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Abstract. Lévy walks (LWs) define a fundamental class of finite velocity stochastic

processes that can be introduced as a special case of Continuous Time Random

Walks. Alternatively, there is a hyperbolic representation of them in terms of partial

probability density waves. Using the latter framework we explore the impact of aging

on LWs, which can be viewed as a specific initial preparation of the particle ensemble

with respect to an age distribution. We show that the hyperbolic age formulation

is suitable for a simple integral representation in terms of linear Volterra equations

for any initial preparation. On this basis relaxation properties, i.e., the convergence

towards equilibrium of a generic thermodynamic function dependent on the spatial

particle distribution, and first passage time statistics in bounded domains are studied

by connecting the latter problem with solute release kinetics. We find that even normal

diffusive LWs, where the long-term mean square displacement increases linearly with

time, may display anomalous relaxation properties such as stretched exponential decay.

We then discuss the impact of aging on the first passage time statistics of LWs by

developing the corresponding Volterra integral representation. As a further natural

generalization the concept of LWs with wearing is introduced to account for mobility

losses.

1. Introduction

Since the unveiling of the mutual relationships between random motion on microscopic

scales and thermodynamic irreversibility described by the diffusion equation [1],
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statistical physics and the theory of irreversible processes have taken great advantage

from the formulation of simple models of stochastic motion. These models have been

widely used to understand the complex phenomenologies occurring in fluids, colloidal

and condensed matter systems especially when the molecular structure (e.g. in polymer

physics) or disorder (defects in crystalline structures or amorphous materials) are

accounted for [3].

A huge field of investigation involves particle motion on discrete lattices (see e.g.

[4]), where both space and time become discretized. Here particle motion is described

with respect to an operational time (discrete clock) attaining integer values, and the

distance between neighbouring sites of the lattice is fixed. The transposition of the

lattice model to physical reality requires the definition of a characteristic length δ

(spacing between nearest neighboring sites) and time τ (time interval associated with

the elementary movement of a single operational clock). This class of models is suitable

for coarse-graining leading to a continuous statistical space-time representation by

considering the so-called hydrodynamic limit [5, 6]. We let δ, τ → 0 while imposing a

specific constraint on the behavior of δ and τ , which is usually expressed by the scaling

condition δα/τ = constant, where α is an integer. In this way, the usual diffusion

equation is recovered from symmetric random walks (setting α = 2). Alternative

approaches are described in [7]. Lattice models are particularly suited for including the

effect of particle interactions, either in the form of exclusion principles or as interparticle

potentials [8, 9]. Recently they have also been used to study collective motion in active

matter systems [10, 11]. In addition lattice models provide a clear pathway to analyze

the core of fundamental problems involving the foundations of statistical physics. As

an example, the Kac ring model permits to address in an elegant and rigorous way the

relation between microscopic time-reversible motion, macroscopic irreversibility and the

role of a statistical description of the dynamics [12, 13].

Another basic paradigm of random kinematics originated from the seminal article

by Montroll and Weiss [14], which introduced the concept of the Continuous Time

Random Walk (CTRW). In this model the evolution of the system is still parametrized

with respect to an integer-valued operational time n (counting the number of transitions

in the particle motion) while the particle position and the physical time associated to

it attain any real value. Here the length ℓn traveled and the time τn spent at the

n-th transition are real random variables (in most cases independent of each other),

which are characterized by a prescribed joint distribution functions. This simple model

triggered a huge flow of investigations [15, 16, 17, 18, 19] focusing primarily onto cases

where the main property of Brownian motion, namely the linear long-term scaling of the

mean square displacement as a function of time, is broken yielding so-called anomalous

diffusion [20].

If the length ℓn and the time interval τn at the n-th transition are not independent

but linked to each other by the existence of a characteristic and constant velocity b, the

relation between these two quantities can still be of a probabilistic nature, ℓn = b αn τn,

where αn is a random variable attaining values ±1 determining the direction of motion.
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The resulting CTRW is usually referred to as a Lévy Walk (LW) [21, 22, 23]; see [24]

for a review containing further details. The relation of LWs to discrete jump processes,

using different scenarios for jump time and jump steps, is discussed in [24, 25]. The

sequence of transitions relating ℓn and τn can be made fully deterministic by rewriting

the LW dynamics as ℓn = s0 b (−1)n τn, where the initial direction of motion s0 is a

random variable. The kinematics of a particle performing a LW is thus specified by the

distribution function of the time intervals τn between two subsequent transitions, which

are assumed to be independent of each other. LWs are particularly attractive due to

the natural constraint of possessing a bounded propagation velocity, which determines

the almost everywhere regularity of their trajectories. By modulating the statistics of

τn it is possible to provide simple examples of random motions violating the Einsteinian

linear scaling of the mean square displacement with time [26].

In the last two decades LWs found many useful applications in physical and

biological systems, from quantum dot fluctuations [27] to the kinematics of unicellular

microorganisms and cells [28, 29] and animal foraging [30]; see [24] for further

applications. A central issue in the theory of LWs is the formulation of models

for their statistical characterization, expressed in the form of evolution equations for

their representative density functions (thus corresponding to generalized Fokker-Planck

equations) especially for those cases where a LW displays anomalous diffusive properties

[31, 32, 33, 34].

For trajectories of CTRWs a natural parametrization is obtained through

subordination. We introduce: (a) a discrete operational time n, which corresponds

to the jumps occurring during the walk, and (b) a discrete Markovian stochastic process

in the operational time Y (n), which specifies the particle position after each jump.

Within this picture, the physical time is expressed as a function of the operational

time via the elapsed time process T (n) =
∑n

j=1 τj . Introducing now the process

N(t) ≡ max{n ≥ 0 : T (n) ≤ t}, the position of the walker can be expressed as

X(t) = Y (N(t)). A similar relation can be shown to hold in the continuum limit.

This formula immediately suggests that statistical models for this random walk process

can be naturally obtained by considering exclusively the probability density function

P (x, t) of finding the particle coordinate X(t) at time t in the interval (x, x + dx).

In fact, according to the previous formula, P can be expressed as the convolution of

the corresponding densities for the processes N and Y . Since the concept of a LW

originated as a branching of CTRW theory, a similar approach, focused on deriving

an evolution equation for the position statistics P , was later also applied to LWs. In

fact, despite the spatio-temporal coupling introduced by imposing bounded particle

velocities, these processes are still Markovian in the operational time n. However,

for anomalous diffusive LWs this modelling approach generates convolutional operators

corresponding to fractional derivatives of the density P (x, t), where, differently from

the fractional derivatives typically appearing in the evolution equations of CTRWs, the

spatio-temporal coupling manifests itself as advective derivatives and retardation of P .

Therefore, in a continuous time setting the coordinate LW position process X(t) is no
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longer a Markov process, because the condition of bounded velocity and a fortiori the

local regularity of the trajectories enforces to add the local direction of motion to the

state description of the system. Exactly in the same way a lattice random walk is not

Markovian if the lattice spacing δ and the hopping time τ are assumed to be finite and

the trajectory of a particle is interpolated between two transitions in a continuous way

[7].

In 2016 Fedotov published a short paper [35] showing that the statistical properties

of a LW on the one-dimensional line are fully described by a system of hyperbolic

first-order differential equations involving a system of partial probability densities (two

in the simplest case) accounting for the local direction of motion and parametrized

with respect to the particle age, which is defined as the time elapsed from the latest

transition in the direction of motion. Further elaborations of this idea can be found in

[36, 37, 38]. The importance of this theoretical approach, other than its technical value,

is conceptual, as it stimulates a radical change of paradigm in the parametrization of the

trajectory of a LW with respect to time. In fact, differently from the commonly accepted

picture stemming from CTRW theory, where the primitive time is the operational

time n and the physical time t should be recovered from it, the statistical approach

due to Fedotov puts the physical time t as the primitive temporal parametrization

and derives the statistical description in the physical space time by using different

analytical techniques. Remarkably, such a seemingly simple change of perspective yields

a manifold of implications, as it connects the theory of LWs with the classical approaches

developed to characterize stochastic processes possessing finite propagation velocity,

which originated from the articles of Goldstein [39] and Kac [40, 41] and led later on to

the concepts of Poisson-Kac [42, 43] and Generalized Poisson-Kac processes [44, 45, 46].

However, this useful relation comes at the price of a seemingly increased complexity with

respect to the existing statistical approaches based on the evolution equation for the

overall probability density function P (x, t), because an extra independent variable must

be introduced (the age) to parametrize the partial densities of LWs. Recently Poisson-

Kac type models for active and biological particle motion have been considered under the

diction of run-and-tumble models [47], including the case where Wiener perturbations

are superimposed onto Poissonian perturbations [48]. This case was also considered in

[46].

The aim of this article is to analyze the hyperbolic formulation of LW processes

and the role played by the transitional age in them as an additional internal parameter

to be introduced in order to completeley specify the representation of the local state of

a LW particle. We then explore the consequences of this framework for the formulation

of statistical theories of LW dynamics. Along these lines we introduce the concept of

“initial preparation” in the hyperbolic setting, and we show that many macroscopic

properties (with the sole exception of the long-term scaling of the moments) are

significantly influenced by it. Furthermore, we show that, owing to the simple first-

order hyperbolic structure of the balance equations for the partial probability densities,

the additional level of complexity can be “renormalized out” from the model by defining
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the system evolution in terms of a single function h(x, t) (or of two functions h±(x, t)

in the more general case) of a spatial x and a temporal t coordinate. Consequently no

extra degree of complexity is added, other than the intrinsic convolutional nature of the

resulting integral equation, which is the fingerprint of a LW process. The analysis of

the concept of LW preparation solves the issue of completeness in the description of a

LW process, indicating that any coarse model based exclusively on the overall density

P (x, t) corresponds to a specific initial preparation of the system involving symmetries

and constraints on the initial distribution of ages and velocity directions.

The article is organized as follows: Section 2 introduces the hyperbolic

representation of LW statistics in terms of partial density waves parametrized with

respect to the transitional age and the direction of propagation. This directly relates

LWs to other classes of processes possessing finite propagation velocity, such as Poisson-

Kac and Generalized Poisson-Kac processes [44, 45, 46]. In Section 3 we show that

the transitional age formulation naturally leads to the concept of age preparation of a

LW ensemble out of which the notion of aging, introduced for CTRWs first and later

extended to LWs [51, 52, 53, 54, 55], follows. As a further generalization, the concept

of a wearing LW is introduced in which the mobility properties of the process decay,

by wearing, as a function of the number of transitions. Section 4 provides a simple

analytical representation of the solutions of the hyperbolic system of equations for the

partial densities characterizing the statistics of LWs by reducing the problem to the

solution of a simple Volterra convolutional integral equation. This approach allows us

to investigate the relaxational properties of LW fluctuations, namely the convergence

towards equilibrium of generic thermodynamic quantities associated with the spatial

distribution of the LW particle ensemble in closed bounded domains equipped with

reflective boundary conditions. The latter are discussed in Section 5. There we show

that even LWs that diffuse normally, i.e., with a position mean square displacement

scaling linearly for long time, may display anomalous relaxation properties, such as

a Kohlrausch-William-Watts stretched exponential decay [58, 59]. Section 5 analyzes

the influence of different ensemble preparations on the first passage time statistics in

closed bounded domains by connecting this problem with the release of a solute from a

polymeric matrix. Finally, Section 6 considers the application of the classical method

of images to the first passage time statistics, the validity of which has been questioned

in [50] in the case of Lévy flights and LWs. It is shown that the failure of the method

of images for the estimate of the first passage time statistics is a generic feature of all

the processes possessing finite propagation velocity owing to the particular boundary

condition at the passage point, see eq. (48), that cannot be matched by the propagation

of an additional symmetric point source. This is due to the intrinsic lack of spatial

symmetries of the elements of the associated Green function matrix.
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2. Representation and age of Lévy Walks

LWs represent a prototype of stochastic processes possessing finite propagation velocity,

which under certain conditions can display anomalous diffusive behavior in terms of a

long-term deviation of the mean square displacement from a linear Einsteinian scaling

with time. Throughout this article we consider one-dimensional LWs. The extension

to higher dimensions of the theory developed is in many cases straightforward, in

other cases less simple. In any case, one-dimesional problems are definitely the proper

framework for addressing some fundamental physical concepts associated with the

representation of LWs, as will be shown in this article.

In a CTRW description of a LW, indicating with xn ∈ R the particle position after

the n-th transition in the direction of motion and assuming a constant velocity b, the

equations of motion are given by

xn+1 = xn + s0 b (−1)n τn, tn+1 = tn + τn. (1)

Here s0 is a random variable attaining values ±1 with equal probabilities 1/2 and τn
are the time intervals between subsequent transitions in the direction of motion, which

correspond to independent random variables defined by the same probability density

function T (τ). The random variables s0 and {τh}∞h=0 are independent of each other

so that, for any functions f and g, 〈f(s0) g(τh)〉 = 〈f(s0)〉 〈g(τh)〉, 〈f(τh) g(τk)〉 =

〈f(τh)〉 〈g(τk)〉, h, k = 0, 1, . . ., h 6= k, where 〈·〉 indicates the average with respect

to the corresponding probability measure. Note that Eq. (1) defines a special case of a

CTRW where the direction of the velocity alternates periodically in time. As mentioned

previously, in an alternative description the velocity itself is can be a random variable.

In Eq. (1) the integer n corresponds to the operational time counting the transitions

that determine a switch in the velocity direction. With respect to n a LW is a Markov

process for which the probability density function Pn(x) can be evaluated by employing

its Markovian structure. The original definition of LW processes as coupled CTRWs

motivates the widely adopted strategy of defining their statistical properties in terms of

an evolution equation for the position probability density function P (x, t).

Conversely, the analysis of a LW process becomes more subtle when the physical

time t ∈ R
+ is considered as the primitive time parametrization, and the LW is viewed as

a continuous process in the independent variable t. The simplest and most natural way

of defining this continuation is to adopt a Wong-Zakai interpolation [60, 61] between

two subsequent space-time points (xn, tn) and (xn+1, tn+1) as prescribed by eq. (1),

i.e., by assuming that the kinematics of the LW is described by means of straight line

trajectories,

x(t) = xn +
(xn+1 − xn)

(tn+1 − tn)
(t− tn) t ∈ (tn, tn+1) . (2)

Although other discontinuous interpretations of the kinematics of LW processes have

been considered [24, 49], essentially in the light of mathematical completeness it is rather

clear that eq. (2) represents the simplest and physically most reasonable interpretation of
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the continuation of a LW trajectory, which can capture the basic physical requirement

of possessing a finite propagation velocity and continuous trajectories. However, the

continuous representation (2) renders the position process X(t) no longer a Markov

process, because in the time-continuous statistical description of these trajectories the

local information on the direction of motion becomes essential [7].

Therefore the local state of a LW process at time t is defined by the vector-valued

state variable (X(t), S(t), τ(t)), where X(t), S(t) and τ(t) are the stochastic processes

corresponding to the particle position, the direction of motion and the transitional age

of the particle, respectively. The process S attains values ±1, depending on whether the

particle is moving towards positive x-values (S(t) = +1) or negative ones (S(t) = −1).

The transitional age is defined as the time elapsed from the latest transition in the

velocity direction. Remarkably, this formalism allows to consider generic statistics for

the transition times, which we call T (τ), and not only purely exponential distributions.

By considering the triplet (x, s, τ) a LW process is brought back to the Markovian

realm. Indeed, its conditional probability density function p(x, s, τ, t | x0, s0, τ0, t0), with

t > t0, satisfies a Chapman-Kolmogorov equation out of which the corresponding

Fokker-Planck equation for its probability density function p(x, s, τ, t) can be derived.

Since the velocity direction s attains the values ±1, p(x, s, τ, t) can be split into two

partial densities p±(x, t; τ) = p(x,±1, τ, t), which corresponds to the system of partial

probability density functions adopted by Fedotov [35] in order to describe, in the most

general way, the statistical evolution of one-dimensional LWs. The application of the

Chapman-Kolmogorov equation in this case leads to a system of hyperbolic evolution

equations for the partial probability densities [35, 36]

∂p±(x, t; τ)

∂t
= ∓b

∂p±(x, t; τ)

∂x
− ∂p±(x, t; τ)

∂τ
− λ(τ) p±(x, t; τ) , (3)

where λ(τ) is the transition rate at age τ , i.e., λ(τ) dt is the probability that a LW

particle with age τ will perform a switching in the direction of motion in the time

interval (t, t+ dt). The transition rate λ(τ) is related to the transition time probability

density T (τ) by

T (τ) = λ(τ) e−Λ(τ) , Λ(τ) =

∫ τ

0

λ(τ ′) dτ ′ . (4)

The effect of the transitions regarding the parametrization with respect to τ of the

particle ensemble are accounted for by the boundary condition at τ = 0. This is

formulated such that all the particles, which at any time t and position x performed a

transition in the direction of the velocity, return to a vanishingly small transitional age

with reversed velocity direction, i.e.,

p±(x, t; 0) =

∫ ∞

0

λ(τ) p∓(x, t; τ) dτ. (5)

Eqs. (4)-(5) represent the partial density approach to the statistical characterization

of LWs first developed in [35]. We show below that this formalism paves the way to a

significant improvement in the understanding of the properties of LWs by motivating a

shift of paradigm with surprising consequences on the theory of LWs.
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At first sight, it may appear that this description is significantly more complex than

the coarse approach based exclusively on the overall density function

P (x, t) =
∑

α=±

∫ ∞

0

pα(x, t; τ) dτ (6)

that can be expressed in terms of integer or fractional-order operators with retardation

effects in P [31, 32, 33, 34]. As a point of fact the partial density approach and the coarse

description serve two different purposes. The pair (s, τ) as internal variables of a LW

process provides a complete description of its internal degrees of freedom. This brings

back the concept of “preparation”, which is further discussed below. Conversely, a coarse

model for the overall density P (x, t) should be viewed as a long-term model accounting

for the qualitative scaling properties of the dynamics, once the internal dynamics of a

LW involving the redistribution amongst the two velocity directions and amongst the

transitional ages has reached an equilibrium condition (at least in those cases where

an equilibrium exists). However, as shown in the next section, even in the case of the

partial wave formulation it is possible to derive a simple linear integral equation of

convolutional type involving solely an auxiliary function h(x, t) of two variables, exactly

as for the overall coarse model, out of which all the properties regarding the space-time

evolution of the LW can be obtained.

There is another major merit of the partial density formulation, as it provides a

formal unification of several classes of stochastic processes possessing finite propagation

velocity within a unique hyperbolic description of their statistical properties. This is

the case of Poisson-Kac (PK) processes for which λ(τ) = λ = constant, thus implying

a Markovian transition amongst the ages described by an exponential density function

T (τ) = λ e−λ τ . From eqs. (3) and (5) and by setting P̂±(x, t) =
∫∞

0
p±(x, t, τ) dτ ,

the partial densities P̂±(x, t), uniquely parametrized with respect to the local velocity

direction, satisfy the equations

∂P̂±(x, t)

∂t
= ∓b

∂P̂±(x, t)

∂x
∓ λ

[
P̂+(x, t)− P̂−(x, t)

]
(7)

out of which a single equation for the overall density can be derived if required (in this

case of Cattaneo type [41]). In the case of PK processes the transitional age formalism

can be defined, but information on the age distribution is completely irrelevant in the

statistical evolution of the process, as the only internal parameter that counts is the

local direction of motion s(t) = ±1.

This formal equivalence is however extremely useful, as concepts and methods

developed for PK processes can be fruitfully transferred to the analysis of LWs. For

example, it has been shown in [62] that problems arise when studying PK processes

in bounded domains (e.g. an interval in one dimension), associated with the proper

setting of the boundary condition in order to fulfil the requirement of positivity of the

resulting probability distributions. This is also the case of the maximum flux condition

found in [63, 64], which yields a straightforward explanation within the partial density

representation [65]. We will exploit this analogy in Sec. 6 when discussing the first

passage time problem for LWs.
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3. Preparation and aging of Lévy Walks

Consider again the CTRW description of a LW at discrete time instants corresponding

to the points in time at which transitions in the direction of motion occur. In this

framework it is implicitly assumed that the initial time t = 0 yields the instant at which

all the particles have just performed a transition and that the initial directions of motion

are distributed amongst s = ±1 in an equiprobable way. Viewed with respect to the

partial density formalism this represents indeed a very peculiar case of initial condition.

As discussed above, the couple (s, τ) describes the internal degrees of freedom of a LW

process, and consequently the initial state of the system should be defined also with

respect to these variables in order to completely characterize the process.

This observation leads to the concept of preparation of an ensemble of LW

particles/fluctuations, which can be viewed as the specification of the initial state of the

ensemble with respect to the internal parameters (s, τ). In symbols, the preparation of a

LW process is just the pair ({π0
α, φ

0
α(τ)}α=±). On the one hand, π0

α are the probabilities

associated with the initial distribution of the directions of motion, which thus satisfies

the evident properties π0
α ≥ 0, π0

+ + π0
− = 1. On the other hand, φ0

α(τ) are density

functions accounting for the distribution with respect to the transitional age of the two

subpopulations of particles, which thus satisfies φα(τ) ≥ 0,
∫∞

0
φα(τ) dτ = 1, α = ±.

Consequently, assuming that all the particles are initially located at x = 0, the initial

condition specifying the solutions of the hyperbolic eqs. (3) and (5) takes the form

p±(x, 0; τ) = p0±(x, τ) = π0
± φ0

±(τ) δ(x) . (8)

The hyperbolic formulation of LW dynamics permits to consider generic expressions for

the initial age-distribution of a LW ensemble. For instance, the CTRW preparation of

a LW ensemble is just π0
± = 1/2, φ0

±(τ) = δ(τ) corresponding to an equiprobable and

impulsive initial distribution with all the particles possessing vanishing transitional age.

In this perspective the concept of aging introduced for CTRWs and extended to

LWs [51, 52, 53, 54, 55] follows naturally as a particular preparation of the system.

An aged LW system possessing aging time ta is an ensemble of LW particles that

has evolved for a time interval ta starting from the CTRW preparation. Because the

dynamical evolution of the particle ensemble under consideration preserves symmetries

the directions of motion are equiprobable, the age densities φ±(τ) coincide with each

other, and they are equal to

φ±(τ) = π̂(ta, τ) , (9)

where π̂(t, τ) ≡
∫∞

−∞
p±(x, t; τ)dx is the solution of the age-dynamics

∂π̂(t, τ)

∂t
= −∂π̂(t, τ)

∂τ
− λ(τ) π̂(t, τ) (10)

equipped with the boundary and initial conditions

π̂(t, 0) =

∫ ∞

0

λ(τ) π̂(t, τ) dτ , π̂(0, τ) = δ(τ) . (11)
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However, this concept of preparation is broader than aging. It is intrinsically

associated with the age representation of LWs and finds an immediate interpretation in

those cases where a LW represents a model for complex fluctuations in condensed and

soft matter physics. Examples are glasses or polymeric solutions, where memory effects

strongly influence the transport and relaxation properties of the system. In this case the

two parameters velocity b(Θ) and transition rate λ(τ,Θ) characterizing a LW can depend

on the physical temperature Θ. Assume for simplicity that the LW is transitionally

ergodic in the range of temperatures considered, which means that the age dynamics (10)

admits, for constant Θ0, an invariant density, π̂∗(τ ; Θ0) = Ae−Λ(τ ;Θ0), where Λ(τ ; Θ0) is

defined by eq. (4) with λ(τ) replaced by λ(τ ; Θ0), and A is a normalization constant.

Next, suppose that at t = 0+ the system temperature is changed abruptly, setting it to

Θ 6= Θ0. In this scenario the dynamics of the system at temperature Θ is significantly

influenced by the previous preparation, which corresponds to the equilibrium conditions

at the initial temperature Θ0.

The latter observation suggests a further generalization of LW dynamics. The

preparation and the aging effects are a manifestation of the initial condition on the

structure of the internal degrees of freedom that influence the short to intermediate time

scales or the properties in bounded systems (see Sec. 5), as it impacts on the complex

transition mechanism of LWs, which in general is characterized by long-range memory

effects. Another generalization borrowed from condensed matter physics and material

science may involve the fact that LW fluctuations in complex materials (glasses) may

be subjected to a progressive wearing as a function of time that modifies the mobility

properties, resulting in a progressive decrease of the effective velocity b. Therefore, we

define a Wearing Lévy Walk (WLW) as a LW whose trajectories are given by eqs. (1)

and (2) for which the velocity b is no longer constant but depends on the number of

transitional events experienced, i.e., on the operational time n entering eq. (1), i.e.,

b = b0β(n) , β(n+ 1) ≤ β(n), n = 0, 1, . . . . (12)

Related models have been discussed in [22, 23] and very recently in [56, 57]. If

the wearing process is sufficiently slow, it may occur that the system still maintains

some level of fluctuation even in the long run, characterized by qualitatively different

properties with respect to the case where the wearing dynamics is absent. In order to

give an example of this phenomenon let b0 = 1 [a.u.] and the transition rate λ(τ) defined

in eq. (3)

λ(τ) =
ξ

1 + τ
[a.u.] , (13)

which according to eq. (4) yields the transition time probability density T (τ) =

ξ/(1 + τ)ξ+1. For ξ ≤ 1 the system is not transitionally ergodic, since no equilibrium

age distribution exists. Indicating with R2(t) the mean square displacement at time

t, R2(t) = 〈x2(t)〉 − 〈x(t)〉2, R2(t) ∼ t2. For ξ > 1 the LW is transitionally ergodic,

and the equilibrium age density exists and is given by π̂equil(τ) = Ae−Λ(τ), where A

is a normalization constant. For 1 < ξ < 2 it is characterized by anomalous diffusive



Age representation of Lévy Walks 11

behavior providing a superdiffusive scaling of R2(t) ∼ t3−ξ while R2(t) ∼ t for ξ > 2 [35].

If a slow wearing mechanism is added, by assuming for the function β(n) a logarithmic

behavior

β(n) =
1

1 + log(1 + n)
(14)

the transport properties change in a qualitative way. Figure 1 depicts the scaling of
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Figure 1. The mean square displacement R2(t) vs. time t for the Wearing LW defined

by eqs. (12)-(14). Dots are the results of stochastic simulations, lines represent the LW

long-term scaling R2(t) ∼ tγ . Line (a) and (�) refer to ξ = 0.5 for which γ = 1.84,

line (b) and (◦) to ξ = 1.5 for which γ = 1.28.

R2(t) as a function of time t for the WLW at the two different values of ξ = 0.5, 1.5.

Simulations have been performed using an ensemble of 107 particles. While for small

time we observe the expected ballistic scaling, in both cases a long-term power-law

scaling is observed, R2(t) ∼ tγ, with an exponent different from the case without wearing:

γ = 1.84± 0.02 at ξ = 0.5, whereas instead the classical LW would predict γ = 2, and

γ = 1.28± 0.03 at ξ = 1.5, with γ = 1.5 instead in the absence of wearing.

A more detailed analysis of WLWs falls outside the scope of this article and will

be addressed in forthcoming works. What is important to notice here is that once the

age structure and formalism of LWs is assumed, generalizations and extensions of the

internal age parametrization follow systematically and can be exploited for adapting the

LW paradigm to the complexity of physical phenomenology.

4. Integral representation of the solutions

Here we show that the partial density formalism expressed by eqs. (3) and (5) provides

the same level of analytical complexity than any other model based on the formulation

of an evolution equation for the overall probability density P (x, t). The approach

followed is similar to a corresponding analysis developed in [35], where a single evolution
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equation for P (x, t) was finally obtained by enforcing an initial preparation of CTRW-

type. Below, starting from the hyperbolic formulation for any initial preparation, we

derive a single integral equation for an auxiliary function, which depends solely on a

spatial and temporal variable.

Consider the propagation of a LW on the real line, defined statistically by eqs. (3)

and (5) and equipped with the initial conditions p±(x, 0; τ) = p0±(x, τ). Assume the

following initial symmetry

p0+(x, τ) = p0−(−x, τ) ∀x ∈ R , τ ≥ 0 , (15)

which is the symmetry characterizing the CTRW preparation or the initial setting of

a LW with aging (see Sec. 3). This symmetry involves solely the initial distribution of

velocity directions and not the initial age distribution, which remains generic.

In this case, due to the symmetric propagation towards positive/negative x values

of the forward (p+(x, t; τ)) and backward (p−(x, t; τ)) densities, one has

p−(x, t; τ) = p+(−x, t, τ) . (16)

Consequently, in the analysis of the process it is sufficient to consider solely the forward

density p(x, t; τ) = p+(x, y; τ), whose evolution equation becomes nonlocal in space

according to

∂p(x, t; τ)

∂t
= − b

∂p(x, t; τ)

∂x
− ∂p(x, t; τ)

∂τ
− λ(τ) p(x, t; τ)

p(x, t; 0) =

∫ ∞

0

λ(τ) p(−x, t; τ) dτ (17)

p(x, 0, τ) = p0(x, τ) = p0+(x, τ) .

Observe that the nonlocality in eq. (17), is not a physical property but rather a

mathematical superstructure introduced in order to enforce the symmetries and to get

rid of the backward density wave. Obviously, the overall density P (x, t) is given by

P (x, t) =

∫ ∞

0

[p(x, t; τ) + p(−x, t; τ)] dτ . (18)

Consider then the transformation

p(x, t; τ) = e−Λ(τ) q(x, t; τ) . (19)

From eq. (17), the equation for q(x, t; τ) becomes

∂q(x, t; τ)

∂t
= −b

∂q(x, t; τ)

∂x
− ∂q(x, t; τ)

∂τ
(20)

equipped with the boundary and initial conditions

q(x, t; 0) =

∫ ∞

0

T (τ) q(−x, t, τ) dτ ,

q(x, 0; τ) = q0(x, τ) = eΛ(τ) p0(x, τ) , (21)

where T (τ) and Λ(τ) are defined by eq. (4). Equation (20) is a first-order constant

coefficient equation casted in a conservation form that can be solved with the method

of characterics: Its solution attains the form

q(x, t; τ) = φ(x− b t, t− τ) . (22)
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By considering the boundary condition at τ = 0, it follows that for τ ≥ t q(x, t; τ)

consists solely of the propagation of the initial condition both in space and age.

Conversely, for τ < t the solution can be formally expressed by introducing an auxiliary

function h(x, t). Thus, eq. (22) can be written as

q(x, t; τ) =

{
q0(x− b t, τ − t) τ ≥ t

h(x− b τ, t− τ) τ < t
(23)

Substituting eq. (23) into the boundary condition (21), the equation for h(x, t) follows

h(x, t) =

∫ t

0

T (τ) h(−x− b τ, t− τ) dτ

+

∫ ∞

t

T (τ) q0(−x− b t, τ − t) dτ , (24)

which holds for t > 0. The latter equation can be obtained in terms of the initial

condition p0(x, τ) to

h(x, t) =

∫ t

0

T (τ) h(−x− b τ, t− τ) dτ

+

∫ ∞

t

T (τ) eΛ(τ−t) p0(−x− b t, τ − t) dτ (25)

and the density p(x, t; τ) is thus given by

p(x, t; τ) =

{
e−Λ(τ) eΛ(τ−t) p0(x− b t, τ − t) τ ≥ t

e−Λ(τ) h(x− b τ, t− τ) τ < t .
(26)

Since h(x− b τ, t− τ) is defined stictly for t > τ , it can always be set to h(x, t) = 0 for

any x, t ≤ 0. Eq. (25) can be expressed equivalently as

h(x, t) =

∫ t

0

T (t− τ) h(−x− b t+ b τ, τ) dτ ,+G0(t) (27)

where the forcing term G0(t) is a linear functional of the initial condition p0(x, τ)

corresponding to the second integral on the r.h.s. of eq. (25). If the symmetry condition

(16) is removed it is still possible to derive an integral representation of the solutions

involving two auxiliary functions h±(x, t). This is addressed in Sec. 6 in connection

with the analysis of the first passage time problem. Several observations follow from

the above derivation:

• By applying the method of characteristics it is possible to compress all the physical

information about the spatial-temporal propagation of a LW into a single function

h(x, t) of the two arguments x ∈ R and t ≥ 0, analogously to the evolution

equation associated with the overall density function P (x, t) involving, for some

λ(τ), fractional derivatives.

• Eq. (25) is exact and holds for any initial preparation of the system and any

functional form of λ(τ).
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• The memory effects of the age dynamics characterizing a LW can be clearly

appreciated by the convolutional nature of the first term entering eq. (27), which

is a linear Volterra integral equation whose kernel is the transition time density

T (τ). Due to the simultaneous propagation both in space and along the ages, this

convolution involves both arguments of the function h(x, t).
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Figure 2. Function h(x, t) vs. x obtained from the numerical solution of the Volterra

integral equation for the LW defined by the transition rate eq. (13). Panel (a) refers

to ξ = 0.5, panel (b) to ξ = 1.5. The arrows indicate increasing time instants

t = 2, 4, 6, 8, 10.

The representation (25) is amenable to a simple numerical integration. For

simplicity set b = 1 [a.u.] and use an impulsive initial condition, p0(x, τ) = δ(x) δ(τ).

For this particular case, the prefactor of p0(x − b t, τ − t) in eq. (26) simplifies as

e−Λ(t). Assuming equal step size for x, t and τ , i.e., ∆x = ∆t = ∆τ , and defining

the grid approximation ĥ[m,n] = h(xm, tn), m = . . . ,−1, 0, 1, . . ., n = 0, 1, . . ., where

xm = m∆x, tn = n∆t, the simplest discretization of eq. (27) provides the solution
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algorithm

ĥ[m,n] =
n−1∑

i=0

T̂ [n− i] ĥ[−m− n+ i, i] ∆τ + T̂ [n] δ̂[m+ n] , (28)

where T̂ [k] = T (τk), τk = k∆τ , and δ̂[h+ k] is the numerical approximation for a Dirac

delta function, δ̂[k] = 0 for k 6= 0, δ[0] = 1/∆x. For any n, ĥ[m,n] is different from zero

solely for |m| ≤ n. The overall density function P̂ [m,n] = P (xm, tn) at time instant tn
is thus written as P̂ [m,n] = π̂[m,n] + π̂[−m,n], where

π̂[m,n] =

n−1∑

i=0

Λ̂[i] ĥ[m− i, n− i] ∆τ + Λ̂[n] δ̂[m− n] (29)

and Λ̂[k] = exp(−Λ(τk)). To give a numerical example, Fig. 2 depicts the evolution of the

h-function of the LW model defined by eq. (13) at two different values of the parameter

ξ by applying eq. (28) with ∆x = 10−3. The corresponding overall density profiles

P (x, t), derived from the h-function via eq. (29) and normalized to unity, are depicted

in Fig. 3 by comparing them with stochastic simulations of the corresponding problem,

obtained using an ensemble of Np = 108 particles. The markedly different behaviour for

these two values of ξ corresponds to the fact that for ξ < 1 the LW is not transitionally

ergodic i.e., no transitional age equilibrium distribution exists, while it does for ξ > 1,

where the transitional age equilibrium distribution is given by π̂equil(τ) = Ae−Λ(τ) with

normalization constant A. In the present case π̂equil(τ) = (ξ − 1)/(1 + τ)ξ, ξ > 1. This

manifests itself in the different convexity of the distribution between the ballistic peaks,

see Ref. [24] for plots of these different distributions.

5. Problems in bounded domains: relaxation and diffusional release

dynamics

The influence of the internal preparation of a LW ensemble controls the short to

intermediate scale properties and the statistical behavior in bounded systems. Let us

address these issues with some examples.

5.1. Relaxational dynamics

Consider the evolution of LW fluctuations in a bounded closed domain, which in the

one-dimensional case can be represented by the interval [0, L]. The system of hyperbolic

equations (3), defined for x ∈ (0, L), is thus equipped with reflective boundary conditions

at the endpoints

p+(0, t; τ) = p−(0, t; τ)

p−(L, t; τ) = p+(L, t; τ) (30)

for any t > 0, τ > 0 corresponding to the total reflection of the incoming wave at the

boundaries where it inverts its direction of propagation: at x = 0 the incoming wave is

p−(0, t; x), at x = L it is p+(L, t; τ). Independently of the transitionally ergodic nature
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Figure 3. Overall density P (x, t) vs. x derived for the h-function depicted in Fig. 2.

Panel (a) refers to ξ = 0.5, panel (b) to ξ = 1.5. The arrows indicate increasing time

instants t = 2, 4, 6, 8, 10. Symbols represent the results of corresponding stochastic

simulations of the process.

of the age dynamics, the spatial distribution becomes asymptotically uniform, i.e., the

overall density function P (x, t) approaches the uniform density P ∗(x) = 1/L, x ∈ (0, L)

for x ∈ (0, L) corresponding to the equilibrium distribution, at least restricted to the

spatial dynamics.

Let f(x) be any thermodynamic function associated with the LW fluctuations

and f
∗
its equilibrium value with respect to the long-term limit density P ∗(x), i.e.,

f
∗
=

∫ L

0
f(x)P ∗(x) dx. The relaxation function Rf (t) referred to the observable f(x) is

therefore the absolute value of the difference of the average value of f(x) at time t and

its (long-term) equilibrium value f
∗
,

Rf(t) = |〈f(x)〉(t)− f
∗| =

∣∣∣∣
∫ L

0

f(x)P (x, t) dx− 1

L

∫ L

0

f(x) dx

∣∣∣∣ . (31)

The reflective conditions (30) do not alter the age structure of the LW process so that

the analysis developed in the previous section, at least regarding the age dynamics, can
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be qualitatively applied to the present case. Suppose that the LW system is prepared

in a CTRW-way with an impulsive initial age distribution δ(τ). Consequently, during

the relaxation process of the spatial distribution P (x, t) towards P ∗(x), the spatial

perturbation decaying in the slowest way is just the impulsive contribution associated

with the sub-ensemble of fluctuations that never experienced an internal transition,

which propagates back and forth at constant speed within the system due to the

collisions with the endpoints and relaxing as a function of time as e−Λ(t), see eq. (26)).

It follows from this observation that the relaxation function of a generic thermodynamic

variable f(x) for a CTRW-prepared LW ensemble should obey the long-term scaling

Rf(t) ∼ e−Λ(t) . (32)

Eq. (32) suggests that by modulating the functional form of the transition rates λ(τ)

it is possible to predict from LW dynamics a great variety of relaxation phenomena

observed in physical phenomenology. Specifically, consider for λ(τ) the model

λ(τ) =
a β

(1 + τ)1−β
(33)

with 0 < β < 1 and a > 0. Since β > 0, limτ→∞ τ λ(τ) = ∞, T (τ) = a β (1 +

τ)−1+β exp[1−a (1+τ)β ], and the associated LW process is normal diffusive by possessing

the whole hierarchy of moments 〈τn〉. The Central Limit Theorem applies, and its

qualitative propagation along R is, in the long-term limit, qualitatively identical to

the classical mathematical Brownian motion, whose overall probability density P (x, t)

satisfies the parabolic diffusion equation.

Since Λ(t) = a
[
(1 + t)β − 1

]
, eq. (32) indicates that the relaxational decay of any

thermodynamic function f(x) is of the form

Rf(t) ∼ e−a(1+t)β , (34)

hence there is a stretched exponential decay. This decay, usually referred to as the

Kohlrausch relaxation, is a common feature observed in many complex systems [58, 59].

Several interpretations have been proposed for this anomalous behavior [66, 67], but to

the best of our knowledge this is the first attempt to connect it to a LW structure of

the underlying fluctuations.

Equation (34) is also interesting from another thermodynamic perspective. It shows

that even LW fluctuations possessing normal diffusive behavior may display highly

non-trivial properties, deviating from the corresponding predictions of the associated

long-term transport model. In the case of the LW process defined by eq. (33), the

associated transport model, i.e., the classical hydrodynamic limit of this model, is just

the parabolic diffusion equation for which the relaxation function of a generic f(x)

should decay exponentially as a function of time, Rf(t) ∼ e−µ2 t, where µ2 > 0 is the

second eigenvalue of the Laplacian operator equipped with homogeneous von Neumann

conditions at the boundary. The failure of the classical hydrodynamic limit in predicting

finer dynamic properties for classes of normal diffusive LWs stems from the fact that

the hydrodynamic limit captures some properties of the LW dynamics, specifically the
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scaling of the mean square displacement, but not the entire complexity involved with a

LW, which would be obtained by considering the whole moment hierarchy.
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Figure 4. The relaxation function − logRf (t) vs. t for the relaxational dynamics

in a closed system discussed in the main text using LWs defined by eq. (33) with

β = 0.3, a = 1. Panel (a) shows oscillations in Rf (t) as a function of time as

explained in the text while the two curves (a) and (b) represent the envelope functions

− logRf (t) = c(1 + t)β for two values of the prefactor c. Panel (b) depicts the scaling

of − logRf (t) once sampled at multiples of the end-to-end transit time L/b = 1 for

ξ = 0.3, a = 1 (symbols (�) and curve (a)), and for ξ = 0.7, a = 0.3 (symbols (•) and
curve (b)). Symbols are the results of stochastic simulations, lines the scaling curve

derived from eq. (34), − logRf (t) ∼ (1 + t)β + c, where c is a constant.

An example of this phenomenon is depicted in Fig. 4 panel (a), where the model

eq. (33) is used with L = 1, b = 1 [a.u.]. The relaxation data have been derived

from stochastic simulations of the system using 5 × 107 particles initially located at

x = xc = 1/2 with age τ = 0 and equiprobable velocity directions. Statistically, this

means that p0±(x, τ) = δ(x−xc) δ(τ)/2. As a thermodynamic test function we consider a

quadratic function of x, f(x) = 6 x (1−x), so that f
∗
= 1. Figure 4 panel (a) shows the

time evolution of the logarithm of Rf (t) with reversed sign for β = 0.3, a = 1, displaying
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the complex oscillations associated with the back-and-forth propagation of the impulsive

mode due to the reflective boundary conditions and corresponding to the subpopulation

of particles that did not experience any inner transition. The behavior of − logRf(t) is

highly nonlinear and bounded from below and the top by c1 (1+t)β < Rf (t) < c2(1+t)β,

where c1 < c2 are constant, which is consistent with eq. (34). Taking these properties

into account, if the relaxation dynamics is sampled at times tn = t0+ b Ln, n = 1, 2, . . .

where t0 is any initial instant of time, a regular and monotonic behavior in the relaxation

dynamics should be observed. This property is depicted in Fig. 4 panel (b) for two

different LW systems.

5.2. Solute release kinetics

Significant differences controlled by the system preparation occur in other typical

transport experiments involving bounded systems. Let us consider the release dynamic

of a solute from a complex polymeric matrix with a transport property that obeys a

LW model. Assume that x = L corresponds to an impermeable boundary to solute

transport and that x = 0 is the exit boundary from which the solute is released into

the environment. Moreover, assume that the external environment is perfectly mixed

and arbitrarily large so that the solute concentration outside the release system, and at

the exit boundary of it, can be considered vanishingly small. This transport problem

is conceptually identical to a first passage time problem in which x = 0 corresponds to

the target exit point [17, 68, 69]. In the release experiment, indicating with Psurv(t) the

fraction of solute particles still within the release system at time t and with J0(t) the

particle flux exiting from x = 0, mass balance dictates

Psurv(t) = 1−
∫ t

0

J0(t
′) dt′ . (35)

The flux J0(t) in the release experiment corresponds exactly to the first passage time

density function fθ1(θ1) when t = θ1, i.e.,

fθ1(θ1) = − dPsurv(t)

dt

∣∣∣∣
t=θ1

. (36)

Consider the LW defined by eq. (13) with b = 1 and L = 1. Figure 5 depicts the behavior

of Psurv(t) vs. t at short and intermediate time scales for the two values of ξ = 1.05, 1.5

corresponding to anomalous but transitionally ergodic LW fluctuations, and for two

initial preparations of the system in which the solute (i.e., the LW particles) are localized

initially at x = xc = 1/2 with equiprobable directions of motions and age distributions

corresponding either to the CTRW preparation, i.e., p±(x, 0, τ) = δ(x−xc)δ(τ)/2, or to

the equilibrium age distribution, i.e., p±(x, 0, τ) = δ(x − xc)e
−Λ(τ)/2. These data have

been obtained from stochastic simulations starting from an initial ensemble of 108 solute

particles.

One can see that the age preparation of the system deeply modifies the release

properties: The difference in Psurv(t) can be of about two orders of magnitude at

ξ = 1.05 for the two preparations at time scales when a significant portion of solute
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Figure 5. The survival probability density Psurv(t) vs. t in a release experiment in

the presence of LW particles whose motion is defined by eq. (13). Panel (a) refers to

ξ = 1.5, panel (b) to ξ = 1.05. Lines (a) correspond to the equilibrium preparation,

lines (b) to the CTRW preparation when initially all the particles possess vanishing

transitional age.

is still present within the system starting from the equilibrium preparation (curve (a)

in Fig. 5 panel (b)). Note also the step structure in the decay of all curves, which is

due to the two propagating fronts of the particle densities and their interplay with the

reflecting wall at L, akin to the oscillatory dynamics shown in Fig. 4. In detail, the

first step corresponds to the initial solution propagating directly towards the exit point

x = 0. Conversely, the second step is generated by the initial solution propagating in

the opposite direction, which is first reflected at the boundary x = L and only later

reaches the exit point. Recombination dynamics amongst the two partial probability

waves prevents the occurrence of further jumps for longer times, and thus a smooth

decaying profile sets up. While these effects, controlled by the initial conditions in age,

are quantitatively relevant for transport problems, in the next section we address the

peculiarity of the first passage time problem in the presence of LW fluctuations in the

light of another internal parameter, namely the initial velocity direction, which plays a
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leading role as it emerges from the hyperbolic modelling.

6. Integral formulation of the first passage time statistics of Lévy Walks

Let us finally analyze the first passage time problem in the light of the hyperbolic

formulation of the statistical properties of LWs. Owing to the analogy between LWs

and Poisson-Kac processes, it is convenient to tackle this problem starting from the

latter. While the main step characterizing the formulation of the hyperbolic transport

equations and of the associated boundary conditions is analogous in the two cases, LWs

may display some anomalies in the long-tail decay of the first passage time statistics

with an exponent differing from the Sparre-Andersen value of −3/2 [70], which cannot

occur in the classical Poisson-Kac case defined by eq. (7).

6.1. Poisson-Kac processes

Let us therefore first consider an ensemble of LW particles with λ(τ) = λ = constant,

initially localized at x = x0 > 0 and evolving on the positive semiaxis, and let x = 0 be

the position of the target exit point. Once a particle passes through x = 0 it is removed

from the system, and its first passage time is evaluated. If x(t) is the continuous

trajectory of the particle, the first passage time t∗ is defined as the first time instant

for which x(t∗ − ε)x(t∗ + ε) < 0 for any small ε > 0, provided that x(t) > 0 for t < t∗.

This case, corresponding to a Poisson-Kac ensemble, is statistically described by the

hyperbolic system of equations for the partial densities P̂±(x, t) defined for x ∈ (0,∞)

and t > 0. At infinity regularity conditions apply, namely limx→∞ xk P̂±(x, t) = 0 for

any t > 0 and any k = 0, 1, . . .. Regarding the condition at the exit point, the above

definition of “first passage” implies the removal of any particle that passes through x = 0

at any time t from subsequent analysis. This process involves exclusively P̂+(x, t) at

x = 0, which should necessarily be vanishing, i.e.,

P̂+(0, t) = 0 . (37)

Conversely, P̂−(x, t) can attain in principle any non-negative value at x = 0. The exiting

flux at x = 0 is just J0(t) = b P̂−(0, t) and, consequently, the first passage time density

function fθ1(θ1) is readily obtained from the solution of eqs. (7) as

fθ1(θ1) = b P̂−(0, t)|t=θ1 . (38)

Given the initial conditions

P̂±(x, 0) = π0
± δ(x− x0) , (39)

π± ≥ 0, π0
++π0

− = 1, the problem expressed by eqs. (7) and equipped with the boundary

condition (37), the regularity condition at infinity, and the initial condition (39) can be

solved easily using Laplace transforms. The analytic expression for the first passage time

statistics for PK processes has been recently discussed by Rossetto [71] starting from the

Siegert formula [72]. In order to mark explicitly the dependence on the initial position
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x0, it is convenient to indicate the first passage time density as fθ1(θ1; x0). Although

the article by Rossetto displays some typos in some basic equations, the results are

correct and consequently the analysis is not repeated here. What is of relevance in the

present analysis are some qualitative observations on the nature of the first passage time

problem of Poisson-Kac processes. Specifically:

• This problem is intrinsically vector-valued, in the meaning that two first passage

time probability densities f
(±)
θ1

(θ1; x0) should be defined accounting for the initial

preparation of the system with respect to the initial velocity orientation: f
(+)
θ1

(θ1; x0)

is the solution of the problem (38) for π0
+ = 1, and f

(−)
θ1

(θ1; x0) for π
0
+ = 0. Owing

to linearity, the solution for generic initial conditions (39) is simply

fθ1(θ1; x0) = π0
+ f

(+)
θ1

(θ1; x0) + π0
− f

(−)
θ1

(θ1; x0) . (40)

The density f
(−)
θ1

(θ1; x0) admits the Laplace transform

L[f (−)
θ1

, s] = exp[−(x0/b)
√
s
√
s + λ)] , (41)

whose inverse transform is given by

f
(−)
θ1

(θ1; x0) = e−x0 λ/b δ(t− x0/b)

+
x0 λ

b
e−λ t

I1

(
λ
√
t2 − (x0/b)2

)

√
t2 − (x0/b)2

η(t− x0/b) , (42)

where I1(ξ) is the modified Bessel function of the first kind of order 1 with argument

ξ and η(ξ) the Heaviside step function, η(y) = 1 for y > 0, η(y) = 0 for y < 0.

• Even if initially the particles are located at x0 = 0, i.e., just at the exit point, its first

passage time density is not necessarily a Dirac delta δ(θ1) provided that π0
+ 6= 0.

Specifically it can be shown that the first passage time distribution f
(+)
θ1

(θ1; 0) is

given by

f
(+)
θ1

(θ1; 0) = λ e−λt I1(λ t)

λ t
(43)

for which f
(+)
θ1

(θ1; x0) follows as

f
(+)
θ1

(θ1; x0) =

∫ θ1

0

f
(−)
θ1

(θ1 − τ ; x0) f
(+)(τ ; 0) dτ (44)

admitting a straightforward physical interpretation: The first passage time density

from x0 starting from an initial velocity outwardly oriented with respect the exit

point (i.e., f
(+)
θ1

(θ1; x0)) is the convolution of the probability density of the time

needed to reverse the orientation (i.e., f (+)(τ ; 0)) times the first passage time density

from x0 starting from inwardly oriented initial velocities (f
(−)
θ1

(θ1 − τ ; x0)).

This setting of the first passage time problem characterizes all the stochastic processes

possessing finite propagation velocity including LWs.

There is another qualitative issue that distinguishes processes possessing finite

propagation velocity from their Wiener-driven counterparts. This is associated with
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the possibility of defining the first passage time problem from an equivalent transport

problem over the real line using the method of images by locating a suitable initial

condition at the image point−x0 of x0 with respect to the exit point. Indeed, as observed

in [50] this method does not apply for Lévy flights and for anomalously diffusive LWs.

As a matter of fact, the method of images fails also for Poisson-Kac processes, and its

failure is not related to the eventual diffusional anomaly of the process but rather to the

boundedness of the propagation velocity, which is reflected in the symmetry properties

of the associated Green functions for the free-space propagation.

To show this, consider the propagation of eq. (7) over the real line with an image

condition at the image point −x0,

P̂±(x, 0) = π0
± δ(x− x0) + π0,′

± δ(x+ x0) , (45)

where π0,′
± are unknown real values to be determined by enforcing the boundary condition

(37). The solution of this problem can be obtained by using the closed-form expression

for the matrix-valued Green function reported in [62]. Indicating with (Gα,β(x, t))α,β=±

the entries of the Green function matrix for an initial condition centered at x = 0, the

formal solution of the image method reads

P̂±(x, t) = G+,+(x− x0, t) π
0
+ +G+,−(x− x0, t) π

0
−

+ G+,+(x+ x0, t) π
0,′
+ +G+,−(x+ x0, t) π

0,′
− . (46)

At x = 0 the forwardly propagating density is

P̂+(0, t) =
[
G+,+(−x0, t) π

0
+ +G+,+(x0, t) π

0,′
+

]

+
[
G+,−(−x0, t) π

0
+ +G+,−(x0, t) π

0,′
−

]
. (47)

Owing to the directed propagation of the Poisson-Kac density waves, the entries

G+,±(x, t) are not symmetric functions of their spatial argument (as can be checked

from their explicit analytical expression reported in [62]). Consequently, one cannot

find constants π0,′
± such that the equations π0,′

± = −G+,±(−x0, t) π
0
±/G+,±(x0, t) are

identically fulfilled for any t > 0.

6.2. Lévy Walks

In the case of LWs, the first passage time problem within the hyperbolic formulation

reduces to the solution of eq. (3) for the partial densities defined in x ∈ (0,∞) and

equipped with the boundary condition for the incoming (entering) density wave

p+(0, t, τ)|x=0 = 0 (48)

identical to the corresponding condition (37) for Poisson-Kac processes. Indicating

with Psurv(t) the fraction of particles remaining in the domain [0,∞) at time t, its

derivative returns the probability of the first passage times with reverse sign. Enforcing

the transformations

p±(x, t; τ) = e−Λ(τ) q±(x, t; τ) (49)
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the auxiliary functions q±(x, t; τ) satisfy a conservative hyperbolic scheme

∂q±(x, t; τ)

∂t
= ∓b

∂q±(x, t; τ)

∂x
− ∂q±(x, t; τ)

∂τ
(50)

equipped with the boundary conditions

q±(x, t; 0) =

∫ ∞

0

T (τ) q∓(x, t; τ) dτ (51)

and with the initial conditions q±(x, 0; τ) = eΛ(τ) p0±(x, τ) = q0±(x, τ).

From eq. (50) it follows that the functional dependence of the auxiliary functions

on their arguments should necessarily be of the form

q±(x, t; τ) = φ±(x ∓ b t, t− τ) . (52)

To q−(x, t; τ) the same representation used in Sec. 4 applies, namely

q−(x, t; τ) =

{
q0−(x+ b t, τ − t) τ ≥ t

h−(x+ b τ, t− τ) τ < t .
(53)

Conversely, the structure of q+(x, t) should account for the boundary condition at x = 0.

This can be achieved by setting

q+(x, t; τ) =





q0+(x− b t, τ − t) τ ≥ t , x < b t

h+(x− b τ, t− τ) τ < t , τ < x/b

0 otherwise .

(54)

The latter representation ensures that no particle that left the positive region (x > 0)

will re-enter it, which is the fundamental constraint in order to define correctly the first

passage time statistics.

Substituting these expressions into the boundary conditions (51), the integral

equations for the auxiliary functions h±(x, t) follow. For h+(x, t) one derives

h+(x, t) =

∫ t

0

T (t− τ) h−(x+ b t− b τ, τ) dτ

+

∫ ∞

t

T (τ) eΛ(τ−t) p0−(x+ b τ, τ − t) dτ . (55)

For h−(x, t) eq. (54) provides

h−(x, t) =

∫ t

0

T (τ) h+(x− b τ, t− τ) η(x− b τ) dτ

+ η(x− b t)

∫ ∞

t

T (τ) eΛ(τ−t) p0+(x− b t, τ − t) dτ , (56)

where η(·) is the Heaviside step function. Alternatively, the first integral on the r.h.s of

eq. (56) can be expressed as
∫ min{t,x/b}

0

T (τ) h+(x− b τ, t− τ) dτ .

The quantity 1−Psurv(t) represents the distribution function for the first passage times

and the corresponding density follows from differentiation, see eq. (36). Psurv(t) can be
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readily obtained from the solution of the above integral equations, since by definition

Psurv(t) =
∫∞

0
dx

∫∞

0
[p+(x, t; τ) + p−(x, t; τ)] dτ .

The system of eqs. (55)-(56) has been solved numerically for a LW with b = 1 [a.u.]

with the transition rate function expressed by eq. (13) using ∆x = ∆t = ∆τ = 10−2.

As an initial preparation, consider the case p±(x, τ) = π0
± δ(x − x0) δ(τ), with x0 = 1,

and different settings of the probabilistic weights π0
± > 0, π0

+ + π0
− = 1, controlling the

distribution of the initial velocity directions. Figure 6 depicts the behaviour of Psurv(t)

vs. t obtained from the numerical solution of the integral Volterra equations for ξ = 0.5

and different initial velocity direction distributions, compared with the corresponding

data obtained from the stochastic simulations of the first passage time problem using

an ensemble of 108 particles. Scaling theory provides for the first passage time density

10-1

100

10-1 100 101 102

P
su

rv
(t

)

t

c

b

a

d

Figure 6. The survival probability Psurv(t) vs. t for the LW defined by eq. (13),

ξ = 0.5, with b = 1, x0 = 1, for different values of π0
+. Solid lines (a)-(c) are the results

of the numerical integration of eqs. (55)-(56) with ∆t = 10−2, symbols the results of

stochastic simulations. Line (a) and (�) refers to π0
+ = 0, line (b) and (◦) to π0

+ = 0.5,

line (c) and (△) to π0
+ = 1. The solid line (d) represents the scaling Psurv(t) ∼ t−ξ/2.

fθ1(θ1) ∼ θ−ζ
1 , θ1 ≫ x0/b. For ξ > 1 we obtain the exponent ζ = 3/2 corresponding to

the Sparre-Andersen result while for ξ < 1 we get ζ = 1 + ξ/2 [73, 74]. In terms of the

survival fraction Psurv(t) this means

Psurv(t) ∼
{

t−ξ/2 0 < ξ < 1

t−1/2 ξ > 1 .
(57)

The integration of the system of equations for h±(x, t) closely matches the stochastic

data and correctly predicts the anomalous Sparre-Andersen exponent.

However, one should be cautious with the numerical integration of eqs. (55)-(56),

as the accuracy may depend significantly on the step size chosen. This phenomenon is

depicted in Fig. 7 at ξ = 1.5 in which a step size of at least ∆t = 10−3 is required

for an acceptable prediction of the stochastic simulation data. This opens up the
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interesting problem of defining novel numerical algorithms for the efficient integration

of the integral Volterra equations arising from LW theory, a problem that is shared by

any model expressed in terms of the fractional derivatives of the overall distribution

function P (x, t).
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Figure 7. Psurv(t) vs. t for the LW defined by eq. (13), ξ = 1.5, with with b = 1,

x0 = 1 and π+

0 = 0.5. Solid lines represent the result of the numerical integration of

eqs. (55)-(56) at two different step sizes: (a) ∆t = 10−2, (b) ∆t = 10−3. Symbols are

the results of stochastic simulations.

7. Concluding remarks

The hyperbolic formulation of LWs, parametrized with respect to the velocity direction

and the transitional age, permits to completely describe their statistical properties

in a simple formal setting, which makes it possible to address a variety of different

phenomenologies within a unified framework. The concept of ensemble preparation

is a direct consequence of this formulation accounting for the more general case of

initial conditions involving the internal degrees of freedom characterizing LWs. In this

framework, the concept of aging emerges as a particular system preparation.

However, to conceptually simple theoretical settings do not necessarily correspond

computationally simple ways of determining the respective system properties.

Nevertheless, in the case of the hyperbolic formulation of the statistical properties of

LWs, the extra degree of freedom represented by the transitional age τ , which comes in

addition to the two variables of space coordinate x and time t in the partial densities

p±(x, t; τ), can be embedded within the temporal parametrization. This means that the

evolution of the system can be completely described by means of two auxiliary function

h±(x, t) depending exclusively on a space x and a temporal coordinate t, satisfying a

system of Volterra integral equations in which the convolutional nature of the dynamics

accounts for the memory effects associated with the age. In general, as for Poisson-Kac



Age representation of Lévy Walks 27

processes the parametrization with respect to the velocity direction, which corresponds

to the inclusion of a system of two partial densities p±(x, t; τ) (or two auxiliary functions

h±(x, t)) in the statistical analysis cannot be eliminated if the most general initial

preparations are considered in which unbalanced subpopulations of particles initially

moving in the two opposite directions may occur.

If symmetric conditions for the initial population of the forward and backward

moving particles are assumed, only a single auxiliary function, say h(x, t) = h+(x, t) is

needed in the free-space propagation, as for any model involving the overall density

function P (x, t), allowing an arbitrary initial age preparation of the system. The

equation for h(x, t) becomes nonlocal, and the nonlocality reflects the reduction of the

model to a single propagating field. This presents some similarities with the problem

of nonlocality and hidden variables in quantum mechanics, where the notion of hidden

variables is not solely related to the existence of a “hidden probabilitistic structure” [75]

but eventually to the inclusion of neglected propagating fields [76].

The importance of correctly accounting for the initial preparation of the system

emerges clearly either in the short/intermediate term dynamics or in problems defined

in bounded domains. Even diffusionally regular LWs displaying a linear scaling in the

mean square displacement may show interesting anomalous relaxation properties, such

as the occurrence of a stretched exponential decay. This example suggests a broader

application of LW fluctuations in material science and polymer physics as a model of

complex fluctuations (viscoelasticity, nonlinear viscoelasticity, etc.).

The analysis of the first passage time statistics embedded within the hyperbolic

formalism opens up several interesting pathways for further investigation. The difficulty

with formulating a correct method of images for the first passage time problem involving

LWs is not related to their anomalous behavior but is intrinsically rooted in the finite

propagation velocity of these fluctuation models. The mathematical setting of this

problem in terms of partial densities requires that the partial density associated with

an incoming wave from the surrounding environment should vanish at the target exit

boundary in order not to reinject particles into the domain that have already been

passed through it. The same problem arises in other classes of dynamics possessing

finite propagation velocity such as Poisson-Kac processes. The manipulation of the

partial density equations, enforcing the method of characteristics, permits to reduce the

transport problem to the evaluation of two auxiliary functions h±(x, t) of the spatial

coordinate x and the temporal one t, as in the case of the free-space propagation.

The hyperbolic formulation of LWs is particularly suited for modelling more com-

plex situations, which account for the occurrence of interparticle interactions, exclusion

effects, etc., that in a mean-field modeling can be described by allowing the velocity b

and the transition rate λ(τ) to depend on the partial wave densities. This extension has

been initiated in [77, 78] for LWs and in [79] for Poisson-Kac processes.
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migrate by Lévy Walk Nature Comm. 6 8396
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