r = 58 (unimolecular)
*OOCH2COO- + HO2* -> HOCH2COO- + (3)O + (3)O2, r = 34 (bimolecular)
*OOCH(OH)2 -> *HO2 + HCOO-, r = 15 (unimolecular)
*OOC(OH)2COCH3 -> HO2* + CH3COCOO-, r = 15 (unimolecular)
*OCH2COCH3 + *OCH2COCH3 -> CH3COCHO + CH3COCH2OH, r = 10 (bimolecular)
*OCH(OH)COCH3 + *OCH(OH)COCH3 -> CH3COCOO- + CH3COCH(OH)2, r = 7

(bimolecular)
*OOCH2OH -> HO2* + HCHO, r = 3 (unimolecular)
CH2CO + H2O -> CH3COO-, r = 3 (bimolecular)
*OOCH(OH)COCH3 -> CH3COCHO + HO2*, r = 1 (unimolecular)
*OOCOCH3 -> HO2* + CH2CO, r = 1 (unimolecular)
*OOCH3 + *OOCH3 -> HCHO + CH3OH + (3)O2, r = 1 (bimolecular)
*OOCH3 + *OOCH2COCH3 -> CH3COCHO + CH3OH + (3)O2, r = 1 (bimolecular)
*OOCH2OH + *OOCH2OH -> CH2(OH)2 + HCOO-, r = 1 (bimolecular)
*OOCH2COO- + *OOCH2COO- -> HOCCOO- + HOCH2COO-, r = 1 (bimolecular)
*OOCH(OH)2 + *OOCH(OH)2 -> CH(OH)3 + HOC(OH)2, r = 1 (bimolecular)
H2O2 + HO2* -> HO* + H2O + O2, r = 1 (bimolecular)
CH3COCHO + H2O2 -> CH3COO- + HCOO- + H2O, r = 0 (bimolecular)
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H2O2 + O2*- -> HO* + OH- + O2, r = 0 (bimolecular)
CH3COCOO- + H2O2 -> CH3COO- + CO2 + H2O, r = 0 (bimolecular)
H2O2 + UV -> HO* + HO*, r = 0 (photolysis)
H2O2 <=> HO2- + H+, pKa = 11.6 (acid dissociation)
HO2* <=> O2*- + H+, pKa = 4.8 (acid dissociation)

Molecule to mol scalar: 4484304.932735425

Generating 89686 molecules of H2O2
Generating 10313 molecules of CH3COCH3
Adding molecules to the schedule...
H2O2 photolysis decay rate: -2.91 molecules/timestep
Estimated running time of 30819 time steps, padded to 31719

2019-05-09T20:26:16.123: Starting simulation...
2019-05-09T20:26:16.125: 0.0 / 0 of 31719
2019-05-09T20:26:24.055: 60.0 / 60 of 31719
...
2019-05-09T20:52:28.200: 31680.0 / 31680 of 31719

Molecule counts written to: data/results-1.csv
Molar counts written to: data/molar-1.csv

2019-05-09T20:52:29.355
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Copyright Information

Chapter 2 was adapted for publication in the Open Access journal SoftwareX

where it appears as Zupko, R., & Rouleau, M. (2019). ForestSim: Spatially

explicit agent-based modeling of non-industrial forest owner policies. SoftwareX,

9, 117-125. https://doi.org/10.1016/j.softx.2019.01.008 under the Creative

Commons Attribution License (CC BY) license, the standard license for which is

included first in this appendix.

Chapter 3 was published in The International Journal of Life Cycle Assessment

and reappears with the permission of Springer Nature. The permission letter has

been included in this appendix.

Chapter 5 includes data from a figure that appears in [52, 254] and is reproduced

with permission from Elsevier. The permission letter appears last in this appendix.
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[53] G. Pérez-Rodŕıguez, M. Pérez-Pérez, F. Fdez-Riverola, and A. Lourenço, “High
performance computing for three-dimensional agent-based molecular models,”
Journal of Molecular Graphics and Modelling, vol. 68, pp. Pages 68–77, July
2016.

[54] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Balan, “MASON: A
Multiagent Simulation Environment,” Simulation, vol. 81, pp. 517–527, July
2005.

[55] U. Wilensky, “NetLogo,” 1999.

[56] S. M. N. Arifin and G. R. Madey, “Verification, Validation, and Replication
Methods for Agent-Based Modeling and Simulation: Lessons Learned the Hard
Way!,” in Concepts and Methodologies for Modeling and Simulation: A Tribute
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sustainability criteria of the production and use of liquid biofuels,” Renewable
and Sustainable Energy Reviews, vol. 14, pp. 3226–3231, Dec. 2010.

[108] B. D. Solomon, “Biofuels and sustainability,” Annals of the New York Academy
of Sciences, vol. 1185, pp. 119–134, Jan. 2010.

238



[109] K. Janda, L. Kristoufek, and D. Zilberman, “Biofuels: policies and impacts.,”
Agricultural Economics/Zemedelska Ekonomika, vol. 58, no. 8, 2012.

[110] F. L. Resende, “Recent advances on fast hydropyrolysis of biomass,” Trans-
formations of Biomass and its derivatives to Fuels and Chemicals, vol. 269,
pp. 148–155, July 2016.

[111] T. L. Marker, L. G. Felix, M. B. Linck, and M. J. Roberts, “Integrated hy-
dropyrolysis and hydroconversion (IH2) for the direct production of gasoline
and diesel fuels or blending components from biomass, part 1: Proof of principle
testing,” Environmental Progress & Sustainable Energy, vol. 31, pp. 191–199,
Dec. 2011.

[112] Q. Zhang, K. R. Goldstein, and J. R. Mihelcic, “A review of life cycle assessment
studies on renewable energy derived from forest resources,” in Renewable Energy
from Forest Resources in the United States, vol. 12 of Routledge Explorations
in Environmental Economics, pp. 163–195, London and New York: Routledge,
2009.

[113] T. Gomiero, “Are Biofuels an Effective and Viable Energy Strategy for Indus-
trialized Societies? A Reasoned Overview of Potentials and Limits,” Sustain-
ability, vol. 7, no. 7, 2015.

[114] T. Marker, M. Roberts, M. Linck, L. Felix, P. Ortiz-Toral, J. Wangerow,
L. Kraus, C. McLeod, A. DelPaggio, and E. Tan, “Biomass to gasoline and
diesel using integrated hydropyrolysis and hydroconversion,” technical Report,
Gas Technology Inst., Des Plaines, IL (United States), 2012.

[115] E. Maleche, R. Glaser, T. Marker, and D. Shonnard, “A preliminary life cy-
cle assessment of biofuels produced by the IH2 âĎć process,” Environmental
Progress & Sustainable Energy, vol. 33, pp. 322–329, Apr. 2013.

[116] J. Fan, J. Gephart, T. Marker, D. Stover, B. Updike, and D. R. Shonnard, “Car-
bon Footprint Analysis of Gasoline and Diesel from Forest Residues and Corn
Stover using Integrated Hydropyrolysis and Hydroconversion,” ACS Sustainable
Chemistry & Engineering, vol. 4, pp. 284–290, Jan. 2016.

[117] A. Dutta, A. Sahir, E. Tan, D. Humbird, J. Snowden-Swan, P. Meyer, J. Ross,
D. Sexton, R. Yap, and J. Lukas, “Process Design and Economics for the Con-
version of Lignocellulosic Biomass to Hydrocarbon Fuels Thermochemical Re-
search Pathways with In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors,”
Technical Report NREL/TP-5100-62455, PNNL -2382 3, National Renewable
Energy Laboratory and Pacific Northwest National Laboratory, Mar. 2015.

239



[118] J. C. Meerman and E. D. Larson, “Negative-carbon drop-in transport fuels
produced via catalytic hydropyrolysis of woody biomass with CO2 capture and
storage,” Sustainable Energy & Fuels, vol. 1, no. 4, pp. 866–881, 2017.

[119] C. A. Hall, B. E. Dale, and D. Pimentel, “Seeking to Understand the Reasons
for Different Energy Return on Investment (EROI) Estimates for Biofuels,”
Sustainability, vol. 3, no. 12, 2011.

[120] SynSel, “Ontonagon SynSel: Site Qualification Guide,” tech. rep., SynSel, n.d.

[121] SynSel, “Executive Summary,” tech. rep., SynSel, Dec. 2017.

[122] TV6 & FOX UP, “SynSel Bio-refinery plant coming to Ontonagon,” June 2018.
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[126] PRé, “SimaPro Database Manual: Methods Library,” Tech. Rep. Version 4.1,
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