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Abstract

This work gives an in-depth derivation of the trainable evidence lower bound (ELBO) obtained from the marginal joint
log-Likelihood with the goal of training a multi-modal variational Autoencoder (M²VAE).

I. INTRODUCTION

Variational auto encoder (VAE) combine neural networks with variational inference to allow unsupervised learning of
complicated distributions according to the graphical model shown in Fig. 1 (left). A Da-dimensional observation a is modeled in
terms of a Dz-dimensional latent vector z using a probabilistic decoder pθa(z) with parameters θ. To generate the corresponding
embedding z from observation a, a probabilistic encoder network with qφa(z) is being provided which parametrizes the posterior
distribution from which z is sampled. The encoder and decoder, given by neural networks, are trained jointly to bring a close
to an a′ under the constraint that an approximate distribution needs to be close to a prior p(z) and hence inference is basically
learned during training.

The specific objective of VAEs is the maximization of the marginal distribution p(a) =
∫
pθ(a|z)p(z) da. Because this

distribution is intractable, the model is instead trained via stochastic gradient variational Bayes (SGVB) by maximizing the
evidence lower bound (ELBO) L of the marginal log-likelihood as described in Sec. II This approach proposed by [1] is used
in settings where only a single modality a is present in order to find a latent encoding z (c.f. Fig. 1 (left)).

This work gives an in-depth derivation of the trainable evidence lower bound (ELBO) obtained from the marginal joint
log-Likelihood, that satisfies all plate models as depicted in Fig. 1, we are with the goal of training a multi-modal variational
Autoencoder (M²VAE).
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Fig. 1: Evolution of full uni-, bi-, and tri-modal VAEs comprising all modality permutations
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II. VARIATIONAL AUTOENCODER

First, the derivation of the vanilla Variational Autoencoder by [1] is recaped.

A. The Variational Bound

L = log(p(a)) (1)

=
∑
z

q(z|a) log(p(a)) Equation 89 w/o conditional (2)

=
∑
z

q(z|a) log
(
p(z,a)

p(z|a)

)
Equation 84 (3)

=
∑
z

q(z|a) log
(
p(z,a)

p(z|a)
q(z|a)
q(z|a)

)
multiplied by 1 (4)

=
∑
z

q(z|a) log
(
p(z,a)

q(z|a)
q(z|a)
p(z|a)

)
reordered (5)

=
∑
z

q(z|a) log
(
p(z,a)

q(z|a)

)
+
∑
z

q(z|a) log
(
q(z|a)
p(z|a)

)
Equation 86 (6)

= L+DKL(q(z|a)‖p(z|a)) Equation 92 & 88 (7)
≥ L DKL ≥ 0 (8)

DKL is the Kulbeck-Leibler divergence, with DKL ≥ 0, thats depends on how good q(z|a) can approximate p(z|a). L is
the lower variational bound of the marginal log-likelihood, also called the evidence lower bound (ELBO). If and only if the
two distributions q and p are identical, DKL becomes 0 (q = p ⇔ DKL = 0). L = L means on the other hand therefore
implicitly, that q perfectly approximates p. It is beacuse L and DKL are in equilibrium so that minimizing DKL is identical
to the maximization of L (minDKL ⇔ maxL). Minimizing DKL is not feasible, because we don’t know the true posterior
p(z|a). Therefore, L is further investigated.

B. Approximate Inference (i.e. rewriting L)

L =
∑
z

q(z|a) log
(
p(z,a)

q(z|a)

)
(9)

=
∑
z

q(z|a) log
(
p(a|z)p(z)
q(z|a)

)
Equation 84 (10)

=
∑
z

q(z|a) log
(
p(z)

q(z|a)

)
+
∑
z

q(z|a) log(p(a|z)) Equation 86 (11)

= −DKL(q(z|a)‖p(z)) + Eq(z|a) log(p(a|z)) Equation 92 (12)

If the variable a is replaced by some real valued sample a(i) (e.g. image or LiDAR scan), two terms can be identified:

L = −DKL

(
qφ

(
z|a(i)

)
‖p(z)

)
︸ ︷︷ ︸

Regularization

+Eqφ(z|a(i)) log
(
pθ

(
a(i)|z

))
︸ ︷︷ ︸

Reconstruction

(13)

The first term is just a regularize that punishes the variational distribution q, that is the approximatior of the posterior
distribution, if it deviates from some prior p(z). The reconstruction term on the other hand compares the difference between
the data a(i) of qφ

(
z|a(i)

)
wrt. the sampled data a(i) from the likelihood function pθ

(
a(i)|z

)
.

That means if L is going to be maximized, the posterior function has to be equal to some prior and the data that is used to
sample the latent feature z from the posterior should be equal to the data from the likelihood function pθ. The objective is now,
to find a function qφ and pθ which own these properties. Luckily, if some parametrized functions qφ and pθ (with parameters
φ and θ) are applied, every increase of Equation 13 means that the variational approximator qφ(z|a) comes closer to the real
posterior functions p(z|a). Therefore, numerical optimization techniques like gradient descent can be applied to this issue.
Commonly, two neuronal network, where each tries to find the optimal parameters φ and θ, are applied to approximate the
functions qφ (i.e. the encoder) and pθ (i.e. the decoder). However, since the true value of L remains unknown, maximization
of L can only be done until convergence. Thus, the overall procedure has the property of finding local optima.



III. JOINT VARIATIONAL AUTOENCODER

Second, we expand the VAE from Sec. II to the marginal joint log-likelihood and derive the variational bound as follows:

LJ = log(p(a,b)) (14)

=
∑
z

q(z|a,b) log(p(a,b)) Equation 89 w/o conditional (15)

=
∑
z

q(z|a,b) log
(
p(z,a,b)

p(z|a,b)

)
Equation 85 (16)

=
∑
z

q(z|a,b) log
(
p(z,a,b)

p(z|a,b)
q(z|a,b)
q(z|a,b)

)
multiplied by 1 (17)

=
∑
z

q(z|a,b) log
(
p(z,a,b)

q(z|a,b)
q(z|a,b)
p(z|a,b)

)
reordered (18)

=
∑
z

q(z|a,b) log
(
p(z,a,b)

q(z|a,b)

)
+
∑
z

q(z|a,b) log
(
q(z|a,b)
p(z|a,b)

)
Equation 86 (19)

= LJ +DKL(q(z|a,b)‖p(z|a,b)) Equation 92 & 88 (20)
≥ LJ (21)

Approximate Inference (i.e. rewriting LJ):

LJ =
∑
z

q(z|a,b) log
(
p(z,a,b)

q(z|a,b)

)
(22)

=
∑
z

q(z|a,b) log
(
p(a,b|z)p(z)
q(z|a,b)

)
Equation 84 (23)

=
∑
z

q(z|a,b) log
(

p(z)

q(z|a,b)

)
+
∑
z

q(z|a,b) log(p(a,b|z)) Equation 86 (24)

=
∑
z

q(z|a,b) log
(

p(z)

q(z|a,b)

)
+
∑
z

q(z|a,b) log(p(a|z)) +
∑
z

q(z|a,b) log(p(b|z)) Equation 90 (25)

= −DKL(q(z|a,b)‖p(z)) + Eq(z|a,b) log(p(a|z)) + Eq(z|a,b) log(p(b|z)) Equation 92 (26)

Three different terms can be identified:

LJ = −DKL(qφab(z|a,b)‖p(z))︸ ︷︷ ︸
Regularization

+Eqφab (z|a,b) log(pθa(a|z))︸ ︷︷ ︸
Reconstruction wrt. a

+Eqφab (z|a,b) log(pθb(b|z))︸ ︷︷ ︸
Reconstruction wrt. b

(27)

A regularization for the joint encoder qφab and two reconstruction terms, one for each decoder pθa and pθb .



IV. JOINT MULTI-MODAL VARIATIONAL AUTOENCODER VIA VARIATION OF INFORMATION

The issue with the joint VAE is the lacking possibility of encoding just one modality a or b. Thus, Suzuki et al. [2] exploit
the Variation of Information (VI) and derive the evidence lower bound wrt. the VI.

First, the conditional probability is investigated

p(a|b) = p(z,a|b)
p(z|a,b)

Equation 85 (28)

=
1

p(z|a,b)
p(z,a|b) (29)

=
1

p(z|a,b)
p(z,a,b)

p(b)
Equation 84 (30)

=
1

p(z|a,b)
p(a,b|z)p(z)

p(b)
Equation 84 (31)

=
1

p(z|a,b)
p(a|z)p(b|z)p(z)

p(b)
Equation 90 (32)

=
1

p(z|a,b)
p(a|z)p(z|b) p(b)p(z)p(z)

p(b)
Equation 84 (33)

=
p(a|z)p(z|b)
p(z|a,b)

(34)

Further, the marginal log-likelihood of a conditional distribution can be written as:

LMa = log(p(a|b)) (35)

=
∑
z

q(z|a,b) log(p(a|b)) Equation 89 w/o conditional (36)

=
∑
z

q(z|a,b) log
(
p(z,a|b)
p(z|a,b)

)
Equation 85 (37)

=
∑
z

q(z|a,b) log
(
p(z,a|b)
p(z|a,b)

q(z|a,b)
q(z|a,b)

)
multiplied by 1 (38)

=
∑
z

q(z|a,b) log
(
p(z,a|b)
q(z|a,b)

q(z|a,b)
p(z|a,b)

)
reordered (39)

=
∑
z

q(z|a,b) log
(
p(z,a|b)
q(z|a,b)

)
+
∑
z

q(z|a,b) log
(
q(z|a,b)
p(z|a,b)

)
Equation 86 (40)

= LMa +DKL(q(z|a,b)‖p(z|a,b)) Equation 92 & 88 (41)
≥ LMa (42)

Further, the log-likelihood of the VI can be written as

LM = LMa + LMb (43)
= log(p(a|b)) + log(p(b|a)) (44)
= LMa + LMb + 2DKL(q(z|a,b)‖p(z|a,b)) Equation 41 (45)
≥ LMa + LMb (46)



LMa + LMb =
∑
z

q(z|a,b) log
(
p(z,a|b)
q(z|a,b)

)
+
∑
z

q(z|a,b) log
(
p(z,b|a)
q(z|a,b)

)
(47)

=
∑
z

q(z|a,b) log
(
p(a|z)p(z|b)
q(z|a,b)

)
+
∑
z

q(z|a,b) log
(
p(b|z)p(z|a)
q(z|a,b)

)
Equation 34 (48)

=
∑
z

q(z|a,b) log
(
p(a|z)
q(z|a,b)

)
+
∑
z

q(z|a,b) log
(
p(z|b)
q(z|a,b)

)
(49)

+
∑
z

q(z|a,b) log
(
p(b|z)
q(z|a,b)

)
+
∑
z

q(z|a,b) log
(
p(z|a)
q(z|a,b)

)
reordering (50)

= Eq(z|a,b) log(p(a|z))−DKL(q(z|a,b)‖p(z|b)) (51)
+ Eq(z|a,b) log(p(b|z))−DKL(q(z|a,b)‖p(z|a)) Equation 92 (52)

= Eq(z|a,b) log(p(a|z))−DKL(q(z|a,b)‖p(z|b)) (53)
+ Eq(z|a,b) log(p(b|z))−DKL(q(z|a,b)‖p(z|a)) (54)
+DKL(q(z|a,b)‖p(z|a,b))−DKL(q(z|a,b)‖p(z|a,b)) added 0 (55)

= LJ −DKL(q(z|a,b)‖p(z|b))−DKL(q(z|a,b)‖p(z|a)) + DKL(q(z|a,b)‖p(z|a,b)) substitute eq. 26 (56)
≥ LJ −DKL(q(z|a,b)‖p(z|b))−DKL(q(z|a,b)‖p(z|a)) (57)
=: LM (58)

With respect to Equation 27, the following regularization terms can be identified:

LM = LJ −DKL(qφab(z|a,b)‖qφb(z|b))︸ ︷︷ ︸
Unimodal PDF fitting of encoder b

−DKL(qφab(z|a,b)‖qφa(z|a))︸ ︷︷ ︸
Unimodal PDF fitting of encoder a

(59)

A. Conclusion

The introduced KL regularization by Suzuki et al. [2] tries to find a mean representative of all parameters between clusters
in the latent space. This is absolutely correct for the mean values but is insufficient for all other statistics of the distribution
that are estimated by qφ* . The approach would be sufficient, iff the true latent joint probability would be known, because only
then the KL divergence is able to adapt to it in a correct manner. Unfortunately, this is not the case and thus all the estimated
statistic values of the uni-modal encoders qφ* , except the mean, are questionable.



V. PROPOSED JOINT MULTI-MODAL AUTOENCODER

A. The Variational Bound

LPJ = log(p(a,b)) (60)

=
2

2
log(p(a,b)) multiplied by 1 (61)

=
1

2
log
(
p(a,b)2

)
Equation 87 (62)

=
1

2
log(p(a,b)p(a,b)) (63)

=
1

2
log(p(b)p(a|b)p(b|a)p(a)) Equation 84 (64)

=
1

2
(log(p(a)) + log(p(b|a)) + log(p(a|b)) + log(p(b))) Equation 86 (65)

≥ 1

2
(La + LMa + LMb + Lb) Equation 8 & 46 (66)

≥ 1

2
(La + LM + Lb) Equation 59 (67)

:= LPJ (68)

B. Approximating Inference (i.e. rewriting LPJ)

2LPJ = La + LM + Lb (69)
= −DKL(q(z|a)‖p(z)) + Eq(z|a) log(p(a|z)) Equation 12 (70)
−DKL(q(z|a,b)‖p(z)) + Eq(z|a,b) log(p(a|z)) + Eq(z|a,b) log(p(b|z)) Equation 26 (71)
−DKL(q(z|a,b)‖p(z|b))−DKL(q(z|a,b)‖p(z|a)) Equation 113 (72)
−DKL(q(z|b)‖p(z)) + Eq(z|b) log(p(b|z)) Equation 12 (73)

Applying the corresponding function approximators, the formula can be written as:

2LPJ = La + LM + Lb (74)
= −DKL(qφa(z|a)‖p(z)) + Eqφa (z|a) log(pθa(a|z)) Equation 13 (75)

−DKL(qφab(z|a,b)‖p(z)) + Eqφab (z|a,b) log(pθa(a|z)) + Eqφab (z|a,b) log(pθb(b|z)) Equation 27 (76)

−DKL(qφab(z|a,b)‖qφb(z|b))−DKL(qφab(z|a,b)‖qφa(z|a)) Equation 59 (77)
−DKL(qφb(z|b)‖p(z)) + Eqφb (z|b) log(pθb(b|z)) Equation 13 (78)

Investigating every line of the formula, the following properties can be identified: Equation 76 is the common multi-modal
VAE loss derived from the joint probability, while Equation 77 adds the feature introduced by Suzuki et al. [2]. It introduces
the KL regularization that brings the posterior distribution of an uni-modal encoder close to the distribution of the multi-modal
case. The drawback of this approach is discussed in Section IV-A. The new lines, i.e. Equation 75 and 78, introduce the
regularization of the uni-modal encoders wrt. the common prior and the reconstruction loss. The regularizer cares about the
fact, that the uni-modal distribution does not deviate to much from the common prior while the reconstruction term shapes the
remaining statistics including the mean. However, the last fact is very important, while the mean value in latent space might
not be the best representative of the likelihood (i.e. the decoded data). This property cannot be respected by the KL divergence,
but by the introduced reconstruction term.

1) of General Expression for Arbitrary Number of Modalities: Comprising the applied steps to derive LPJ from the former
section, we can identify that by successively applying logarithm and Bayes rules, we derive the ELBO for the proposed multi-
modal VAE as follows: First, given the independent set of observable modalities M = {a,b,c, . . .}, its marginal log-likelihood
log p(M) =: LM2 is multiplied by the cardinality of the set as the neutral element 1 = |M|

|M| . Second, applying logarithm



multiplication rule, the nominator is written as the argument’s exponent. Third, Bayes rule is applied to each term wrt. the
remaining observable modalities to derive their conditionals. Therefore, we can write

LM2
M

= log p(M)
mul. 1
=
|M|
|M|

log p(M)
log. mul.
=

1

|M|
log p(M)|M| (79)

Bayes
=

1

|M|
∑
m∈M

log p(M\m)p(m|M \m) (80)

log. add
=

1

|M|
∑
m∈M

log p(M\m) + log p(m|M \m). (81)

The expression
∑
m∈M log p(m|M \m) is the general form of the marginal log-likelihood for the variation of information

(VI), as introduced by [2] for the JMVAE, for any set M. Thus, it can be directly substituted with LMM . The expression∑
m∈M log p(M\m) is the combination of all joint log-likelihoods of the subsets of M which have one less element.

Therefore, this term can be rewritten as ∑
m∈M

log p(M\m) =
∑
m̃∈M̃

log p(m̃) (82)

with M̃ = {m|m ∈ P(M), |m| = |M| − 1} Finally, log p(m̃) can be substituted by LM2
m̃

without loss of generality. However,
it is worth noticing that substitution stops at the end of recursion and therefore, all final expressions log p(m̃) ∀ |m̃| ≡ 1 remain.
�

This results in the final recursive log-likelihood expression from which the ELBO can be directly derived as follows:

LM2
M

=
1

|M|

LMM +
∑
m̃∈M̃

LM2
m̃

 ≥ 1

|M|

LMM +
∑
m̃∈M̃

LM2
m̃

 =: LM2
M

. (83)



VI. APPENDIX

Variants of Bayes equation:

p(a) =
p(z,a)

p(z|a)
, p(z|a) = p(z,a)

p(a)
, p(z,a) =

p(a)

p(z,a)
(84)

p(a|b,c) eq. 84
=

p(a,b|c)
p(b|c)

eq. 84
=

p(a,b,c)

p(b|c)p(c)
eq. 84
=

p(a,b,c)

p(b,c)
(85)

Logarithm rules:

log(ab) = log(a) + log(b) (86)

a log(b) = log(ba) (87)

Evidence lower bound:

L =
∑
z

q(z|a) log
(
p(z,a)

q(z|a)

)
(88)

Marginal likelihood:

p(a|b) =
∑
z

p(a|z)p(z|b) (89)

Independent and identically distributed random variables (i.i.d. or iid or IID):

p(a,b,c) = p(a)p(b)p(c) (90)

A. Kulbeck-Leibler Divergence

DKL(q(z|a)‖p(z|a)) =
∑
z

q(z|a) log
(
q(z|a)
p(z|a)

)
(91)

DKL(N1(µ1,σ1)‖N2(µ2,σ2)) = log(σ2)− log(σ1) +
σ2
1

2σ2
2

+
(µ1 − µ2)

2

2σ2
2

− 1

2
(92)

more tbd.

B. Variation of Information

1) Operator Names:
• VI(A,B): Variation of Information between some properties A and B
• I(A): Information of A (or mutual information)
• I(A,B): Mutual Information (MI) of A and B
• I(A,B|C): Mutual Conditional Information (MCI) of A and B given C
• H(A): Entropy of A
• H(A,B): Joint Entropy (JE) of A and B
• H(A|B): Conditional Entropy (CE) of A given B
The Variation of Information (VI) between some random variables can be written as

VI(A,B) = H(A) + H(B)− 2 I(A,B) = H(A|B) + H(B|A) (93)

and

VI(A,B,C) = H(A) + H(B) + H(C)− 3 I(A,B) = H(A|B,C) + H(B|A,C) + H(C|A,B) (94)

and so on . . . .
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Fig. 2: Visualization of VI as Venn digram.

C. Extension to three Modalities

It should be clear that both approaches, proposed and Suzuki’s [2], can be extended to multiple modalities. In the following,
an example for three modalities is given.

First, the conditional probability is investigated:

p(a|b,c) = p(a,b,c,z)

p(a,b,c,z)

p(a,b,c)

p(b,c)
multiplied by 1 & Equation 85 (95)

=
p(z,a|b,c)
p(z|a,b,c)

Equation 85 (96)

=
1

p(z|a,b,c)
p(z,a|b,c) reorder (97)

=
1

p(z|a,b,c)
p(z,a,b,c)

p(b,c)
Equation 85 (98)

=
1

p(z|a,b,c)
p(a,b,c|z)p(z)

p(b,c)
Equation 90 (99)

=
1

p(z|a,b,c)
p(a|z)p(b,c|z)p(z)

p(b,c)
Equation 85 (100)

=
1

p(z|a,b,c)
p(a|z)p(z|c,b)p(c,b)p(z) p(z)

p(b,c)
Equation 85 (101)

=
p(a|z)p(z|c,b)
p(z|a,b,c)

(102)

The log-likelihood of a single joint distribution can be written as:

log(p(a|b,c)) =
∑
z

q(z|a,b,c) log
(
p(z,a|b,c)
q(z|a,b,c)

)
+
∑
z

q(z|a,b,c) log
(
q(z|a,b,c)
p(z|a,b,c)

)
(103)

= LM̃a
+DKL(q(z|a,b,c)‖p(z|a,b,c)) (104)

≥ LM̃a
(105)

1) JMVAE for three Modalities: The log-likelihood of the VI between three distributions can be written as:

L3M = log(p(a|b,c)) + log(p(b|a,c)) + log(p(c|b,c)) (106)
= LM̃a

+ LM̃b
+ LM̃c

+ 3DKL(q(z|a,b,c)‖p(z|a,b,c)) Equation 41 (107)

≥ LM̃a
+ LM̃b

+ LM̃c
(108)

The combined ELBO can then be rewritten as



LM̃a
+ LM̃b

+ LM̃c
= Eq(z|a,b,c) log(p(a|z))−DKL(q(z|a,b,c)‖p(z|c,b)) (109)

+ Eq(z|a,b,c) log(p(b|z))−DKL(q(z|a,b,c)‖p(z|a,c)) (110)
+ Eq(z|a,b,c) log(p(c|z))−DKL(q(z|a,b,c)‖p(z|a,b)) Equation 92 (111)
≥ LJ̃ −DKL(q(z|a,b,c)‖p(z|b,c)) (112)
−DKL(q(z|a,b,c)‖p(z|a,c))−DKL(q(z|a,b,c)‖p(z|b,c)) (113)

:= LM̃ (114)

LJ̃ is the joint ELBO of a joint probability distribution having three arguments (i.e. a, b, c). The derivation is analog to
Section III. The next steps are the application of encoders and decoders for this network which is straight forward and should
be clear to the reader.

However, if we investigate the last equations, the following properties can be identified: There are the common reconstruction
terms (E) for each decoder p(∗|z) wrt. the full multi-modal decoder q(z|a,b,c). The KL terms show the drawback of the VI
approach. As before, these regularizer tend to bring the encoders’ distribution to match each other. But only pairwise encoders
(e.g. p(z|a,b)) remain and thus, uni-modal encoders are neglected.

This means from a practical point of view, that when we have N modalities in a setup, we only can build derived setups
having N − 1 modalities.

2) Proposed JMVAE for three Modalities: The derivation from the joint log likelihood can be written analogously:

log(p(a,b,c)) =
3

3
log(p(a,b,c)) (115)

=
1

3
log
(
p(a,b,c)3

)
(116)

=
1

3
log(p(a,b,c)p(a,b,c)p(a,b,c)) (117)

=
1

3
log(p(a,b)p(b,c)p(a,c)p(a|b,c)p(b|a,c)p(c|a,b)) (118)

=
1

3
(log(p(a,b)) + log(p(b,c)) + log(p(a,c)) + log(p(a|b,c)) + log(p(b|a,c)) + log(p(c|a,b))) (119)

=
1

3

(
2

2
(log(p(a,b)) + log(p(b,c)) + log(p(a,c))) + log(p(a|b,c)) + log(p(b|a,c)) + log(p(c|a,b))

)
(120)

=
1

6

(
log
(
p(a,b)2

)
+ log

(
p(b,c)2

)
+ log

(
p(a,c)2

))
(121)

+
1

3
(log(p(a|b,c)) + log(p(b|a,c)) + log(p(c|a,b))) (122)

=
1

6
(log(p(a)p(b)p(a|b)p(b|a)) + log(p(c)p(b)p(c|b)p(b|c)) + log(p(a)p(c)p(a|c)p(c|a))) (123)

+
1

3
(log(p(a|b,c)) + log(p(b|a,c)) + log(p(c|a,b))) (124)

=
1

6
(log(p(a|b)) + log(p(b|a)) + log(p(c|b)) + log(p(b|c)) + log(p(a|c)) + log(p(c|a))) (125)

+
1

3
(log(p(a)) + log(p(b)) + log(p(c)) + log(p(a|b,c)) + log(p(b|a,c)) + log(p(c|a,b))) (126)

It is now straight forward, by applying all former mentioned equations, to derive the ELBO for the above marginal log-
likelihood. As one can imagine, the above equation results in a pretty heavy loss term but with the big advantage of respecting
all permutations of modalities.

This means again from a practical point of view, in comparison to the approach by Suzuki et al. [2], that we can build
arbitrary sensor setups having 1 to N modalities.
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