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ABSTRACT

The imaging fidelity of the Event Horizon Telescope (EHT) is currently determined by its sparse baseline coverage. In particular, EHT
coverage is dominated by long baselines, and is highly sensitive to atmospheric conditions and loss of sites between experiments. The
limited short/mid-range baselines especially affect the imaging process, hindering the recovery of more extended features in the image.
We present an algorithmic contingency for the absence of well-constrained short baselines in the imaging of compact sources, such as
the supermassive black holes observed with the EHT. This technique enforces a specific second moment on the reconstructed image
in the form of a size constraint, which corresponds to the curvature of the measured visibility function at zero baseline. The method
enables the recovery of information lost in gaps of the baseline coverage on short baselines and enables corrections of any systematic
amplitude offsets for the stations giving short-baseline measurements present in the observation. The regularization can use historical
source size measurements to constrain the second moment of the reconstructed image to match the observed size. We additionally
show that a characteristic size can be derived from available short-baseline measurements, extrapolated from other wavelengths, or
estimated without complementary size constraints with parameter searches. We demonstrate the capabilities of this method for both
static and movie reconstructions of variable sources.
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1. Introduction

Very-long-baseline interferometry (VLBI) is a technique able
to achieve high angular resolution imaging through the use of
widely separated antennas. Unfortunately, as the observing fre-
quency is increased, the availability of suitable sites on Earth
is greatly reduced, leading to sparse arrays with a high angular
resolution but a low spatial dynamic range. In particular, a sim-
ple inverse Fourier transform of the visibilities measured by an
interferometer, or “dirty image”, is dominated by artifacts intro-
duced by sparse sampling of the Fourier plane. Short baselines
are particularly important in imaging, as they anchor the flux
distribution and provide a crucial link between high-resolution
small-scale features and the large-scale extent and morphol-
ogy of the target. The sparser the array, the more challenging
it is to reconstruct images from interferometric measurements.
Additionally, weather and technical issues at sites that pro-
vide short/mid-range baselines can greatly degrade the ability
to image a given data set.

Array sparsity and station-based errors can have dramatic
effects on reconstructed images. Thus, the imaging process
requires further information and assumptions beyond the visibil-
ity measurements from the interferometer. The choice of imag-
ing method imposes additional constraints on the reconstructed
image. Here, we will focus on extending the method of regu-
larized maximum likelihood (RML) that performs well under
sparse sampling conditions and does not involve direct inverse
Fourier transforms of the data in the imaging process.

In this paper we present an algorithmic contingency to array
sparsity and site issues in the form of a second moment regu-
larization function. That is, the compactness of the source can
be expressed as the second moment of the source brightness

distribution (Moffet 1962; Burn & Conway 1976), which can
be constrained to match, for example, confident source size
measurements from short baselines of previous experiments or
epochs. Enforcing this source size constraint supplements lim-
ited short-baseline information while fitting to long-baseline
smaller scale structure from newer observations.

The Event Horizon Telescope (EHT), observing at a fre-
quency of 230 GHz (Event Horizon Telescope Collaboration
2019a,b), is a prime example of a high-frequency VLBI imaging
experiment with image uncertainties dominated by the effects of
sparse coverage. The EHT currently has only a single short/mid-
range VLBI baseline, joining the Large Millimeter Telescope
Alfonso Serrano (LMT) in Mexico to the Submillimeter Tele-
scope (SMT) in Arizona. Recent observations with the EHT have
shown that the LMT is difficult to calibrate, giving baselines
with large measurement uncertainties dominated by unchar-
acterized station behavior in 2017 (Event Horizon Telescope
Collaboration 2019c,d).

Although the EHT observes a number of non-horizon-scale
sources in conjunction with the Atacama Large Millimeter/
submillimeter Array (ALMA), its primary targets are the two
supermassive black hole candidates in the Galactic Center, Sagit-
tarius A* (Sgr A∗), and at the center of the radio galaxy M87.
At the frequency of the EHT, these two sources are very com-
pact, with sizes on the sky historically measured with three sta-
tions, in California, Arizona, and Hawaii, in early EHT obser-
vations, and are thus ideal imaging targets for second moment
regularization (Doeleman et al. 2008, 2012; Fish et al. 2011;
Akiyama et al. 2015; Johnson et al. 2015; Lu et al. 2018). Near-
zero closure phases on the California–Arizona–Hawaii triangle
are indicative of the source compactness and symmetry on scales
of a few tens of µas (Akiyama et al. 2015; Fish et al. 2016). The
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California–Arizona baseline provided the short-baseline mea-
surements needed to constrain the compactness and size of the
sources in the visibility domain. Recent observations of M87
in 2017 also found a source size of ∼40 µas consistent with
previous measurements (Event Horizon Telescope Collaboration
2019a,b,c,d,e,f).

For Sgr A∗, the source size is also well-constrained at lower
frequencies due to its compactness and dominant diffractive
scattering (Shen et al. 2005; Bower et al. 2006; Lu et al. 2011;
Johnson et al. 2018). VLBI observations at 86 GHz taken one
month apart give fitted Gaussian source sizes for the scattered
image of Sgr A∗ with <10% difference (Ortiz-León et al. 2016;
Brinkerink et al. 2019). At this frequency, while the small scale
structure is expected to vary, the large-scale information, domi-
nated by the size of the scattering kernel, should be stable from
epoch to epoch (Johnson et al. 2018).

Second moment regularization merges the benefits of model-
fitting with the flexibility of imaging: compared to self-
calibration to a known model, it does not actually modify the
measured visibilities used for the imaging process or enforce a
model-dependent solution, but instead provides additional infor-
mation to improve image quality. The regularization constrains
the spread of flux density to a motivated region in the image,
discouraging non-physical morphology driven by fits to long-
baseline data and accelerating convergence toward a plausible
image. It is a natural extension of imaging tools that add source
information in the imaging process in RML methods: a total flux
constraint is in fact the zeroth moment of the image; an image
centroid specification corresponds to the first moment of the
image; and a short-baseline source size completes the picture by
constraining the image second moment. The implementation of
second moment regularization can be done in conjunction with
other tools and constraints in RML, for both static and movie
reconstructions. Furthermore, as the constraint function acts on
the image itself and does not modify the visibility data, it can
be used with any choice of data product, including minimally-
calibrated closure phases and amplitudes.

The paper is structured as follows. We present the math-
ematical background to motivate the regularization in Sect. 2.
We outline the method, assumptions, and physical motivation in
Sect. 3. In Sect. 4 we demonstrate the improvements in image
quality and fidelity using the regularization with or without a
priori knowledge of the source size. We present possible applica-
tions of the second moment regularization to more sophisticated
imaging techniques for scattering mitigation and movie recon-
structions in Sect. 5. A summary is given in Sect. 6.

2. Background

By the van Cittert–Zernike theorem, an interferometer samples
complex visibilities corresponding to Fourier components of
an image (van Cittert 1934; Zernike 1938). Consequently, nth
moments of an image correspond to nth derivatives of the visi-
bility function at the origin. Specifically, an interferometric vis-
ibility V(u) on a baseline u can be written as (e.g., Thompson
et al. 2017)

V(u) =

∫
d2x I(x)e−2πiu·x, (1)

where I(x) is the brightness distribution on the sky, and x is an
angular unit.

From this expression, V(0) =
∫

d2x I(x) ∈ R gives the total
flux density of the image (the 0th moment). Likewise, the phase

gradient of the visibility function at zero baseline gives a vector
proportional to the centroid of the image,

∇V(u)cu=0 = −2πi
∫

d2x xI(x)

= −2πiV(0)µ, (2)

where µ is the image centroid (the normalized 1st moment):

µ = (x̄x̂, ȳŷ) =

∫
d2xI(x)x∫
d2x I(x)

· (3)

Because the image is real, the gradient ∇V(u)cu=0 is purely
imaginary. For images that are positive (e.g., images in total
intensity), the visibility function must take its maximum ampli-
tude at the origin. More generally, the visibility function is
Hermitian; thus, its amplitude must always have a vanishing gra-
dient at the origin because of the conjugation symmetry V(u) =
V∗(−u).

The second derivative, or Hessian, of the visibility amplitude
function at zero baseline gives a matrix (see Appendix A.1):

∇∇ᵀ|V(u)|cu=0 = −4π2
∫

d2x I(x)(x − µ)(x − µ)ᵀ

= −4π2V(0)Σ, (4)

where Σ is the normalized second central moment (or covari-
ance matrix) of the image. We show in Appendix A.1 that this
expression is equivalent to the curvature of the centered complex
visibility function (see also Moffet 1962; Burn & Conway 1976).
The visibility amplitude function is a more natural data product
to use for observations with non-astrometric VLBI arrays such
as the EHT, where there is no absolute phase information due
to strong differential atmospheric propagation effects between
sources, and thus no directly measured full complex visibilities.
Therefore it is useful for us to determine image moments directly
from the visibility amplitude function, which is measured.

The image covariance matrix Σ can be more intuitively
expressed in terms of its principal axes, corresponding to the
perpendicular axes about which the second moment reaches its
maximum (Hu 1962). The matrix has two eigenvalues λmin and
λmaj, and can be diagonalized as follows:

Σ = Rφ

(
λmin 0

0 λmaj

)
Rᵀφ , (5)

where Rφ is the rotation matrix based on the position angle east
of north φ of the major principal axis (Appendix A.2). The eigen-
values of the covariance matrix are the variances of the normal-
ized image projected along the principal (major and minor) axes.
The correspondence between λmaj, λmin, φ and the individual
terms of Σ is given in Appendix A.2.

Following Eq. (1), we can fully express the visibility func-
tion as a Taylor expansion in its derivatives. Each n + 1th term
of the Taylor expansion is proportional to the nth moment of the
visibility function (see Table 1). At zero baseline, only the zeroth
moment remains. We choose the coordinate system such that the
centroid of the image is at the origin, and the first moment of the
visibility function (the second term of the Taylor expansion) van-
ishes. At short baseline, the centered complex visibility function
is therefore dominated by the quadratic term. The Taylor expan-
sion of the visibility function at short baseline becomes:

V(u) ' V(0) − 2π2
∫

d2x (u · x)2I(x)

' V(0) − 2π2V(0)uᵀΣu. (6)
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Table 1. Correspondence of the mass, center of mass and moment of inertia in the image and visibility domains.

Physical analog Image domain Visibility domain

Mass Total flux
∫

I(x)d2x Peak visibility V(0)
Center of mass Centroid (µ) V(0)−1

∫
xI(x)d2x Phase gradient (2πiV(0))−1 ∇V(u)cu=0

Moment of inertia Covariance (Σ) V(0)−1
∫

xxᵀI(x)d2x Amplitude curvature (−4π2V(0))−1 ∇∇ᵀV(u)cu=0

Equation (6) describes the visibility function behavior on short
baselines entirely in terms of the total flux V(0) and the second
moment covariance matrix Σ projected along the baseline direc-
tion. These parameters also describe a unique visibility function
of a Gaussian source with total flux V(0), and major/minor axes
sizes and orientation prescribed by the same covariance matrix.
We show this by comparing the general complex visibility func-
tion to that for a Gaussian source. For the simplest case of an
isotropic Gaussian source of standard deviation σ with the same
total flux V(0), we have the following intensity pattern on the
sky and corresponding visibility function:

Igauss(x) =
V(0)
2πσ2 e−|x|

2/2σ2
, (7)

Vgauss(u) = V(0)e−2π2 |u|2σ2
. (8)

More generally, an anisotropic Gaussian with a covariance
matrix Σ gives:

Igauss(x) =
V(0)

2π
√
|Σ|

e−xᵀΣ−1x, (9)

Vgauss(u) = V(0)e−2π2uᵀΣu. (10)

Taking the Taylor expansion of the anisotropic Gaussian visibil-
ity function at short baselines, the first two terms dominate:

Vgauss(u) ' V(0) − 2π2V(0)uᵀΣu. (11)

We thus obtain an equivalence of the behavior of the general
visibility function (Eq. (6)) and the Gaussian visibility function
(Eq. (11)) at short baselines. This relation allows us to trans-
late the second moment covariance matrix of the general visibil-
ity function to the covariance matrix of an anisotropic Gaussian,
which provides a simple parametrization to describe the second
moment in terms of the characteristic source extent. The sizes of
the major and minor axes θmaj and θmin are simply the full widths
at half-maximum (FWHMs) of the equivalent Gaussian derived
from the variances projected along each principal axis:

θmaj =

√
8 ln(2)λmaj, (12)

θmin =
√

8 ln(2)λmin. (13)

The equivalence to the Gaussian also gives a natural break-off
point where the characteristic source size constraint from the
second moment ceases to be a good approximation to the full
visibility function: the 1/e point determining the resolvability of
a Gaussian translates to the baseline length at which the visibil-
ity amplitude reaches V(0)/e. Baseline lengths longer than the
1/e point will lead to higher order terms of the Taylor expan-
sion dominating the behavior and sampling finer structure in the
image. We employ the 1/e point as a conceptual and visual limit
for the source size constraint applied via the second moment
regularization. It is not a hard cut-off enforced by the imaging
process.
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Fig. 1. Three images with equal extent along their respective major axis,
from left to right: a Gaussian; a crescent model; a ray-traced image from
a general relativistic magneto-hydrodynamics (GRMHD) simulation of
a black hole shadow and accretion disk. Model visibility amplitudes
along the major axis of each source as a function of (u, v) distance, after
flux and size normalization, show identical behavior at short baseline
length but diverge at longer baseline length: the Gaussian in black; the
crescent in blue; and the GRMHD simulation in red.

In Fig. 1, we demonstrate the behavior of the normalized
visibility amplitudes sampled along the source major axis as a
function of projected baseline length for three images with dis-
tinctly different structure but an identical second moment. The
behavior on short baselines aligns well for all three images,
the amplitudes start to diverge at longer baselines. We denote
the 1/e limit, corresponding to the resolvability of the Gaus-
sian image, with a magenta vertical line. On baselines past this
line, the amplitudes show very different behavior, dominated by
the smaller-scale features in each image (or lack thereof). We
can thus express the visibility amplitude function behavior on
short baselines via the second moment of the image, defined
by the total flux and just three Gaussian parameters: the prin-
cipal axes FWHMs θmaj and θmin and the position angle φ of the
major axis east of north. In the RML imaging process, there is
an additional fifth input parameter, governing the weight of the
second moment regularization, or hyperparameter βR, following
Eq. (14).

3. Method

RML focuses on pixelized reconstructions of the image, iter-
atively maximizing an “objective function”, which is analo-
gous to a log posterior probability function. This function is
a weighted (via “hyperparameters”) sum of both χ2

D goodness-
of-fit data terms, and regularization functions S R, or “regular-
izers”, governing specific image properties. In this paper, we
use the RML method implemented in the eht-imaging Python
library (Chael et al. 2016, 2018), where the objective function
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J(I) is minimized via gradient descent, and can be written as:

J(I) =
∑

data terms

αDχ
2
D (I) −

∑
regularizers

βRS R (I) , (14)

where αD and βR are the input hyperparameters.
Using only five input parameters to the regularization (V(0),

θmaj, θmin, φ and βR) we can now constrain the second moment
of the reconstructed image to match the size constraint provided
by the user for RML imaging. In Sect. 3.1 we present our imple-
mentation of the second moment regularization function within
the eht-imaging library minimization framework. In Sect. 3.2
we describe the assumptions and physical motivation for second
moment regularization using historical observational measure-
ments, known source properties and theoretical expectations.

3.1. Second moment regularization

Regularization functions in imaging enforce constraints on par-
ticular properties of the image, such as image entropy (e.g.,
Narayan & Nityananda 1986), smoothness (Bouman et al. 2016;
Chael et al. 2016; Kuramochi et al. 2018) and/or sparsity (Wiaux
et al. 2009a,b; Honma et al. 2014; Akiyama et al. 2017a,b). Sim-
ple constraints, such as image positivity, image total flux (zeroth
moment) or image centering (first moment), are often applied to
the image, utilizing known information on the behavior of the
total intensity distribution of the source imaged. The implemen-
tation of a second moment regularization, constraining the size
of the source, is thus a natural extension of common imaging
tools that add source information to the imaging process.

We define a regularization function that is minimized when
the covariance matrix of the reconstructed image Σ matches a
user-specified covariance matrix Σ′. In practice, this latter matrix
is computed using user-specified principal axes FWHMs and
position angle. We utilize the Frobenius norm to determine a
penalty function that quantifies the difference between the user-
specified and reconstructed covariance matrices:

RΣ ≡ Tr
[(
Σ − Σ′

)ᵀ (
Σ − Σ′

)]
. (15)

This regularizer is, by definition, simply the minimization of the
difference between two covariance matrices. The procedure for
the regularizer implementation in the eht-imaging library via
gradient descent is presented in Appendix B.

3.2. Assumptions

The second moment regularization operates under a few key
assumptions on the properties of the source observed. The main
assumption of this method is the compactness of the source.
In order to get a quadratic fall-off in the visibility function, as
shown in Sect. 2, the source must be compact and resolved on
longer baselines of the interferometer. This method would break
down for point sources or sources with complex morphology and
diffuse flux on large scales.

Another assumption concerns the stability of the source size
across multiple epochs. The input axis sizes and position angle
for the regularization will only be valid if the source does not
vary significantly in size between observations. The source size
input is typically derived from observations where weather con-
ditions, coverage, and station performance on short baselines
were adequate for higher precision model fitting. The source
size can then be used for data sets with larger uncertainties
to improve the fidelity and convergence of the imaging pro-
cess. This assumption is well-motivated for the compact sources
observed with the EHT:

50 as

0 20 40 60 80 100
Brightness Temperature (109 K)

50 as

0 10 20 30 40 50
Brightness Temperature (109 K)

Fig. 2. Left: 230 GHz GRMHD simulation of Sgr A∗ (Mościbrodzka &
Gammie 2018). Right: same simulation including the effects of inter-
stellar scattering (Johnson 2016; Johnson et al. 2018).

– Sgr A∗ at 86 GHz, has been model-fitted with varying pre-
cision over two decades, with little variation in the obtained
source size parameters, (Rogers et al. 1994; Krichbaum et al.
1998; Doeleman et al. 2001; Shen et al. 2005; Lu et al. 2011;
Ortiz-León et al. 2016; Brinkerink et al. 2019).

– Sgr A∗ at 230 GHz has been measured to be compact and
stable in size between 2007 and 2013 (Doeleman et al. 2008;
Lu et al. 2018; Johnson et al. 2018).

– M87 at 230 GHz has been measured to be compact and stable
in size over a decade (Doeleman et al. 2012; Akiyama
et al. 2015; Event Horizon Telescope Collaboration
2019a,b,c,d,e,f).

It is worth noting that this assumption breaks down for sources
with multiple bright components moving relative to each other,
as is common for multi-epoch images of bright jet sources.
An overall size measurement from a single epoch would not
translate to other observations due to components appearing
or moving outward, changing the source morphology signifi-
cantly between observations. The quadratic fall-off approxima-
tion until the 1/e point would also not hold for two separated
point sources, which do show a quadratic fall-off in the visibil-
ity amplitudes but the amplitudes would quickly evolve to more
complex structure on longer baselines that could be identified
as the behavior of two point sources interfering. The method is
most effective whenever the emission is confined within a single
compact region or on multiple scales that are substantially sep-
arated, and particularly if the scale of the emission in the image
is comparable to the resolution of the array.

We also assume that the extent of the source does not
significantly vary within a single epoch. For static imaging of
slow-varying sources, it suffices to assume that the average size
of the source matches the input, but this has further implications
on reconstructions of variable sources within a single epoch. The
structural variability on short timescales should be contained
within the region constrained by the second moment. This is an
issue particularly for imaging Sgr A∗, as the source is known to
vary on timescales of minutes, much shorter than the length of
a single observing epoch. We assess the degree of variability of
the source extent in quiescent (non-flaring) models of Sgr A∗
using general relativistic magnetohydrodynamic (GRMHD)
simulations of variable emission on horizon scales (Fig. 2;
Mościbrodzka & Gammie 2018). In Fig. 3, we show the variation
in the principal axes FWHMs for a typical GRMHD simulation
of the accretion flow of Sgr A∗ at 230 GHz, both excluding
and including the effects of scattering due to the interstellar
medium in our line of sight (Johnson 2016; Johnson et al. 2018).
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Fig. 3. Principal axes FWHMs as a function of time for the simula-
tion of Sgr A∗ in Fig. 2 (Mościbrodzka & Gammie 2018). The solid
lines show sizes for the simulation, the dotted lines show sizes for
the simulation including the effects of interstellar scattering (Johnson
2016; Johnson et al. 2018). The scattering major axis is aligned with
the source minor axis, and thus the scattering kernel slightly dominates
the minor axis size, which stabilizes the minor axis FWHM time series.
The sizes were obtained from measurements of the image second
moment per frame. For all four size trends, the deviation about the mean
size is <10%.

Although the simulation shows structural changes in the source
morphology, deviations about the mean FWHM remain below
10% for both the model and scattered simulation principal axes.

Furthermore, the emitting gas around supermassive black
holes in low-luminosity active galactic nuclei becomes optically
thin as we increase the observing frequency. The source extent
is therefore dominated by the black hole shadow and Doppler-
boosted features at higher frequencies (Falcke et al. 2000). This
behavior is shown in Fig. 4 for the GRMHD simulation of the
quiescent accretion flow of Sgr A∗ observed at frequencies from
80 GHz to 1 THz (Mościbrodzka & Gammie 2018). At frequen-
cies of ∼300 GHz and above, the source size changes very little
with increasing frequency. These achromatic properties moti-
vate the extrapolation of a source size from lower-frequency
observations with short baselines, such as the EHT at 230 GHz,
to higher-frequency imaging experiments such as the upcom-
ing EHT at 345 GHz (Event Horizon Telescope Collaboration
2019b; Doeleman et al. 2019).

4. Demonstration

The second moment regularization can be used with informed
size constraints from previous experiments, GRMHD simula-
tions, or achromatic features from other observing frequencies.
In this section, we demonstrate how the second moment regular-
ization adds information to the imaging process if the data set
to be imaged has no short baselines. For all following tests, we
use a high βR = 105, such that the input source size is strongly
constrained in the imaging process. To put this value into per-
spective, βR = 105 would cause a ∼10% difference between
the input and reconstructed source sizes to be penalized equiva-
lently to a change in reduced χ2 of ∼1 in our imaging procedure.
This regularization weight tends to drive the second moment
of reconstructed images to be within 20% of the input values,
therefore allowing some flexibility for the imaging process to
deviate from the input second moment toward morphology
favored by the available data.
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Fig. 4. Geometric mean FWHM of principal axes as a function of fre-
quency for the ray-traced simulation of Sgr A∗ in Fig. 2 (Mościbrodzka
& Gammie 2018). The blue curve shows size evolution for the sim-
ulation, the red curve shows size evolution for the simulation includ-
ing the effects of interstellar scattering (Johnson 2016; Johnson et al.
2018). The sizes were obtained from measurements of the image second
moment per frequency bin of 20 GHz. The change in size with increas-
ing frequency becomes greatly reduced at frequencies above 300 GHz,
where the size of the source is dominated by the achromatic black hole
shadow and the Doppler boosted features (Falcke et al. 2000).

In Sect. 4.1 we show improvements to the reconstructions
when the source size is known. In Sect. 4.2 we study the image
quality and fidelity dependence on the assumed size in the regu-
larization. Finally in Sect. 4.3 we demonstrate that high fidelity
images can be obtained without a priori knowledge of the source
extent via input parameter searches.

4.1. Imaging with complementary size constraints

In Fig. 5, we illustrate the domain in which the second moment
regularization (RΣ) operates. The (u, v) coverage is that of a typ-
ical observation of Sgr A∗ with the EHT at 230 GHz. Assuming
a source extent of 60 µas from previous observations (Johnson
et al. 2018), the 1/e boundary of the visibility function for a
source with that characteristic size is shown as a disk on the (u, v)
coverage. The only EHT baselines that lie within the RΣ disk are
intra-site baselines and the LMT–SMT short VLBI baseline. A
single short VLBI baseline is very limited in constraining the
overall extent of the source even assuming optimal performance
of the telescopes.

We selected a ray-traced image of a semi-analytic
advection-dominated accretion flow (ADAF) model of Sgr A∗
(Broderick et al. 2011) with a similar characteristic size to the
Sgr A∗ observations to assess the performance of the regular-
izer and to test the robustness of the imaging process as a func-
tion of the input parameters θmaj, θmin, and φ. We sample the
image with EHT 2017 coverage (Fig. 5), where we have total
flux density estimates from intra-site baselines and a valuable
mid-range baseline (SMT–LMT) describing the extent of the
source on the sky, as shown in Fig. 6. We chose to discard all
LMT baselines to limit the coverage and remove the constrain-
ing mid-range baseline for the regularizer tests. The extent of
the source will then solely be enforced by the user-defined θmaj,
θmin, and φ input parameters for RΣ in the imaging process.
It should be noted that imaging without the LMT not only
removes short-baseline information on source extent but also
long-baseline information on finer features, creating further dif-
ferences in reconstructed images. The LMT, due to its size and
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Fig. 5. (u, v) coverage for simulated observations of Sgr A∗ with the
EHT 2017 array at 230 GHz. The magenta disk represents the range of
(u, v) constrained by the second moment regularization, with the bound-
ary at the 1/e point of the corresponding visibility amplitude function
for Sgr A∗ assuming an isotropic source of 60 µas FWHM (Johnson
et al. 2018).

central location, holds a strong weight in triggering decisions,
while the SMT is a smaller and well-exercised station and is
fairly flexible to various observing conditions. The choice to dis-
card the LMT is thus mainly motivated by the known difficulties,
to date, for the station to observe in a wide range of observing
conditions and obtain adequate calibration information (Event
Horizon Telescope Collaboration 2019c,d). Removing the SMT
instead, for the purposes of these tests, would give similar results
due to the lack of short-baseline information.

In Fig. 7, we show the model crescent image in the left
panel, and example reconstructions for four different scenarios
in the right panel. The first scenario is a reconstruction of the
full EHT observations of the crescent, using closure quantities
and visibility amplitudes, and maximizing simple image entropy.
In that case, we obtain a good fit to the visibility amplitudes,
and we recover an image very similar to the model image. Then,
we reconstruct the same observations constraining the image to
match the true second moment, as measured on the true image.
With this method, we obtain a marginally improved fit to the
amplitudes, but visibly less diffuse flux outside the crescent due
to the constraint of RΣ. Once we remove the LMT however, the
simple imaging with maximum entropy is not able to recon-
struct the morphology of the source, although some compact
features are reconstructed that enable a decent fit to the visi-
bility amplitudes. When adding RΣ to the process, the second
moment constraint is able to offset the absence of short baselines
and reconstructs an image of improved quality in terms of both
image morphology and goodness-of-fit to the amplitudes. This
demonstration shows that RΣ successfully adds additional infor-
mation to reconstruct a more physically plausible image even
when mid-range baselines are lacking in the underlying data set.
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Fig. 6. Visibility amplitudes for a model image of a semi-analytic
advection-dominated accretion flow (ADAF) model of Sgr A∗
(Broderick et al. 2011) with a FWHM of ∼ 60 µas as a function of
(u, v) distance sampled by the EHT in 2017 with and without the LMT
(affecting mid-range baselines). The regularizer RΣ governs the visibil-
ity amplitude behavior at short baselines until the 1/e point. This allows
us to constrain and correct limitations and uncertainties in LMT cal-
ibration based on the expected behavior of the LMT–SMT mid-range
baseline.

The improvement in the amplitude χ2 also shows that RΣ is a
useful tool to aid convergence in imaging.

4.2. Dependence of reconstructed images on assumed size

In the demonstration of RΣ we constrained the second moment
to the true size of the source, to enable an accurate reconstruc-
tion of the image. However, in practice, the true size of the
source is unknown, and is instead approximated from Gaussian
model fitting to closure quantities and/or short-baseline visibility
amplitudes and extrapolated from historical measurements. We
therefore investigate the robustness of the image reconstructions
when the input Gaussian parameters are strongly enforced in the
imaging process, corresponding to a strong weight of the RΣ
hyperparameter, while changing input principal axes FWHMs.
We demonstrate this dependence by imaging the data set of the
crescent model sampled by the EHT 2017 coverage without the
LMT, such that the extent of the source is only enforced by
the varying inputs to RΣ. For simplicity, we use a single common
imaging script varying only the input principal axes FWHMs.
We assume an isotropic source size such that θmaj = θmin and
φ = 0◦, and a range of input FWHMs of 5 − 90 µas.

We utilize two metrics to compare the quality of the recon-
structed image to the true model image. The normalized root-
mean-square error (NRMSE) of each image is given by:

NRMSE =

√√√√√√∑
k

(Ii − I′i )
2∑

k
I2
i

, (16)

where I′ is the intensity of the reconstructed image and I is that
of the true image (e.g., Chael et al. 2018). If the reconstructed
image is identical to the true image, the NRMSE is zero. There-
fore, the input FWHM for the reconstruction resulting in the
minimum NRMSE in comparison to the true image gives the
best fit.

The normalized cross-correlation (NXCORR) is a sliding
inner-product of two normalized functions. For fast numerical
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Fig. 7. Left: model image of a semi-analytic ADAF model of Sgr A∗ (Broderick et al. 2011), contours of 25, 50, and 75% of the peak flux density
are shown in white. Right: tests of the second moment regularizer using the true image parameters as input (θmaj = 58 µas, θmin = 52 µas, φ = 177◦
as measured directly from the model image), χ2 values are calculated for the data set without the LMT. We additionally give the resulting source
size parameters for each reconstruction. Imaging of the example data set with full EHT 2017 coverage shows little difference between the imaging
process with and without the second moment regularizer. When the LMT is removed, and thus the mid-range baseline no longer constrains the
source size, RΣ greatly improves the imaging. It should be noted that differences in finer features imaged with and without LMT are expected due
to the loss of some long-baseline information from the removal of the LMT.

computation, we determine the cross-correlation of the Fourier
transforms of the normalized intensity patterns of the true image
Inorm and the reconstructed image I′norm at different relative shifts
δ across the extent of the images. For each pixel i in the image,
we normalize the intensity via:

Inorm,i =
Ii − µI

σI
, (17)

where µI andσI are the mean and standard deviation of the inten-
sity distribution in the image. The cross-correlation for a given
shift δ is then given by:

NXCORR(δ) = |F −1{F {I∗norm(x)} · F {I′norm(x + δ)}}|. (18)

The shift at which the cross-correlation is maximized is then
used to output the final NXCORR value for the two images.
This method is less sensitive to individual features in the recon-
structed image than NRMSE as it compares the bulks of each
intensity pattern as opposed to the NRMSE pixel-to-pixel com-
parison. The χ2 statistics follow the equations presented in
Sect. 2.1 of Event Horizon Telescope Collaboration (2019d).

In Fig. 8, we show the NRMSE and NXCORR metric scores
for the reconstructed images compared against the true image
(left panel of Fig. 7), and the reduced data χ2 goodness-of-fits
to the imaged data set (Fig. 6, no LMT). The NXCORR is max-
imized at an input FWHM of 55 µas, and the NRMSE is mini-
mized at the same input FWHM. This value corresponds to the
mean FWHM (average of θmaj = 58 µas and θmin = 52 µas) of

the true image. With this test, we find an excellent correspon-
dence between the reconstructed image with the highest qual-
ity (highest NXCORR, lowest NRMSE, and lowest reduced data
χ2) and the image with the input RΣ FWHM closest to the true
value. Images with input FWHMs close to the optimal value are
of similarly good quality. We thus show a good performance of
RΣ in the imaging process even with input sizes inaccurate to
within 20% of the true size. The reduction in data χ2 values as we
approach the true source size also indicates that RΣ gives a con-
vergence boost toward a higher fidelity image. This behavior is
caused by RΣ rapidly reducing the favored set of images to only
those that constrain flux within a given region. The region limits
that best represent the flux distribution in the true image allow
the minimizing process to focus more quickly on the data terms
and achieve better reduced χ2 values within the given imaging
conditions. This property also allows us to survey the response
of the imaging process and goodness-of-fits to the available data
via parameter searches over different favored second moments
(and thus favored flux regions) and determine optimal parame-
ters that best represent properties of the data set.

4.3. Imaging without complementary size constraints

The NRMSE metric proves to be more sensitive to differences in
the image structure than NXCORR, as shown in Fig. 8, due to the
higher weight associated with large errors in the computation of
the NRMSE. For that reason, we have selected NRMSE to score
comparisons between the reconstructed images themselves. For
this test, we assume that the true image and true FWHM are
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Fig. 8. Quality of the images obtained with different input FWHM
(major and minor axes equal, position angle is zero). The image quality
is measured in three ways: (1) the normalized cross-correlation against
the true image, or NXCORR; (2) the normalized root-mean-square error
against the true image, or NRMSE, shown in the top panel; and (3)
reduced χ2 goodness-of-fits to the three data products used in the recon-
structions (visibility amplitudes, closure amplitudes and phases) shown
in the bottom panel. NRMSE is more sensitive to subtle differences in
the images than NXCORR due to the higher weight associated with
large pixel-by-pixel errors and is minimized in a comparable range of
input FWHMs to the reduced data χ2. The narrow range of FWHMs
encompasses the true mean source FWHM (magenta vertical line).

unknown, as is the case for real experiments. We instead focus on
the morphological characteristics that appear in the images based
on the underlying data, and how the inputs to RΣ affect the cor-
respondence between reconstructed images. We restructure the
metric into a symmetrically-normalized root-mean-square error
(SNRMSE; Hanna et al. 1985; Mentaschi et al. 2013) to ren-
der the NRMSE independent of the input and comparison image
choice:

SNRMSE =

√√√√√√∑
k

(I′1,i − I′2,i)
2∑

k
I′1,iI

′
2,i
· (19)

Here I′1 and I′2 are the two reconstructed images to be compared.
In Fig. 9, we show an SNRMSE grid comparing each recon-
structed image to all others, where the diagonal squares corre-
spond to each image compared with itself. We have marked with
dashed lines where the mean FWHM of the true image lies. We
find that images with input FWHMs near the true FWHM of the
source have a better SNRMSE with each other than all other com-
binations of images. This test enables the user to find a range
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Fig. 9. Cross-comparisons of reconstructed images with varying
isotropic input FWHMs using symmetrically normalized root-mean-
square error (SNRMSE). The SNRMSE grid shows a greater corre-
spondence of images with input FWHMs near the true mean FWHM
of 55 µas, marked by the dashed black lines. The reconstructed images
with varying input size (5–90 µas) are all compared to each other, where
image 1 and image 2 are the two images to be compared (I′1 and I′2
respectively in Eq. (19)). The diagonal is each image compared to itself.
The SNRMSE grid gives a range of plausible input FWHMs for RΣ that
result in high fidelity images even when the true source size is unknown.

of characteristic sizes minimizing SNRMSE via a size param-
eter search. For compact sources that are distinctly elliptical, a
one-dimensional size parameter search is useful to quickly sweep
through a wide range of sizes and determine a range of plausible
sizes for the source extent. A search within that range, varying
parameters in two dimensions (θmaj, θmin, and φ), can then be car-
ried out to refine the source size estimate for the imaging process.

We find that the use of the regularizer improves the quality
of the resulting image even if the input parameters deviate by
20% from the true values. We also find that the strong use of the
regularization, when combined with a size parameter search, is
able to converge toward the true FWHM values, even when the
true source dimensions are unknown. The use of SNRMSE and
χ2 statistics serve well to score individual images and parameters
without a priori knowledge of the source extent.

5. Applications

In addition to simple static imaging, second moment regulariza-
tion can easily be coupled to more sophisticated and complex
imaging techniques. In Sect. 5.1 we present an example of the
use of second moment regularization for scattering mitigation
imaging of Sgr A∗ at longer wavelengths. In Sect. 5.2 we demon-
strate how second moment regularization in individual sparse
snapshots improves the quality of dynamical reconstructions of
variable sources, such as a movie of an orbiting “hot spot” in
Sgr A∗’s accretion flow.

5.1. Scattering mitigation

The second moment constraint in imaging can both be used
for data sets where short baselines are lacking, as demon-
strated in Sect. 4, and for data sets where short-baseline
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Fig. 10. Reconstructions of 22 GHz VLBA+GBT observations and their resulting source extents. MK and SC have no detections, and HN and NL
are flagged due to their very low sensitivity in this experiment. Left: a simple reconstruction of the scattered image without RΣ. Center: a recon-
struction of the scattered image via stochastic optics (Johnson 2016), using the scattering model by Johnson et al. (2018). Right: a reconstruction
with stochastic optics, using RΣ and the input source size as determined by Johnson et al. (2018) from high-precision Gaussian model fitting:
θmaj = 2255± 61 µas, θmin = 1243± 39 µas, φ = 81.9± 0.2◦. The reconstruction with RΣ helps constrain the extent of the source in the north–south
direction, where measurements are lacking due to the predominantly east–west configuration of the VLBA+GBT.

measurements have large uncertainties due to difficult observing
conditions. An example of the latter case is presented in Issaoun
et al. (2019), where observations of Sgr A∗ at 86 GHz with
the Global Millimeter VLBI Array and ALMA (project code
MB007) yielded high signal-to-noise (SNR) detections on long
baselines but bad weather at select Very Long Baseline Array
(VLBA) stations led to poorly constrained short-baseline mea-
surements. Imaging of the source with RML would not have
been feasible with these measurements alone, as the large
uncertainties in the short-baseline measurements caused flux
to spread nonphysically across the reconstructed images. Since
the size of Sgr A∗ on the sky is well studied and known to be
affected by anisotropic scatter-broadening from the interstellar
medium (Davies et al. 1976; van Langevelde et al. 1992; Frail
et al. 1994; Bower et al. 2004, 2006; Shen et al. 2005; Psaltis
2018; Johnson et al. 2018), previous size measurements (Ortiz-
León et al. 2016; Brinkerink et al. 2019) were used to constrain
the extent of Sgr A∗ in the imaging process with RΣ. In this man-
ner, we obtained an image that was able to fit new long-baseline
detections to ALMA, likely refractive noise from scattering sub-
structure.

The second moment regularization was also implemented in
the scattering mitigation code stochastic optics developed by
Johnson (2016). Stochastic optics aims to mitigate the effects
of scattering to derive an intrinsic (unscattered) image of the
source. The code solves for the unscattered image by separating
and mitigating the two main components of the Sgr A∗ scattering
screen: the diffractive scattering that causes the image to become
a convolution of the true image and the scattering kernel; and the
refractive scattering that introduces stochastic ripples that fur-
ther distort the image. The stochastic optics framework therefore
simultaneously solves for the unscattered image and the scatter-
ing screen assuming a given model for the diffractive blurring
kernel and the time-averaged refractive properties. The model
assumed here is the Johnson et al. (2018) scattering model, the
best-fitting model to Sgr A∗ observations to date (Issaoun et al.
2019).

The implementation of RΣ in stochastic optics only con-
strains the size of the scattered source (Sgr A∗ as we see it on
the sky) based on historical measurements from model fitting,

such that the technique can more accurately mitigate the effects
of interstellar scattering to obtain a physically motivated intrin-
sic image of the accretion flow of Sgr A∗ (for further details, see
Issaoun et al. 2019). The intrinsic image itself is not directly
constrained by the second moment regularization, but is derived
from the combination of the constrained scattered image and
knowledge of the interstellar scattering.

Here we illustrate the use of RΣ within stochastic optics
using a lower frequency data set. Observations of Sgr A∗ at
22 GHz with the VLBA+GBT (project code BG221A) showed
clear long-baseline detections of refractive noise from interstel-
lar scattering (Gwinn et al. 2014; Johnson et al. 2018). These
long-baseline detections should translate to substructure in the
image, distorting the intensity pattern seen for Sgr A∗ away from
the scatter-broadened smooth elongated Gaussian-like morphol-
ogy. While the scattering substructure is very apparent in the
data set, it is a non-trivial task to successfully show its effects
on the image itself and obtain an intrinsic image of the source.
This is due to the imaging process being driven predominantly
by the abundance of intra-VLBA short-baseline measurements
in comparison to the few VLBA–GBT long-baseline detections.
We therefore test the addition of RΣ on this data set, using the
source dimensions in Table 1 of Johnson et al. (2018) from ellip-
tical Gaussian model fitting.

In Fig. 10, we show three separate reconstructions of the
22 GHz data set. A standard RML reconstruction of the data
set (Fig. 10 left panel) shows some distortions in the scattered
image, but the morphology remains fairly smooth and elongated.
Standard RML imaging cannot solve for the scattering proper-
ties, therefore the procedure is solely focused on obtaining the
highest fidelity scattered image possible from the data set. We
will thus treat this image as our comparison image for this data
set. When using stochastic optics however, the imaging process
is more complex, as it is simultaneously imaging the scattered
source and solving for the scattering properties to disentangle
scattering from intrinsic source structure. This process derives
a scattered image that is not well-constrained in the north–
south direction due to the configuration of the VLBA+GBT,
resulting in a large source image that is not fully converged to
the image obtained from standard RML (Fig. 10 center panel).
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Fig. 11. Reconstruction of a simulated flare using dynamical imaging (Johnson et al. 2017). From top to bottom: simulated images of a flare with
a period of 27 min (model B of Doeleman et al. 2009); simple dynamical imaging without the LMT (no short-baseline points constraining the
source extent); dynamical imaging using RΣ without the LMT (the second moment regularization offsets the lack of short-baseline constraints);
simple dynamical imaging with full EHT2017 sampling; dynamical imaging using RΣ with EHT2017 sampling. Using RΣ significantly improved
the quality of dynamical reconstructions both with the full array and without the LMT. NXCORR values against the model images are shown in
the top left corner for each reconstructed snapshot. The variations in the resulting FWHMs of the reconstructed images are visually evident.

Since the scattered image does not match our expectations of the
physical morphology of the source, the derived intrinsic image
should also not be trusted. The challenge is then to improve the
convergence of the imaging component of stochastic optics to
quickly obtain a physically motivated scattered image and there-
fore undergo a higher-fidelity separation of the scattering and

intrinsic structure. When using RΣ, where the scattered image is
constrained to remain within the size obtained by Johnson et al.
(2018) using elliptical Gaussian model fitting, the resulting scat-
tered image is more elongated in the east–west direction (Fig. 10
right panel) and showing distortions similar to those of the stan-
dard RML reconstruction This shows that the use of RΣ helps the
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convergence of the scattered image through stochastic optics to
a more physically motivated reconstruction, and thus will give a
more realistic underlying unscattered image of the source.

5.2. Dynamical imaging

There are additional applications for the second moment reg-
ularization in movie reconstructions of variable sources where
single snapshots have very sparse coverage. We can test the
robustness of movie reconstructions with the loss of short base-
lines using a simulated flare (model B of Doeleman et al. 2009)
with an orbiting period of 27 min around the same crescent
model as in Sect. 4. We reconstruct movies of the orbiting “hot
spot” using dynamical imaging, enforcing temporal continuity
between individual frames (for further details, see Johnson et al.
2017). We reconstruct a movie of the orbiting hot spot for four
different scenarios: (1) we use the EHT 2017 array without the
LMT, no short baselines are present in the individual snapshots
to constrain the source extent; (2) we use the data set without
the LMT, but constrain the extent of the source (the dimensions
of the crescent model) with RΣ, (3) we use the full EHT 2017
to reconstruct the orbit; (4) we use the full EHT 2017 and RΣ to
reconstruct the orbit. In Fig. 11, we show individual frames of
the true simulation and of the reconstructed movies for the four
different scenarios. The reconstructions without RΣ either yield
unphysical source structure dominated by the dirty image (due
to the lack of information without LMT) or contain imaging arti-
facts from flux spreading due to the sparse coverage of individ-
ual snapshots. In particular, even with the full EHT2017 array,
dynamical imaging without RΣ shows north–east and south–
west artifacts from the dirty image that persist due to the sparse
snapshot coverage. The reconstructions with RΣ, even without
the LMT, are significantly cleaner and more accurately recon-
struct the motion and morphology of the simulation, as shown by
NXCORR results when compared to the truth simulated images.

6. Summary

In summary, we have developed a regularization function RΣ, for
use in a regularized maximum likelihood framework for inter-
ferometric imaging, that constrains the spread of flux in recon-
structed images to match input parameters defined by the user.
The second moment regularization is a natural extension of com-
mon imaging tools, such as image total flux and image cen-
troid constraints (zeroth and first moment respectively), that help
to mitigate the missing information problem in high frequency
VLBI. The regularization assumes that the source is compact,
with a stable size, and is resolved on longer baselines of the
interferometer. The validity of these assumptions for the EHT’s
primary targets, Sgr A∗ and M87, are well-motivated by state-
of-the-art GRMHD simulations and long-term observational
studies. For well-studied sources, this method allows for con-
tingency against weather, a major deterrent for high frequency
VLBI, and gives more flexibility for triggering decisions if
key short baselines yield poorly constrained measurements or
become unavailable during or between observations.

We have shown that RΣ successfully informs the source
behavior on short baselines and is defined only by three Gaussian
parameters and the regularization hyperparameter. Imaging with
RΣ is able to reconstruct high fidelity images fitting to the data
products even if the input source dimensions deviate from the
true values by up to 20%. The regularization therefore gives a
larger flexibility than needed to account for changes in size from,
for example, GRMHD simulations of highly variable sources

such as Sgr A∗. We have also shown that parameter searches
over a range of isotropic FWHMs using RΣ in conjunction with
goodness-of-fit statistics to data products and symmetrically-
normalized root-mean-square error of image comparisons help
determine high-fidelity source extent even if the exact size and
morphology are unknown.

The regularization can be used to image with any choice
of data products and any choice of feature-driven regularizers
within the framework of the eht-imaging library (Chael et al.
2016, 2018) and is easily transferable to other tools or other RML
imaging packages (e.g., SMILI; Akiyama et al. 2017a,b). We
have shown that theRΣ implementation complements other tech-
niques tackling source properties that add difficulty and complex-
ity to the imaging process, such as time variability (via dynamical
imaging; Johnson et al. 2017; Bouman et al. 2018) and interstel-
lar scattering (Johnson 2016; Issaoun et al. 2019). Source param-
eter inputs can either be obtained from model fitting to abundant
short-baseline measurements, historical measurements from
observations with short baselines present, extrapolated from
other wavelengths based on achromatic features, or estimated
via parameter searches. The second moment regularization could
prove particularly useful in future work with the EHT, both for
dynamical reconstructions of variable sources such as Sgr A∗ and
for upcoming imaging observations at 345 GHz (Event Horizon
Telescope Collaboration 2019b; Doeleman et al. 2019).

Acknowledgements. We thank John Wardle for his helpful comments and care-
ful review. This work is supported by the ERC Synergy Grant “BlackHole-
Cam: Imaging the Event Horizon of Black Holes”, Grant 610058. We thank
the National Science Foundation (AST-1440254, AST-1716536, AST-1312651)
and the Gordon and Betty Moore Foundation (GBMF-5278) for financial sup-
port of this work. This work was supported in part by the Black Hole Initiative
at Harvard University, which is supported by a grant from the John Templeton
Foundation.

References
Akiyama, K., Lu, R.-S., Fish, V. L., et al. 2015, ApJ, 807, 150
Akiyama, K., Ikeda, S., Pleau, M., et al. 2017a, AJ, 153, 159
Akiyama, K., Kuramochi, K., Ikeda, S., et al. 2017b, ApJ, 838, 1
Bouman, K. L., Johnson, M. D., Zoran, D., et al. 2016, in Computational Imaging

for VLBI Image Reconstruction, IEEE Conference on Computer Vision and
Pattern Recognition (CVPR)

Bouman, K. L., Johnson, M. D., Dalca, A. V., et al. 2018, IEEE Trans. Comput.
Imag., 4, 512

Bower, G. C., Falcke, H., Herrnstein, R. M., et al. 2004, Science, 304, 704
Bower, G. C., Goss, W. M., Falcke, H., Backer, D. C., & Lithwick, Y. 2006, ApJ,

648, L127
Brinkerink, C. D., Müller, C., Falcke, H. D., et al. 2019, A&A, 621, A119
Broderick, A. E., Fish, V. L., Doeleman, S. S., & Loeb, A. 2011, ApJ, 735, 110
Burn, B. J., & Conway, R. G. 1976, MNRAS, 175, 461
Chael, A. A., Johnson, M. D., Narayan, R., et al. 2016, ApJ, 829, 11
Chael, A. A., Johnson, M. D., Bouman, K. L., et al. 2018, ApJ, 857, 23
Davies, R. D., Walsh, D., & Booth, R. S. 1976, MNRAS, 177, 319
Doeleman, S. S., Shen, Z.-Q., Rogers, A. E. E., et al. 2001, AJ, 121, 2610
Doeleman, S. S., Weintroub, J., Rogers, A. E. E., et al. 2008, Nature, 455, 78
Doeleman, S. S., Fish, V. L., Broderick, A. E., Loeb, A., & Rogers, A. E. E.

2009, ApJ, 695, 59
Doeleman, S. S., Fish, V. L., Schenck, D. E., et al. 2012, Science, 338, 355
Doeleman, S., Akiyama, K., Blackburn, L., et al. 2019, BAAS, 51, 537
Event Horizon Telescope Collaboration, (Akiyama, K., et al.) 2019a, ApJ, 875,

L1
Event Horizon Telescope Collaboration, (Akiyama, K., et al.) 2019b, ApJ, 875,

L2
Event Horizon Telescope Collaboration, (Akiyama, K., et al.) 2019c, ApJ, 875,

L3
Event Horizon Telescope Collaboration, (Akiyama, K., et al.) 2019d, ApJ, 875,

L4
Event Horizon Telescope Collaboration, (Akiyama, K., et al.) 2019e, ApJ, 875,

L5

A32, page 11 of 14

http://linker.aanda.org/10.1051/0004-6361/201936156/1
http://linker.aanda.org/10.1051/0004-6361/201936156/2
http://linker.aanda.org/10.1051/0004-6361/201936156/3
http://linker.aanda.org/10.1051/0004-6361/201936156/4
http://linker.aanda.org/10.1051/0004-6361/201936156/4
http://linker.aanda.org/10.1051/0004-6361/201936156/5
http://linker.aanda.org/10.1051/0004-6361/201936156/5
http://linker.aanda.org/10.1051/0004-6361/201936156/6
http://linker.aanda.org/10.1051/0004-6361/201936156/7
http://linker.aanda.org/10.1051/0004-6361/201936156/7
http://linker.aanda.org/10.1051/0004-6361/201936156/8
http://linker.aanda.org/10.1051/0004-6361/201936156/9
http://linker.aanda.org/10.1051/0004-6361/201936156/10
http://linker.aanda.org/10.1051/0004-6361/201936156/11
http://linker.aanda.org/10.1051/0004-6361/201936156/12
http://linker.aanda.org/10.1051/0004-6361/201936156/13
http://linker.aanda.org/10.1051/0004-6361/201936156/14
http://linker.aanda.org/10.1051/0004-6361/201936156/15
http://linker.aanda.org/10.1051/0004-6361/201936156/16
http://linker.aanda.org/10.1051/0004-6361/201936156/17
http://linker.aanda.org/10.1051/0004-6361/201936156/18
http://linker.aanda.org/10.1051/0004-6361/201936156/19
http://linker.aanda.org/10.1051/0004-6361/201936156/19
http://linker.aanda.org/10.1051/0004-6361/201936156/20
http://linker.aanda.org/10.1051/0004-6361/201936156/20
http://linker.aanda.org/10.1051/0004-6361/201936156/21
http://linker.aanda.org/10.1051/0004-6361/201936156/21
http://linker.aanda.org/10.1051/0004-6361/201936156/22
http://linker.aanda.org/10.1051/0004-6361/201936156/22
http://linker.aanda.org/10.1051/0004-6361/201936156/23
http://linker.aanda.org/10.1051/0004-6361/201936156/23


A&A 629, A32 (2019)

Event Horizon Telescope Collaboration, (Akiyama, K., et al.) 2019f, ApJ, 875,
L6

Falcke, H., Melia, F., & Agol, E. 2000, ApJ, 528, L13
Fish, V. L., Doeleman, S. S., Beaudoin, C., et al. 2011, ApJ, 727, L36
Fish, V. L., Johnson, M. D., Doeleman, S. S., et al. 2016, ApJ, 820, 90
Frail, D. A., Diamond, P. J., Cordes, J. M., & van Langevelde, H. J. 1994, ApJ,

427, L43
Gwinn, C. R., Kovalev, Y. Y., Johnson, M. D., & Soglasnov, V. A. 2014, ApJ,

794, L14
Hanna, S., Heinold, D., Health, A. P. I., Dept, E. A., & Environmental Research

& Technology, I. 1985, Development and Application of a Simple Method for
Evaluating Air Quality Models (American Petroleum Institute)

Honma, M., Akiyama, K., Uemura, M., & Ikeda, S. 2014, PASJ, 66, 95
Hu, M.-K. 1962, IRE Trans. Inf. Theory, 8, 179
Issaoun, S., Johnson, M. D., Blackburn, L., et al. 2019, ApJ, 871, 30
Johnson, M. D. 2016, ApJ, 833, 74
Johnson, M. D., Fish, V. L., Doeleman, S. S., et al. 2015, Science, 350,

1242
Johnson, M. D., Bouman, K. L., Blackburn, L., et al. 2017, ApJ, 850, 172
Johnson, M. D., Narayan, R., Psaltis, D., et al. 2018, ApJ, 865, 104
Krichbaum, T. P., Graham, D. A., Witzel, A., et al. 1998, A&A, 335, L106
Kuramochi, K., Akiyama, K., Ikeda, S., et al. 2018, ApJ, 858, 56
Lu, R.-S., Krichbaum, T. P., Eckart, A., et al. 2011, A&A, 525, A76

Lu, R.-S., Krichbaum, T. P., Roy, A. L., et al. 2018, ApJ, 859, 60
Mentaschi, L., Besio, G., Cassola, F., & Mazzino, A. 2013, Ocean Model., 72,

53
Moffet, A. T. 1962, ApJS, 7, 93
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Appendix A: Properties of the visibility function

A.1. Visibility derivatives and image moments

Non-astrometric VLBI experiments such as the EHT mea-
sure visibility amplitudes directly but do not provide absolute
phase information. Nevertheless, the zeroth and second image
moments are determined from visibility amplitudes alone (i.e.,
they do not depend on the measured phase; Moffet 1962; Burn
& Conway 1976). For instance, the total flux density

∫
I(x)d2x =

V(0) = |V(0)| because the zero-baseline visibility is real and pos-
itive, and therefore equal to its modulus.

More generally, we can express the visibility function as a
Taylor expansion of its derivatives:

V(u) =

∫
d2x I(x)

[
1 − 2iπu · x −

(2πu · x)2

2

+
i(2πu · x)3

6
+

(2πu · x)4

24
+ · · ·

]
. (A.1)

The visibility amplitude function is image-translation invari-
ant. To obtain a Taylor expansion for visibility amplitudes, we
choose the image centroid to be at the origin. The first deriva-
tive of the visibility function (thus the second term of the Taylor
expansion) then vanishes, giving

V(u) '
∫

d2x I(x)
[
1 −

(2πu · x)2

2

]
' V(0) − 2π2

∫
d2x (u · x)2I(x). (A.2)

On short baselines (i.e., those with u · x�1), the visibility func-

tion is then positive and real, so |V(u)| ' V(u). Since u =

(
u
v

)
and x =

(
x
y

)
, we can expand the inner product of the two vectors:

(u · x)2 = u2x2 + v2y2 + 2uvxy

=
(
u v

) (x2 xy
xy y2

) (
u
v

)
. (A.3)

Combining these results with the definition of the covariance
matrix Σ (see Appendix A.2), we obtain:

|V(u)| ' V(0) − 2π2
∫

d2x (u · x)2I(x)

' V(0) − 2π2
(
u v

) ∫
d2x I(x)

(
x2 xy
xy y2

) (
u
v

)
' V(0) − 2π2V(0)uᵀΣu. (A.4)

The downward curvature of the amplitude function at zero base-
line is thus related to the image covariance by:

∇∇ᵀ|V(u)|cu=0 = ∇∇ᵀV(u)cu=0 = −4π2V(0)Σ. (A.5)

A.2. Image principal axes and visibility curvature

From Eq. (A.5), the curvature of the visibility function on
short baselines is proportional to the second central moment of

the image projected along the baseline direction. The second
central moment of the image is naturally expressed as a covari-
ance matrix:

Σ ≡

∫
d2xI(x)(x − µ)(x − µ)ᵀ∫

d2x I(x)
=

(
Σxx Σxy
Σyx Σyy

)
, (A.6)

Σxx =

∫
d2x I(x)(x − x̄)2∫

d2x I(x)
,

Σyy =

∫
d2x I(x)(y − ȳ)2∫

d2x I(x)
,

Σxy =

∫
d2x I(x)(x − x̄)(y − ȳ)∫

d2x I(x)
= Σyx.

To put the covariance matrix in a more intuitive form, we express
it in terms of its principal axes. The image covariance matrix has
two eigenvalues, and can be diagonalized as follows:

Σ = Rφ

(
λmin 0

0 λmaj

)
Rᵀφ , (A.7)

where the rotation matrix Rφ, based on the position angle φ (East
of North) of the major principal axis, is given by:

Rφ =

(
cos(φ) sin(φ)
− sin(φ) cos(φ)

)
. (A.8)

The eigenvalues are derived from the quadratic equation:

λmaj =
Σxx + Σyy

2
+

√
4(Σxy)2 + (Σxx − Σyy)2

2
, (A.9)

λmin =
Σxx + Σyy

2
−

√
4(Σxy)2 + (Σxx − Σyy)2

2
. (A.10)

We can also express each term of the covariance matrix in terms
of the eigenvalues and position angle φ:

Σxx = cos2(φ)λmin + sin2(φ)λmaj, (A.11)

Σyy = sin2(φ)λmin + cos2(φ)λmaj, (A.12)
Σxy = (λmaj − λmin) cos(φ) sin(φ). (A.13)

The eigenvalues of the covariance matrix are the variances along
the principal axes (major and minor axes).

Appendix B: Implementation via gradient descent

B.1. Pixel-based derivation of principal axes

Here we present the computation of the covariance matrix for the
pixel-based reconstructions from RML. The centroid of an n× n
pixel-based image is given by the following parameters:

x̄ =

∑
k

xiIi∑
k

Ii
and ȳ =

∑
k
yiIi∑

k
Ii
, (B.1)

A32, page 13 of 14



A&A 629, A32 (2019)

where i is the pixel number (from 1 to k), Ii is the intensity at
that pixel, xi is the x-position and yi is the y-position of the pixel
in the image. The second moment of the image is given by the
covariance matrix

Σ =

(
Σxx Σxy
Σxy Σyy

)
, (B.2)

where

Σxx =

∑
k

(xi − x̄)2Ii∑
k

Ii
, (B.3)

Σyy =

∑
k

(yi − ȳ)2Ii∑
k

Ii
, (B.4)

Σxy =

∑
k

(xi − x̄)(yi − ȳ)Ii∑
k

Ii
· (B.5)

As in Appendix A.2, the image covariance matrix has two eigen-
values and can be diagonalized to obtain the principal axes
FWHMs.

B.2. Gradient descent implementation

We have defined our regularization function via the Frobenius
norm:

RΣ = (Σxx − Σ′xx)2 + (Σyy − Σ′yy)
2 + 2(Σxy − Σ′xy)

2. (B.6)

Within the framework of the eht-imaging library, the objective
function is minimized via gradient descent. Therefore, the reg-
ularization functions must also individually be minimized via
gradient descent. The gradients for the quantities describing the
properties of the image introduced thus far, for a given pixel j,
are given below:

δx̄
δI j

=

x j
∑
k

Ii −
∑
k

(xiIi)(∑
k

Ii
)2 =

x j − x̄(∑
k

Ii
) ,

δȳ

δI j
=

y j
∑
k

Ii −
∑
k

(yiIi)(∑
k

Ii
)2 =

y j − ȳ(∑
k

Ii
) , (B.7)

δΣxx

δI j
=

[(x j − x̄)2 − 2(x j − x̄) δx̄
δI j

I j]
∑
k

Ii −
∑
k

[(xi − x̄)2Ii](∑
k

Ii
)2

=
[(x j − x̄)2 − 2(x j − x̄) δx̄

δI j
I j] − Σxx∑

k
Ii

, (B.8)

δΣyy

δI j
=

[(y j − ȳ)2 − 2(y j − ȳ) δȳ
δI j

I j]
∑
k

Ii −
∑
k

[(yi − ȳ)2Ii](∑
k

Ii
)2

=
[(y j − ȳ)2 − 2(y j − ȳ) δȳ

δI j
I j] − Σyy∑

k
Ii

, (B.9)

δΣxy

δI j
=

[(x j − x̄)(y j − ȳ) − (y j − ȳ) δx̄
δI j

I j]
∑
k

Ii(∑
k

Ii
)2

−

[(x j − x̄) δȳ
δI j

I j]
∑
k

Ii(∑
k

Ii
)2 −

∑
k

[(xi − x̄)(yi − ȳ)Ii](∑
k

Ii
)2

=
[(x j − x̄)(y j − ȳ) − (y j − ȳ) δx̄

δI j
I j − (x j − x̄) δȳ

δI j
I j] − Σxy∑

k
Ii

·

(B.10)

We can now compute the gradient of the second moment regular-
ization within the minimization framework of the eht-imaging
library:

δRΣ

δI j
= 2(Σxx − Σ′xx)

δΣxx

δI j
+ 2(Σyy − Σ′yy)

δΣyy

δI j

+ 4(Σxy − Σ′xy)
δΣxy

δI j
· (B.11)

Note that these equations correspond to regularization of the nor-
malized second central moment of an image. In cases where the
total flux density of an image is constrained or regularized, it
would be advantageous to instead regularize the unnormalized
second central moment, giving a substantially simplified and
convex optimization problem.
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