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Abstract

In this work, we proposed different feature representation strategies for video processing. Our
main goal is to reveal discriminant patterns from video data for enhancing the Computer Vi-
sion task, Human Action Recognition. To this end, we proposed to use a Kernel-based
relevance analysis for recognizing the most relevant descriptors related to action recognition.
Moreover, the proposal allows computing a linear projection matrix for mapping video sam-
ples into a new space, were class separability is preserved and representation dimensionality
reduced. Additionally, a new data encoding framework is presented to improve the usual
pipeline for performing action recognition. The methodology based on the Infinite Gaussian
Mixture Model allows revealing a set of discriminant local spatiotemporal features that en-
able the precise codification of visual information. Furthermore, by automatically inferring
every parameter in the encoding process, our approach reduces the computational complex-
ity of the recognition system by avoiding exhaustive search on model parameters. As a final
result, human behavior analysis, which is a particular case of action recognition, is studied.
With this task, there is a need for high-level semantic features to allow the proper transcrip-
tion of the human activity. Besides, the presence of unusual human behaviors introduces
the data imbalance challenge. To assess the proposed video processing methodologies, we
use real-world datasets. Attained results are presented in terms of supervised measures and
compared against state of the art approaches. From these results, it is shown that the use of
representation techniques using kernel methods and Bayesian inference favors human actions
recognition tasks, obtaining promising performance, and the basis for exciting future work.

Keywords:

Kernel methods, Bayesian Inference, Human Action Recognition, Behavior analysis, video
processing, Relevance analysis, data imbalance.
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Chapter 1

Introduction

1.1 Motivation

Human Action Recognition (HAR) has become an important research area in the computer
vision field due to its wide range of applications, including automatic video analysis, video
indexing and retrieval, video surveillance, and virtual reality [1]. As a result of the increasing
amount of video data available both on internet repositories and personal collections, there
is a strong demand for understanding the content of complex real-world data. However,
different challenges arises for action recognition in realistic video data [2]. First, there is large
intra-class variation caused by factors such as the style and duration of the performed action,
scale changes, and sudden motion. Second, background clutter, occlusions, and low-quality
video data are known to affect robust recognition as well. Finally, for large-scale datasets,
the video data processing represents a crucial computational challenge to be addressed [3].

Behavior analysis is a subdivision of HAR that seeks to monitor complex individual and col-
lective human behaviors for creating Intelligent surveillance systems. In which the lack of so-
ciological context features hampers the proper transcription of human activity [4]. Automatic
behavior recognition comprises several hierarchical layers of processing, ranging from low-level
features extraction to high-level semantic interpretation [5]. The low-level processing stages
include pedestrian tracking, motion description, and gaze estimation to characterize humans
in the scene. However, this information does not allow the understanding of their behavior
as the scene context is not considered [6]. Therefore, the high-level semantic interpretation
is required to identify human action descriptors, that enable introducing information about
space layout, social environment, and non-verbal behavioral interactions [7]. Furthermore,
the inclusion and combination of these factors imply an in-depth analysis of their importance
on understanding different sociological contexts to describe behavioral patterns [8].
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1.2 State of the Art

The most popular framework for action recognition is the Bag of visual Words (BOW),
and its variations [9, 10]. The BOW pipeline contains three main processing stages: fea-
ture extraction, data encoding, and classification. Besides, there are several pre-processing
stages including relevance analysis and normalization approaches, to enhance data separa-
bility, interpretability, and overall improving recognition performance [11]. For the feature
estimation step, the recent success of local space-time features like Dense Trajectories (DT)
and Improved Dense Trajectories (iDT) has lead researchers to use them on a wide variety
of datasets, obtaining excellent results [2, 10]. The success of this these techniques is based
on the codification of human motion information and description of local space. Allowing a
more adequate representation of the human activity, than most traditional approaches based
on the generalization of image feature extraction techniques.

Regarding the feature encoding step, super-vector based methods such as Fisher Vector (FV)
and Vector of Locally Aggregated Descriptors (VLAD) are presented as the state-of-the-art
approaches for data quantization in action recognition tasks [1,9]. The encoding representa-
tion is crucial for the performance of every action recognition system, as it influences directly
the classifier ability to predict class labels. However, video representations generated by
methods such as FV or VLAD provide high dimensional super-vectors descriptors arising a
set of difficult processing challenges [1, 2]. On one hand, high dimensional data affects the
classifier performance adversely, by using redundant information or even noise. On the other
hand, high dimensional representations combined with large number of samples, which is the
case of many HAR tasks, increases the computational complexity, number of operations and
memory requirements, greatly.

The Dimensionality Reduction (DR), which consists of feature selection and feature em-
bedding methods, is imperative to lighten the burden associated with the encoding stage,
eliminate redundant information, and project samples into new spaces for increasing sep-
arability [12]. Conventional methods, such as Principal Component Analysis (PCA) and
Linear Discriminant Analysis (LDA) were proposed to decorrelate individual features and
reduce representation length [13]. Nevertheless, these methods are specially designated to
work with real-valued vectors coming from flat Euclidean spaces. Thus, in modern computer
vision due to real-world data and models, there is growing interest to go beyond the ex-
tensively studied Euclidean spaces and analyze more realistic non-linear scenarios for better
data representation [14].

Both FV and VLAD methods are supported by Gaussian Mixture Models (GMMs) to create
a generative model of the data to be quantized [15]. These methods perform a similarity com-
parison between data samples and the obtained generative model, for encoding the visual in-
formation through determining each Gaussian responsibility on explaining data samples [16].
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However, working with GMMs trained by optimization based methods, e.g. Expectation
Maximization, requires extensive crossvalidation for selecting the number of Gaussian com-
ponents in the mixture model [17]. Moreover, the initialization required by these training
methods tends to make fall models into local minima [18]. Therefore, using conventional
optimization methods for training GMMs implies a large number of operations and memory
requirements, that are not always available when developing HAR systems.
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1.3 Objectives

1.3.1 General objective

To develop a video classification system using local spatio-temporal features and representa-
tion frameworks based on Bayesian inference and kernel methods to support Human Action
Recognition tasks. The proposed system must be useful to highlight discriminating patterns
that favor data separability and interpretability.

1.3.2 Specific objectives

1. To develop a relevance analysis framework for selecting and embedding local spatio-
temporal features using kernel methods. The framework must calculate a feature rep-
resentation space that favors data separability and intepretability in Human Action
Recognition tasks. Attained results will be compared against state of the art algo-
rithms by using supervised performance measures.

2. To develop a data encoding framework using Bayesian inference probabilistic models
that enable revealing discriminant sets of local spatio-temporal features. Proposed
methodology must enable the effective codification of visual information for enhancing
Human Action Recognition tasks.

3. To develop a feature representation framework based on high-level semantic features
and kernel methods to support Human Behavior Analysis at indoors settings. The
proposed methodology must allow the transcription of human behavior by considering
the scene context. The performance of the framework will be tested against state of
the art approaches by using supervised measures given ground-truth data.
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Chapter 2

Kernel-based relevance analysis for
selecting and embedding local
spatio-temporal features in
video-based Human Action
Recognition

In this chapter, we introduce a new human action recognition framework using kernel rele-
vance analysis. The methodology, based on a non-linear representation of the super-vector
obtained after Fisher Vector (FV) encoding, seeks to reduce dimensionality, enhance sep-
arability, and interpretability of video representation. Specifically, our approach includes a
centered kernel alignment (CKA) technique to recognize relevant descriptors related to action
recognition. Hence, we match trajectory-aligned descriptors with the output labels (action
categories) through non-linear similarity comparisons [11]. Also, the CKA-algorithm allows
to compute a linear projection matrix, where the columns represent those features whose
eigenvalues are larger that the mean of them all. Therefore, by projecting video samples into
the CKA generated space, the class separability is preserved, and the number of dimensions
is reduced. Attained results on the UCF50 database demonstrate that our proposal favors
the interpretability of the commonly employed descriptors in action recognition, and presents
a system able to obtain competitive performance using a drastically reduced feature space
dimensionality.
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2.1 Descriptor selection and feature embedding

Let {Zn∈RT×D, yn∈N}Nn be an input-output pair set holding N video samples, each of them
represented by T trajectories generated while tracking a dense grid of pixels. The local space
of each trajectory is characterized by a descriptor of dimensionality D, as presented in [2].
Here, the samples are related to a set of human action videos meanwhile the descriptor in
turn is one of the following trajectory-aligned measures: trajectory positions (Trajectory),
Histogram of Oriented Gradients (HOG), Histogram of Optical Flow (HOF), Motion Bound-
ary Histograms (MBHx and MBHy), yielding a total of F = 5 descriptors. Likewise, the
output label yn denotes the human action being performed in the corresponding video rep-
resentation. From Zn, we aim to encode T described trajectories concerning a Gaussian
Mixture Model (GMM), trained to be a generative model of the descriptor in turn. Then,
the Fisher Vector (FV) feature encoding technique is employed, as follows [19]:

LetZn be a matrix holding T described trajectories zt∈RD, and υλ be a GMM. The GMM has
parameters λ = {wi∈R,µi∈RD, σ2

i I∈RD×D}Ki=1, which are respectively the mixture weight,
mean vector, and covariance matrix of K Gaussians. We assume that zt is generated inde-
pendently by υλ. Therefore, the gradient of the log-likelihood describes the contribution of
the parameters to the generation process:

xλn =
1

T

T∑
t=1

∇λ log υλ(zt) (2.1)

where ∇λ is the gradient operator w.r.t λ. Mathematical derivations lead xµ,in and xσ,in to be
the D-dimensional gradient vectors w.r.t the mean and standard deviation of the Gaussian
i, that is:

xµ,in =
1

T
√
wi

T∑
t=1

γt(i)

(
zt − µi
σi

)
, (2.2)

xσ,in =
1

T
√

2wi

T∑
t=1

γt(i)

[
(zt − µi)2

σ2
i

− 1

]
(2.3)

where γt(i) is the soft assignment of trajectory zt to the Gaussian i, that is:

γt(i) =
wiυi(zt)∑K
j=1wjυj(zt)

(2.4)
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The final gradient vector xλn is a concatenation of the xµ,in and xσ,in vectors for i = 1, . . . , K.
Yielding a 2KD-dimensional representation of the initial matrix Zn.

Assuming that the same procedure is performed for each descriptor, the concatenation of
the resulting vectors generates the feature set {xn∈R2K(D1+···+DF ), yn∈N}Nn . Afterwards, a
Centered Kernel Alignment (CKA) approach is performed to compute a linear projection ma-
trix, and to determine the relevance weight from each trajectory-aligned descriptor individual
feature, as follows [11]:

Let κX :RS×RS → R, where S=2K(D1+· · ·+DF ), be a positive definite kernel function, which
reflects an implicit mapping φ:RS → HX , associating an element xn∈RS with the element
φ(xn)∈HX , that belongs to the Reproducing Kernel Hilbert Space (RKHS), HX . In partic-
ular, the Gaussian kernel is preferred since it seeks an RKHS with universal approximation
capability, as follows [20,21]:

κX(xn,xn′ ;σ) = exp
(
−υ2(xn,xn′)/2σ2

)
; n, n′∈{1, 2, . . . , N}, (2.5)

where υ(·, ·):RS×RS → R is a distance function in the input space, and σ∈R+ is the kernel
bandwidth that rules the observation window within the assessed similarity metric. Likewise,
for the output labels space L∈N, we also set a positive definite kernel κL:L×L → HL. In this
case, the pairwise similarity distance between samples is defined as κL(yn, yn′)=δ(yn − yn′),
being δ(·) the Dirac delta function. Each of the above defined kernels reflects a different
notion of similarity and represents the elements of the matrices KX ,KL∈RN×N , respectively.
In turn, to evaluate how well the kernel matrix KX matches the target KL, we use the
statistical alignment between those two kernel matrices as [11]:

ρ̂(KX ,KL) =
〈K̄X , K̄L〉F√

〈K̄XK̄X〉F〈K̄LK̄L〉F
, (2.6)

where the notation K̄ stands for the centered kernel matrix calculated as K̄ = ĨKĨ, being
Ĩ = I − 1>1/N the empirical centering matrix, I∈RN×N is the identity matrix, and 1∈RN

is the ones vector. The notation 〈·, ·〉F represents the matrix-based Frobenius norm. Hence,
Eq. (2.6) is a data driven estimator that allows to quantify the similarity between the input
feature space and the output label space [11]. In particular, for the Gaussian kernel κX , the
Mahalanobis distance is selected to perform the pairwise comparison between samples:

υ2A(xn,xn′) = (xn − xn′)AA>(xn − xn′)>, n, n′ ∈ {1, 2, . . . , N}, (2.7)

where the matrix A∈RS×P holds the linear projection in the form wn=xnA, with wn∈RP ,
and being AA> the corresponding inverse covariance matrix in Eq. (2.7), assuming P ≤ S.
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Therefore, intending to compute the projection matrix A, the formulation of a CKA-based
optimizing function can be integrated into the following kernel-based learning algorithm:

Â = arg max
A

log (ρ̂(KX(A;σ),KL)) , (2.8)

where the logarithm function is employed for mathematical convenience. The optimization
problem from Eq. (2.8) is solved using a recursive solution based on the well-known gradient
descent approach. After the estimation of the projection matrix Â, we assess the relevance
of the S input features. To this end, the most contributing features are assumed to have the
higher values of similarity relationship with the provided output labels. Specifically, the CKA-
based relevance analysis calculates the relevance vector index %∈RS, holding elements %s∈R+

that allows to measure the contribution from each of the s-th input features in building the
projection matrix Â. Hence, to calculate those elements, a stochastic measure of variability
is utilized as follows: %s=EP {|as,p|}; where p∈{1, 2, . . . P}, s∈{1, . . . , S}, and as,p∈Â.

2.2 Experimental set-up

Database. To test our video-based human action recognition using kernel relevance analysis
(HARK), we employ the UCF50 database [22]. This database contains realistic videos taken
from Youtube, with large variations in camera motion, object appearance and pose, illumi-
nation conditions, scale, etc. For concrete testing, we use N = 5967 videos concerning the
46 human action categories in which the human bounding box file was available [2]. The
video frames size is 320×240 pixels, and the length varies from around 70-200 frames. The
dataset is divided into 25 predefined groups. Following the standard procedure, we perform
a leave-one-group-out cross-validation scheme and report the average classification accuracy
overall 25 folds.

HARK training. Initially, for each video sample in the dataset we employ the Improved Dense
Trajectory feature estimation technique (iDT), with the code provided by the authors in [2],
keeping the default parameter settings to extract F = 5 different descriptors: Trajectory
(x, y normalized positions along 15 frames), HOG, HOF, MBHx, MBHy. The iDT technique
is an improved version of the previously realized Dense Trajectory technique from the same
author, which removes the trajectories generated by the camera motion and the inconsistent
matches due to humans. The human detection plays an important role in this technique,
because people in action datasets appear in many different poses, and can be only partially
visible due to occlusion or out-of-scene. These five descriptors are extracted along all valid
trajectories and the resulting dimensionality Df is 30 for the trajectory, 96 for HOG, MBHx
and MBHy, and 108 for HOF.
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We then randomly select a subsample of 5000×K trajectories from the training set to estimate
a GMM codebook with K = 256 Gaussians, and the FV encoding is performed as explained
in Section 2.1. Afterwards, we apply to the resulting vector a Power Normalization (PN)
followed by the L2-Normalization (||sign(x)|x|α||, where 0 ≤ a ≤ 1 is the normalization
parameter). The above procedure is performed per descriptor, fixing α = 0.1. Next, all
five normalized FV representations are concatenated together, yielding S = 218112 encoding
dimension. The linear projection matrix Â∈RS×P and the relevance vector index %∈RS are
computed as explained in section Section 2.1. P=104.8, is the average dimensions through
25 leave-one-out iterations, obtained from those features whose eigenvalues are larger than
the mean of them all.

For the classification step, we use a one-vs-all Linear SVM with regularization parameter
equal to 1. Fig. 2.1 summarizes the HARK pipeline.

Figure 2.1: Sketch of the proposed HARK-based action recognition system.

2.3 Results and discussions

Fig. 2.2, shows a visual example of feature estimation and assignments to a GMM. Different
colors represent memberships to different Gaussians. Also, the sample sizes represent the scale
in which the trajectory was generated. It is worth noting that due to human segmentation,
the encoding points are mainly grouped around the player whereabouts, which constrains
the zone of interest. This strategy helps reducing uncertainty from the video representation,
as the background influence is decreased.

Fig. 2.3a shows the normalized relevance value from the provided descriptors. This figure
is generated by averaging each descriptor individual component from %∈RS. As seen, the
HOG descriptor exhibits the highest relevance value regarding our HARK criteria. This
descriptor quantifies the local appearance and shape within the trajectory-aligned window,

11
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Figure 2.2: Feature estimation and encoding using trajectory-aligned descriptors and BOW.

through the distribution of intensity gradients. Notably, all the others descriptors mainly
quantify human local motion (Trajectory normalized positions, HOF, MBHx, MBHy), and
are represented closely regarding their relevance value. Trajectory-aligned descriptors match
similarly human actions labels concerning the CKA criteria. Therefore, the employed local
measures of appearance, shape, and motion are equally important to support action recog-
nition. The relevance value in Fig. 2.3a mainly depends upon the discrimination capability
of the Gaussian kernel in Eq. 2.5, and the local measure being performed by the descriptor.

As seen in Fig. 2.3b, the CKA embedding space in its first two projections provides an insight
into data overlapping. This situation can be attributed to similar intra-class variations in
several categories. Videos in realistic scenarios have inherent attributes such as background
clutter, scale changes, dynamic viewpoint and sudden motion, that are affecting adversely
the class separability.

Fig. 2.3c shows a confusion matrix using a linear SVM over the CKA feature embedding
set. The proposal obtained 87.92± 2.94% of accuracy while classifying human actions. From
the matrix, classes 22 and 23 are similar, because the system had trouble classifying between
them. These classes correspond to Nunchucks and Pizza tossing respectively. Notably, our
approach requires only 104.8 dimensions on average to classify the 46 human actions from
the UCF50 dataset, with competitive accuracy.

In turn, Tab. 2.1 presents a comparative study of the results achieved by HARK and other
similar approaches for human action recognition on the UCF50 database. To build this
comparative analysis, approaches with similar experimental set-up are employed. Specifically,
those approaches using iDT representation and similar descriptors. Primarily, the compared
results exhibit a trade-off between data dimension and accuracy. More elaborate procedures
such as the one presented in [1], uses Time Convolutional Networks (TCN) and Spatial
Convolutional Networks (SCN) descriptors along with iDT descriptors, and Spatio-temporal
VLAD (ST-VLAD) encoding to enhance the class separability. Thus, the mentioned approach

12
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(a) Descriptor relevance values
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(b) 2D input data projection using CKA

(c) Confusion matrix using linear
SVM

Figure 2.3: Human action recognition on the UCF50 database

obtain very high mean accuracy 97.7%. However, the data dimensionality is considerably
high as well. On the other hand, the approach presented in [2], enhances the spatial resolution
of the iDT descriptors by using a strategy called spatiotemporal pyramids (STP) along with
Spatial Fisher Vector encoding (SFV). Obtained results regarding the accuracy of [2] are
comparable to ours. Nonetheless, the data dimension is drastically higher.

2.4 Conclusions

We introduced a video-based human action recognition framework using kernel relevance
analysis (HARK). Our approach highlights the primary descriptors to predict the output

13
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Table 2.1: Comparison with similar approaches in the state-of-the-art on the UCF50 dataset.

Reference Descriptors Feature encoding Data dimension Classification method Accuracy [%]

J. Uijlings et al [9]. HOG+HOF+MBHx+MBHy FV 36,864 Linear SVM 81.8

H. Wang et al [2]. HOG+HOF+MBHx+MBHy SFV + STP 811,008 Linear SVM 91.7

I. C. Duta et al [1]. HOG+HOF+MBHx+MBHy+SCN+TCN ST-VLAD 258,816 Linear SVM 97.7

HARK Traj+ HOG+HOF+MBHx+MBHy FV + CKA 104.8 Linear SVM 87.9

labels of human action videos using trajectory-based representations. Therefore, HARK
quantifies the relevance of F = 5 trajectory-aligned descriptors towards a CKA-based algo-
rithm, that matches the input space with the output labels, to enhance the descriptor inter-
pretability, as it allows to determine the importance of local measures (appearance, shape,
and motion) to support action recognition. Also, the CKA-algorithm allows to compute a
linear projection matrix, through a non-linear representation, where the columns represent
those features whose eigenvalues are larger than the mean of them all. Hence, by projecting
the video samples into the generated CKA space, the class separability is preserved, and the
number of dimensions is reduced. Attained results on the UCF50 database show that our
proposal correctly classified the 87.92% of human actions samples using an average input
data dimension of 104.8 in the classification stage, through 25 folds under a leave-one-group-
out cross-validation scheme. In particular, according to the performed relevance analysis,
the most relevant descriptor is the HOG which quantifies the local appearance and shape
through the distribution of intensity gradients. Remarkable, HARK outperforms state-of-
art results concerning the trade-off between the accuracy achieved and the required data
dimension (Tab. 2.1). As future work, authors plan to employ other descriptors such as the
deep features presented in [1]. Also, a HARK improvement based on the enhancement of
spatial and temporal resolution, as the one presented in [2], could be an exciting research line.
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Chapter 3

Data encoding framework using
Bayesian inference probabilistic
models to support video-based
Human Action Recognition

We introduce a novel data encoding framework using Infinite Gaussian Mixture Models (IG-
MMs), to extend the conventional Fisher Vector encoding technique. The methodology,
based on Bayesian inference and Dirichlet processes seeks to reveal a set of discriminant local
spatio-temporal features that enable the precise codification of visual information from Hu-
man Action Recognition tasks (HAR). Specifically, it is much simple to handle the infinite
limit from the IGMM, than working with traditional Gaussian Mixture Models with unknown
sizes, that will require extensive crossvalidation. Under this premise, we developed a fully
automatic video data encoding methodology for HAR that avoids the need of specifying the
number of Gaussians in the mixture model. This parameter is known to greatly affect the
recognition performance in many Computer Vision tasks, and its inference with conventional
methods implies high computational burden. In fact, the Markov Chain Monte Carlo im-
plementation of the hierarchical IGMM effectively avoids local minima which tend to plague
mixtures trained by optimization based methods. Attained results on the UCF50 database
demonstrate that our proposal favors data representation obtaining promising recognition re-
sults according to supervised classification measures, without the need of exhaustive search.

15



Master’s Thesis: Infinite Gaussian Mixture Model

3.1 Infinite Gaussian Mixture Model

As expressed previously, we have the input-output pair set {Zn∈RT×D, yn∈N}Nn=1, holding
N described video samples. In this chapter, we aim to train a generative model using IGMM
of the descriptor in turn from feature matrix {Zn}Nn=1. Then, with the obtained codebook,
we perform the FV feature encoding as presented in the previous chapter. The IGMM model
is defined as follows [23]:

The complete feature matrix Z∈RNT×D holds NT = N ∗T described trajectories, zt∈RD. Let
the complete likelihood from sample zt to a Gaussian mixture model with krep components,
be:

p(zt, ct|{µj,Sj, πj}kj=1) =

krep∑
j=1

[
πjN (µj,S

−1
j )
]c t,j (3.1)

where µj∈RD are mean vectors, Sj∈RD×D are precision matrices, and πj are the mixing
proportions. Variable krep is number of classes that have data associated with them in the
current iteration (represented classes) [24]. On the other hand, ct∈Rk is a binary latent
variable with notation 1 of k, where k is not limited to represented classes.

In Bayesian inference priors and posteriors on component parameters and hyper-parameters
are required for Gibbs sampling, a Markov Chain Monte Carlo method (MCMC). Gener-
ally, priors are chosen according to their modeling properties and mathematical convenience
(conjugate priors) [25].

3.1.1 Component parameters

The component means µj, are given by Gaussian priors:

p(µj|λ,R) ∼ N (λ,R−1) (3.2)

Whose mean λ∈RD, and precision R∈RD×D, are hyper-parameters common to all compo-
nents. The conditional posterior on means are obtained by multiplying the likelihood from
Eq. 3.1 and the prior from Eq. 3.2:

16



Master’s Thesis: Infinite Gaussian Mixture Model

p(µj|λ,R,{zt : ct,j = 1},Sj) ∝
∏

t:c t,j=1

p(zt|µj,Sj)× p(µj|λ,R)

= N
(
nj zj Sj + λR

nj Sj +R
,

1

nj Sj +R

)
(3.3)

where, nj is the occupation number, defined as the number of observations belonging to class
j. zj is the average of these observations.

zj =
1

nj

∑
t:c t,j=1

zt, nj =
NT∑
t=1

c t,j (3.4)

The component precisions Sj, are given by Wishart priors:

p(Sj|β,W ) ∼ W(β,W−1) (3.5)

where W∈RD×D is a precision matrix, and β the degrees of freedom. Both hyperparameters
are common to all components.

The Wishart density for the precisions is given by:

p(Sj|β,W ) =
|Sj|

β−D−1
2 |W |β/2 exp{−1

2
β tr(ΣjW )}

( 2
β
)
β D
2 ΓD(β

2
)

, (3.6)

where,

ΓD(
β

2
) = π

D(D−1)
4

D∏
d=1

Γ

(
β − (j − 1)

2

)
. (3.7)

The conditional posterior on precisions are obtained by multiplying the likelihood from Eq.
3.1 and the prior from Eq. 3.5:

p(Sj|β,W ,{zt : ct,j = 1},µj) ∝
∏

t:c t,j=1

p(zt|µj,Sj)× p(Sj|β,W )

=W(β + nj, [
1

β + nj
(βW +A)]−1) (3.8)

17



Master’s Thesis: Infinite Gaussian Mixture Model

where

A =
∑

t:c t,j=1

(zt − µj)(zt − µj)> (3.9)

3.1.2 Hyper-parameters

For the mean hyper-parameters λ,R, and the precision hyper-parameter W , the priors are
defined as follows:

p(λ) ∼ N (µZ , covZ) p(R) ∼ W(1, cov−1Z ) p(W ) ∼ W(1, covZ) (3.10)

where µZ∈RD and covZ∈RD×D, are respectively the mean and covariance of the observations.
The degrees of freedom that are set to unity, correspond to a very broad distribution. In
fact, a wide variety of reasonable priors will lead to similar results. Following the procedure
exposed in Sec. 3.1.1, the posterior distributions on hyper-parameters are obtained straight
forward using the mean prior, Eq.3.2, and the precision prior, Eq.3.5, as likelihoods in each
case.

It is of interest the parameter β, which remains scalar after conjugacy. According to Ras-
mussen in [26], beta has gamma prior of the form:

g = β −D + 1 (3.11)

p(g−1) ∼ G(1,
1

D
) → p(g) ∝ g−

3
2 exp{− D

2 g
} (3.12)

For the parameter β, the precision prior, Eq.3.5, plays the role of likelihood. Thus, the
posterior distribution takes the form:

p(g|{Sj}
krep
j=1 ,W ) ∝

krep∏
j=1

p(Sj|β,W )× p(g) (3.13)

∝ (
β

2
)
krep β D

2 g−
3
2 ΓD(

β

2
)−krep exp{− D

2 g
}
krep∏
j=1

|W Sj|
β
2 exp{−1

2
β tr(WSj)} (3.14)
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The later density does not have standard form. However, the distribution p(log(g|{Sj}
krep
j=1 ,W )

is log-concave, so we generate independent samples using the Adaptive Rejection Sampling
technique (ARS), and transform these to get values of β.

3.1.3 Mixing proportions and latent variables

In this section, the number of components k, is not limited to represented classes. Thus, for
the mixing proportions πj, the prior is a symmetric Dirichlet distribution with concentration
parameter α/k,

p({πj}kj=1|α) ∼ Dir({α/k}kj=1) =
Γ(α)

Γ(α/k)k

k∏
j=1

π
α/k−1
j , (3.15)

where Γ(·) is the gamma function, and the mixing proportions must be positive and sum to
one. Given the mixing proportions, the joint distribution for the latent variable ct is:

p({c t,j}kj=1|{π}kj=1) =
k∏
j=1

π
c t,j
j , {∀t :

k∏
j=1

π
nj
j }. (3.16)

Using the Dirichlet integral type I, we marginalize the mixing proportions and write the prior
directly in terms of the latent variable.

p({cj}kj=1|α) =

∫
p({cj}kj=1|{πj}kj=1) p({πj}kj=1)dπ1 · · · dπk

=
Γ(α)

Γ(α/k)k

k∏
j=1

Γ(nj + α/k)

Γ(α/k)
. (3.17)

To use Gibbs sampling for the latent variable ct, we use the conditional prior for a single
indicator given all the others. This is obtained from Eq 3.17, keeping all but a single indicator
fixed:

p(ct,j = 1|c−t, α) =
n−t,j + α/k

NT − 1 + α
, (3.18)
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where the subscript −t indicates all the indexes except t and n−t,j is the number of observa-
tions, excluding zt, that are associated with component j.

In the limit where k →∞, the conditional prior is:

Components where n−t,j > 0 : p(c t,j = 1|c−i, α) =
n−i,j

NT − 1 + α
,

else: p(c t 6= c t′ , {∀t 6= t′}|c−t, α) =
α

NT − 1 + α
. (3.19)

The tractability of integral 3.17, allow us to work with the finite number of latent vari-
ables, rather than the infinite number of mixing proportions. The posterior is obtained by
multiplying the complete likelihood from zt, Eq. 3.1, and the latent variables prior, Eq. 3.19:

Components where n−t,j > 0 : p(c t,j = 1|c−i,µj,Sj, α)

∝ n−i,j
NT − 1 + α

|Sj|
1
2 exp{−1

2
(zt − µj)S (zt − µj)>}, (3.20)

else: p(c t 6= c t′ ,{∀t 6= t′}|c−t,λ,R, β,W , α)

∝ α

NT − 1 + α

∫
p(zt|µj,Sj) p(µj,Sj|λ,R, β,W ) dµj dSj. (3.21)

The likelihood for components with observations other than zt is Gaussian with parameters
µj and Sj. The likelihood for currently unrepresented classes, with no parameters yet, is
obtain through marginalization of their prior distribution. This integral is not analytically
tractable. Thus, following the procedure from [27], the parameters for unrepresented classes
are obtained by sampling from the priors. When an unrepresented class is chosen, a new
class is introduced to the model. Likewise, when a class becomes empty, the class is removed
from the model.

3.2 Experimental set-up

Database. To test our Infinite Gaussian Fisher Vector encoding to support Human Action
Recognition (IGFV), we employ the UCF50 database [22]. For concrete testing, we use
N = 5967 videos concerning the 46 human action categories in which the human bounding
box file was available [2]. The video frames size is 320×240 pixels, and the length varies
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from around 70-200 frames. The dataset is divided into 25 predefined groups. Following the
standard procedure, we perform a leave-one-group-out cross-validation scheme and report
the average classification accuracy overall 25 folds.

IGFV training. Initially, for each video sample in the dataset we employ the Improved
Dense Trajectory feature estimation technique (iDT), with the code provided by the authors
in [2]. we extract F = 4 different trajectory aligned descriptors: HOG, HOF, MBHx, MBHy.
The trajectory descriptor was removed from the experiments in this chapter because of its
large variation in relevance value, this result was obtained in chapter 2. All descriptors are
extracted along all valid trajectories and the resulting dimensionality Df is 96 for HOG,
MBHx and MBHy, and 108 for HOF.

Initially, we randomly select a subsample of 1000×Nc trajectories from the training set, being
Nc the number of classes. The samples are represented by their most relevant features
according to a variability criterion (PCA preserving 90% of data variance), and then divided
into groups using the spatio-temporal pyramid technique. For each spatio-temporal cell, we
estimate a IGMM codebook (see Sec.3.1). The model is started with a single component, then
300 Gibbs iterations are performed for updating all parameters and hyper-parameters from
their conditional posterior distribution (with 250 ”burn in iterations”). From repetitions, the
employed mixture model is chosen according to the BIC model selection criterion. Afterwards,
the FV encoding is performed using the conventional algorithm. To the resulting super-
vector, we apply a Power Normalization (PN) followed by the L2-Normalization. The above
procedure is performed per descriptor. Next, all five normalized IGFV representations are
concatenated together.

For the classification step, we use a one-vs-all Linear SVM with regularization parameter
equal to 1. Fig. 2.1 summarizes the HARK training pipeline. It is worth noting that the
feature extraction was performed in C++, and the remaining experiments in the Matlab
software.

3.3 Results and discussions

Fig. 3.2, shows an example of data distribution estimation using IGMM. The figures from col-
umn one, Fig. 3.2a and Fig. 3.2c, were obtained using the conventional IGMM formulation for
representing both Gaussian and Non-Gaussian distributed data. As seen, for Non-Gaussian
data, the model estimates its distribution through a large number of components. Moreover,
when the model is restricted to diagonal precisions, Fig. 3.2b and Fig. 3.2d, it requires an
even larger amount of components, as correlated data can not be completely represented
with only one diagonal component. This situation is of interest, as in many HAR tasks, chal-
lenges such as occlusions and partially out-of-scene humans can be mitigated by enhancing
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Figure 3.1: Sketch of the proposed IGFV data encoding technique.

the model resolution, which in this case, is performed by increasing the number of Gaussian
components.

Fig. 2.3c shows a confusion matrix using a linear SVM over the IGFV encoding representa-
tion. The proposal obtained 85.54±4.07% of mean accuracy while classifying human actions.
From the matrix, again classes 22 and 23 are similar, because the system had trouble classi-
fying between them. These classes correspond to Nunchucks and Pizza tossing respectively.
Notably, this approach obtained a similar result to the presented in chapter 2, while avoiding
the need of exhaustively searching for the number of Gaussian components.

In turn, Tab. 3.1 presents a comparative study among the result obtained using our IGFV
encoding and other similar approaches for human action recognition on the UCF50 database.
As seen, our approach favors HAR tasks by providing a fully automatic system that drastically
reduces experimental setup. The proposed framework decreases memory requirements and
number of operations, as within one crossvalidation run, the system is completely determined.
Meanwhile, conventional approaches require multiple crossvalidation runs for determining the
number of components parameter. The obtained recognition performance is comparable to
those presented in the state-of-the art. Acknowledging that the best result [1], uses Time Con-
volutional Networks (TCN) and Spatial Convolutional Networks (SCN) descriptors, which
were not considered in this analysis. On the other hand, the approach presented in [2], re-
quired the overwhelming largest dimensional representation for obtaining their performance.
When our data encoding IGFV, is employed together with the kernel-based relevance analysis
presented in Chap. 2, the resulting data representation slightly reduces is precision, but the
reduction in dimension length is considerable.
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Figure 3.2: Data distribution estimation

Table 3.1: Comparison with similar approaches in the state-of-the-art on the UCF50 dataset.

Reference Descriptors Feature encoding Data dimension Accuracy [%]

J. Uijlings et al [9]. HOG+HOF+MBHx+MBHy FV 36,864 81.8

H. Wang et al [2]. HOG+HOF+MBHx+MBHy SFV + STP 811,008 91.7

I. C. Duta et al [1]. HOG+HOF+MBHx+MBHy+SCN+TCN ST-VLAD 258,816 97.7

HARK-IGFV Traj+ HOG+HOF+MBHx+MBHy IGFV 56,197 85.5

HARK-IGFV HOG+HOF+MBHx+MBHy IGFV + CKA 2,022 83.3

3.4 Conclusions

We introduced a novel Infinite Gaussian Fisher Vector data encoding framework to support
video-based Human Action Recognition (IGFV). Our approach is fully automatic, allowing
every parameter in the model to be updated hierarchically through a MCMC method, Gibbs
sampling. The IGFV encoding allows revealing a set of discriminant local spatio-temporal
features that enable the precise codification of visual information from HAR tasks, with
promising recognition results. Specifically, the use of MCMC effectively avoids local minima,
a problem that all optimization based-methods have. Moreover, the infinite limit on the num-
ber of Gaussian components evades the need of inferring this parameter through extensive
crossvalidation, which reduces memory requirements and number of operations. Attained re-
sults on the UCF50 database show that our proposal correctly classified the 85.5% of human
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Figure 3.3: Confusion matrix using linear SVM

actions samples, with a IGFV representation of 56, 197 dimensions, through 25 folds under
a leave-one-group-out cross-validation scheme. When used with the relevance analysis from
Chap. 2, the recognition performance slightly drops 83.3, but the reduction in data dimen-
sions is considerable 2, 022. The obtained dimension correspond to the number of features
required to preserve 90% of data variability. Remarkable, our IGFV encoding approach ob-
tained promising results comparable with state-of-art approaches. Furthermore, it drastically
reduces the experimental set-up of HAR tasks, by avoiding exhaustive search.
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Chapter 4

Feature representation framework
based on high-level semantic features
and kernel methods

We present a kernel-based relevance analysis for video data to support social behavior recogni-
tion. Our approach, termed KRAV, is twofold: (i) A feature ranking based on centered kernel
alignment–(CKA) is carried out to match social semantic features with the output labels (in-
dividual and group behaviors). The employed method is an extension of the conventional
CKA to mitigate the imbalance effect of unusual human behaviors. (ii) A classification stage
based on k-nearest neighbors to perform the behavior prediction. For concrete testing, the
Israel Institute of Technology social behavior database is employed to assess KRAV under
a 10-fold cross-validation scheme. Attained results show that the proposed approach for
the individual recognition task obtains 0.7481 F1 measure using 21% of the input features.
Likewise, for the group recognition task obtains 0.7611 F1 measure using 57% of the input
features, which in both cases outperforms state-of-the-art results concerning the classification
performance and number of employed features. Also, our video-based approach would assist
further social behavior analysis from the set of features selected regarding the recognition of
individual profiles and group behaviors.

4.0.1 Social behavior dataset

To identify individual and group behavior performed by pedestrians, we employ the IIT
(Israel Institute of Technology) dataset that holds several still camera videos recorded in
shopping-mall scenarios [28]. Though this social context scenario comprises three videos,
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Table 4.1: Israel Institute of Technology dataset statistics for video-based social behavior
recognition.

Frames
Annotated

Annotation
duration

Elapsed
Time
(IP)

Elapsed
Time
(GB)

IPs
distribution

GBs
distribution

Average
Individuals
per frame

Average
Inidividuals
per group

80894
(97.3)%

02:22:49
(hh:mm:ss)

203.5 (s) Dist
35.3 (s) Exp
12.8 (s) Int
4.2 (s) Dis

30.7 (s) EI
23 (s) BI

100.3 (s) UI
83.7 (s) CHAT

869 total
45 Dist
776 Exp
41 Int
7 Dis

255 total
193 EI
27 BI
28 UI

7 CHAT

3.5
1.8

(max: 9)

only the annotated one is used that lasts nearly one hour, holding 83155 frames with reso-
lution 512×384 and 25 fps. The video displays a pedestrian in, at least, 97.3% of frames and
3.5 persons per frame on average, posing a challenge for activity recognition tasks. As seen
in Table 4.1, the annotation procedure1 labels two cases of interest: individual activities
(termed individual profiles - IP) and group activities (group behaviors - GB). Following, the
individual profiles and the group behaviors are described:

Individual profiles :

• Exploring (Exp): No specific interest is revealed, but movement and gaze are coherent
with the scene structure and context.

• Interested (Int): Explicit interest in a scene object is manifested.

• Distracted (Dist): No specific interest is revealed, resulting in unstructured movement
and gaze variability.

• Disoriented (Dis): A mixed interest is disclosed, exposed as high variability of move-
ment and gaze (unstructured flow).

Group behaviors :

• Equally Interested (EI): A group presents coherent behavior as below: i) interested :
Individuals show interest in the same object; ii) exploring, individuals explore the
environment with similar gaze-direction and close to each other.

1performed by the INESC TEC, Group of Portugal and supervised by the lab of social-psychology of the
University of Porto–http://sigarra.up.pt/fpceup
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• Balanced Interests (BI): Individuals within a group do not reveal the same level of
interest, preserving the same behavior and verifying that they explore the environment
with similar gaze-direction, but being slightly separated from each other (that is, IPs
are exploring).

• Imbalanced Interests (UI): A group reveals, at the same time, distinct behaviors so that
there are different individual profiles, varying their gaze and distance among them.

• Chatting (CH): There is a free-standing conversational group (FCG), holding individ-
uals that are talking with each other (moving persons are not considered). By default,
all IPs are set to distracted.

In the annotation procedure, the ground truth low-level information for pedestrian detection,
tracking, and full-oriented gaze direction [0◦, 360◦], was marked together with the group
formation and dispersion, and the scene objects of interest, namely, candy box, toy cars,
and electric stairs (see Fig. 4.1b). The above information is projected onto the ground plane,
using camera calibration and detection of vanishing lines (see Fig. 4.1a). Afterwards, the data
is used to extract individual and group relational features, such as trajectories, position, and
attention among individuals, people in groups, and scene objects.

(a) Calibration (b) Groundplane estimation

Figure 4.1: (a) Detected chessboard points for camera calibration; (b) Horizontal vanishing
line (blue), ground plane’s projection area (green), ground points (red), and objects of interest
(purple).

4.0.2 IP recognition

For this one video database, the challenge of detecting transitions between different behaviors
arises due to the changing nature of the individual and collective action. This is addressed
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by working with video mini-batches under the assumption of constant behavior and sufficient
discriminative information. Hence, the IP recognition comprises the following stages:

Feature extraction

Let {Zn∈RHn×Wn×Fn , ln∈Z}Nn=1 be an input-output pair set holdingN pedestrian mini-batches
(as explained in Section 4.0.1), each one represented by a bounding box of size Hn×Wn pixels,
captured throughout Fn frames. The output label ln denotes the social behavior performed
on the corresponding video sequence. For IP identification, the ground truth-tracking and
gaze information are used to extract the following Individual features [4]:

• The Trajectory that measures the angular variation of an individual along the frames.

• The Distance that quantifies the extent of space between an individual and object of
interest from the scene.

• The Speed that estimates the instantaneous velocity of an individual.

• The Gaze that computes the steady intent look direction.

Features extracted from the mini-batches are encoded into a multi-scale histogram with R∈N
granularity levels. For an arbitrary extracted feature, its multi-scale representation, sizing R,
is given by the vector x=[h1, . . . , hR], where each entry hr∈R2r+1

, is a normalized histogram
of 2r+1 bins, ∀r={1, . . . , R}. Thus, the pedestrian mini-batch descriptor is represented by the
fixed-length vector x=[x1, . . . ,xNf ], where Nf is the number of extracted features. Therefore,
the input set is represented by the feature set {X∈RN×P , l∈ZN}, where P is the resulting
number of bins from the concatenation of all feature histograms. Note that N samples are
related to individuals in a shopping mall video and ln∈l.

Relevance analysis extension to mitigate the effect of unusual human behaviors

In practice, the feature matrix X stores a vast number of variables, which would introduce
noise and complexity for further IP recognition stages. Thus, following the kernel-based
relevance analysis presented in Chap. 2, we select and embed features by training a projection
matrix using the Centered Kernel Alignment (CKA) approach. However, the human behavior
dataset employed in this section exhibit the challenge of data imbalance. This situation arises
given the presence of unusual human behavior, to which conventional processing strategies
will tend to forsake. Therefore, in this section we introduce an extension of the conventional
CKA formulation to mitigate the imbalance effect of unusual human behaviors.
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To make the classes with fewer samples more relevant, the kernel matrix Kl∈RN×N , holding
the pairwise similarity between labels ln, ln′∈l (n, n′∈[1, N ]), is modified from binary to a
weight matrix. Large values are assigned to classes with fewer samples. The positive definite
kernel function for the labels κL, that measures the pairwise similarity between IP labels,
and addresses the class imbalance, is the following:

κL (l, l′) = 1
Nc
δ(l − l′) (4.1)

where δ(·) is the Dirac Delta function and Nc is the number of samples per class.

4.0.3 GB recognition

Since the IIT database provides us with the bounding box of the group formation, we employ
it and the IP recognition labels to create an input-output pair set holding all detected groups.
In this case, we use the ground truth information about group formation and dispersion, along
with individual features and predicted IP labels (see Fig. 4.2) to extract the following Group
features [4]:

• The Group’s Speed that measures the average instantaneous velocities of all individuals
within a group.

• The Group’s Distance as the average distance between a pair of individuals, considering
all the pair-wise relations within a group.

• The Speed Variance that quantifies the variance of instantaneous velocities of all indi-
viduals within a group.

• The Looking At Each Other that Expresses the minimum angle difference between an
individual gaze direction and the displacement vector between him and other individ-
uals. By considering only the people who fall inside each field of view, we determine
this measure as the mean square error (MSE) of all the differences.

• Profiles Information that codifies all IPs within a group.

Like the IP recognition framework discussed in Section 4.0.2, we concatenate the group
features obtained for each provided group to built an input-output pair set holding the given
group samples and the target labels (Group Behaviors). Next, the kernel-based relevance
analysis approach introduced in Section 4.0.2 is also applied.

Fig. 4.2 shows the proposed video-based social behavior recognition (IP and GB) pipeline
based on kernel relevance analysis. Note that the obtained IP labels feed the GB recognition.
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Figure 4.2: Sketch of the proposed methodology for video-based social behavior recognition
(IP and GB) utilizing kernel-based relevance analysis.

4.1 Experimental setup

The proposed methodology, termed Kernel-based Relevance Analysis for Video data (KRAV ),
is used to obtain the vector % holding the relevance value for every feature in the original space
X. To this end, we select the human mini-batch length to be 25 frames, which according
to [4] achieves a good trade-off between classification performance and length. As starting
point for the optimization problem in Eq. 2.8, the matrix Ao is computed by PCA to retain
90% of the original space variance. In addition, to estimate the Gaussian kernel bandwidth
σ from the same equation, we use the information theoretic learning framework proposed
in [29].

For both IP and GB recognition tasks, the classification stage comprises a k-nn classifier
through a 10-fold nested cross-validation scheme. The number of neighbors was heuristically
found within the range {1, 3, 5, 7, 9, 11}. Since the Disoriented class has considerably few
samples (seven in total), we forced the 75% of samples to appear in the training folds and
the remaining 25% for testing in each iteration.

4.1.1 Validation

The validation of KRAV, for both IP and GB recognition, is carried out by the following
three tests:

1) Feature ranking: For both individual and group cases, we use KRAV to determine the most
relevant high-level semantic features according to their capability in discriminating among
different social behaviors. To this end, we calculate the relevance vector % ranking the original
feature space in X as explained in Section 4.0.2. The proposed KRAV is compared with two
baseline feature relevance methods. The first method is a variance-based relevance analysis
(termed VRA) that computes the relevance vector according to a variability criterion [30].
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The parameter related to the percentage of retained variance in VRA was set to 90%. The
second method called Relief-f, calculates the relevance vector by looking for the closest class
samples using a k-nn classifier [31]. The Relief-f parameter related to the number of neighbors
was set to 1.

2) Feature selection: we calculate a performance curve using a k-nn classifier, through a 10
fold cross-validation scheme. The curve is obtained by adding in succession features ranked
according to their relevance value in %. The classification performance for this experiment
is assessed using the F1 measure, which jointly considers the Precision and Recall. The
best subset of relevant features is selected according to their classification performance and
generates a new feature space denoted by Xs.

3) KRAV as feature embedding (KRAV-E): we evaluate the impact of the CKA-based em-

bedding into the classification performance using the projection model Xe=XsÃ (see Sec-
tion 4.0.2).

4.2 Results and discussions

4.2.1 Feature ranking analysis

The relevance vectors % obtained using VRA, Relief-f, and the proposed KRAV for IP behav-
ior recognition are shown in Fig. 4.3. In each case, vectors % are normalized to the interval
[0, 1], and sorted in decreasing order regarding their relevance value. As seen, each method
highlights different sets of features as relevant for IP classification task. Particularly, for
the VRA method, most features provide similar information as shown in Fig. 4.3a. Besides,
the bins related to the Distance descriptor are the overall less important characteristics.
The VRA definition can explain these results as it seeks a linear combination of features to
maximize the variability among data samples, regardless of the label information. On the
other hand, the Relief-f and our KRAV method incorporate supervised information to rank
the original input features with a more discriminative order. For Relief-f criteria, the most
relevant features are the ones related to the Speed bins (see Fig. 4.3b). Whereas, for the
KRAV ’s criteria, the most relevant features are related to the Distance bins (see Fig. 4.3c).
The difference between the obtained % for these methods can be attributed to the fact that
KRAV considers the high-class imbalance for this classification problem, while the Relief-f
gives the same importance to all the samples disregarding the imbalance issue.

Now, for the GB relevance vectors shown in Fig. 4.4, we see that VRA behaves as it did for
the IP recognition, giving similar importance to most of the features. Moreover, the Profiles
Information is not relevant for the method. In contrast, as seen in Fig. 4.4b and Fig. 4.4c,
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Figure 4.3: IP feature ranking results.

the Relief-f and the KRAV methods identify that the most relevant features are related
to the Profiles Information. Unlike for IP, here these methods behave similarly since the
class imbalance effect is not as notorious. Some differences can be seen only after the 7th
feature, where Relief-f includes Speed Variance bins while KRAV recognizes the Speed as
more relevant.
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Figure 4.4: GB feature ranking results.

4.2.2 Feature selection results

Fig. 4.5 shows the F1 classification curve for the IP recognition task from the vector % of
VRA (red), Relief-f (blue), and KRAV (pink). The dashed lines indicate the selected subset
of relevant features to conform Xs, which correspond to Ms = 78 for VRA, Ms = 41 for
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Relief-f, and Ms = 23 for KRAV. The threshold selection criteria for Ms was set to be
the highest value of the F1 classification curve. Fig. 4.5e, shows that the proposed KRAV
method obtains the highest classification performance 0.6807, with the lowest number of
employed features. While analyzing individually the class performance, is noticeable that
given the high imbalance, the Disoriented class obtains the lowest classification performance,
which only spikes when the selection of some arbitrary subset of features is obtained (see
Fig. 4.5a). For the Distracted and Exploring classes, the highest classification performance
are 0.77 and 0.83, respectively. These values are obtained with the selection of a small set of
features. Lastly, for the Interested class it can be seen that the VRA method has the worst
performance, which can be explained by the low relevance value given to the features related
to the Distance feature.
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Figure 4.5: IP recognition results while adding relevant features. —Relief-f, —VRA and
—KRAV. The dashed lines indicate the selected Ms for each method.

Accordingly, Fig. 4.6 shows the best subset of relevant features for the GB recognition task,
with respect to the F1 classification performance curve, from the relevance vector % of VRA
(red), Relief-f (blue), and KRAV (pink). As exposed, the dashed lines indicate the selected
subset, which corresponds to Ms = 91 for VRA, Ms = 56 for Relief-f, and Ms = 66 for
KRAV. The average classification result shown in Fig. 4.6e, reveals that the performance
curve for Relief-f and KRAV have similar behavior. For both, the most relevant features
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are the Profiles Information bins, and the highest classification performance is 0.7239 and
0.7095, respectively. On the other hand, the VRA method does not obtain a good perfor-
mance until the 63-th feature is added, which corresponds to a Profiles Information bin (see
Fig. 4.4a). The above result demonstrates that the Profiles Information is relevant for the
GB classification, as expected from the labels explanation in Section 4.0.1. Also, it can be
seen that for the E.I. and U.I. classes, the classification performance reaches high ratings
from the beginning of the succession. This remarks that the Profiles Information features are
discriminative enough to separate both classes from the others. Differently, for the B.I. and
CHAT classes, a larger number of features is required to achieve relatively high F1 measure
results. The latter can be related to the fact that these two classes have fewer samples than
the other two. Thus, there is not enough information to learn patterns and discriminate
them properly.

(a) E. I. (b) B. I. (c) U. I. (d) CHAT

(e) Average

Figure 4.6: GB classification results while adding relevant features. —Relief-f, —VRA and
—KRAV. The dashed lines indicate the selected Ms for each method.

4.2.3 Feature embedding results

Table 4.2 shows the average F1 measure for the IP and GB classification tasks. The results
are obtained using KRAV as a feature selection method as in Section 4.2.2, termed KRAV-S,
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and KRAV as a feature embedding tool, termed KRAV-E. Also, the average results obtained
by the VRA and Relief-f feature selection methods are presented as well. In general, the
average F1 measure for GB is similar for all the considered methods, while for IP the results
differ. This can be attributed to the class imbalance problem, which is not considered by VRA
either Relief-f. By analyzing individually the results, VRA obtains the lowest performance
for IP (0.5761), partially because it does not consider supervised information to rank the
input features. Remarkably, KRAV-E obtains the best results for both IP and GB tasks,
e.g., 0.7481 and 0.7611 F1 measure, respectively.

Table 4.2: F1 results and percentage of relevant characteristics for the IP and GB recognition
using VRA, Relief-f, KRAV-S, and KRAV-E.

IP GB

Avg F1 #feat Avg F1 # feat

VRA 0.5761 70% 0.7239 78%
Relief-f 0.6288 37% 0.7283 46%
KRAV-S 0.6807 21% 0.7095 57%
KRAV-E 0.7481 21% 0.7611 57%

4.3 Conclusions

In this paper, we introduced a kernel relevance analysis for video data to support social
behavior recognition tasks, termed KRAV. Our approach highlights the primary semantic
features to predict the output labels of the individual (IP) and group (GB) social behavior
videos. Specifically, KRAV quantifies the relevance of several bins from a multi-scale fea-
ture representation towards a CKA-based algorithm, that matches the input space with the
output labels. Remarkably, our method mitigates the imbalance effect of unusual human
behaviors introducing information about the number of samples per class, making those with
fewer samples more relevant. Also, the CKA algorithm allows computing a linear projec-
tion matrix, through a non-linear representation, where the columns quantify the required
number of dimensions to preserve the 90% of input data variability. By projecting the video
samples into the generated CKA space, the class separability is enhanced. Results on the
IIT social behavior dataset show that for the IP recognition task our proposal obtains 0.7481
F1 measure using 21% of the input features, through a 10 fold cross-validation scheme.
Likewise, for the G.B recognition task obtains 0.7611 F1 measure using 57% of the input
features, through the same cross-validation scheme. In particular, according to the performed
relevance analysis for IP recognition, the most relevant features are the bins related to the
Distance descriptor which introduces information about the space layout quantifying the dis-
tance between individuals and objects of interest. Similarly, the relevance analysis for GB
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recognition yield that the most relevant features are the bins related to the Profiles Informa-
tion which introduces information about the social environment within a group. Remarkably,
KRAV outperforms state-of-art results concerning the classification performance for both IP
and GB recognition tasks. Besides, our video-based method allows interpreting the set of
features selected regarding the IP and GB recognition, which would be useful for further
social behavior analysis.
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Chapter 5

Conclusions and future work

5.1 Conclusions

In this work, we studied the use of kernel methods and Bayesian inference to support video-
based human action recognition. Proposed approaches intend to perform a feature relevance
analysis and select a set of local samples that enable the precise codification of visual infor-
mation. In chapter 2, we presented the most popular approach for human action recognition,
which is based on the Bag of Visual Words methodology, and introduced our proposed kernel-
based relevance analysis for ranking local descriptors. Our approach, termed HARK, also
allow us to compute a linear projection matrix for mapping video sample into a CKA gen-
erated space, where the class separability is preserved and the representation dimensionality
reduced. Attained results by the HARK methodology, revealed that the incorporation of a
kernel-based relevance analysis allowed identifying the most essential video descriptors, effec-
tively decreasing the computational burden. As it is known, that the number of operations
for further processing stages increases exponentially on the representation length.

Aiming at further improving performance of the recognition system, while decreasing the com-
putational complexity, we proposed an extension to the conventional Fisher Vector encoding
technique. This novel framework presented in chapter 3 is based on the Infinite Gaussian
Mixture Model, an aims at revealing a set of discriminant local spatiotemporal features that
enable the precise codification of visual information from HAR tasks. Encoding visual data
using the FV technique requires a Gaussian Mixture codebook, and seeks to determine each
mixture component responsibility on explaining samples, in this case, videos. For creating
this codebook, traditional approaches rely on optimization-based GMM and extensive cross-
validation for determining model parameters. Meanwhile, our approach takes advantage of
the IGMM formulation for developing a fully automatic data encoding framework, that in

38



Master’s Thesis: Conclusions

one cross-validation run can specify every parameter in the model, including the number of
Gaussian components. The Markov Chain Monte Carlo implementation of the hierarchical
IGMM effectively prevent falling into local minima, which tend to plague mixtures trained
by optimization based methods. Performed experiments showed that the proposed encod-
ing framework obtained promising recognition performance and computational requirements
savings. Further tests on the model ability to specify the form of the Gaussian covariances
are required. As demonstrated, when the covariance form is limited, the model requires a
more considerable amount of components for describing data distribution, which increases its
resolution. This situation is of great interest because an increased resolution can address a
couple of difficult Computer Vision challenges (occlusions and partially out of scene humans).

Finally, in chapter 4, we present a methodology for performing human behavior analysis.
This task is a particular case of Human Action Recognition in which the scene context and
non-verbal interactions must be considered for allowing a proper transcription of the human
activity. Therefore, we proposed an approach to extract high-level semantic features from
low-level video description (Human detection, tracking, and gaze direction), and later per-
form a relevance analysis for the selection and combination of these higher level features.
Moreover, the employed database introduced the challenge of addressing data imbalance, as
there is presence of unusual human behaviors. Conventional processing strategies tend to
forsake these classes, reducing their ability to perform behavior prediction. Thus, we extend
the traditional Centered Kernel Alignment technique by introducing information about the
number of samples per class, so that in the CKA generated space, unusual behaviors be-
come more relevant. Obtained results demonstrated that our approach outperforms current
frameworks in both individual and group behavior recognition tasks.
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5.2 Future work

From the attained results and the drawbacks found along the process, the following theoretical
and experimental topics could be explored.

• Regarding the proposed HARK framework, the employment of convolutional neural
networks to both describe spatial and temporal video characteristics could be explored.
Attained results in [1] demonstrated that inclusion of theses descriptors increases the
recognition performance significantly.

• Regarding the proposed IGFV data encoding, the employment of clustering-based
downsampling methods would be an exciting research line. As reducing the presence
of outliers in the IGMM codebook generation could represent a closer estimation of
the data distribution. Which ultimately enables a more precise codification of visual
information.

• A more efficient implementation could be developed. The usage of multithread paradigm
will be desirable to improve the system scalability and reduce processing time.
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Chapter 6

Appendix

6.1 Diagonal Infinite Gaussian Mixture Model

In this case, we assume that all precision matrices are diagonal. Mathematical derivations
led to the following equations:

For the component precision Sj, the prior becomes:

p(Sj/β,W ) ∼ W(β,W−1)

∝
D∏
d=1

s
β
2
−1

d,j exp{−1

2
β sd,j wd}

∼
D∏
d=1

G(β, [wd]
−1) (6.1)

where sd,j and wd are the elements (d, d) from matrix Sj andW , respectively. The conditional
posterior on the diagonal precisions is obtained by multiplying the complete likelihood from
zt, Eq. 3.1, and the diagonal precision prior, Eq. 6.1:

p(Sj|β,W ,µj, {zt : c t,j = 1}) ∝
∏

t:c t,j=1

p(zt|Sj,µj)× p(Sj|β,W )

∼
D∏
d=1

G(β + nj,
[β wd +

∑
t:c t,j=1(zt,d − µj,d)2

β + nj

]−1
) (6.2)
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For the precision matrix R, the prior becomes:

p(R) ∼ W(1, cov−1Z )

∝
D∏
d=1

r
1
2
−1

d exp{−1

2
rd [covZ ]d,d}

∼
D∏
d=1

G(1, [covZ ]−1d,d) (6.3)

Accordingly, the posterior is:

p(R|{µj}kj=1,λ) ∝
k∏
j=1

p(µj/λ,R)× p(R)

∼
D∏
d=1

G(k + 1,
(∑k

j=1(µj,d − λd)2 + [covZ ]d,d

k + 1

)−1
) (6.4)

For matrix W , the prior becomes:

p(W ) ∼ W(1, covZ)

∝
D∏
d=1

w
1
2
−1

d exp{−1

2
wd [cov−1Z ]d}

∼
D∏
d=1

G(1, ([cov−1Z ]d,d)
−1) (6.5)

likewise, the posterior is:

p(W |β,{Sj}kj=1) ∝
k∏
j=1

p(Sj|β,w)× p(W )

=
D∏
d=1

G(kβ + 1,
[β ∑k

j=1 sd,j + [cov−1Z ]d,d

kβ + 1

]−1
) (6.6)
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