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Deep Reinforcement Learning techniques demonstrate ex-
citing results in robotic applications such as dexterous in-
hand manipulation. One of the challenging factors which
come into play when performing real-world tasks is a combi-
nation of different sensory modalities (vision, preconception,
and haptic) which support each other for identification of
the position and orientation of the manipulated object. This
mutual support is important when some of the modalities
are occluded or noisy. Furthermore, update rates of different
sensory modalities may not match each other. While we
assume that vision alone can determine the state perfectly, it
suffers from slow update rates and it is susceptible to drop-
out due to visual occlusion (e.g. palm over the object). On
the other hand, haptic by means of touch and proprioceptive
information is always present with a high update rate but
suffers from ambiguous perception (e.g. the cube in Fig.
1 can take various possible orientations without a change
in the haptic and proprioceptive perception). Therefore, we
present an approach to infer the state of the object through
a unified, synchronized, multisensory perception of position
and orientation of a manipulated object.

Our approach builds upon the recent work of learning
dexterous in-hand manipulation [1], where an agent with
a model-free policy was able to learn complex in-hand
manipulation tasks using proprioceptive and touch feedback
plus visual information about the manipulated object. In this
work, the agent can perform vision-based object reorientation
on a physical Shadow-Hand in a simulated environment.

However, pose reconstruction of a manipulated object via
vision is much slower than tactile or proprioceptive readings.
Thus additional accuracy of the manipulated object’s pose
can be gained with proprioceptive and haptic information
during visual drop-out, which motivates our current work.

I. APPROACH

Since we assume different temporal resolution of sensory
inputs, but want to apply the standard approach by [1]
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(PtJ), the Federal Ministry of Education and Research (57388272), and
by ’CITEC’ (EXC 277) at Bielefeld University which is funded by the
German Research Foundation (DFG). The responsibility for the content of
this publication lies with the author.

Fig. 1: MuJoCo simulation of a Shadow-Hand for dexterous in-hand
manipulation with 92 touch sensors from [1]. Touch sensor sites, activated
by the contact with the cube, are highlighted in red while the inactive sites
remain green.

to infer actions, we need to reconstruct the lacking vision
based observation in SE(3). The policy network g by [1]
demands an observation o = (oP, oT, oO) consisting out of
the proprioceptive oP ∈ R48, touch oT ∈ R92, and object
state oO ∈ R13 values to infer action a, i.e. the next joint
positions to be executed by the simulator environment. An
object’s state, i.e. the vision based observation, oO comprises
the pose (position oOP and quaternions oOQ ) and velocities
(linear oOL and angular oOA ).

Since oO is susceptible to drop-outs due to slower update
frequency or occlusion, only partial observations õ can be
made during drop-out. To reconstruct the full observation,
we apply a deep neuronal network f as follows:

ot+1,O = f (at, h (ot, õt+1)) with h (ot, õt+1) =(
oO,t, oP,t, oP,t+1, tanh oT,t, tanh oT,t+1, tanh

oT,t − oT,t+1

2

)
.

f is a common feed-forward network as we assume the
change of the object’s state to be a first-oder Markovian
process wrt. pose and velocity. In comparison to [1] we
normalized the touch values from [0.,∞) to [0., 1.) using
the tangens hyperbolicus (tanh).

We achieved best results by configuring f as follows:
f = (fP, fQ, fL, fA) consists out of four deep networks to
infer oOP , oOQ , oOL , and oOA independently; each network has
three hidden layers with 512 neurones and ReLU activations;
fP, fL, and fA have linear output layer while fQ has tanh
activation with L2-normalization; fP, fL, and fA are trained
using mean-squared-error loss while we applied log cosine-
similarity loss to fQ as in [2]; Adam is used as optimizer with
learning rate=.001, β1=.9, β2=.999, and batch-size=128.
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Fig. 2: Reconstruction of partial observations õ from past and current
observations plus action. The approximation f predicts the missing vision
based information. The policy network g infers the next action at based on
the restored observations.

Err. Drop naı̈ve baseline w/o w/

po
s. 1 .013 .013 .0033 .0032

2 .018 .0131 .0042 .0039
5 .026 .0132 .0061 .0056

qu
at

. 1 .00209 .00209 .00042 .00037
2 .0039 .00210 .00075 .00067
5 .0091 .00213 .0019 .0017

lin
.v

. 1 .45 .45 .063 .058
2 .51 .450 .065 .060
5 .56 .452 .069 .064

an
g.

v. 1 4.27 4.27 1.19 1.13
2 4.49 4.28 1.21 1.15
5 4.70 4.32 1.26 1.19

TABLE I: Mean error metric for the reconstruction quantities over number
of drop-outs.

We recorded 100 steps from 19001 epochs with an up-
date rate of 25 Hz of the trained agent from [1] without
sensory drop-out via the MuJoCo Shadow-Hand simulation
[3] manipulating a cube (c.f. Fig. 1). The data set tuples
for training f is constructed with (at, h (ot, õt+1)) as input
and ot+1,O as output for each recording, which results in
99 · 19001 = 1881099 samples from which 98 % were used
for training and 2 % for validation.

II. RESULTS

We trained the network for reconstruction with (w/) and
without (w/o) touch information and evaluated the cor-
responding error metrics as shown in Table I. The tanh
normalization of touch values led to slightly better results in
comparison to un-normalized values which results we leave
out for brevity. We additionally evaluated the error for a
naı̈ve and baseline case. The naı̈ve approach just freezes
the last received, vision based, perception over all ongoing
steps where vision is not available. The baseline serves as
a hypothetical comparison where the consecutive errors of
all vision based, step-wise ground-truth values are evaluated
(therefore, naı̈ve and baseline are equal for Drop=1).

Table I shows that the network performs always better in
reconstructing ongoing vision based information with touch
in comparison without touch. Additionally, the error per step
over 30 epochs is shown in Fig. 3 for Drop=5. The trend

Fig. 3: Error of 6-DoF vision based information pose (position, rotation) and
velocities (linear, angle). Average error with 10 % standard deviation over
30 epochs for predicting five steps. Experiment depicts prediction without
(w/o), with (w/), and normalized (tanh w/)) touch versus naı̈ve (naive) and
baseline (consecutive) error.

of the error curves, which is higher for the first steps and
decays until the end, reveal the behaviour of the policy
network which tends to perform more rapid movement in
the beginning. Therefore, consecutive errors are much bigger.
However, the network reconstructs the object poses via haptic
and proprioceptive information with almost constant quality.
The presented approach substantially improves the estimation
of poses of a manipulated object when a visual drop-out takes
place.
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