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I. INTRODUCTION

Deep Reinforcement Learning (DRL) has been applied
successfully in an increasing number of areas, ranging from
computer games towards robotic control [1]. While such Deep
Learning approaches have shown to produce viable solutions,
these are still struggling when we try to scale them up towards
complex bodies or when these approaches should be applied
in more natural contexts that require behavioral flexibility. In
these areas, there is still a major discrepancy between current
state-of-the-art DRL approaches and biological systems [5]
that excel at adaptive behavior. Therefore, insights on the
structure of biological control systems appears as a promising
approach for guiding DRL approaches [2].

Our goal is to address as an example the complex control
problem of a six-legged walking agent. Such a problem is
difficult, as there are many coupled degrees of freedom that
have to be controlled in a coordinated way. Such a problem
appears difficult to solve through a basic DRL approach as
the space for exploration is growing way too large. Therefore,
we will take a modular and hierarchical control approach for
locomotion that is inspired by the structure of walking control
as found in animals [6]: First, the complete control problem is
divided into smaller sub-problems. Research on insects have
found a decentralized control approach that suggests as a
basic building block a division into individual leg controllers.
Secondly, this induces a hierarchy. There is a higher level that
selects a particular behavior to perform. A lower level takes
care of motor control on the joint level. We will introduce
such a modular structure into a neural network controller and
train this system using reinforcement learning.

The modularity of this approach and in particular the de-
centralized aspect set this apart from other current hierarchical
DRL approaches [4]. Each module only has to control, on the
lower level, a small number of coupled degrees of freedom
(this is comparable to an approach as are motor synergies
and which we applied in a DRL approach in [3]). On the
higher level that deals with selection of motor behaviors, a
form of coordination is required. In the presented approach,
we will use a fixed form of coordination and analyze learning
performance. In the future, we want to extend this towards a
research project that is also taking concurrency on the higher
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Fig. 1: Shown is the simulated PhantomX robot lying down,
standing up, and a leg under a DoF lock.

level into account: each leg should have its own individual
controller which has as a scope the current state, local sensory
input and some additional influences for coordination, but only
from neighboring legs [7].

In this article, we want to present the general setup and
early results of our approach: First, we will introduce the
simulated six-legged robot. Secondly, we will show as a
simple example for reinforcement-based learning for such an
agent how the agent can learn standing up when employing a
modular approach. But, furthermore, how walking requires a
form of coordination of leg controllers.

II. DRL FOR A HEXAPOD ROBOT

The goal of our approach is learning walking behavior
for a six-legged robot. We are using Gazebo and the Open
Dynamics Engine to simulate the PhantomX hexapod robot
[9]-[11]. The PhantomX robot has six legs, each leg consists
of three links and each link’s position is controlled by a
single joint controller. Overall the robot consists of 18 degrees
of freedom. Movement is controlled by a ROS-Node which
applies torque to each joint.

The task is to learn a continuous controller and we are
applying Deep Deterministic Policy Gradient (DDPG) [8] for
learning. DDPG is an off-policy algorithm for continuous
action spaces. It is an actor-critic method which learns a policy
and a Q-function. The actor is used to learn a policy and the
critic evaluates the actions taken by the actor.

Using one DDPG agent to control all joints simultaneously
depicts a complex learning challenge. With a continuous action
space of 18 dimensions and a continuous observation space of
42 dimensions, the agent is not able to learn a well performing
policy for a task as walking forward. To reduce the complexity,
we took a modular approach. First, learning as a module a
controller for a single leg. Such a structure was trained in a
simple standing up task. In this task, all legs can act the same
way and this one modular controller was used in multiple (but
all identically structured instances) to produce behavior.



Fig. 2: Two controller layouts are shown (controllers are shown
as black dots). Left: Single leg - one agent controls each leg,
imposed to all legs. Right: Tripod - control for two legs is
learned, imposed to groups of three legs each.

But such an approach would not work for locomotion, as
in walking legs are not simply producing the exact same be-
havior. Instead, they are working together in different groups.
Therefore, as a second approach, we trained a set of two
individual leg controllers, each of which was applied on three
diagonal legs. This fixed structure of legs that act together can
be observed in fast walking insects (Fig. 2).

For the single leg controller the action space consisted of
two joint torques — the femur and tibia that are actuated in
standing up. The coxa was fixed at a set position. The obser-
vation space was reduced to the joint angles and velocities of
femur and tibia of a single leg, as well as height, roll and pitch
of the torso. The actions where then imposed to all six legs.

The tripod approach consisted of an overall action space of
six joint torques: Coxa, femur and tibia torques for two leg
groups. The actions where imposed to a set of three legs each.
The observation space consisted of coxa, femur and tibia joint
velocity and angle for each leg, as well as height, roll and
pitch of the torso.

To evaluate the different controllers, two tasks were chosen.
Standing up: The torso of the robot had to reach a specified
height and stay at that height for the remainder of the episode.
Walking forwards: The robot had to cover as much distance
forward as possible in a set time frame. As an auxiliary task,
a small reward was given for lifting the torso off the ground.
The observation space consisted of coxa, femur and tibia joint
velocities and angles for two legs, as well as height and yaw
of the torso and the distance from the initial robot position.
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Fig. 3: Reward over time during training. On the horizontal
axis, individual training episodes are given. Vertical axis shows
progressing of time during an episode. Color coding represents
the reward for a point in time during that episode.
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Fig. 4: Test of the controller for standing up at the end of
training. Shown are tibia and femur torques (blue and orange,
left axis) and the height and goal height of the robot (green,
plotted on the right axis).

III. RESULTS AND CONCLUSION

With the single leg controller, the agent was able to learn a
policy for the standing up task (Fig. 3). The agent learned to
reduce the DoFs and simplify the control problem by locking
different joints by applying maximum torque (as seen in Fig.
1). During the task, the agent locked the tibia joint once he
had reached the goal height and only adjusted the femur joint
torque to balance changes in height (Fig. 4, for a video see
[12]). The results of four training session with 1000 episodes
at 300 timesteps each are shown in table I.

T1 T2 T3 T4 TS5 T6
@Reward | 0.323 | 0.271 | -0.068 | 0.006 | 0.068 | 0.006
SD 0.271 | 0.280 | 0.081 | 0.0255 | 0.237 | 0.291

TABLE I: Shown are the mean reward and standard deviation
of each training session. The reward range was chosen to be
between -1 and 0.5. Training 1-4 were single leg controllers,
training 5 and 6 were using the tripod arrangement.

The single leg and tripod controller converged against
similar policies for the standing up task. Albeit the tripod
training did not converge as quickly and the agent needed
more time to reach the goal height, it learned to use the joint
lock mechanism and applied similar torques to the different
femur and tibia joints.

For the walking forward task, only the tripod controller was
tested. The learned policy was able to move the robot forward,
but only in a limited fashion. It learned a swinging trajectory
for the legs to move itself forward, but failed to properly keep
the torso off the ground, resulting in a crawling motion (not
shown in detail here).

Our results show that a modular approach—compared to
controlling every joint independently—increases the ability to
learn motions like standing up and walking forward. In the
future, we will use a flexible hierarchical structure and modular
controllers for each leg (controlling coxa, femur and tibia joint
torques). This reduces the action space per agent and omits
observations not directly necessary for individual legs.
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