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This study discusses the impact of high-resolution winds on the coastal waves and analyses the effec-
tiveness of the high-resolution winds in recreating the fine-scale features along the coastal regions during
the pre-monsoon season (March–May). The influence of the diurnal variation of winds on waves is studied
for the Tamil Nadu coastal region using wind fields from weather research and forecast (WRF) (3 km)
and European Centre for Medium-Range Weather Forecasts (ECMWF) (27.5 km). The improvement in
the coastal forecast is then quantified with wave rider buoy observations. The high-resolution wind fields
simulated fine-scale features like land–sea breeze events and showed good agreement with observation
results. The error in the wave height and period is reduced by 8% and 46%, respectively, with the use of
high-resolution forcing winds WRF over ECMWF, although the overestimation of wave energy on high
frequencies due to overestimated WRF winds remains as a challenge in forecasting. The analysis also
shows the importance of accurate wave forecast during a short-duration sudden wind (*12 m/s)
occurrence in southern Tamil Nadu near Rameswaram during the pre-monsoon period. Low pressure
forms over Tamil Nadu due to the land surface heating, resulting in a sudden increase of winds. High
winds and steep waves which cause damage to the property of the coastal community near Rameswaram
also were well simulated in the high-resolution forecast system with WRF winds.

Keywords. Wave forecast; wind; sea breeze; wave spectra; maximum wave height; wave steepness.

1. Introduction

Ocean waves play an important role in weather
forecasting as they have a direct impact on coastal
communities, shipping and marine industry.
Extreme ocean waves continue to be a threat to all
marine-related activities and hence their accurate
prediction is still a topic of research among wave
forecasters. Future projection of ocean waves is
also of great interest to decision makers with
regard to coastal communities, shipping routes and
the marine industry (Hemer et al. 2013). Timely

information and accurate wave forecast benefit the
maritime industry together with millions of coastal
populations, who mainly depend on fishing for their
livelihood (Schiller et al. 2016). Accurate wave
forecasting is therefore a primary requirement for
the economic growth of countries along coastlines.
Wave forecasting continues to receive consider-

able attention from both the research and opera-
tional communities (Tolman et al. 2013). Several
countries have already developed and implemented
efficient wave forecast systems; European Centre
for Medium-Range Weather Forecasts (ECMWF)
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(Bidlot et al. 2002), National Centre for Environ-
mental prediction (NCEP) (Chawla et al. 2013)
and Indian National Centre for Ocean Information
Services (INCOIS) (Balakrishnan Nair et al. 2013)
are a few among them. INCOIS is a nodal agency in
India that provides the Ocean State Forecast
(OSF) for the Indian Ocean (IO) and rim countries.
High-resolution wave forecast is a component of
INCOIS OSF which uses state-of-the-art wave
models like MIKE21 Spectral Wave model
(MIKE21 SW), SWAN, WAVEWATCHIII, etc.
The IO holds a unique place among the world

oceans due to certain characteristics. A seasonally
reversing monsoon wind is a major peculiarity of
the IO. Accordingly, the wind climate of the North
Indian Ocean (NIO) is categorised as the south-
west monsoon (SW, June–September), north-east
monsoon (NE, October–January) and pre-monsoon
(February–May) (Sabique et al. 2012). During the
SW monsoon, winds of magnitude of *25 m/s
blow from the sea to the land in the SW direction
from the Southern Indian Ocean (Das 1995). A
complete reversal of the wind is observed during
the NE monsoon, i.e., dry surface air blows from
the land to the sea in the NE direction (Goswami
and Rajagopal 2003). NIO experiences winds
(*15 m/s) with varying directions during the NE
monsoon. After the withdrawal of the NE mon-
soon, i.e., during the pre-monsoon, winds over the
NIO were characterised to be weak in magnitude
(\10 m/s) with varying directions. The wind cli-
mate is mainly dominated by local winds during
this season (Neetu et al. 2006; Aboobacker et al.
2013).
As the wave climate of NIO comprises three

seasons, forecast verification in each season is the
most important mainly in managing near-shore
activities. Monsoon (SW and NE) season wave
characteristics and the reliability of forecasts are
addressed in many number of studies (Vethamony
et al. 2011; Dinesh Kumar et al. 2013; Nayak et al.
2013; Sirisha et al. 2015, 2017; Remya et al. 2016;
Simpson et al. 2002). Among the three seasons, pre-
monsoon is generally considered as a season of low-
wave activity and hence it has not been given
enough attention in the forecast verification so far.
The coastal regions of India experience

thermally induced local or mesoscale circulations
during summer due to differential heating of the
land and ocean surfaces. Land–sea breeze circula-
tion along the coastal regions is one of the best-
known examples of such circulation systems that
occur at coastal locations of India (Aparna et al.

2005; Indira Rani et al. 2010). The diurnal varia-
tion of winds and its significant impact on the IO
and the coastal wave characteristics are already
discussed in many studies (Neetu et al. 2006;
Simpson et al. 2007; Aboobacker et al. 2011; Glejin
et al. 2013; Remya and Kumar 2013). In these
studies, most of the wave models are forced with
coarse-resolution wind fields (spatial resolution of
*25 km and temporal resolution of 3 h) for the
prediction of coastal waves. But, in reality, these
local winds are highly turbulent in nature,
exhibiting high spatial and temporal variability
(Abdalla and Cavaleri 2002) and hence they cannot
be reproduced with coarse resolution (both spatial
and temporal) winds. Also, much of the high-fre-
quency nature of winds will not be captured in
these coarse winds and this could lead to substan-
tial errors in forecasting the wave fields (Goward
Brown et al. 2013). In all cases, an accurate coastal
wave forecast can be achieved only through the
proper representation of the local meteorological
events i.e., (land–sea) breezes (Bertotti et al. 2013).
In the coastal areas where the diurnal variations
are prominent, calm sea becomes rough in the
afternoon hours due to sea breeze and makes wave
forecasting crucial for maintaining the marine
activities. There were incidents of boat capsizing
during this season near the Indian coastal areas
(Vethamony et al. 2011).
The objective of the present work is to test the

ability of a wave-forecasting system developed for
the south-east coast of India to account properly
for the most important local effects during the pre-
monsoon season with a high-resolution wind. We
also try to quantify the improvement in the coastal
wave forecast obtained by using high-resolution
wind fields of 3 km. In addition to this, a phe-
nomenon of sudden wind rise, locally termed as
‘kondalkattu’ in the southern Tamil Nadu region
during pre-monsoon, is addressed in the final
section.

2. Study area

Tamil Nadu is the southernmost state of India
bounded by the Bay of Bengal on the east and the
IO on the south. Accurate forecasting of waves has
a significant role in this region as the coastline
constitutes many ports and harbours. ESSO-
INCOIS has deployed directional wave rider buoy
(DWRB) near Pondicherry (79.86�E, 11.92�N) at a
water depth of 15 m as shown in figure 1 and has
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been used for validation in this study. Modelling
studies were carried out at Tamil Nadu coast
during the period March–May 2014.

3. Data and methodology

3.1 In-situ data

The wave observations are from DWRB at Pon-
dicherry, which is a part of the ESSO-INCOIS
DWRB network around the coastal areas of India.
In this study, the observation data from DWRB
was used for the assessment of the wave fore-
casting system (figure 1). The DWRB measures
horizontal (roll and pitch) and vertical (heave)
accelerations using two accelerometers and an on-
board compass which gives directional displace-
ments in two horizontal axes. The displacements
are converted to wave parameters using in-built
software in the buoy. The DWRB measures waves
with periods in the range of 1.6–30 s, and heave
motion in the range of �20 to +20 m with a res-
olution of 1 cm. Wave direction measurement was
obtained in the range of 0�–360� with a directional
resolution of 1.5� and an accuracy of 0.5� with
reference to the magnetic north. The buoy data
records were taken at a frequency of 1.28 Hz for
17 min every half an hour. The quality check of

the measured time series data was conducted for
standard errors such as spikes, steepness and
constant signals (Barstow and Kollstad 1991).
The buoy-wave spectra were obtained using fast
Fourier transforms. Different wave parameters
like significant wave height (Hs), maximum wave
height (Hmax), peak-wave period (Tp) and peak-
wave direction (Pdir) were derived from the wave
spectrum. The real-time data were received from
INCOIS through the Indian National Satellite
System (INSAT)/Global System for mobile com-
munication (GSM) modes. Hs is the average of
one-third of the highest waves. Hmax is the max-
imum wave height during a record. Tp (in sec-
onds) is defined as the wave period associated
with the most energetic waves in the total wave
spectrum at a specific frequency. Pdir is the
direction associated with the highest-energetic
wave in the total wave spectrum. Significant wave
steepness of the wave parameter from the buoy is
computed by dividing the significant wave height
(Hs) with the wavelength (Ls) of the wave shown
in equation (1).

nðfÞ ¼ HsðfÞ
LsðfÞ

¼ 2
Q

HsðfÞ
gTzðfÞ2

ð1Þ

Hsðf) ¼ 4
ffiffiffiffiffiffi
m�

p ð2Þ

Figure 1. The plot (a) shows the model domain and bathymetry. The observations used in the study are marked with black
circles. Plot (b) shows a fine-resolution mesh used in the model domain. The boundaries of the domain marked with yellow
represents the land and red, green and blue colors are represents the ocean boundary.
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TzðfÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
m�ðfÞ
m2ðfÞ

s

ð3Þ

mnðfÞ ¼
Zfu

f1

fnS(f) df ð4Þ

WhereHs andTz are given in equations (2 and 3).
Here nðf Þ corresponds to the wave steepness
parameter at all frequencies f: Hs is the significant
wave height of the wave associated with wavelength
(Ls) and the average wave period (Tz). Equation (4)
shows the parameters corresponding to the nth
moment of the wave spectrum. In this work, we have
used integral wave parameters such as Hs, Tp and
Pdir from the buoy to assess the model performance
during the period Mar–May 2014. We analysed
parameters like wave steepness and Hmax from
observation and a model to understand the
localised phenomena prevailed near the coastal
areas during the pre-monsoon season.
As a part of the study, we made the assessment

of winds using Advanced SCATterometer
(ASCAT) observations at this location. ASCAT
represents the latest implementation of space-
borne microwave wind measuring scatterometry
(Bentamy and Fillon 2012). ASCAT wind products
are processed by NOAA/NESDIS utilising mea-
surements from a scatterometer instrument on
board the EUMETSAT Metop Satellites. The
instrument uses a radar to measure the backscatter
and further determine the speed and direction of
winds over the surface of the oceans. Surface wind
images are created for ascending and descending
(25 9 25) km resolution data.

3.2 Automated weather station (AWS)

An AWS which measures the metrological param-
eters such as wind speed and direction, air tem-
perature, relative humidity and pressure were
installed by the INCOIS and IMD near the coastal
areas. The accuracy of the wind speed is 0.2 m/s in
the range of 0–60 m/s and the accuracy of the wind
direction is 3�. The AWS set at a height of 3 m near
the coastal areas in Tuticorin (78.2�E, 8.8�N),
Gopalpur (84.96�E, 19.31�N), Paradip (86.65�E,
20.26�N), Ratnagiri (73.28�E, 16.89�N) and Kar-
war (74.13�E, 14.85�N) coastal stations. The
observed wind speeds from the AWS were used to
evaluate the forecast winds at the respective
coastal locations during the period March–May

2014. The observed wind data from the AWS were
useful in the qualitative comparison of forcing
winds near the coastal locations.
Peixoto and Oort (1992) suggested an empirical

logarithmic profile which converts observed winds
from AWS at a height of 3–10 m. If the wind speed
at 3 and 10 m is represented as Ws (3 m) and Ws
(10 m), respectively, then the winds at 3 m are
converted to 10 m by using equation (5). Here Z =
10 m, Zref = 3 m and Z0 = 1.52 9 10 (Indira Rani
and Das Gupta 2013)

Wsð10mÞ ¼ Wsð3mÞ
ln Z

Z0

� �

ln
Zref

Z0

� � ð5Þ

3.3 Forcing fields

Wave-model simulations greatly depend on the
quality of the forcing fields (Cavaleri 1994) and
hence fine-resolution forcing winds are essential for
an accurate prediction of the wave parameters. In
this study, we have simulated the SW model under
two different forcing winds; winds from the WRF
model and the ECMWF model for the period
March–May 2014. More details of the wind fields
are given below.

3.3.1 WRF wind fields

The WRF model is a mesoscale numerical weather
prediction (NWP) system designed for both
atmospheric research and operational forecasting
applications (Michalakes et al. 2004; Powers et al.
2017). A high-resolution mesoscale numerical
model WRF-ARW-3.7 (Skamarock et al. 2008) was
configured and set up at ESSO-INCOIS for opera-
tional forecasting. The ESSO-INCOIS WRF model
provides atmospheric forecast winds for 72 h with a
high spatial (3 km) and temporal (1 h) resolution
for the domain range (0–25�N, 65–95�E) which uses
initial and boundary conditions from the Global
Forecast System of the National Centre for Envi-
ronmental Prediction. The WRF model winds
predict the diurnal variability (land–sea breeze
cycle) of the surface wind in the coastal region
realistically (Vishnu and Francis 2014).

3.3.2 ECMWF wind fields

ECMWF uses the NWP technique to forecast
weather from its present measured state. This
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takes account of input from the meteorological
data, collected by satellites and earth observation
systems such as automatic and manned stations,
aircraft, ships and weather balloons. All data fed
into ECMWF’s databases are assimilated into the
NWP models. The output products from these
models are the medium-range forecasts that pre-
dict the weather up to 15 days ahead (Andersson
2013). The spatial and temporal resolution of the
forecast winds are of 27.5 km and 3 h interval,
respectively.

3.4 Numerical wave model

MIKE 21 SW is the state-of-the-art third-genera-
tion spectral wind-wave model based on unstruc-
tured meshes which was developed by the Danish
Hydraulic Institute (DHI), Denmark. The model
simulates the growth, decay and transformation of
wind-generated waves and swells in the offshore
and coastal areas. MIKE 21 SW is particularly
applicable for simultaneous wave prediction and
analysis on a regional and local scale. The SW
model includes the following physical phenomena:
(i) Wave growth by the action of wind, (ii) non-
linear wave–wave interaction, (iii) dissipation due
to white capping, (iv) dissipation due to bottom
friction, (v) dissipation due to depth-induced wave
breaking, (vi) refraction and shoaling due to depth
variations, (vii) wave–current interaction and (viii)
the effect of time-varying water depth. All source
terms and equations related to the model are
explained in detail in Sorensen et al. (2004).
The SW model is based on a flexible mesh and is

therefore suitable for both regional- and local-scale
wave modelling allowing for a fine-resolution mesh
in shallow regions and a coarse-resolution mesh in
the offshore regions. The use of an unstructured
mesh enhances the accuracy of the wave model
near complex areas of the coastline. The model
solves the wave action balance equation; spatial
discretisation is performed using an unstructured
finite volume method. The integration in time is
based on a fractional-step approach, where the
propagation steps are solved using an explicit
method (DHI 2014). The SW model was imple-
mented and validated for several regions (Golshani
et al. 2005; Jose et al. 2007). Many researchers used
SW for describing the wind and wave climate in the
IO region (Vethamony et al. 2006, 2009, 2011;
Aboobacker et al. 2009, 2011, 2013, 2014; Kurian
et al. 2009; Remya et al. 2012; Sabique et al. 2012).

All these studies show the SW model performs well
for the IO region.
This section discusses about the high-resolution

coastal model domain for the Tamil Nadu region as
shown in figure 1. The model domain extends from
77.5–80.5�E to 7–13�N, preferably showing the
near-shore bathymetry almost the entire region.
Mesh resolution varies from 1 km (near the coast)
to 10 km (offshore). The required boundary con-
ditions for the coastal model domain are taken
from a regional IO model domain (30–120�E;
30�N–60�S). The resolution of the regional model
varies from 15 km (near the coast) to 100 km
(offshore). Wave forecast verification of the regio-
nal setup during normal seasons and extreme wave
conditions are already described in the studies by
Balakrishnan Nair et al. (2013) and Sirisha et al.
(2015). Modified Etopo2 bathymetry data were
used for the bottom effects. Modified Etopo2 con-
tains improved shelf bathymetry for the IO region
(20–112�E and 38�S to 32�N) which is derived by
digitising the depth contours and sounding depths
less than 200 m from the hydrographic charts
published by the National Hydrographic Office,
India (Sindhu et al. 2007). The present model setup
uses a spectral resolution of 28 frequencies and 24
directions. The SW model was simulated during
the period March–May, 2014 using WRF and
ECMWF winds as forcing fields. Output wave
parameters from the simulation like significant
wave height, peak-wave period and peak-wave
direction and spectral parameters at the Pondi-
cherry location are saved at 3 h intervals for the
respective wind fields.

3.5 Methodology

Forecasted-wave parameters from the SW model
were assessed quantitatively using several statisti-
cal measures such as bias, root mean square error
(RMSE), scatter index (SI) and correlation coeffi-
cient (R). Bias, the mean difference between the
model and observation, indicates average overesti-
mation (positive) or underestimation (negative) of
forecast compared to observation. The root mean
square error is a frequently used statistical param-
eter to measure the differences between forecast and
observation values. RMSE serves to aggregate the
magnitudes of the errors in the forecast. The SI is
another important statistical parameter to describe
the forecast error. It is defined as the standard
deviation of the difference between the model
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output and observation, normalised by the mean of
observation. Lower values of SI indicate better
model performance. The Pearson correlation coef-
cient is a measure of the degree of linear dependence
between themodel and observation. The correlation
values range from�1 to+1. A value of high-positive
correlation signifies to what extent the forecast data
follow the trend of observation (Steven et al. 2016;
Bryant et al. 2016; Sirisha et al. 2017). The formulas
of the above-listed statistical parameters are given
in equations (6–9)

Bias ¼
XN

i¼1

1

n
ðMi � BiÞ ð6Þ

RMSE ¼ 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

ðMi � BiÞ2
v
u
u
t ð7Þ

SI ¼ RMSE
�B

ð8Þ

R ¼
P

ðMi � �MÞ ðBi � �BÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1

ðBi � �BÞ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN

i¼1

ðMi � �MÞ2
s ð9Þ

Here Bi and Mi refer to the buoy measured and

forecasted-wave parameters, respectively, �B and �M
are the mean values and n is the number of
observations used for comparison.

4. Results and discussion

4.1 Diurnal variations of wind and wave
at Pondicherry

Initially an assessment of the forecast winds, both
WRF and ECMWF, in the coastal regions is car-
ried out using available coastal-AWS observations.
Figure 2 shows a comparison of forecasted winds
with observed winds (AWS) at four locations,
Gopalpur, Paradip, Karwar and Ratnagiri, during
the period April 21–30 2014.
During the representative period, observed wind

speed shows calm winds (2–10 m/s) near the east
coast and (1–6 m/s) near the west coast with a
clear diurnal cycle on both coasts. Most of the time,
WRF winds are in good agreement with the
observed winds at Gopalpur and Paradip. But
ECMWF shows consistent peaks for the wind
speed ([5 m/s) at these coasts. Observed wind
directions varied preferably (N–NE) during this

period. Both WRF and ECMWF showed a rea-
sonable agreement in the case of wind directions
with observation (figure 2a and b). Wind speeds
from observation near the west coast (figure 2c and
d) were comparatively low (\5 m/s) than the east
coast (figure 2a and b) during this period. It is
interesting to note that there was a sudden rise in
observed wind speed of *10 m/s near Karwar on
28 April 2100 UTC which was forecasted by WRF
and missed by ECMWF. The rapid variations of
wind directions in the observation were reasonably
agreed for both forecast winds near the Karwar and
Ratnagiri coasts.
Quantitative assessment of the forecast winds

with observation during the pre-monsoon season
was carried out at these four locations and the error
statistics is shown in table 1. Positive bias seen in
both WRF and ECMWF shows overestimation in
the forecasts during this season. RMSE values of
WRF were lesser (1.04–1.54 m/s) than those of
ECMWF (1.38–2.80 m/s). Also, the SI values dis-
played in table 1 show low values for WRF
(27–38%) and high values for ECMWF (42–64%)
during the study period. R values were found to be
high for WRF (0.73–0.88) and low for ECMWF
(0.37–0.66). The low values of SI along with high
R, obtained for WRF winds confirm a good linear
agreement over ECMWF during the study period.
The statistics strongly support the WRF high-
resolution winds during the pre-monsoon season.
A comparison of wind and wave parameters at

Pondicherry is displayed in figure 3. As AWS
winds are not available at Pondicherry, the com-
parison was carried out with ASCAT winds. The
quality of the ASCAT wind fields in the northern
IO is determined in the study of Sivareddy et al.
(2015). Assuming that ASCAT winds were accu-
rate, a comparison was made between the forecast
(WRF and ECMWF) and ASCAT wind fields as
shown in figure 3(a). From the scatter plot
(figure 3a), it is clear that both observed and
forecast winds were predominantly weak (\10 m/
s) during this period at Pondicherry. The overall
comparison and statistics present in table 2 signi-
es the good agreement of WRF (SI = 19%, R =
0.77) forecast winds with ASCAT compared to
ECMWF (SI = 33%, R = 0.60) (table 2).
The sensitivity of the wave model to the

differences in the wind fields is determined by the
comparison of Hs, Tp and Pdir with observations
(figure 3b–d). During the pre-monsoon season,
both observed and forecasted-wave heights were in
the range of 1–1.5 m near the Pondicherry coast.
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Simulated Hs from both ECMWF and WRF was
comparable to the observation results. Statistics
shows a better performance of WRF with a low SI
(=22%) and high R (=0.71) compared to ECMWF
(figure 3b and table 2). The peak period and
direction from observation shows (4–15 s) waves
from the north-east–south-east (45�–180�) at the
location indicating a mixed sea state (figure 3c and
d). It can be clearly noticed that high-resolution
WRF winds reasonably reproduced the low-wave
periods, i.e., wind sea in the observation whereas
ECMWF exhibited high deviation from the obser-
vation. Hence, the error statistics of ECMWF
exhibited large deviation in Tp (SIECMWF = 81%).
The time evolution of the observed wave

parameters during the pre-monsoon period is
shown in figure 4. During the study period, Hs

ranges from 0.2 to 1.5 m and Tm (mean period)
from 4 to 10 s (figure 4a–c). The diurnal variations

are clearly noticed in the time evolution of the
wave field. Observed Hs showed an increase of wave
height from 0900 to 1500 UTC and a decrease
afterwards (figure 4a–c). This indicates the growth
of wind waves during the sea breeze period
(0900–1500 UTC). It is interesting to note that a
marked increase in wave height can be seen in the
observation whereas variations in the Tm were not
clearly seen unlike other coastal areas of India. For
instance, it is well known that the swell-dominated
sea state changes to a sea-dominated state near the
coastal areas of Ratnagiri and Goa. The sudden
change of the sea state is manifested by a marked
decrease of the wave period in a mixed sea-state
during the sea-breeze period (Neetu et al. 2006;
Aboobacker et al. 2013). South-east coastal areas
are mostly wind sea dominated due to the shel-
tering effect of Sri Lanka (Anoop et al. 2015), and
hence during the sea breeze period, the dominant

Figure 2. Time series plot of AWS observed and forecasted (WRF and ECMWF) wind speeds near the coastal areas of India.

Table 1. Error statistics computed between forecasted and observed wind speeds in coastal areas of
India.

Coastal locations Forecast winds Bias (m/s) RMSE (m/s) SI (%) R N

Gopalpur WRF 0.69 1.54 27 0.83 502

ECMWF 1.56 2.42 43 0.56 502

Paradip WRF 0.95 1.47 34 0.88 656

ECMWF 2.20 2.80 64 0.66 656

Karwar WRF 0.71 1.06 32 0.83 729

ECMWF 0.66 1.38 42 0.56 729

Ratnagiri WRF 1.03 1.04 38 0.77 731

ECMWF 1.52 1.59 58 0.37 731
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frequency shift occurs in the higher frequency part
itself, for instance, period changes from 6 to 5 s.
Furthermore, we have made an attempt to study

the spectral energy density in the frequency–time
domain to assess the impact of high-resolution
forcing winds on wave. The bulk wave parameters
do not change significantly until there is a large
variation in the wave spectrum (Sanil Kumar and
Anjali Nair 2015) and hence a study of the
wave spectrum in the frequency–time domain is

important to identify the characteristics of spectral
changes during sea breeze. Time evolution of
observed and forecast-spectral energy density in
the frequency domain for the study period is shown
in figure 5.
In March, the observed-wave spectra showed

multi peaks mainly in the high-frequency region.
The magnitude of the energy density in the
observation was varied up to 1 m2/Hz and the
energy was confined to the frequency range of

Figure 3. Scatter plot of wind and wave parameters at Pondicherry. Plot (a) shows a comparison of forecast winds with ASCAT.
Plots (b–d) show a comparison of forecasted Hs, Tp and Pdir with observation, respectively. The identity line is represented by
dashes in all the plots.

Table 2. Error statistics computed between forecasted and measured wave parameters at
Pondicherry.

Statistics Simulations Bias RMSE SI (%) R

Wind speed (m/s) WRF 0.24 1.00 19 0.77

ECMWF �1.25 1.74 33 0.60

Hs (m) WRF 0.03 0.14 22 0.71

ECMWF 0.04 0.19 30 0.43

Tp (s) WRF 0.91 2.05 35 0.70

ECMWF 3.76 4.68 81 0.31

Pdir (�) WRF 0.31 19.42 15 0.68

ECMWF �1.03 18.72 14 0.54
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0.1–0.4 Hz (figure 5a). Peak frequencies (PF) were
mainly concentrated around 0.2 Hz which show the
domination of local wind seas in Pondicherry dur-
ing this month. The spectrum was void of low
frequencies most of the times during this month. In
the case of WRF (figure 5b), the spectral energy
spread over the frequencies of 0.1–0.4 Hz with a
dominant peak around 0.2 Hz as seen from obser-
vation (figure 5a). The magnitude of energy den-
sity varied in the range of 0–2 m2/Hz in WRF
(figure 5b) which indicates an overestimation
compared to observation. But high-spatial and
temporal resolution of WRF winds well reproduced
the spectral energy distribution clearly over high
frequencies similar to that of the one from obser-
vation. Along with high frequencies, WRF spectra
had a low-frequency component also. ECMWF
wind fields had generated spectra over the fre-
quency region (0.1–0.25 Hz; figure 5c), but most of
the time, the energy distributed over the low-fre-
quency region and model failed in reproducing
peaks in the high-frequency region (PF[ 0.2 Hz)
as shown in the observation.

During the month of April, it was noticed that
the observed wave spectra (figure 5a) showed
dominant peaks near the frequency 0.3 Hz. The
magnitude of spectral energy (0–1 m2/Hz) spread
over the frequencies of 0.1–0.4 Hz and observation
shows dominant peaks over the high-frequency
region throughout this month that indicates the
domination of wind seas. It is interested to note
that the swells are also dominant during some of
the days (20–30 April). The spectrum exhibits the
characteristic nature of multi peaks at higher
frequencies mostly and double peaked spectra
occasionally during this month. The wave spec-
trum from WRF shows the dominant peaks over
the high-frequency region as that of observation
around the PF of 0.2–0.3 Hz (figure 5b). The
magnitude of the energy density varied in the
order of 0–2 m2/Hz (figure 5b) near the spectral
peak. The spectrum shows the distribution of
spectral energy over wide frequencies from 0.1 to
0.35 Hz, which points out the existence of a pri-
mary peak on lower frequencies and a secondary
peak on high frequencies. As mentioned earlier,

Figure 4. Time series plots of Hs and Tm from observation at Pondicherry during the months of (a) March, (b) April and
(c) May, respectively.
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ECMWF missed the peaks in the high-frequency
region (figure 5c).
During the month of May, the buoy spectrum

(figure 5a) showed a characteristic feature of dou-
ble peaks throughout the period with a dominant
primary peak with a higher frequency and a sec-
ondary peak with low frequencies. The spectral
energies (*1 m2/Hz) distributed over the fre-
quency range of 0.1–0.4 Hz. Figure 5(b) shows that
the WRF forecast spectrum has the distribution of
spectral energies over the frequency range of
0.05–0.35 Hz. Further wave spectrum (WRF)
accurately reproduced the energy variations on
low- and high-frequency regions as that of obser-
vation and confirmed the presence of a double-
peaked spectrum throughout this month. The
magnitude of energy densities are varied up to
2 m2/Hz in the model and overestimated in the
high-frequency peak. The overestimation of energy
density in the WRF spectrum in the high-fre-
quency region could be from the overestimation of
WRF winds during the study period. The high-
frequency peaks from observation were not prop-
erly simulated by the ECMWF wind fields here as
well (figure 5c).
A detailed analysis of the spectral characteristics

of the waves during land–sea breeze periods has
been performed for randomly chosen representative
days in each month as shown in figure 6. The
analysis helps in understanding the importance of
high-resolution wind fields in simulating the local
features or high-frequency variations in the wave

model. The spatial and temporal variations of
WRF wind were very high (3 km and hourly),
which plays a crucial role in picking variations over
high-frequency regions. Figure 6 shows the nor-
malised energy spectrum for both observation and
model simulation. From figure 6(a–d), the charac-
teristic feature of broad spectra which have mul-
tiple peaks (0.1–0.5 Hz) over the high-frequency
region in March can be observed. The spectra from
WRF show two peaks (PF\ 0.1 Hz and PF [
0.2 Hz), and overall, a reasonable match between
the observed and forecasted (WRF) spectrum is
noticed. The forecasted spectrum (ECMWF)
shows a dominant peak at PF\0.1 Hz and none of
the high-frequency peaks are reproduced by the
forecast, which strongly suggests that the model is
unable to simulate the local wind seas during this
month. In April, figure 6(e–h) shows that obser-
vation has a small peak at *0.1 Hz and a domi-
nant peak at *0.3 Hz suggesting a characteristic
bimodal spectrum during this month. The model
forecasted spectrum (WRF) shows two peaks cor-
responding to PF *0.1 and 0.3 Hz, suggesting a
good match between forecast and observation
whereas the ECMWF forecasted spectrum has not
shown any peak in the high-frequency region. In
May, the observed spectrum has shown two dom-
inant peaks corresponding to 0.1 and 0.2 Hz, i.e.,
towards the low- and high-frequency regions
(figure 6i–l). A good match found between the
forecasted spectra (WRF) and observation during
this month. However, the ECMWF forecasted

Figure 5. Contour plots of spectral energy density in frequency–time domain at Pondicherry (a) observation, (b) WRF and
(c) ECMWF during the months of March, April and May.
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spectrum (ECMWF) did not show any peaks in the
high-frequency region. Figure 6 clearly shows that
most of time, the WRF wave spectral shapes were
in good agreement with those from observation
(marked with circles in figure 6).
WRF wind (3 km and 1 h) spatial and temporal

resolutions reasonably reproduced the high-fre-
quency variations as that of the observation spec-
trum. The spatial and temporal resolution of the
ECMWF winds were not adequate for reproducing
the local features and could not generate high-fre-
quency variations as observed and the spectrum
was mostly single-peaked in a low-frequency region
throughout the day which causes false alarms in
the forecast.
The overall study suggests the good match

obtained with a forecasted spectrum with WRF
and a poor match is seen in the case of the
ECMWF spectra especially in the simulating peaks
of the high-frequency region. However, the mag-
nitudes of energy densities near the spectral peaks
were overestimated by WRF and that resulted in
the overestimation of Hs during the pre-monsoon
season. Despite an overestimation, the error
statistics was found to be in the accepted range for
operational use (Woodcock and Greenslade 2007).

To identify the dominant wave periods during
this season, we have made a comparison of the
percentage of occurrence of short period (SP)
(\8 s), intermediate period (IP) (8–12 s) and long
period (LP) ([12 s) waves from observation and
simulations at Pondicherry (figure 7). During the
pre-monsoon season, both observation and WRF
show that 80% of the time, the coast experiences

Figure 6. Comparison of frequency–energy wave spectra from (WRF & ECMWF) simulation with observation. The circles
marked with pink colour shows good match of WRF spectrum with observation.

Figure 7. Percentage of occurrence of wave periods at
Pondicherry.
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SP waves and 20% of the time, IP waves and 10%
of time, LP waves. The ECMWF forecast shows
the percentage of occurrence of IP waves which are
more than that of the SP and LP waves. Overall
analysis shows that the Pondicherry coast experi-
ences SP waves with PF in the range of 0.2–0.3 Hz,
indicating dominant wind seas during the pre-
monsoon season.

4.2 Impact of short-duration strong winds
on waves

During the pre-monsoon season, short-lived high
wind occurrences are noticed near the areas of the
Rameswaram region of southernTamil Nadu. These
winds are locally known as kondalkattu (termed by
fisherfolk) which is not yet addressed in any scien-
tific literature. Accurate wave forecasts during such
events are also very important in the study area as it
affects the coastal community. Initially, we pro-
vided a comparison of wind and analysed the reason
for the occurrence of a short duration strong winds.
Due to the unavailability of the observed wind data
at Rameswaram during the study period, we

considered the AWS wind data of Tuticorin
(figure 1) for establishing the reliability of forecast
winds (figure 8a and b). It is clear from
figure 8(a) that the location is predominated by
weak winds (\10 m/s) during the study period. The
statistics are displayed in table 3. Error statistics
suggests thatWRF (SI= 32%,R=0.74) winds were
in good agreement with observation compared to
ECMWF (SI = 44%, R = 0.67). It can be clearly
noticed that SI has increased by 12% in theECMWF
forecast compared to WRF. The wind directions of
the WRF forecast were able to reproduce the
observed wind directions and exhibited high corre-
lation with observation than that of ECMWF.
In general, the winds near Rameswaram are

weak (*10 m/s) during the pre-monsoon season
but a sudden increase in the wind speed was
noticed for a few days (2nd, 4th and 5th May 2014)
as shown in figure 8c and d. An increase in the
wind speed was noticed only in the WRF forecast
but not in ECMWF. An analysis of the WRF wind
fields shows that a patch of high winds developed in
the area of Rameswaram and dissipated within
three hours during the kondalkattu days. The

Figure 8. Plots (a and b) refer to a comparison of forecast wind speeds and wind directions with observation at Tuticorin. Plots
(c and d) show the time series plot of WRF and ECMWF wind speed and directions at Rameswaram from 1–6 May 2014. A
sudden increase in wind speed events is marked with circle.
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coarse resolution of ECMWF winds completely
missed this feature. To understand the increase in
wind speed during these days, we have selected one
of the short duration strong wind events, i.e., on 2
May 2014. Figure 9(a) shows the formation of high
pressure over Sri Lanka and low pressure over
Tamil Nadu (Salem; 78.14 E, 11.66 N) on 2 May
2014. High wind blows because of the difference in
pressure, i.e. from a high to low pressure area
(figure 9b). The sustenance of a low-pressure sys-
tem over Salem was short (\3 h) from 1400 to
16,000 UTC on 2 May 2014, and hence high winds

also sustained for a SP. A satellite observation
from the ASCAT path near Rameswaram has
shown high winds (*12.86 m/s) on 2 May 2014
(figure 9c). It is interesting to note that the wind
direction has not shown any remarkable change
during this period. Analysis of other events also
supports the fact that, in April and May, the
variation in land surface cooling induces a low
pressure centred around Salem (Tamil Nadu,
11.65�N, 78.16�E) and this causes the sudden
intensification of winds in the area between Salem
and Sri Lanka marked in figure 9(a and b). ESSO-

Table 3. Error statistics computed between forecasted and measured wave parameters at Tuticorin.

Bias (m/s) RMSE (m/s) SI (%) R (N = 647)

Wind speed (m/s) WRF �0.63 2.22 32 0.74

ECMWF �1.90 3.01 44 0.67

Wind direction (�) WRF 10.16 41.56 30 0.88

ECMWF 21.44 84.79 61 0.61

Figure 9. Plots (a and b) show forecasted sea-level pressure and wind speed from WRF at 1500 UTC on 2 May 2014,
respectively. Plot (c) shows the ascending path of ASCAT observation winds near Rameswaram on 2 May 2014.

J. Earth Syst. Sci.         (2019) 128:226 Page 13 of 18   226 



Figure 10. Propagation of the highest energetic wave (Hmax) at Rameswaram during one of the kondalkattu events. Plots
(a and b) refer to Hmax obtained from the simulations with forcings (WRF, ECMWF), respectively. The points located (X1, X2
and X3) are at a distance of (8, 17, 28) km away from the southern end of Rameswaram coast, respectively.

Figure 11. One-dimensional wave spectra at Rameswaram coast on a particular day (2 May 2014). The plots (a, b and c) are
obtained from simulations from WRF and plots (d, e and f) are from ECMWF.
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INCOIS has received feedback from the fisherfolk
of the Rameswaram region in which they clearly
mentioned about the sudden change in the wind
speed (*11.11 m/s) on 2 May 2014 near Rames-
waram and these high winds caused severe damage
to fishing boats (minimum of 30–40 boats, fur-
nished based on user feedback). From our study, it
is clear that forecasted wind speed (WRF) on 2
May 2014 was 12 m/s (figure 9b), and ASCAT
observation shows winds of 12.86 m/s (figure 9c)
during this particular day that nearly coincide with
visual observations obtained from fisherfolk. These
events are resolved by WRF because of high-spa-
tial (3 km) and temporal (1 h) resolution which
makes it possible to predict the local features
effectively. This once again confirms that the
high-resolution meteorological forcing winds are
essential to predict the local wind features. The
detailed analysis of this event is limited because of
the lack of observation data near Rameswaram.
The short duration strong winds might generate

steep high waves dangerous for small crafts and
hence we analysed the impact on wave using Hmax

and steepness. TheHmax simulatedwithWRFwinds
shows a high-wave patch of 3–4 m in the domain on 2
May 2014, whereas the wave simulated with
ECMWF could not produce these high waves
(figure 10).Due to the unavailability of observation,
wehave selected three locations (X1,X2 andX3) at a
distance of *10, 20 and 30 km from the southern
Rameswaram coast from the model simulations of
the WRF and ECMWF outputs. A comparison of

Hmax from both ECMWF and WRF model simula-
tions is shown in figure 10. The spatial contours
show that Hmax at X3 was *4 m (figure 10a)
whereas ECMWF shows *3 m only (figure 10b).
Similarly,Hmax at X2 andX1were in the range of 3.5
and 3 m in WRF simulation whereas ECMWF
shows 2.5 and 1.5 m, respectively. It is noticed that
Hmax (WRFandECMWF)differ by*1 matX1,X2
and X3 locations. Furthermore, we made a com-
parison of normalised spectral energy density at X1,
X2 and X3 on a particular day (2 May 2014,
1500–1700 UTC) which is shown in figure 11. Wave
spectra from WRF (figure 1a–c) exhibited high-
frequency variations (PF[0.2 Hz) whereas spectra
from ECMWF have not produced these high-fre-
quency peaks. Furthermore, we have analysed wave
steepness during strong wind events near the
Rameswaram coast (figure 12a).
It is also seen that the steepness of the waves

were increased (i.e.,[0.05 at X1 and X2,[0.10 at
X3) during the events (figure 12a and b). An
increase in wave steepness is marked by a circle in
figure 12. According to the study made by Niclasen
et al. (2010), a wave of 4 m and a steepness of 0.05
are critical limits for small crafts and vessels.

5. Conclusions

This study is an attempt to analyse the importance
of a high-resolution wave forecasting system for
Tamil Nadu coast during the pre-monsoon period.

Figure 12. Variation of wave steepness with the wind speed at the Rameswaram coast.
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Wave fields are simulated using the MIKE21 SW
model with two different wind fields, WRF (3 km,
1 h) and ECMWF (27.5 km, 3 h). The simulated
wave fields are then used for identifying the local
wind and wave features. This study mainly focused
on the diurnal variations near Pondicherry coast
and the kondalkattu event near Rameswaram.
A comparison of forecast winds (WRF and

ECMWF) with AWS and ASCAT and statics
clearly shows the reliability of WRF over ECMWF
near the coastal areas of India during the pre-
monsoon season. Wave spectra comparison, i.e.,
normalised and frequency-energy spectra, strongly
points the requirement of high-resolution winds for
the prediction of coastal waves during the
pre-monsoon season. This study has proved the
importance of fine scale local wind features for
Tamil Nadu coast for an accurate wave prediction.
It also shows that the Pondicherry coast experi-
ences steep SP waves 80% of time during the pre-
monsoon period. The steep waves were well fore-
casted with WRF winds whereas ECMWF pre-
dicted regular low waves which are safe for small
crafts throughout the period. The wave forecast
with coarse resolution winds are misleading and it
proves the importance of high-resolution winds in
the wave forecast system.
Furthermore, we tried exploring the impact of

short duration strong winds (locally known as
kondalkattu) on waves. The strong wind events
damaged boats and other coastal properties, the
prediction of which was very crucial. Our analysis
shows that the high-resolution WRF winds accu-
rately reproduced the sudden variations in the
observation winds from ASCAT at Rameswaram.
The reason for this sudden variation of wind is the
land surface heating during the pre-monsoon sea-
son, which causes the formation of low pressure
over the Tamil Nadu coast. This pressure
difference creates a sudden rise of winds near
Rameswaram. Our study clearly points that high-
resolution models are required to simulate these
events and WRF is able reproduce it to a greater
extent. The high-resolution winds certainly pre-
dicted the high-frequency waves during the kon-
dalkattu events. The sudden rise in wind speed
caused a maximum wave height of 4 m with a
steepness of 0.05. Such high wind and wave con-
ditions are dangerous for navigation especially, for
small crafts.
This study clearly shows that the importance of

an accurate representation of local fine-scale fea-
tures in the wave forecast for the south-east coast

of India during the pre-monsoon for issuing a
proper alert or warning mechanism essentially is
required for the safe navigation of small crafts.
Even though the study was carried out with a small
coastal region of India in focus, the conclusions are
valid for all the coastal areas around the globe
where the fine-scale local features of wind and wave
are prominent.
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