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The magnetic susceptibility of an ensemble of clean metallic nanoparticles is shown to change from a
paramagnetic to diamagnetic one with the onset of spin-orbit interaction. The effect is quantified on the basis
of symmetry analysis with the help of the random matrix theory. In particular, the magnetic susceptibility is
investigated as the function of symmetry breaking parameter representing magnetic flux in the crossover from
symplectic to unitary and from orthogonal to unitary ensembles. Corresponding analytical and numerical results
provide a qualitative explanation to the experimental data on diamagnetism of an ensemble of gold nanorods.
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I. INTRODUCTION

The theory of diamagnetic susceptibility of electrons in a
bulk metal is nontrivial even for the case of weak magnetic
fields and noninteracting electrons [1–3]. When applied to
small metallic objects, additional complications arise due to
spacial quantization. The authors of Ref. [4] have demon-
strated that the additional contribution to magnetic suscepti-
bility can be expressed through the variance of the number
of particles in a grand canonical system. According to the
theory [4,5] the ensemble of tiny conducting particles should
demonstrate a strong paramagnetic response in contrast to a
typically diamagnetic response of large metallic systems.

Magnetic susceptibility in an ensemble of mesoscopic par-
ticles has been subsequently analyzed by a number of authors
[6–14] who employed various semiclassical methods to build
up a quantitative theory. Still, only qualitative explanation
of early experiments [15,16] with the arrays of ultraclean
GaAs nanoparticles have been reached. Moreover, later ex-
periments with silver and golden nanorings and nanoparticles
[17–22] demonstrated large diamagnetic response, while a
series of similar experiments revealed paramagnetic suscep-
tibility [23–27] (see also Refs. [14,22] for the review). To
explain such seemingly contradicting data one needs not
only additional experimental efforts but also new theoretical
insights.

In Ref. [22] a qualitative explanation for the observed dia-
magnetic response was suggested. The explanation has linked
the diamagnetic susceptibility to the onset of strong spin-orbit
interaction. The latter is quite natural to expect in such heavy
metal as gold, where large spin-orbit splitting of surface states
at Au(111) surface (of the order of 0.1 eV) has also been evi-
denced from the direct photoemission measurements [28,29].
However, no detailed theory of this effect was provided at that
time (the change of the sign of magnetic susceptibility due
to spin-orbit coupling was hypothesized just by analogy with
mesoscopic magnetoresistance [30]). The aim of this work is
to present a qualitative theory of the phenomenon on the basis
of the random matrix approach.

Similar to previous works we start with the well-
established thermodynamic relation [4]

〈χN 〉 = 〈χμ〉 − 1

2
�E

∂2

∂B2
〈(δN )2〉μ, (1)

where B is the magnetic field, χμ and χN denote the statistical
average of magnetic susceptibility in grand-canonical and
canonical ensembles, respectively, while the angular brack-
ets stand for the additional averaging over the ensemble of
nanoparticles. This expression of Eq. (1) holds to the leading
order in the ratio �E/εF , where �E ∼ 10 meV stands for
the mean level spacing in a nanoparticle and εF ∼ 10 eV
is the Fermi energy (to be specific, we use for estimates
the parameters characteristic for the experiments [22]). The
notation 〈(δN )2〉μ refers, at zero temperature, to the variance
in the number of energy levels below the chemical potential μ.

Below we compute the mean susceptibility 〈χN 〉 − 〈χμ〉
from interpolating random matrix ensembles [31–36] that
mimic level statistics in quantum dots with and without spin-
orbit interaction.

Given large spin-orbit interaction in gold, we shall be
especially interested in the crossover from the ensemble of
symplectic to the ensemble of unitary random matrices: the
so-called GSE-GUE crossover [37] (G in these abbreviations
means Gaussian). Such a transitional ensemble qualitatively
describes the evolution of energy level distribution with in-
creasing magnetic field in a noninteracting ballistic quan-
tum dot with strong spin-orbit interaction. For the sake of
completeness, we also study the GOE-GUE crossover from
orthogonal to unitary ensemble that similarly describes the
evolution of level statistics with increasing magnetic field
in the absence of spin-orbit interaction. As we have already
mentioned, the latter case received a particularly detailed at-
tention in the literature [4–14,38] that unanimously predicted
paramagnetic susceptibility. Surprisingly, there have been no
such studies for the case of strong spin orbit interaction.

The quantity 〈(δN )2〉 is determined, in a mesoscopic sys-
tem, by the statistics of energy levels on the scale of the mean
level spacing. The statistics turns out to be universal, i.e.,
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independent of the microscopic details of the Hamiltonian.
Such a universality has prompted the development of the
random matrix theory (RMT), first, in the context of energy
spectra in heavy atomic nuclei [31,32], and later in application
to disordered metallic granules [39,40]. Since then, the RMT
has been widely accepted as a standard tool to address various
properties of mesoscopic systems [36]. The RMT has been
instrumental in addressing problems of quantum chaos [41]
and in developing general symmetry classification of nonin-
teracting disordered systems [42].

Below we employ two transitional ensembles of random
matrices: GOE-GUE [43,44] and GSE-GUE [37]. The energy
level correlations in these ensembles have been computed
analytically in Refs. [45,46].

II. MODEL

Let us describe first the construction of the GOE-GUE
transition. A Gaussian orthogonal ensemble (GOE) mem-
ber is a real symmetric matrix S of the dimension M × M
parametrized by M(M + 1)/2 independent random real ele-
ments Si j = S ji. These elements are distributed according to
the Gaussian probability density P ∝ exp(− Tr S2/2) that is
manifestly invariant under orthogonal transformations.

Similarly, a member of the Gaussian unitary ensemble
(GUE) is a random Hermitian matrix H = S + iA that in-
volves additional M(M − 1)/2 real random variables Ai j =
−Aji such that the joint probability density P ∝ exp(− Tr H2)
is invariant under unitary transformations. Consequently, one
can define a transitional ensemble of random matrices H =
S + iαA, where the parameter α varies from zero (GOE) to 1
(GUE). In this parametrization, the joint probability density
of the variables Si j , Ai j yields

PGOE-GUE ∝ exp[(1 + α2) Tr(A2 − S2)/2], (2)

which, for intermediate values of α, is invariant neither under
orthogonal nor under unitary rotations of the matrix H =
S + iαA. The specific feature of Eq. (2) is that the probability
density of the eigenvalues xn of H is given by the Wigner
semicircle ρ(x) = √

2M − x2/π independent of the value of
α. Even though the statistical properties of H are not universal
on the scale of the semicircle,

√
2M, they have a large degree

of universality on the scale of the mean level spacing �.
Near the center of the semicircle the latter is given by � =
1/ρ(0) = π/

√
2M.

A similar construction can be proposed for the GSE-GUE
crossover, that is appropriate for describing a system with
strong spin-orbit interaction. Here we consider a 2M × 2M
matrix H = S + iαA, that can be viewed as M × M matrix of
quaternions. The latter can be represented by S = ∑3

μ=0 Sμσμ

and A = ∑3
μ=0 Aμσμ, where Sμ are real symmetric and Aμ

are real antisymmetric matrices of the dimension M × M,
while σμ are Pauli matrices (σ0 = 1). Similar to Eq. (2) a joint
probability density of the independent elements Sμ

i j = Sμ
ji and

Aμ
i j = −Aμ

ji is chosen to be

PGSE-GUE ∝ exp[(1 + α2) Tr(A2 − S2)/2], (3)

where the parameter α interpolates now between GSE (α =
0) and GUE (α = 1). The density of states in the ensem-
ble of Eq. (3) is also given by the Wigner surmise ρ(x) =√

4M − x2/π with the spectrum width 4
√

M for 2M eigen-
values.

The crossover regime in both of the ensembles corresponds
to α2 ∝ 1/M. It is, therefore, convenient to define a dimen-
sionless parameter λ = α/�

√
2, where � = 1/ρ(0) is the

mean level spacing at the center of spectrum. The parameter
λ remains finite as M tends to infinity.

It can be argued [36] that the dimensionless parameter λ is
set by

λ = γ


0

√
ETh

�E
, (4)

where  is the magnetic flux piercing the system, 0 = hc/e
is the magnetic flux quantum, γ is a nonuniversal geometric
factor, and ETh is the Thouless energy [47]. In a ballistic
(ultraclean) metallic grain, the latter can be taken as ETh =
h̄vF /L, where vF is the Fermi velocity and L is the system
size. With the definition of Eq. (4) we may rewrite the leading
contribution to the magnetic susceptibility in Eq. (1) as

〈χN 〉 = −1

2
χ0

∂2〈(δN )2〉
∂λ2

, χ0 = γ 2 h̄vF

2
0

L3. (5)

One can further observe that χ0 = −6γ 2χL L3, where χL =
−e2kF /24π2mc2 is nothing but the Landau diamagnetic sus-
ceptibility per unit volume, estimating the sample cross sec-
tion as L2. Note that in all these estimations we assume a
quadratic dispersion law for the conduction electrons, εp =
p2/2m.

It is worth noting that, similar to the expression of Eq. (1)
for magnetic susceptibility, one can express mesoscopic con-
tribution to the total magnetic moment of the system as

M = −�E

2

∂〈(δN )2〉
∂B

= −M0
∂〈(δN )2〉

∂λ
, (6)

with M0 = γ
√

h̄vF �E L3/20 = γμB/
√

2 (where we have
used an estimate �E = 4π2εF /k3

F L3 and the expression for
Bohr magneton μB = eh̄/2mc).

In order to analyze the variance 〈(δN )2〉 numerically we
define N as the number of eigenstates in a certain “energy”
strip x ∈ (−X, X ). The universal regime corresponds to X �√

M; hence N � M. In this case the density of eigenvalues
can be regarded as constant with the mean level spacing � =
π/

√
2M for GOE-GUE and � = π/2

√
M for GSE-GUE.

In order to compute 〈(δN )2〉 analytically we refer to the
corresponding formulas obtained in Refs. [45,46] in the limit
1 � N � M. In particular, the number of particle variance in
both GOE-GUE and GSE-GUE crosssover ensembles can be
conveniently expressed as

〈N2〉 =
∫ X

−X
dx

∫ X

−X
dy [ρ(x)δ(x − y) + R2(x, y)], (7)

where R2(x, y) = 〈∑nm δ(x − xn)δ(y − xm)〉 is the level cor-
relation function. For eigenvalues near the centrum of the
spectrum (X � √

M) we may regard R2 to be a function of a
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FIG. 1. Variance of the number of levels 〈(δN )2〉 versus the mean
value 〈N〉 for the transition ensemble GSE-GOE for different values
of the crossover parameter λ. Dots indicate the numerical data for
the ensembles with M = 500, while the corresponding solid lines
are inferred from Eqs. (9), (10), and (11).

relative distance only,

R2(x, y) = R(r)/�2, r = (x − y)/�, (8)

where � = 1/ρ(0) is a constant. Then, we obtain

〈(δN )2〉 = 〈N〉 − 2
∫ 〈N〉

0
dr (〈N〉 − r)Y (r), (9)

where Y (r) = 1 − R(r) is the two-level cluster function that
has been computed analytically for the transition ensembles
of Eqs. (2) and (3) in the limit M → ∞ [45,46].

For a sake of completeness we reproduce here analytic
results of Refs. [45,46] for the cluster function. For the GOE-
GUE transition (2) one finds

YGOE-GUE(r) = sin2(πr)

(πr)2
− D(r, λ)J (r, λ), (10a)

D(r, λ) = 1

π

∫ π

0
k dk e2λ2k2

sin(kr), (10b)

J (r, λ) = 1

π

∫ ∞

π

dk

k
e−2λ2k2

sin(kr), (10c)

while for the GSE-GUE transition (3) one finds

YGSE-GUE(r) = sin2(πr)

(πr)2
− I (r, λ)K (r, λ), (11a)

I (r, λ) = 1

π

∫ π

0

dk

k
e2λ2k2

sin kr, (11b)

K (r, λ) = 1

π

∫ ∞

π

k dk e−2λ2k2
sin kr. (11c)

In Figs. 1, 3, and 4, we use solid lines to plot the variance
〈(δN )2〉 [obtained from Eqs. (9), (10), and (11)] as well as its
first and second derivative with respect to the parameter λ.

In Fig. 1 we also show the results of numerical computation
of 〈(δN )2〉 from the ensemble of random matrices defined in
Eqs. (2) and (3) with M = 500. Such a variance is expressed
plotted there versus the mean number of states 〈N〉 = 2X/� in
the strip. We find that the numerical results agree reasonably
well with the results of Eqs. (9), (10), and (11) up to 〈N〉 ∼
M/4.

FIG. 2. Level spacing distribution with λ = 0.1 calculated nu-
merically. The peak at low values of s corresponds to weak lifting of
Kramers degeneracy that is responsible for the leading contribution
to the variance 〈(δN )2〉.

In particular, we find that the variance scales as ln〈N〉 to
reproduce the well-known result [33],

〈(δN )2〉 = 〈N2〉 − 〈N〉2 = 2

π2β
ln〈N〉, (12)

for the exact Wigner-Dyson ensembles: GOE (β = 1), GUE
(β = 2), and GSE (β = 4).

It is well known, since early works of Wigner [31,32], that
the mean level spacing distribution in the three Wigner-Dyson
ensembles has the form

Pβ (s) = cβ sβe−aβ (s�/π )2
, (13)

where s is the spacing between adjacent energy levels, � is
the mean level spacing at the center of the semicircle, cβ is
a normalization constant, and aβ = π/16, 1/π , and 16/9π

for β = 1, 2, and 4, respectively. Thus the level distribution
is the most rigid (equally spaced) for GSE and the least rigid
for GOE with GUE being in between. One may, therefore,
naively expect that the variance 〈(δN )2〉 must decrease with
magnetic field in GOE-GUE crossover, but increase in GSE-
GUE crossover. This logic is, however, misleading.

Indeed, in the absence of spin-orbit scattering, the metallic
grain is characterized by M double degenerate energy levels
because the magnetic field, at  ∼ 0, is still too weak to
induce any noticeable Zeeman splitting. Such a level degen-
eracy persists, therefore, even to the GUE limit. In contrast,
in the GSE-GUE crossover, the Kramers degeneracy [48] is
completely lifted already for  � 0 due to the onset of
spin-orbit interaction. As a result the level distribution in the
GSE-GUE crossover reveals two distinct peaks as illustrated
in Fig. 2. The sharp peak at small spacings corresponds to
weak Kramers degeneracy lifting, that provides a leading
contribution to 〈(δN )2〉 in the GSE-GUE crossover.

The role of the Kramers degeneracy lifting in GSE-GUE
crossover is especially evident in the dependence of the total
magnetic moment M on λ that is illustrated in Fig. 3. While,
in GOE-GUE crossover, the magnetization appears to be
an analytic function of λ that vanishes in the limit of zero
field, λ = 0, and increases with increasing λ, in GSE-GUE
crossover the behavior of M is nonanalytic at λ = 0 due to the
Kramers degeneracy lifting. Lifting of Kramers pairs spreads
the delta function peak in the level spacing distribution (for
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FIG. 3. Magnetization for the transitional ensembles obtained
from Eqs. (9), (10), and (11): GSE-GUE (blue) and GOE-GUE (red)
as a function of crossover parameter λ. Dashed lines correspond to
asymptotic relations of Eq. (14).

s = 0) that immediately results in a finite (and nonanalytic)
contribution to the mean magnetization.

Indeed, from Eqs. (9), (10), and (11) one finds asymptotic
expressions for the mean mesoscopic magnetic moment

M = 8M0

{
λ + O(λ2), GOE-GUE,
sign(λ)√

2π
− λ + O(λ2), GSE-GUE,

(14)

that clearly demonstrates a nonanalytic behavior in GSE-
GUE crossover. The asymptotic expressions from Eq. (14) are
illustrated in Fig. 3 with dashed lines.

As a result of this phenomenon, the variance 〈(δN )2〉 de-
cays in both GSE-GUE and GOE-GUE transition ensembles
as functions of λ as it is illustrated in Fig. 4.

Despite 〈(δN )2〉 being a monotonously decaying function
of λ for both GOE-GUE and GSE-GUE crossovers, the
second derivative entering Eq. (6) is manifestly different in
these two cases. While it changes sign from negative to
positive (from paramagnetic to diamagnetic susceptibility) in
GOE-GUE crossover, it stays positive (diamagnetic suscepti-
bility) for GSE-GUE crossover (i.e., for systems with strong
spin-orbit interactions). The behavior of the susceptibility is
illustrated in Fig. 5 using both analytic formulas as well as
numerical simulations.

FIG. 4. Variance of the number of levels in a spectral re-
gion (−X, X ) for GSE-GUE and GOE-GUE ensembles versus the
crossover parameter λ. Solid lines and dots correspond to analytical
and numerical data of GSE-GUE, respectively, while dashed lines
and triangles indicate corresponding analytical results and numerical
data of GOE-GUE from Eqs. (9), (10), and (11).

FIG. 5. Magnetic susceptibility for the transitional ensembles:
GSE-GUE (blue) and GOE-GUE (red) as a function of crossover
parameter λ. Solid lines correspond to the choice 〈N〉 = 127, while
the dots correspond to the choice 〈N〉 = 64, 32, illustrating that the
ratio 〈χN 〉/χ0 is independent of 〈N〉.

Thus the symmetry analysis performed above reaches an
opposite conclusion to that expressed in Ref. [49]. Namely, we
find that spin-orbit interaction makes a mesoscopic contribu-
tion to susceptibility entirely diamagnetic at any value of the
magnetic field. Instead, the susceptibility in the system with-
out spin-orbit interaction is strongly paramagnetic at small
fields but becomes diamagnetic at finite fields corresponding
to /0 ∼ (�E/ETh)1/2. We note, however, that our analy-
sis ignores the details of electron-electron interactions that
may also induce a sign reversal of magnetic susceptibility
[50,51].

III. SUMMARY

To summarize, we computed magnetic susceptibility for
metallic nanoparticles with strong spin-orbit interaction in the
framework of random matrix theory. In such systems, the
mesoscopic contribution to the susceptibility turns out to be
entirely diamagnetic for any value of magnetic field that is
consistent with recent experiments [22]. Our results, there-
fore, suggest that experimentally observed diamagnetism in
an ensemble of metallic nanoparticles can be, indeed, a conse-
quence of strong spin-orbit coupling. It would be interesting to
check this experimentally by a systematic comparative study
of light (weak spin-orbit coupling, paramagnetic response)
and heavy (strong spin-orbit coupling, diamagnetic response)
metals. Our consideration predicts that the enhancement fac-
tor for the diamagnetic susceptibility is independent of the
size of nanoparticles but can be dependent on their geometric
shape. We have also predicted a nonanalytic behavior of
magnetization at small fields due to Kramers degeneracy lift-
ing in systems with strong spin-orbit interactions. The latter
phenomenon can be also tested experimentally.
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