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a b s t r a c t 

Model generation operations are important artifacts in MDE applications. These approaches can be used

for model verification, model finding, and others. In many scenarios, model transformations can as well

be represented by a model generation operation. This often comes with the advantage of being bidi- 

rectional and supporting increments. However, most part of model generation approaches do not target

several operation kinds, but narrower scenarios by mapping the generation problem into solver specific

problems. They are efficient, but often don’t have a supporting framework. In this paper, we present an

approach and framework that allows to specify and to execute model operations that can be represented

in terms of model generation operations. We first introduce a model search layer that can be used with

different solvers. We illustrate this layer with a driving example implemented using Alloy/SAT solver.

On top of this, we introduce a transformation layer, which specification are translated into the model

search layer, independently from any solver. The solution is natively bidirectional, incremental and it is

not restricted to one-and-one scenarios. The approach is illustrated by two use cases and with 3 different

scenarios, backed by a full, extensible and free implementation.

1. Introduction

In Model-Driven Engineering (MDE) approaches, studied or de- 

veloped systems are captured through a set of models represent- 

ing different structural and behavioural points of view. A model 

must comply to constraints which may be either generic rules that 

apply to any models of its kind (the language syntax and seman- 

tics), or system-specific considerations that stem from the user ob- 

jectives. Therefore one kind of model operation is the ability to 

(semi)-automatically generate or complete a given partial (possibly 

empty) model. This operation, here called model generation, has 

different uses: model verification, language testing, use cases gen- 

eration or user assistance in defining the system. Given the graph- 

like structure and mostly discrete properties of meta-languages, 

existing approaches to model generation usually rely on combina- 

torial techniques such as constraint programming solvers. The pro- 

cess thus consists in mapping the model generation problem to 

a solver-specific problem definition where resolution is achieved, 

and then mapping the solution(s) (if any) back to the modeling 

world. This approach is used for instance in Gogolla et al. (2007) , 

Kleiner et al. (2010) and Macedo et al. (2013) . The main draw- 

backs are the limitations of the chosen solver. Indeed, the nature of 
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meta-languages yields hard combinatorial problems that may re- 

quire solvers to deal with solutions of a priori unknown size, a mix 

of discrete and continuous variables, or complex strings manipula- 

tion. Therefore different problems might require different solvers, 

and often need to be simplified in order to be turned into viable 

specifications. 

Additionally, the different models of a system are usually re- 

lated, meaning that some, if not all, of a given model elements can 

be deduced from the others. This yields a second kind of operation, 

here called model transformation, where the goal is to obtain a set 

of (target) models from a set of (source) models. A first set of ap- 

proaches that rely on rules and pattern matching ( Czarnecki and 

Helsen, 2006 ) have been successful for a large number of use 

cases. However, the system development process is rarely linear, 

meaning that existing models may be modified and should still be 

kept consistent. These use cases have outlined the unidirectional 

and non-incremental limitations of most of these approaches, lead- 

ing to studies in novel transformation techniques having bidi- 

rectional and incremental properties ( Hidaka et al., 2016 ). Some 

of these approaches, such as JTL ( Eramo et al., 2012 ), MOMoT 

( Fleck et al., 2016 ) or Echo ( Macedo and Cunha, 2013 ), propose 

to represente model transformations in terms of a model gener- 

ation problem. However, the support for multiple kinds of genera- 

tion operations could be improved. 

In this article we present a generic approach and framework to 

specify and to execute model operations that can be represented 
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in terms of model generation operations. This article re-founds 

and extends work presented in previous conference papers ( Kleiner 

et al., 2010; 2013 ). The approach has the following main highlights. 

Model search : we present a layer called model search (MS) , 

which handles the model generation process. This layer is broke 

down into solver-specific and solver-independent components. The 

solver-specific ones provide the extraction/injection of the input 

and output models into/from the solver format. The solver inde- 

pendent parts are the remaining components. We provide a com- 

pletely rewritten open source implementation based on the Eclipse 

Modeling Framework (EMF) ( Czarnecki and Helsen, 2006 ), where 

the executed chain can be easily adapted, improving considerably 

its applicability. We also provide a fully operational example im- 

plementation of the generic approach that targets the Alloy/SAT 

solver ( Hidaka et al. (2016) ). 

Multi-level transformations : we provide a generic bridge be- 

tween the modeling problem and solver technical spaces, through 

the implementation of reflexive model transformation, called 

multi-level transformations . The transformations are implemented 

using only the metametamodels elements. They discover the meta- 

model and model elements during execution time. This enables 

having one single transformation for any input metamodels and 

their corresponding models, and without relying on an unification 

format. The same is valid for the output models. 

Model transformations as search (TAS) : we present a TAS layer 

that is independent from the underlying solver, conceptually and 

practically. This means that a model transformation specification is 

defined using only modeling components. These are transformed 

into a model search problem and solutions are then mapped back 

to the resulting models. In addition, the approach is not restricted 

to one-to-one transformation scenarios, it is multi-directional and 

incremental. We have developed as well a set of components to 

develop model transformations and to interact with the model 

search layer. 

Unified formalism : finally, we revisited and provided an inte- 

grated conceptual view from both model and transformation as 

search. 

Plan of the article. Section 2 provides the theoretical background. 

In Section 3 , we formally define the model search layer, theoret- 

ically and with a practical guiding example. In Section 4 we de- 

scribe the transformation and synchronization layer. We provide 

experimental results and analyse the strengths and drawbacks of 

the approach with additional comments on two examples from the 

literature and the industry. Section 5 presents the related work. Fi- 

nally, we conclude in Section 6 . 

2. Context

2.1. Brief introduction to modeling and model transformation 

Model Driven Engineering (MDE) considers models, through 

multiple abstract representation levels, as a unifying concept. The 

central concepts used in such approaches are terminal model, 

metamodel, and metametamodel. A terminal model is a represen- 

tation of a system. It captures some characteristics of the sys- 

tem and provides knowledge about it. MDE tools act on mod- 

els expressed in precise modeling languages. The abstract syntax 

of a modeling language, when expressed as a model, is called 

a metamodel. The relation between a model and the metamodel 

of its language is called conformance. Metamodels are in turn 

expressed in a modeling language for which conceptual founda- 

tions are captured in an auto-descriptive model called metameta- 

model. There are multiple model definitions in the literature (see 

Kühne, 2006 for a deep study), we refine in this article the ones 

introduced in Jouault and Bézivin (2006) since simple graph-based 

definitions will prove useful in our context. 

Definition 1 (model) . A model M is a triple < G, ω, μ> where: 

• G is a directed labelled multigraph,
• ω (called the reference model of M) is either another model or

M itself (i.e., self-reference).
• μ is a function associating nodes and edges of G to nodes of

G ω (the graph associated to its reference model ω).

Definition 2 (conformance) . The relation between a model and its 

reference model is called conformance and denoted conformsTo or 

c 2. 

Definition 3 (metametamodel) . A metametamodel is a model that 

is its own reference model (i.e., it conformsTo itself). 

Definition 4 (metamodel) . A metamodel is a model such that its 

reference model is a metametamodel. 

Definition 5 (terminal model) . A terminal model is a model such 

that its reference model is a metamodel. 

Although the presented work may be adapted to other metalan- 

guages, we will assume in the following the use of ECORE (an im- 

plementation of OMG’s EMOF) as the metametamodel ( EMF, 2018 ), 

since it is supported by a wide set of modeling tools. The main 

way to automate MDE is by executing operations on models. For 

instance, the production of a model Mb from a model Ma by a 

transformation Mt is called a model transformation. The OMG’s 

Query View Transformation (QVT) ( QVT, 2011 ) defines a set of use- 

ful model operations languages. In particular, it defines a language 

called QVT-operational which is restricted to unidirectional trans- 

formations scenarios, and a language called QVT-relational which 

can be used for bidirectional and synchronization scenarios. 

2.2. Constrained metamodels 

The notion of constraints is closely coupled to MDE. Engineers 

have been using constraints to complete the definition of meta- 

models for a long time, as it can be found in implementations 

combining UML/OCL (e.g., Eclipse OCL project, 2018 ). Constraints 

can be, for instance, checked against one given model in order to 

validate it. In our approach we will always consider metamodels 

with potential constraints attached. We first formally define the 

combination: 

Definition 6 (constrained metamodel) . A constrained metamodel 

CMM is a pair < MM, C > where MM is a metamodel and C is a 

set (a conjunction) of predicates over elements of the graph G as- 

sociated to MM . We will consider an oracle that, given a model M , 

returns true (noted M ∈ C ( MM ) where C ( MM ) is the set of all valid 

models) iff M satisfies all predicates from C . 

The conformance relation between a model and its reference is 

then naturally extended to constrained metamodels. 

Definition 7 (constrained conformance) . A model M conforms To a 

constrained metamodel CMM iff it conformsTo MM and M ∈ C ( MM ). 

Many languages can be used to define predicates (i.e., con- 

straints) with different levels of expressiveness. In this article, we 

will assume the use of OCL, though the presented work may be 

adapted to other constraint languages. Indeed, OCL is widespread, 

well integrated in modeling technologies, and expressive (it sup- 

ports operators on basic datatypes, sets and relations as well as 

universal/existential quantifiers and various iterators). 



2.3. Brief introduction to model finding 

We call model finding the problem of finding and exhibiting a 

model (in its broad mathematical acceptance) from a given defini- 

tion. Computational techniques for such problems is a vast area of 

theoretical and applied research and relates to various types of de- 

cision, satisfaction and optimization problems. Obviously, finding 

a model (in its MDE acceptance) that complies to a constrained 

metamodel is a model finding problem, in which the search space 

is implicitly defined by the set of potential well-formed models. 

Although this work does not assume any particular model find- 

ing technique, focus will be put on constraint programming (CP), 

the usual approach in modeling environments. CP is a declarative 

programming technique to solve combinatorial (usually NP-hard) 

problems. A constraint, in its wider sense, is a predicate on ele- 

ments (represented by variables). A CP problem is thus defined by 

a set of elements and a set of constraints. The objective of a CP 

solver is to find an assignment (i.e., a set of values for the vari- 

ables) that satisfies all the constraints. There are several CP for- 

malisms and techniques ( Jaffar and Maher, 1994 ) which differ by 

their expressiveness, the abstractness of the language and the solv- 

ing algorithms. For instance, the SAT (boolean SATisfiability prob- 

lem) formalism. A SAT problem is to decide if, for a given boolean 

formula, each boolean variable can be given an assignment such 

that the formula evaluates to true. SAT is known as being a NP- 

complete problem ( Cook, 1971 ), and as such any CP problem can 

be reduced into SAT 

Since SAT is a low-level formalism, manipulating only boolean 

variables, higher-level languages have been proposed to ease real 

problems specifications. One of those is Alloy ( Jackson, 20 0 0 ), an 

expressive relational language that uses a built-in compiler (Kod- 

Kod) to produce SAT problems. The Alloy tool offers to solve using 

several underlying SAT engines and translates solutions back to its 

relational idiom. 

3. Model search

We consider the operation that aims at generating a complete 

and valid model of a constrained meta-model, starting with an 

incomplete (possibly empty) model. We first propose a formal 

model-based definition of such a task as a first-class model opera- 

tion called model search . We then describe an example process as a 

generic pattern for solver-specific implementations. Finally, we de- 

scribe a detailed example implementation using Alloy/SAT together 

with experiments. 

3.1. Model search definition 

In order to formally define model search, let us first define a set 

of notions that relate to constrained metamodels. 

Relaxed metamodels and partial models. 

Definition 8 (relaxed metamodel) . Let CM M = < M M, C > 

(with MM = < G, ω, μ > ) be a constrained metamodel. 

CM M r = < M M r , C r > (with MM r = < G r , ω, μ > ) is a relaxed meta- 

model of CMM (noted CMM r ∈ Rx ( CMM )) if and only if G MM r 
⊆ G MM 

and C r ⊆C . 

In other words, a relaxed metamodel is a less constrained 

(and possibly smaller) metamodel. A simple one can be straight- 

forwardly obtained by the removal of all constraints: structural 

(making references and attributes optional) and external (removing 

predicates). Computing such a relaxed metamodel, a simple opera- 

tion, is called relaxation in the following. In many frameworks, in- 

cluding ECORE-based ones, the relaxed metamodel does not need 

Fig. 1. The model search operation.

to be an additional concrete artifact, since the implementation is 

flexible enough to support it. 

Definition 9 (partial model, p-conformsTo) . Let CM M = < M M, C > 

be a constrained metamodel and M r a model. M r p − con f ormsT o

CMM iff it conforms to a metamodel CMM r such that CMM r is a re- 

laxed metamodel of CMM ( CMM r ∈ Rx ( CMM )). M r is called a partial 

model of CMM . 

Informally, a partial model is simply understood as being an in- 

complete or faulty model. 

Model search. 

Definition 10 (model search) . Let CM M = < M M, C > be a con- 

strained metamodel, and M r = < G r , MM r , μr > a partial model of 

CMM . Model search is the operation of finding a (finite) model 

M s = < G s , MM, μs > such that G r ⊆G s , μr ⊆μs (embedding i.e., ∀ x ∈
Gr, μs (x ) = μr (x )) , and M s conformsTo CMM . 

Informally, model search extends a partial model M r into a 

model M s conforming to its constrained metamodel CMM (or gen- 

erates one when no M r is given). In the following, M r is called the 

request model, and M s the solution model. The restriction that G r is 

included in G s could be removed if the solver supports removal of 

elements, or this could be circumvented by re-generating a com- 

plete new model, without the deleted elements. 

This operation is illustrated in Fig. 1 . In other words, we con- 

sider model search as a operation where the request (metamodel 

and model) is an instance of a non-deterministic (often combina- 

torial) problem and the solution model is one of the results (if any 

exists). From the solver point of view, the request metamodel acts 

as the problem definition whereas the request model is a given par- 

tial assignment . 

3.2. Model search process 

We provide below an example generic process, independently 

of any solver, to explain the usual steps involved when implement- 

ing model search in a modeling environment. This software chain 

is illustrated in Fig. 2 , where dark gray squares are solver-specific 

parts. It is composed of 5 main tasks. 

( 1) Problem definition generation : this task, illustrated by the 

CMM 2 SP transformation, expresses the constrained metamodel as 

a solver problem definition. However, the CMM 2 SP arrow is a sim- 

plified view of the operation, since there are actually two source 

models as input to the transformation. Fig. 3 shows the actual 

transformation and its simplified view. The metamodel MM con- 

tains the structural constraints, which may be expressed, for in- 

stance, by ECORE. However, typical model search applications re- 

quire more complex domain constraints (e.g., to set up a maxi- 



Fig. 2. Model search example implementation process in a modeling environment.

Fig. 3. Generation of the problem definition.

mum cardinality value for an attribute). These domain constraints 

are expressed in the constraint model C , which can, for instance, 

conform to the OCL metamodel. The constraints refer to the ele- 

ments of MM . Thus, a combination of ECORE + OCL could be one 

pair of input models. 

The difficulty of expressing a constrained metamodel as a solver 

problem is highly dependent on the abstraction level and the basic 

elements offered by the target solver. Some implementation issues 

will be discussed in Section 3.4 . 

( 2) Partial assignment generation : this task is illustrated by the 

M 2 SP transformation. It takes the request M r as input and gener- 

ates the corresponding partial assignment for the solver. Here the 

main difficulty is that the input metamodel MM is domain depen- 

dent, which means it may be different according to the search 

problem being considered. Since many transformation languages 

consider the input metamodel as un-changeable, it would imply 

writing a different transformation M 2 SP for every considered meta- 

model MM . Clearly, this is undesirable. We propose a solution 

using multi-level transformations . A multi-level transformation is a 

model transformation that takes as input the domain model M 

and also the domain metamodel MM and that produces as out- 

put the solver partial assignment. This transformation is imple- 

mented using reflection. More detailed explanations on this multi- 

level transformation are given together with an implementation in 

Section 3.4 . 

It is important to note that many solvers do not separate the 

problem definition and the partial assignment: they are usually ex- 

pressed using the same language/code. For that reason, both share 

the same “solver problem” metamodel. When this is not the case, 

the process is easily adapted by separating the partial assignment 

metamodel from the problem definition metamodel. 

(3) Engine program extraction : this task extracts the solver 

problem model into its parsable or executable format. Any clas- 

sic model-to-text or model-to-code modeling technologies can be 

used here. 

(4) Solver execution : the generated solver file/program is exe- 

cuted in order to obtain solutions. When the search succeeds (i.e., 

there is at least one solution), we obtain a solution in the solver 

export format. The most common are XML or grammar-based text 

files. 

(5) Solution injection : this last task converts the solution(s) pro- 

duced by the solver as model(s) of the original search metamodel 

MM . It is natural to decompose the operation into two sub-tasks: 

injecting the solution into the modeling environment based on the 

solver output format, then transforming to a model conforming to 

the original search metamodel MM . We have considered in this ex- 

ample process that the engine generates an XML file. Therefore we 

first do a straightforward injection of the XML solution in the mod- 

eling environment. If the solver rather produces grammar-based 

files, this can be replaced by a classic text-to-model parser-based 

injection. Then we transform the output to a model conforming to 

MM ( M 2 SS in Fig. 2 ). For the same reasons as the M 2 SP transfor- 

mation, SS 2 M is a multi-level transformation: it takes MM as addi- 

tional input and generates a model M s . Again, more detailed expla- 

nations on this unusual multi-level transformation will be given in 

the example implementation. 

3.3. Implementation of the generic part of the process 

This part of the implementation regroups all the model search 

software parts (UI and API) that are solver-independent. This is of 

primary importance so that other model operations, presented in 

Section 4 , can be defined independently from any solver-specific 

implementation. The implementation is distributed under the EPL 

license as a set of Eclipse plugins that are available for download 

at the MOS GitLab. 1 It is completely modular and extensible: the 

alternative solver-specific implementations are discovered through 

Eclipse’s extension point mechanism. The plugins are divided in 4 

main components: 

1 MOS GitLab: https://gitlab.massidia.net/mos/software .

https://gitlab.massidia.net/mos/software


Fig. 4. Excerpt of the Alloy metamodel.

1. Launch configuration : creates a launch configuration to set up

the running parameters, which are the input and output mod- 

els, metamodels and constraints.

2. SolverChain : it is the main API, which provides a set of classes

and extension points for all the transformations of the chain,

which need to be executed in the chain order. When the solvers

need additional specific parameters for execution, they can be

forwarded through a property/value list, called model search op- 

tions , and then handled by the transformation.

3. Solution explorer : many existing solvers may produce more than

one solution as output after the execution of the transformation

chain, in other words, enabling several executions of the 4th

task ( solver execution ). This component targets this kind of fea- 

ture: it takes the result from the transformation chain and nav- 

igates through the generated solutions. It deals with the com- 

mon fact that the solvers may produce zero, one or more so- 

lutions, and allows the user to create/browse through different

solutions until a satisfying one is found. An initial pool of so- 

lutions (if any, and possibly just the first) is considered. If the

underlying solver chain is incremental, it will be asked to pro- 

duce additional solutions dynamically when needed.

4. Standalone launch : set of plug-ins to enable the standalone ex- 

ecution of the chain, i.e., from command line and without the

need to launch Eclipse.

The SolverChain (2) contains the core implementation of the ap- 

proach. The Launch configuration (1), Solution Explorer (3) and Stan- 

dalone launch (4) components compose the technical backup for 

the interaction with users/developers. 

3.4. Example implementation of the solver-specific part using 

alloy/SAT 

In order to highlight the main challenges that may arise when 

implementing a solver chain, we provide an example using Al- 

loy/SAT as the solver language/engine. In the following, each step 

of the process implementation is detailed and inherent issues are 

discussed. Additionally, the clear separation in different steps al- 

lows a modular reuse of our implementation. To this aim, the pre- 

sented software chain is provided as a set of freely-available inde- 

pendent Eclipse plugins. If a different solver would be used, all the 

steps in this section should be implemented. 2 

3.4.1. Alloy/SAT 

The SAT paradigm has clear limitations: it requires a finite set 

of boolean variables and only offers a low-level predicate language 

(only negation, disjunction and conjunction are supported). How- 

ever, Jackson (20 0 0) introduced an expressive relational language 

(Alloy) with a built-in compilation (KodKod engine) that allows the 

use of many recent SAT solvers. We will thus use Alloy as our tar- 

get search engine language in order to ease the transformation def- 

inition. 

Alloy allows for expressing complex predicates using atoms 

(un-dividable elements), sets (of atoms), relations, quantifiers (uni- 

versal or existential), operators for relations traversal, etc. However, 

due to the properties of SAT problems, Alloy cannot be considered 

as a true first-order logic solver. Indeed, to be able to translate the 

problem into SAT, a scope needs to be given to each typed set, 

which limits the number of atoms that can be contained in the 

set. 

In Alloy every element is either an atom or a relation, but the 

language is exclusively based on relations. A relation is a set of 

tuples, which indicates how atoms are related, with a given arity . 

Indeed, there is no notion of a set : a set is represented by an atom, 

which has a relation that maps to the contents of the set. The main 

artifacts that we will manipulate in the Alloy language are: 

• Signatures , declarations of sets, for which the body may contain

fields as relations to other signatures. Attributes are treated the

same as any relation. Scalars, similar to signatures, are treated

as sets of atoms. Signatures also support a form of single inher- 

itance.

2 We have implemented in Kleiner et al. (2010) translation from the ILOG/CP

solver. Despite being based on different concepts, it provided a high-level language

abstracting the solver implementation, thus many of the transformation rules had

similar structure.



Table 1

Excerpt of the mapping from ECORE concepts to Alloy concepts.

ECORE concept Alloy concept

EPackage Module

EDataType ExternalType and ExternalModule

EClass Signature

EAttribute Field

EReference Field

EStructuralFeature multiplicity Multiplicity and/or Fact

EReference containment Fact

EReference opposite Fact

• Facts , declarations of predicates, with quantifiers and an impor- 

tant number of logical, scalar and set operators available.
• Functions , which are specific implementations of Alloy built-in

functions, such as max, min or plus . The functions may have

a direct transformation from the input models, or may need a

specific transformation.

3.4.2. Alloy metamodel and extractor 

We developed a metamodel of the Alloy language, which an ex- 

cerpt is represented in Fig. 4 as an ECORE diagram (we have omit- 

ted part of the references to improve readability). It is the target 

metamodel for the generation of the problem definition (task 1) 

and the partial assignment (task 2). This metamodel shows that an 

Alloy program is composed by a Module, which is composed by a 

set of declarations. These declarations may be specialized into: (1) 

types, where a Signature is a type, composed by Fields, (2) func- 

tions, with its corresponding parameters and (3) facts, which are 

used to express the problem constraints. These facts are written 

using different kinds of expressions. 

We also developed an extractor allowing to produce Alloy tex- 

tual files from Alloy models (task 3). The generated files help to 

prototype and to find for errors in the intermediate models. It is 

implemented using the Acceleo tool 3 . A different option would be 

to use directly the Alloy Java library, without files generation. 

3.4.3. Generation of the problem definition 

We divided task 1 into two transformations, respectively from 

ECORE and OCL, to our Alloy metamodel. They are fully declara- 

tive and implemented using ATL ( Jouault and Kurtev, 2005 ), which 

is a framework and language for developing and executing model 

transformations, transforming source models into target models. 

The ECORE to Alloy ( ecore2msalloy.atl ) transformation aims at 

expressing the structural constraints of a metamodel. An excerpt 

of the mapping is presented in Table 1 . 

In this transformation, ECORE classes are mapped to Alloy sig- 

natures. Alloy has direct support for abstract and (single only) 

inheritance. ECORE attributes and references are mapped to Al- 

loy fields. Alloy’s fields only support four multiplicity declara- 

tions: lone (0–1), one (1–1), some (1- ∗) and set (0- ∗). Therefore, 

other multiplicity lower/upper bounds are turned into correspond- 

ing cardinality facts. References properties are turned into facts 

(i.e., a predicate for the containment or opposite constraint). Fi- 

nally, attribute’s data types are turned into the corresponding Alloy 

type. Alloy directly supports booleans, integers and strings. Though 

strings have some basic support in Alloy, it comes with several 

limitations due to the fact that they are treated as scalars: any 

string usable value must be declared (i.e, Alloy will never gener- 

ate a string value by itself), and only the equality operation is sup- 

ported. This solver-specific limitation will be further discussed in 

Section 3.5 . 

The OCL/Alloy transformation ( oclmdtpivot2msalloy.atl ) aims at 

expressing metamodel invariants as Alloy facts. Concretely, we use 

3 http://eclipse.org/acceleo .

Fig. 5. Principles of the multi-level transformation applied to the partial assign- 

ment generation.

the OCL parser offered by the Eclipse project and run the transfor- 

mation on the resulting OCL Pivot model. An excerpt of the map- 

ping is presented in Table 2 , with the corresponding concrete syn- 

tax. The output Alloy expression is a composition of concepts; the 

right column shows only the top-level one. We do not map the en- 

tire OCL specification, but only the features that are supported by 

the Alloy specification. In other words, the input language expres- 

siveness is limited by the solver capabilities. While this may be 

undesirable, a complete mapping would only be possible if both 

languages would have equivalent semantics. 

The combination of these two (ECORE/Alloy, OCL/Alloy) 

transformations corresponds to the CMM2SP transformation in 

Fig. 2 . 

3.4.4. Generation of the partial assignment 

When the model search chain is ran on a non-empty request 

M r , this model has to be turned into a partial assignment for 

the solver. Here again, we developed a rule-based transformation 

implemented using ATL. The main difficulty is that the source 

(search) metamodel MM is unknown to the transformation devel- 

oper. However, the structural semantics of the model do not de- 

pend on this metamodel: they are solely based on the fact that the 

model contains objects of ECORE classes and may optionally have 

their structural features (partially) defined. In other words, the 

type of solver instances and concepts that are created do not de- 

pend on the original metamodel. This allows to write metamodel- 

independent rules in what we called multi-level transformation. Its 

main principles are shown in Fig. 5 . 

The transformation ( model2msalloy.atl ) has three inputs: the 

(request) model, its (search) metamodel, and the problem defini- 

tion conforming to the solver metamodel. The latter one is re- 

quired since the partial assignment is obviously related to its prob- 

lem definition. 

The implementation of this transformation is done using ATL 

lazy and imperative rules and by accessing the metamodel and 

model elements using reflection. This is necessary because we 

do not know the type of the input elements in advance. We 

are not aware of any technique allowing to implement matched 

rules (declarative) and that are coupled with reflection, nor of 

any declarative transformation language supporting this specific 

matching together with our requirements. 

Consider for instance the necessity to transform an input model 

element into a Signature in Alloy. Since we do not know the do- 

main, we develop a transformation rule that transforms an EObject 

into a Signature . We list an excerpt of the transformation below 

with its main aspects. 

http://eclipse.org/acceleo


Table 2

Excerpt of the mapping from OCL to Alloy.

OCL Pivot main concept [concrete syntax] Alloy main concept [concrete syntax]

CollectionLiteralExp [Set“a”] SetExpression [“a”]

IteratorExp (collect) [source- > collect(exp)] NavigationExpression [source.exp]

IteratorExp (forall) [source- > forAll(i [: B]| P)] QuantificationExpression [all i:source | [i in B and] P]

IteratorExp (exists) [source- > exists(i [: B]| P)] QuantificationExpression [some i:source | [i in B and] P]

IteratorExp (one) [source- > one(i [: B]| P)] QuantificationExpression [one i:source | [i in B and] P]

IteratorExp (any) [source- > any(i [: B]| P)] ComprehensionExpression [i:source | P]

IteratorExp (closure) [x- > closure(p)] NavigationExpression [(x. ∗p)] 

OperationCallExp (oclAsType) [x.oclAsType(T)] OperationExpression [x : > T]

OperationCallExp (oclAsType) [x.oclIsTypeOf(T)] ComparisonExpression [x in T]

OperationCallExp (includes) [x- > includes(y)] ComparisonExpression [y in x]

OperationCallExp (union) [x- > union(y)] ComparisonExpression [x + y] 

OperationCallExp (size) [exp- > size()] SetCardinalityExpression [#exp]

OperationCallExp (min) [A.i - > min()] IntegerSetFunctionExpression [min[A.i]]

OperationCall (unknown) ExternalFunction

It contains 3 rules, one for the current element, one creating 

a navigation expression and one for the specific data type found. 

The Alloy language does not have dedicated constructs enabling 

the declaration of a partial assignment, i.e., it does not allow to 

directly define sets of atoms (to account for existing objects) or re- 

lations tuples (to account for existing structural features values). 

However, this can be circumvented using respectively unique sig- 

natures and facts. 

Singleton signatures are sets that can only contain one atom. 

For each source object, we thus create a unique signature ( mul- 

tiplicity equals to 1) that extends the object’s class corresponding 

signature (shown in the extends assignment). A unique name has to 

be generated for each object’s signature, so we use its class name 

followed by an object counter. 

We then create facts ( CreateFact rule) to account for structural 

features and its values (this rule is not presented at the transfor- 

mation excerpt, since its implementation is simple). It receives a 

navigation expression that depends on the input object type. But, 

for a given object, we do not know the names of its structural 

features, so it is necessary to create a loop over all the attributes 

and to obtain their values through reflection ( refGetValue method). 

We create an equality navigation expression: the left side has the 

object variable and its attribute name ( EStructuralFeature2NavExp 

rule); the right side has the given attribute value, which can be 

any data type. In this example code, we show the conditional ex- 

pression for an Integer value ( EInt type), where we call a specific 

lazy rule ( EIntAttribute2EqualsExp ). Each kind of attribute need to 

have one lazy rule (e.g., for EString, EBoolean or other objects). The 

same kind of loop is implemented for the object references. 

Additionally, the transformation accepts a model search option 

that allows to freeze structural features of objects. This is realized 

by creating an additional constraint on the field for the object’s 

corresponding unique signature, which cardinality must then be 

equal to the number of actual values in the original structural fea- 

ture. 

Similarly to task 1, the resulting partial assignment is processed 

by our Alloy extractor which generates its corresponding Alloy file. 

3.4.5. Solver execution 

Now that the problem definition and optionally a partial assign- 

ment have been generated, we may ask the solver engine to cal- 

culate solutions (if any). For this, we generate a master Alloy file 

containing the Alloy command to be executed, and the necessary 

imports to all previously generated files. The solver execution in 

Alloy needs 4 model search options: scope : the amount of used el- 

ements; SAT solver : the SAT solver to be used, e.g., SAT4J; Bitwidth : 

the integers allowed range and generate a single module : to gener- 

ate only one Alloy module with all the specifications. If any scope 

was given, its class bounds are added to the command parame- 

ters as specified by the Alloy language. Otherwise, Alloy will use 



Fig. 6. Principles of the multi-level transformation applied to the solution model

generation.

its default global bound. Depending on the used solver, its solv- 

ing capacities may differ according to the implementation. For in- 

stance, a specific solver could provide support to (non)monotonic 

operations. 

3.4.6. Generation of the solution model 

A model search user expects the output(s) as model(s) conform- 

ing to the original search metamodel MM . The generation of these 

solution model(s) corresponds to task 5 of our example process. 

The Alloy/SAT solver may generate more than one solution, de- 

pending on the specified models and constraints. When this hap- 

pens, we take the first generated solution to generate the solution 

model. However, the user may iterate over any of the generated so- 

lutions, and generate the corresponding solution models. Each time 

the solver generates a new solution, task 5 is divided into two sub- 

tasks (as shown in Fig. 2 ). First we use EMF’s built-in features to 

generate a model conforming to Alloy’s XML schema metamodel. 

The second subtask ( SS 2 M ) in Fig. 2 is the transformation of the 

resulting model into a solution model conforming to MM . Again, 

we implemented it using ATL ( MSAlloyInstance2Model.atl ). Similarly 

to the partial assignment generation task, the difficulty here is 

that the target metamodel is unknown to the transformation de- 

veloper. We therefore apply again the multi-level transformation 

technique used for task 2. Its application to the generation of a so- 

lution model, independently from a specific solver, is illustrated in 

Fig. 6 . It receives as parameters the solver solution model and also 

the metamodel of the output solution, in order to discover the type 

of the elements that need to be generated. 

We need to consider two types of elements from the input 

model: atoms and relations tuples. Atoms, when they belong to 

the set of a signature that was generated from a class, yield class 

objects. Other atoms can be either datatype values (which use a 

specific signature) or built-in elements from the Alloy specification. 

Relation tuples yield the assignment of an object’s structural 

feature value, which name is the relation name. The first element 

of the tuple is always an atom that corresponds to the source ob- 

ject. The second element can be either a class object atom (in the 

case of a reference target), or a datatype value atom (in the case 

of an attribute value). 

As a side implementation note, it can be noted that the first 

rule creates an object whose type can only be known during rule 

execution. The second rule assigns a structural feature value to an 

object created by another rule. ATL matched rules do not sup- 

port creating an object with a dynamically computed class, nor 

does it support assigning properties to objects created in another 

rule. Therefore we again use some ATL imperative constructs in the 

transformation. To the best of our knowledge, there is no existing 

declarative transformation language supporting these features. 

Fig. 7. Class diagram metamodel for model search.

Fig. 8. HSM metamodel for model search.

3.5. Example and results 

To illustrate the model search process, we provide results 

on two use cases: a class diagram (CD) generation example 

( Macedo and Cunha, 2013 ) and a hierarchical state machines 

(HSM) example ( Macedo and Cunha, 2016 ), where the specifi- 

cations were adapted from literature to be implemented in our 

framework. In both cases, the goal is to set up a simple metamodel 

and then to generate a solution with specific properties given by a 

set of constraints written in OCL. There is only one possible solu- 

tion for a given number of classes/states. Our objective here is not 

to study absolute performance but rather the general behaviour: 

indeed our example Alloy/SAT solver chain only illustrates the ap- 

proach and does not include any special solving optimization. 

We show the class diagram metamodel in Fig. 7 . It states that 

the generated solution will have only packages, classes and at- 

tributes. 

The additional OCL constraints for the instances generation are 

shown below. The goal is to generate attributes with different 

names withing the same class, by numerically increasing the name 

of the attributes. The complete Alloy program generated for this 

specification is listed in Appendix A . 

We show in Fig. 8 the metamodel used for the HSM example. 

The metamodel is formed by a root state machine, which can be 



formed by simple or composed states. They are connected by in- 

coming or outgoing transitions. Their corresponding constraints are 

illustrated in the following. The constraints are more complex than 

in the class diagram example, since they need to guarantee the 

nested structure, the state machine and transition names, and that 

transitions need to connect to one ongoing and one outgoing state. 

The explanation of each constraint is done in the code comments. 

These two examples are injected into the model search chain to 

be executed by the solver. Note that for each example, it is neces- 

sary to inject the metamodel and its instances (partial assignment). 

The generic multi-level transformation avoids having one transfor- 

mation CD2Alloy and another one HSM2Alloy . 

As in the original example, we observe the computational be- 

haviuor when gradually increasing the number of elements (i.e., 

instances of the metamodel classes) in the requested solution, from 

2 to 32 (CD) or 26 (HSM) elements. Here we always start from the 

same initial model containing only a root element. We first pro- 

vide experiments on the class diagram generation problem with 

different global scopes (a mandatory parameter for Alloy and most 

existing solvers) to observe the impact on performance. Then we 

Fig. 9. Results on the generation problems.

compare results on the same problem using either the SAT4J or 

MiniSAT back-end. 

In all these experiments we focus on the model finding times, 

excluding the problem (resp. solution) generation (resp. extrac- 

tion). Indeed, due to exponential combinatorial search, the former 

is a decisive factor in the overall computational behaviour. The lat- 

ter, pseudo-linear in practice, soon becomes negligible (plus the 

problem only needs to be generated once). We provide the average 

values based on 20 runs of each problem on a 16 GB Xeon 3.3 Ghz 

linux computer using Alloy 4.2. Results are summarized in Fig. 9 . 

The examples and full experiments are available for reproduction 

in MOS (2018) . 

The top figure presents results with different scopes using Min- 

iSAT with a fixed integer bitwidth (5). The ratio 2:1 denotes that 

the global scope is set to twice the number of requested classes. 

These results show that the scope has an important impact on 

the computation times. Indeed a higher scope results in a higher 

number of boolean variables in the generated SAT problem thus 

potentially inducing a higher number of branches to explore (de- 

spite mitigation by symmetry breaking). Although a smaller scope 

is in general better for performance, our experience shows that 

choosing the right scope is tedious and largely problem-dependant. 

Similar effects can be observed on problems with numerical con- 

straints when varying the integer bitwidth (which defines the 

range of integer values). Since Alloy translates integers to sets of 

boolean (one for each value), this again results in a higher num- 

ber of variables and thus a similar combinatorial impact. Finally, 

in most of our experiments, we can observe occasional gaps (resp. 



peaks) caused by specific instances being easier (resp. harder) for 

the solvers built-in optimizations. 

The bottom figure shows the results for our state machines gen- 

eration example. We defined complex constraints that mix integer 

and set computations so that the hierarchy size for top states in- 

creases with the problem size. We can indeed observe a higher 

computational cost than for the class diagrams generation exam- 

ple. 

These experiments indicate that Alloy/SAT may not be the best 

solver choice for a number of problems, particularly those involv- 

ing various numerical constraints or those where it is hard to guess 

the approximate number of instances in the solution. This confirms 

the interest of having a solver-agnostic model search approach, al- 

lowing users to select a method depending on their problem char- 

acteristics. We believe that, generally, model search would ben- 

efit from a solver that does not impose scope restrictions. Un- 

fortunately, efficient solvers which allow on-the-fly instance cre- 

ation are not convincingly demonstrated in the literature. Finally, 

although this is more obvious on complex problems or on large 

scales, an exponential behaviour can always be observed when the 

size of the problem grows. This is expected from a combinatorial 

solver but limits usability when using a SAT-based solver that can 

only cope with small to medium size problems ( Jackson, 20 0 0 ). 

4. Transformation as search

In the following we present our generalization of model search 

to model transformation/update operations by considering multi- 

ple metamodels (sources and/or targets) together with the trans- 

formation specification as a single model search input. This opera- 

tion is called transformation as search (TAS). The main idea is to de- 

fine the transformation/update as a set of relations and constraints 

between elements of the metamodels that are to be related (these 

may be called weavings ). All these artifacts are then unified into 

a transformation metamodel . By applying model search on this uni- 

fied metamodel, a model which contains target model(s) is created. 

A major feature of the approach is that the operations which yield 

the model search problem are completely solver-independent, thus 

allowing to directly use any underlying model search implemen- 

tation. Additionally, since TAS solely uses basic modeling elements 

(metamodels and constraints), no specific transformation language 

is introduced. However, one could define a higher-level language 

to ease the writing of specifications (or use an existing language) 

and them implement a translation into a weaving metamodel and 

its constraints. 

Another important feature is that the operation is inherently bi- 

directional and incremental: the same specification can be used 

to generate any (or extend previously existing) weaved models. 

Indeed, in a TAS operation, source/target metamodels are treated 

equally in the specification and only make sense once a given 

transformation scenario has been requested. In the following, we 

will thus call the weaved metamodels input metamodels instead of 

source/target metamodels. Finally TAS is not restricted to one-and- 

one scenarios: any number of input metamodels can be weaved 

within a single specification. 

In the next subsections, we first introduce a running example 

and three possible scenarios. We then formally define the TAS op- 

eration and the different steps involved, with illustrations on the 

first classical scenario (creation of a target model from a source 

model). We then present how TAS can be applied to the running 

example for the two other scenarios: reverse transformations and 

updates. Finally, we describe our TAS implementation and provide 

some experimental results. 

4.1. Running example 

The chosen example is a transformation between a class 

schema model ( MM 

CS ) and a relational schema model ( MM 

RS ), 

known as the Class2Relational transformation. We have chosen this 

use case as illustration because it is well-known and rather sim- 

ple (allowing the reader to quickly grasp the involved domain con- 

cepts) and has been studied in other works to demonstrate dif- 

ferent aspects about transformation languages (such as QVT, 2011; 

Lawley and Steel, 2005 , and others). The transformation input 

metamodels are presented at both sides of Fig. 10 (some elements 

have been omitted to improve readability). 

The first scenario is the traditional creation of a relational 

schema (the target model) from a class schema (the source model). 

The second scenario is the reverse transformation: creation of a 

class schema from a relational schema. The third scenario is an up- 

Fig. 10. Extract of the running example transformation metamodel as an ECORE diagram. Input metamodels are on the sides, weaving metamodel is in the middle.



Fig. 11. Source and target models from the running example (scenario 1) as in- 

stance diagrams.

date: both models pre-exist, then the class schema is modified and 

the relational schema needs to be updated accordingly. 

We will apply the scenarios on a “Family” class schema illus- 

trated at the top of Fig. 11 . The bottom part is a relational schema 

created by the first scenario, and is also the source for the second 

scenario. 

4.2. Transformation as search process 

The complete TAS process is illustrated in Fig. 12 . It consists of 

three main steps: creating the model search problem, running the 

search, then isolating the target models from the solution model. 

Creating the model search is itself composed of two subtasks: 

creating the search metamodel (i.e., the problem definition, here 

called the transformation metamodel) and creating the search re- 

quest (i.e., the partial assignment, here called the transformation 

request). Each of these tasks is formally defined and detailed in the 

following along with its illustration on our example’s first scenario. 

4.2.1. Obtaining the transformation metamodel by unification 

The first step is to obtain a transformation metamodel, called 

CMM 

T , by unification of the input ( { CM M 

0 , . . . , CM M 

n } ) and weav- 

ing ( CMM 

W ) metamodels. This part of the process is independent 

from the chosen transformation scenario. 

In our example, these are respectively the class schema struc- 

ture (left part of Fig. 10 ), the relational schema structure (right 

part), and a set of weaving elements and constraints (middle part, 

constraints are not shown in the Figure). The application of this 

operation to our example is illustrated in Fig. 13 . Its result is the 

whole Fig. 10 . 

Metamodel unification is a simple operation, consisting merely 

in copying and combining the inputs into a new metamodel. For- 

mal definitions of CMM 

W and CMM 

T are given below: 

Definition 11 (weaving metamodel) . We call weaving metamodel 

between { CM M 

0 , . . . , CM M 

n } , a constrained metamodel CMM 

W de- 

fined by CM M 

W = < M M 

W , C W >, where MM 

W and C W are re- 

spectively a set of metamodel elements and constraints that 

define the weaving relationships between the elements of 

{ CM M 

0 , . . . , CM M 

n } . 
In ECORE, the weaving metamodel targets the input metamod- 

els elements through the use of cross-model references. 

Definition 12 (transformation metamodel) . Let CMM 

W be a weav- 

ing metamodel and { CM M 

0 , . . . , CM M 

n } the set of weaved meta- 

models. We call transformation metamodel the constrained meta- 

model CMM 

T defined by CM M 

T = < M M 

T , C T >, where M M 

T = 

M M 

0 ∪ . . . ∪ M M 

n ∪ M M 

W and C T = C i ∪ . . . ∪ C n ∪ C W . The operation 

consisting in obtaining CMM 

T is called metamodel unification. 

Obviously, in ECORE, metamodel unification turns cross-model 

references in the weaving metamodel into intra-model references 

in the transformation metamodel. 

4.2.2. Creating the transformation request by unification 

The next step is to define the transformation request (which 

will act as the model search request). The request depends on the 

chosen scenario, which is defined by setting a behaviour on each 

model of the input metamodels. Three behaviours are supported: 

generate, freeze and extend . These behaviours allow the selection 

of a scenario by specifying which models are part of the request 

and which should be generated. Also whether or not they can be 

modified in the final solution. “generate” means that the model 

does not yet exist and should be created by the transformation. 

In other words, it is a target model created from scratch. “freeze”

means that the model exists and should not be modified by the 

transformation. In other words, it is an immutable source model. 

Finally “extend” means the model exists but may be modified by 

the transformation. In other words, it is both a source and a target 

model. The different combinations of these behaviours give birth to 

the potential scenarios. In our example’s first scenario, the classical 

Class2Relational transformation, the class schema is set to “freeze”

while the relational schema is set to “generate”. 

The transformation request is obtained by unification of all 

source models and optionally a weaving model (the latter is a pre- 

vious transformation trace and can be used for update scenarios). 

Definition 13 (transformation request) . Let CMM 

T be a transforma- 

tion metamodel created from a set of input (and weaving) meta- 

models S = { CM M 

0 , . . . , CM M 

n , CM M 

W } . Let s = { M 

0 , . . . , M 

p , M 

W } 
be a set of source (and weaving) models (where ∀ M 

i ∈ s, M 

i con- 

forms to CMM 

i ∈ S ). We call transformation request for CMM 

T the 

model M 

T 
r defined by M 

T 
r = M 

0 ∪ · · · ∪ M 

p ∪ M 

W . The operation con- 

sisting in obtaining M 

T is called model unification. 

The definition above encompasses all scenarios to depict the 

unification. However, some of the models can be empty/absent, de- 

pending on the scenario. This means the weaving model is optional 

when defining one new instance, but it is always used or generated 

if not existing. In our example’s first scenario, there is only one 

source model and no previous trace, the transformation request 

therefore simply consists in a copy of the class schema model ele- 

ments, which is the “Family” class schema at the top of Fig. 11 . 

4.2.3. Running model search 

The next step is to run model search on the previously defined 

problem. From Definition 10 , a valid model search request (here 

the transformation request) must be a partial model of the search 

metamodel (here the transformation metamodel CMM 

T ). For any 

TAS problem, this property is ensured by the following proposition: 

Proposition 1. Let CMM 

T be a transformation metamodel. Any 

transformation request for CMM 

T is a partial model of (or p −
con f ormsT o) CMM 

T . 

Proof. From Definition 9 of p − con f ormsT o, it resolves to finding 

a relaxed metamodel CM M 

T 
r = < M M 

T 
r , C 

T 
r > ∈ Rx (CM M 

T ) such that 

M 

T 
r conformsTo CM M 

T 
r . From Definition 7 of conformance, this re- 

quires that (1) M 

T 
r conformsTo M M 

T 
r and (2) M 

T 
r ∈ C(M M 

T 
r ) . 

Let CM M 

T 
r be the relaxed metamodel of CMM 

T such that M M 

T 
r = 

M M 

T and C T r = ∅ (i.e., the one obtained by removing all con- 



Fig. 12. Transformation as search process.

Fig. 13. Obtaining the example transformation metamodel by unification.

straints). (2) is obviously true since there are no predicates to sat- 

isfy. (1) requires that M M 

T 
r can be a reference model of M 

T 
r , i.e., 

its graph G 

T 
r contains all nodes (meta-elements) targeted by the 

graph g T r of M 

T 
r . Let S = { M M 

0 , . . . , M M 

p , M M 

W } be the input and

weaving metamodels. (1) is clearly true since on one hand, by 

Definition 12 of CMM 

T we have ∀ MM 

i ∈ S, MM 

i ⊂ MM 

T (in partic- 

ular G 

i ∈ G 

T ), and on the other hand M M 

T 
r = M M 

T (in particular 

G 

T 
r = G 

T ). �

In other words, since each input metamodel (as well as the 

weaving metamodel) is a subset of the transformation metamodel 

and each source model conforms to an input metamodel, any 

transformation request p − con f ormsT o to the latter. 

The model search operation extends the transformation request 

M 

T 
r into a solution model M 

T 
s that conforms to CMM 

T (when there 

are solutions). By satisfying weaving constraints, search thus pro- 

duces a solution model which contains both source/target model 

elements and weaving model elements (these can be understood 

as the transformation traces). Additionally, model search ensures 

that models satisfy their own metamodel constraints, effectively 

preventing the creation of ill-formed target models. In our exam- 

ple’s first scenario, the solution model, without the transformation 

trace, is shown in Fig. 11 . 

4.2.4. Obtaining the target models and transformation trace by 

separation 

The final step is to isolate the target models contained in the 

solution model as independent models. This operation, the reverse 

of model unification, is similarly a simple operation: for each target 

metamodel MM 

j , it suffices to copy all elements from M 

T 
s that are 

associated to MM 

j into a new model. The same technique can be 

applied to MM 

W in order to obtain the transformation trace as an 

independent model. For the latter, in ECORE, weaving’s intra-model 

references are therefore turned into cross-model references target- 

ing the previously separated target models or the original source 

models. 

In our example’s first scenario, a sample target model result is 

the “Family” relational schema composed only of the elements il- 

lustrated at the bottom of Fig. 11 . 

4.2.5. Application on other scenarios 

As previously mentioned, different scenarios are obtained by 

varying the transformation request through the possible combina- 

tions of models behaviours. 

For our example’s reverse transformation scenario, behaviours 

are exchanged, i.e., the existing relational schema is set to “freeze”

(source model) and the class schema is set to “generate” (target 

model). By applying the same process, a class schema will be cre- 

ated. Note that depending on the transformation specifications, the 

operation is not necessarily bijective since it is not even injective 

in the general case. However the original class schema is necessar- 

ily among the potential solutions. 

For our example’s update scenario, the class schema is set to 

“freeze” while the relational schema is set to “extend”. As a conse- 

quence, the relational schema will be updated to maintain consis- 

tency with the class schema based on the weaving constraints. If 

the original schemas were obtained by a transformation, its trace 

can be provided, effectively forcing the transformation to main- 

tain previous mappings. If a trace is not provided, TAS will recre- 

ate mappings for all elements. These may be different ones if the 

specifications allow it, though again the original mapping (if any 

existed) is necessarily among the solutions. 

Other scenarios are possible. By setting both models to “freeze”, 

TAS checks whether it is possible to map two given schemas and 

the potential mapping is provided in the transformation trace. By 

setting two existing schemas to “extend”, it will allow to recover 

consistency by modifying any (or both) model(s). 

Finally, we do not present an example with more than two in- 

put metamodels (which means more than one source or target 

model) since it does not introduce any difference for the TAS pro- 

cess: any number of input metamodels can be weaved by a specifi- 

cation while applying the exact same process. In other words, TAS 

is not limited to one-and-one transformations/updates. 



Fig. 14. TAS launch configuration screenshot.

4.3. Implementation 

The transformation/synchronization (UI and API) software parts 

implement the complete TAS chain illustrated in Fig. 12 . Again, it 

is freely distributed as a set of Eclipse plugins under EPL license 

( MOS, 2018 ). 

The input, illustrated on the running example as a UI screen- 

shot in Fig. 14 , is a TAS specification: the weaving constrained 

metamodel, the involved constrained metamodels, the optional in- 

put and trace models, and finally the choice of model behaviours 

(which define the scenario being requested). 

The TAS designer, i.e., the user of the framework that will ex- 

ecute a TAS operation, has to create a set of minimal artifacts 

for performing model transformations, i.e., a TAS specification. It 

needs to specify the source and target metamodels and the weav- 

ing metamodel, to be able to create relationship between the ele- 

ments. The metamodels need to be written in ECORE. In addition, 

it is also necessary to create at least one source or target model, 

depending on the direction of the transformation. The 3rd sce- 

nario (synchronization) is also interesting for illustrating the multi- 

level transformation . Consider the need to translate the instances 

of the Class and Relational metamodels into the solver format: it 

is not necessary to develop Class2Alloy or Relational2Alloy transfor- 

mations. 

Other artifacts may be created as well, to obtain a more pre- 

cise specification, such as the OCL constraints over the source and 

target metamodels. Finally, an already existing weaving model may 

also be set up as parameter, as in the synchronization scenario. It 

will enforce the existence of the already created relationships. 

We have opted not to create a new transformation language or 

to use existing ones, such as ATL or QVT. The transformations are 

created only using models/metamodels and OCL constraints. How- 

ever, these languages could be integrated into the framework, by 

developing the transformations for the ATL or QVT specifications 

into our Model Search layer. To implement this, the transformation 

language would need to have a transformation model and a meta- 

model. 

The TAS specification is then translated into a Model Search 

problem following the metamodel and request model unification 

steps previously presented: the search metamodel (which yields 

the problem definition) is set to the generated transformation 

metamodel, and the search root model (which yields the partial 

assignment) is set to the generated transformation request. These 

steps are implemented using EMF’s Java API. Additionally, when 

a model behaviour is set to “freeze”, two elements are added to 

the resulting model search specification. First, the model search 

scope sets each class bound to the number of corresponding in- 

stances in the frozen source models. However, this is not suf- 

ficient since structural features may still be modified. A second 

option is set, presented in Section 3.4.4 , which freezes attributes 

and references of the corresponding frozen parts of the root 

model. 

In order to obtain the output(s), our TAS implementation pro- 

vides a solution explorer interface that embeds the model search 

solutions explorer. Each time a new solution is requested, the un- 

derlying model search problem is solved using the chosen solver 

chain. As previously presented, the solution (if any) is separated 

to obtain the target models and the transformation trace. Again, 

these solver-independent steps are realized using EMF’s Java API, 

similarly to (meta)model unification. The current implementation 

saves all the intermediate files generated during the process, such 

as the solver specifications, the solution model, the transformation 

model and metamodels, and others. This enables a detailed analy- 

sis of each execution step of the TAS chain. 

4.4. Results 

We provide results on the running example and an additional 

specification taken from the literature. Experimental conditions are 

the same as to the ones presented in Section 3.5 . Similarly, we do 

not aim at evaluating absolute performance (which highly depends 

on the chosen solver chain) but rather focus on the differences be- 

tween scenarii, specifications and problem instances. Therefore we 

provide results with a fixed backend (Alloy/MiniSAT), scope ratio 

(3:1), and bitwidth (5). All these experiments are available for re- 

production in MOS (2018) . 

4.4.1. Results on the running example 

Scenarii, specifications and problem instances. We executed 3 dis- 

tinct scenarii: 

• The forward transformation presented in the running example

(from class to relational). In this case, we set to freeze the left

model and to generate the right model, which will be generated

from scratch.
• The reverse transformation (from relational to class). We con- 

figure to freeze the right model produced from scenario 1, and

we produce a new left model.
• A synchronization scenario (propagation of changes from one

model to another after adding one new element to the class

metamodel). We set freeze to the left model, extend to the right

model, and provide the trace from the first scenario as the

starting weaving model.

The specifications, that is the three metamodels and their con- 

straints, are exactly the same for the three scenarii. In order to 

illustrate how transformations are specified in our approach, we 



provide below some example constraints that apply on the trans- 

formation together with a brief explanation. These constraints, to- 

gether with the input metamodels and models are translated into 

an Alloy program. The complete list of generated constraints, in Al- 

loy, are listed in Appendix B . 

• c.1 : prevents a class from having several attributes with the 

same name. Applies to any (source or target) Class model; 
• c.2 : specifies the cardinality of the link, i.e., that a Class is 

linked with only one Table; 
• r.1 : sets the type of a primary key column to ”Integer”. Applies 

to any (source or target) relational model; 
• c4r.1 : weaved classes and tables must have the same name;
• c4r.2 : for single-valued attributes, weaved attributes and

columns must have the same owner, i.e., their containing Class

and Table ;
• c4r.3 : the source column of an N-N relationship must be a for- 

eign key to the attribute’s owning class.

Writing OCL constraints for TAS specifications is very different 

from writing classical rule-based transformations. Indeed, the goal 

here is to narrow the set of possible solutions to the acceptable 

ones by incrementally adding constraints. If one so wishes, it is 

possible to use a dedicated language (such as QVT-R) that would 

then be translated to a weaving constrained metamodel. Our ap- 

proach is very expressive, since the approach is not dependent 

of the top transformation language, but on the definition of the 

weaving models. The choice of a given transformation language, or 

a subset of it, is a trade-off between expressiveness and usabil- 

ity. The iterative process of creating weaving specifications often 

shows the modeler that source/target metamodel constraints had 

not been fully specified, for instance by proving that badly-formed 

models can be created. However, discussing the details of this im- 

plementation is out of scope of this paper. 

Finally, we provide experiments on two different problems 

while gradually increasing the instances size: the instances we pre- 

viously generated using model search; and the family-person cus- 

tom diagram depicted in Fig. 11 for which we gradually add at- 

tributes to one class. 

Results. Fig. 15 summarizes the results for this set of experiments. 

Fig. 15. Results on the running example.

First, we can obviously note the difference of magnitude be- 

tween the different scenarios. For the generated diagrams, scenario 

1 tops at 18s, scenario 2 at 113s and scenario 3 at only 6s. The lat- 

ter is easy to explain. Indeed, while the global number of final el- 

ements is the same, most of them already exist and are weaved in 

the original trace (this can be seen by looking at the initial num- 

ber of elements, i.e, the given partial assignment size). Thus only 

the added elements create search decisions resulting in a slower 

computational increase along with the problem size. This may in- 

dicate that the approach is particularly fitted for the update sce- 

nario. The differences between the first two scenarios are the re- 



Fig. 16. Results on the state machines example.

sult of the specifications producing a higher number of possibil- 

ities to explore on the reverse scenario. On these two scenarios 

the exponential behaviour expected from combinatorial search is 

observed. This again confirms ( Jackson, 20 0 0 ) that the Alloy/SAT 

solver, at least without any special optimizations, is only efficient 

on small to medium problem sizes. 

We can also observe that in every scenario the computation 

times are similar between the generated and manual instances, 

though the latter only grows in the number of attributes. This may 

indicate that difficulty depends mostly on instance sizes and not 

on the particular shape of instances. 

4.4.2. Results on the literature state machines example 

We adapt the example proposed by Macedo and Cunha (2016) . 

The example involves transforming hierarchical state machines to 

non-hierarchical ones using the OCL closure operator in the con- 

straints. Fig. 16 summarizes the results on the first scenario so as 

to compare with the running example. As can be seen on the Y- 

axis, the computational cost is much lower than for the generation 

of relational databases from class diagrams, topping at only 0.34 s 

for the same number of target elements. This confirms that dif- 

ficulty is largely dependent on the problem specifications. Indeed 

this scenario only requires the solver to unfold the states hierarchy 

while preserving existing transitions. 

4.4.3. Results summary 

The approach is functional but suffers from computational is- 

sues. Obviously, computation times are highly impacted by the 

specifications. The running example strongly constraints the result, 

while the state machines example is clearly an easier problem. The 

instances size and the chosen scenario are also an important factor. 

This combinatorial approach seems generally more fitted for syn- 

chronization than classical transformations or generations. Finally 

a number of limitations stem from the chosen solver backend. In- 

deed, the Alloy/SAT combination shows its limits both in the size 

of problems it can handle, which can be mostly tied to the re- 

quired scope issues, and in the types of operations that can be 

used in the specifications. Indeed arithmetic operations are sup- 

ported but costly, while string manipulations are strictly limited 

to plain equality. We believe this confirms the relevance of our 

solver-agnostic abstraction. On one hand it eases the development 

of alternative backends since only a part of the model search chain 

needs be defined. On the other hand it allows the user to switch 

backends based on specific needs or even break down problems 

into different sub-parts and solvers. 

5. Related work

We describe the related work classified into three groups: first, 

the approaches focusing on model finding and model generation; 

second, the ones focusing on coupling transformations and opti- 

mization; finally, the solutions covering model relations and trans- 

formations as search, which are the closest to our approach. It 

is important to note that the comparison and description of ap- 

proaches focuses on its overall components and chain, the sup- 

porting framework and the interactions between them, not on the 

specific details on the translation from the input language (e.g., 

ECORE/OCL) to each solvers’ (e.g., Alloy/SAT) format. 

Model finding/generation 

Several works have studied the benefits of model find- 

ing/generation within a modelling environment. Among the first 

ones is USE ( Gogolla et al., 2007 ), which applies a custom en- 

gine on UML/OCL for validation and later use case generation 

purposes. A large number of approaches, including ours, fol- 

low the same principle of translating a given modeling specifi- 

cation into the solver format, but applied in other context and 

with distinct capabilities. Model repair approaches (see a sur- 

vey in Macedo et al. (2017) ), such as Hegedüs et al. (2011) use 

a similar technique to decrease the number of inconsistencies 

in a given model. A number of other solver-specific approaches 

have followed: Cabot et al. (2007) transforms UML/OCL to a CSP 

solver specification for validation, others target the Alloy/SAT lan- 

guage/solver ( Anastasakis et al., 2010; Maoz et al., 2011; Macedo 

et al., 2013; Cunha et al., 2015 ). 

In our approach, we explicitly describe the needed chain of 

transformations implemented by the framework, covering the in- 

jection/solving/extraction operations. We also provide explicit def- 

initions of partial, relaxed and constrained metamodels/models, 

which are present on related approaches but not always defined. 

The definitions are adapted to represent enumerative solutions, 

where it is necessary to have a pool of elements already existing. 

The generative ones are also supported, following a more typical 

modeling scenario. For instance, these definitions handle the exis- 

tence of ECORE models elements that do not need to be connected 

and constrained by all the input metamodel definition. The transla- 

tion of ECORE/OCL to Alloy from our solution is similar with previ- 

ous work. As drawback, we do not provide deeper studies on solver 

specific characteristics that could improve performance and quality 

of the solutions. 

Transformations and optimization A couple of solutions from 

this category have the final goal similar to ours, which is to per- 

form model transformations and model generation. However, the 

approaches main contributions focus on using and/or improving 

optimization techniques in a MDE technical space, not on provid- 

ing a framework. Macedo et al. (2013) offers two notable features: 

a measure of similarity to compare search solutions and an auto- 

mated reduction of the resulting Alloy Formulas to decrease com- 

putational cost. This is an efficient solver specific capability. The 

work from Semeráth et al. (2016) proposes to use multi-objective 

optimization for model generation. It focuses on the size of the 

generated models, which has been a constant concern on exist- 

ing approaches. This feature and other algorithm dependent ap- 

proaches would be interesting to be incorporated into a generic MS 

framework, adding value to the result. Many other model finding 

techniques developed outside of a modeling framework ( Slaney, 

1994; Zhang and Zhang, 1996; White et al., 2008 ) could also be 

used as alternative model search implementations. 

Approaches such as Kessentini et al. (2008) and 

Fleck et al. (2016) propose to integrate MDE/transformations and 

optimization techniques. The approach from Fleck et al. (2016) pro- 

duces a model transformation, which can be further executed. The 

major contribution is not to provide a full translation between 

modeling and solver technical spaces, but to find the best rule 

execution sequence, from a set of existing rules. They also apply 

different optimization algorithms to choose the best transfor- 

mation rules. The approach is extended in Fleck et al. (2017) , 



concentrating on the quality of the solution and improving the 

choice of the optimization algorithms. They use HOTs (Higher 

Order Transformations) to infer information about the transforma- 

tions and to choose the algorithms. 

Finding the most appropriate rules is also the focus from 

Kessentini et al. (2013) , which applies combinatorial optimization 

techniques for model transformations. The main contribution is to 

find the transformation rules, based on an existing set of examples. 

They give special attention on bringing search based artifacts and 

algorithms, such as fitness functions, into an MDE environment. 

Kessentini et al. (2012) present MotoE, which sees MT as a com- 

binatorial optimization problem. It is one of the first works where 

the transformation is obtained from a set of examples. They use 

heuristic strategies to build the transformation. One important dif- 

ference from rule based search approaches, such as ours, is that 

it does not intend to produce the solver specification from a given 

model transformation and the input models, but it searches for the 

input transformation itself. Kessentini et al. (2017) present a solu- 

tion adapted to model repair applied to a transformation scenario. 

The changes between models are expressed in terms of refactor- 

ings. 

These approaches are relatively distant from ours on their main 

goals and design choices, because in our TAS approach the trans- 

formations are created individually, according to the developer 

specification, thus being more similar to rule-based specifications. 

In order to add optimization functions, it would be necessary 

to add specific transformations handling the input transformation 

language. Our approach loops over the set of the solutions pro- 

vided by the solver, but without (so far) support to optimization. 

Model relations and transformations as search A number of 

studies have tackled establishing relations (also referred as links 

or relationships) between model elements and to use them in a 

large variety of scenarios. The utilization of these relationships for 

model transformations and synchronization can be coupled with 

search based solutions. Despite having different central goal, and 

some distinct research issues, the architecture and core facilities 

of such solutions can be related with a transformation as search 

framework. 

The survey from Czarnecki et al. (2009) presents several stud- 

ies about bidirectional model transformations. The work from 

Hidaka et al. (2016) presents a classification of features of bidi- 

rectional transformations, though covering a larger scope, most of 

the approaches not involving model finding. We concentrate on 

the solutions that could be classified within a model generation 

context. 

Different works have tackled synchronization issues. A num- 

ber of incremental approaches ( Hearnden et al., 2006; Bergmann 

et al., 2008; Vogel et al., 2009 ) allow to update a target 

model by taking into account incremental changes on the source 

model. PinnaPuissant et al. (2015) , Macedo et al. (2015) and 

Straeten et al. (2011) handle synchronization as well, with 

special focus on model inconsistencies. These techniques in- 

herit the deterministic behaviour of rule-based transformations. 

Hettel et al. (2009) proposes, based on abductive reasoning, to 

reverse an unidirectional transformation in order to provide syn- 

chronization of the source model with the previously obtained tar- 

get model. In particular, it shares our ability to compute different 

alternative solutions through combinatorial logic inference. Here 

again, additional specifications are always required for the incre- 

mental/synchronization scenarios. 

The JTL (Janus Transformation Language) ( Cicchetti et al., 2010 ) 

language supports non-bijective transformations and change prop- 

agation. The model transformations are translated into an ASP 

(Answer Set Programming) program. The search problem is gen- 

erated from one source and one target models. The approach 

from Eramo et al. (2012) has the same core implementation 

of JTL, but extends it to support transformations between ADLs 

(Architecture Description Languages). It is one of the few ap- 

proaches that have a detailed description of all the chain, and 

it is also based on the concept of a weaving model to set the 

links between source and target models, placing the work close 

to ours. However, it focuses on a star architecture and it pro- 

vides only source-to-target model relations. It has metamodel in- 

dependent translations through a generic bridge between technical 

spaces. They implemented Higher Order Transformations (HOTs) 

that generate the input and output bridges. However, the bridges 

need to be regenerated every time a source or target metamodel 

change. In our approach, we use only 2 reflexive transformations 

as bridges, one for input and another for output. This prevents 

from (re)generating multiple transformations that need to be man- 

aged. In addition, HOTs are often difficult to implement and error- 

prone. 

In PTL (Prolog-based Transformation Language) Almendros- 

Jimenez et al. (2016) translate a subset of ATL + OCL into Prolog, 

thus providing logical semantics for model transformations. Simi- 

lar to our approach, it develops a translation from the modelings 

space to the solver space. They focus in a 1-to-1 transformation 

scenario, without describing how extensible the approach is. 

Triple graph grammars (TGGs) Schürr and Klar (2008) share the 

use of non-deterministic propagation mechanisms as foundations 

for their bidirectional and synchronization capabilities ( Giese and 

Wagner, 2009 ). Their definition of a correspondence graph, though 

not grounded on basic modeling elements, is similar to our weav- 

ing and unification approach. Different specifications are suggested 

for the two scenarios as the generated language is further made 

deterministic through a set of sufficient static conditions. Addition- 

ally, the nature of triple graph rules restricts their use to one-and- 

one specifications. 

Finally, the ECHO framework Macedo and Cunha (2013) and 

Macedo et al. (2015) supports bidirectional model transformations. 

It provides a QVT-R implementation that is transformed into Al- 

loy. Here the specifications are shared for both bidirectional and 

synchronization scenarios, but the approach is inherently restricted 

to the Alloy/SAT solver and one-and-one scenarios. It provides a 

complete translation chain and framework. As the authors stated, 

it is enumerative, though this is hidden from the user. Macedo and 

Cunha (2016) extends this work, providing a more detailed and 

complete implementation, handling both QVT-R and ATL. ECHO 

and the solutions that are implemented using solvers with mono- 

tonic behaviour circumvent the restriction of only extending a 

given model by re-generating the target model even for synchro- 

nization scenarios. 

We provide a solver-independent specification of the bi- 

directional and synchronization problems in terms of model 

search. This means any specific problem that relates 2 or more 

models (synchronization, model repair, multi-directional transfor- 

mations, or others) can be mapped into our TAS and then MS spec- 

ification. As a consequence, ECHO’s Alloy mapping, as any other 

approach from the previous paragraph, could be ported as a model 

search alternative implementation and would therefore be directly 

usable for any scenario. Additionally, the implementation of QVT-R 

could be achieved through a mapping to a corresponding weaving 

constrained metamodel. As drawback, application-specific aspects 

that can be related to the solver, or to the user interaction as well, 

are not specifically handled. This would require a per-approach 

study. 

6. Conclusion

We presented a two-layer approach for implementing differ- 

ent kinds of model operations on terms of finite model gener- 

ation techniques. The model operations, which may involve sev- 



eral input and output models, need to be translated into a model 

search problem, using only MDE artifacts and techniques. The 

model search specification is then translated into a solver-specific 

problem, which is translated back into the modeling world after 

resolution. This process is divided in a chain of steps, which are 

divided in solver-independent and solver-specific parts. The sepa- 

ration between the search problem from the actual solving means 

that depending on the solver, the domain of reachable solutions 

may be different. However, the way the problem is stated does not 

impose any restrictions on solutions. 

We formalized and detailed the model search layer, which is 

a first-class operation independent from the solving back-end. We 

describe the chain of transformations needed to implement the 

process. This layer is the corner-stone for any other operation im- 

plementation. An example implementation of the solver-specific 

parts is then illustrated using the Alloy/SAT combination. This al- 

lowed to emphasize the problems that naturally arise in such im- 

plementations. A first set of experiments validated the applicability 

but also showed the limitations of boolean solvers for real engi- 

neering problems that include arithmetic computations or string 

manipulations. We believe that any model generation operation 

may be transformed into a model search problem and that our 

solver-agnostic approach will therefore ease the use and compar- 

ison of different back-ends on different types of problems. The 

solver-specific characteristics depend on the implemented solution. 

We defined the concept of multi-level transformations, which 

are responsible for bridging between the modeling and the solver 

technical spaces. They are transformations implemented using 

reflection techniques, taking the metamodel and model as in- 

put, without explicitly referring to the elements of the input 

metamodels, allowing to realize the whole chain without any 

problem-dependent transformations. This is important to avoid 

developing one new transformation for each new input specifi- 

cation. 

We then formalized and described the second layer, transfor- 

mation as search, which allows to turn any model transforma- 

tions and synchronization specifications into a model search spec- 

ification. It is important to note that in transformation scenarios 

we have the source, target and weaving models translated into 

a single model search problem, by applying an unification strat- 

egy. To the best of our knowledge, the definitions of the uni- 

fication strategy couple with weaving models has not been ex- 

plored deeply in the literature. The implementation is completely 

independent from any solver and offers several advantages: multi- 

directional, incremental, single specifications for all scenarios, not 

limited to one-and-one operations. Our experiments showed that it 

may be particularly fitted for the synchronization scenario which 

is less impacted by the inherent combinatorial explosion of the 

approach. 

Ongoing and future work include developing search chains that 

target different types of solvers to address specific computation 

needs (arithmetic, strings manipulation, etc.). This would allow to 

compare different solvers characteristics and to guide the choice 

of a given solver. Another future work is to support higher-level 

transformation language (such as QVT-R or ATL) to ease the writ- 

ing of some types of specifications. Finally, we have not tackled in 

this paper the use of an optimization objective which may help the 

user in discriminating between potential solutions. 

Appendix A. Model search generated specification 

We list below the complete Alloy specification generated for the 

class diagram (CD) Model Search problem. It contains the initial 

instance ( module RootModel ), the metamodel specification ( module 

CD ) and additional constraints generated from OCL ( module gener- 

ation ). 

Appendix B. Transformation as Search generated specification 

We list below the Alloy code of the weaving metamodel ( mod- 

ule Class4Relational ) and the constraints from the OCL specification 



( module C4TASMM ) with the TAS specification. The left ( Class ) and 

right ( Relational ) metamodels, as well as the Root Model specifica- 

tions are available for download in the prototype site. 
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