Wilfrid Laurier University

Scholars Commons @ Laurier

Theses and Dissertations (Comprehensive)

2019

Heterogeneous Chemistry of Iron at the Liquid/Solid and Air/Solid
Interfaces

Mohammad Aminur Rahman
Wilfrid Laurier University, rahm5560@mylaurier.ca

Follow this and additional works at: https://scholars.wlu.ca/etd

Recommended Citation

Rahman, Mohammad Aminur, "Heterogeneous Chemistry of Iron at the Liquid/Solid and Air/Solid
Interfaces" (2019). Theses and Dissertations (Comprehensive). 2200.
https://scholars.wlu.ca/etd/2200

This Dissertation is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted
for inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @
Laurier. For more information, please contact scholarscommons@wlu.ca.


https://scholars.wlu.ca/
https://scholars.wlu.ca/etd
https://scholars.wlu.ca/etd?utm_source=scholars.wlu.ca%2Fetd%2F2200&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.wlu.ca/etd/2200?utm_source=scholars.wlu.ca%2Fetd%2F2200&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarscommons@wlu.ca

Heterogeneous Chemistry of Iron at the Liquid/Solid

and Air/Solid Interfaces

by

Mohammad Aminur Rahman

Bachelor of Science, Honors in Chemistry, Jahangirnagar University, 2004

Master of Science, Chemistry, Memorial University of NL, 2014

DISSERTATION
Submitted to the Biological and Chemical Sciences Program

Faculty of Science

In partial fulfilment of the requirements for the
Doctor of Philosophy in Biological and Chemical Sciences

Wilfrid Laurier University

2019

Mohammad Aminur Rahman 2019 ©



Abstract

Hematite (a-Fe2O3) is one of the common and stable phases of iron oxide that is
ubiquitous in nature. It is involved in many heterogeneous reactions through liquid-solid and
gas-solid interfacial interactions in aquatic geochemical systems. Moreover, the interfacial
chemistry of metal-oxide and organic matter plays a significant role in the mobility and
bioavailability of iron and other components such as arsenic in the soil and aquatic systems.
The interactions of organic matter with metal oxide surfaces occur through several mechanisms
in aquatic environment. Chapter 2 of this thesis describes the interactions of low molecular
weight model organics that include citric acid (CA), oxalic acid (OA) and pyrocatechol (PC)
on hematite nanoparticles that have been investigated and characterized by in situ attenuated
total internal reflectance Fourier transform infrared spectroscopy (ATR-FTIR) measurements.
H>0/D20 (H/D) exchange experiments were performed to observe the effect of hydration. It
was found that strong hydration influenced the spectra for both CA and OA whereas less in the
case of PC. Chapter 3 illustrates the initial binding kinetics of arsenicals such as dimethyl
arsinate (DMA) onto hematite nanoparticles pre-exposed to low molecular weight organics
such as OA and PC. These kinetic experiments were conducted using ATR-FTIR with an
emphasis on the role that electrolytes (KCI, NaCl, and KBr) play in the adsorption process. It
was concluded that the rate of adsorption for the arsenical onto pre-exposed model organic-
hematite surface was found greater in the presence of electrolytes, based on the initial Kinetic
rate of adsorption for arsenical. Chapter 4 focuses on the investigation of the hygroscopic
properties of organic and organometallic polymeric particles, namely polycatechol,
polyguaiacol, Fe-polyfumarte, and Fe-polymuconate. These particles are efficiently formed in
iron-catalyzed reactions with aromatic and aliphatic dicarboxylic acid compounds detected in
field-collected Secondary Organic Aerosol (SOA). The structure of surface water was studied

using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and the uptake of



gas water was quantified using quartz crystal microbalance (QCM) as a function of relative
humidity. Spectroscopic data show that water bonding with organic functional groups acting
as hydrogen bond acceptors causes shifts in their vibrational modes. Analysis of the hydroxyl
group stretching region revealed weak and strong hydrogen bonding networks that suggest
cluster formation reflecting water-water and water-organics interactions, respectively. A
modified Type Il multilayer Brunauer-Emmett-Teller (BET) adsorption model described the
adsorption isotherm on the nonporous materials, polycatechol, polyguaiacol, and Fe-
polymuconate. However, water adsorption on porous Fe-polyfumarate was best described
using a Type V adsorption model, namely the Langmuir-Sips model that accounts for
condensation in pores. It was found that the organic polymers are more hydrophobic then the
Fe-containing organometallic polymers. In Chapter 5, the efficiency of iron-containing
materials such as Fe-BTC (BTC = 1,3,5-benzenetricarboxylate) metal-organic frameworks
(MOFs) and CoFe>04 nanomaterials were examined to explore their performance in reducing
NOx in NH3-SCR (Selective Catalytic Reduction) by DRIFTS. Urea was used as an in situ
production of NH3(g) as a reductant agent for NO(g). It appeared that the rate of conversion of
NO(g in the presence of CoFe;O4 nanomaterials (2.3+0.03 ppm-meter2-mint) is better than

that of Fe-BTC MOFs (0.22+0.04 ppm-meter2-min).
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Chapter 1 General Introduction

1.1Introduction

Iron (Fe) is one of the most important elements in our natural environment and plays a significant
role in many chemical reactions. It is an indispensable element for entire living forms.! It is
placed as the 4" most abundant element in the Earth’s crust after oxygen, silicon and aluminum.
However, the 10" in the universe and the most in building up the earth (34.5% by mass). It is
a very reactive transition-metal and exists as two major series of compounds such as the ferrous,
containing Fe?* and the ferric, containing iron (I11) Fe3*.2

In the natural environment, most of the iron exists in oxide form and is found in four
different polymorphs such as FeO, Fez04, a-Fe20zand y-Fe,Oz. However, a-Fe.O3 (hematite)
and Fe3O4 (magnetite) are known to be the most common and stable forms of iron oxides
(Figure 1.1).2 A metastable form of iron oxide, known as maghemite (y-Fe2Os), has a structure
similar to rock salt and is unstable below 843 K. These iron oxides have unique biochemical
and catalytic properties that are suitable for application in the field of environmental and

biomedical sciences.

(@) (b)

Figure 1.1 Structure of (a) hematite and (b) magnetite. (re-printed with permission from Ref
3).
Iron can be also found in oxide hydroxide form. The formation of iron oxide and hydroxide

occurs by protonation and release of iron ions from primary or secondary minerals or oxidation.
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Ferrihydrite (5Fe203-9H20) is a common iron oxide found in soils. It has poorly ordered
structure not like crystalline hematite and is considered an amorphous iron hydroxide.*

Iron is naturally introduced into the aquatic systems through many processes such as
weathering, water-rock interactions, biodegradation of organic matters, atmospheric deposition
and volcanic eruption. Anthropogenic addition of iron into surface water and the Earth’s
atmosphere is also significant.® The presence of iron in mineral dust, rocks and soils
emphasizes its involvement in various environmental processes such as heterogeneous
atmospheric chemistry, agueous geochemistry and environmental catalysis and remediation.
As detailed below, our goal is to explore the chemistry of iron that is involved at the liquid-
solid and gas-solid interface in environmental systems. For liquid-solid interfacial studies,
hematite (a—Fe203) nanoparticles have been chosen for the solid phase along with organic
molecules (such as citrate, oxalate and pyrocatechol) and arsenic compounds as a liquid phase.
In the case of the air-solid interfacial investigation, iron 1,3,5 benzenetricarboxylate, (Fe-BTC)
has been chosen as a solid phase with nitrogen oxides (NOx, X =1 or 2) in the gaseous phase.
1.2 Iron in soil and water

The form of iron oxide surface in bulk aqueous environments or in surface water is

reliant on pH of the solution as shown in Scheme 1.1.

+HY -H"
=Fe-OH, == =Fe-OH<==Fe-O"
pH> pszc pH< pszc

Scheme 1.1 Change the surface of iron oxide charge as a function of pH.
Surface charge in aqueous environments is a vital factor in determining the chemistry at the
interface. The surface possesses charge depending on the pH of the aqueous media. The pH
point at the which the surface possess zero ionic charge is defined as the point of zero charge
(pHpz). This pHpzc is equivalent to the solution isoelectric point (pHisep), When the

concentration of positively charged species equals that of negatively charged ones. However,
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actual values of pHpzc and pHisep for the same metal cation are different due to differences in
the solvation of surface species contrasted with those in solution and differences in the
coordination shell around the metal in each case. Typically, the adsorption of the anion occurs
at pH equal or below the pHp:c while cation adsorption is more favored at or above the pHpzc.
Also, dissolution rates of oxides increase below pHp.c with decreasing pH and increase with
increasing pH in alkaline media. The interactions of organic matter with iron oxides surfaces
are important and have an influence over the degradation and photochemical decay rate of
iron.® In aqueous geochemistry, these interactions occur via several mechanisms that alter the
charge and functional groups of the metal oxide surface. In addition, there are changes in water
structure and hydrophobic behavior at the interface. The adhesion strength and dissolution of
metal oxide is also influenced by the interactions of organic matter and the metal oxide surface.
Thus, dissolution due to interaction of the iron oxide surface with organic matter leads to the
enhancement of bioavailable iron as a nutrient and turns to the food source for microbes. These
molecular-level changes play a vital role in the mobility and bioavailability of iron and other
pollutants in soil and aqueous environment.” Among these pollutants are arsenic (As)
compounds, which are the species of focus of this thesis.

As is known as a lethal element and considered a carcinogenic for the human being.® It
can be found in rocks and minerals in the form of arsenopyrite (FeAsS). Also, it can be often
found as an associate member with the transition metals Cd, Pb, Ag, Au, Sb, P, W and Mo.%°
Two types of arsenical compounds are found in the environment: inorganic arsenic and organic
arsenic compounds. Inorganic arsenic includes arsenite [As (111)] and arsenate [As (V)]. These
arsenic compounds are more toxic than organic arsenic such as methylated ones such as,
monomethylarsonate [MMA] or dimethylarsinate [DMA]. As has been spotted into the
atmosphere and the source of As release includes anthropogenic activities as well as natural

processes. Anthropogenic sources of As (mostly arsine gas, AsHz) into the atmosphere include
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industrial smelting, combustion fossil fuel, and mining, followed by their discharged waste
products that include fly ash and mine wastes. Volcanic eruption is known as the main natural
source of As.X® Also, As exists as arsenic trioxide (As203) in the atmosphere. Strong oxidizing
agents such Os and HNOs can oxidize As;O3 to yield arsenic pentoxide (As20s) or the
corresponding triprotic arsenic acid (HzAsOas). After several chemical processes in the
atmosphere As is transported into the aquatic system through wet deposition as arsenic
H3AsOqs. It has been found that under neutral soil and water condition inorganic arsenite
As(I11), exists as a neutral species (pKa: 9.23, 12.1) while arsenate [As (V)] exists as an anion
(pKa 2.22, 6.98 and 11.53).1* The mobility of As in soil can be influenced by mineral and
organic matter contents in soil and occurs in three different ways. Firstly, reductive dissolution
of iron-oxide or direct oxidation-reduction reactions that result in the formation of As(l11) and
As(V) species. Secondly, competition may take place between organic matter and arsenical for
binding sites on metal-oxide/mineral surface. Thirdly, a ternary iron bridged complex (As-Fe-
Org) can be formed where iron is bridged between As and organic matter. Thus, organic matter
in soil and water play a vital role in the mobility of As species as well as iron as nutrient.*?%°
Considering the importance of organic—metal oxide interfacial interactions, their consequence
on the mobility of As in environment, investigations are needed to mimic real systems and
conditions. Knowledge is required to explore the Kinetics of adsorption and desorption of
organic matter to or from metal oxides and how the surface complexation impacts the
adsorption Kinetics of inorganic and organic arsenical compounds.
1.3 Iron in the atmosphere

Hematite (a-Fe203) is one of the common oxides in mineral dust aerosols in the
atmosphere.® These iron-containing aerosols can provide reactive adsorption sites for a variety
of trace gases and plays a dynamic role in numerous chemical transformations in heterogeneous

atmospheric chemistry. Moreover, surface water plays an important role in several
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heterogeneous reactions of mineral dust particles with gas phase species (For examples: OH,
03, SOz, NO2, and HNO3).*® Mineral dust is one of the primary types of aerosols that are
directly emitted into the atmosphere by natural processes like dust storms or other wind-driven
processes. After several chemical transformations in the atmosphere, iron is added to the ocean
surface through deposition of mineral dust. As a result, iron undergoes dissolution in aqueous
solution and forms complexes with organic matter. On the other hand, secondary organic
aerosols (SOA) originating from the photochemical reactions of gas-phases organic species,
directly emitted into the atmosphere. These gas-phase organics can go through an oxidation
processes and narrow down in volatility and thus can create new particles or can be condensed

on a particle surface that already exist (Figure 1.2).1718
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Figure 1.2 Pictorial presentation of environmental processes (both natural and anthropogenic
sources of gases and particles in the atmosphere and their consequence) that occurs on the
earth.

The phase of the mineral dust particles in aerosol can change with time due to chemical

aging and relative humidity (RH).*® Moreover, photochemical reactions can play a significant
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role in changing the composition of dust aerosols due to the presence of chromophores (For
example: humic-like substances (HULIS), nitrite, nitrate etc.) and transition-metals such as iron
(Fe).?° Aerosol particles that include mineral dust and SOA can perform as a cloud
condensation nuclei (CCN) as well as ice condensation nuclei (ICN), followed by the formation
of cloud droplets and atmospheric ice particles, respectively. Consequently, these particles can
exert a considerable effect on the microphysical properties of water and ice clouds that
eventually allows the formation of precipitations such as rain, snow, and storm. Mineral dust
aerosols can change the energy balance of the earth as well as influence climate both directly
and indirectly.?*2® This occurs directly through light absorption, scattering and terrestrial
radiation and indirectly by providing surfaces for reaction and modifying cloud formation and
lifetime. Thus, dust particles can reduce visibility and cause harmful effect on human health.'®
However, the role of iron in the transformation of organic species in atmospherically related
surfaces is still unexplored and a subject of further investigation.!” Moreover, little is known
about the chemistry involved in multicomponent atmospheric aerosol systems containing

surface water, organic matter, iron and halides.
1.4 Iron as a remedial material in heterogeneous catalysis

Heterogeneous reactions that occur in the atmosphere due to the presence of particles and
gases, have a harmful effect on the local and global environment. For a better and more
sustainable environment, it is important to remove or reduce the harmful atmospheric gases to
minimum concentration level such as nitrogen oxides (NOx, x = 1 or 2). NOy is generated by
anthropogenic activities (such as diesel engine, coal combustion, and incineration power
plants) and are involved in the processes that produce photochemical smog and acid rain.
Moreover, NOx has a rich chemistry in the atmosphere due to its high reactivity.'® Considering
the harmful effect of NOy, it has become an important environmental concern to control and
remove NOy from the air.!® The technology that is currently used in the removal of NOx is

6
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selective catalytic reduction (SCR) that facilitate conversion NOx into nitrogen and water.?*
The materials that have been used so far for the removal of NOy are activated carbon, activated
carbon fiber (ACFs), slugged derived adsorbent and zeolites. Nevertheless, the selective
catalytic reduction (SCR) of NOx with NH3 has been documented as one of the most effective
methods that converts NO into N..%° Catalysts play an important role in this conversion that
determine the NO removal efficiency. V20s-WOs3/TiO2 or V20s-MoOs/TiO2 honeycomb
monolith catalyst are commonly used in industrial applications. However, these catalysts have
shown some drawbacks and found to be deactivated during application mainly due to high
temperature and large quantity of dust.?® Various approaches have been taken to overcome
these problems while several groups investigating with other materials to develop efficient
catalyst for NH3-SCR for NOx removal.?’ Recently, metal-organic frameworks (MOFs) have
emerged as a new class of useful materials.?®2?° They are unique materials having metal building
unit together with coordinated organic linkers to form extended regular one, two- or three-

dimensional structure (Figure 1.3).%°

/
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Figure 1.3 Organic linkers and metal ions or clusters combine to synthesize metal-organic
framework materials (re-printed with permission from Ref 30).

Iron-containing materials have been used as environmental catalyst and for remediation
on a number of occasions due to their stability, low cost and environment-friendly.®* Iron-
containing MOF can be employed in this regard. Fe-based structures are known as the most

promising type of MOFs due to their high thermal stability, low cost, high biocompatibility
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and low toxicity.®? Fe-BTC (BTC: 1,3,5-benzenetricarboxy- late) is one of the MOFs that has
been commercialized by BASF under the name of Basolite.*

1.5 Surface Sensitive Techniques

Numerous surface sensitive techniques have been exploited to characterize oxide surfaces.
Typically, electron-based spectroscopy, vibrational spectroscopy, non-linear spectroscopy,
scanning probe microscopy (SPM) and synchrotron-based X-ray techniques are among the

methods currently been used to probe environmental processes on oxide surfaces (Figure 1.4).2
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Figure 1.4 Surface sensitive techniques normally used to study environmental interfaces.
Infrared spectroscopy is one of the potential methods for measuring the vibrational
spectra of adsorbates on surfaces that has been extensively used for studying systems of
environmental importance. The technique provides useful information about surface species
that are formed upon adsorption or surface reaction. Infrared spectroscopy can be in different

8
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forms such as reflection absorption infrared spectroscopy (RAIRS), diffuse reflectance infrared
spectroscopy (DRIFTS), transmission Fourier transform infrared (FT-IR) spectroscopy, and
multiple internal reflection (MIR) spectroscopy. These techniques are based on the linear optics
where the bulk signal is much more intense than the signal derived from the interface. Surface
reactions are mainly monitored by proper subtraction of the bulk contribution that can often
cause anomalous errors. Another infrared-based technique developed for in situ investigations
of liquid/solid interfaces is attenuated total reflection Fourier transform infrared (ATR FT-IR)
spectroscopy. This technique differs from traditional transmission IR techniques in that very
short effective path lengths on the order of tens microns can be achieved. This criterion makes
ATR techniques powerful tools for measuring IR spectra of liquid solutions with strong IR
absorber solvents such as water. The internal reflection element (IRE) is usually a high
refractive index crystal such as Ge and ZeSe. When the IR beam enters the crystals, it is
internally reflected several times until it exits. The probe radiation at the reflection point is an
exponentially decaying wave (evanescent wave) on the order of a micron and less. Here, the
reflectivity is a measure of the interaction of the evanescent wave with the sample, thus the
resulting spectrum is characteristic of the sample. The penetration depth of the evanescent
wave, dp, is defined as the distance required for the amplitude of the electric field to fall to e
of its value at the surface. It depends on the refractive index of the IRE, ny, the sample, n,
angle of incidence, 6, and the wavelength of the incident light according to the following
equation 1.1.

A
d, = e 11

» :
2ﬂn1\/sin29 - (nz/nl)2

The absorbance spectra obtained by ATR means differ from those obtained using conventional
transmission methods in that correction for varying depth of penetration with wavelength is

necessary. Upon proper subtraction of spectra due to the solvent and the clean surface, spectra
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due to the interfacial region can be easily obtained. ATR techniques have been employed for

studying different environmental systems at the molecular level such as surface complexation

and dissolution of minerals and water structure in many aqueous environments. In this PhD
research both ATR-FTIR and DRIFTS, have been extensively applied to characterized surface
species for both solid-liquid and air-solid interaction reactions.

1.6 Research questions and objectives
Currently, the environmental problems and concerns are increasing gradually. Therefore,

it is important to study and understand the environmental processes on a molecular level. As
mentioned earlier, iron plays a vital role in numerous environmental processes such as aqueous
geochemistry, heterogeneous atmospheric chemistry and environmental catalysis and
remediation, it requires high level of investigation in these three distinctly separated areas. In
these studies, we set our goal on finding the answers to the following questions in these three
distinct areas:

a. How organic matter (particularly -OH and -COOH containing organic matter) interacts
with iron oxide surfaces in water?

b. What types of surface complexes are formed during these interactions of organic matter
and iron oxide surface? How are these interactions effected by the changes in pH and
electrolytic conditions?

c. Inaquatic systems, how does organic matter on oxide surface, affects the binding kinetics
of pollutants such as Arsenic (As)?

d. How does gas-phase water interact with iron-containing secondary organic polymers that
exist in the atmosphere? And last but not the least,

e. How can iron containing materials be used as a useful remediation material to reduce NOy,

one of the main pollutants in the air?

10
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In these studies, the above questions have been covered and described one by one, on a
molecular level under different environmental conditions. However, the main purposes of this
thesis are as follows:

1. Investigate the role of iron oxide in mobility and bioavailability of arsenic and effect of

organic matter in soil and water.

2. Explore the role of iron oxide in the secondary formation due to interactions with model

organic compounds containing C2-C6 dicarboxylic acids and

3. Study the effectiveness of Fe-MOF materials in the catalytic reaction of nitrogen oxides

(NOx, x =1 or 2).

1.7 Thesis organization

This thesis contains six different chapters. Chapter 1 highlights the introductory description on
iron and its role in different environmental processes. Chapter 2 to Chapter 5 come up with
four distinct projects. Each of these chapters has been divided into six parts such as
introduction; objectives; experiments; results and discussion; conclusion and references.
Finally, Chapter 6 contains the overall conclusions and significance followed by appendices.

The content for each chapter of my thesis is stated below:

Chapter 1 General Introduction

Chapter 1 describes the general introduction of my thesis and sets the tone for the
remaining chapters. This chapter talks about the iron (Fe), how it exists in the natural
environment; its introduction to the soil and water; its role in the atmospheric chemistry and
finally usefulness of iron as a remediation material in a concise manner. In addition, this chapter

contains the research questions and objectives together with the organization of overall thesis.

11
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Chapter 2 Spectral Characterization of Organics on Hematite Nanoparticles, H/D Exchange

Experiments

Chapter 2 illustrates the H/D exchange experiments that were completed to address the
questions raised during publishing the paper in “Environmental Nano, 2016, 3, (4), 910-926”.
This paper highlights the spectral characterization of low molecular weight organics on
hematite nanoparticles and the role of electrolytes in the binding mechanisms. In order to
complement the experiments completed by Arthur Situm, a former student member from our
group, H/D exchange experiments were performed. He completed the experiments that were
associated with spectral characterization of surface organics (citrate, oxalate and pyrocatechol)
as a function of pH onto hematite nanoparticle in H.O. However, my contribution to the paper
are the experiments associated with spectral characterization of surface organics (citrate,
oxalate and pyrocatechol) as a function of pD onto hematite nanoparticles in D.O. These
experiments were performed to study the effect of H/D exchange on the structure of organic
complexes on hematite nanoparticles, particularly to investigate the possible association of
protons with the organics surface complex by Attenuated total internal reflectance Fourier

transform infrared spectroscopy (ATR-FTIR).

Chapter 3 ATR-FTIR Studies on the Initial Binding Kinetics of Arsenicals at the Organic-

Hematite Interface

Chapter 3 describes the initial binding kinetics of arsenicals at the organic-hematite
interface by ATR-FTIR. These experiments were done to complement the experiments
completed by Arthur Situm, a former student member from our group, in order to publish
“Journal of Physical Chemistry (A), 2017, 121, 5569-5579”. Here, the adsorption kinetics of
dimethayl arsenic acid (DMA) and arsenate with hematite nanoparticles, preloaded to three

different types of organics such as citrate, oxalate and pyrocatechol, were studied by in situ

12
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ATR-FTIR. As mentioned earlier, Arthur completed the experiments of arsenate and DMA
with hematite pre-exposed to citrate, in different electrolytes such as NaCl, KCI and KBr. My
contribution to the paper is the experiments of arsenate and DMA with hematite pre-exposed
to oxalate and pyrocatechol, in different electrolytes such as NaCl, KCl and KBr. Chapter 3

contains an in detail study of the experiments that | contributed to the JPC (A) paper.

Chapter 4 Surface Water Structure and Hygroscopic Properties of Light Absorbing Secondary

Organic Polymers of Atmospheric Relevance

Chapter 4 demonstrates the structure of surface water onto light absorbing organic and
organometallic polymeric particles, such as polycatechol, polyguaiacol, Fe-polyfumarte, and
Fe-polymuconate. Also, the hygroscopic properties of these organic and organometallic
polymeric particles were investigated. This work was published in “ACS Omega, 2018, 3,
15519-15529”. I am the first author of this paper and contributed by all the experiments, trouble
shooting and data analysis, associated with this paper. It has been found that these particles are
formed in iron-catalyzed reactions that contain aromatic and aliphatic dicarboxylic acid
compounds and spotted in field-collected SOA. The structural characterization of surface water
was done by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). In
addition, the gas-phase water uptake behavior of the particles was quantified using quartz

crystal microbalance (QCM) as a function of relative humidity.

Chapter 5 Application of Metal-Organic Frameworks (MOFs) to Enhance the Selective

Catalytic Reduction of NOy to Nitrogen Gas

Chapter 5 focuses on the elucidation of the performance of the metal-organic
frameworks (MOFs) for the selective catalytic reduction of NOx by NH3 as a reductant. Here,
Fe-BTC MOFs and CoFe>O4 nanomaterials have been chosen for the NH3-SCR to examine

their performance as catalysts. | am the first author of this work and did all the experiments,
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trouble shooting and data analysis, associated with this project. The surface and gas phase

species were characterized and quantified separately by DRIFTS and gas flow IR, respectively.

Chapter 6 Conclusions and Significance

Chapter 6 highlights the overall concluding remarks and significance that is related to
the three distinct areas of our environment. In these studies, we reported the interactions of
organic matter with iron oxide surface accompanied by the initial binding kinetics of arsenicals
with hematite nanoparticles preloaded to the organics, which are ubiquitous in nature and
represents the environmental processes associated to the aquatic geochemistry. One the other
hand, study of the characterization of surface water structure onto organic and organometallic
polymeric particles, reflects the chemical processes that occur in the atmospheric system.
Moreover, iron-containing MOFs as a catalyst can be useful to purify our environment and
remove harmful gases, have been discussed to highlight the role iron plays as a remediation
material. Chapter 6 has extended discussion on the conclusion and significance of this thesis

followed by appendices.
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Chapter 2 Spectral Characterization of Surface Organics on Hematite
Nanoparticles, H/D Exchange Experiments

2.1 Abstract

This chapter describes the spectral characterization of model organics such as CA, OA and
PC onto hematite nanoparticles. ATR-FTIR absorption spectra of adsorbed CA, OA and PC
were collected in D20 as a function of pD from 9-5. These experiments were performed in D,O
in order to interpret the results obtained from the pH envelope experiments for those model
organics on hematite nanoparticles. The results from pD experiment show that the existence of
a higher degree of outer-sphere complexation for OA than CA, whereas for PC bidentate-
binuclear complexes dominates.
2.2 Introduction

Understanding the interactions of organic matter (OM) with metal oxide or minerals at the
interfaces of solid-water and surface-controlled reactions is a pre-condition to preserve the
organic matter (OM) as well as the stability and transport of both organic and inorganic species
in the subsurface soil environments.! Interactions between organics and metal oxides/mineral
interface are a subject of current interest as they have many important applications in
environmental, biological and medical systems.?* However, due to the complex nature of both
organic matters and metal oxides/mineral surfaces, multiple interaction mechanisms have been
proposed in the literature. There are several mechanisms through which the interactions of
organic matters and metal oxides/mineral interface may take place (Figure 2.1). These
interaction mechanisms are well recognized and can be attributed to the characteristic nature
of the heterogeneous OM and metal oxides surfaces, their interfacial properties, and the
surrounding environmental conditions, particularly, pH and ionic strength. The most common
mechanisms involved are ligand exchange, electrostatic interaction, H-bonding, cation

bridging, chelation, hydrophobic and van der Waals interactions. All these interactions result
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in change on the surface charge and functional groups, hydrophobicity, interfacial water

structure, adhesion strength, and dissolution of the metal oxide/mineral phase.®
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Figure 2.1 Mechanisms for the interaction of organics with metal oxide or mineral surfaces.®
(Reprinted with permission from reference 3)

Ligand exchange is known to be the presiding mechanism for organic matters sorption on
metal oxides surface. The acidic functional groups (-COOH) of OM and hydroxyls (-OH) on
the metal oxides surface are liable for this reaction.* There are three steps in the ligand
exchange mechanism. In the first step, the protonation of surface hydroxyl of metal oxides
occurs. In the second step, the outer-sphere complex may be formed with the protonated
hydroxyl groups via -COOH groups or phenolic -OH groups of OM. Otherwise, ligand
exchange or condensation reaction between these groups may end up with an inner-sphere
complexation. Inner-sphere complexes represent those molecules that are formed by a direct

covalent bond or bonds with surface sites via chemisorption, whereas outer-sphere complexes
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are formed through electrostatic or weak van der Waals interactions with the surface, typically
known as physisorption.®

Electrostatic interaction is considered as a vital sorption mechanism, particularly for metal
oxides with the point of zero charge (PZC). At this point the pH remains higher than the
environmental pH. It is well documented that most of organic matter is negatively charged
under typical ambient conditions in the natural environment, and the net charge increases with
higher pH due to the protonation of carboxylic and phenolic groups of OM. On the other hand,
the solvated metal oxide surfaces or the addition of electrolytes can make the surface charged.
Thus, electrostatic interaction between OM and metal oxide surfaces are expected. As the metal
oxide surface is positively charged, it can react with negatively charged OM by electrostatic
attraction. However, it has been reported that negatively charged surface can also adsorb
negatively charged OM through other interactions.®

Hydrogen bonding is most likely to be formed in presence of organic adsorbate and metal
oxide surface containing the functional groups like -COOH, -OH and -NHo>. In such a system,
the polar functional groups like -COOH and -OH in OM act as a hydrogen bonding donor,
whereas benzene rings serve as a hydrogen bonding acceptor. However, hydrogen bonding is
usually not considered as a driving force of a reaction due to the weakness of the bonding.
Moreover, the reduction of hydrogen bonding donors is found to be responsible for the much
weaker hydrogen-bond interaction.

Cation bridging is another kind of interaction that occurs through divalent or multivalent
metal ions (such as Ca?* or Mg?*) to the oxygen-containing functional groups (e.g., -COOH
and -OH groups) of metal oxides surface and OM, which facilitates the OM sorption. Cation
bridging has influence over the interactions between OM and the metal oxides surface. In
addition, this effect can be extended to the adjacent OM interfaces that may form multilayer

adsorption of OM onto metal oxides surfaces. However, hydrophobicity of OM and
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compression of the electric double layer can enhance the adsorption of OM on the surface.
Hydrophobic or van der Waals force interactions are mostly favored by surfaces containing
hydrophobic materials such as carbon nanomaterials. It has been found that, the aromatic
moieties of OM, having -COOH or OH, are more hydrophobic, relative to that of aliphatic OM
and found to strongly bound on surfaces by hydrophobic effects.® lonization of functional
groups can higher the solubility of OM and thus decreases hydrophobic effects. The
hydrophobic interactions in related to pH and found to be decreased with higher pH.
Hydrophobic interaction between OM and metal oxide surface exist at pH above the PZC of
metal oxide. However, hydrophobic and van der Waals force interactions are relatively weak
and not worthy to report for the adsorption of OM on metal oxides surface.

Several studied have been reported on the interaction of organic matters and metal oxide
and mineral particulates which are ex-situ batch measurements. However, in-situ experiments
are rare and still needed to be addressed with importance to understand the molecular-level
details.” In this study, hematite nanoparticles have been choose as metal oxide surface whereas
citric (CA) and oxalic (OA) acids and pyrocatechol (PC) as organics. In the literature, the
structure of surface organic molecules on iron-(oxyhydr)oxides and iron containing clays and
oxides (mostly goethite and ferrihydrite) has been examine by using of transmission and ATR-
FTIR spectroscopy. Kubicki et al.® studied that chemisorption of OA and CA onto clays.
However, the chemisorption of OA and CA onto clays was limited without the presence of Fe-
hydroxides within the clay matrix. Wells and co-workers® investigated the spectra of adsorbed
citrate on goethite as a function of pH and compared to those collected in aqueous phase
species. They examine and proposed the formation of inner-sphere complexes at pH 4.6 and 7

via carboxyl groups, and outer-sphere complexes at pH 8.8 (Figure 2.2).
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Figure 2.2 Outer-sphere and inner-sphere complexes for citrate with goethite
In another study, the adsorption of citric acid on goethite aqueous suspensions was carried
out by Persson and co-workers'® using 2D infrared correlation spectroscopy formalism. From
the spectral analysis they found a protonated adsorbed citrate complex involving only
carboxylate coordination at low pH, and an inner-sphere complex at higher pH coordinated via
a combination of hydroxyl and carboxylate groups. At pH close to 7, an outer-sphere complex

was also identified (Figure 2.3).

At higher pH At pH close to 7

———— - — - C E——

Goethite

At lower pH

Goethite

O

o

Goethite

Figure 2.3 Citrate complexes on goethite surface (Outer-sphere and inner-sphere).*
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Filius et al.!* reported inner-sphere bidentate binuclear for oxalate on goethite. However,
the amounts adsorbed were found to be suppressed upon increasing ionic strength by Mesuere
and Fish.*2

In another investigation, Persson and co-workers,'® coupled ATR-FTIR with extended x-
ray absorption fine structure spectroscopy (EXAFS) to examine the water-goethite interface
upon oxalate complexation as a function of pH. Similar conclusions were made by Cwiertny
et al.'* for the adsorption of oxalic acid on goethite micro- and nanorods at pH 3. The
adsorption of aqueous phase pyrocatechol on hematite and goethite particles at neutral to basic
pH was studied using ATR-FTIR and batch experiments.

Gulley-Stahl et al.*® found that adsorbed pyrocatechol promoted dissolution of Fe;O3 under
neutral and basic conditions, compared to proton-driven dissolution that is significant under
acidic conditions (pH<5). As mentioned earlier organic matters are important considering their
role in many types of chemical and biological reactions. They are involved in many types of
interaction with metal oxide and mineral surfaces and thus play a vital role in changing the
surface properties.

Recently, we published a paper that reports® in situ spectral characterization of low
molecular weight organics complexes on hematite nanoparticle and the role of electrolytes in
their binding mechanism. The organics that were investigated are citric (CA) and oxalic (OA)
acids and pyrocatechol (PC). These organics were chosen as they are the representative of
modest aliphatic and aromatic compounds that may influence the charge and hydrophilicity of
the interface significantly upon adsorption. The structure of the surface organics on iron-
(oxyhydr) oxides was investigated using in situ attenuated total internal reflectance Fourier
transform infrared spectroscopy (ATR-FTIR). Two types of experiments were performed using
ATR-FTIR such as the adsorption pH envelopes experiments (range 9-5) and H/D exchange

experiments (range 9-4). The adsorption pH envelopes experiments were performed by former
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group member Arthur Situm whereas | contributed through running the H/D exchange
experiments. This chapter will highlight the H/D experiments that were conducted to explore
the answer of the questions raised from pH envelopes experiments.
2.3 Objectives
Interaction of organic matter with metal oxide/mineral surface is ubiquitous in natural
environment. It is importance to understand the molecular level details and reaction pathways
for organic matter and metal oxide surface that exist in nature. In this study, the effect of low
molecular weight organic compounds on the charge and hydrophilicity of the interface upon
adsorption onto hematite nanoparticles by ATR-FTIR. This chapter will aim to discuss my
contribution through performing the experiments for the spectral characterization of surface
organics (citrate, oxalate and pyrocatechol) as a function of pD onto hematite nanoparticle.
The purposes of these experiments are as follows:
)} Spectral characterization of surface organics as a function of pD.
i) Study the effect of H/D exchange on the structure of organic complexes on hematite
nanoparticles.
iii) Compare the results obtained by spectral characterization of surface organics as a
function of pH.
iv) To find the answer to the question regarding possible association of protons with the
organics surface complex.
2.4 Experimental
2.4.1 Chemicals
Solutions were made by dissolving respective compounds in 0.01 KCI (potassium chloride,
ACS grade, 99.0%+, EMD) solution prepared fresh in D20 (deuterium oxide, 99.9 atom %D,
Sigma-Aldrich) and finally adjusted to the desired concentration and pD by using concentrated

(40 wt.% solution) NaOD (Sodium deuteroxide, 99.5%, Sigma-Aldrich). Powder of organic
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compounds used herein (as received without further purification) include citric acid
monohydrate (CsHsO7.H20, 99%+, ACS reagent, Alfa Aesar), oxalic acid (Oxalic acid
dihydrate, 99%+, ACS reagent, Sigma-Aldrich) and pyrocatechol (99%+, Sigma-Aldrich). All
solutions were prepared fresh before the start of each experiment and were covered with
parafilm until used. Hematite nanoparticles (a-Fe203, 98+%, US Research Nanomaterials, Inc,
batch US3180) were characterized for these experiments to obtain BET surface area (N2 gas,
5445 m2 g-1, Aveka Inc.), isoelectric point (IEP) (zeta potential titration, 8.45, Aveka Inc.),
particle shape and size (TEM Philips C12 at 120 keV, spherical, 39+11 nm average spherical

diameter, Canadian Centre for Electron Microscopy, McMaster University).

2.4.2 Electrode preparation and calibration of pD meter

23.0 mL of 3M KClI solution was prepared in D2O. To begin glass electrode was cleaned with
milli-pore water and rinsed several times (each time with 1.5-2.0 mL) with freshly prepared
3M KCI/D;0. Then, the glass electrode was filled up with 6.0 mL with 3M KCI/D0 solution.
Buffer solutions were prepared for the calibration of pD meter. The amount of buffer powder
in each capsule and amount required for the preparation of buffer solution are given in Table 1
and 2, respectively. Each buffer powder was weighed and placed into a vial. Then, 7.00 mL of
D>0 was added into each vial. All the measurements and preparation were performed in the
glove box. The pD meter, filled up with glass electrode containing 3M KCI/D0 solution, was
calibrated with freshly prepared buffers in D20 (4.00, 7.00 and 10.00). The pD meter was

calibrated each time at the start of the experiment.
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pD Amount (g) 1 Amount(g) 2 Average (g) Stdv
4.00 1.1102 0.9982 1.0542 0.0792
7.00 1.0327 1.0020 1.0173 0.0217
10.00 1.2038 1.2423 1.2230 0.0272

* Each capsule is used for the preparing 100 mL buffer solution. 7.00 mL of each buffer in

D>0 was prepared.

Table 2.2 Amount of buffer power taken for preparation of buffer solution

pD Amount (g) required for Amount (g) taken for
7.0 mL D20 7.00 mL D20
4.00 1.0542*7/100 = 0.0737 0.0735
7.00 1.0173*7/100 = 0.0712 0.0713
10.00 1.2230*7/100 = 0.0856 0.0855

2.4.3 Preparation of film on ZnSe ATR crystal

A film was prepared using 6 mg of hematite nanoparticles in a 1.30 mL water-ethanol

[0.91:0.39 (v/v)] mixture. The mixture was ultrasonicated (default power, Fisher Scientific

Mechanical Ultrasonic Cleaner FS20) for one hour and the slurry obtained was deposited on a

dry ZnSe ATR crystal. The deposited film was allowed to dry for 12-18 hours in air at room

temperature (23£2 °C) under an Al-foil tent on the lab bench. The thickness of the hematite
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film deposited on the ZnSe ATR crystal was measured by depositing the same amount (6 mg)
of the hematite nanoparticles slurry on a glass slide with similar dimensions using an ultra-fast
optical profiler (Wyko NT 3300 Series, 7.5+1.4 um, Electrochemical Technology Centre,
University of Guelph). This thickness along with the area covered by the film (7.2 cm2) was
used to calculate the bulk density of hematite nanoparticles film (1.1 g.cm®). Aqueous
solutions were flowed at a rate of 2 mL min™ across the ATR flow cell using Tygon tubes (0.8

mm 1.D., Masterflex) and a compact pump (Masterflex L/S).

2.4.4 ATR-FTIR spectroscopy experiments

ATR-FTIR spectra were collected as a function of time on a freshly prepared hematite
nanoparticles film using a HATRPIus accessory (Pike Technologies) installed in a Nicolet 8700
FTIR spectrometer (Thermo Instruments) equipped with a liquid N2-cooled MCT detector.
The ATR flow cell used in the experiments contains 60° ZnSe crystal internal reflection
element (IRE, 80x10x4 mm) with volume of 100 uL. Typically, single beam ATR-FTIR
spectra were collected at 8 cm™ resolution with 100 average scans throughout the experiments.
2.4.5 H/D exchange experiments

A single beam spectrum was collected first for the background solution (0.01 M KClI in D20
at a given pD). This was followed by flowing the standard solution of the compound of interest
at a rate of 1 mL min for 10 min before collecting a single beam spectrum by averaging 100
scans. Each pD envelope experiment was conducted on a freshly prepared film by first flowing
background KCI solution at pD 7 for 10 min followed by KCI at pD 8 or 9 for 10 min and
collection of the single beam spectrum. Then, flow of 0.1 mM standard solution of each organic
compound started, which was adjusted to the desired pD in the range 5-9 starting with the basic
pD and increased nearly 1.0 pD units by concentrated NaOD. Single beam spectra of the
surface upon flowing the solutions were collected after 10 min equilibrium time by averaging

100 scans. For each pD experiment, background KCI solution at pD 7 was flowed for 10 min
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at a 1 mL/min flow rate, followed by KCI at pD 8 or 9 for 10 min and collection of the single
beam spectrum. Then, flow of 0.1 mM standard solution of each organic compound at basic
pD 4.02, 3.78 or 6.78 started for 10 min, followed by solutions adjusted to pD ~ 5, 7, 8 or 9,
respectively, each for 10 min at a 1 mL/min flow rate.
2.5 Results and discussion
2.5.1 Spectral characterization of surface organics as a function of pD

As stated earlier, ATR-FTIR absorbance spectra of adsorbed citrate, oxalate and
pyrocatechol on hematite nanoparticles as a function of decreasing pH in the range 9-5 were
obtained by our former group member, Arthur Situm. However, the spectral range reported?’
for these pH experiments (2000-1000 cm™), contains the band assigned to the bending mode

of water, 3(H20), at 1639 cm™.

Citrate/hematite (D,0)

Absorbance

1800 1700 1600 1500 1400 1300 1200
Wavenumber cm '

Figure 2.4 ATR-FTIR absorption spectra of adsorbed citrate on hematite nanoparticles after
flowing 10* M solutions prepared in D20 after 10 min flow as a function of decreasing pD
from 8 to 4. The electrolyte concentration was 0.01 M KCI.

This bending mode shifted to 1206 cm™ in liquid D2O. In order to obtain the actual
spectra for the organic complexation, this feature was subtracted by spectral referencing to the
background spectrum collected prior to introduce the organic solution. In addition, the spectral

range contains v(CO2’) and v(CO) functional groups, sensitive to protonation and binding to

metal oxides. Therefore, to explore the possible association of protons with the organics surface
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complexation H/D exchange experiments were performed. For H/D experiments, similar
spectra were collected as a function of decreasing pD in the range 9-5 for adsorbed citrate,
oxalate and pyrocatechol on hematite nanoparticles. Figure 2.4 shows the ATR-FTIR
absorbance spectra of adsorbed citrate on hematite nanoparticles as a function of decreasing
pD for solution prepared in liquid D.O in the range 8-4. Citrate adsorption on hematite
nanoparticles in liquid D20 shows peaks at 1581, 1400 and 1280 cm™. However, the peaks do
not shift with decreasing pD. The peak at 1581 cm™ is assigned to asymmetric stretching
va(CO2) whereas peaks at 1400 and 1280 cm™ are due to symmetric vs (CO2) and bending
mode 3(COy), respectively. Similar type of citrate adsorption took place for pH experiment
that shows peaks at 1581 and 1400 cm™ for symmetric and asymmetric stretching, respectively.
While the weak feature at 1257 cm™ is blue-shifted to 1280 cm™ in H/D experiment, that
implies a strong hydration influence on this mode, which is assigned to 5(COy).

Decresing pH or pD

\
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) o 0:2° o
~o OH
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Figure 2.5 Possible structures for the surface complexation of citrate (CA) (out-sphere and
inner-sphere) onto hematite nanoparticles. Arrow shows the direction of decreasing pH or pD
and the corresponding surface complexes under acidic (right) versus basic (left) conditions.

It has been reported that for both citric and oxalic acids, the location and degree of
separation, Av, between symmetric and asymmetric stretching modes of —CO- functional
groups, v(COy), are sensitive to the degree of protonation and coordination to metal cations.®

In the case of citrate, for both pH and pD experiments, the value of Av among the v(CO3)
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features at 181 cm™, which is in between the 193 and 178 cm™ calculated for aqueous phase
complexed and free citrate species, respectively. Based on the spectral analysis, Figure 2.5
shows a pictorial representation of citrate surface complexes on hematite nanoparticles and
possible changes in the structure with decreasing pH or pD.

Figure 2.6 shows the ATR-FTIR absorbance spectra of adsorbed oxalate on hematite

nanoparticles as a function of decreasing pD for solution prepared in liquid D20 in the range

8-4.
Oxalate/hematite (D,O) — pDd
0.01 1662 [11655 —— gB?

Absorbance

1800 1700 1600 1500 1400 1300 1200
Wavenumber cm™

Figure 2.6 ATR-FTIR absorption spectra of adsorbed oxalate on hematite nanoparticles after
flowing 10 M solutions prepared in DO after 10 min flow as a function of decreasing pD
from 8 to 4. The electrolyte concentration was 0.01 M KCI.

The spectrum of adsorbed oxalate at pD 8 show a feature at 1662 cm™ which blue shifts to
1655 cm™ at pH 4. In addition, an increase in the intensity was observed at 1427 and 1288 cm
! The value of Av among the v(CO3) increases from 228 to 235 cm™ with decreasing pD. In
contrast, the spectra of adsorbed oxalate at pH 9 and 8 shows peak at 1647 cm™ which blue

shifts to 1670 cm™ at pH 5. Also, there was an increase in the intensity features at 1427 and

1288 cm™, similar to that observed in H/D exchange experiments.
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Decreasing pH or pD
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Figure 2.7 Possible structures for the surface complexation of oxalate (OA) (out-sphere and
inner-sphere) onto hematite nanoparticles. Arrow shows the direction of decreasing pH or pD
and the corresponding surface complexes under acidic (right) versus basic (left) conditions.
However, the value of Av among the v(CO2) features increases from 220 to 243 cm™ with
decreasing pH. Thus, these spectra in H.O compared to those in D20 highlight the effect of the
H/D exchange, shows a relatively narrower width and Av of 235 cm™. This suggests a strong
hydration influence on this mode due to outer-sphere complex formation. Based on spectral
analysis, Figure 2.7 shows a pictorial representation of oxalate surface complexes on hematite
nanoparticles and corresponding change in the structure with decreasing pH or pD.

Figure 2.8 shows the ATR-FTIR absorbance spectra of adsorbed pyrocatechol on hematite
nanoparticles as a function of decreasing pD for solution prepared in liquid D20 in the range
9-6. The adsorption spectra of pyrocatechol show intense peaks at 1481 and 1258 cm™ with a

shoulder around 1281 cm™ and weak peaks at 1601 and 1103 cm™. The spectral features have

been proposed to form inner-sphere complex and assigned to v(COFe).
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Absorbance
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Figure 2.8 ATR-FTIR absorption spectra of adsorbed pyrocatechol on hematite nanoparticles
after flowing 10* M solutions prepared in D20 after 10 min flow as a function of decreasing
pD from 9 to 6. The electrolyte concentration was 0.01 M KCI.

However, comparison of the spectra shows little shifts with decreasing pD and pH, when using

D20 and H20 as a solvent, respectively.

Decreasing pH
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Figure 2.9 Possible structures for the surface complexation of pyrocathechol (PC) (inner-
sphere) onto hematite nanoparticles. Arrow shows the direction of decreasing pH or pD and
the corresponding surface complexes under acidic (right) versus basic (left) conditions.

These spectral features have been assigned to mostly bidentate inner-sphere complexes with
increasing concentration of protonated monodentate inner-sphere complexes (Figure 2.9) with
decreasing both pD and pH characterized by the features at 1601 and 1281 cm™. It has been

found that the later features are the most sensitive to H/D exchange as their intensity diminishes

considerably when using D0 as a solvent.
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2.6 Conclusions

In summary, in situ ATR-FTIR absorption spectra of adsorbed citrate, oxalate, and
pyrocatechol on hematite nanoparticles were collected after flowing 10 M solutions prepared
in D20 as a function of decreasing pD from 9 to 5 in H/D exchange experiments. ATR-FTIR
spectroscopy has been known as a powerful surface sensitive technique that is capable of in
situ characterization of the liquid—solid interface to examine surface adsorption on nanoparticle
surfaces in both environmental and biological systems.*® However, there are some limitations
for ATR-FTIR spectroscopy. One of the major challenges is the correct subtraction of the
contribution from water. Conducting experiments in D20 is the best solution to address this
limitation. In this study, it was observed that strong hydration influenced the spectra for both
citrate and oxalate whereas less in case of pyrocatechol. Thus, spectroscopic data analysis from
pH experiments and the results from H/D exchange experiments reveal the existence of a higher
degree of outer-sphere complexation for oxalate than citrate, which is dominated by inner-
sphere monodentate complexes. Whereas, for pyrocatechol bidentate-binuclear inner-sphere
complexes dominates.
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Chapter 3 ATR-FTIR studies on the Initial Binding Kinetics of
Arsenicals at the Organic-Hematite Interfaces

3.1 Abstract

This chapter investigates the initial adsorption kinetics of arsenicals binding such as DMA
to pre-exposed organics (OA and PC) on the surface of hematite nanoparticles by using ATR-
FTIR spectroscopy for real time and in situ data collection in the flow mode in different
electrolytes such as KCI, NaCl and KBr. The results show that the rate of adsorption of DMA
was enhanced in the presence of different electrolytes onto hematite nanoparticles surface.
3.2 Introduction

As is a naturally occurring element in our environment and reported as 20" most abundant
element in the earth crust.! In recent decades, As has drawn much attention due to its
contamination of ground, surface and drinking water that has harmful effects on human health.?
It is a toxic element and known as a carcinogen.® In many parts of the world, such as the
Gangetic Delta region in Bangladesh and India, As in drinking water is a great concern. Reports
on substantial As contamination in these locations have drawn media attention. More than 100
million individual’s health were at a health risk due to As contamination in drinking water.*®
Considering the toxicity of As, in 2006, the U.S. Environmental Protection Agency (EPA)
dropped the maximum contaminant limit (MCL) of As in drinking water from 50 ppb to 10
ppb.® Hence, it is important to minimize the As levels in the environment.

As compounds can be released from both anthropogenic and natural activities into the
environment. Anthropogenic sources of As include the smelting of metals and other industrial
processes, the combustion of fossil fuels, and the use of pesticides in agriculture. While, the
natural emissions of As include weathering processes (both chemical and physical), biological
activity and volcanic emissions. Also, incorporation from soil dust and atmospheric deposition

contribute to As exposure. However, human activities are mainly responsible for the emissions
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of As to the environment and have been found to be approximately three times higher than
natural sources.’

Chemically, arsenical compounds can be classified into two different categories. Inorganic
and organic As compounds.® In general, inorganic As is more toxic and mobile than organic
arsenic species. Trivalent arsenite As®* is found to be more toxic, soluble, and mobile than
pentavalent arsenate As®*. Table 3.1 shows the examples and structure of inorganic and organic
arsenic compounds.

Table 3.1 Types of arsenic compounds

Organic Inorganic
0 O
Al I
HO™ 2 ~~CHs Ho~'E ~voH
OH OH
Monomethylarsonic acid Arsenic acid
As(V)
(pKa 3.6, 8.2) A(V)
B (pKa2.2,6.9 & 11.5)
D Ho—"$~voH
HO/A’:S‘CHS OH
CH;
Arsenous acid
Dimethylarsinic acid (DMA) As (111)
As(V) (pKa 9.29, 12.1)
(pKa 6.1)

As is a reactive element and does not exist as a free metal or element in nature. It can form
alloys with other elements and undergoes precipitation through oxidation-reduction,
methylation-demethylation and acid-base reactions. It is bound in the form of arsenopyrite
(FeAsS), realgar (AssSs) and orpiment (As2Ss) in a wide array of rocks and minerals.® These
mineralized arsenics are associated with the transition metals Cd, Pb, Ag, Au, Sb, P, W and
Mo. Thus, mining and smelting processes produce gases with high concentration of As that
eventually oxidize to form arsenic oxide (As2Oz). Moreover, strong oxidizing agent such Os
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and HNO3z can oxidize As203 to yield arsenic pentoxide (As20s) or corresponding triprotic
arsenic acid (HsAsOas). However, As is more likely to exist as oxide, hydrate, sulfide, arsenate
and arsenite in nature.

Figure 3.1 shows the discharge of As into the water, followed by the As cycle on earth in a

simplified manner.

Atmosphere

Gas Dust

Biologica
activity

Dust Industrial waste and

Dust agricultural usage

Mining and smelting

Biosphere
Humans, plants,
microorganisms

Leaching

Lithosphere
(Soils, earth crust
rocks minerals,
sediments)

Hydrosphere
(Freshwater,
seawater)

Biological activity

Leaching

Leaching and spills

Figure 3.1 Flow diagram of As in the global cycle.®

After several chemical steps in the atmosphere As is released into the aquatic system
through wet deposition as arsenic HsAsO4. As predominantly exists as either arsenate (V) or
arsenite (111) in soil and water, depending on the redox conditions.'® Also, the toxicity and
mobility of As depends on its oxidation state. It has been reported that As(l11) is 60 fold more
toxic than As(V). As can exist in various oxidation states such as As (-111), As (0), As(+I11) and
As(+V) oxidation states. Due to having different oxidation states, As can appear in many
different chemical states and forms. Under natural soil and neutral water conditions, inorganic
As(111), arsenite, exits as a neutral species (pKa: 9.23, 12.1, 12.7). On the other hand, arsenate
exits as an anion (pKa: 2.2, 6.9, 11.5) and is predominant under oxidizing conditions. Under

environmental conditions, arsenite has high mobility within soils compared to arsenate due to
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the lack of charge. Inorganic arsenic can be altered into the organic form through methylation
to either monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) or trimethyl arsine
TMA. The metabolic pathway of inorganic arsenic involves sequential two-electron reduction
of pentavalent species followed by oxidative methylation of trivalent species (Figure 3.2).1%12

Arsenate Methylarsonate Dimethylarsinate Trimethylarsine oxide

O o (o) o
As(V) HO—AsY-OH HO—AsV—OH HO—As'—CH; —» HaC—AsY—CH,

OH

. &
Reduction &
\
&
N

CHs

As(l)  HO—As'-OH HO———TSM—OH HO—As"-CHy o At cp,

OH CH, CHj,

Arsenite Methylarsonite Dimethyl arsinite

CHs

Trimethylarsine

Figure 3.2 The Challenger pathway for biomethylation, followed by sequential reduction and
oxidative methylation of arsenic.''?

The types of As compounds in soil are governed by several factors such as the natures of
sorbing materials, pH and the redox potential of the soil. However, it has been suggested that
arsenate dominates in the oxidizing conditions of the upper soil layers while arsenite dominates
in the reducing conditions of lower soil layers. The anionic charge existing on arsenate results
in electrostatic attraction between arsenate and cationic active soil components such as iron
oxides, results in adsorption. In soil solution, within the pH range from 4-8, arsenite and
arsenate species HzAsOs, H2AsOs~ and HAsO4?™ are found to be the most thermodynamically
stable.®

It is well documented®®!* that the mobility of As species is controlled by various processes
like precipitation, dissolution, sorption and redox reactions with metal oxides and clay

minerals, by competitive adsorption of anions (for example phosphate), and last but not the
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least, by redox and complexation reactions with natural organic matter (NOM).> NOM is
ubiquitous in nature and exists in both aquatic and terrestrial environments as part of the
dissolved or solid phase. It is one of the most important components of soil and plays a vital
role in several chemical and biological transformations. Figure 3.3 shows the impact of
dissolved natural organic matter over the oxidation and hydrolysis processes of contaminants

by minerals.

i

1. Hydrolysis 2. Competitive
and/or oxidation adsorption

10. Co-adsorption

3. Fractionation
and/or oxidation

4. Adsorption

— rq__\
11. Oxidation 5. Dissolution (reductive) of mineral

e NS

6. Adsorption of 7. DOM-metal
B 9. (Cross-coupling) Fe(l1) or Mn(l1) complexation
oxidation

. Mineral surface * Contaminant

, DOM “ Oxidized DOM

Figure 3.3 Influence of dissolved natural organic matter (DOM) on oxidation and hydrolysis
of contaminants by mineral surfaces.'®(Reprinted with permission from Ref 16)

NOM can be involved in competition with contaminants for adsorption sites on mineral
surfaces. Besides, it can participate in and/or accelerate mineral dissolution and metal
complexation.® Thus, these processes can affect the fate and environmental behavior of
organic and inorganic pollutants. NOM is a unique combination of different functional groups,
such as carboxylic(-COOH), esteric(-RCOOR), phenolic (PhOH), hydroxyl (-OH) etc. Most of
these functional groups are negatively charged at neutral pH. The chemical and physical

behavior of NOM can vary among the geographical areas, depending on the biomass and active
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transformation processes. However, normally, it has been suggested that NOM readily forms

both aqueous and surface inner-sphere complexes with minerals or metal oxides.

Aliphatic
dicarboxylic
Hydroxyacid acid
H M _con
—CH :
Phenaol grou
CH, group
HO,C ~Nen OH P
Aromatic ?\ _~CH,
dicarboxylic 0O CH. i,
acid
O H3 CHZ _CHg_ COZH
0,H Aliphatic
Aromatic acid
acid

Figure 3.4 Hypothetical molecular structure of humic acid, showing important functional
groups.t’

Aqgueous NOM-metal complexes can be associated strongly with other dissolved anions
through metal-bridging mechanisms, restricting the anions to form surface complexes. NOM
is normally discharged from plant roots and microbes,® as well as introduced by the decay of
biological matter that can be used as agricultural supplements.!® It can enhance the
bioavailability of nutrients like iron (Fe) and phosphorus (P), that is considered as a source of
food for microscopic organisms, and thus helps in water retention, that favors soil fertility. It
has been suggested that NOM retention in soils is deeply correlated with iron and aluminum
oxide content. Consequently, NOM can change the surface properties of the metal oxide/water
interface associated with surface charge and functional groups, hydrophobicity, interfacial
water structure, adhesion strength, and dissolution rate of the metal oxide (Figure 3.3). Thus,

the molecular-level changes have direct effect on the mobility and bioavailability of pollutants
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such as arsenic (As).2 NOM has been considered an important factor that can impact As
biogeochemistry.

It has been reported*® that NOM can influence As mobility through three main
mechanisms: i) reductive dissolution of iron minerals, or direct redox reactions leading to
cycling between arsenite As(111) and arsenate As(V), ii) competition for binding sites at metal
oxide/mineral surfaces,??* and iii) formation of colloidal or dissolved metal bridging
complexes with As, which has been described as ternary As-Fe-OM complexes/colloids.>1%2
Thus, NOM plays an important role in influencing As sorption behavior by interacting with
metal oxides or mineral surfaces or with As itself, to release As from soils and sediments into
the groundwater.

Considering the importance of NOM in the mobility of As, several groups studied the
interactions of As with metal oxides, particularly iron oxides, in presence of organic matter.
Kinetic batch studies showed that a reduction in the adsorption rates for As(V) and As (111) on
hematite-,*> goethite-,?* and ferrihydrite-NOM?* systems accompanied by displacement of
sorbed NOM in significant quantities. Redman et al., investigated the effect of NOM on As
speciation and sorption on hematite and found direct evidence for the formation of ternary As-
Fe-OM complexes/colloids with attenuated total internal reflectance Fourier transform infrared
spectroscopy (ATR-FTIR).2® Batch experiments by Ritter et al.,? investigated the linear
associations between the amount of complexed arsenate and the Fe(l11) content of the NOM in
the dissolved and colloidal phases. The stability of these complexes was found to depend on
the pH, relative size of NOM, and ratio of Fe to OM. Silva et al.?® explored the type of
functional groups responsible for iron binding in NOM and found that esterification of carboxyl
groups reduced iron loading by 84%.

From the above discussion and literature reviews, it is clear that NOM effects As mobility

in soils and aquatic environments. Therefore, further study is needed to investigate the

43



Chapter 3

interaction of As onto metal oxide surfaces in the presence and absence of NOM to gain a
molecular level understanding. However, given the structural complexity of NOM, it is
challenging to establish structure-reactivity relationships that will reflect into how different
functional groups react with As compounds. Moreover, there are very few studies investigated
the binding of organo-arsenicals to NOM compared to metal(oxyhydr)-oxides. Methylated and
aromatic organo-arsenicals have As-O bonds, substituted methyl and phenyl functional groups,
and hence can interact with NOM through additional pathways compared to arsenate.
3.3 Objectives

In this work, structure-reactivity relationships from the initial adsorption kinetics upon
arsenicals binding to organics on the surface of hematite nanoparticles were established and
these measurements were obtained using ATR-FTIR spectroscopy. This technique allows real
time and in situ data collection in the flow mode. Model organic compounds, namely, oxalate,
citrate, and pyrocatechol, were employed, as a representative of most of the reactive functional
groups in NOM that will modify the charge and hydrophobicity of the hematite/water interface
(Figure 3.5). In order to investigate the effect of organic substituents on arsenate binding to the

organic-hematite/ water interface, experiments were conducted with dimethyl arsinate

(DMA).2°
"% 7 Citrate Oxalate Pyrocatechol
o % of o O
or X b (7
H .CC\\ CH S (0] (0] HO OH

As
R
Ko
w2 en.) @)
citrate?ads: OR oxalate (ads) %R Efrgcatechol (ads)
ZnSe/'
surface sensitive ATR-FTIR

Figure 3.5 Schematic diagram of arsenicals (arsinate or DMA) adsorption onto hematite nano
particles pre-exposed to model organics citrate (CA), oxalate (OA) and pyrocatechol (PC).%°
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This chapter of the thesis will highlight the experiments that I carried out and contributed
to the paper published in 2017 as a co-author (Journal of Physical Chemistry A, 2017, 121 (30),
5569-5579). Here, the experiments associated with the adsorption of DMA onto clean or pre-
exposed to organics (OA and PC) hematite nanoparticles as a function of different electrolyte
such as KCI, KBr and NaBr have been discussed.
The main objective of these experiments are as follows:

i) To establish the structure-reactivity relationships from the initial adsorption Kinetics
upon DMA binding to organics onto the surface of hematite nanoparticles by in situ
ATR-FTIR.

ii) Investigate the effect of model organic substituents (such as OA and PC) on Dimethyl
arsinate (DMA\) binding kinetic onto organic-hematite interface.

iii) Explore the effect of different electrolyte on DMA binding onto hematite nanoparticles.

iv) Compare the results that were obtained from the experiments performed by Arthur

Situm, a former group member.

O
)I\’KOH
HO
O HO  OH
Oxalic acid Pyrocatechol
O
o, |
~AS~-ch,
CH,4
DMA
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3.4 Experimental
3.4.1 Chemicals

The solutions were prepared by dissolving the desired organic compound in 0.01 M KCI
(ACS grade, 99.0%+, EMD) solution prepared fresh in 18 MQ-cm Millipore water and adjusted
to pH 7 by using dilute and concentrated HCI (6 N, Ricca Chemical Company) and NaOH (GR
ACS, 99.0-100%, EMD) solutions. The concentration of KCI varied for ionic-strength-
dependent studies. 0.01 M NaCl and KBr were also used for the ionic-strength-dependent
studies. Powder of organic compounds used herein (as received without further purification)
include oxalic acid (Oxalic acid dihydrate, 99%+, ACS reagent, Sigma-Aldrich), catechol
(99%+, Sigma-Aldrich), and DMA (sodium cacodylate trihydrate, CoHsAsO2Na.3H20, 98%,
Sigma-Aldrich, used as received). All the solutions were prepared freshly before the start of
each experiment and were covered with parafilm until used. Hematite nanoparticles (a-Fe203,
98+%, US Research Nanomaterials, Inc, batch US3180) were characterized for these
experiments to obtain BET surface area (N2 gas, 54+5 m?/g, Aveka Inc.), isoelectric point (IEP)
(zeta potential titration, 8.45, Aveka Inc.), particle shape and size (TEM Philips C12 at 120
keV, spherical, 39+11 nm average diameter, Canadian Centre for Electron Microscopy,
McMaster University).
3.4.2 Preparation of film on ZnSe ATR crystal

The film on ZnSe ATR crystal was prepared according to the procedure mentioned in
section 2.3.3 of Chapter 2, page 11.
3.4.3 ATR-FTIR spectroscopy experiments

The ATR-FTIR spectroscopy experiments were performed according to the procedure

mentioned in section 2.3.4 of Chapter 2, page 11.
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3.4.4 Adsorption kinetics

All solutions were flowed at a rate of 2 mL/min through the hematite film using Tygon tubes
(0.8 mm I.D., Masterflex) and a compact pump (Masterflex L/S). Single beam ATR-FTIR
spectra were collected at 8 cm™ resolution all through the experiments. Background spectra
were collected with 100 average scans by running 0.01 M KCI/KBr/NaCl solutions or Mili-Q
H>0 for 90 minutes at pH 7. Then, solutions of OA or PC of known concentrations were passed
through the film at the same pH for 80 min. Data were collected as soon as the solution entered
the ATR flow cell with spectral averaging of 5 scans for 5 minutes with 0.1 min interval. The
adsorption spectra were collected automatically by using a custom-written macros in OMNIC
for first 5 min. For rest of the time data were collected manually at 5 min interval with 100
average scans up to 80 min. The software was installed on a PC computer with the following
specifications: Dell Optiplex GX620, Intel, ACPI Multiprocessor, and Premium 4 CPU 3.20
GHz with 1 GB RAM. The collection acquisition times were calculated from the time saved
by the computer in the file names. Each single beam spectrum was referenced to the last
recorded background solution to obtain the absorbance spectrum reported herein. To determine
the uncertainty in the measurements, the experiments were repeated at least two times on
freshly prepared films under identical conditions
3.4.5 Kinetic modeling (Adsorption)
Macros Basic software was used to obtain a base-line corrected peak height of ATR absorbance
spectra. Baseline-corrected peak height measurements were performed to surface complexes,
at the wavenumber of specific spectral features, were used as an accurate measurement of
surface coverage. The reaction to be analyzed was between aqueous analyte species and empty

reactive sites on the surface of the geosorbent film, shown in reaction 3.1.

. kads
[MO], + empty site. === [MO],4 -~ (3.1)

kdes
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where [MO] is the concentration of the model organics, Kads is the adsorption rate constant, and
kdes IS the desorption rate constant. The Langmuir adsorption model can be employed to analyze
the kinetics and thermodynamics of reaction 3.1. The assumptions within the Langmuir
adsorption model describes that a homogeneous surface that is formed is identical with the
reactive surface sites. The Langmuir model for adsorption kinetics, shown in equation 3.2, was
used to analyze the collected peak heights in order to generate time dependent adsorption

kinetic curves.

0(t) =b(1—eTobsty ... (3.2)

where, b = kadsl[MO]aq/robsl

and, Topg = ko MOJ + kgeg
Here, 0(t) is the measure of surface coverage which is related to the absorbance as equation
3.3. Expansion of 6 term in equation 3.3 can be obtained by using the measurements of surface
coverage that produces equation 4 that provides a measurement of baseline-corrected peak

height absorbance.

0= A/A oo (3.3)
A=b'"(1—eTobst) ... (3.4)
where, b'=A,,,..b

Equation 3.4 can be obtained then linearized to produce equation 3.5 with b’ being a collection

of constants equal to the absorbance in the plateau region of the adsorption kinetic curve.

In(1-A/b") = -t pgt  -veeeee 3.5

By using equation 3.5, robs is equal to the slope of the least-squared fit of In(1- A/b’) plotted
against time (min) of adsorption. Thus, the Langmuir adsorption kinetic model allows for the

plotting of rons against aqueous analyte concentration to extract kags using equation 3.6.
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robs = kads[MO]aq + kdes ....... (36)

However, using equation 3.2, some of the experimental data resulted in poor fit. In order
to get better fit, the following equation 3.7, a two-exponential, 2-site model was used that
suggested the best fit for two kinetic regions for the adsorption of DMA.%!

H(total)t = b1(1 - e_r0b51't) + bz(l - e_robsz-t) T (37)

3.4.6 Desorption kinetics

DMA and Sodium Arsenate were used as a desorbing agent for all the desorption part of the
experiments. Collection of spectra started as the solution of the desorbing agent entered the
ATR flow all containing the same hematite film previously exposed to OA or PC solutions for
80 min. Initially, spectra were collected automatically by using a custom written macros in
OMNIC for 10 min with 0.25 min interval and 25 scans. Then the data were collected manually
at 5 min interval with 100 average scans up to 80 min. Single beam ATR spectra were collected
and reprocessed against the last spectrum collected for the background solution for obtaining
the absorbance spectra as described in the previous section for the adsorption experiments.
Since desorption of surface arsenicals due to flowing aqueous hydrogen phosphate would occur
concurrently with the adsorption of phosphate species, the control experiments were carried
out for the adsorption of aqueous hydrogen phosphate on freshly prepared films at pH 7.
3.4.7 Kinetic modeling (Desorption)
Desorption of model organics from the surface by the adsorption of aqueous arsenic species
can be shown as reaction 3.8 and described by the Langmuir kinetic desorption model shown

in equation 3.9.
kdes
[As]aq + [MOlygyy ——> [Mo]aq + [Aslags = (3-8)
O(t) and 6, are converted to absorbance values and linearized to obtained equation 3.10.

o(t) = O, e Kaest (3.9)
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Where, 6= A/A,,, and 8,= A4 ,/A

max max

and, k', = k. - [45] aq
In(A/A4,) = K joot ... (3.10)
Here, A, is the initial absorbance before the start of desorption. The initial observed desorption
rate can be extracted by plotting In(A/Ao) vs desorption time (min) with the initial observed
desorption being equal to the slope of the least-squared fit.

Using equation 3.9, the experimental data resulted in poor fit for desorption kinetics since
the equation does not consider the possibility of readsorption of DMA. However, when the
possibility for readsorption is involved in the derivation, the modified Langmuir desorption
model becomes as equation 3.11.3!

(K- 00 — kipgs).e Faest +k;

k

)
des"

H(t) = SN (311)

des

where k.

= kaes'[A(aq)] and k;, = kass'[DMA(aq)]

des

3.5 Results and discussion

The results discussed herein have been divided into two categories: Adsorption and
Desorption Kinetics. Section 3.4.1 focuses on adsorption kinetics of three different types of
experiments. (a) Adsorption kinetics of model organics on hematite nanoparticle; (b)
Adsorption Kinetics of arsenicals on hematite nanoparticle; and (c) Adsorption of arsenicals on
hematite containing model organics. Section 3.4.2 will be highlighting desorption Kinetics of
model organics by arsenicals.

3.5.1 Adsorption kinetics
(a) Adsorption kinetics of model organics on hematite nanoparticle
Adsorption kinetic experiments were performed using oxalate (OA) and pyrocatechol (PC)

onto unreacted hematite films at pH 7 in H20, as well as with three different electrolytes such
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as KCI, NaCl and KBr. Spectra obtained from the experiments with oxalate as a model organic

compound in different electrolytes are shown in Figure 3.6.
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Figure 3.6 Absorbance spectra of oxalate (1.0 mM) onto a clean hematite (6 mg) film at pH 7,
| =10 mM (a) NaCl (b) KCI (c) KBr and (d) H20 at room temperature. ATR-FTIR absorbance
spectra of adsorbed oxalate were collected as a function of time.

Oxalate adsorption spectra onto hematite shows band at 1658, 1430 and 1288 cm™. Peak at
1658 and 1430 cm™ are assigned to asymmetric and symmetric stretching modes of —CO;
functional groups, whereas peak at 1288 cm™ assigned to bending mode 1{CO) as previously
reported by Situm et al.?® The peak heights at 1658 cm™ for oxalate were used to obtain base-
lined corrected adsorption kinetic curves as a function of time for each experiment. The base-

line corrected adsorption kinetic curves for oxalate on unreacted hematite nanoparticle H.O
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and three different electrolytes (I = 10 mM for KCI, NaCl and KBr) are shown in Figure 3.7.

Lines through the data represent 2-site Langmuir adsorption kinetic model using equation 3.7.

The equilibrium between the agueous phase organics and the surface of hematite nanoparticles

is reached by the 80 min adsorption time.
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Figure 3.7 Adsorption kinetic curves generated from the baseline-corrected ATR-FTIR
absorbances for oxalate adsorbed on to a clean hematite (6 mg) film at pH 7 with H>O and three
different electrolytes (1 = 10 mM for KCI, NaCl and KBr) and a 2 mL/min flow rate at room
temperature. (Data points represent the average of four experiments. Error bars have been

removed for clarity).
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Figure 3.8 Linearized adsorption kinetics curves of oxalate on 6 mg hematite film with at pH
7 with H20 and three different electrolytes (I = 10 mM for KCI, NaCl and KBr). In(1-
Abs(Org)/Abs(OrgMax) with Abs(Org) corresponding the band measured for oxalate. (Data
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points represent the average of two to four experiments and error bars have been removed for
clarity.)

Linearization of adsorption kinetic curves (Figure 3.7) of oxalate was done and shown in
Figure 3.8. The linearization shown in Figure 3.8 was obtained by taking a natural log of

oxalate, a model organic peak heights absorbances normalized against the maximum peak

height absorbance measured at 80 minutes adsorption time (equation 4).
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Figure 3.9 Adsorption kinetic curves (left) generated from the baseline-corrected ATR-FTIR
absorbances for oxalate (1.0 mM) adsorbed onto a clean hematite (6 mg) film at pH 7, 1 = 10
mM NaCl, and a 2 mL/min flow rate at room temperature. Linearized adsorption Kinetic curve
of oxalate (right). Data points represent the average of four experiments. Error bars are +c

Figure 3.9 shows an example of the least-squared fits added to linearized oxalate, a model
organic adsorption kinetics in Figure 3.9 are predicted to have slopes equal to the observed
initial rates of adsorption (rons1) according to the kinetic form of the Langmuir adsorption 2-
site model described in section 3.3.5 in equation 3.7. Similar types of data were collected for
model organic pyrocatechol (PC) on unreacted hematite films at pH 7 in H2O and KCI (0.01
M). Spectra obtained from the experiments with pyrocatechol as a model organic compound

are shown in Figure 3.10.
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Figure 3.10 Adsorption of pyrocatechol (1.0 mM) onto a clean hematite (6 mg) film at pH 7,
| =10 mM, H.0 (left) and KCI (right) at room temperature. ATR-FTIR absorbance spectra of
adsorbed oxalate were collected as a function of time.

Pyrocatechol adsorption spectra onto hematite shows intense band at 1481 and 1258 cm?,
along with giving rise to a shoulder around 1281 cm™. It has been reported?® as an inner-sphere
complex formation, and the spectral features are assigned to v(COFe). The peak heights at 1258
cm for pyrocatechol were used to generate base-lined corrected adsorption Kinetic curves as
a function of time for each experiment. The base-line corrected adsorption kinetic curves for
pyrocatechol on unreacted hematite nanoparticle H.O and KCI (0.0 1 M) are shown in Figure
3.11. Lines through the data represent 2-site Langmuir adsorption kinetic model using equation
3.7. The equilibrium between the aqueous phase organics and the surface of hematite

nanoparticle reached by the 80 min adsorption time.
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Figure 3.11 Adsorption kinetic curves generated from the baseline-corrected ATR-FTIR
absorbances for pyrocatechol adsorbed on to a clean hematite (6 mg) film at pH 7 with a 2
mL/min flow rate at room temperature. (Data points represent the average of four experiments.
Error bars have been removed for clarity)

Linearization of adsorption kinetic curves (Figure 3.10) of pyrocatechol was obtained and

shown in Figure 3.12.
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Figure 3.12 Linearized adsorption kinetics of pyrocatechol on 6 mg hematite film with at pH
7. In(1-Abs(Org)/Abs(OrgMax) with Abs(Org) corresponding the band measured for
pyrocatechol. (Data points represent the average of two experiments and error bars have been
removed for clarity.)

The linearized adsorption kinetic curves in Figure 3.12 was obtained by taking a natural log of

pyrocatechol, amodel organic peak heights absorbances normalized against the maximum peak
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height absorbance measured at 80 minutes adsorption time (equation 4). Initial observed rates
of model organic adsorption to unreacted hematite nanoparticles are summarized in Table 3.2.

Table 3.2 Linearized first-order observed adsorption rates (min™) at various ionic strength
conditions of model organics (oxalate and pyrocatechol) on hematite film.

Surface [Organics] Adsorption rates (mM=L.min™)
(mM) No
electrolyte | 0.01M NaCl | 0.01 M KCI | 0.01 M KBr
OA/hematite 1.0 0.12 0.17 0.19 0.23
(£0.002) (+0.01) (£0.01) (+0.005)
PC/hematite 1.0 0.32 0.39
(£0.03) (£0.01)

The observed initial rates of model organic adsorption shown in Table 3.2 show increase in
initial rates for absorbance of oxalate in presence of electrolyte. However, the effect of
electrolyte on the initial rates of adsorption of pyrocatechol is insignificant. This increase in
adsorption rates for the charged oxalate species is attributed to the presence of electrolytes and
the surface of hematite. A charged double layer of electrolytes the surface of hematite should
increase the adsorption of the negatively charged species because of electrostatic attraction to
sodium and potassium ions. These results agree with the formation of surface complexes of
model organics on hematite nanoparticles. The adsorption rate of pyrocatechol on hematite
nanoparticles supports the assignment of a neutral inner-sphere complex as shown in figure
2.11 while the enhancing effect of oxalate adsorption supports the assignment of charged

surface complexes.
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(b) Adsorption kinetics of arsenicals on hematite nanoparticle

Adsorption kinetics experiments of arsenical compounds were performed on clean hematite
nanoparticle. Figure 3.13 shows the adsorption spectra of DMA onto clean hematite surface in

NaCl, KBr and H-O.
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Figure 3.13 ATR-FTIR absorbance spectra of 1.0 mM DMA on to a clean, hematite (6 mg)
film at pH 7, 1 = 10 mM (a) NaCl (b) KBr and (c) H20 with a 2 mL/min flow rate at room
temperature.

DMA adsorption spectra onto hematite shows band at 830 cm™ and two negative features
at 1485 and 1350 cm™. The band at 830 cm™ is assigned to the As-O vibrations as reported
previously by Sabur et al.?” and associated with the outer-sphere complexation of DMA with
the surface hematite. The negative features at 1485 and 1350 cm™ are associated with the loss
of carbonate from the hematite surface.?® The adsorption of DMA to the surface of hematite

causes the loss of carbonate as carbonate competes with reactive sites on the surface of
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hematite. The peak heights at 830 cm™ for DMA were used to obtain base-lined corrected
adsorption Kkinetic curves as a function of time for each experiment. The base-line corrected
adsorption kinetic curves for oxalate on unreacted hematite nanoparticle H>O and two different
electrolytes NaCl and KBr are shown in Figure 3.14. Lines through the data represent 2-site
Langmuir adsorption kinetic model using equation 3.7. The equilibrium between the aqueous
phase DMA and the surface of hematite nanoparticle was reached by the 80 min adsorption

time.
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Figure 3.14 Baseline-corrected adsorption kinetics of 1.0 mM DMA onto to a clean, hematite
(6 mg) film at pH 7 with a 2 mL/min flow rate at room temperature. (Data points represent the
average of two experiments. Error bars have been removed for clarity).
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Figure 3.15 Linearized adsorption kinetics of DMA on 6 mg hematite film with at pH 7. In(1-
Abs(As)/Abs(AsMax) with Abs(As) corresponding the band measured for DMA. (Data points
represent the average of two experiments and error bars have been removed for clarity).
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The use of these kinetic curves comes from their ability to be analyzed by a kinetic model such
as the kinetic form of the Langmuir adsorption kinetic model to extract rates of adsorption as
shown (Figure 3.16). Figure 3.17 shows an example of the least-squared fits added to linearized
DMA, a model organic adsorption Kinetics in Figure 3.16 are predicted to have slopes equal to
the observed initial rates of adsorption (robsl) according to the kinetic form of the Langmuir

adsorption kinetic model described in section 3.3.5.
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Figure 3.16 Baseline-corrected adsorption kinetics of 1.0 mM DMA onto to a clean, hematite
(6 mg) film at pH 7 with a 2 mL/min flow rate at room temperature. Data points represent the
average of two experiments. Error bars are o.
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Figure 3.17 Linearized adsorption kinetics of 1.0 mM DMA on 6 mg hematite film with at pH
7 in NaCl (0.01 M). In(1-Abs(As)/Abs(AsMax))) with Abs(As) corresponding the band
measured for DMA. (Data points represent the average of two to experiments and error
barstc.)
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Experiments were performed to study the adsorption Kinetics of arsenicals onto hematite

pre-exposed to the model organics. Figure 3.18 shows ATR-FTIR absorbance spectra of DMA

onto a saturated oxalate and pyrocatechol model organics hematite film at pH 7 in H.O, NaCl,

KBr and KClI, respectively.
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Figure 3.18 ATR-FTIR absorbance spectra of 1.0 mM DMA on to hematite (6 mg) film pre-
exposed to oxalate at pH 7, I = 10 Mm (a) NaCl (b) KBr and (c¢) H20 and (d) 1.0 mM PC onto
hematite in KCI solution with a 2 mL/min flow rate at room temperature.

The spectral range between 1000 and 750 cm™* contains positive absorbance features assigned

to the stretching vibrations of As-O bonds in absorbed DMA. According to Sabur et al.,? this

spectral features shown in Figure 3.18 are attributed to the formation of a mix of monodentate
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and outer-sphere DMA complexes. The ATR-FTIR spectra were collected as a function of time
(1, 2, 5, 10, 20, 30 min) upon flowing 1 mM DMA in on the hematite nanoparticles with
adsorbed oxalate (OA) and pyrocatechol. Solutions were prepared in NaCl (10 mM), KBr (10
mM) and H>O at pH 7 for oxalate and KCI (10 mM) for pyrocatechol. The spectra were
obtained by referencing to the spectrum collected after 80 min of flowing the oxalate and

pyrocatechol compounds, respectively.
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Figure 3.19 Kinetic curve of 1.0 mM DMA on to hematite (6 mg) film pre-exposed to OA at
pH 7,1=10 Mm (a) NaCl (b) KBr and (c) H.O with a 2 mL/min flow rate at room temperature.
(Data points represent the average of two experiments and error bars have been removed for
clarity).

The spectral range between 1800 and 1000 cm™ contains negative absorbance features assigned
to the symmetric and asymmetric stretching vibration of —CO; functional groups, v(CO3), and
v(COzFe) in oxalate and v(COFe) in pyrocatechol. Band at 830 cm™ were used to create
baseline-corrected kinetic curves for DMA adsorption on hematite surface as a function of

adsorption time and shown in Figure 3.19. Lines through the data represent 2-site Langmuir

adsorption kinetic model using equation 3.7.
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Figure 3.20 Linearized adsorption kinetics of 1.0 mM DMA on 6 mg hematite film with at pH
7. In(1-Abs(As)/Abs(Asmax))) with Abs(As) corresponding the band measured for DMA. (Data
points represent the average of two experiments and error bars have been removed for clarity)
Linearization of adsorption kinetic curves (Figure 3.18) of DMA was done and shown in Figure
3.20. The linearization shown in Figure 3.20 was obtained by taking a natural log of DMA
peak heights absorbances normalized against the maximum peak height absorbance measured
at 80 minutes adsorption time (equation 4). Similar types of analysis were performed for
pyrocatechol to obtained initial adsorption kinetic for DMA. Table 3.3 contains the initial
adsorption kinetics of DMA onto hematite clean and pre-exposed to model organics (OA and
PC).

Table 3.3 DMA initial adsorption rate on different surfaces, with and without electrolytes at
pH 7 at 2 mL/min flow rate

Surface DMA initial Adsorption Kinetics
No electrolyte 0.01M KCI 0.01 M NacCl 0.01 M KBr
Clean hematite 0.03 0.06 0.035 0.015
(+0.002) (+0.01) (+0.005) (+0.002)
OA/hematite 0.02 0.11 0.056 0.04
(+0.002) (+0.01) (£0.01) (+0.005)
PC/hematite 0.10
(+0.01)
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3.5.2 Desorption Kinetics of model organic matter on hematite

Arsenicals were treated with hematite nanoparticles, pre-exposed to model organics, in

order to study the effect that organic functional groups have on the kinetics of arsenical

adsorption. Information obtained from model organic desorption from hematite nanoparticles

can be utilized to support the assigned surface complexes of model organics on hematite. It has

been reported by previous studies that arsenate forms a strong inner-sphere bidentate binuclear

complex with the surface of hematite nanoparticles, whereas DMA forms an outer-sphere

complex.30:3t

—— 1 min DMA flow — 1 min DMA flow
I0'02 —_—2 m@n DMA flow I D02 — 2 min DMA flow
— 5 min DMA flow —— 5 min DMA flow
" —— 10 min DMA flow A 1658  —— 10 min DMA flow
A 1658 — gg min Bm EOW b —— 20 min DMA flow
s i on s 30 min DMA flow
9 Adsorption ; 830 ° KasaRs
5 | { r : sorpt'lon 830
b 1427 time (min) t b 1427  time (min) ‘
2 1288 a 1288 v
) ! n r
c W e & = | -
: 4 coam o’ 4
\/
(a) (b)
T T T T T T T I I T T T T T
2000 1800 1600 1400 1200 1000 800 2000 1800 1600 1400 1200 ; 1000 800
Wavenumber cm” Wavenumber cm’
|0_02 — 1 min DMA flow
—— 2 min DMA flow
A —— 5 min DMA flow
b —— 10 min DMA flow
1658 = 20 min DMA flow
s ;
5 30 min DMA flow
r Adsorption
b time (min) 830
a
n 1427188 A
c . o -
e \W
o (c)
T T T T T T T
2000 1800 1600 1400 1200 1000 800

-1
Wavenumber cm

Figure 3.21 ATR-FTIR absorbance spectra correspond to the oxalate desorption from hematite
(6 mg) film at pH 7 in 10 mM (a) NaCl (b) KBr and (c) H20 at room temperature, by the
flowing of 1.0 mM DMA.
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Desorption kinetic experiments of oxalate from hematite nanoparticles were conducted using
DMA in NaCl (0.1 M), KBr (0.01) and H20 solution at pH 7. Spectra obtained from the
experiments are shown in Figure 3.21. The spectra shown in Figure 3.21 were obtained by
referencing to the spectrum collected for dry hematite nanoparticle film. The ATR-FTIR
spectra were collected as a function of time (1, 2, 5, 10, 20, 30 min) upon flowing 1.0 mM
DMA in on the hematite nanoparticles with adsorbed oxalate (OA). The spectral range between
1800 and 1000 cm™ contains absorption band features assigned to the symmetric and
asymmetric stretching vibration of —CO- functional groups, v(CO.), and v(CO2Fe) in oxalate.
As the flow time increases, peak at 830 cm™ for DMA increases, whereas the intensity of OA
peaks at 1658, 1427 and 1288 cm™ decreases as a function of time. Using baseline-corrected
peak height absorbances at 1658 cm™ was plotted as a function of desorption time, kinetic
curve for oxalate desorption from hematite nanoparticles was generated and a sample
desorption Kkinetic curve are shown in Figure 3.22. Line through the data represent modified

Langmuir desorption kinetic model using equation 3.11.
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Figure 3.22 (a) Desorption kinetic curve generated from the baseline-corrected ATR-FTIR
absorbances of oxalate from hematite (6 mg) nanoparticles at pH 7 in H20 and a 2 mL/min flow
rate at room temperature, by 1.0 mM DMA. Data points represent the average of two experiments.
Error bars are *o.

Figure 3.23 shows the linearized oxalate desorption Kinetic curve.
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Figure 3.23 Linearized desorption kinetic curve for oxalate on the hematite film at pH 7 in
H20. The figure shows In(A(organic)/Amax(organic)) with A(organic) corresponds to
absorbance at 1658 cm™ for oxalate. Data points represent the average of two to four
experiments and error barstc.

Linearized desorption kinetics were obtained in a similar way to the linearized adsorption
kinetics by taking the natural log of baseline-corrected peak height absorbance values,
normalized against the initial baseline-corrected peak height absorbance at 0 min desorption
time (equation 9). Similar types of analysis were performed for pyrocatechol to obtain the

desorption kinetic curve for DMA.

3.6 Conclusion

In this study, the adsorption kinetics of DMA with hematite nanoparticles pre-exposed to
two types of low molecular weight organics such as oxalate, and pyrocatechol were conducted
using ATR-FTIR. The results demonstrate that how the differences in the structure of arsenicals
and surface organics, and the type of electrolyte present in solution affect the binding of
arsenicals with hematite nanoparticles. Particularly, the negatively charged carboxylate and
hydrophobic phenyl groups influence amounts and rates of arsenicals adsorption on hematite
nanoparticles, the type of electrolytes affects the adsorption rate of DMA in the presence of
oxalate on the surface, and the extent of organics retention by hematite nanoparticles is

influenced by the type of the desorbing agent. NOM greatly influence As sorption by
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interacting with mineral surfaces and consequently may play a significant role in the release of
As from soils into the groundwater. The presence of NOM can enhance As release mainly
through competition for available adsorption sites, forming aqueous complexes, and changing
the redox chemistry of site surfaces and As species. Instead, organics can also reduce As
mobility by serving as a binding agent and by forming insoluble complexes, especially when
saturated with metal cations. These findings are important in advancing the understanding of
the fate and transport cycle of As in the environment, and give insights for the control of As
mobility. Given the ubiquity of organic-metal oxide interfaces in environmental systems, these
results are significant since these studies highlight that in situ flow mode and time dependent
spectroscopic experiments can amplify trends and molecular-level processes otherwise missed

in bulk batch adsorption experiments.
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Chapter 4 Surface Water Structure and Hygroscopic Properties of Light

Absorbing Secondary Organic Polymers of Atmospheric Relevance

This chapter of the thesis contains the following publication, reproduced from Rahman,
M. A. and Al-Abadleh, H. A. ACS Omega, 2018, 3, 15519-15529, licensed under an ACS
AuthorChoice and accessible online at: https://pubs.acs.org/doi/10.1021/acsomega.8b02066 with
supplementary information accessible online at:  https:/pubs.acs.org/doi/suppl/10.1021/
acsomega.8h02066 /su pplfile /a08b02066_si_001.pdf.
4.1 Abstract
Hygroscopic properties and chemical reactivity of secondary organic aerosols (SOA)
influence their overall contribution to the indirect effect on the climate. In this study, we
investigate the hygroscopic properties of organic and organometallic polymeric particles,
namely polycatechol, polyguaiacol, Fe-polyfumarate, and Fe-polymuconate. These particles
efficiently form in iron-catalyzed reactions with aromatic and aliphatic dicarboxylic acid
compounds detected in field-collected SOA. The structure of surface water was studied using
diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and the uptake of
gaseous water was quantified using quartz crystal microbalance (QCM) as a function of relative
humidity. Spectroscopic data show that water bonding with organic functional groups acting
as hydrogen bond acceptors cause shifts in their vibrational modes. Analysis of the hydroxyl
group stretching region revealed weak and strong hydrogen bonding networks that suggest
cluster formation reflecting water—water and water-organics interactions, respectively. A
modified Type Il multilayer Brunauer-Emmett-Teller adsorption model described the
adsorption isotherm on the nonporous materials, polycatechol, polyguaiacol, and Fe-
polymuconate. However, water adsorption on porous Fe-polyfumarate was best described
using a Type V adsorption model, namely the Langmuir-Sips model that accounts for

condensation in pores. The data revealed that organometallic polymers are more hygroscopic
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than organic polymers. The implications of these investigations are discussed in the context of
the chemical reactivity of these particles relative to known SOA.
4.2 Introduction

Water is the solvent that affects the chemical reactivity and physical properties of
atmospheric aerosols. There are molecular level differences in the structure of water between
bulk and interfacial environments in atmospherically relevant systems.'® These differences
originate mainly from the number and strength of hydrogen bonds among water molecules and
acceptor/donor groups.*’ Reactions in liquid droplets that mimic chemistry in clouds were
found to proceed at relatively lower rates than surface reactions because of solvent cage
effects.®10 Surface water in sea spray, ammonium sulfate, and mineral dust particles were
shown to enhance ionic mobility, alter reaction pathways and surface speciation, and influence
the hygroscopic properties of particles and their ability to form clouds.*** In primary and
secondary organic aerosol systems (POA and SOA), lab studies showed that temperature,
relative humidity (RH), and molecular composition affect the size, viscosity, and phase state
of these aerosols, which in turn affect the relative importance of bulk versus surface
reactions.>® In multicomponent aerosol systems containing organics, inorganic salts, and
water, changes in RH affect the aerosol liquid water ALW content and pH.*"® As a result, the
morphology and mixing state in the systems that can undergo deliquescence, efflorescence,
and liquid-liquid phase separation are directly dependent on ALW content.?®*? Hence,
measurements of water uptake as a function of RH are the first step toward understanding the
reactivity of atmospheric aerosols. This is because water uptake curves provide crucial
information on the solute to solvent ratio and surface area to volume ratio, which can be used
to infer the surface chemical composition and determine the reactivity of the particles. One of
the active areas of investigation in atmospheric chemistry is particle nucleation and growth via

secondary pathways in the atmosphere. Processes that include atmospheric oxidation of volatile
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organic compounds (VOCs) from biogenic and anthropogenic sources, gas-particle
partitioning, and multiphase/heterogenous reactions contributed to our understanding of SOA
formation?*?* and better parameterization of global climate models.?® Following SOA
formation, a number of chemical and photochemical aging processes lead to the formation of
light absorbing soluble and insoluble components collectively known as “brown carbon”.?® The
role of transition metals such as iron in the formation and aging of SOA is not well
understood.?’ Iron is a ubiquitous component of mineral dust, fly ash, and marine aerosols with
speciation that varies by the aerosol source.?®3? Uptake of acidic gases on iron-containing
particles during long-range transport enhances the fraction of soluble iron in particles.®?-3* Also,
the concentration of dissolved iron was found to be affected by cycling between wet aerosols
characterized by highly acidic conditions with a few layers of adsorbed water and cloud
droplets characterized by more pH-neutral conditions.® Hence, given their rich chemistry, iron
cations in (ALW) can catalyze a number of reactions with the organic content of aerosols. We
recently reported that Fe(lll) in solution leads to the formation of light absorbing secondary
brown carbon via oxidative polymerization of polyphenols and metal-catalyzed polymerization
of dicarboxylic acids.®®*” Polycatechol and polyguaiacol particles were formed from the
reaction with semi-volatile phenolic precursors catechol and guaiacol emitted from biomass
burning and produced by photooxidation of aromatic VOCs.* The reactions with Fe(l11) were
carried out under high solute/solvent ratio that mimic reactions in adsorbed water, with mass
yields approaching 50% relative to the concentration of the organic precursor.3® Also, the
reaction of soluble Fe(lll) with fumaric (trans-butenedioic) and muconic (trans,trans-2,4-
hexadienedioic) acids, known photooxidation products of benzene, formed brightly colored
organometallic nanoparticles with nearly 30% Fe (w/w) and 90% mass Yyields relative to the
concentration of the acids.®” The mass-normalized absorption coefficients of Fe-polyfumarate

and Fe-polymuconate particles in the near UV light between 350 and 400 nm ranged from 1 to
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8 m? g1, which are on the same order of magnitude as black carbon and biomass burning
aerosols.®’
4.30bjectives

The objective of this study is to investigate the hygroscopic properties of the aforementioned
organic and organometallic particles, from the molecular-level structure of surface water to
water adsorption and desorption isotherms as a function of RH. We utilized diffuse reflectance
Fourier transform infrared spectroscopy (DRIFTS) to collect spectra of surface water in
equilibrium with the gas phase. A quartz crystal microbalance (QCM) was used to quantify
water uptake as a function of increasing and decreasing RH. We show that the presence of
hydrogen bonding acceptor groups in these polymers promote the formation of adsorbed water
clusters characterized by weak and strong hydrogen bonds relative to liquid water. We also
show that organometallic polymers are more hygroscopic than organic polymers and can retain
more water with decreasing RH. The implications of these investigations are discussed in the
context of the chemical reactivity of these particles relative to known SOA. Figure 4.1

highlights a pictorial presentation of the overall research.
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Figure 4.1 Schematic diagram for the interactions of H.O molecules with model organic and
organometallic particles.

4.4 Experimental
All the chemicals were used as received without further purification: catechol (1,2-

benzendiol, >99%, CAS 120-80-9, Sigma-Aldrich), guaiacol (2-methoxyphenol, >98%, CAS
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90-05-1, Sigma-Aldrich), fumaric acid (FA, trans-butenedioic acid, >99%, CAS: 110-17-8,
Sigma-Aldrich), muconic acid (MA, trans, trans-2,4-hexadienedioic acid, 98%, CAS: 3588-
17- 8, Sigma-Aldrich), iron(l1l) chloride hexahydrate (FeClz- 6H.0, 97%, CAS: 10025-77-1,
Sigma-Aldrich), and diamond powder (5 + 2 um, Lands Superabrasives LST600T). The
synthesis procedure of polycatehcol and polyguaiacol is reported in reference 36, and that for
Fe-polyfumarate and Fe-polymuconate. Briefly, aqueous phase standard solutions of iron
chloride, catechol, and guaiacol were prepared by dissolving the chemicals in Milli-Q water
(18.2 MQ cm) with the solutions’ ionic strength adjusted to 0.01 M by adding potassium
chloride (KCI powder, 99.5%, EM Science) in order to stabilize the pH. The pH was adjusted
using stock solutions of hydrochloric acid (HCI 6 N, Ricca Chemical Company) and sodium
hydroxide (NaOH pellets, 99-100%, EMD). The concentration of the organic precursors was
1 mM in 100 mL, to which 2 mL of the iron chloride solution was added to start the reaction
in the dark for 2 h. To get the maximum yield, the initial pH was adjusted to 3 for experiments
with catechol and guaiacol, and 5 for experiments with fumaric and muconic acids. The
resulting iron to organic molar ratio after mixing is 2:1. The reaction solution was then filtered
on nylon membrane filters (0.2 um pore size, 47 mm dia., EMD Millipore) using a suction
filtration system (VWR). After filtration, the products were air dried overnight. The filters were
weighed before and after filtration to measure the mass of the product. The organic polymers
were then scratched from the filter using a spatula into a clean vial for future use. Some of the
material collected on the filters was analyzed for Brunauer-Emmett-Teller (BET) surface area
using N2 gas in a Nova 2200e multigas surface area analyzer (Quantachrome Instruments). The
surface area values were found to be 4 + 0.6, 14 + 2, 36 + 5, 6 + 1 m?g™* for polycatechol,

polyguaiacol, Fe-polyfumarate, and Fe-polymuconate, respectively.
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4.4.1 DRIFT experiments

Samples were prepared for the gas phase water uptake experiments by mixing about 7-20 x
107 g of the organic polymers (ground using a grinding mill, wig-L bug, for 30 s) with ~0.30
g diamond powder in a stainless-steel crucible followed by mechanical shaking for 60 s without
the grinding ball. This procedure was found to result in homogenous and reproducible samples.
The samples were then poured into the reaction cup of a stainless-steel high temperature
reaction chamber treated with a special Silco Steel-CR coating (HVC, cup 6 by 3 mm, dome
cover with two Ge windows and one quartz viewing window, Harrick Scientific). Efficient and
reproducible packing of the sample was obtained using a 4 kg weight for 15 min placed on top
of a custom-made T-shape stainless steel cover with similar dimensions to the reaction cup.3®
The reaction chamber is then mounted into the praying mantis diffuse reflectance accessory
(Harrick, DRK- 4N18). The DRIFTS accessory was installed into a Nicolet 8700 FTIR
spectrometer (Thermo Instruments) equipped with a liquid Nz-cooled mercury cadmium
telluride detector and a purge gas generator (Parker/Balston Analytical Gas Systems Purge Gas
Generator 75-52). The reaction chamber has two ports for flowing gases and was connected to
a gas handling system described earlier.®® Briefly, purged air flowing into a water bubbler
containing 18.2 MQ-cm ultrapure water was mixed with dry air in a glass chamber. In one set
of experiments using polyguaiacol as a sample, liquid D20 (99.9 atom % D, Sigma Aldrich)
replaced the ultrapure water in the bubbler to flow gas phase D2O. The RH of the gas mixture
was varied by changing the settings on two mass flow controllers (MKS). A RH sensor (Vaisala
HM70) was used to monitor the RH of the gas exiting the chamber. The same gas handling
system was used in the QCM experiments described below. In a typical DRIFTS experiment,
dry air was flowed over the sample in the reaction chamber overnight at room temperature. The
Fe-polyfumarate sample was heated to 50 °C to enhance desorption of gases trapped in the

pores of that material. A single beam spectrum was collected for the “dry” sample first,
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followed by introducing humid air as a function of increasing RH. All spectra were collected
at 8 cm™ resolution by averaging 100 scans. Absorbance spectra of surface water were
generated by referencing the single beam spectra collected while flowing humid air to the
spectrum collected initially for the dry sample. Similar experiments were conducted using a
mirror (Harrick) in place of the reaction chamber to collect spectra of gas phase water. These
spectra were used to subtract out gas phase water lines from the absorbance spectra of surface
water. Control experiments were also conducted where diamond powder only was packed into
the reaction chamber (no organic polymer sample). These spectra were used to subtract out
contributions to the absorbance features from the sample spectra.
4.4.2 QCM experiments

Gas phase water uptake experiments on thin films of polycatechol, polyguaiacol, Fe-
polyfumarate, and Fe-polymuconate were performed using a commercial QCM (eQCM 10 M,
Gamry Instruments). The QCM houses a 0.550” dia. gold-coated quartz crystal (5 MHz) on
which the thin organic films were deposited. The QCM crystal connected to the resonator was
mounted onto a custom-made holder with a cover containing two ports and an opening to insert
a RH sensor (Sensirion, EK-H5). The gas handling system described above for the DRIFTS
experiments was connected to a gas mixing chamber to control the RH of the air flowing over
the abovementioned samples. A RH sensor (Vaisala HUMICAP HM70) was placed in the gas
line directly before the QCM sample holder. The polycatechol film was prepared by depositing
a total volume of 60.0 uL using a 25 pL syringe (Hamilton Co.) from 5.0 mg mL™ solution
(prepared in 6:4 H2O-EtOH mixture and sonicated for 40 min). The polyguaiacol film was
prepared by depositing a total volume of 60.0 pL from 1.7 mg mL™* solution (prepared in 6:4
H>0O-EtOH mixture and sonicated for 10 s). In case of Fe-polyfumarate, the film was prepared
by depositing total volume of 44.0 pL from a 0.83 mg mL™* solution (prepared in 6:4 EtOH-

H>0 mixture and sonicated for 40 min). However, the Fe-polymuconate film was prepared by
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depositing a total volume of 44.0 pL from a 2.5 mg mL™? solution (prepared in 4.5:5.5 EtOH-
H>0O mixture and sonicated for 40 min). The diameter of the film was measured after the solvent
dried and was found to be ca. 0.8 £ 0.1 cm. Each film was allowed to dry overnight under a
flow of dry air. In a typical QCM experiment, the initial frequency baseline was recorded while
flowing dry air, and then humid air was introduced to dry air starting with the lowest RH value
followed by incrementally increasing the mass flow of humid air, while allowing 30 min for
equilibrium at each RH value for the adsorption part of the experiment. The total mass flow of
humid and dry air was maintained at 500 sccm. Once the highest RH is obtained, the mass flow
of the humid air is decreased incrementally, while allowing 30 min for equilibrium at each RH
to record the desorption part of the experiment. Separate experiments were run for longer than
30 min to confirm achieving equilibrium, which is defined as the time at which insignificant
change was observed in frequency with time. We found that allowing 30 min for equilibrium
for all samples was long enough to cover as many RH values before the balance showed signs
of electrical instability.
4.5 Results and discussion
4.5.1 Structure of surface water on polycatechol and polyguaiacol

The structure of surface water on polycatechol and polyguaiacol mixed with diamond
powder (used to enhance scattering efficiency of the samples) was studied using DRIFTS as a

function of increasing RH over samples dried overnight by a flow of dry air (RH < 1%).
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Figure 4.2 Representative DRIFTS absorbance spectra of solid organic polymers mixed with
diamond powder after overnight drying at a flow of dry air: (a) 2% wt/wt polycatechol, (b) 2%
wt/wt polyguaiacol, (c) 6% wt/wt Fe-polyfumarate, and (d) 7% wt/wt Fe-polymuconate. A
spectrum of dry diamond powder only was used as the reference to generate these absorbance
spectra. See reference 46 in main manuscript for assignment.

Figures 4.2a and 4.2b show the DRIFTS absorbance spectra of the dry samples. These spectra
were obtained by referencing to the spectrum of dry diamond powder only. The spectral range
2000-1000 cm™ contains fundamental vibrational modes of the functional groups in the
polymer backbone of polycatechol and polyguaiacol, namely stretching vibrations (v) because
of C-C, C-0O, and aromatic —C=C— modes. The spectra are identical to those reported earlier
by our group for dry thin films using ATR—FTIR (see the Supporting Information in ref 36).
The absorbance features for the organic polymers are clearly distinguishable from the

monomers, whether in the solid or aqueous phases.®**! Scheme 4.1 shows the suggested

general structure of these polymers.42-44
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Scheme 4.1 General structure of units in polycatechol and polyguaiacol formed in oxidative
polymerization reactions.

The presence of v(C=0) cannot be excluded with certainty because of the broadness of the
feature in the 2000-1000 cm™ range, and because mass spectrometry studies on the soluble
products of the guaiacol dimerization reactions reported structures containing C=0.% Also, the
spectral range 3600-2500 cm™ contains features assigned to v(C-H) and v(O-H). The former
mode is more intense for polyguaiacol compared to polycatechol because of the presence of
—CHs groups. The broad feature centered around 3400 cm™ originates from hydrogen bonded
—OH groups, whether with neighboring units or residual water molecules not removed by
flowing dry air at room temperature. As detailed below, understanding the structure of the dry
material aids in interpreting the spectra obtained as a function of RH. Figures 4.3a and 4.3b
show representative DRIFTS absorbance spectra collected as a function of increasing % RH

(solid lines) on polycatechol and polyguaiacol mixed with diamond powder samples (2% w/w).
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Figure 4.3 Selected DRIFTS absorbance spectra of surface water collected as a function of
increasing % RH on (a) polycatechol and (b) polyguaiacol (solid lines) in ca. 2% w/w organic
material/diamond powder. The dotted lines are control spectra collected on diamond particles
only (no organic material) at the same % RH values. Data in (c,d) show the difference in
normalized absorbance spectra as a function of RH obtained by subtracting the normalized
diamond spectrum from that collected with organic materials at each % RH with a factor 1.
The normalization of all spectra was done relative to the peak at 3421 cm™. The “*” denotes
residual features observed only in the control spectra.

Control experiments were conducted on diamond powder only (no organic polymers) under
the same conditions (dotted lines). These spectra were obtained by referencing to the spectrum
of the dry organic polymer or diamond powder, respectively. Hence, the spectral features
observed are due to increasing the coverage of surface water characterized by the nearly
symmetric bending mode, 6(H20), between 1630 and 1645 cm™ and broad absorbance, v(OH),
in the range 3600-2500 cm™. There are other clear differences in the spectra of the samples
versus the control that cannot be assigned to surface water. To isolate these features, the spectra
in Figures 4.3a and 4.3b were normalized to the intensity of the peak at 3421 cm™, and then

the normalized diamond spectrum was subtracted out from the corresponding spectrum for

polycatechol and polyguaiacol. This spectral subtraction procedure of normalized spectra
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removes the contribution of concentration to absorbance. Hence, the net spectra highlight
changes to functional groups because of water adsorption. The resultant difference spectra are
shown in Figure 4.3c,d, and the assignment of the features is listed in Table 4.1.

Table 4.1 Assignment of features observed in the DRIFTS normalized difference absorbance
spectra during gas phase water adsorption on organic polymers/diamond samples. °

wavenumber (cm™)

vibrational mode polycatechol polyguaiacol Fe-polyfumarate Fe-polymuconate

S(OH),, or L(C—0)., 1153(-)

v(C-0) 1223(+)

U(C—-0),, + 6(CH)., 1265(+)

v(C=C),, + 8(0OH),, 1385(+)

v(—C(0)0-) 1416(-)
1446(-)
1516(=)

v(C=C),, + v(C-0), 1585(+) 1585(+)

v(—-C=C-) 1620(-) 1628(—)

v(C=0) 1686(+)

v(C=0) 1701(+) 1705(+)

v(C=0) 1743(=) 1728(=)
v(OH) 3020(+) 3020(+) 3020(-)
v(OH) 3170(+)

v(OH) 3580(+) 3580(+) 3564(+) 3564(+)
v(OH) 3641(+) 3641(+)

These features highlight the functional groups affected by surface water. °(+) for the positive
feature, () for the negative feature. ar = aromatic. See reference®® for assignment.

The v(OH) peaks at 3580 and 3020 cm™ for polycatechol and 3580 and 3170 cm™ for
polyguaiacol suggest the presence of surface water with hydroxyl groups involved in weak and
strong hydrogen bonding, respectively. Similar features were observed for water adsorption on
tannic acid,*® where water adsorbs in clusters, and water molecules in contact with organic
groups have fewer hydrogen bonds compared to the interior of water clusters that resemble
liquid water or ice. Also, the difference spectra show changes in the 1800-1000 cm,
suggesting changes to the frequency of the organic functional groups in polycatechol and
polyguaiacol with increasing coverage of surface water. The negative feature at 1153 cm™ in
Figure 4.3c is associated with v(C—0) and o6(OH), which are hydrogen bonding accepting
groups. A similar result was obtained from water adsorption on tannic acid.*’ The positive
features at 1701, 1585, 1265 cm™ for polycatechol, and 1585 and 1385 cm™ for polyguaiacol

suggest changes to the aromatic —C=C- vibrations because of the presence of surface water.
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Water-benzene interactions were studied theoretically*”° and in the gas phase® because
benzene is polarizable and consequently participates in the hydrogen bonding network of water.

To further explore the assignment of the spectral features near §(H20), namely 1585 cm™,
experiments were conducted by flowing D.O vapor over a polyguaiacol/diamond sample.
Because this spectral feature became apparent in the difference of normalized spectra for the
polycatechol/diamond sample (Figure 4.3c), the results obtained with the polyguaiacol isotopic
exchange experiments are also applicable to the polycatechol sample. Solid lines in Figures 4.4
and 4.5 show the absorbance spectra collected as a function of increasing % RH in the spectral

ranges 1800-1000 and 4000-2000 cm™, respectively.
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Figure 4.4 Selected DRIFTS absorbance spectra of surface water collected as a function of
increasing % RH on a 2% w/w polyguaiacol/diamond sample. The solid lines are spectra
collected using gas phase D20. The dotted lines are the same spectra shown in Figure 4.3b
collected using gas phase H20 at 5.5, 25, 41, and 86% RH.
The dotted lines in these figures are for spectra collected while flowing H>O vapor from a
Millipore water source. The solid lines in Figure 4.4 clearly show the disappearance of the
feature at 1643 cm™ assigned to 6(H.0) because of isotopic exchange. The positive
symmetrical feature at 1265 cm™ is assigned to the bending mode of isotopically labeled
surface water because it is closer to the frequency of the 4(D20) in the liquid phase (1206 cm”

152 than that of liquid HDO at 1450 cm™.% The nearly 60 cm™ blue shift can be attributed to
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structural differences in the hydrogen bonding network in surface water compared to the liquid

phase.
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Figure 4.5 Selected DRIFTS absorbance spectra of surface water collected as a function of
increasing %RH on a 2% wt/wt polyguaiacol/diamond sample. The solid lines are spectra
collected using gas phase D20. The dashed lines are the same spectra shown in Figure 1b
collected using gas phase H20 at 5.5, 25, 41 and 86% RH. The ‘*’ donates incomplete
subtraction of gas phase water lines.

The features at 1666 and 1585 cm™ were not affected by isotopic exchange confirming their
assignment to aromatic —C=C— vibrations. The negative features at 1435 and 1380 cm™ and
the positive feature at 1138 cm™ are only present while flowing D20 and they increase in
intensity with increasing % RH. Because the spectrum of the “dry” sample was used as a
reference to generate the absorbance spectra shown in Figure 4.4, the observed negative and
positive features suggest the presence of residual surface water not removed with sample drying
with dry air flow at room temperature overnight. As shown in Table 4.1, 1380 cm™ and, by
extension, the adjacent band at 1435 cm™* frequencies are assigned to aromatic 5(OH)ar coupled
with aromatic v(C—C)ar. Because OH groups and the 7 system of the benzene ring are hydrogen
(deuterium) bond acceptor groups,**® it is likely that H/D isotopic exchange in surface water

directly bonded with them affected the 6(OH)ar and v(C-C)ar fundamental frequencies.

Moreover, the spectral range 4000-2000 cm™ shows changes to the v(OH) features at 3580,
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3421, and 3170 cm™* observed in Figure 4.3b due to H/D isotopic exchange with gas phase D20
(solid lines). For comparison, the dotted lines in Figure 4.5 show the same spectra in Figure
4.3b collected using gas phase H.O. The new positive features at 2654, 2530, and 2376 cm™
are assigned to v(OD) in surface water. The ratio of the corresponding v(OH) to the v(OD) is
nearly 1.35, which is very close to the ratio obtained from the reduced masses, ©OD/uOH =
1.38. Thisratio is also close to that obtained from the symmetric and asymmetric OH(D) stretch
in liquid H20 and D0, 1.36.%2 Again, the observed positive and negative features in Figure 4.5
suggest the presence of residual surface water that undergo H/D isotopic exchange with
increasing flow of D,O vapor. In summary, gas phase water adsorption on polycatechol and
polyguaiacol occurs with hydrogen bonding acceptor groups in these organic polymers, leading
to the formation of clusters with water-organic and water-water hydrogen bonds that cause
shifts in the vibrational modes of the functional groups by direct contact with surface water.
The next section shows data for water adsorption on iron-containing aliphatic organometallic
polymers for comparison with the aromatic organic polymers discussed above.
4.5.2 Structure of surface water on Fe-polyfumarate and Fe-polymuconate
Figures 4.6a and 4.6b show representative DRIFTS absorbance spectra of water adsorption
on dry Fe-polyfumarate and Fe-polymuconate samples as a function of increasing % RH (solid
lines). These spectra were obtained by referencing to the spectrum of the dry samples following
overnight flow of dry air (Figures 4.2c and 4.2d). The dry spectra are identical to those reported
earlier by our group for thin films using ATR-FTIR.®” The absorbance features for these
organometallic polymers were assigned based on the structure of the organic precursors and

data obtained from analyzing the solid particles using electron energy loss spectroscopy and

X-ray absorption spectroscopy.
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Figure 4.6 Selected DRIFTS absorbance spectra of surface water collected as a function of
increasing % RH on (a) Fe-polyfumarate and (b) Fe-polymuconate (solid lines) in ca. 7% w/w
organic material/diamond particles. The dotted lines are control spectra collected on diamond
particles only (no organic material) at the same % RH values. Data in (c,d) show the difference
in normalized absorbance spectra as a function of RH obtained by subtracting the normalized
diamond spectrum from that collected with organic materials at each RH with a factor of 1.
The normalization of all spectra was done relative to the peak at 3421 cm™. The “*” denotes
residual features observed only in the control spectra.

Scheme 4.2 shows the suggested structure of these organometallic polymers formed in the

aqueous phase reaction of FeCls with fumaric and muconic acids at pH 5, respectively.®’
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Scheme 4.2 Suggested structure of units in Fe-polyfumarate and Fe-polymuconate.’
The spectral range 2000-1000 cm™ contains aliphatic v(—C=C-), v(~C=0), v(—C(0)0O-), and

v(C—0). The latter three functional groups are considered hydrogen bonding acceptors. The
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iron centers in these organometallic polymers contain water molecules and hydroxyl ligands
capable of hydrogen bonding with surface water as well. The spectra shown in dotted lines in
Figure 4.6a,b are the same as those shown in Figure 4.3a,b for water uptake on diamond powder
only. Increasing % RH resulted in increasing the absorbance assigned to v(OH) and 6(H20)
centered at 3421 and 1632 cm™, respectfully. There are also other clear differences in the
spectra of surface water on the samples versus the control with increasing % RH. These
differences include the structure of the v(OH) broad band, increasing absorbance at 1705 and
1223 cm (Fe-polyfumarate) and 1686 cm™ (Fe-polymuconate), and decreasing absorbance at
1516 and 1446 cm™ (Fe-polyfumarate) and 1416 cm™ (Fe-polymuconate). To better isolate
these features, the spectra in Figure 4.5a and 4.5b were normalized to the intensity of the peak
at 3421 cm?, and then the normalized diamond spectrum was subtracted from the
corresponding spectrum for Fe-polyfumarate and Fe-polymuconate (Figure 4.6¢ and 4.6d).
Table 4.1 lists the assignment of the features observed in Figure 4.6¢ and 4.6d. This subtraction
procedure clearly revealed the spectral features responsible for the structure in the v(OH) broad
band, namely 3641, 3564 cm™, and the feature near 3020 cm™. The former frequencies indicate
the presence of OH functional groups involved in weak hydrogen bonding such as those in
direct contact with the hydrophobic part of the polymers. The sharp negative features near 3020
cm* suggest changes to v(C-H)* in the aliphatic backbone of the polymers as a result of water
adsorption and the formation of weak OH- - hydrogen bonds.>* The tailing of the OH broad
band till 2500 cm™ is characteristic of hydrogen bonding network on organic particles and films
and is correlated with the presence of stronger hydrogen bonds relative to those in the liquid
phase of water.4%°>% |n addition, the negative features in the 1800-1200 cm™ spectral range
(Figures 4.6¢ and 4.6d) appear at 1620, 1516, and 1446 cm™ for Fe-polyfumarate, and 1628
and 1416 cm™ for Fe-polymuconate. As listed in Table 4.1, vibrational modes in this range are

assigned to v(—C(O)O—) and v(-C=C-). These functional groups are hydrogen bonding
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acceptor groups and hence, water adsorption appears to change their fundamental vibrational
frequency relative to the “dry” sample. The positive features at 1705 cm™ for Fe-polyfumarate
and 1686 cm for Fe-polymuconate suggest weakening of the C=0 relative to the dry sample,
where v(C=0) appeared at 1710 and 1701 cm™, respectively (Figures 4.2c and 4.2d). Also, the
positive feature 1223 cm™ for polyfumarate is assigned to v(C—O), which is higher than the
1215 cm™* peak observed in the dry sample. While the difference is within the resolution of our
measurements, the slight blue shift might indicate an effect of hydrogen bonding on C-O
groups. In summary, ligands on the metal centers and hydrogen bonding acceptor groups in Fe-
polyfumarate and Fe-polymuconate interact within adsorbed water, forming clusters
characterized by weaker and stronger hydrogen bonds relative to liquid water. The formation
of these clusters causes shifts in the vibrational modes of the organic groups in direct contact
with surface water. With this understanding of the structure of surface water on organic and
organometallic polymers of atmospheric relevance, the next section quantifies water uptake as
a function of % RH with mathematical models that best describe the hygroscopicity of these
materials.
4.5.3 Adsorption thermodynamics

To obtain thermodynamic parameters for gas phase water adsorption on the organic
polymers studied herein, a QCM was used to quantify the amount of surface water as a function
of % RH. For these experiments, thin films of the organic polymers were deposited on a gold-
coated quartz crystal with an oscillation frequency of 5 MHz. The amount of the deposited
organic films was optimized such that it is small enough not to change the oscillating frequency
of the QCM crystal and large enough to observe changes in frequency because of gas phase
water adsorption. The change in frequency, AF, due to gas phase water adsorption or desorption
are converted to change in mass, Am, according to the Sauerbrey equation: AF = -CtAm, where

Crt (Hz cm? gh) is a sensitivity factor unique to a particular crystal. The unit for area (cm?)
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assumes that the material coats the entire exposed area of the QCM crystal. To quantify surface
water, the value of Cs was obtained from calibration experiments using droplets of liquid water
with amounts that give rise to linear AF versus Am. Because of the high surface tension of
water, these droplets did not cover the exposed area of the QCM crystal. The geometrical
contact area of the droplets with the QCM crystal was calculated and multiplied by AF. This
way, the slope of the line of area corrected AF versus Am would have units of Hz cm? g. The
value of Cs from the water calibration experiments was found to be 22564 + 1519 Hz cm? gL,
Figures 4.7 and 4.8 show raw QCM data as a function of time and % RH (2-88%) on dry

polycatechol, polyguaiacol, Fe-polyfumarate, and Fe-polymuconate, respectively.
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Figure 4.7 Raw QCM data showing change in frequency, AF, as a function of increasing
relative humidity (%RH, numbers between vertical dashed lines) relative to signal recorded
while flowing dry air on (a) polycatechol (0.3 mg), and (b) polyguaiacol (0.1 mg) thin films.
Photos to the right show representative samples prior to starting the water uptake experiments.
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Figure 4.8 Raw QCM data showing change in frequency, AF, as a function of increasing
relative humidity (%RH, numbers between vertical dashed lines) relative to signal recorded
while flowing dry air on (a) Fe-polyfumarate (0.037 mg), and (b) Fe-polymuconate (0.11 mg)
thin films. Photos to the right show representative samples prior to starting the water uptake
experiments.

Representative images of the thin films deposited on the QCM crystal are shown to the right
of the raw data. Increasing % RH of the humid air flowing over the films results in negative
AF, which was calculated relative to the initial frequency while flowing dry air. The decrease
in frequency indicates a positive Am due to the increase in the coverage of surface water. Upon
decreasing % RH of the humid air flowing over the film, values of AF become less negative,
which correlates with water desorption from the films. The AF values were corrected for the
geometrical area of the deposited films and then converted to the amount of surface water, Am,
using the Cs value mentioned above. To show the adsorption and desorption isotherms of

surface water on organic polymer thin films, the left axes in Figure 4.9 are for Am values versus

% RH, and the right axes are the corresponding mass of surface water normalized to the surface
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area of the deposited organic film. The latter is useful for comparing water uptake on different
materials to examine their relative hygroscopic properties. The shape of the adsorption
isotherms in Figure 4.9 a,b,d is similar to Type Il isotherms that indicate multilayer adsorption
modeled using the 2-fit parameter BET model.**>" This model was derived for adsorption on
uniform surfaces with infinite number of layers. However, for adsorption on heterogeneous

particles such as the organic polymers studied herein, adsorption results in the formation of a
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Figure 4.9 Water adsorption isotherms at 298 K constructed from the data shown in Figures
4.7 and 4.8 for (a) polycatechol (0.3 mg), (b) polyguaiacol (0.1 mg), (c) Fe-polyfumarate (0.037
mg), and (d) Fe-polymuconate (0.1 mg) using the equation Am = —AF/Cs, where Am is the
change in mass due to adsorbed water (left axis). AF was multiplied by the geometrical area of
the deposited films. The right axes were calculated by converting Am to water mass (g) per
surface area (m?) of the organic film deposited. The lines through the data represent least-
squares best fits to the experimental data. The best fit parameters are listed in Table 4.2. The
outermost right axis was obtained by dividing water coverage in gm by that at the monolayer
coverage obtained from the best-fit parameters. The error bars represent the standard deviation
(+o) from the average data of 3—4 water isotherm experiments, each on a freshly prepared
organic film.

finite number of layers. A modified 3-fit parameter BET model was described by Goodman et

al. that takes into account the finite number of layers.*®
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1 —(n+ D(RH)" + n(RH)"™
14 (c— 1)(RH) — ¢(RH)""!

m = my¢(RH)
1 — (RH)

where m is the surface coverage of water (gm2), mwc is the monolayer surface coverage of
water (gm), ¢ is a unitless temperature-dependent constant related to the enthalpies of
adsorption of the first, AH:’, and subsequent layers (expressed as the standard enthalpy for
water vapor condensation, AHcond = -44 kJ mol™?), ¢ = exp(-[AH1" — AHcond J/RT), and n is a
unitless fitting parameter that represents the maximum number of layers of adsorbed species
and is related to the pore size and properties of the adsorbent, R is the gas constant and T is
temperature in K. The best fit parameters using the modified BET adsorption model to the data
shown in Figure 4.9 a,b,d are listed in Table 4.2. The outermost right axis in these figures shows
water coverage in monolayers calculated relative to mm obtained from the fits.

Table 4.2 Best Fit Parameters for Gas Phase Water Adsorption on Polymeric Organic Films at
298 K Shown in Figure 4.92

modified BET adsorption model

H,0 Cmrerage

at ML (gm™)
polymeric organic (% RH at AHY
film 1 ML) n ¢ (k] mol™")

polycatechol 52+ 03 6.6 + 2 28 + 13 —52 + 24
(16%)

polyguaiacol 31+ 14 5.7+ 1 1.6 + 0.5 —45 + 22
(45%)

Fe-polymuconate 16 + 0.5 14+ 3 72+ 3 —55+3
(14%)

Langmuir—Sips adsorption model

H,O Coverage
at saturation

(g m~?) n K, K,
Fe-polyfumarate 16 + 2.4 54+ 12 1.3+ 0.6 212 + 100
(43%)

4sat = saturation surface coverage.
The trend in the values of the best-fit parameters: mmc, n, and c¢ for water adsorption of
polycatechol, polyguaiacol, and Fe-polymuconate reflects their affinity to water based on their

chemical structure. Both polycatechol and polyguaiacol are more hydrophobic than Fe-

92



Chapter 4

polymuconate. Both organic polymer films with substituted benzene ring units result in the
formation of a water monolayer at later % RH values (16 and 45%) compared to 14% for Fe-
polymuconate, which is an organometallic film with aliphatic dicarboxylic acid units connected
through iron centers that favor water as ligands. This higher affinity toward water is evident in
the values of n, where Fe-polymuconate takes up nearly double the maximum number of layers
observed for polycatechol and polyguaiacol. In addition, the formation of the monolayer water
coverage on Fe-polymuconate is more exothermic than on polycatechol and polyguaiacol. The
presence of the methyl substituents in polyguaiacol compared to hydroxyl groups in
polycatechol resulted in a value for AH:" close to AHcond . This result suggests that water-water
hydrogen bonding interactions dominate over water-polyguaiacol hydrogen bonding. For
polycatechol, hydroxyl substituents are involved in hydrogen bonding with surface water
resulting in higher AH:" than AHcona’. The shape of the water adsorption isotherm on Fe-
polyfumarate in Figure 4.9c is different from that observed for Fe-polymuconate. The S-shaped
curve is characteristic of a Type V isotherm typically observed for gas phase adsorption on
porous materials, where pore condensation takes place.>® A similar isotherm shape was
observed for N2 gas adsorption at 77 K as shown in Figure 4.10. The model used to fit the S
shaped isotherm shown in Figure 4.9c is the Langmuir-Sips isotherm model, which accounts
for monolayer adsorption according to the Langmuir isotherm at low pressure, and capillary

condensation described by the Sips isotherm at moderate to high pressure®®

K(RH) | Ky(RH)

m = msat. > n
1+ K(RH) 14+ K®RH"} 42

where m and RH are defined above, ms is the saturation surface coverage (g m2), n is a fitting
parameter characteristic of the heterogeneity of the surface, K; and K3 are surface affinity
parameters at low and moderate/high vapor pressure regions, respectively. As summarized by

Inglezakis et al.,%° this composite isotherm was used to describe the adsorption of polar and
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nonpolar organic compounds on mesoporous silicate and water adsorption on a silica-based

high-purity spherical gel.
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Figure 4.10 Adsorption isotherm of N2 gas on Fe-polyfumarate at 77 K confirming the porous
structure of this organometallic material.

The best-fit parameters using the Langmuir-Sips adsorption model to the data shown in Figure

4.9c are listed in Table 4.2.

Figure 4.11 High resolution transmission electron microscopy (HR-TEM) images for Fe-
polyfumarate showing the pore structure of this material.
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The outermost right axis in this figure shows water coverage in monolayers calculated relative
to msat, Obtained from the fit. The S-shaped isotherm is a direct consequence of the porous
structure of Fe-polyfumarate, which is apparent in the high-resolution transmission electron
microscopy images shown in Figure 4.11. The value msa. (corresponding to 1 ML) occurred at
43% RH indicating complete condensation of water in the pores. The values of K; and K>
suggest that water—water interactions due to condensation in the pores at moderate to high %
RH are more favorable than water-polyfumarate interactions at low % RH. Also shown in
Figure 4.9 is the extent of water desorption as a result of decreasing % RH from the highest
value reached during adsorption. Within the uncertainty and over the time frame of the
measurements, there is no hysteresis observed in the case of polycatechol and polyguaiacol
because of weak adsorbate-adsorbent and adsorbate-adsorbate interactions. The Fe-
polyfumarate sample shows no hysteresis above 50% RH, and water retention at RH values
below 40% RH. The largest hysteresis is observed in the case of Fe-polymuconate, where at
30% RH, for example, the sample contains nearly double the amount of water in the desorption
part relative to the adsorption part of the experiment. This suggests that the desorption kinetics
are slower than adsorption Kinetics over the 30 min allowed for equilibrium at % RH. Such
behavior would have consequences on the chemical and physical properties of aerosols
containing organometallic polymers.
4.6Conclusion

In this study, the hygroscopic properties of organic and organometallic polymeric particles
formed in iron catalyzed reactions with aromatic and aliphatic dicarboxylic acid compounds
detected in field-collected SOA, were investigated. The structure of surface water was studied
using DRIFTS revealed that water bonding with organic functional groups acting as hydrogen
bond acceptors caused shifts in their vibrational modes. There was also evidence for weak and

strong hydrogen bonding networks that suggest cluster formation with water-water and water-
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organics interactions, respectively. In addition, gas phase water adsorption and desorption
isotherms collected as a function of RH was best modeled using a modified Type Il multilayer
BET adsorption model on nonporous materials, namely polycatechol, polyguaiacol, and Fe-
polymuconate. Water adsorption on porous Fe-polyfumarate was best described using a Type
V adsorption model, namely the Langmuir-Sips model that accounts for condensation in pores.
The results presented herein are significant because global climate models® need better
parametrization of the hygroscopic properties and chemical reactivity of SOA. Of the organic
and organometallic polymeric particles studied here, the shape of the adsorption isotherm of
water on polyguaiacol is similar to particle growth factor curves (ranging from 1.1 to 1.2)
obtained for SOA formed by oxidation of cycloalkenes, monoterpenes, and sesquiterpenes.®:
Gas phase water adsorption isotherms on the other polymers, polycatechol and Fe-
polymuconate, show that they have higher affinity for water, particularly below 20% RH
relative to other SOA. The hygroscopic behavior of Fe-polyfumarate is the most unique given
its porous structure, and the shape of the adsorption isotherm has not been observed before for
atmospheric aerosols. This adsorption isotherm resembles those obtained from water uptake on
metal-organic frameworks owing to their extensive network of pores.®> As mentioned in the
introduction, water structure and hygroscopic properties are the first step to understanding the
surface chemistry of atmospheric aerosols. The organic polymers studied have chemical
structures (unsaturated bonds, benzene rings, iron centers) that cause their light absorbing
properties to appear in the UV-visible region. The fact that these materials can adsorb water
even at low % RH suggests that water will play a role in their photo reactivity and electron
transfer processes, whether at the surface or in the pores as in the case of Fe-polyfumarate.
Hence, these reactions will impact their aging, atmospheric residence time, and impact on gas

phase composition.
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Chapter 5 Iron-containing Metal-Organic Frameworks (MOFs) in Enhancing the
Selective Catalytic Reduction (SCR) of NOx to Nitrogen Gas

5.1 Abstract
This chapter describes systematic investigation on the reactivity of Fe-BTC and CoFe>O4 with
urea as the in situ source of ammonia gas as a reductant to reduce NO) by DRIFTS. It was
found that the rate of conversion of NO) in the presence of CoFe.04/8%urea was 2.3+0.03
ppm m2 min 1, whereas in the presence of Fe-BTC//8%urea, the rate of conversion of NO
was 0.22+0.04 ppm m2 min 2.
5.2 Introduction

Recently, there has been increasing environmental awareness due to the “air pollution” that
have harmful effect on living beings, plants and materials.! It has been found that the major
contribution to this pollution are anthropogenic and occurs due to the burning of fossil fuels
(such as coal, petroleum and natural gas), vehicles and other ignition processes. Nitrogen
oxides (NOx, mainly NO and NO.) are one of the key components of air contaminants,
generated from combustion processes. NOx are known as primary pollutant in the atmosphere
and react to form photochemical smog and acid rain as well as take part in ozone layer
depletion.>® Moreover, they are harmful for human health and can cause damage to the
respiratory systems. Considering the toxicity, it has become an important environmental
concern to control or remove NOx from the air. Though NOyx emission occurs from various
anthropogenic activities, industrial sources such as power plants and mobile engines are
considered mainly responsible for the release of NOy into the atmosphere. Nitrogen oxides are
highly reactive and complete removal of these gases is barely possible. However, NOx
emanation can be controlled and classified into three categories such as pre-combustion
treatment, combustion modification and post-combustion treatment. It appears that pre-

combustion as well as combustion modification can make significant reduction of NOy.
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However, the success is modest and typically less than 50%.* Therefore, during recent years,
more focuses have been made for the development of technologies, associated with post-
combustion treatment of NOx to control and reduce the level of emission.® The selective
catalytic reduction (SCR) is one of the most recognized and effective technologies to remove
NOx from the air by reducing it into environmentally friendly N2 gas. In this process, a reducing
agent along with catalysts is added to the flue gas of NOx at moderate temperature. NH3 can
act as a reducing agent in SCR of NOx and has been reported as the most efficient, highly
selective and cost-effective technologies for NOy emission control.® The reactions that occur
during the NH3-SCR of NOy are given in the following equations.

Catalyst
ANH3 +4NO + 02 — 4N2+6HO .... (5.1)

Catalyst
ANH3z + 2NO + 2NO2 — 4N + 6H20.... (5.2)

The first reaction (5.1) is known as the “standard” SCR reaction. It takes place in the presence
of oxygen. However, it turned out that equimolar amounts of NO and NO: in the system
facilitate the reaction to be faster than the “standard” reaction. As the catalyst plays an
important role in the SCR process, recent studies focused on the improvement of the catalyst
and its efficiency. Earlier, oxides of Pt, Co, Ni, Fe and Cr were used as catalysts for the SCR.
However, due to some drawbacks (required high temperature that may end up with forming
explosive ammonium nitrate) these oxides required replacing. In 1960, Japan and the United
States made progress in SCR and developed an inexpensive and highly robust V.0s/TiO>

catalyst, that was efficient at medium temperatures (Scheme 5.1).2
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Scheme 5.1 Reaction mechanism for the NHs-SCR over vanadium oxide catalysts.?

However, it was observed that vanadium catalysts lacked thermal stability as well as oxidized
SO; into SOs, a very harmful acidic gas. Later, in 1970, modified vanadium-based catalysts, in
particularly WO3 or MoOs doped V20s/TiO», have been extensively employed to remove NOx,
mostly from stationary sources due to their high denitrification efficiency. Nevertheless, there
are some disadvantages for these catalysts as they can be deactivated during the application
process. The deactivation can take place through several ways such as poisoning, fouling,
thermal degradation and vapor compound formation. Moreover, there can be vapor-solid
reactions between vapor and catalyst surface as well as solid-solid reactions between carrier of
the catalyst and promoter that are responsible for the deactivation of the catalysts. In addition,
these catalysts offer low range of operating temperature (300-400 °C). Besides, V20Os is toxic,
has lower selectivity towards N> at high temperature and is expensive. Last but not the least,
vanadium is known as a pollutant to the environment and is hard to dispose of.* All these
disadvantages questioned the application of vanadium-based catalysts in the industrial arena.

Recently, modified activated coke (AC) has been used as a catalyst for the deNOy in NHz-

SCR. AC is a porous carbon material and has similar pore structure as activated carbon.®
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However, it is not fully activated. It is low cost and possess higher mechanical strength. The
existing activated coke by itself, has poor deNOx performance at low temperature. However,
there has been a considerable improved performance of activated coke as a catalyst after
structural modification. AC can be modified through doping using various metal oxides such
as Fex03, C0304, CeO2 and CrOs. It was found that metal oxides helped to enhance the
performance of AC, as they possess various oxidation states and redox properties.® Figure 5.1
shows the possible mechanism of NOx removal via NH3-SCR, where FexCoyCe,Onm/AC, a
modified activated coke, act as a catalyst. In this work, AC was modified by Fe>O3, Co.03 and
CeO2 with incipient wetness impregnation method. The modified AC was employed to remove

NOx from simulated flue gas in a lab-scale fixed-bed system at 100-350 °C.

NO,,

\ Fe** E-R Mechanism
C

\ sites k();.\..

x:-n;n\.\u‘ /\0"*"

L-H Mechanism

Figure 5.1 Mechanism of NO conversion to N2 on the surface of FexCoyCe,Om supported on
activated carbon.®(adapted with permission from Ref 5)

In the first step of the SCR reactions, the adsorption of NHz(g) on the acid sites or metallic
atom is well documented. NH4"(ag) and NH2q) are the intermediate products that appear upon
the adsorption of NHz(g). NHa4"ad) can be combined with NO2(aq) to produce NH4NO> followed
by decomposition to N2 and H2O according to the Eley Rideal (E-R) mechanism. On the other
hand, NHz(q) could react with NO(q) to generate NH2NO, followed by decomposition to N2 and

H20 according to the Langmuir Hinshelwood (L-H) mechanism. It appeared that modified AC
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plays an important role in reduction of NO(g) and the results revealed that the abundance of
active sites and good redox cycle among Fe, Co and Ce, facilitated the enhanced performance
of the catalysts.®

Mn-based catalysts also have drawn much attention due to their enhanced catalytic
performance for SCR at low temperatures.® It has been shown that, H.O and SO; inhibits the
activity of pure MnOx catalysts in real conditions. However, Mn-based catalysts with multiple
metal oxides support exhibit enhanced stability such as Cu-Mn, Sn-Mn, Fe-Mn, Nb-Mn, Li-
Mn, Eu-Mn and Ni-Mn. These catalysts show decent SCR performances and Nz selectivity.
Still, their performance towards H>O and SO, were questionable and not satisfactory at lower
temperatures below 250 °C. Recently, some modified Mn-based catalysts were synthesized and
performed well against H,O and SO; inhibitors-such as MnOx-CeO.. These multi-metal oxides
have special crystal shape and structures, along with modified TiO2 and carbon support. It was
observed that MnOx-CeO: catalysts possess outstanding SCR performance as a result of
synergic behavior between Mn and Ce metal center. This behavior helps to enhance the quality,
acidity of the acid sites and capability to store or oxygen.® Another kind of Mn-Based catalysts
have been reported and synthesized with hollow porous MnyxCos.xOs nanocages. These
nanoparticles were derived from Mn3[Co(CN)e]onH20, having a structure nanocube, like
metal-organic frameworks (MOFs) via a self-assemble method. It was found that their uniform
structural distribution and strong interaction between Mn and Co, are the reasons behind their
larger surface area, more active sites and enhanced catalytic cycle. Moreover, flexible valence
states and excellent redox ability of Mn-based catalysts were found favorable to the low-
temperature SCR activity.

Recently, metal-organic frameworks (MOFs) have emerged as a new class of useful
materials and are the latest addition to the list after zeolites for the reduction of NO2.”*> MOFs

(also known as porous coordination polymers or PCPs) have drawn much attention due to their
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various applications in the field of chemistry for the past two decades.'? These materials have
high surface area and tunable pore size which may offer many kinds of industrial application
in near the future. However, they are already well known for their application in gas separation
and storage,*® capture of greenhouse gases,'* adsorption of volatile organic compounds,*® drug
delivery and sensors, and in the area of heterogeneous catalysis.'? In comparison to the typical
adsorbents, the advantages of MOFs as adsorbents due to their various compositions and
structure types, tunable pore size, high surface area, and coordinatively unsaturated or saturated
metal sites to control the adsorption ability.'6®

Fe-based structures are known as the most promising type of MOF materials considering
their relatively high thermal stability, low cost, high biocompatibility and low toxicity. Fe-
BTC (BTC: 1,3,5-benzenetricarboxylate) is one of the MOFs that has been commercialized
by BASF under the name of Basolite (Basolite A100, C300, F300, Z1200 and Basosiv M050
or aluminum terephthalate MIL-53, copper trimesate HKUST-1, iron trimesate, zinc
imidazolate or ZIF-8, and magnesium formate, respectively). Fe-BTC has iron as a metal center
and BTC as organic linker. Basolite Fe-BTC can be prepared from the reaction of trimesic
benzene-1,3,5-tricarboxylic acid and iron salt. Figure 5.2 shows the structure of Fe-BTC where

Fe> clusters are coordinated to carboxylate groups to form paddle wheel groups.

Figure 5.2 The structure of Fe-BTC (carbon atoms gray, oxygen atoms red, and iron atoms
light-blue).*®

The properties of Fe-BTC are given in Table 5.1.%°
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Table 5.1: Properties of Fe-BTC

Properties Fe-BTC
Metal Fe
Linker BTC
Iron mass content 25
Carbon mass content 32
Crystal Structure unknown
BET surface area (m?/g) 771
Pore dimension 21.7
Particle size (in EtOH) (um) 5
Lewis acid Strong
Lewis base Weak
Bulk density 0.16-0.35 g/cm?®

Fe-BTC (benzene-1, 3, 5-tricarboxylate) metal-organic frameworks have been employed
for various purposes such as catalysis, separation and CO; capture. It has been reported for the
first time to be used as a combined catalyst and carbon source for the synthesis of multi-walled
carbon nanotubes (MWCNTS).2° Fe-BTC also been successfully used for separation of small
organic compounds in the liquid phase. It was found that separation with the Fe-BTC was
achieved because of the specific interactions between the solutes and Fe®* sites. Fe-BTC
exhibits high catalytic activity for a large variety of reactions requiring Lewis acidity, able to
carbon capture and storage (CCS).?! Recently, Fe-BTC has been used as a candidate for
combustion catalysis of solid propellants containing ammonium perchlorate. Thermal
decomposition of ammonium perchlorate was enhanced in presence of the Fe-BTC.?? Most
recently, Fe-BTC was introduced for CO> capture along with Cu-BTC and ZIF-8 MOFs. It was
found that Cu-BTC involved in dehydration reactions, as well as the interaction between copper
and CO2 molecule, whereas for Fe-BTC and ZIF-8, physical driving force was detected for

CO; adsorption measurements.?
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5.30Dbjectives

As NOx are very harmful air pollutants, it is important to develop nontoxic catalysts which
have low costs, stability, high deNOxy activity at wide temperature range and favorable tolerance
of other components in the flue gas. Considering the properties (such as highly active catalyst,
higher surface area and pore size) it is obvious that Fe-BTC might be the better candidate for
the reduction NO(g) in NH3-SCR. In order to compare with Fe-BTC, we also studied CoFe204
nano materials (Figure 5.3) as a catalyst for the deNOx via NH3-SCR. The major objective of
the experimental activities is to systematically investigate the reactivity of Fe-BTC and
CoFe204 with urea as the in situ source of ammonia gas as a reductant to reduce NO().
Experiments were conducted to monitor changes to the surface of the solid materials and to

identify gas phase products.

Figure 5.3 Structure of CoFe204 (43 m?/g).2*

5.4 Experimental
5.4.1 Chemicals

Most of the chemicals were used as received without further purification. Fe-BTC from
Sigma-Aldrich (Basolite F300 Cat. No. 690872); Cobalt iron nano powder from US research
Nanomaterials Inc. (CoFe204, 99.9%, CAS# 12052-28-7); NO(q from Praxair (Product Lot#
70001802562), Cylinder no CC311308, [NO] =500 ppm; Urea, Crystallized from BDH (CAS.:

57-13-6); Diamond powder from Lands Superabrasives (6 um, LST600T). The surface of the
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diamond powder was cleaned by several cycles of washing with ethanol/water mixtures and

then water in a suction filtration system followed by drying in an oven.

5.4.2 DRIFTS experiments

The surface of the diamond powder was cleaned several times with ethanol and water
mixtures (50/50%, v/v%) and finally with water using suction filtration. The cleaned diamond
power was oven dried overnight. DRIFTS spectra were collected using a praying mantis diffuse
reflectance accessory (Harrick, DRK-4N18) with a stainless-steel high temperature reaction
chamber treated with a special SilcoSteelCR coating (HVC, cup 6 by 3 mm, dome cover with

two Ge windows and one quartz viewing window).

(‘_‘)
4

Gas flow cell

Figure 5.4 Experimental setup for DRIFTS experiments. a) for surface species characterization
b) for gas phase species characterization.

A total mass of 0.23 g filled the sample cup of the HVC reaction chamber. The gas handling
system described in Figure 5.4 was used to introduce NO vapor and humid air into the reaction
chamber using carrier air from a purge gas generator (Paker/Balston Analytical Gas Systems
Purge Gas Generator 75-52, less 1 ppm CO: and H20). The maximum air flow in these

experiments after mixing was around 202 standard cubic centimeters per minute (sccm). The
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DRIFTS accessory was installed into a Nicolet 8700 FTIR spectrometer (Thermo Instruments)
equipped with a purge gas generator and a liquid N2 cooled MCT detector. Each experiment
started by preparing a fresh sample containing 8% (wt/wt) urea in Fe-BTC, CoFe2O4 or
diamond powder. Mechanical mixing of these chemicals was achieved using a wig-L-bug (no
ball) for 1 min or manually until the sample became completely homogeneous. Efficient and
reproducible packing of the sample was obtained using a 4 kg weight for 10 min. For DRIFTS
experiments conducted under dry conditions, the sample was prepared and kept under dry air
flow (350 MFC) at 115 °C for about 12 h prior to flowing NO). A single beam spectrum was
first collected, and then NOg was introduced. All spectra up to this point were collected by
averaging 100 scans at 8 cm™! resolution. The relative humidity (RH) of the air was measured
by a humidity sensor (Vaisala HUMICAP HM70, £2% RH uncertainty) located at the exit of

the DRIFTS reaction chamber.
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5.5 Results and discussion

In order to clearly understand and facilitate the analysis for the reactions between NO(g) and
Fe-BTC/8%urea or CoFe204/8%urea under dry conditions, several supplementary experiments
were performed. The following sections will describe those experiments followed by the NHz-
SCR of NO(g) Fe-BTC/8%urea or CoFe;04/8%urea.
5.5.1 In situ production of ammonia (NHs) from urea (NH2CONH2)

In NH3-SCR of NO(g) with Fe-BTC/8%urea or CoFe204/8%urea, NHsz() will be acting
as the reducing agent. In these experiments, urea is the source of NHz(). The use of urea for
NHag) production is very common. Earlier, aqueous or anhydrous ammonia had mostly been
used as a reducing agent for SCR. However, ammonia is a hazardous chemical. Therefore,
transportation, storage and handling of NHz(q) required high level of safety and environmental
regulation. On the other hand, urea is non-toxic, safe and easy to carry. In order to examine the
gaseous species upon heating of urea, gas phase experiments were carried out.?® The thermal
decomposition of urea was performed and the gas phase products were characterized under dry
and humid conditions. Figure 5.5 shows absorbance spectra of control experiment of 8%urea
mixed with diamond powder (wt/wt) (used to enhance scattering efficiency of the samples)
under dry and humid conditions. All the spectra were referenced to the spectrum obtained after
overnight flow of dry air over the sample. After a 20 min flow of dry (Figure 5.5a) and humid
air (Figure 5.5b) at 115 °C, there was no evidence of gas phase species. As the melting point
of urea is 133 °C, no gas phase product was observed below the melting point. However, when
the temperature increased to 180 °C, four strong bands at 3525, 2350, 2269 and 950 cm™ and
three relatively weaker bands at 3334 and 1625 cm™ were observed. In the N-H stretching
region, the band at 3525 cm™ can be assigned to HNCO (overlapped with gas phase water

under humid conditions, Figure 5.5b) while the weak band at 3334 cm™ can be assigned to
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NHs. The bands at 2350 and 2269 cm™ are due to C=0 asymmetric stretching of CO2 and

HNCO, respectively.
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Figure 5.5 Thermal decomposition of urea only under dry and humid conditions (a) Gas
phase spectra as a function of time (t) 8% urea/diamond, dry air, at 115 °C, then with heating
to 180 °C. (b) Gas phase spectra as function of time (t) 8% urea/diamond, humid air (%RH
10-12), at 115 °C, then with heating to 180 °C.

The band at 1625 cm™ is due to the bending vibration of NHs while the band at 950 cm™ is due

to the umbrella mode of NHs.2® The amount of gas phase product produced was quantified by

using the molar absorptivity values from the Table 6.1 in Appendix 3. The kinetic curve was

obtained by plotting the change in concentration for the gases with time for each experiment.
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Figure 5.6 shows kinetic curves for both NH3 and HNCO as a function of time for data in

Figure 5.5a,b.
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Figure 5.6(a) Kinetic curve of [NHs] vs time for data in figure 5.5(a). (b) Kinetic curve of
[NHz] vs time (min) for data in Figure 5.5(b).

The data implies that under both dry and humid condition, the production of NHz is fast, within
10 min, and hardly observed with the span of time by 60 min. The Kinetic data shows the effect
of humidity on the production of NHs. The amount of NH3(g) produced under humid condition
(2233 ppm) is 1.6 times greater than the dry condition (1387 ppm). Reactions on the thermal
decomposition of urea are given below. Urea firstly decomposes into equimolar products of
NHs() and HNCO(g) (R1). However, water vapor existing in the system may further react with
HNCO) to form additional NHsg and COzg) via hydrolysis according to the following

reaction (R2).%

A
A
HNCO + H,0 —— NH; + CO, (R2)

Under dry condition R1 is a standard reaction that occurs. However, R2 dominates under humid

conditions.
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5.5.2 Thermal decomposition of Fe-BTC under dry conditions

Fe-BTC has been known as a stable MOF at higher temperature and possesses good thermal
stability.?” In order to examine the stability as well as to characterize the gas phase products
obtained from the thermal decomposition under dry conditions, Fe-BTC only was heated to
115 °C and then 180 °C for 60 min at each temperature. Figure 5.7 shows the absorbance spectra

for both gas and surface species from the thermal decomposition of Fe-BTC.
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Figure 5.7 Thermal decomposition of Fe-BTC only under dry conditions (a) Gas phase
spectra as a function of time and temperature, dry condition. (b) DRIFTS spectra of Fe-BTC
only as a function of time and temperature-dry (brown) and humid (blue) conditions.
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There was no evidence of gas phase product at 115 °C. However, when the temperature was
increased to 170 °C, there is evidence of production of gas phase CH3OH. Figure 5.7a shows
the gas phase absorbance spectra with peaks at 3680, 2888 and 1033 cm™ which have been
assigned to (-OH), U-CH) and «(C-O) functional groups of CH3OH, respectively. The
production of CH3OH was very fast and almost disappeared after 60 min at 180 °C. Figure 5.7b
shows the DRIFTS absorption spectra as a function of time and temperature. All the spectra
were referenced to the spectrum obtained after overnight flow of dry air over the sample. The
experiments were designed to thermally-treat the solid materials Fe-BTC at 180 °C under a
flow of dry and humid air and observe the changes on the surface species after heating. There
was a negative at 1250 cm™ and a peak appeared at 3658 cm™ after heating Fe-BTC at 180 °C
for 60 min under humid air. The negative feature assigned to (-CH.) while another negative
feature at 1012 cm (appeared in both dry and humid conditions) might be due to 1{C-O). Peak
at 3658 cm™ is due to the adsorbed -OH on the surface. However, the data reveals that Fe-BTC
is a stable material at these temperatures under both dry and humid conditions.
5.5.3 Thermal decomposition of Fe-BTC/8%urea mixture under dry conditions
Thermal decomposition of Fe-BTC/8%urea mixture under dry condition was performed
with a view to investigate the gas phase product obtained without reacting with NO(g). Figure
5.8a shows the gas phase absorbance spectra of thermal decomposition Fe-BTC/8%urea

mixture as a function of time and temperature under dry condition.
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Figure 5.8 Thermal decomposition of Fe-BTC/8%urea mixture under dry conditions and
quantification of gas phase products. (a) Gas phase spectra as a function of time (min) and
temperature (°C) under dry air. (b) Kinetic curve of [NH3] vs time (min) for data in Figure
5.8(a).

At first Fe-BTC/8%urea was heated at 115 °C for 19 min. Then, the temperature was increased
to 180 °C and kept another 40 min. There was no evidence of gas phase product at 115 °C.
However, when the temperature increased to 180 °C, the amount of NHzg) went to the
maximum (91 ppm) within 10 min, as evident from the kinetic curve (Figure 5.8b). As the time
progressed, the concentration of NHzg) went down. In similar experimental condition, 8%urea
mixed with diamond powder produced 1387 ppm NH3g) (Figure 5.6a). The results imply that,
Fe-BTC trap NHz(g) inside the MOF. Moreover, there is a clear difference between the gas
phase product of thermally treated Fe-BTC only and Fe-BTC/8%urea. There was an evidence
of gas phase CH3OH when Fe-BTC only was heated. However, in case of Fe-BTC/8%urea
mixture, there is no evidence of gas phase CH3OH. The reason might be as follows-when Fe-
BTC only is heated, CH3sOH is produced from catalytic hydrogenation of COz¢).2® In this
hydrogenation reaction, the source of Hyg) is the small amount of gas phase water as the
reaction is performed under dry condition. However, thermal treatment of Fe-BTC/8%urea
mixture produces intermediate product HNCOg) from urea as discussed in section 5.4.1 and it

reacts with gas phase H>O to produce more NH3g) and CO2(). Since the source of Hyg) is

120



Chapter 5

blocked, in this experiment gas phase CHzOH production is hindered. Thus, thermal treatment
of Fe-BTC/8%urea mixture produces NHz(g) (91 ppm) along with CO2(g). No evidence of gas
phase CH3OH. However, the amount of NHs is nearly 16 time less than the amount (1387 ppm)
produced with 8% urea only.
5.5.4 Thermal decomposition of Fe-BTC/8%urea mixture under humid
conditions

The Fe-BTC/8%urea mixture was heated similarly as discussed in previous section 5.4.3
under humid conditions. The purpose of this experiment was to understand the effect of
humidity on the thermal treatment. Figure 5.9a shows the absorption spectra as a function of

time and temperature under humid conditions.
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Figure 5.9 Thermal decomposition of Fe-BTC/8%urea mixture under humid conditions and
quantification of gas phase products (a) Gas phase spectra as a function of time (min) and
temperature (°C) under humid conditions, (%RH 10-12). (b) Kinetic curve of [NH3] vs time
(min) for data in Figure 5.9(a).

At first, Fe-BTC/8%urea was heated at 115 °C for 19 min, (%RH 10-12). Then, the temperature
was increased to 180 °C. There was no evidence of gas phase product at 115 °C. However,
when the temperature increased to 180 °C, bands appeared at 3334 and 950 cm™. However,
other characteristics peaks (3525 and 1625 cm™) have been overlapped with gas phase water.
The amount of NHz) went to the maximum (115 ppm) within 10 min, as evident from the
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kinetic curve (Figure 5.9b). As the time progress, the concentration of NH3(g) went down. In
similar experimental conditions, 8%urea mixed with diamond powder produced 2233 ppm NH3
) (Figure 5.6b). It was expected that the humid conditions will enhance the production of
NHsg) relative to dry conditions. Since, the presence of gas phase H>O enhanced the amount
of NHz(g) with 8%urea only (section 5.4.1). The amount of NHz(g) produced is 115 ppm, slightly
higher than the dry conditions (91 ppm). The results imply that Fe-BTC trap NHz(g) inside the
MOF, in both dry and humid conditions.

Earlier sections (5.4.1 to 5.4.4) discussed the experiments associated with the reactions in
absence of NO(g). From the following section the reaction of NO() with Fe-BTC, CoFe204 and
urea will be discussed under different experimental conditions.

5.5.5 Reaction of NO() with either Fe-BTC or 8%urea under dry conditions

Previously, the thermal decomposition of 8%urea (5.4.1) and Fe-BTC only (5.4.2) have
been discussed and the gas phase products have been characterized. In order to study the change
in the gas phase products upon addition of NO), the reaction of NO() with Fe-BTC only or
8%urea were performed under dry conditions. In these experiments, NHz() was produced from
the decomposition of urea to act as reducing agent for the reduction of NO(). These controlled
experiments were performed in order to compare the results obtained from the actual
experiment. Figure 5.10 shows the gas phase absorption spectra of the reaction of NOg with
either Fe-BTC (5.10a) or 8% urea (5.10c) under dry conditions along with the Kinetic curve for
selected gases NO), NHzg and HNCO,) as a function of time and temperature. For the
reaction between NO(g) with Fe-BTC only under dry conditions, the sample was heated for 19
min at 115 °C. Then, the temperature was increased to 180 °C and kept for 20 min. Since these
experiments were conducted under excess NO, the gas phase species detected were NO (1875

cm™) and NO2 (1627 cm™) from wall reactions along?® with CO2 (2350 cm?). In addition, there
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was an evidence of gas phase CHsOH (1{(-C-H) 2888 and ¥(-C-O) 1033 cm™) when the

temperature is increased to 180 °C.
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Figure 5.10 Reaction of NO with either Fe-BTC or 8%urea under dry conditions. (a) Gas phase
spectra of reaction between NO and Fe-BTC only as a function of time (min) and temperature
(°C) under dry air. (b) Kinetic curve of [NO] vs time (min) for data in figure 5.10(a). (c) Gas phase
spectra of reaction between NO and diamond/8%urea as a function of time (min) and temperature
(°C) under dry conditions. (d) Kinetic curve of [NO]/[NH3]/[HNCO] vs time (min) for data in
Figure 5.10(c).

Figure 5.10b shows kinetic curve of NO() in a control gas phase experiment of Fe-BTC with
NO). The data show that there was no significant change in the concentration of NO(
throughout the reaction time. The concentration of NO() was steady even as the temperature
increased to 180 °C from 115 °C. The maximum concentration of NOg) was 295 ppm.
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Reaction of NO(g) with 8%urea was performed under dry conditions. Figure 5.10c shows
the absorbance spectra of the reaction between NO ) and 8%urea mixed with diamond powder
under dry conditions. At first, the sample was heated for 19 min at 115 °C. Then, the
temperature was increased to 180 °C and kept for 20 min. There was no evidence of gas phase
product at 115 °C. At 180 °C. the gas phase species detected were NH3(g) (3525, 3334, 1625
and 950 cm™), HNCO(g (2269 cm™), and reactant NO(g) (1875 cm™) along with CO2(g) (2350
cm™). The kinetic curves for NHs(), HNCO(g) and NO(g as a function of time, are represented
in Figure 5.10d. The data showed that when 8%urea react with NO(g) under dry conditions at
180 °C, the change in concentration for NO) was significant, 256 ppm to 127 ppm. The
maximum amount of NHsg) produced is 1392 ppm. While 86 ppm of HNCO() was produced
from the reaction. Thus, the data revealed that reaction of NOg with Fe-BTC only under dry
conditions shows similar types of products that were obtain in the absence of NO(g) (section
5.4.2). As the concentration of NO(g) remains the same throughout the total experimental time
and does not change even after the increase of temperature, implies that no reaction takes place
between NO() and Fe-BTC only. The slight dip in the concentration observed in the Kkinetic
curve (5.10b) might be due to adsorption of NO(g) onto surface after increasing temperature for
opening of surface sites. On the other hand, 8%urea produce NH3() (1392 ppm) that reduced
NO(g), as evident from the kinetic curve (Figure 5.10 d). The concentration of NO(g) was steady
(256 ppm) at 115 °C. However, when the temperature was increased, NH3g) was produced and
upon reduction the concentration of NOg) went to 127 ppm, revealed that reduction of NO()

takes place.
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5.5.6 Reaction of NO() with Fe-BTC/8%urea mixture under dry conditions

In order to examine the catalytic performance of Fe-BTC/8%urea mixture in NH3-SCR of
NO(), reaction of NO() with Fe-BTC/8%urea mixture was carried out under dry conditions.
Figure 5.11a shows the absorbance spectra of the reaction between NO(g and Fe-BTC/8%urea

under dry conditions.
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Figure 5.11 Reaction of NO with Fe-BTC/8%urea mixture under dry conditions. (a) Gas
phase spectra of reaction between NO and FeBTC/8%urea as a function of time (min) and
temperature (°C) under dry air. (b) Kinetic curve of [NO]/[NH3]/[HNCO] vs time (min) for
data in Figure 5.11(a).
The Fe-BTC/8%urea mixture was under dry air flow overnight at 115 °C. The purpose of this
step was to remove loosely bonded species from the surface and/or pores of the active materials,
particularly water and volatile organic compounds. This temperature was below the melting
point of urea at 133 °C. Then, a dry flow of NO() was introduced. All the spectra were
referenced to the spectrum obtained after overnight flow of dry air over the sample at 115 °C.
No evidence of gas phase product appeared at 115 °C. When the temperature was increased to
180 °C, several peaks appeared. The gas phase species detected are NH3), HNCO(g), CO2(g)
along with gas phase CH3OH. These species have been characterized in previous sections.

Figure 5.11b shows the kinetic curves for NO(g), NH3() and HNCO(g) as a function of time and

temperature. The kinetic data showed that there was a change in the concentration of NO()
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from 291 ppm to 183 ppm, as the temperature increased from 115 °C to 180 °C. The change in
concentration of NO(g) is reasonable as at this temperature, NH3(g) is produced and reacts to
reduce NO(). However, the concentration of HNCOyg) is negligible. In the absence of NO(g),
the concentration of NHz(g) went up to 91 ppm (Figure 5.8b) at 180 °C, whereas the maximum
concentration of NHs(g) is 82 ppm implies that NHz(g) participates to reduce NO(g).
5.5.7 Reaction of NO)with Fe-BTC/8%urea mixture under humid conditions

In order to study the effect of humidity on NH3-SCR of NO) in presence of Fe-
BTC/8%urea, reaction of NO() with Fe-BTC/8%urea mixture was carried out under humid
conditions. Figure 5.12a shows the absorbance spectra of the reaction between NO(g) and Fe-

BTC/8%urea under humid conditions (%RH 10-12).
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Figure 5.12 Reaction of NO with Fe-BTC/8%urea mixture under humid conditions. (a) Gas
phase spectra of reaction between NO and FeBTC/8%urea as a function of time (min) and
temperature (°C) under humid conditions (%RH 10-12). (b) Kinetic curve of [NO]/[NHz3] vs
time (min) for data in Figure 5.12(a).

All the spectra were referenced to the spectrum obtained after overnight flow of dry air over
the sample at 115 °C. No gas phase product appeared at 115 °C. When the temperature was
increased to 180 °C, peaks appeared. The gas phase species detected are NHz(g) (950 cm™) and
CO2(g) (2350 cm™) along with gas phase CH3OH (1033 cm™). Due to the presence of gas phase

water, all the peaks did not appear for the gas phase species detected under dry conditions.
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These species have been characterized in previous sections. Figure 5.12d shows the Kinetic
curve for NO() and NHzg). The trend of NO(q) concentration fluctuated due to the presence of
gas phase water. However, the average concentration of NO was around 250 ppm. The
maximum amount of NH3(g) product is 78 ppm, less than the amount obtained from the dry
conditions at 180 °C. On the other hand, comparison with the experiment of Fe-BTC/8%urea
in the absence of NO() (Figure 5.9b), shows that the concentration of NHsg) is higher (115
ppm) than in presence of NO() under humid conditions at 180 °C. However, the Kkinetic data
reveals that reduction of NO(g) did not take place under humid conditions.
5.5.8 Reaction of NO() with CoFe204under dry conditions

Reaction of NO(g) with CoFe2O4 nanoparticles were investigated in order to compare the
results obtained from the reaction of NO) and Fe-BTC. Figure 5.13a show the absorbance

spectra of the reaction between NOg and CoFe204 as a function of time and temperature.
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Figure 5.13 (a) Gas phase spectra of reaction between NO and CoFe2O4 only as a function
of time (min) and temperature (°C) under dry air. (b) Kinetic curve of [NO] vs time (min)
for data in Figure 5.13(a).

At 115 °C, the spectrum shows peak at 1875 and 1616 cm™ due to the NO(g) and NOz),
respectively. However, when the temperature is increased to 180 °C, CO2) show up at 2350

cmL. Figure 5.13b shows the kinetic curve for NO(g)as a function of time and temperature. The
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concentration of NO(g) remains almost steady, throughout the reaction time, even at higher
temperature. The amount of NO(g) is around 290 ppm. The data showed that NO(g) do not react
with CoFe204, similar to the data obtained for the reaction with Fe-BTC. However, there is no
evidence of gas phase CH3OH as observed in the reaction of Fe-BTC only at high temperature.
5.5.9 Reaction of NO() with CoFe204/8%urea mixture under dry conditions

In order to compare the results obtained from the reaction of NO(g) with Fe-BTC/8%urea,
reactions of NO) with CoFe204/8%urea nanoparticles mixer were carried out under dry
conditions. Figure 5.14a shows the absorbance spectra of the reaction between NO() and

CoFe>04/8%urea nanoparticles under dry conditions.
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Figure 5.14 (a) Gas phase spectra of reaction between NO and FeCoOx/8%urea as a function
of time (min) and temperature (°C) under dry air. (b) Kinetic curve of [NO]/[NH3]/[HNCO]
vs time (min) for data in Figure 5.14(a).

The gas phase species detected are NHz(g), HNCO(g) along with CO2(g) at 180 °C. Figure 5.14b
shows the kinetic curves for NHszg), NOg) and HNCO(g) for the gas phase experiment of
8%urea/Fe-Co with NO(g) under dry conditions. The temperature was kept at 115 °C for first
19 min and then increased to 180 °C for next 20 min. The initial concentration of NOg) was
found 280 ppm. However, when the temperature was increased to 180 °C, the concentration of

NO() went down to 249 and NHs(g) concentration was around 250 ppm. Also, maximum 65
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ppm isocyanic acid HNCOg) was observed. It was found that only 10% of NO() reacted in the

presence of CoFe204/8%urea. However, in case of Fe-BTC/8%urea, 37% NO(q) reacted. Figure

5.15 shows the proposed mechanism for the reaction of NO() with Fe-BTC/8%urea and

CoFe>04/8%urea under dry conditions based on the data obtained from the gas phase

experiments.

NO(,

{25 °C, dry condition

Fe-BTC + 8%urea

A 180 °C, dry condition

Fe-BTC + 8%urea

NO()
A 115 °C, dry condition

CoFe,0, + 8%urea

A 180 °C, dry condition

CoFe,0O, + 8%urea

— > No gas phase product

Gas phase species detected
COZ(g): CH3OH(g), NOZ(g) and NO(g)

_

(@)

— > No gas phase product

Gas phase species detected

NHj3(4)(249 ppm), HNCO,)(65 ppm),
CO2(g)9 NOZ(g) and NO(g)

—>

(b)

Figure 5.15 Summary diagram for the reaction of NO() with (a) Fe-BTC/8%urea and (b)
CoFe>04/8%urea under dry conditions.

In both Fe-BTC/8%urea and CoFe,04/8%urea, no gas phase product is observed at 115 °C.

However, when the temperature is increased to 180 °C, gas phase species such as NHz),
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HNCO(g), CO2(g), NO2g and NO(g) was detected. In addition, gas phase CH3sOH was observed

in case Fe-BTC/8%urea due to catalytic hydrogenation of COz().

5.6 Conclusion

In summary the presence of urea appears to change the type of surface functional groups
on Fe-BTC and CoFe>O4. The reaction of NO) with Fe-BTC/8%urea and CoFe>04/8%urea
end up producing gas phase products such as NHs, HNCO and CO.. In addition, gas phase
CH3OH is observed from catalytic hydrogenation in presence of Fe-BTC. The data reveals that
8%urea with diamond mixed produced the maximum amount of NHs) 1392 ppm under dry
conditions. This amount increased to 2233 ppm in the present of humid air. However, in the
case of 8%urea mixed with Fe-BTC and CoFe204, the results were completely different. Humid
conditions did not favor the production of NH3g) as demonstrated by the data analysis.
However, CoFe>O4 nanoparticle showed better performance compared to Fe-BTC MOFs,
considering the rate of conversion of NO(g), which are 2.3+0.03 ppm-m=2-min and 0.22+0.04
ppm-m2.-min’, respectively. This is expected, since the conversion rate depends on the
concentration of the NH3g) produced during the reaction. The data reveals that NH3(g) produced
from the decomposition of Fe-BTC/8%urea is trapped into the pores of Fe-BTC MOFs, results
in a lower concentration of NHszg in the system. In contrast, decomposition of

CoFe204/8%urea releases more NHs(g), increasing the conversion of NO).

5.7 References
(1)  Xu, J.; Chen, G.; Guo, F.; Xie, J. Development of Wide-Temperature Vanadium-Based
Catalysts for Selective Catalytic Reducing of NOx with Ammonia: Review. Chem. Eng.

J. 2018, 353, 507-518.

(2) Roy,S.; Hegde, M. S.; Madras, G. Catalysis for NOx Abatement. Appl. Energy 2009, 86

(11), 2283-2297.

130



(3)

(4)

()

(6)

(")

(8)

9)

(10)

(11)

Chapter 5

Ma, L.; Cheng, Y.; Cavataio, G.; McCabe, R. W.; Fu, L.; Li, J. In Situ DRIFTS and
Temperature-Programmed Technology Study on NHs3-SCR of NOx over Cu-SSZ-13

and Cu-SAPO-34 Catalysts. Appl. Catal. B Environ. 2014, 156-157, 428-437.

Cheng, X.; Bi, X. T. A Review of Recent Advances in Selective Catalytic NOx

Reduction Reactor Technologies. Particuology 2014, 16, 1-18.

Lu, P.; Li, R,; Xing, Y.; Li, Y.; Zhu, T.; Yue, H.; Wu, W. Low Temperature Selective
Catalytic Reduction of NOx with NH3 by Activated Coke Loaded with Fe x Coy CezO
m : The Enhanced Activity, Mechanism and Kinetics. Fuel 2018, 233 (January), 188—

199.

Gao, F.; Tang, X.; Yi, H.; Zhao, S.; Li, C.; Li, J.; Shi, Y.; Meng, X. A Review on
Selective Catalytic Reduction of NOx by NHsz over Mn-Based Catalysts at Low

Temperatures: Catalysts, Mechanisms, Kinetics and DFT Calculations; 2017; Vol. 7.

Zhou, H.-C. “Joe”; Kitagawa, S. Metal-Organic Frameworks (MOFs). Chem. Soc. Rev.

2014, 43 (16), 5415-5418.

Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, a O;
Snurr, R. Q.; O’Keeffe, M.; Kim, J.; et al. Ultrahigh Porosity in Meta-Organic

Frameworks. Science. 2010, 329 (5990), 424.

Czaja, A. U.; Trukhan, N.; Miuller, U. Industrial Applications of Metal-Organic

Frameworks. Chem. Soc. Rev. 2009, 38 (5), 1284.

Wang, Q.; Luo, J.; Zhong, Z.; Borgna, A. CO2 Capture by Solid Adsorbents and Their

Applications: Current Status and New Trends. Energy Environ. Sci. 2011, 4 (1), 42-55.

Chaemchuen, S.; Kabir, N. A.; Zhou, K.; Verpoort, F. Metal-Organic Frameworks for

Upgrading Biogas via CO2 Adsorption to Biogas Green Energy. Chem. Soc. Rev. 2013,

131



(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

Chapter 5

42 (24), 9304.

Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The Chemistry and

Applications of Metal-Organic Frameworks. Science.. 2013, 341 (6149).

Zou, L.; Zhou, H. C. Hydrogen Storage in Metal-Organic Frameworks. Nanostructured
Mater. Next-Generation Energy Storage Convers. Hydrog. Prod. Storage, Util. 2017,

143-170.

Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.;
Bae, T.-H.; Long, J. R. Carbon Dioxide Capture in Metal-Organic Frameworks. Chem.
Rev. 2012, 112 (2), 724-781.

Huang, C. Y.; Song, M.; Gu, Z. Y.; Wang, H. F.; Yan, X. P. Probing the Adsorption
Characteristic of Metal-Organic Framework MIL-101 for Volatile Organic Compounds

by Quartz Crystal Microbalance. Environ. Sci. Technol. 2011, 45 (10), 4490-4496.

Dutta, A.; Wong-Foy, A. G.; Matzger, A. J. Coordination Copolymerization of Three
Carboxylate Linkers into a Pillared Layer Framework. Chem. Sci. 2014, 5 (10), 3729-

3734.

Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective Gas Adsorption and Separation in Metal-

Organic Frameworks. Chem. Soc. Rev. 2009, 38 (5), 1477-1504.

Zhao, X.; Wang, Y.; Li, D. S.; Bu, X.; Feng, P. Metal-Organic Frameworks for
Separation. Adv. Mater. 2018, 30 (37), 869-932.
Youn, H. K.; Kim, J.; Ahn, W. S. MWCNT Synthesis over Fe-BTC as a Catalyst/Carbon

Source via CVD. Mater. Lett. 2011, 65 (19-20), 3055-3057.

Dhakshinamoorthy, A.; Alvaro, M.; Horcajada, P.; Gibson, E.; Vishnuvarthan, M.;

Vimont, A.; Greneche, J. M.; Serre, C.; Daturi, M.; Garcia, H. Comparison of Porous

132



(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

Chapter 5

Iron Trimesates Basolite F300 and MIL-100(Fe) as Heterogeneous Catalysts for Lewis
Acid and Oxidation Reactions: Roles of Structural Defects and Stability. ACS Catal.

2012, 2 (10), 2060-2065.

Shahid, S.; Nijmeijer, K. High Pressure Gas Separation Performance of Mixed-Matrix
Polymer Membranes Containing Mesoporous Fe(BTC). J. Memb. Sci. 2014, 459, 33—

44,

Yang, Y.; Bai, Y.; Zhao, F.; Yao, E.; Yi, J.; Xuan, C.; Chen, S. Effects of Metal Organic
Framework Fe-BTC on the Thermal Decomposition of Ammonium Perchlorate. RSC

Adv. 2016, 6, 67308-67314.

Du, M.; Li, L.; Li, M.; Si, R. Adsorption Mechanism on Metal Organic Frameworks of
Cu-BTC, Fe-BTC and ZIF-8 for CO Capture Investigated by X-Ray Absorption Fine

Structure. RSC Adv. 2016, 6 (67), 62705-62716.

No Title https://commons.wikimedia.org/wiki/File:CoFe204.png.

Wang, D.; Hui, S.; Liu, C. Mass Loss and Evolved Gas Analysis in Thermal

Decomposition of Solid Urea. Fuel 2017, 207 (2), 268-273.

Wang, H.; Agmon, N. Complete Assignment of the Infrared Spectrum of the Gas-Phase

Protonated Ammonia Dimer. J. Phys. Chem. A 2016, 120 (19), 3117-3135.

Yang, Y.; Bai, Y.; Zhao, F.; Yao, E.; Yi, J.; Xuan, C.; Chen, S. Effects of Metal Organic
Framework Fe-BTC on the Thermal Decomposition of Ammonium Perchlorate. RSC

Adv. 2016, 6 (71), 67308-67314.

Bukhtiyarova, M.; Lunkenbein, T.; Kahler, K.; Schldgl, R. Methanol Synthesis from
Industrial CO2 Sources: A Contribution to Chemical Energy Conversion. Catal. Letters

2017, 147 (2), 416-427.

133



Chapter 5

(29) Gadzhiev, O. B.; Ignatov, S. K.; Gangopadhyay, S.; Masunov, A. E.; Petrov, A. 1.
Mechanism of Nitric Oxide Oxidation Reaction (2NO+ O, — 2NO3) Revisited. J. Chem.

Theory Comput. 2011, 7 (7), 2021-2024.

134



Chapter 6

Chapter 6 Conclusion and Significance

Iron is ubiquitous in nature and the presence of iron in the aquatic environment, mineral
dust, rocks and soils emphasizes its involvement in various environmental processes. The
chapters of this thesis highlight the chemistry of iron-containing materials and their role in
three different environmental arenas such as aqueous geochemistry, heterogenous atmospheric
chemistry and environmental catalysis and remediation.

The interactions of organic matter with metal oxide surfaces occurs through several
mechanisms in aquatic environment. In this study, the interactions of low molecular weight
organics that include citric acid, oxalic acid and pyrocatechol on hematite nanoparticles have
been studied from in situ measurements (please see details in chapter 2). Spectroscopic data
have been analyzed for the structure of surface complexes and binding strength using ATR-
FTIR. ATR-FTIR absorption spectra of adsorbed citrate, oxalate, and pyrocatechol on hematite
nanoparticles were collected after flowing 10* M solutions prepared in D20 as a function of
decreasing pD from 9 to 5. H/D exchange experiment spectral analyses revealed the existence
of a higher degree of outer-sphere complexation for oxalate than citrate, which is dominated
by inner-sphere monodentate complexes. In the case of pyrocatechol bidentate-binuclear
complexes dominate. Moreover, experiments were performed for the adsorption kinetics of
dimethylarsinic acid (DMA) and sodium arsenate with hematite nanoparticles pre-exposed to
low molecular weight organics such as oxalate and pyrocatechol (please see details in chapter
3). These studies were conducted using ATR-FTIR with an emphasis on the role that
electrolytes (KCI, NaCl, and KBr) play in the adsorption process. The results showed that the
adsorption rates, obtained from the Langmuir adsorption kinetic model for model organics onto
hematite surface were enhanced in the presence of electrolytes. The rate of adsorption for the
arsenicals onto pre-exposed model organic hematite surface were greater in the presence of

electrolytes. Experiments on the desorption of model organics from the surface of hematite
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nanoparticles were also carried out to obtain initial rates of desorption using the Langmuir
desorption kinetic model. These data reveal that arsenate is an effective desorbing agent for the
model organics. The results obtained from these studies are significant and give a better
understanding of how different functional groups (such as -OH and -COOH) affect the binding
of organic matter onto iron oxide surface. Besides, the study highlights that in situ flow mode
experiments can amplify trends otherwise missed in bulk batch adsorption experiments.
Considering the ubiquity of organic—metal oxide interfaces in environment, mechanistic details
at the molecular level are best elucidated from experimental procedures that mimic real systems
and conditions. Moreover, kinetics and thermodynamic parameters obtained from these
investigations will aid in the development of models to understand the transport and mobility
of organics and other associated constituents (such as Fe, As) in soil and aquatic system.

In addition, the hygroscopic properties and chemical reactivity of SOA influence their
overall contribution to the heterogenous atmospheric chemistry. In this study, the hygroscopic
properties of organic and organometallic polymeric particles, namely polycatechol,
polyguaiacol, Fe-polyfumarte, and Fe-polymuconate were investigated (please see details in
Chapter 4). It has been found that these particles are efficiently formed in iron-catalyzed
reactions with aromatic and aliphatic dicarboxylic acid compounds detected in field-collected
SOA. The structure of surface water was studied using DRIFTS, and the uptake of gaseous
water was quantified using QCM as a function of relative humidity. Spectroscopic data show
that water bonding with organic functional groups acting as hydrogen bond acceptors causes
shifts in their vibrational modes. Analysis of the hydroxyl group stretching region exhibited
weak and strong hydrogen bonding networks that suggest cluster formation reflecting water-
water and water-organics interactions, respectively. The results obtained from this study are
significant because water plays a vital role in reactions with the pollutant gases. Moreover, the

radiative balance of the atmosphere depends on the chemical composition, physical state (such
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as solid or liquid) and the size of the particles. Besides, the results presented herein are
important since global climate models need better parametrization of the hygroscopic
properties and chemical reactivity of SOA.

On the chemistry of iron in heterogeneous remediation, iron-containing materials have been
used as a catalyst in various systems. Here, Fe-BTC MOFs and CoFe>O4 nanomaterials have
been studied as catalysts to explore their performance in reducing NOx in NH3-SCR by
DRIFTS (please see details in Chapter 5). From the spectroscopic data analysis, it was found
that both Fe-BTC and CoFe204 contributed to the reduction of NOy, in presence of urea, the
source of in situ ammonia (NHs) and experienced structural change in the surface functional
groups. For both materials, gas phase products were observed at 180 °C. From the data analysis
and Kinetic studies, it was found that CoFe204/8%urea has the better rate for the conversion of
NO(g), compared to Fe-BTC/8%urea. The proposed mechanism and kinetic study show that at
115 °C, no gas phase product is observed. However, increase of the temperature to 180 °C
produced gases such as NHzg), HCNO( and CO. In addition, gas phase CH3OH was
observed for the decomposition of Fe-BTC only. The concentration of NHszg after
decomposition of CoFe204/8%urea, was much better than that of Fe-BTC/8%urea, that results
in better conversion rate of NO(g) for CoFe.O4 compared to Fe-BTC. Even though, the surface
area of Fe-BTC (771 m?/g) is larger than that of CoFe;O4 (43 m?/g). The results of these
experiments are significant, as extensive studies are underway to develop NH3-SCR catalysts
with high activity and stability in the low-temperature range, for the removal of NOx from both
flue and stationary sources. Introducing Fe-BTC metal-organic frameworks (MOFs) and
CoFe,04 nanomaterials to NHs-SCR as a catalyst is very significant in this regard.

In brief, the main focuses of this thesis are to explore iron in understanding soil chemistry
in the presence of organic matter, mineral dust chemistry, and designing environmental

remediation technologies. Taking into account the intensive studies in these three branches of
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environment, it can be concluded that the impact of this research in heterogeneous chemistry
of iron at the liquid-solid and gas-solid interface will bridge the knowledge gaps in the
chemistry of transition-metal in multicomponent atmospheric aerosol systems containing

organic matter as well as remediating environmental pollutants.
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Appendix 1

Data analysis using Macros and OMNIC software

1. Open OMNIC
2. Zoom in the window by using the black bar at the right bottom of the screen to around

2000-700 cm™.

1600 1600 1400 1200

3. Press the full scale on the top of the window.

EmmEpE R
IFE T TIEY T L

4. Open Macros window.
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= Macros\Basic

Edit Insert Macro Help
—
I Chrl+N
Jpen. . )

Chrl+5

Save h

Summary Info..,

Prink Setup...
Prink Listing
Print Symbols Chrl+p

Run...

1 et\... juser|desktopistudent filesisara201 Pdmasara.mac
2 i\, Astudent files\sara2017yjuly 2017\25 naarssara,mac
3 e\, \desktopstudent Filesiaminur201642016\naars . mac
4 e\, \user|desktoplstudent files\aminur2016420164dma. mac

Exit
Print
Printer Setup
Delete File

Paste to Log
Clear

Opens an existing macro

llilll Page 1 of 1 LILILI

5. Go to the File and Open the drop-down menu.

6. Open the macros file that will be used to analyze target files. The screen will look like

the following three pages which can be seen by using arrows at the bottom of windows.

File Edit Insert Macra Help

= MacrosiBasic - NaArs.mac HE x

Save Group

Mail Spectra

Open Experiment
Save Experiment As
Open Configuration
Log In

Open Log

Close Log

Print

Printer Setup

Paste to Log
Clear

Select All
Clear
Requeskt
Requeskt

Request

Reprocess

L) s ][]

7. Double click to open (Page 1) the main window.

8. Change the “file name” to the location that has the single beam spectra followed by

\#mv6#.spa
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— Macros\Basic - NaArs.mac o =]
File Edit Insert Macra Help

File name:

t fileshaminurz01 6420164 Junel 26 #mvE# spa

Clear

Request

Request

E Display this dialog at run time Request

) O Cpep ) Math

Printer Setup
Delete File

Reprocess

Copy
Paste

Paste to Log
Clear ll il LI ’W LILI LI

9. The link of the location of the folder can be found in the top left corner of the windows
when the folder is opened.
10. Press ok to proceed.

11. Double click the “Reprocess” (page 1) after open button.

— Macros\Basic - NaArs.mac !EH

:

Resolution: |5.0

Apodization: |Happ-Genzel
Phase correction: |Merkz
Zero filing: |Mone select all
Final format: |Absorbance
Clear
Saved spectral range: 4000 to (400
EBackground file: | S Se

L

L

B Display Reprocess dialog at run time

Coen )

Paste lo Log
TR . 3 |1

.

12. Click browse to select the reference spectrum. The other setting should show up as

displayed above.
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13. Press ok to proceed.

14. Then click on “Save as” (in page 1) to save the reprocessed spectra. Do the same thing
for Save as in the main window and follow the location of the folder where the
reprocessed spectra will be saved. (Make a folder by naming “ABS”. Make sure the file
is empty.)

= Macros\Basic - NaArs.mac !EH
File Edit Insert Macra Help

File name: G_ruwse. , Start
_ T

It Filesharminur201612016\Junel 26\ ABSDMA L\ #mve#. spa Select All

E Display save file dialog at run time: Clear

! oK , l Cance , t Help ’ Request

Request

Save Expenment As
DOpen Configuration
LogIn

Open Log

Close Log

Print

Printer Setup
Delete File

Request

Math

Open

Reprocess

Paste to Log = <
Clear ll il LI 'W LILI LI

15. Press ok to proceed to page 2.
16. Repeat step 7-15 on page 2.

17. Proceed to page 3 and double click “Peak height”. Enter the base line and peak height.

142



— Macros\Basic - Mairs.mac

Fle Edit Insert Macro Help

Peak Height x|

Peak location:

E Seek closest peak

Continue

e
Peak Height

Easeline
Skart {in X-axis units): End {in ¥-axis units):
|1920 720

E Display result

Cloze Log
Print

Printer Setup
Delete File

Paste to Log
Clear

18. Then Press ok.

19. Double

click “Open log”.

NN 1 [ SRt 3 (131

RS

StorERETIIT

| Open Log

Report

() _endotiom )

20. Edit the “File name” to the location where the log file will be saved. The last part as

follows

\file name.LOG

= Macros\Basic - Madrs.mac
File Edit Insert Macro Help

Open Log

File name:

It Filest Aminur201 642016 Junel 26| DMA-New2. LOG

E Display open file dialog at run time
t‘—gr', t Cance! ,

Save Experiment As
Open Configuration
LogIn

Open Log

Close Log

Print

Prnter Setup
Delete File

[ )

Paste to Log
Clear

Peak Height

Store Result

ililil Page 3 of 3 LILILI
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21. Go to File on the left corner of the windows and then Save in the drop-down menu.

— Macros\Basic - Nafrs.mac !

Edt Insert Macro Help
Mew Chrl+n
Qpen... Chrl4+0

Save As...

Summary Info...,
Print Setup...

Print Listing Peak Height

Print Symbols Chri+p

Store Result

Run...

1 cih.. \desktop|student: fileshaminurz016\2016\naars. mac _‘ _|
2 ol Muserideskkopistudent Filesisaraz01 7 dmasara. mac ‘ |
3 ol Astudent Filesisaraz01 7\july 2017\25 naarssara. mac

4 oY, Muserideskkopistudent Filesiaminur 201612016 dma. mac End of Loop )

Exit

Report

End

Printer Setup

Paste to Log

Clear _l!J _!!J__!_IF““‘E&EEEFE______ _!_J_!!J _!LJ

Saves the active macro

22. Again, go to File and then Run to the drop-down menu followed by the macros file that

is used for analysis.

~ Macros\Basic - NaArs.mac !En

FIEN Edit Insert Macro Help
Nevs ChrlHM

Cpen... ChrO
Save s

SaVE B,
Surnmary Info...
Print Setup... T
Prink Listing ‘ Peak Height |
Print Symbals Chr+P

‘ Store Result |
Run...

‘ Open Log |
1 ¢ \desktophstudent files\aminur2016,2016Ynaars. mac
2 c\...\useridesktopistudent filesisaraz01 7 dmasara. mac ‘ Report |

3 ol Astudent files\sara201 7\july 201725 naarssara.mac

4 o, juserideskbopistudent files)aminur201 6420164 dma. mac End of Loop )

Exit

Printer Setup

Copy
Paste
Paste to Log

Clear LILILHW LILILI

Opens and runs a macra from a separate file

23. In the first pop up window enter last 4 digits of the single beam. (example: 0001)
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— Macros\Basic - MaArs.mac

File Edt Insert Macro Help

Macros\Basic - Request H

at is the numBer of the first single beam spectrad
Clear

Request

Request

AHIET-L URHYULaUUT
Fogin

Hpen-tog
Elose-bog

Prnt

Prnter-Setupx
DeleteFile

Request

Reprocess

Copy

Pazte-tobog

Elear MLILHW LILILI

PSS

24. In the second pop up window enter the number two higher than the number of spectra

that are to be processed.

— Macros\Basic - Nafirs.mac !EE
Flle Edit Insert Macro Help

Macros\Basic - Request n
@ Hm:actra will be processed?

I &
select All

Clear

| Request ‘

pen-Confiquration

Request

brelete-File

Reprocess

|
|
PrnterSetup |
|
|

Save As

(comme
Pastetobog
tlear ll il LI ’W LILI LI

25. In the last pop up enter the base number of the spectra that are being processing (The
number ahead of last four digit). Example 1606260001. Here 160626 in the base

number.
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= Macros\Basic - NaArs.mac !EH
File Edit Insert Macro Help

Macros\Basic - Request u
@ mse name of the spectra?

Select all

Clear

‘ Request

i R s Request

tpen-Configuraton

Hpen-Log
Eloze-bog ‘
Print ‘
|
|

Math

PronterSetup
DreleteFile

Reprocess

Open |
Save As |

Paztetocbog —
K T | e R % |3 1

P RS

26. Macro will start running as soon as ok button is pressed.
27. After running macro close the OMNIC and Macro window to view log file where it

was saved.
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Procedure for BET instrument
Step 1 Calibration of Cell with Rod
1. Turnon pump
2. Open the Nitrogen Gas cylinder by turning knob on pump
3. Calibration:
a. Monthly Calibration of Manifold

i. Select Calibration Menu on the Instrument

ii. Select Manifold calibration

iii. Select (4) — Measure
iv. When prompted:
1. Enter Vioq as listed on calibration sheet and press enter
2. Insert the cell with the spring without the rod into station A (right
chamber) using the nut and screw to secure the cell. Then press
enter.
3. Remove the cell and insert the rod into the cell. Then re-insert the
cell into station A and press enter.
4. Manually record the Measured Volume after each repeat
v. Repeat Step iv. 5 times. After the 57 time, select repeat and then select
option (2). When prompted, enter the average of the 3 middle volumes
obtained.
b. Sample Cell Calculation (needs to be completed once)
i. Refer to the log to see if the cell/filling rod combination that will be used

has been calibrated
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Vi.

Vii.

viii.

Xi.

Xii.

Power on the machine and the vacuum while ensuring that the pressure of

the nitrogen is at 10psi.

iii. On the instrument select the calibration menu

Select sample cell calibration menu

Select adsorbate (e.g. Nitrogen)

Select Calculate at run time (exception — if Po was calculated recently and

is a known value)

When prompted, select which analysis station is the cell attached to.

Enter a cell number (be careful to NOT overwrite another cell number)
Select the type of cell that will be calibrated (e.g. 9mm for long cell with
large bulb)

Place the cell in the station that has been selected for calibration

Fill the Dewar ~2/3 with Liquid Nitrogen

Enter 600 sec for thermal equilibrium

Step 2: Evacuation/degassing of sample

1. Ensure that the vacuum is on and that the gas cylinder is at ~10psi

2. Press 3 on the BET instrument (Control Panel)

3. Press 2 on the BET instrument (Degas Station)

4. Press 1 on the BET instrument (Yes [load the degasser])

5. Press 1 on the BET instrument (Vacuum degas)

6. When prompted to, load cells into the degasser or plug degas stations with grey bolt.

7. Press any key on the BET instrument when completed

8. Wait sufficient time for water to be removed from the cell (~10min)

9. Press 2 on the BET instrument (Degas Station), then press 1 on the BET instrument (Yes

[unload the degasser])
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10.

11.

12.

13.

14.

15.

16.

17.

When prompted to, unload the degasser and cover the cells with parafilm. Remember to
plug the degas station with the bolt.

Press any key on the BET instrument when completed

Obtain the mass of an empty cell and place the sample into the cells using the black funnel
Press 2 on the BET instrument (Degas Station)

Press 1 on the BET instrument (Yes [load the degasser])

Press 1 on the BET instrument (Vacuum)
When prompted to, load the degasser and then press any key on the BET instrument

Obtain the mass of the cell including the sample

Step 3: Begin analysis using BET instrument

1.

2.

8.

9.

10.

11.

12.

Press 1 on the BET instrument (Analysis Menu) and then press 1 again (Run)

When prompted to, type in the user ID and hit enter

When prompted to, type in load analysis stations

Ensure the dewar is filled to the marker (2/3 full) with liquid nitrogen

Press 1 on the BET instrument (Continue) and then press 1 or 2 depending on the analysis
station being used. Afterwards press enter

Type in number for the set up being used (see white binder for set ups) and press enter
Type in number of cell being used (see cell or white binder for cell specs) and press enter
Type in number of cell being used (see white binder) and press enter

Type in sample ID and press enter

Press 1 to add notes or press 2 for no notes

Enter the sample mass onto the BET instrument and press enter

Press 1 on the BET instrument to begin analysis.

Step 4: Open Novawin software
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a) Open Start analysis — Go to common bar as below and select as the following window. If

density of sample in know select calculate.

Commen | Stations |

Operator ID: |quantachiome Adsorbate Gas: | Nitragen ﬂ
Sample Yolume PO options
(" Calculate 1+
PO mode Measure -
Themal delay (180-1200])
180 3ec PO Station

Evacuation Cross-over Pressure
370 mmHg

Active stations t. Load Preset

AR B o o |_@sm | e Tl 0K | X Cancel| 2 Hep |

Go to Stations — Go to sample as below window — Insert file name; Sample ID; Description,

Weight; Density; Sample cell #; Station A or B

Common  Stalions ]

Sample |F'ai'i>3| Equibrium | Fieporiing | Station | A :|I

File Mame |Lab #_Aminur_Sample |D Fe-Fumarate_Date April 17th, 20 “Werlfy
Sample

ID: |Fe Fumarate

Description: [With cell without bulb

Weight: |0.04000 g

Volume Calculation
Diengity a/mlL

Sample cell |4 -

Camment [

4, Load Station
fa Save Station

0k | % Concel| 9 Hep |

Active stations

AW B[ CF DI @ Start

14 Load Presst |
ﬂ_ Save Presst

b) Go to points— Insert point by Add point and select Tags as required (A for adsorption; D

for desorption, etc)
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Start Analysis

Common  Stations I

Sample Points |eqﬂ:riuﬂ] Hepnllingl
on [ <
Tags Add point Station | A
P/Po Tags ~ | on off Q reset |
3‘8@??@ 2 CAT Adooton
' [T DI Desomtion pread ponts
0072436 AM -
o
0119872 AM in
0143530 AM [T T Thickness l:ntl 1
167308 AM I~ VI Pore volume
0151026 A M LI Lanamus
Eflﬁf:i ﬁt‘” v TPl Poesie
L4 > "Rl DR &Fractal
Bad:| 40 Hdes: M, LosdPoirts || 4, Load Station |
%A @] o | - by toseeced | B, SavePoirts || 4 Save Station |

Active stations 4 |oad Preset
AR B[ CI r| O st | o oprs | % | X Cancel| P Heb |

c) Go to Equilibrium— Fill up the Pressure tolerance; Equilibrium time; and Equilibrium

timeout as below

Start Analysis

Common  Stations l

Sample | Points  Equiibrium | Reporting

| | | Station | A =
Adsorption Desarption

Pressure tolerance(0.05-2.0) |U. 050 |U.U5D mmHg

Equilibration time (12-1800) |20 |200 sec

Equilbration timeout(2%equ - 5400) |400 400 sec

. Load Station
B Save Station

Active stations ﬂ‘ Load Preset
AF B CC OIC .Starll SavePrasetl W OK ‘XI:ahcell ?ﬂebl
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d) Go to Reporting— Fill up outgas time; Outgas temperature; and ambient temperature

Start Analysis

Sample | Points | Equibrium Reporting | »
Station A
=

Auto report: |<no auboreporty ﬂ [ Awuto print

Sample Preparation |nformation

Olubgas time: 16.0 hours
Oubgas temperature: |25 C
Ambient temperature: (0.0 K.

H, Load Station
4 Save Station

Active stations H.‘ Load Preset
Start | oK Cancel| 2 H
o UL — ﬁ Save Preset v ‘ X Canc | g Heb |

Then press start bar below the window.
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Data Analysis:

Below an example of Full adsorption (40 points) and desorption (39 points) isotherm data:

B HavalWin - Cannecled i NOYA 2200 - [graph: soiharm : Linear: Lab 1_Aminur_Sample I} Fe-Fumarate_Date April 17th, 2098, qps
g7ap! ] _Sampl : P qp=

[f Fle Edt Corfgue dperdion Widon Heip

BSrE 2 054851

licihen: Linear

EET

\aama i@ STF e=ig)
|

Fadaiivs Brussara, PEG.

Useriquertadons Cornected 8600

Analysis for BET (Multi and Single), V-t, BJH, DH, HK, DA methods:

Right click on to mouse on the points of adsorption curve. A window will appear will Graphs
on top. Then follow the arrow that will bring another window with Raw data on top — Then
click on any of the method that needs to be analysis as the following window:

i) For multi BET analysis

| | o E
I L5 I =3 H
s
o
40.00 Lang
OR method
Hpha-5 method
1P method r
s B9H method »
3 KH(B7K) Thinefilm PS method
= DH method
® 2600 Hk method
¢ /a( SF method
S DA method
ar
Mortke-Carlo
Fractsl Dinension Methods
)
oo
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i) v-t method analysis

Isothem: Linear

Row et ;
Tables »
Reparts , ]
:
PN ’
f/ Analysis Data DR method '
Alpha-5 methed »
Graph Properties MP method »
Overlay B3H method ,
Curves. » Kr(87K) Thin-film PS method ¥
D/E,E/E/EE/ ZoomTo DH method v
Unzoom: HK methed »
M o rethed ,
o methed ,
g orr ,
Monte-Carla »
Fractal Dimension Methods

) Table for the points analyzed for any analysis

Isatherm: Linear

_goeEea BEeE

Graphs
Isatherm +

Reports v T
Langmuir

-k method

DR method
#lpha-5 method
Graph Properties 1P method

Edit data tags
DataReduction Parameters
Analysis Data

»
»
>
>
»
»

Overlay B3 Pore Size Distrbution >

Curves Kr(57) Thirvfin PS method

Zoom To DH Pare Size Distribution~ +

Unzoom HK method »

»
>
>
S
»
>
>
S

SF method
DA method

DFT method
Monte-Carlo method

Area-alume Summary
Tokal Pare volume

#wverage Pore Size
Fractal Dimension Methods

iv) Table for the summary of all methods

[ Iscthem: Linear

Graphs Vv

> »
% Reports » BET »
h Langmur ’
Edit daladtags V-t method »
,,/m/ Dato Reduction Faraneters | 1o "o .
Analysz Data alpha-S method »
Graph Properties MP method »
Overlay BMH Pore Size Diskribution »
Curves » K87 ThinFimPS method b
D/E/E/E‘/EB/ ZoomTo DH Fore Size Disribution &
Unzoom HE method »
W 5F method b
DA method ’
Bz/du OFT methed »
Monte-Carlo method »
Area-yokme Surmary
Total Pore Volume »
Average Pore Size »

Fractal Dimension Methods ¥
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Additional Important Information

Determination of Sample Cell
Stem diameter — choose the narrowest diameter that comfortably admits the sample

e Cohesive powders may be analyzed in larger stems to aid in cleaning.

Sample amount/bulb size — always choose smallest possible but full adsorption/desorption
isotherms should have at least 15-20mm in the cell.
Placing Sample in the cell:

1. Determine what cell should be used for sample (smaller diameter the better). If there
is a high risk of elutriation (see below), then use a cell with a bulb. No amount of
sample can remain on the side of the cell during the degas or analysis.

2. Place the black cell funnel over the cell and carefully pour the sample into the cell

3. Using a spatula lightly tap on the cell to remove any powder from the cell walls. If this
does not remove the powder a static gun may be used. If a static gun is not available a
pipe cleaner may be used to physically push the sample to the base of the cell.

Elutriation:

e Loss of sample form the sample cell which is caused by the rapid flow of gas out of the
cell

e Wider stems and bulbs reduce this

e Filler rods worsen the problem

e Both degas and analysis stations have a filter to prevent any sample from entering the
manifold

e If this is still a problem after taking the above into account, insert a small glass wool
plug into the cell stem between two halves of the filler rod. This is the ONLY time

when a filler rod may be in the degas station.
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Heating the Cell: The amount of heat that is required for the sample depends on the identity

of the sample and its ability to tolerate heat without disrupting the samples structure. Heating

must be done carefully so that water is safely removed from the sample.

Example: fumed silica heated to 300°C

Remove the grey plug from the degas station

Seat the thermostat to 40°C but do not turn on heating mantle

Push 3 — control panel menu

Push 2 — degas station

Degas the sample (WITHOUT ROD) until a good vacuum is established

Turn on the heating station

Wait until the temperature reaches 40°C and hold for 15min

Increase the thermostat to 80°C, once the temperature reaches this point wait 15 min
then increase to 120°C, again wait until the sample reaches this temperature hold for 15
min, and finally set the thermostat to its final temperature of 300°C and leave the sample
for 3 hours.

Return the grey plug to the degas station

To weigh sample:

1.

2.

Place sample in the cell

Place the cell into the degas station and degas the cell.

Backfill the cell with nitrogen and remove the cell from the degas station.

Place parafilm/septum cap over the mouth of the cell and weight the cell to the 4™
decimal place (e.g. 0.00019)

Remove the parafilm and replace the cell into the degas station

Heat the cell as needed

Allow the cell to cool and remove the cell from the degas station
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8. Replace the parafilm/septum cap and reweight the sample

Equation for mass:

msample = Mcell with nitrogen — Mpeated cell
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Appendix 3

EPA, United State Environmental Protection Agency data base

Figure 6.1 shows the absorbance spectra NO, NO2, N2O, NHz and HNCO. The spectra were

taken from the spectral data base of EPA, United State Environmental Protection Agency

website. Transmission spectra

were calculated using the HITRAN96 spectral database and a

modified version of the Fast Atmospheric Spectral Code (FASCODE). These transmission

spectra were degraded using

triangle apodization and converted to absorbance (base 10).

Pressure was set to 760 mm Hg (1 Atmosphere). These results are calculated spectra based on

fundamental molecular parameters typically measured by high resolution spectroscopic

techniques.?!

8x10”° -
NO 30 NO;
o 6 — -1 _
2 v(1875 cm™) v(1616 cm™)
g %o 20
2 . %
<
2 - 10 —
R == A
0 I % T % T ' T 0 I 4 T s T 8 I
4000 3000 2000 1000 4000 3000 2000 1000
-3
30x10° —
25 N2O * NH
- -1
i v(950 cm-?)
g 20 4 V(2221 cm™) 6 -
3 "o
° A= % 4
< 10 -
2 —
5 —
e [ ——— ey T T T T T T
4000 3000 2000 1000 4000 3000 2000 1000
Wavenumber cm-1 Wavenumber cm-1
3
2.0x10 " -
HNCO
-1
g 1.5 — V(2267 cm )
c
©
£ 1.0 -
o
(73
Q9
< 054
0.0 - S

T T T T

I
1000

I I
3000 2000
Wavenumber cm-1

I
4000

Figure 6.1
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Using the peak area or peak height of each species, molar absorptivity (&) ppm~*cm? was
calculated by applying Beer’s law (Table 1.2). These epsilon values were applied to quantify
the concentration of each gas produced in our experiments.

Table 6.1: Molar absorptivity obtained for NO, NO2, N2O, NHzand HNCO from EPA
database.

Peak area/height Integrated peak Integrated peak Molar
area/Height area/Height Absorptivity
concentration concentration g(ppmicm2)
(ppm1-meter?) (ppmt-cm™)
Peak area of NO 150 1.50 x 10* 4.44 x 107
(1969-1772 cm™)
0.66599
Peak area of NO; 30 3.00 x 103 5.77 x 10
(1670-1542 cm™)
1.7310
Peak area of N2O 25 2.50 x 10° 5.58 x 10
(1670-1542 cm™)
1.3958
Peak height of NH3 at 22.5 2.25 x 10° 4.03x 10
965 cm'?
(980-915 cm™)
0.00907
Peak height of 1 1.00 x 102 2.02x10°
HNCO at 2283 cm™?
(2395-2200 cm™?)
0.00202
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