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O-glycosylation disorders pave the road for
understanding the complex human O-glycosylation
machinery
Walinka van Tol1,2, Hans Wessels2 and Dirk J Lefeber1,2

Over 100 human Congenital Disorders of Glycosylation (CDG)

have been described. Of these, about 30% reside in the O-

glycosylation pathway. O-glycosylation disorders are

characterized by a high phenotypic variability, reflecting the

large diversity of O-glycan structures. In contrast to N-

glycosylation disorders, a generic biochemical screening test is

lacking, which limits the identification of novel O-glycosylation

disorders. The emergence of next generation sequencing

(NGS) and O-glycoproteomics technologies have changed this

situation, resulting in significant progress to link disease

phenotypes with underlying biochemical mechanisms. Here,

we review the current knowledge on O-glycosylation disorders,

and discuss the biochemical lessons that we can learn on 1)

novel glycosyltransferases and metabolic pathways, 2) tissue-

specific O-glycosylation mechanisms, 3) O-glycosylation

targets and 4) structure-function relationships. Additionally, we

provide an outlook on how genetic disorders, O-

glycoproteomics and biochemical methods can be combined

to answer fundamental questions regarding O-glycan

synthesis, structure and function.
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Introduction
Glycosylation, the addition of carbohydrate chains to pro-

teins, is the most common post-translational and co-trans-

lational modification. It is initiated by the cytosolic

synthesis of activated sugars (with the exception of

CMP-N-acetylneuraminic acid) that are subsequently

transported to the endoplasmic reticulum (ER) and Golgi

apparatus, where glycans are assembled and modified on

proteins. Glycosylation affects many aspects of protein

function, including protein folding, enzyme activity and

cell-to-cell and cell-to-extracellular matrix (ECM) interac-

tions. Therefore, it is not surprising that glycosylation

disorders present with a broad range of clinical phenotypes.

Currently, over 100 different Congenital Disorders of Gly-

cosylation (CDG) have been described [1,2], the majority

affecting the N-glycosylation pathway. Broad availability of

an adequate screening assay for abnormal N-glycosylation,
isofocusing of serum transferrin (TIEF), has resulted in the

identification of defects in glycosyltransferases, nucleotide

sugar transporters and enzymes involved in sugar metabo-

lism, which are all directly linked to glycosylation. In recent

years, more complex mechanisms have been identified

underlying abnormal N-glycosylation related to Golgi traf-

ficking, homeostasis and vesicular transport [3�,4,5].

In contrast to N-glycosylation defects, the identification of

O-glycosylation disorders is much more challenging. In

humans, O-glycans are initiated by seven different mono-

saccharides that can be further extended to complex O-
glycan structures. For mucin O-glycosylation (O-linked N-
acetylgalactosamine, O-GalNAc), the most common form

of O-glycosylation, over 20 polypeptide GalNAc trans-

ferases are known with tissue and substrate-specific activi-

ties [6,7]. Isofocusing of ApoC-III was developed to detect

defects in mucin type O-glycosylation [8]. Although many

of the Golgi homeostasis disorders showed abnormal mucin

type O-glycosylation of ApoC-III, only mutations in poly-

peptide GalNAc transferase 2 (GALNT2) could be detected

with this test. So far, the complexity of O-glycan structures

renders it impossible to design a single screening test for

diagnostics of O-glycosylation disorders.

O-glycans are important for protein structure, folding,

stability, recognition, expression, and processing, and

they are known to modulate enzyme activity

[9,10,11�,12–15]. Furthermore, highly negatively charged

O-mucin glycans can bind water, forming protective

layers and preventing bacterial adhesion [16]. The func-

tion of an O-glycan can be tissue, protein, and site-

specific, alongside mediating different functions through-

out development [17]. That, O-glycans play not only
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important, but also complex roles, is illustrated by the vast

amount of O-glycan enzymes that upon knockout, caused

embryonic lethality or tissue-specific phenotypes in mice

[18,19�]. Mice knockout systems have provided invalu-

able lessons about O-glycan function, for example, the

role of O-fucosylation of thrombospondin type 1 repeats

(TSRs) by POFUT2 in epithelial organization and

expression of signaling factors during gastrulation [20].

In humans, a more complete understanding of the human

O-glycosylation machinery can be accomplished by study-

ing genetic defects in O-glycosylation. Identification of an

increasing number of genetic O-glycosylation disorders

has been facilitated by the emergence of next generation

sequencing (NGS) [2]. Furthermore, recent develop-

ments in glycopeptide analysis revealed previously

unidentified O-glycosylation enzymes and their targets,

which can be linked to disease. 3D structural models of

human glycosyltransferases are rare, especially since

these types of proteins are embedded in the membrane

of the ER and Golgi apparatus making crystallization

extremely daunting. However, in recent years, some

structures have been resolved and modeled. Taken

together, new opportunities arise to link findings from

genetic disease with fundamental research to increase our

understanding of the mechanisms of O-glycosylation. In

this review, we illustrate the importance of inherited O-
glycosylation disorders to elucidate the structural aspects

of the O-glycosylation machinery (Figure 1). Glycosami-

noglycan biosynthesis disorders are not discussed and

have been described in great detail by others [21]. For

elaborate descriptions of O-glycosylation disorder pheno-

types, we recommend the reviews of Wopereis et al. [22],

Hennet [21] and Jaecken and Péanne [3�].

O-glycosylation disorders: current status and
screening methods
Most of the currently known O-glycosylation disorders

have been identified through genetic techniques. The

clinical phenotypes are highly variable, which is linked to

the large number of different O-glycan types. O-glycosyl-
ation defects have now been identified for each type of O-
glycan, and an overview of the known O-glycosylation
disorders is provided in Figure 1 and Table 1. Thus far,

assays for functional validation of mutations are largely

lacking, except for the dystroglycanopathies. This is a

group of disorders affecting the O-mannosyl glycan on the

a-dystroglycan (aDG) protein that is essential for binding

to extracellular matrix components (Table 1; O-mannose).

Functional confirmation of O-mannosylation defects is

possible by histochemical detection of the O-mannosyl

glycan of aDG in muscle biopsies [23]. Together with

NGS of patients, this has resulted in the identification of

novel Golgi glycosyltransferases, while mass spectrome-

try of recombinant aDG has recently resolved the com-

plete O-mannose glycan structure [24,25�,26�].

Thus, together with NGS, functional tests are highly

warranted for a more rapid identification of inherited

O-glycosylation disorders, and to increase our understand-

ing of O-glycosylation mechanisms. O-glycomics, the

profiling of the complete set of glycans produced by

specific cell types, offers potential as a generic functional

test. Methods have been developed for the comparative

analysis of O-glycans from complex samples [27–30].

Unfortunately, O-glycomics has thus far not contributed

to the functional confirmation of O-glycosylation disor-

ders. This can be explained by the fact that O-glycosyla-
tion is highly dependent on the specific attachment site,

and O-glycans do not have a general consensus sequence

with the exception of O-fucose glycans (C2X3-5S/TC3 and

WX5CX2/3S/TCX2G; C = conserved cysteines of epider-

mal growth factor (EGF)-like or TSRs, S/T = serine or

threonine, X = any residue) and O-glucose glycans

(C1XSXPC2). Therefore, it is essential to study O-glycan
structures in their protein context. Identification of aber-

rant O-glycopeptides by direct LC–MS/MS analysis of

intact O-glycopeptides in patient samples or model sys-

tems would be preferred, thus providing a complete

overview of the affected O-glycans and O-glycosylation
sites. Despite the challenges in the field of O-glycopro-
teomics (reviewed in Ref. [31]), first studies have dem-

onstrated the potential of LC–MS/MS for holistic O-
glycopeptide profiling. In 2016, Hoffmann et al. [32��]
analyzed intact O-glycopeptides in human blood plasma

in an untargeted fashion by analyzing HILIC enriched

and fractionated glycopeptides by reversed phase LC–

MS/MS using multistage collision induced dissociation

(CID) and electron transfer dissociation (ETD) fragmen-

tation experiments. In total, 31 O-GalNAc sites and

regions from 22 proteins were identified, which included

11 novel O-glycosylation sites and regions. More recently,

King et al. [33��] performed high collision energy dissoci-

ation (HCD) and ETD LC–MS/MS analysis of de-sialy-

lated glycopeptides purified by lectin chromatography

from AB RhD-positive platelets and blood plasma. Their

analysis detected 1123 O-GalNAc sites from 649 glyco-

proteins, which not only provided novel biological

insights but above all demonstrated the feasibility of

holistic O-glycoproteomics.

Although functional tests still need to be developed, the

O-glycosylation disorders that have been identified have

aided structural biology in a number of ways. Despite the

fact that O-glycan disorders are very heterogeneous,

patients generally show tissue-specific phenotypes, hint-

ing toward tissue-specific O-glycan targets and function.

Studying O-glycosylation disorders has 1) led to the

discovery of new glycosyltransferases and metabolic path-

ways, 2) provided insight in tissue-specific glycosylation

pathways, 3) aided in the discovery of O-glycosylation
targets and 4) elucidated structure-function relations

of O-glycosyltransferases and nucleotidyltransferases

(Figure 1). Below, we will provide recent examples of

108 Carbohydrates
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Characterization of O-glycosylation disorders is indispensable to accomplish a better understanding of the human O-glycosylation mechanisms.

Phenotypic heterogeneity of the O-glycosylation disorders reflects the high diversity of O-glycan structures with a high tissue-specificity.

Phenotypic characterization and modern omics techniques such as genomics, glycomics, and glycoproteomics complement each other in the
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each type of discovery in the O-glycosylation field, cov-

ering the majority of the O-glycosylation disorder core

types.

Discovery of new glycosyltransferases and metabolic

pathways

Firstly, genetic defects in O-glycosylation with a charac-

teristic phenotype have aided the discovery of new O-
glycosylation gene candidates. For example, NGS has

resulted in the identification of new genes causing dys-

troglycanopathy that is characterized by muscular dystro-

phy and, in severely affected individuals, eye and brain

abnormalities. Dystroglycanopathies are caused by defec-

tive O-mannosylation of aDG, leading to aberrant cell-to-

ECM connections. Genetic analysis of patients with

dystroglycanopathy features has revealed mutations in

ISPD (CRPPA), FKTN and TMEM5(RXYLT1) [34–37]

(Table 1; O-mannose). The function of these proteins

has been elucidated the last three years

[24,26�,38,39�,40]. Identification of ISPD as a cytosolic

cytidyltransferase even led to the discovery of a new

mammalian nucleotide sugar: CDP-ribitol [38]. Soon

after, FKTN and FKRP were identified as ribitol 5-

phosphate (Rbo5P) glycosyltransferases, and Rbo5P moi-

eties were detected on the functional O-mannosyl glycan

of aDG [24,26�,39�]. TMEM5 was identified as a b1,4-
xylosyltransferase, adding xylose onto the second Rbo5P

of unique O-mannosyl glycans on aDG [24,40]. Subse-

quently, mass spectrometry of genetically engineered

aDG led to the discovery of glycerol 3-phosphate (Gro3P)

on the glycan, indicating the existence of a CDP-glycerol

biosynthesis pathway [25�]. This was further supported

by the finding that FKRP and FKTN can use CDP-

glycerol as substrates for glycosylation [41�]. If CDP-

glycerol and Gro3P have a regulatory role in O-mannosyl

glycan extension remains to be investigated [25�]. An

interesting observation is that these findings on aDG

show high overlap with the wall teichoic acids in gram-

positive bacteria, that contain repeating units of Rbo5P

and Gro3P [42]. The O-mannosylation disorders are a

classical example of how we learn about novel mecha-

nisms and even completely new human metabolic path-

ways, initiated by genetic screening of patients with

distinct O-glycosylation disorder phenotypes.

O-glycosylation disorders can provide insight in tissue-

specific pathways

Secondly, the phenotypes associated with O-glycosylation
disorders can provide important insights about tissue-

specific glycosylation mechanisms. This is nicely illus-

trated by POFUT1 (Table 1; O-fucose) and POGLUT1

(Table 1: O-glucose) deficiency, both resulting in Dowl-

ing-Degos disease. The shared phenotype, characterized

by reticular pigmentation of the skin [43,44], indicates a

similar underlying pathomechanism. Indeed, both

enzymes are involved in the regulation of Notch signal-

ing, however, by the addition of different glycan types.

POFUT1 stabilizes EGF-like repeats by the addition of

O-fucose glycans, and POGLUT1 through the addition of

O-glucose glycans [11�]. Interestingly, POGLUT1 also

shows O-xylosyltransferase activity, but the function of O-
xylose on EGF-like domains remains to be investigated

[45,46�]. The O-fucose glycan initiated by POFUT1 is

extended with N-acetylglucosamine (GlcNAc) by LNFG

[reviewed in Ref. 47]. Interestingly, LNFG patients pres-

ent with a completely different phenotype of vertebral

malsegmentation, spondylocostal dysostosis (SDO)

[48,49]. This phenotype is also associated with defects

in Notch signaling, and other types of SDO are all caused

by defects in proteins involved in Notch1 signaling [50].

Another recent article reports that the POGLUT1 D233E

mutation causes muscular dystrophy [51]. Investigating

other POGLUT1 targets could shed light on the mecha-

nisms underlying the different phenotypes. The different

phenotypes for POFUT1 and POGLUT1 deficiency pro-

vide opportunities to investigate tissue-specific targets

and O-glycosylation mechanisms.

Patient phenotypes aid in the identification of O-

glycosylation targets

The phenotype of some O-glycosylation deficiencies

resembles the phenotype of genetic defects in potential

target proteins. Hence, phenotypic characterizations can

point to potential glycosylation targets. For instance,

mutations in FGF23 cause familial tumoral calcinosis

paired with increased re-adsorption of phosphate by

the renal proximal tubule. Interestingly, patients carrying

mutations in the polypeptide GalNAc transferase

GALNT3 present with exactly the same phenotype [52–

57] (Table 1: O-GalNAc), suggesting a shared mechanism

of disease. Indeed, Kato et al. [13] demonstrated that the

phosphatonin FGF23 is O-glycosylated at Thr178 by

GALNT3, preventing the furin protease cleavage of

FGF23 and regulating phosphate re-absorption [13].

There are over 20 polypeptide GalNAc transferases.

Some share substrate specificities and have overlapping

expression in different tissues [6,7]. Nevertheless, O-
GalNAc glycosylation of FGF23 seems a non-redundant

function of GALNT3 [13]. Despite the large number of

GALNTs, only GALNT3 and GALNT2 deficiency have

been reported. Khetarpal et al. showed that loss of func-

tion of GALNT2 lowered high-density lipoprotein

110 Carbohydrates

(Figure 1 Legend Continued) discovery of (tissue-specific) O-glycosylation transferases, pathways, targets and O-glycan function. Enzymes

causing known O-glycan disorders are in black. Enzymes in grey have not been associated with an O-glycosylation disorder. *Hypothesized

enzyme or multiple possible glycosyltransferases. GalNAc = N-acetylgalactosamine; GlcNAc = N-acetylglucosamine; Rbo = ribitol; P = phosphate. A

legend for the glycan symbols is presented in Table 1.
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cholesterol (HDL-C) levels in human, mice, rats and

cynomolgus monkeys. GALNT2 exhibited species-spe-

cific glycosylation targets, including PLTP, a regulator of

HDL metabolism in plasma [58�]. PLTP activity was

altered by absence of GALNT2 O-GalNAc modifications,

explaining the findings in GALNT2 patients. The involve-

ment of additional GALNT2 targets in the disease phe-

notype remains to be investigated.

Likewise, mutations in OGT (O-GlcNAc-transferase) and

HCF1 (host cell factor 1, a transcriptional regulator of the

cell cycle) (cause similar intellectual disability (ID) phe-

notypes [59�,60�,61,62�] (Table 1: O-GlcNAc). OGT is a

unique O-GlcNAc transferase that modifies nucleocyto-

plasmic proteins, a process that can be reversed by OGA

(O-GlcNAcase) [63–65]. All five patient mutations that

have been described so far reside in the N-terminal

tetratricopeptide (TPR) repeats of OGT, which are

involved in the substrate recognition and specificity of

OGT [66]. OGT patient-derived cells and model cell lines

with patient mutations showed normal O-GlcNAcylation

[59�,60�,62�]. This homeostasis was suggested to be main-

tained by a reduced expression of OGA [59�,60�] or by

temporal dynamics in O-GlcNAcylation kinetics [62�]. In

addition, OGT is involved in proteolytic maturation of

HCF1 [14,67], and it has been suggested that the

Mechanistic insights from human O-glycosylation disorders van Tol, Wessels and Lefeber 111

Table 1

List of reported congenital O-glycosylation disorders with their associated OMIM numbers, phenotypes and method of diagnostics.

Affected glycan structures on serine or threonine (S/T) residues are given for each enzyme deficiency. Enzymes in black: reported

O-glycan defects. Enzymes in grey: no reported patients. *Hypothesized enzyme or multiple possible glycosyltransferases. **Putative

O-glycosylation disorders. LGMD = Limb-Girdle Muscular Dystrophy; MEB = Muscle Eye Brain disease; WWS = Walker-Warburg Syn-

drome; ID = Intellectual Disability. This table does not include the glycosaminoglycan biosynthesis disorders, or disorders known to

affect multiple glycosylation pathways, including O-glycosylation

O-GalNAc

Gene Function OMIM Disease Tissue Current diagnostics

GALNT2 Polypeptide GalNAc

transferase

602274 Reduced high-density

lipoprotein cholesterol

Brain Genetics, ApoC-III IEF

GALNT3 Polypeptide GalNAc

transferase

601756 Familial tumoral calcinosis Subcutaneous tissues, skin,

bone

Genetics

O-GlcNAc

Gene Function OMIM Disease Tissue Current diagnostics

OGT O-GlcNAc

transferase

proteolytic

processing

300255 X-linked ID Brain, skeleton, heart, face,

genitalia, eye

Genetics

EOGT EGF-domain-specific

O-GlcNAc

transferase

614789 Adams-Oliver syndrome Skin, skeleton Genetics

www.sciencedirect.com Current Opinion in Structural Biology 2019, 56:107–118
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O-Galactose

Gene Function OMIM Disease Tissue Current diagnostics

PLOD1 Helical lysyl

hydroxylase (LH1)

153454 Ehlers-Danlos syndrome,

kyphoscoliotic type, 1

Skeleton, skin,

muscle

Lysyl-protocollagen

hydroxylase activity in

skin fibroblasts,

genetics

PLOD2 Telopeptide lysyl

hydroxylase (LH2)

601865 Bruck-syndrome 2 Skeleton, skin Genetics

PLOD3 Lysyl hydroxylase/

hydroxylysyl

galactosyltransferase/

galactosylhydroxylysyl

glucosyltransferase (LH3)

603066 Lysyl hydroxylase

3 deficiency

Skeleton,

skin,

eye,

cochlea

or

auditory

nerve

Glucosyltransferase

activity in serum or

lymphoblastoid cells,

genetics

O-Glucose

Gene Function OMIM Disease Tissue Current diagnostics

POGLUT1 O-glucosyltransferase 615618 1) Dowling-Degos disease 4

2) Muscular dystrophy

1) Skin

2) Muscle

Genetics

O-Fucose

Gene Function OMIM Disease Tissue Current diagnostics

POFUT1 O-fucosyltransferase 607491 Dowling-Degos disease 2 Skin Genetics

LFNG O-fucose b-1,3-

GlcNAc transferase

602576 Spondylocostal Dysostosis 3 Axial skeleton Genetics, enzyme

activity assay

B3GLCT (B3GALTL) O-fucose b-1,3-

glucose transferase

610308 Peter’s Plus Syndrome Eye, face, skeleton,

lips

Genetics,

ELISA of

properdin serum

levels

Current Opinion in Structural Biology 2019, 56:107–118 www.sciencedirect.com



X-linked ID in some OGT patients is linked to insufficient

activated HCF1 [60�]. Taken together, it is plausible that

ID genes are regulated or glycosylated by OGT, and this

should be addressed in further studies for a better under-

standing of the disease mechanisms.

For a long time, POMT1 and POMT2 were believed to

be the only human O-mannosyltransferases. In 2017,

glycoproteomics in HEK293 knock-out cells revealed

that the O-mannosylation of cadherins and protocadherins

is independent of these two enzymes [68]. Using a similar

approach, four new O-mannosyltransferases were identi-

fied. TMTC1-4, which specifically glycosylate cadherins

and protocadherins, and thus have different targets than

the POMT1/POMT2 glycosyltransferases (Table 1:

O-mannose) [68,69��]. Interestingly, patients with

TMTC2 and TMTC3 mutations have very different phe-

notypes. TMTC3 mutations are associated with lissence-

phaly (6 families, 9 patients) and periventricular nodular

heterotopia with ID and epilepsy (three siblings) [70,71].

Both phenotypes are associated with deficient neuronal

migration. TMTC2 deficiency is associated with sensori-

neural hearing loss [72,73], suggesting that the TMTCs

have different, tissue-specific targets. Mutations in Cad-
herin-23 and Protocadherin-15 cause Usher syndrome,

which is characterized by deafness and blindness, and

can cause non-syndromic recessive hearing loss [74–76].

Hence, it is tempting to speculate that TMTC2 is

involved in the O-mannosylation of these proteins. How-

ever, direct demonstration of enzyme activity of the

TMTCs is still lacking and whether the TMTC3 and

TMTC2 disease phenotypes are directly related to

Mechanistic insights from human O-glycosylation disorders van Tol, Wessels and Lefeber 113

O-Mannose

Gene Function OMIM Disease Tissue Current diagnostics

ISPD (CRPPA) CDP-ribitol synthase 614631 WWS, MEB, LGMD Muscle, brain, eye, heart Genetics, IIH6/VIA4-I on

muscle biopsy

POMT1 Protein O-

mannosyltransferase

607423 WWS, MEB,LGMD Muscle, brain, eye, heart Genetics, IIH6/VIA4-I on

muscle biopsy, O-

mannosyltransferase

activity assay

POMT2 Protein O-

mannosyltransferase

607439 WWS, MEB, LGMD Muscle, brain, eye, heart

POMK (SGK196) Protein O-mannosyl kinase 615247 WWS, MEB, LGMD Muscle, brain, eye, heart Genetics, IIH6/VIA4-I on

muscle biopsy

POMGNT2 (GTDC2) O-mannose b-1,4-GlcNAc

transferase

614828 WWS Muscle, brain, eye, heart Genetics, IIH6/VIA4-I on

muscle biopsy

B3GALNT2 b-GlcNAc b-1,3-GalNAc

transferase

610194 WWS, MEB, ID Muscle, brain, eye, heart Genetics, IIH6/VIA4-I on

muscle biopsy

FKTN b-GalNAc-3 Rbo5P

transferase

607440 WWS, MEB, LGMD, FCMD Muscle, brain, eye, heart Genetics, IIH6/VIA4-I on

muscle biopsy

FKRP Rbo5P-1 Rbo5P transferase 606596 WWS, MEB, LGMD Muscle, brain, eye, heart Genetics, IIH6/VIA4-I on

muscle biopsy

TMEM5(RXYLT1) Rbo5P b-1,4-xylose

transferase

605862 WWS, MEB Muscle, brain, eye, heart Genetics, IIH6/VIA4-I on

muscle biopsy

B4GAT1 xylose b-1,4-GlcA

transferase

605517 WWS Muscle, brain, eye, heart Genetics, IIH6/VIA4-I on

muscle biopsy

LARGE a-xylose b-1,3-GlcA

transferase

b-GlcA a1,3-Xyl transferase

603590 WWS, MEB, LGMD Muscle, brain, eye, heart Genetics, IIH6/VIA4-I on

muscle biopsy

POMGNT1 O-mannose b-1,2-GlcNAc

transferase

606822 WWS, MEB, LGMD,

nonsyndromic retinitis

pigmentosa

Muscle, brain, eye, heart Genetics, IIH6/VIA4-I on

muscle biopsy, O-Man

b-1,2 GlcNAc-

transferase activity assay

TMTC3** Putative O-

mannosyltransferase

617218 Cobblestone lissencephaly

Periventricular nodular

heterotopia

Brain, minimal muscle and

eye involvement

Genetics

TMTC2** Putative O-

mannosyltransferase

615856 Sensorineural hearing loss Cochlea or auditory nerve Genetics
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hypomannosylation of cadherins, protocadherins or other

proteins remains to be investigated.

Finally, B3GLCT deficiency leads to Peter’s Plus syn-

drome, a severe disorder characterized by anterior eye

chamber defects (Table 1: O-fucose). B3GLCT attaches

glucose via a b-1,3 linkage to O-fucose (synthesized by

POFUT2) on TSRs of proteins. In search for B3GLCT

targets linked to the eye defects, Dubail et al. [77�] found

that ADAMTS9 haploinsufficient mice showed a similar

eye phenotype [77�]. Glycosylation with glucose-b-1,3-
fucose by POFUT2 and B3GLCT ensures proper secre-

tion of ADAMTS9 during development. Taken together,

the identification of new genetic O-glycosylation disor-

ders can provide important insights about the targets and

functions of specific O-glycans.

Modeling mutations to study structure-function

relations of O-glycosylation proteins

In the last few years, crystal structures have been solved of

enzymes related to O-glycosylation disorders, for example of

OGT [78], POMK [79], POMGNT1 [80] and ISPD [38].

Known disease-causing mutations can be modeled in 3D

structures, helping to understand the function of specific

enzymatic domains and with it, underlying disease mecha-

nisms. For example, the crystal structure of ISPD revealed a

N-terminal cytidyltransferase domain and a C-terminal

domain connected via a linker helix [38]. Surprisingly, the

C-terminal domain did not share homology with any known

enzyme domains. No missense mutations have been

reported in the C-terminal domain, but the

c.1114_1116del (p.Val372del) mutation is reported for five

patients. The absence of the Val residue leads to relatively

mildphenotype(LGMD)comparedto largerdeletions likea

deletion of exon 6–8 or 9–10 (WWS). Taken together, this

demonstrates that the C-terminal domain is important for

ISPD function, either contributing to the stability of the

enzyme, or having a enzymatic function on its own [38], a

question that so far remains unanswered. For POMGNT1,
one study has reported a correlation between mutations

closer to the 50 end of the gene with more severe hydroceph-

alus than mutations near the 30 end. However, correlations

with enzymatic activity or structure have not been estab-

lished yet [81]. Taken together, much work remains to

elucidate the 3D structure of many O-glycosylation
enzymes. However, if such models are accomplished, struc-

ture-function relationships can be studied utilizing

described O-glycosylation patient mutations. Additionally,

this will lead to a better understanding of disease mecha-

nisms, and will hopefully be accompanied by the emergence

of new treatment opportunities.

Conclusions
We illustrated that studying the complex phenotypes of O-
glycosylation disorders has enabled the elucidation of O-
glycosylation proteins, targets, and O-glycan structure and

function. Nevertheless, many questions remain to be

answered about the O-glycosylation machinery. Although

we know in many diseases which O-glycan core structure is

affected, for most, their exact attachment site and tissue-

specific protein targets remain to be elucidated. In the

future, the development of more advanced O-glycopeptide
profiling methods is essential to facilitate these discoveries.

Ideally, untargeted O-glycoproteomics LC–MS/MS tech-

nology will evolve to enable robust high-throughput analy-

sis for the in-depth characterization of intact O-glycopep-
tides in biological samples. The screening of patient groups

with similar clinical presentations or with different genetic

O-glycosylation defects (e.g. in different GALNTs) with

genomics and O-glycoproteomics will lead to the discovery

of glycosylation genes and tissue-specific targets, respec-

tively. As illustrated in this review, comparing the pheno-

types of other known disorders to the phenotype of O-
glycosylation disorders can hint to the respective targets.

So far, most O-glycosylation defects that have been identi-

fied affect the core sugar of O-glycans. In the last few years,

NGS has been applied more frequently, and probably will

lead to the identification of additional disorders that affect

more distal monosaccharides on O-glycan structures. Func-

tional validation of these disorders will require develop-

ments in theglycoproteomicsfield, since large scale in-depth

characterization  of the exact glycan structure of intact gly-

copeptides is still challenging. Furthermore, it is important

to develop in-silico approaches to identify differential O-
glycopeptides and interpret complex glycobiology by novel

bioinformatic approaches. Combined analysis of O-glyco-
peptide data and patient meta data by machine learning is of

particular interest to associate protein specific O-glycosyla-
tion changes to the physiopathology of O-glycosylation dis-

orders. Taken together, understanding the disease mecha-

nisms of the O-glycosylation disorders will contribute to our

understanding of O-glycosylation mechanisms, while vice

versa, new mechanistic insights are highly warranted to

develop new therapeutic strategies.
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Quentin S, Gazal S, Laquerrière A, Fallet-Bianco C, Loget P,
Odent S et al.: Identification of mutations in TMEM5 and ISPD
as a cause of severe cobblestone lissencephaly. Am J Hum
Genet 2012, 91:1135-1143.

37. Kobayashi K, Nakahori Y, Miyake M, Matsumura K, Kondo-Iida E,
Nomura Y, Segawa M, Yoshioka M, Saito K, Osawa M et al.: An
ancient retrotransposal insertion causes Fukuyama-type
congenital muscular dystrophy. Nature 1998, 394:388-392.

38. Riemersma M, Froese DS, van Tol W, Engelke Udo F, Kopec J, van
Scherpenzeel M, Ashikov A, Krojer T, von Delft F, Tessari M et al.:
Human ISPD is a cytidyltransferase required for dystroglycan
O-mannosylation. Chem Biol 2015, 22:1643-1652.

39.
�

Gerin I, Ury B, Breloy I, Bouchet-Seraphin C, Bolsee J, Halbout M,
Graff J, Vertommen D, Muccioli GG, Seta N et al.: ISPD produces
CDP-ribitol used by FKTN and FKRP to transfer ribitol
phosphate onto alpha-dystroglycan. Nat Commun 2016, 7.

This paper demonstrated for the first time the presence of CDP-ribitol in
mammalian cells and tissues. Furthermore, ribitol supplementation in
mice caused this metabolite to increase. Interestingly, in fibroblasts of
some ISPD patients, theO-glycosylation of a-dystroglycan could be
restored, proposing ribitol as a potential therapy for ISPD
dystroglycanopathy.

40. Manya H, Yamaguchi Y, Kanagawa M, Kobayashi K, Tajiri M,
Akasaka-Manya K, Kawakami H, Mizuno M, Wada Y, Toda T
et al.: The muscular dystrophy gene TMEM5 encodes a
ribitol beta1,4-xylosyltransferase required for the
functional glycosylation of dystroglycan. J Biol Chem 2016,
291:24618-24627.

41.
�

Imae R, Manya H, Tsumoto H, Osumi K, Tanaka T, Mizuno M,
Kanagawa M, Kobayashi K, Toda T, Endo T: CDP-glycerol
inhibits the synthesis of the functional O-mannosyl glycan of
a-dystroglycan. J Biol Chem 2018, 293(31):12186-12198 http://
dx.doi.org/10.1074/jbc.RA118.003197.

The authors demonstrated within vitro enzyme reactions that CDP-gly-
cerol can be used as a substrate by the transferases FKTN and FKRP. The
addition of glycerol 3P to the O-mannosyl glycan on a-dystroglycan
inhibited the further extension toward a completely functional glycan.
In addition, CDP-glycerol inhibits the transfer of Rbo5P from CDP-ribitol
by FKTN in vitro. How CDP-glycerol is synthesized in mammalian cells
remains unclear. In addition, the question remains whether glycerol 3P
moieties on the glycan have a regulatory function in healthy cells.

42. Brown S, Santa Maria JP, Walker S: Wall teichoic acids of gram-
positive bacteria. Annu Rev Microbiol 2013, 67:313-336.

43. Basmanav FB, Oprisoreanu AM, Pasternack SM, Thiele H, Fritz G,
Wenzel J, Grosser L, Wehner M, Wolf S, Fagerberg C et al.:

Mutations in POGLUT1, encoding protein O-
glucosyltransferase 1, cause autosomal-dominant Dowling-
Degos disease. Am J Hum Genet 2014, 94:135-143.

44. Duchatelet S, Clerc H, Machet L, Gaboriaud P, Miskinyte S,
Kervarrec T, Hovnanian A: A new nonsense mutation in the
POGLUT1 gene in two sisters with Dowling-Degos disease.
J Eur Acad Dermatol Venereol 2018, 32(12):e440-e442.

45. Takeuchi H, Fernández-Valdivia RC, Caswell DS, Nita-Lazar A,
Rana NA, Garner TP, Weldeghiorghis TK, Macnaughtan MA, Jafar-
Nejad H, Haltiwanger RS: Rumi functions as both a protein
O-glucosyltransferase and a protein O-xylosyltransferase.
Proc Nat Acad Sci U S A 2011, 108:16600-16605.

46.
�

Li Z, Fischer M, Satkunarajah M, Zhou D, Withers SG, Rini JM:
Structural basis of Notch O-glucosylation and O-xylosylation
by mammalian protein–O-glucosyltransferase 1 (POGLUT1).
Nat Commun 2017, 8:185.

The structure of human POGLUT1 in complex with three different EGF-
like domains is reported. The structures of the substrate and product
complexes show the mechanisms of how local conformational states are
likely responsible for the ability of POGLUT1 to transfer both glucose and
xylose to serine residues on EGF-domains. This study demonstrated how
the structure of glycosyltransferases can shed light on the substrate
specificity and glycosylation mechanisms.

47. Rana NA, Haltiwanger RS: Fringe benefits: functional and
structural impacts of O-glycosylation on the extracellular
domain of Notch receptors. Curr Opin Struct Biol 2011,
21:583-589.

48. Li M, Cheng R, Liang J, Yan H, Zhang H, Yang L, Li C, Jiao Q, Lu Z,
He J et al.: Mutations in POFUT1, encoding protein O-
fucosyltransferase 1, cause generalized Dowling-Degos
disease. Am J Hum Genet 2013, 92:895-903.

49. Sparrow DB, Chapman G, Wouters MA, Whittock NV, Ellard S,
Fatkin D, Turnpenny PD, Kusumi K, Sillence D, Dunwoodie SL:
Mutation of the Lunatic Fringe gene in humans causes
spondylocostal dysostosis with a severe vertebral phenotype.
Am J Hum Genet 2006, 78:28-37.

50. Turnpenny PD, Sloman M, Dunwoodie S: Spondylocostal
dysostosis, autosomal recessive. In GeneReviews1. Edited by
Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH,
Stephens K, Amemiya A: University of Washington, Seattle.
Available at: http://www.ncbi.nlm.nih.gov/books/NBK8828/;
1993–2018.

51. Servián-Morilla E, Takeuchi H, Lee TV, Clarimon J, Mavillard F,
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