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As spinal fusions require large volumes of bone graft, different bone graft substitutes are being

investigated as alternatives. A subclass of calcium phosphate materials with submicron surface

topography has been shown to be a highly effective bone graft substitute. In this work, a com-

mercially available biphasic calcium phosphate (BCP) with submicron surface topography

(MagnetOs; Kuros Biosciences BV) was evaluated in an Ovine model of instrumented posterolat-

eral fusion. The material was implanted stand-alone, either as granules (BCPgranules) or as granules

embedded within a fast-resorbing polymeric carrier (BCPputty) and compared to autograft bone

(AG). Twenty-five adult, female Merino sheep underwent posterolateral fusion at L2-3 and L4-5

levels with instrumentation. After 6, 12, and 26 weeks, outcomes were evaluated by manual pal-

pation, range of motion (ROM) testing, micro-computed tomography, histology and histomorpho-

metry. Fusion assessment by manual palpation 12 weeks after implantation revealed 100%

fusion rates in all treatment groups. The three treatment groups showed a significant decrease in

lateral bending at the fusion levels at 12 weeks (P < 0.05) and 26 weeks (P < 0.001) compared to

the 6 week time-point. Flexion-extension and axial rotation were also reduced over time, but sta-

tistical significance was only reached in flexion-extension for AG and BCPputty between the 6 and

26 week time-points (P < 0.05). No significant differences in ROM were observed between the

treatment groups at any of the time-points investigated. Histological assessment at 12 weeks

showed fusion rates of 75%, 92%, and 83% for AG, BCPgranules and BCPputty, respectively. The

fusion rates were further increased 26 weeks postimplantation. Similar trends of bone growth

were observed by histomorphometry. The fusion mass consisted of at least 55% bone for all treat-

ment groups 26 weeks after implantation. These results suggest that this BCP with submicron sur-

face topography, in granules or putty form, is a promising alternative to autograft for spinal fusion.
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1 | INTRODUCTION

The annual number of spinal fusion procedures in the US for the treat-

ment of degenerative spine conditions has risen rapidly over the past two

decades to >770,000.1 The most commonly used spinal fusion technique

is posterolateral fusion (PLF), which is either performed as an individual

procedure (19%) or in combination with interbody cage fusion (45%).2

Because these procedures require large volumes of bone graft
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(12-36 cc),3 bone graft substitutes are frequently employed to reduce or

avoid morbidity related to the harvesting of autologous bone.4 Calcium

phosphate-based bone grafts have been widely investigated because of

their excellent biocompatibility, osteoconductivity and controllable resorp-

tion rate.5 A commonly addressed disadvantage compared to autologous

bone is their lack of osteogenic and osteoinductive capacity. However,

efforts to modify the physicochemical properties of calcium phosphates

(ie, composition, porosity and, most recently, surface properties) have

resulted in materials with bone-inducing properties. In particular, submi-

cron surface topographies have been reported to enhance angiogenesis

and bone healing properties following in vivo implantation.5–8

Surface properties of biomaterials have been shown to influence

the phenotype of macrophages,9–11 that are key modulators in the for-

eign body and wound healing responses.12,13 For promotion of bone

repair, an increase in anti-inflammatory macrophages following an initial

phase with pre-dominantly pro-inflammatory macrophages has been

suggested to be important.14,15 Recently, calcium phosphates with sub-

micron surface topography have been shown to promote the transition

of macrophages to the pro-healing, anti-inflammatory M2 phenotype

in vitro,8 which has been linked to enhanced angiogenesis and superior

bone healing properties observed with these materials.6,7

In the current study, a clinically relevant16–18 Ovine model of

instrumented PLF was used to compare treatment outcomes of a

biphasic calcium phosphate (BCP) with submicron surface topography

to bone autograft as a stand-alone treatment. The bone graft was

implanted as granules alone and as a putty, with granules embedded

in a fast-resorbing polymeric binder designed to improve handling

properties. Study endpoints included fusion rate by manual palpation,

range of motion (ROM), histology and histomorphometrical analysis of

bone in the fusion mass after 6, 12 and 26 weeks.

2 | METHODS

2.1 | Calcium phosphate

Commercially available BCP bone graft (MagnetOs; Kuros Biosciences

BV, Bilthoven, Utrecht, the Netherlands) was provided as granules

(BCPgranules) and putty (BCPputty). Both formulations contain 1 to

2 mm granules of bioactive bone graft comprising 65% to 75% Tri-

Calcium Phosphate (TCP—Ca3(PO4)2) and 25% to 35% Hydroxyapatite

(HA—Ca10(PO4)6 (OH)2). The carrier in the putty formulation is a tri-

block copolymer synthesized from polyethylene glycol (PEG) and L-

lactide monomer. The resulting polymer is water-soluble and dissolves

at near body temperature, leading to rapid dispersion after implanta-

tion (<48 hours).19 Scanning electron microscopy (SEM; JSM 5600,

JEOL) was used to characterize the submicron surface topography.

Bioactivity of the BCP surface was evaluated in vitro using the vali-

dated assay described by Kokubo et al.20 Briefly, the materials were

submerged in simulated body fluid (SBF) for 2, 4, 7, and 10 days and

subsequently analyzed for presence of an apatite-like-layer using

SEM. The materials for the animal study were provided sterile having

been sterilized by gamma irradiation (25 kGy).

2.2 | Animal study

The study design was based on a previously reported sheep model of

PLF18,21,22 and was approved by the local Animal Care and Ethics Com-

mittee (ACEC). Surgery was performed on 25 adult, female Merino sheep

(4-5 years, 80-90 Kg, at the University of New South Wales [UNSW],

Australia). Animals were randomly distributed into three groups for the

6, 12, and 26-week time-points, with an n of 8, 9, and 8, respectively.

Preoperative, animals were administered fentanyl (2 μg/kg/h, t.d.), bupre-

norphine (0.006 mg/kg, s.c.) and Carprofin (4 mL, s.c.) for pain relief and

Zoletil (8-12 mg/kg, i.m.) for induction. Anesthesia was achieved and

maintained by isoflurane (2%-4% in 100% O2). Surgery consisted of multi-

level instrumented spinal PLF procedure at levels L2-L3 and L4-L5. In

short, facet joints and transverse processes (TPs) were exposed followed

by destabilization of the motion segments and excision of the facet joints,

spinous processes and ligaments. TPs were decorticated after which the

operative levels were bilaterally instrumented with polyaxial pedicle

screws (� 5.0 × 35 mm) and titanium rods (� 5.5 mm, Wiltrom Co., Ltd.,

Zhubei City, Hsinchu County, Taiwan). Subsequently, 20 cc of graft mate-

rial was equally distributed to the bilateral arthrodesis sites in direct appo-

sition with each of the TPs (10 cc per side). The three graft materials were

iliac crest- and proximal tibia-derived (1:1) autologous bone graft (AG),

BCPgranules, and BCPputty, randomly allocated to the fusion levels (n = 5

for 6 and 26 weeks, n = 6 for 12 weeks). Postsurgery, the animals were

housed at the laboratory animal facility where they were monitored and

received proper postoperative care. After 6, 12, and 26 weeks, animals

were euthanized by IV injection of Lethotarb (1 mL/2 kg i.v., 325 mg/mL)

for analyses of endpoints.

2.3 | Manual palpation

After euthanasia, harvesting of the spines and removal of pedicle rods,

the L2-L3 and L4-L5 segments were manually subjected to flexion-

extension (FE) and lateral bending (LB) to assess spine mobility. All levels

were graded as either fused (low mobility), partially fused (one-sided

mobility) and not fused (high mobility) under FE and LB. The fisher-Free-

man-Halton Exact Test was performed for statistical analysis (P < 0.05).

2.4 | Micro-computed tomography

Micro-computed tomography (micro-CT) was performed using an

Inveon Scanner (Siemens Medical Solutions USA, Inc., Knoxville, TN,

USA) at a slice thickness of 50 μm.

2.5 | Biomechanical analysis

The treated levels were separately mounted on a robotic six degree of

Simulation Solutions Ltd., Stockport, UK freedom musculoskeletal sim-

ulator, simVITRO (Simulation Solutions Ltd., Stockport, UK and Cleve-

land Clinic Biorobotics Lab, Cleveland, OH, USA). A 7.5 Nm pure

moment was applied to the segments in FE, LB and axial rotation (AR).

Each loading profile was repeated three times for every specimen and

the mean angular deformation was recorded. Data were analyzed with

a two-factor ANOVA with a significance level of P < 0.05 using dedi-

cated software (Graphpad version 5). Normal distribution of data was

confirmed by Kolmogorov-Smirnov normality test.
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2.6 | Histology and Histomorphometry

The treated spine levels were fixed in 4% phosphate-buffered forma-

lin for 1 week at 4� Celsius. After fixation, samples were dehydrated

through a series of increasing ethanol concentrations and were subse-

quently embedded in methylmethacrylate. A Leica SP1600 saw-

microtome was used to cut sagittal cross-sections (10-20 μm) from

the region between TPs of each contralateral fusion mass. From each

sample, three sections were obtained across the fusion mass for eval-

uation. Sections were stained with 1% methylene blue and 0.3% basic

fuchsin to visualize bone tissue (bone matrix: pink, fibrous tissues:

blue). Sections were visualized under a Leica microscope (Eclipse 50i,

Nikon) for histological observation and were imaged using a slide

scanner (DiMage scan 5400 Elite II, Konica Minolta, Tokyo, Japan) to

obtain overviews for fusion assessment followed by histomorphome-

trical analysis. Each section was evaluated for histological fusion. His-

tological fusion was scored when a continuous presence of bone was

observed between the TPs, connecting the adjacent spine segments.

From each fusion mass, the most representative section was used for

histomorphometry. Histomorphometry of the fusion mass was per-

formed by pseudo-coloring pixels representing bone and remaining

implant material in a region of interest (Adobe Photoshop Elements

2.0). Values were expressed in mean and SD. For statistical evaluation,

a two-factor ANOVA was performed (P < 0.05). Normal distribution of

data was confirmed by D'Agostina-Pearson normality test.

3 | RESULTS

3.1 | Material characterization

Surface structure analysis of the porous BCP granules (Figure 1A)

by SEM demonstrated a surface topography of submicron-scale

polygon crystals (Figure 1B). Average surface crystal diameter was

determined to be 0.58 � 0.21 μm. Surface mineralization, evident

from the development of an apatite-like-layer of globules, was

FIGURE 1 (A) Porous BCP granule of 1-2 mm in size with (B) submicron surface topography of epitaxial polygon crystals. Submersion in SBF

resulted in the progressive formation of an apatite-like mineral layer on the material surface as shown by SEM after (C) 2 days, (D) 4 days,
(E) 7 days, and (F) 10 days

VAN DIJK ET AL. 3 of 10

https://www.google.com/search?client=firefox-b-abandq=Chiyoda,+Tokyoandstick=H4sIAAAAAAAAAOPgE-LUz9U3MDIrzs5QAjMNKzKS4rW0spOt9POL0hPzMqsSSzLz81A4VhmpiSmFpYlFJalFxQBRdZwyRAAAAAandsa=Xandved=2ahUKEwji4YylpdPeAhWDsY8KHQLdCDoQmxMoATAXegQIBRAL


observed in an increasing manner with time following submersion in

SBF (Figure 1B-F). These results confirm the bioactivity of the BCP

surface.

3.2 | Micro-computed tomography

Surgery and recovery proceeded without adverse events or adverse

reactions to the implant materials. After 6, 12, and 26 weeks, animals

were euthanized and the spine and surrounding tissues were har-

vested. Imaging by micro-CT showed that all graft materials were

well-contained at the implantation sites and there was progression to

a solid fusion mass between the spine segments over time (Figure 2).

At 26 weeks, mature fusion masses were evident and were indicated

by incorporation of the graft materials with host bone, and the inabil-

ity to discriminate individual BCP particles. Evaluation of fusion

masses suggested higher fusion mass volumes in the BCP groups at

12 and 26 weeks than with AG, indicating higher graft volume stabil-

ity with the BCP treatments.

3.3 | Manual palpation

Results of fusion assessment by palpation in a blinded manner are pre-

sented in Table 1. The data indicate a 100% fusion rate in each group

from 12 weeks onwards. No partially fused spines were found by

manual palpation. No statistically significant differences in fusion

between treatments at each time-point were determined (Fisher-

Freeman-Halton exact test, P ≥ 0.5).

3.4 | Biomechanical evaluations

ROM testing was performed to determine whether treatment

resulted in a reduction in mobility between the segments and thus a

higher stability, which is the primary goal of spinal fusion. Results of

ROM tests are presented in Figure 3. These results show decreasing

trends in ROM in LB, FE, and AR with no differences between

treatment groups. The decrease was strongest in LB for all mate-

rials, with an average decrease of 5.50� � 1.59 between 6 and

FIGURE 2 Examples of transversal micro-CT slices of the treated spine levels for AG (A-C) and BCP (D-F) at 6 (A, D), 12 (B, E) and 26 (C, F)

weeks. During time, consolidation of the fusion mass was evident for all treatments and gradual integration of graft materials with the underlying
host bone was observed. Graft volume at 12 and 26 weeks appear higher for BCP treatments than for AG, suggesting a higher graft volume
stability for BCP

TABLE 1 Fusion rate by manual palpation

Time-point AG BCPgranules BCPputty P valuea

6 weeks 3/5 1/5 1/5 0.50

12 weeks 6/6 6/6 6/6 0.99

26 weeks 5/5 5/5 5/5 0.99

a Fisher-Freeman-Halton exact test.
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26 weeks and statistical significance between 6 weeks and the later

time-points (two-factor ANOVA, P < 0.05). In FE, the average decrease

was 3.60� � 1.65 between 6 and 26 weeks, with significance for

AG and BCPputty, but not for BCPgranules. Although the data for AR

show a slight decrease in ROM of an average 1.67� � 1.03 between

6 and 26 weeks, statistical significance was not reached. No statisti-

cal differences between graft materials were seen in any loading

direction at any time-point, indicating equivalent spinal stability

between the positive control, autograft, and the treatment groups,

BCPputty and BCPgranules.

3.5 | Histology and histomorphometry

All further evaluations were performed by histology. Presence of a

bony fusion between the segments was assessed on sagittal cross-

sections of the fusion mass, as presented in Figure 4. The fusion

scores are given in Table 2. As the data show, fusion was rarely

observed at 6 weeks. However, a steep increase was observed for all

treatments at 12 weeks, with fusion rates of 75%, 92%, and 83% for

AG, BCPgranules and BCPputty, respectively. Specimens of the 26-week

endpoint showed a further increase in percentage of segments fused

with 90%, 100% and 90% for AG, BCPgranules and BCPputty, respec-

tively. Differences in fusion rate between treatments were not of sta-

tistical significance, indicating equivalent performance between the

three graft materials (Fisher-Freeman-Halton exact test, P ≥ 0.05).

High and low magnification histological sections were examined

to evaluate tissues within the fusion mass (Figures 4 and 5). Fibrous

tissue and blood vessel infiltration was complete in the central region

of the fusion at week 6 in all implants. In addition, bone formation

was observed near the host bone bed after 6 weeks in all groups. Dur-

ing the healing period, progression of bone tissue throughout the

fusion mass was observed, with an increased proportion of bone at

12 weeks and bone tissue occupying the full range of the fusion mass

after 26 weeks. Bone tissue was observed growing directly on BCP

material surface, with cuboidal osteoblasts colonizing the material sur-

face and secreting osteoid. Maturation of bone tissue in the fusion

mass was indicated by the transition from an early bone phenotype

FIGURE 3 Diagrams presenting ROM data of treated segments in LB (A), FE (B) and AR (C). Decrease in ROM over time was evident for each

loading direction, with no significant differences between groups. Symbols: # significantly different from AG, 6 weeks (P < 0.05); † significantly
different from BCPgranules, 6 weeks (P < 0.01); ‡ significantly different from BCPputty, 6 weeks (P < 0.05); • all significantly different from 6 weeks
(P < 0.001); ¤ significantly different from AG, 6 weeks (P < 0.01); § significantly different from BCPputty, 6 weeks (P < 0.05)

FIGURE 4 Sagittal histological sections (basic fuchsin-methylene blue) of spine levels grafted with AG or BCP, taken from the region between

the TP's. These sections were used to score spinal fusion, that is, the presence of a continuous bone bridge between the adjacent transverse
processes. The 6 weeks sections shown on the left were scored as “not fused” whereas 12 and 26 weeks shown in the center and right side were
scored as “fused”. Fusion by histology was frequently observed from 12 weeks onwards
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with abundant osteoid, woven bone and fibrous tissue towards a

mature bone phenotype at 26 weeks, characterized by a large propor-

tion of lamellar bone and bone marrow. Osteoclast-like multinu-

cleated phagocytes were observed phagocytosing the BCP material

indicating the cell-mediated resorption of the implanted material.

Gradual degradation of BCP granules was evident by the presence

of small particles of BCP separated from larger granules up to the

26-week time-point.

Histomorphometry data, represented in Figure 6, are consistent

with the general histological observation of the fusion mass. In all

groups, the proportion of bone in the fusion mass steadily increased

over time in a significant trend (P < 0.001), leading up to over 55% of

bone after 26 weeks. Between groups, at the 6-week time-point, a

higher proportion of bone was determined in the AG group

(25.2% � 5.0) compared to BCPgranules (14.8% � 7.1, P < 0.01) and

BCPputty (10.8% � 5.9, P < 0.001), which can be explained by the

presence of autologous bone chips that were implanted at the fusion

site. After healing periods of 12 and 26 weeks, no differences in bone

volume were observed between all treatments (P > 0.05).

The proportion of BCP graft in the fusion mass was determined

for BCPgranules and BCPputty (Figure 6). As is evident from the graph, a

decrease in material volume was determined over time. In both BCP

groups, the amount of material in the fusion mass decreased by �25%

in the healing period from 6 weeks to 26 weeks, which was confirmed

by statistical analysis (P < 0.001). No significant difference in material

decrease between 6 and 12 weeks was determined for BCPgranules

and BCPputty. A slightly higher proportion of BCP graft in the fusion

mass was seen for BCPputty compared to BCPgranules at 6 weeks

(39.7 � 4.1% vs 33.2 � 5.7%, P < 0.01) and 26 weeks (29.9% � 3.2

vs 24.9 � 5.0%, P < 0.05).

4 | DISCUSSION

The posterolateral spine environment is known to be challenging for

bone graft substitute materials because it provides very limited con-

tact with host bone from which bone growth can progress. In fact, a

successful lumbar arthrodesis is achieved by controlled bone

TABLE 2 Fusion rate by histology

Time-point

AG BCPgranules BCPputty

U B FR (%) U B FR (%) U B FR (%) P valuea

6 weeks 1/5 0/5 10 0/5 0/5 0 0/5 0/5 0 0.99

12 weeks 1/6 4/6 75 1/6 5/6 92 2/6 4/6 83 0.85

26 weeks 1/5 4/5 90 0/5 5/5 100 1/5 4/5 90 0.99

Abbreviations: B, bilateral fusion; FR, fusion rate; U, unilateral fusion.
a Fisher-Freeman-Halton exact test.

FIGURE 5 High magnification histology (basic fuchsin-methylene blue) of the grafts of levels treated with BCPgranules (A, C, E) and BCPputty (B, D,

F). Images show the progression and maturation of bone tissue from 6 weeks (A, B) to 26 weeks (C, D). Less mature bone tissue at 6 weeks is
recognized by the presence of abundant fibrous tissue (FT), osteoid (O) and woven bone (WB). New bone tissue was observed forming around
the BCP particles (BCP). At 26 weeks, more mature bone was recognized by the presence of lamellar bone (LB) and bone marrow (BM). Cuboidal
osteoblasts were observed depositing osteoid directly on the BCP granule surface (E, arrows, 6 weeks). In addition, large multinucleated cells
were observed resorbing the BCP material, with internalized fragments of material being apparent (F, arrows, 6 weeks)
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formation through the paraspinous soft tissues in between adjacent

TPs.23 Because of this, materials with physicochemical properties

designed to beneficially control the foreign body and wound healing

responses may be more effective bone graft substitutes for PLF, as

these can promote bone formation in sites distant from native bone

through mechanisms other than osteoconduction alone.

Although most commercially available bone grafts have under-

gone testing in lapine posterolateral fusion studies, only a handful

have been tested in higher-order animals such as sheep using poste-

rior pedicle screws and rods. Wheeler et al.24 compared BCP

(Mastergraft; 15% HA/85% β-TCP) and autograft, and reported 57.1%

and 100% fusion respectively at 16 weeks. Bone proportion in the

fusion mass at 16 weeks was significantly lower for the BCP

(36.2% � 3.95) than for autograft (55.1% � 7.59). In another work,

that studied macroporous BCP (MBCP; 65% HA/35% TCP), Guigui

et al.25 reported that this material achieved fusion after 12 months

while fusion by autograft was already observed after 6 months, as

was confirmed by biomechanical testing. A third study by Baramki

et al.26 reported high fusion rates for autograft and interconnected

porous HA after 20 weeks, but mechanical tests revealed poorer out-

comes for the HA group. In the absence of posterior fixation, β-TCP

alone has also shown inferior performance to autograft.27 Other stud-

ies have reported more favorable outcomes for ceramics compared to

autograft in this model,28–30 although certain limitations to those

studies are evident when compared to the current work. First of all,

fusion assessment by radiography (ie, X-ray and micro-CT) for evalua-

tion of calcium phosphate grafts is inconclusive and may lead to over-

estimations, because the high radiopacity of calcium phosphate limits

the ability to distinguish bone from material.31–33 Since the formation

of bone tissue is crucial for a successful spinal fusion, fusion assess-

ment by histology is a more accurate and reliable indicator than radio-

graphic assessment. Moreover, studies described in the prior art

lacked internal references for mechanical testing (eg, multiple time-

points) and reported equivalent spinal fusion with autograft or

ceramics at 16 weeks or later. Lastly, the age of the animal is often

reported as “skeletally mature” rather than the specific age or age

range. This is important, as fusion rates drop considerably for 5-year-

old ewes34 as compared to 2-3-year-old ewes,35 both of which are

skeletally mature. The 4 to 5 -year-old sheep used in the present

study present an additional relevant challenge for the graft to

overcome.

In the current work, by a combination of histological fusion data

and mechanical data (ie, manual palpation and ROM testing) at multi-

ple time-points, we demonstrated high spinal fusion success and

equivalence to autograft as early as 12 weeks post-surgery by this

BCP with submicron surface topography in both granule and putty

form. Both BCP formulations showed equivalent and sustained effi-

cacy for each endpoint, which indicates that the polymeric binder did

not inhibit bone-healing performance of the granules. This is in line

with expectations, since the binder was designed to rapidly dissolve

after implantation and consists of a biologically inert composition. By

histomorphometry at 6 weeks, levels treated with autograft showed a

slightly but significantly larger proportion of bone tissue in the fusion

mass, which may be explained by grafted autologous bone chips being

included in the measurement of newly formed bone. Although manual

palpation results suggest a higher fusion rate with autograft at 6 weeks

(nonsignificant), the ROM and histological fusion data indicate similar

healing progress between BCP treatments and autograft at the earli-

est time-point.

In comparison to previous studies, which show either an inferior-

ity of calcium phosphates compared to autograft or equivalence evi-

denced through weaker endpoints, we demonstrate equivalent

performance of AG, BCPgranules and BCPputty by an array of strong

assessment methods. In clinical literature, we can find conflicting

FIGURE 6 Diagrams presenting histomorphometry results of bone tissue (A) and BCP material (B) in the FM of the treated spine segments. Data

are presented as percentage of the available space in a region of interest. A linear increase of bone tissue in the fusion mass during time is evident
for all treatments (A). At 6 weeks, a slightly higher percentage of bone is shown for AG, but no differences were observed at later time-points.
A decrease in material percentage during time was observed for both BCP treatments (B). A slight difference between BCPgranules and BCPputty
is apparent at 6 weeks and 26 weeks. Symbols: * P < 0.01; ** P < 0.001; # all significantly different from 6 weeks, P < 0.001; † all significantly
different from 12 weeks and 6 weeks, P < 0.001; ‡ significantly different from BCPgranules, 6 weeks, P < 0.01; • significantly different from
BCPgranules, 26 weeks, P < 0.05
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evidence about the efficacy of calcium phosphate materials as bone

graft materials for spine fusion.36,37 Physicochemical properties of

biomaterials are rarely discussed in clinical literature and it is often

overlooked that these properties strongly influence the performance

of calcium phosphate bone graft materials. Indeed, during preclinical

in vivo studies, grafts with optimized physicochemical properties have

presented better outcomes than those with suboptimal properties.

For instance, calcium phosphate phase composition,38–43 macro-

porosity44–50 (ie, macro-pore size and interconnectivity) and bioactiv-

ity51 have been directly related to the in vivo tissue response, neovas-

cularization and bone-forming potential in ectopic and orthotopic

sites.40–43 Moreover, presence of a submicron surface topography

and micro-porosity has been linked to substantially enhanced bone-

inducing properties of calcium phosphates.6,7

One of the current hypotheses on the effectiveness of calcium

phosphates with submicron topography involves the polarization of

macrophages. Macrophages play a key role in the foreign body

response and their reaction to medical implants is pivotal for the suc-

cess or failure of an implant after implantation.52 Being of a plastic

nature, uncommitted macrophages can polarize towards a pro-

inflammatory phenotype (M1) or anti-inflammatory phenotype (M2) in

response to external triggers, including tissue damage or the implanta-

tion of a biomaterial.13,53 Studies have suggested that an increase in

anti-inflammatory M2 macrophages following an initial phase of

M1-dominated inflammation results in enhanced vascularization and

osteogenesis.14,15 Moreover, surface properties of biomaterials have

been demonstrated to influence macrophage phenotype after

implantation9–11 and recently, calcium phosphates with a submicron

surface topography were shown to promote the transition of macro-

phages to the M2 phenotype in vitro.8 The upregulation of M2 macro-

phages by submicron structured calcium phosphates may explain the

enhanced angiogenesis and superior bone healing properties observed

with these materials in vivo,6–8 as well as the results obtained in the

current work. However, the techniques used in the current study to

assess bone formation and spinal fusion were not designed for macro-

phage characterization. The proposed mechanism remains to be fur-

ther experimentally verified in future studies.

A limitation of the current study is that no materials with different

surface topographies were compared. Therefore, a recommendation

for future studies in this model is to include materials with no surface

topography or with surface topographies of different geometries and

dimensions (ie, supermicron scale), in order to isolate the effect of

material surface topography on graft efficacy. In addition, with regard

to mechanical testing, inclusion of a sham or “empty” control (ie, no

graft material) and baseline measurements immediately after surgery

would provide more insight on the effect of spinal fusion by these

graft materials on spine ROM.

We may conclude that this study provides solid evidence of the

adequate performance of a BCP with tailored physicochemistry as

stand-alone alternative to autograft in a clinically relevant Ovine model

of PLF. By application of reliable fusion assessment by histology and

supporting analyses at relevant time-points, we demonstrated a high

fusion rate after 12 weeks for this material, with overall equivalence

to autograft in fusion rate, mechanical integrity and bone formation

over the entire healing period of 26 weeks. These findings support

the premise that calcium phosphates with a submicron surface topog-

raphy are highly effective bone graft substitutes for PLF and this jus-

tifies further clinical investigation of these materials.
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