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1. Zusammenfassung 

Rekombinante Adeno-assoziierte Viren (rAAV) haben herausragende Fähigkeiten in der Genthe-

rapie und bieten somit die Möglichkeit der personalisierten Medizin. Sie zeichnen sich durch eine 

geringe Immunogenität, hohe Stabilität und langfristige Genexpression in Zielzellen aus. Um ihr 

Potenzial voll auszuschöpfen, kann die Manipulation auf genetischer Ebene genutzt werden, um 

gezielt bestimmte Zellen zu erreichen. Die Tumortherapie auf Basis dieser innovativen, neuartigen 

Plattformtechnologie bietet ein großes Potenzial für die Klinik. Die vorliegende Arbeit analysiert 

genetisch, mit Tumormarker-spezifischen Liganden, modifizierte rAAVs im Kontext verschiede-

ner Serotypen und liefert zudem Einblicke in verschiedene rAAV-Produktionsoptionen. 

Der epidermale Wachstumsfaktor-Rezeptor (EGFR), ein oft überexprimierter Marker in Tumorzel-

len, war der Zielrezeptor zweier rechnerisch entworfener Peptide (pep1jhf und pep1osy) und dem 

vom EGFR abgeleiteten Peptid EDA. Alle Peptide wurden chemisch synthetisiert, zyklisiert und 

mit 5(6)-Carboxyfluorescein markiert. Die sekundäre Strukturanalyse mittels Zirkulardichroismus 

zeigte eine deutliche β-Hairpin Struktur für eines dieser Peptide. Fluoreszenzpolarisationsexperi-

mente demonstrierten eine geringe Affinität aller Peptide zum löslichen Rezeptor. Zur Bewertung 

deren Wirksamkeit wurden Zelllinien verwendet, die unterschiedlichen EGFR-Konzentrationen ex-

primieren. In einem weiterführenden Projekt wurde daher der EGF-Rezeptorzustand der Zelllinien 

mit Hilfe des Fusionsproteins EGF-mCherry charakterisiert. Ergebnisse aus Wundheilungsassays 

und der konfokalen Mikroskopie lebender Zellen passen gut zusammen und zeigten einen inhibi-

torischen Effekt auf die Zellproliferation und -migration sowie die spezifische Internalisierung ei-

nes Peptids in EGFR-überexprimierenden Zellen. 

Zur spezifischen Bindung und Internalisierung von Zielzellen durch den AAV wurden darüber hin-

aus die drei Peptide genetisch in die Loopstruktur um den Aminosäurerest 587 des VP Proteins 

eingefügt. Die damit erzielte Präsentation von 60 Peptiden auf der Kapsidoberfläche führte zur 

Erhöhung der Avidität des Gesamtkomplexes. Als Folge dessen konnte die Fähigkeit zur spezifi-

schen Transduktion von EGFR-überexprimierenden Zielzellen für zwei rAAV Varianten nachge-

wiesen werden. Erste Experimente an xenotransplantierten Chorioallantoismembranen (CAM) von 

Hühnerembryonen zeigten die Verteilung viraler genomischer Kopien in ausgewählten Organen 

und dem Tumorgewebe nach systemischer Injektion der rAAV-Peptidvarianten. Im Fall von 

rAAV2 pep1jhf gelang eine hohe Transduktion des Tumorgewebes, auch wenn die parallele Trans-

duktion einiger Organe zu schweren Nebenwirkungen im Xenograft führte. 

Das bestehende Plasmidsystem wurde erweitert und sollte das Einfügen unterschiedlicher Motive 

über genetische Modifikation, nicht nur in AAV2, sondern auch in anderen Serotypen ermöglichen. 

Zu diesem Zweck wurde das rAAV2-Plasmidsystem auf rAAV6 und rAAV9 übertragen und die 
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resultierenden viralen Vektoren charakterisiert. Begleitet wurden diese Studien durch die Optimie-

rung des AAV-Produktionsprozesses in einer neuartigen Produktionszelllinie sowie Suspensions-

kultur. 

Die Ergebnisse dieser Studien liefern wichtige Erkenntnisse für zukünftige Verbesserungen des 

Designs und der Anwendung von Peptid-modifizierten rAAV-Varianten. In Kombination mit trans-

kriptionellen oder translationalen Targeting-Ansätzen kann so in Zukunft eine hochspezifische 

Therapie ermöglicht werden. 
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2. Abstract 

Recombinant adeno-associated viruses (rAAV) combine outstanding gene therapy capabilities with 

excellent opportunities for personalized medicine. They provide low immunogenicity, high stabil-

ity and long-term gene expression in target cells. To exploit their full potential, genetic manipula-

tion can be used to enable targeting of specific cells. Tumor therapy based on this innovative emerg-

ing platform technology offers great potential for the clinic. This thesis analyzed tumor marker-

based re-targeting of rAAVs in the context of different serotypes and besides provided insights into 

different rAAV production options. 

The epidermal growth factor receptor (EGFR), which is an often overexpressed marker in tumor 

cells, was targeted by two computationally designed peptides (pep1jhf and pep1osy) and one EGFR 

derived peptide (EDA). Peptides were chemically synthesized, cyclized and labeled with 5(6)-car-

boxyfluorescein. Secondary structure analysis by circular dichroism showed significant β-hairpin 

structure for one peptide. In fluorescence polarization assays a low affinity was demonstrated. Cell 

lines expressing different levels of the EGF receptor were used to evaluate the efficacy of peptides. 

As s supplementary project the cell lines’ EGF receptor state was characterized using the fusion 

protein EGF-mCherry. Wound-healing assays and live cell confocal microscopy fit well together 

and demonstrate an inhibitory effect on cell proliferation and migration as well as specific internal-

ization of one peptide in EGFR-overexpressing cells.  

Furthermore, the three different peptides were genetically inserted into the loop structure forming 

the three-fold spike of the AAV capsid at amino acid residue 587. By presentation of 60 peptides 

in the capsid surface the avidity of the complex is elevated. These rAAVs showed a transduction 

ability in combination with a high specificity for EGFR-overexpressing cell lines for two rAAV 

variants. First experiments in a whole organism were performed in egg xenotransplant chorioallan-

toic membrane (CAM) assays, where rAAV variants were injected systemically and distribution of 

viral genomic copies was determined in selected organs and the tumor tissue. Here, one variant 

showed high transduction efficiency of the tumor tissue and furthermore also of the organs, which 

led to severe side-effects in the xenograft.  

The insertion of motifs by genetic construction of plasmids not only compatible with the production 

of AAV2, but also AAV6 and AAV9 was established. To this end, the rAAV2 plasmid system was 

transferred rAAV6 and rAAV9 and resulting viral vectors were characterized. These studies were 

accompanied by the optimization of the AAV production process in a novel producer cell line and 

in suspension culture. 

Overall these studies provide important insights to improve design and application of peptide-mod-

ified rAAV variants in the future. Combining these results with transcriptional or translational tar-

geting approaches may enable a highly specific therapy in the future. 
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3. Introduction 

3.1. Gene therapy in the treatment of cancer 

Cancer is the second leading cause of death worldwide.1 The number of new cancer cases in Europe 

in 2018 was estimated to be 3.91 million. It was also estimated that 1.93 million people in Europe 

will die of cancer in 2018.2 Research in this field is therefore of particular interest not only in 

Europe but all over the world. Common treatment of cancer includes surgery of the tumor tissue, 

chemotherapy and radiotherapy. However, these frequently used therapy methods are by no means 

applicable to all tumors. Therefore, new forms of therapy are constantly being researched. Gene 

therapy offers the possibility of a treatment specifically tailored to the patient, even for types of 

cancer that cannot be treated with conventional methods. The importance of gene therapy in cancer 

research is also reflected in the number of clinical trials: 65% of all gene therapy clinical trials were 

related to cancer.3 The US Food and Drug administration (FDA) defined the term human gene 

therapy as a technique that modifies a person’s genes to treat or cure disease.4 Gene therapy in 

general does not only refer to the replacement of a dysfunctional gene with a healthy copy, but also 

includes inactivation of dysfunctional genes or introduction of new or modified genes to the cells. 

If this definition is now applied to the therapy of cancer, the following possibilities arise: (a) ex-

pression of a gene to induce apoptosis or increase tumor sensitivity to conventional drug/radiother-

apy; (b) employing a wild-type tumor suppressor gene to compensate for its loss/deregulation; (c) 

blocking expression of an oncogene using an antisense approach (RNA/DNA); and (d) enhancing 

immunogenicity of the tumor to stimulate recognition of immune cells.5  

All of these strategies require the transport of the gene into the target cells. Basically, a classifica-

tion is made between viral and non-viral strategies.6 Transfection of non-viral vectors into target 

cells require mostly chemical or biophysical methods. Nucleic acids can be introduced into the cell 

via nanoparticles, liposomes or electroporation.6–8 Production of non-viral vectors is often not lim-

ited and thus cost-effective. However, these methods have the disadvantage over viral vectors that 

they can enter the target cells less efficiently. In nature, viruses transport their genome for replica-

tion in host cells. This process is generally referred to as transduction. In several viral systems it is 

possible to exchange the viral genome for an artificial promoter and a gene of interest. Since viral 

vectors have evolved their cell entry and DNA release mechanism over decades, these systems are 

more challenging for introduction of modifications compared to non-viral systems. Nevertheless, 

more than 67% of gene therapy clinical trials have been performed using viral vector systems.3 

These were mainly based on work with adenovirus, retrovirus, adeno-associated virus and lentivi-

rus. Most of these viruses trigger an immune response in the human body. The adeno-associated 

virus (AAV) is characterized by very low pathogenicity and also has the advantage of high trans-

duction efficacy and long-term gene expression in the target cell.9 The past showed that working 

with AAV is promising as first therapeutics were already on the market. The latest agent, voretigene 
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neparvovec (Luxturna), was approved by FDA and EMA in 2018 and is based on rAAV2.10 Lux-

turna delivers a functional variant of the RPE65 gene to supplement biallelic RPE65 mutation-

associated retinal dystrophy. 

3.2. Biology of adeno-associated viruses 

AAV is classified as a non-enveloped viral vector belonging to the family of parvoviridae. The 

single-stranded DNA genome of AAV has a size of only 4.7 kb and is flanked by inverted-terminal 

repeat sequences (ITRs). The left main open reading frame (ORF) provides genetic information for 

four non-structural Rep proteins, that have been shown to play a major role in replication, packag-

ing and genomic integration.11,12 Expression of these proteins is driven by two viral promoters p5 

and p19. The right ORF encodes the structural VP proteins (VP1, VP2, VP3) that assemble the 

viral capsid in a 1:1:10 ratio. Expression of all VP proteins is driven by the p40 promoter. Proteins 

with an identical C-terminus but differing N-termini derive from alternative splicing and leaky-

scanning mechanisms (Figure 1).13,14 Another reading frame within the cap genes was recognized, 

which encodes the non-structural assembly activating protein (AAP) from a non-canonical CTG 

start codon.15,16 Recently it was shown that AAPs influence on capsid assembly is dependent on the 

serotype.17 Especially AAV8, AAV7 and AAV2 were shown to be strongly dependent in contrast 

to AAV3 and AAV9. In the same reading frame, the sequence of the x protein was found, which 

supposedly is involved in AAVs DNA replication.18 Besides these nested reading frames, it has 

been shown previously that in addition, other proteins are encoded whose functions are not yet 

known.14 

 

Figure 1: Schematic representation of the rAAV genomic structure. The genome with a size of 4.7 kb is encapsidated 

in the capsid shell (left). Three reading frames highlighted in blue, pink and orange are under control of the promoter 

p5, p19 and p40. Besides the non-structural Rep proteins (blue) and the structural VP proteins (pink), the genome 

codes for other proteins as AAP and x (orange) which are necessary for replication and capsid assembly. 

 

A total of 60 VP proteins is required to build a capsid shell with T=1 icosahedral symmetry. The 

structure of an AAV2 was solved with 3 Å resolution using X-ray crystallography.19 To date, fur-

ther structures of other serotypes have also been resolved, e.g. AAV620, AAV921 and it was shown 

that all serotypes share a high structural homology. Comparison of VP3 proteins from different 

serotypes show highly conserved regions (Figure 2A). The core of the VP3 proteins consists of an 

eight-stranded β-barrel motif and a small α-helix.22 Nine variable regions (VR-I to VR-IX) have 

been described which can be found on the surface of the assembled capsid and which differ largely 

between the different serotypes (Figure 2B).21  
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Figure 2: Alignment of VP protein sequences from AAV serotype 2, 6 and 9. (A) Structural alignment of crystal struc-

tures using UCSF Chimera. (AAV2 PDB 1LP3 pink, AAV6 PDB 3OAH orange, AAV9 PDB 3UX1 green). The three 

serotypes show great identity. Differences can be observed for some regions, which were named variable region VR-

IV and VR-VIII. (B) A great variance between different serotypes is observed in the variable region IV and VIII, which 

are further related to as 453- and 587- loop region. Arginine residues of AAV2 (R585 and R588) are indicated with 

atoms in VR-VIII. (C) Amino acid alignment of the three serotypes (NCBI Reference sequence: NC_001401.2; Gen-

bank: AAV6 AF028704.1; AAV9 AY530579.1). Differences in amino acids sequences are highlighted in grey shades. 

Variable region VR-IV and VR-VIII are bordered to indicated high sequence variation.  

 

AAV capsids of all known serotypes share two-, three- and five-fold symmetry axes that determine 

the characteristic appearance of the capsid shell with depressions and protrusions. Between differ-

ent serotypes some regions remain highly conserved, while others are varying. An extraction of the 

alignment of serotypes 2,6 and 9 is shown in Figure 2C and highlights the differences in VR-IV 

and VR-VIII. Variable regions IV and VIII, mainly located in the three-fold spike, determine the 

serotypes tropism for a specific receptor interaction (see Table 1). Different receptors are known to 

induce interactions with the host cell, but until now, not every detail is fully covered. 

Table 1: Summary of the broad diversity in cellular receptors that are necessary for AAV transduction of different sero-

types.  

Serotype Primary receptor Coreceptor 

AAV1 α2-3/α2-6 N-linked sialic acid (SIA)23  

AAV2 Heparan sulfate proteoglycan (HSPG)24 

 

fibroblast growth factor 1 (FGFR-1)25  

hepatocyte growth factor (HGFR)26 

αVβ5 integrin27 

α5β1 integrin28 

37/67 kDa laminin receptor (LamR)29 

AAV3 HSPG30 

 

FGFR-131  

human HGFR32 

LamR29 

AAV4 α2-3 O-linked SIA33  

AAV5 α2-3 N-linked SIA33,34 Platelet-derived growth factor receptor (PDGFR)35 

AAV6 HSPG36 

α2-3/α2-6 N-linked SIA23 

Epidermal growth factor receptor (EGFR)29 

AAV8  LamR29 

AAV9 Terminal N-linked galactose37 LamR29 

 

Serotype AAV2 was studied extensively in the past and amino acids contributing to receptor bind-

ing where identified in the three-fold spike. The basic residues R484, R487, K532, R585 and R588 

are necessary for interaction with the primary receptor heparan sulfate proteoglycane (HSPG).24,38,39 
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Further receptor-mediated clathrin-dependent endocytosis is mediated by interaction with other re-

ceptors as fibroblast growth factor 1 (FGFR-1)25, hepatocyte growth factor (HGFR)26, 37/67 kDa 

laminin receptor (LamR)29 and integrins (α5β1 and αvβ5)27,28. Recently, a gene product of 

KIAA0319L was discovered to be a multiserotype receptor which was designated AAV receptor 

(AAVR).40 It was shown that most serotypes, except AAV4, are dependent on this protein.41 Until 

now it is not fully understood which role this potential receptor is playing in the cellular uptake of 

viral particles.  

After attachment and host cell entry the viral vector is transported into the cells via receptor-medi-

ated endocytosis from clathrin-coated vesicles.42 Upon endosomal escape, AAV is able to enter the 

nucleus of the host cells and the ssDNA genome is released. AAVs have the unique ability to inte-

grate into the genome of the host cell. The integration of the AAV genome is performed specifically 

at the AAV safe-harbor locus (AAVS1) in chromosome 19 when no helper virus is present and the 

AAV enters the lysogenic cycle.43,44 Different parts of the wild-type AAV play a crucial role in 

genomic integration, e.g. ITRs and Rep78 and Rep68.45 If the host cell is additionally infected with 

a helper virus, such as herpes simplex virus (HSV), the AAV enters the lytic cycle. This leads to 

subsequent DNA replication and gene expression of the viral proteins. The capsid assembles from 

VP proteins in the nucleoli of the cells before single-stranded DNA is packaged.15,46  

Recombinant AAVs (rAAVs) are derived from the natural system and are intended to introduce 

transgenes specifically into target cells. The rep and cap genes of the wild-type AAV are therefore 

replaced by an expression cassette containing a gene of interest under the control of a suitable 

promoter. During the exchange of the expression cassette the ITR sequences need to stay intact. 

Both sequences are crucial for packaging of the genome into the assembled capsid. Production of 

recombinant AAVs is only possible if rep and cap gene are supplied in trans on another plasmid. 

In the past, rAAVs were produced by a combined system of plasmid transfection and infection with 

an adenovirus. However, this production variant has the major disadvantage of contamination of 

the final vector preparation by the adenovirus. Another disadvantage is that higher safety levels are 

required due to the introduction of a pathogenic virus. Major breakthrough came at the end of the 

1990s when two independent groups were able to demonstrate that rAAV production in HEK293 

cells is possible via a helper plasmid.47,48 The helper plasmid provides the necessary adenoviral 

elements E2A, E4 and VA RNA and the HEK293 cells line provides still missing E1A and E1B. 

Using this method, replication-deficient rAAV preparations, which are wild-type- and adenovirus-

free, can be obtained. 

3.3. Improving AAV vectors for tumor therapy 

Gene therapy using rAAVs was shown to be promising also in the field of cancer research. Therapy 

of cancer with viral vectors requires a selective transduction of the tumor cells. The natural sero-

types of AAVs offer the ability to transduce specific tissues via their unique tropism. A problem in 
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therapy with natural serotypes is the high immunoprevalence of the population.9 Studies show that 

half of the population has already come into contact with AAV2 and has thus been able to produce 

anti-AAV2 neutralizing antibodies.49 Another problem in the treatment of cancer is the biodistri-

bution in tissue as well as the targeted transduction of tumor cells. Overcoming of these strong 

limitations was pursued with various approaches.  

Delivery and entry of target cells is induced via the amino acid sequence that defines the capsid 

shell. Solving the crystal structure provided necessary information on the capsid surface and the 

exposure of amino acids to the surrounding. Two general methods were applied to change AAVs 

tropism: rational design of targeting motifs and directed evolution of the capsid proteins.  

Directed evolution of AAVs capsid proteins does not require a good knowledge of the capsid struc-

ture and transduction mechanisms. In 2003, Müller et al. showed the feasibility of an in vitro ran-

dom peptide library system for AAV2.50 An approach by Michelfelder et al. also used a random 

peptide library displayed on the viral capsid in in vitro.51 The selected library-derived rAAVs trans-

duced tumors in vivo.  

For rational engineering of the capsid, it must be known at which surface-exposed positions of the 

VP protein integrations can be carried out without loss of productivity. In the past several groups 

determined possible insertion sites. For AAV2 two groups have demonstrated that integration of 

peptide ligands in VP proteins at residue positions 46, 115, 139, 161, 261, 381, 447, 459, 534, 573, 

584, 587, and 588 did not interfere with capsid assembly (Figure 3A).52,53 The targeting peptide to 

be integrated into the capsid should be structure-independent and not too large to avoid destabili-

zation of the capsid shell.54 Retargeting towards a new target molecule requires the neutralization 

of the natural tropism. Main interaction between viral particles and primary receptors was described 

already for a few serotypes. As the best characterized serotype AAV2 all amino acids interacting 

with HSPG are well known and mutations in the two arginine residues R585 and R588 allow for 

strong reduction of transduction efficiency.55 For AAV6 both residues are missing and thus not 

contributing to the interaction with HSPG. Here a lysine residue mediates the interaction and it was 

shown that a K531E mutation impairs affinity towards HSPG.56 The amino acids inducing the in-

teraction with the secondary receptor EGFR are not characterized yet. The primary receptor N-

linked galactose in AAV9 is strongly linked to two amino acids N272 and W503 that are known to 

be important for binding.37  

Integration into the capsid can be directly or indirectly targeting a tumor cell specific feature. In 

direct approaches a peptide ligand is able to bind a cell-specific target, while in indirect targeting 

approaches, the interaction with the target cell is mediated via an associated molecule, which is 

bound to the capsid surface. Indirect targeting was described in the past for an rAAV2 that present 

a minimal immunoglobin G (IgG) binding domain Z34C in amino acid position 587 (Figure 3B).57 

rAAVs were loaded with different antibodies and specific transduction of human hematopoietic 
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cell lines was observed. Integration of motifs also allows for site-specific bioorthogonal labelling 

of rAAV particles. Previous work showed that integration of the recognition motif for the formyl-

glycine-generating enzyme (FGE) was possible at amino acid position 587 and allowed for covalent 

conjugation of the resulting aldehyde either with Alexa488 hydrazide or amine-functionalized gold 

particles (Figure 3B).58  

Direct targeting for rAAV2 was shown with different peptide integrations in position 587 but also 

with VP2 N-terminal fusions. RGD peptides have been incorporated into surface-exposed VP ar-

eas.53 It was shown that cells were transduced independently from the natural HSPG motif. The N-

terminal fusion of even whole proteins to the VP2 protein was demonstrated by different groups.59,60 

In both approaches a four-plasmid system is required where the VP2 fusion protein is delivered 

separately from VP1 and VP3 (Figure 3C). 

 

Figure 3: Strategies for rAAV retargeting. (A) Single amino acid mutations can be genetically introduced. (B) Site-

specific integration is tolerated at various sites of the VP proteins and enables for further non-genetic modifications 

of the capsid. Absorption of IgG molecules to integrated Z34C domains was shown previously to results in biologically 

active vectors. Integration of motifs also allows for further biorthogonal labelling, e.g. using the formylglycine gen-

erating enzyme (FGE) to generate an aldehyde available for covalent conjugation of amine-functionalized gold par-

ticles (Au). (C) Integration of motifs or fusion proteins does not necessarily result in fully-modified capsids. Genera-

tion of so-called mosaic viral vectors remains possible with an alteration in the plasmid system.59,60 

 

All systems described were developed for serotype 2 but since the capsid similarity between sero-

types is high, some groups also established incorporation of peptides into other serotypes. From 

random peptide libraries selected peptides have been transferred from serotype 2 to serotype 8 and 

9.61 Here it was shown, that not only the peptide sequence optimized for AAV2 determines the 

transduction ability in vivo but also the overall capsid contributes to the tropism. A different ap-

proach relying on retargeting using RGD peptides was shown in AAV6.62 
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In addition to the specific targeting of the cell by the viral capsid, tumor therapy can also use other 

properties that e.g. antibodies do not have. The viral particles do not introduce any active substance 

into the cells. Instead, only the DNA is specifically delivered under the control of a promoter. The 

expression of the target protein can be specifically activated in tumor cells in various ways. One 

example is the promoter of the C-X-C chemokine receptor type 4 (CXCR4). For this promoter it 

had been shown in the context of AAV2 that expression of the transgene was only achieved in 

tumor cells.63 A second approach is the use of anti microRNAs (miRNA). The Let-7 family has 

twelve known members that target the same mRNA sequenes.64 Members of this family are known 

to accumulate in differentiated cells, but were shown to be downregulated in cancer cells by mech-

anism that are not fully understood.65 After transduction into healthy cells, the mRNA of the deliv-

ered transgene is degraded by binding the anti-Let-7 miRNA, while translation can take place in 

tumor cells.66 Specific targeting combining both approaches can be summarized under the term 

virus-directed enzyme prodrug therapy (VDEPT).67 This emerging strategy in the treatment of can-

cer allows for direct targeting of cells via tumor specific features. By delivering of an enzyme, a 

prodrug is activated into a cytotoxic compound that finally leads to apoptosis of the cancer cell. In 

the past, several targets of cancer cells have been identified and used for therapy. The epidermal 

growth factor receptor (EGFR) is one example for a validated tumor target.68 

3.4. Targeting the epidermal growth factor receptor 

The EGFR (ErbB1) is a member of the ErbB family and known to be ubiquitously expressed in 

epithelial, mesenchymal and neuronal cells and their cellular progenitors.69 The receptor can be 

subdivided into an extracellular, a transmembrane and an intracellular domain (Figure 4). The ex-

tracellular domain is able to bind up to seven different ligands and induces subsequent dimerization 

with another member of the ErbB family. The dimerization induces intracellular tyrosine kinase 

activity and further phosphorylation. Several different cell signaling pathways are known to be 

activated upon phosphorylation, which are involved mainly in cell growth and migration as well as 

proliferation and differentiation. The cellular response varies not only with the type of bound ligand 

but also on the type of receptor dimer pair.70,71 Contributing to this variety of signaling pathways, 

is it not surprising that the EGFR is involved in several different types of cancers. Thus, the recep-

tor, which is often overexpressed and causes aberrant signaling, is a validated target in cancer ther-

apy.72,73  
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Figure 4: Schematic representation of the EGFR structure as a monomer (left) and as a dimer (right). The N-terminal 

extracellular domain is build up from four subunits I-IV followed by a transmembrane helix, a juxtamembrane segment 

and the kinase domain. (a) As a monomer without ligand the receptor is mainly present in the autoinhibited form in 

which domain II and IV are tethered by the dimerization arm. (b) Natural ligands are bound in an open conformation 

sandwiched between domain I and III, whereby the dimerization arm is exposed promoting dimerization. After homo- 

or heterodimerization internalization starts and the intracellular kinase domains form an asymmetric complex initi-

ating phosphorylation. (This figure is part of the review article “Recent progress in protein-protein interaction study 

for EGFR-targeted therapeutics.” which was published during this work).74 

 

In the early 1980s overexpression of the EGFR was described by several groups of researchers. 

Shortly afterwards, different groups started targeting the receptor and blocking the ligand binding 

site. Initial experiments proved the hypothesis that monoclonal antibodies are able to interrupt re-

ceptor dimerization and subsequent signaling processes to prevent cell proliferation.75 Ever since, 

researchers have been looking for EGFR antagonists that inhibit cell signaling. A detailed descrip-

tion about EGFR extracellular targeting approaches was summarized in a review article that was 

written during this work.74 

Monoclonal antibodies (mAbs) represent the first group of EGFR biologic antagonists that are al-

ready FDA and EMA approved to cancer therapy. The first mAb brought to the clinic was C225 

(Cetuximab), which is now marketed under the name Erbitux.76 The epitope for EGFR-binding was 

characterized by co-crystallization and is shown in Figure 5A-C. As the natural ligand EGF, C225 

binds to subunit III of the extracellular domain and competes with EGF binding. The antibodies 

panituzumab (Vectibix) and necitumumab (Portrazza) were approved in 2006 and 2015, respec-

tively. A main problem of therapeutic antibodies lies within their properties, because biodistribu-

tion and the ability to penetrate tumor tissues is greatly reduced for large molecules.77,78 Much 

smaller proteins that are able to bind specific targets are synthetically designed molecules as de-

signed ankyrin repeat proteins (DARPins). Specific binding interactions are possible by residue 

randomization and ribosome or phage display selection.79 Using these method, the four EGFR-

binding DARPins E01, E67, E68 and E69 were identified and characterized.80 Binding of DARPin 
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variants was described and it was shown that E01 and E68 both bind to subunit III of the extracel-

lular domain, while E69 binds to domain I (Figure 5D,E) 

 

Figure 5: Crystal structure analysis of protein-protein interactions with domain III of the EGFR. (A) The position 

relative to domain III (blue) for the EGFR antagonists Matuzumab (brown) and Cetuximab (yellow) is shown in 

comparison to the natural ligand EGF (cyan). For reasons of simplification only the Fab fragments are shown in 

combination with domain III. (B, C) The epitope of EGF (cyan) and Cetuximab (yellow) are mapped on domain III. 

Structures were created from PDB files: EGFR [1IVO], Cetuximab [1YY9]. (D) DARPin E01 (red) and E68 (yellow) 

epitopes are mapped on domain III based on mutational analyses by Boersma et al..80 The merge area shows the 

overlap of both epitopes (orange). (E) DARPin E69 (red) binds to domain I of the EGFR as confirmed by mutation 

analysis experiments.80 (This figure was modified from the review article “Recent progress in protein-protein inter-

action study for EGFR-targeted therapeutics.” which was published during this work).74 

 

Even smaller targeting molecules can be found in peptides. They are able to diffuse into tissues and 

furthermore show a low immunogenicity. An overall advantage is the relatively low cost for pro-

duction in comparison especially to antibodies. The best characterized synthetic EGFR-binding 

peptide was named GE11 (YHWYGYTPQNVI).81 The linear dodecapeptide was selected from a 

phage-display library with the extracellular domain of EGFR. For the radioactively-labelled 12-

residue peptide a dissociation constant of 22 nM was measured in cellular assays and internalization 

into EGFR-overexpressing cells was described.82 However, surface plasmon resonance assays with 

purified human EGFR resulted in a dissociation constant of 459 µM.83 A peptide found by computer 

assisted design (CAD) using EGFR crystal structures was named D4. The 6-mer linear peptide 

(LARLLT) shows significant binding to the receptor in cell culture experiments and also for a 

cyclic variant of the peptide activity was demonstrated.84 Besides these peptides other approaches 

are more relying on the EGFR structure, especially domain II which is inducing the dimerization 

of two receptor molecules. Different approaches focused on targeting domain II and found the min-

imal binding motif of the so-called EGFR dimerization arm (QTPYYMNT). Different groups 

proved that this peptide is able to interact with the EGFR and provides inhibitory effects.85,86  
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Peptides are able to diffuse into tissues without interaction with a specific receptor. Affinity towards 

receptors is known to be lower for peptides in comparison to antibodies and DARPins. Conjugation 

to larger polymers as polyethylenglycol (PEG) was described previously to create stable mole-

cules.87 Multiplying the affinities of peptides in more complex molecules offers the opportunity to 

convert a low-affinity ligand into a high-avidity molecule. For the minimal EDA peptide, the gen-

eration of a bivalent molecule was already published in 2018.88 Molecules combining an even larger 

number of low-affinity ligands can be chemically synthesized as nanoparticles. Here a broad range 

of liposomes and even integration of the GE11 peptide into a filamentous plant virus-based nano-

particles had been described.89–92 This last approach relied on a system already existing in nature. 

Here, a potato virus X (PVX) served as a platform for incorporation of the GE11 peptide. Incorpo-

ration of peptides or peptide libraries into rAAVs was also shown in the past and offers the oppor-

tunity to present peptides in all 60 capsid proteins composing the capsid.53,59,93,94 Providing peptides 

on such a megadalton complex might increase avidity and prohibit unwanted diffusion into cells, 

thus enhancing specificity of the targeting process. 
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4. Aim 

Adeno-associated viruses are versatile carriers of DNA that offer a wide range of applications in 

the field of gene therapy and are also of increasing importance in tumor therapy. The natural tro-

pism of AAVs does not allow for a specific transduction of target tissues. Ligand-mediated trans-

duction offers the opportunity to increase specificity in target cell transduction and furthermore 

enables for de-targeting of the AAVs natural tropism. Approaches to direct the AAV towards the 

well-known tumor marker EGFR have been made in the past using incorporation of larger EGFR-

binding proteins.  

The fundamental question of this study was, whether computationally designed peptides are able 

to target the EGF receptor and allow for specific transduction of EGFR-overexpressing cells in 

context of the adeno-associated virus. In order to answer this question, synthetic peptides should 

be examined for their affinity to the receptor and their properties in cell culture experiments.  

Furthermore, analysis of peptides in the recombinant AAV system requires production and purifi-

cation of the viral particles. The increase in the quality of the virus preparations is another funda-

mental issue. Can the production and the purification method be improved in such a way that the 

previous work in this field can be substantially improved? To this end, effort should be made in the 

design of AAV production cell lines and plasmids systems as well as purification methods. 

Ultimately, final rAAV variants will be analyzed with regard to the transduction of the target cells. 

The EGF receptor status of the cell lines to be investigated is important to detect the efficacy of the 

re-targeted rAAV variants. Therefore, the question arose how this status can be detected in a 

straightforward and convenient way.  

 



4 Aim 

16 

 

  



  5 Results and Discussion 

17 

 

5. Results and Discussion 

5.1. Development of a EGF-mCherry fusion protein 

Results of this projects were published with the title ‘EGF-mCherry fusion protein expressed in E. 

coli shows product heterogeneity but high biological activity’ in Biochemistry and are summarized 

in this chapter. The original publication is included in the appendix. 

Targeting of tumor cells is a main task in therapy and relies on knowledge about the cells receptor 

state. Determination of EGFR receptor levels, internalization and inhibition of ligands was mostly 

analyzed using [125I]-labelled EGF. Problems can be found in the short half-life of the isotope as 

well as the need for special equipped laboratories. Using fluorescent proteins instead is environ-

mentally friendly and compatible with most modern workflows. Creation of the human EGF with 

N-terminal attachment of an EGFP was shown previously.95 Further development was now carried 

out to make this fusion protein useful for a broader range of applications. From crystal structure 

analysis and the known cell bound state of full EGF we hypothesized that fusion to the C-terminus 

of mature EGF is equally if not better suited for fusions because it is more distant to the necessary 

disulfide bridges (Figure 6A,B). 

 

Figure 6: Crystal structure analysis of EGF and EGF-mCherry. (A) EGF:EGFR crystal structure proving both termini 

to be flexible for fusion to other proteins (PDB ID 1IVO). Three essential disulfide bonds for EGF a highlighted in 

red. (B) Assembly of EGF-mCherry from PDB ID 1JL9 and 2H5Q. (This figure was adopted from the supporting 

information of the article “EGF-mCherry fusion protein expressed in E. coli shows product heterogeneity but a high 

biological activity.” which was published during this work).  

5.1.1. Biochemical and biophysical characterization of EGF-mCherry  

A fusion of the human EGF with mCherry attached to the C-terminus was generated in a pET21a 

vector using standard molecular-biological cloning procedures. Expression in E. coli BL21(DE3) 

with subsequent purification resulted in good yields of 14.9 mg per 500 ml shaker culture in LB 

medium. SDS-PAGE analysis under reducing and non-reducing conditions revealed that EGF-

mCherry was mainly found in the cytosolic fraction and that partial dimer formation takes place, 

which can be reduced upon DTT addition (Figure 7A, B). Further analysis of MS and SDS-PAGE 

data revealed fragmentation at the chromophores N-acylimine at elevated temperatures.96 Disulfide 

bond formation is crucial for biological function, because three internal disulfide bonds need to be 

formed. Due to the reductive nature of the cytosol, disulfide bonds cannot be formed straight during 

production97. We hypothesize that formation takes places upon cell disruption and purification by 

N-Terminus

C-Terminus
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exposure to the oxidative environment. For mass spectrometry using an LC-ESI-TOF a reduced 

and non-reduced sample of the final product were analyzed (Figure 7C). Each disulfide bond for-

mation results in a mass difference of 2 Da in the spectrum. For the purified product a shift of 6 Da 

is expected as three disulfide bridges should be reduced to thiols. A shift of approximately 6.7 Da 

is observed for EGF-mCherry leading to the assumption that the proteins folding is correct.  

 

Figure 7: Characterization of the fusion protein EGF-mCherry. (A, B) SDS-PAGE of EGF-mCherry under varying 

conditions. EGF-mCherry was incubated with reducing (+DTT) and without reducing agent (–DTT) either at room 

temperature or at 95 °C for 10 min before application to a 12% SDS-PAGE. Images under white light are shown 

before (A) and after staining (B) with Coomassie Blue. (C) LC-ESI-MS analysis of EGF-mCherry under non-reducing 

and reducing conditions. (D) Circular dichroism spectra of a temperature course experiment from 46 to 90 °C in 1 °C 

steps. 

 

Analysis of structural properties and thermal stability was assayed using circular dichroism spec-

troscopy. Even at elevated temperatures from 46-90 °C structural elements were detected in the 

sample, which is in accordance with literature values for mCherry.98 Since of biophysical properties 

of EGF are in correspondence with data from literature, the affinity to the receptor and the biolog-

ical activity must now be confirmed. 

5.1.2. EGF-mCherry shows nanomolar binding affinities 

Assaying the biological function of EGF-mCherry was carried out mainly in cell culture experi-

ments. First experiments on cells expressing varying levels of EGFR on their cell surface revealed 

that only nanomolar concentrations are needed to detect a meaningful signal in microscopy, flow 

cytometry and microplate reader experiments. In wound healing experiments the biologic activity 
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of the EGF derivative was assayed on A431 cells. Cell migration was analyzed over the course of 

the experiment and closure of the gap was measured using ImageJ (Figure 8A). Cell migration rates 

were calculated from linear regressions as seen in Figure 8B. Comparing EGF-mCherry with the 

commercially available hEGF (Gibco), elevated migration rates were observed proving the biologic 

activity of EGF in the EGF-mCherry fusion construct Figure 8C. This assay was established to 

analyze EGF activity and was also performed in collaboration with the Algae Biotechnology & 

Bioenergy Research Group, Bielefeld.99 

 

Figure 8: Wound healing assay for EGF-mCherry on A431 cells. (A) Cells were incubated with 0 nM (buffer control) 

and 1 nM EGF-mCherry or a commercial hEGF over a time course of 8 h. Cell-free areas and cell migration rates 

were determined using the ImageJ software plugin MRI Wound Healing Tool. Scale bars in upper right corner rep-

resent 250 µm. (B) The area of the closing wound was plotted against the time. Linear regression using Origin2019 

were performed and cell migration rates calculated form the slope. (C) Bar chart of cell migration rates of the buffer 

control, the commercial hEGF (Gibco) and EGF-mCherry.  

 

Further work in cell culture experiments was performed to visualize EGF receptor binding and 

internalization. The cell lines A431, Hela and MCF7, presenting decreasing levels of receptor, were 

analyzed using microscopy after incubation with 5 nM EGF-mCherry. Analysis revealed that the 

decrease in receptor level corresponds to a decrease in fluorescence intensity (Figure 9A).100,101 Flow 

cytometry allowed a more detailed analysis and thus, the EGF receptor state was characterized for 

several different cell lines Figure 9B. These values are in good correspondence with values de-

scribed in literature and allow for assessment of EGFR density of uncharacterized cells lines, e.g. 

HEK293 EGFR. Time-dependent microscopy images demonstrated the biologic activity on A431 

cells via their internalization. Figure 9C shows microscopy images of A431 incubated with EGF-

mCherry after 15 min and after 30 min in comparison to a control. Internalization of the fusion 

protein can be visualized and indicates that the mCherry fusion does not inhibit the function of 

EGF. Not only cell culture experiments were used to prove the EGFR binding affinity. Biolayer 

interferometry (BLI) experiments were used to characterize EGF-mCherry:EGFR binding affinity. 

The soluble domain of the EGFR (sEGFR, residue 1-621) was expressed in 293F cells, purified via 
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IMAC and subsequently immobilized on an amine-reactive biosensor (ARG2). Different concen-

trations of EGF-mCherry and as negative control bovine serum albumin (BSA) were measured 

using the BLItz system. Obtained curves showed a specific binding of EGF-mCherry to the sEGFR 

(Figure 9D) and a global fit based on a 1:1 kinetic binding model yielded a dissociation constant 

KD of 7.6 nM. This value is in good agreement with the KD of 1.8 nM reported for hEGF in surface 

plasmon resonance experiments.83 

 

Figure 9: Characterization of EGF-mCherry binding affinity. (A) A431, Hela and MCF7 cells were incubated with 

5 nM EGF-mCherry for 15 min before fluorescence microscopy. (B) Flow cytometry analysis of cells expressing dif-

ferent levels of EGFR. Cells were incubated with 150 nM EGF-mCherry for 15 min before measurements. Folds of 

mean fluoresce difference with and without EGF-mCherry are presented for each cell line. (C) Internalization of EGF-

mCherry was shown using A431 cells. Cells were incubated with 10 nM EGF-mCherry, fixed and counterstained with 

DAPI. (D) A soluble EGFR was immobilized on an ARG2 sensor for biolayer interferometry (BLI). Different concen-

trations of EGF-mCherry were measured and the data was fitted. 

 

Biologic activity and specificity in receptor binding was verified for EGF-mCherry. Next, we es-

tablished cellular assays that allow for characterization of binding inhibitors and blocking antibod-

ies for the EGFR tumor target. A431 cells were incubated with elevating concentrations of EGF-

mCherry at 37°C for 15 min and the mCherry signal was detected using a microplate reader. As 

already seen in previous experiments, incubation at this temperature and time interval comprises 

receptor binding, internalization and depletion. Therefore, besides the bound EGF-mCherry, the 

already internalized EGF-mCherry is also detected. Plotting the fluorescence intensity against the 

EGF-mCherry concentration shows a sigmoidal curve with signal or receptor saturation, respec-

tively (Figure 10A). 
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Figure 10: EGF-mCherry cell binding and competition assays. (A) A binding assay was performed on A431 cells that 

were incubated with increasing concentration of EGF-mCherry. (B) In the competition assay cells were simultane-

ously incubated with EGF-mCherry at 50 nM and hEGF in increasing concentrations. Relative fluorescence of cells 

was measured using a Tecan Spark instrument at 550/610nm. The data was fitted using a Dose-Response Fit in 

Origin2019. 

 

The half-maximal effective concentration EC50 of 53.4 ± 4.2 nM was determined from a sigmoidal 

curve fitting. From this first binding experiment, the required concentration of EGF-mCherry can 

be derived for the following competition experiments. A concentration of 50 nM EGF-mCherry 

was kept constant while a non-fluorescent competitor, e.g. hEGF (Gibco) was added in increasing 

concentrations. Dose-response curve fitting of the fluorescence intensities allows for estimation of 

an inhibitory concentration IC50 for hEGF, which was determined to be 146.3 ± 36.2 nM (Figure 

10B). The IC50 values would match the concentration of EGF-mCherry if both EGF variants were 

equally active. Here, the inhibitory concentration is three times higher, which might be explained 

by the observed formation of multimers for EGF-mCherry. In summary, these assays were easy 

and simple to implement in laboratories that are equipped with a standard microplate reader with 

an excitation in the range of 560 nm and emission above 580 nm and allow for characterization of 

EGFR-expressing cell lines and EGF-binding inhibitors. 

 

5.2. Peptides binding the EGFR dimerization arm 

Results of this project were summarized in a manuscript with the title ‘Designed EGFR-inhibiting 

peptides suitable for tumor-targeting of recombinant adeno-associated virus capsids’. The original 

manuscript is included in the appendix and a detailed summary of the work is presented in the 

following chapter. 

Targeting of cancer cells overexpressing the EGFR was a main aim of this work. The target site for 

binding was selected previously with the EGFR dimerization interface. Since this interface is 

mainly involved in receptor dimerization, binding would not only allow for internalization into the 

target cell, but also in blocking of the receptor dimerization and activation. We focus on peptide 
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ligands that interact with the dimerization interface. These ligands were designed using a rational 

process relying on the crystal structure of the EGFR extracellular domain (PDB ID 1IVO). PepEDA 

was extracted from the dimerization arm structure of the EGFR and was used as a control as it was 

shown previously that it interacts with the EGFR (Figure 11).85,86 Pep1osy and Pep1jhf were se-

lected from a rational design approach that started with the extraction of 200 12-mer β-hairpins 

from the PDB. The extractions were further superimposed on to the native EDA hairpin (pepEDA). 

A rationally and translationally sampling into the binding pocket of the receptor was performed 

which resulted in 200,000 sequence/ position solutions. These solutions were filtered for satisfied 

hydrogen bonds and significant hydrophobic surface areas and afterwards screened for binding 

energies as predicted with Rosetta. A final selection of 30 solutions was visually inspected and four 

top solutions were chosen. These underwent additional high-resolution docking and sequence im-

provement processes. For final experiments the two top solutions pep1jhf and pep1osy were chosen 

which are presented in Figure 11.  

 

Figure 11: Crystal structure representation of the extracellular EGFR domain. Crystal structure of the dimerization 

complex of the human EGFR extracellular domains (PDB 3NJP). The EGFR dimerization arm (EDA) is highlighted 

in magenta in both domains. Rationally designed peptides binding the dimerization interface are highlighted in green 

(pep1jhf) and light blue (pep1osy). The rational design was performed by D.J. Mandell. Models were generated using 

UCSF Chimera. 

 

Both top solutions and the control pepEDA were sought to be analyzed for EGFR binding but not 

only in the context of their individual affinity towards this receptor but also in terms of avidity 

which is achieved by incorporation of the peptides into the rAAV capsid.  

5.2.1. Synthesis of cyclic EGFR binding peptides 

The individual affinity of pep1jhf and pep1osy was to be tested for the synthetic cyclic peptides in 

direct comparison with EDA2. To study the rationally designed peptide ligands with literature de-

scribed values, first a strategy taken from the literature was used to generate cyclic peptides. The 

peptide EDA2 was described in 2015 by Hanold et al. and represents the natural EGFR dimerization 

arm (EDA).85 Cyclization of this peptide was achieved via a triazolyl bridge between the terminal 

amino acids. The formation of this bridge was tested using different terminal amino acids and a 

pepEDA

pep1jhf

pep1osy
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combination of a C-terminal 4-azido-L-homoalanine (L-Aha) and an N-terminal L-progargylglycine 

(L-Pg) resulted in a triazole with a length closely related to the wild-type EDA.85 This strategy was 

transferred to pep1jhf and pep1osy and peptides were synthesized on a Rink amide resin.  

Table 2: Peptide sequences for generation of triazole-bridged EGFR-binding peptides. 

Name Sequence 

pep1jhf 
Pg-WAKSQGNKSEYQ-Aha 

pep1osy 
Pg-VVFEVNGRDLGW-Aha 

EDA2 
Pg-LYNPTTYQMD-Aha 

 

First cyclization attempts were carried out on-resin as described in literature. Applying CuSO4 (30 

equiv)/ascorbic acid (5 equiv) in a solvent system of tBuOH:H2O (1:2 (v/v), overnight) did not re-

sults in the observation of the final product. Instead, the starting material was not converted accord-

ing to HPLC and IR. A second approach using CuI instead of CuII was applied with CuI 

(0.4 equiv)/ascorbic acid (0.8 equiv)/2,6-lutidine (1.6 equiv) in NMP/H2O (4:1 (v/v), 96 h).102 Suc-

cessful click-chemistry between the terminal amino acids will not result in a shift in mass and thus, 

only a shift in retention time and IR spectroscopy can confirm a successful cyclization. The ob-

served shifts in the retention time were very small and therefore IR measurements were performed. 

For a successful cyclization these should result in disappearance of the vibrations of the alkyne 

(2100 cm-1). A disadvantage of this method, however, is that no reliable results could be obtained 

from crude, low-concentrated samples. Thus, IR measurements were conducted after final depro-

tection, cleavage from the resin and purification. Cyclization on-resin was not detected for peptides 

pep1jhf and pep1osy after both cyclization attempts (Figure 12). For the literature described cyclic 

pepEDA, the alkyne vibration was not detected and a shift in retention time was as expected ob-

served in HPLC. 

   

Figure 12: IR measurement of for linear (black) and potential cyclic (blue) pepEDA, pep1jhf and pep1osy. The char-

acteristic vibration of the alkyne is seen for the linear as well as for the cyclic peptide. Measurements of a small 

peptide sample were conducted in methanol with a Bruker Alpha II Platinum ATR system. Data was acquired using 

OPUS software and analyzed in Origin2019. 

 

Problems in on-resin cyclization can be related to different aspects. A previous publication showed 

that resins with long PEG linkers can contribute to the click reaction, because they allow more 

degrees of freedom.85 Also, the peptide sequence was shown to have an influence on the outcome 
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of the click reaction. Since all peptides were already cleaved from the resin and purified we changed 

the strategy towards in-solution click chemistry. Three different test reaction were set up including 

CuSO4 (4.4 equiv)/ascorbic acid (6.6 equiv) in tBuOH/H2O (1:2 (v/v), overnight)103, CuI 

(10 equiv)/DIPEA (25 equiv) in acetonitrile103 and Cu(0) powder (15 equiv) in tBuOH/H2O (1:2 

(v/v), overnight). Again LC/MS and IR measurements were conducted but cyclization was not ob-

served under these varying conditions. All attempts to carry out on-resin and in-solution intrachain 

CuI-catalyzed azide-alkyne 1,3-dipolar cycloaddition failed for pep1jhf and pep1osy. Literature 

suggested that the chemical nature of the linear precursor plays an important role for the propensity 

of the click-reaction.103 Distance and chemical surrounding of the azido and alkynyl groups are 

important as well as the reaction conditions.103 The length of the linear precursor (14 residues in-

cluding L-Aha and L-Pg ) was the same for pep1jhf and pep1osy but two residues longer compared 

to pepEDA. This difference in distance probably has the greater influence on the reaction, because 

the sequences of the peptides are substantially different and thus should influence the reaction not 

in the same way.  

As this method was running into a dead-end, alternative cyclization strategies had to be considered. 

In 2016, Toyama et al. analyzed a cyclic peptide, close to pepEDA, and showed its biological func-

tion.86 The decapeptide CYNPTTYQMC was cyclized via a disulfide bridge, that links the two 

terminal cysteines. This peptide was chosen as a new model peptide for comparison with pep1jhf 

and pep1osy. Thus, the literature described pepEDA, as well as pep1jhf and pep1osy were synthe-

sized each with terminal cysteines in a linear, a cyclic and a 5(6)-carboxyfluorescein-labelled cyclic 

variant. Disulfide-cyclized peptides were synthesized and analyzed in cooperation with Isabell 

Kemker (Prof. Dr. N. Sewald). 

5.2.2. Pep1osy reveals β-hairpin character 

Rational peptide design was performed to result in β-hairpin-structured peptides that are able to 

bind subunit II of the EGFR. We obtained synthetic disulfide-bridged peptides that needed to be 

analyzed for their structural properties. The reference peptide pepEDA in the triazolyl-bridged and 

in the disulfide-bridged form have previously been analyzed for secondary structural characteristics 

in circular dichroism (CD) experiments, proving formation of secondary structural elements.85,86 

Estimating the secondary structural characteristics for the rational designed peptides was carried 

out using circular dichroism experiments in comparison to pepEDA. All peptides were solubilized 

in 10% trifluoroethanol (TFE) in water and measured subsequently in comparison to their linear 

progenitor. Results are shown in Figure 13 for the cyclic peptides in direct comparison to the linear 

progenitor. Only pep1osy shows a significant β-hairpin character with a maximum at ~195 nm and 

a minimum at ~210 nm in comparison to the linear precursor that shows an unfolded structure with 

a minimum at approximately 200 nm. PepEDA in comparison indicates some low levels of struc-

turing. In contrast, the linear peptide exhibits a more flattened profile typical of a flexible disordered 

structure with a minimum at approximately 195 nm. In the context of the disulfide-bridged context 



  5 Results and Discussion 

25 

 

no secondary structure formation was observed for pep1jhf as the anticipated shift towards higher 

wavelengths was not observed. Here, the secondary structure of a β-hairpin was not confirmed 

under several tested conditions (different buffer compositions). The presence of the cyclic and lin-

ear form was verified using LC/MS directly after CD measurements, thus we think that pep1jhf 

remains a random coil conformation under these conditions.  

   

Figure 13: Circular dichroism (CD) spectra of linear and cyclic peptides. CD spectra for all linear and cyclic peptides 

were recorded using a Jasco-810 from 190 to 250 nm wavelength at 25 °C. Peptides were dissolved in 10% trifluoro-

ethanol (TFE)/water (v/v) at 100 µM concentrations. 

 

Nonetheless, all further experiments were performed using all three cyclic peptides. Even if no 

secondary structure is observed, the cyclic peptide might have the ability to bind the extracellular 

domain of EGFR.  

5.2.3. Pep1osy shows inhibitory properties in wound-healing assays 

We hypothesize, that upon binding of the peptide to subunit II dimerization of the EGFR will not 

occur because the dimerization interface is blocked. Testing the influence of the peptides was as-

sayed in wound healing assays. During these experiments closure of a wound is monitored and cell 

migration is analyzed. Several signaling pathways activated by the EGFR are involved in cell mi-

gration and adhesion and thus, peptides should affect receptor dimerization. These effects should 

prohibit the migration induced by EGF and result in cell migration rates comparable to those of the 

buffer controls. Assays were performed on A431 cells that overexpress the EGF receptor and results 

are presented in Figure 14A, B. In the buffer only control experiment cell migration rates are low 

with about 10 µm per hour. In contrast, the experiment in presence of 1 nM of the natural EGFR 

ligand human EGF (hEGF) yielded elevated migration rates up to three times, proving the strong 

impact of hEGF. Peptides were applied to the cells in 5 µM concentration and showed migration 

rates comparable to those of the negative control. This was expected as cells were serum-starved 

prior to incubation and thus, no ligand should be available to induce dimerization. In the second 

setup, peptides (5 µM) were simultaneously incubated with 1 nM hEGF. Here, hEGF binding would 

allow for dimerization. Blocking of the receptor due to the peptide would inhibit dimerization and 

thus, signaling inside the cell will not activate pathways involved in cell migration. pepEDA and 

pep1jhf show a retained high cell migration rate in presence of hEGF. For pep1jhf this result could 

be expected as the secondary structure was not confirmed in CD experiments. For pepEDA this 

results is surprising, as in previous publications the downregulation of the EGFR was shown in 
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Western blot analyses.86,88 Only for pep1osy we clearly saw a decrease in cell migration velocity in 

the presence of hEGF which was detected in the range of the buffer control. Here, we hypothesize 

that binding of the peptide corresponds to an inhibition of dimerization and further to a downregu-

lation of cell signaling pathways.  

 

Figure 14: Wound healing assay on A431 cells. Cells were seeded in 24-well plates, cultivated until they reached 

confluence and serum-starved prior to creation of wounds. After extensive washing cells were incubated with peptides. 

Images were taken hourly using a Leica DMI6000 and cell-free areas and cell migration were determined using the 

ImageJ software. Scale bars represent 250 µm. (A) Images of wounds in the negative buffer control, the positive 1 nM 

hEGF sample, 5 µM pep1osy and 5 µM pep1osy in combination with 1 nM hEGF. (B) From plotting of the wound area 

against time, cell migration rates were determined by applying a linear regression in Origin2019. Cell migration rates 

were determined for biological replicates. 

 

5.2.4. Cyclic peptides bind and internalize into EGFR overexpressing cells 

Besides the cyclic peptide variants already tested, fluorescein-derivatives have been synthesized of 

pepEDA, pep1jhf and pep1osy. These fluorescent-labelled peptides were used to assay cell binding 

properties on cells expressing different levels of EGFR. Experiments were primarily conducted 

using EGFR-overexpressing A431 cells and low-level expressing MCF7 cells. In the past, both 

cells lines have been extensively studied regarding their EGF receptor state.101,104 

Combining flow cytometry and confocal laser scanning microscopy on live cells allows for assess-

ment of peptide import. Confocal microscopy allows subcellular localization of peptides but is not 

quantitative, while flow cytometry is quantitative but does not provide spatial information. The first 

experiment performed with both cell lines was a flow cytometry-based assay. Cells were incubated 

with peptides at a 20 µM concentration for 15 min at 37 °C and after washing steps a subsequent 

flow cytometry analysis was performed. In this assay a fluorescence signal can be related to peptide 

bound to the cell surface as well as internalization into the cell. Furthermore, it cannot distinguish 

between receptor-mediated or random internalization. Data in Figure 15 show the normalized mean 

fluorescence intensity, demonstrating the increase in fluorescence for all peptides on both cell lines. 

Interestingly, this increase is also visible for the low-level EGFR expressing MCF7 cell line. But 

in comparison the fluorescence signal detected on A431 cell is elevated for all three peptides indi-

cating that here high amounts bind and internalize into cells. 
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Figure 15: Flow cytometry analysis of MCF7 and A431 cells with pepEDA, pep1jhf and pep1osy. Cells were seeded 

the day before analysis on 24-well plates at a density of 1×105. Peptide were diluted to 20 µM concentration in medium 

and incubated for 15 min at 37 °C before detachment and analysis using a FACScalibur. 10,000 events were counted 

and data analysis was performed using FlowJo and Origin2019. 

 

Further analysis of cell internalization was performed using confocal laser scanning microscopy. 

Here, peptide internalization was tracked after addition of 5 µM fluorescein-labelled peptide for 

10 min and prior staining of acidic cell compartments using Lysotracker DND-99. The EGF recep-

tor is known to internalize via the clathrin-mediated pathway in endosomes and ends up in lyso-

somes where degradation occurs.105 If the carboxyfluorescein-labelled peptide is internalized into 

cells via endocytosis this can be tracked via colocalization of the fluorescence from both, the pep-

tide and the lysotracker. Figure 16 shows fluorescence images for all cyclic peptides on MCF7 and 

A431 cells. Colocalization was analyzed using a self-designed macro in ImageJ and is presented in 

white spots in the fluorescence image overlays. For better visualization white arrows indicate areas 

where colocalization was detected. Similar low levels of colocalization of pep1jhf and pepEDA 

were identified which correspond to the flow cytometry data and the low β-hairpin character ob-

served for both peptides. Here a more diffuse, no lysosome-related mechanism leads to internali-

zation into the cell. For pep1osy a more specific internalization was observed also represented the 

flow cytometry results which can be attributed to the strong β-hairpin character observed in CD 

spectra. 

Summarizing these results, we believe that internalization of pep1osy utilizes a specific EGFR-

related cell entry mechanism. Analysis performed for pep1jhf and pepEDA verified all previous 

results and shows that the β-hairpin secondary structure is essential for true receptor-mediated in-

ternalization. 

 

A431 MCF7 A431 MCF7 A431 MCF7 A431 MCF7

Negative 20 µM pepEDA 20 µM pep1jhf 20 µM pep1osy

0

2

4

6

8

N
o
rm

a
liz

e
d
 m

e
a
n
 f
lu

o
re

s
c
e
n
c
e
 i
n
te

n
s
it
y



5 Results and Discussion 

28 

 

  

Figure 16: Live cell imaging of cyclic peptide variants on A431 and MCF7 cells. Fluorescence microscopy was per-

formed using an inverted laser scanning Zeiss LSM780 microscope. Cells were seeded on LabTek slides the day before 

the experiment. Nuclei were counterstained using NucBlue and lysosomes were stained using Lysotracker DND-99 

before incubation with 5 µM fluorescein-labelled peptide for 10 min at 37 °C. Images were analyzed using Zeiss Zen 

2011 and ImageJ software. Colocalization of peptide and Lysotracker DND-99 was analyzed in ImageJ and all spots 

of colocalization are marked in white and highlighted with white arrows. 

 

5.2.5. Pep1osy shows an affinity towards the soluble EGFR 

Binding affinities of the peptide were now analyzed in fluorescence polarization assays using the 

soluble EGFR variant described in the previous chapters. The carboxyfluorescein-labelled peptides 

were each analyzed for their affinity towards the receptor without addition of the natural ligand 

EGF. Excitation of a fluorophore with linear polarized light results in emission of linear polarized 

light in dependence of its fluorescence half-life and rotation speed. At constant temperature and 

viscosity, fluorescence polarization depends on the volume of the fluorophore-labelled small mol-

ecule. If a fluorophore-labelled ligand is free in solution, its volume is small and its mobility is 

high, depolarization of the emitted light is strong. If this ligand binds to the target protein, its vol-

ume and mobility decreases due to limited rotation, whereby the emitted light remains more polar-

ized during the fluorescence lifetime.106,107 After incubation of peptide:EGFR solutions, fluores-

cence polarization was measured using a Tecan Spark instrument. Polarization was converted to 

anisotropy and plotted against the EGFR concentration (Figure 17A,B). The data were analyzed 

according to a 1:1 binding model equation described in literature.108 For pep1jhf and pepEDA no 

increase in fluorescence anisotropy was observed in the accessible concentration range for EGFR. 

Only pep1osy showed an increase which was fitted with the described binding model resulting in 

an apparent dissociation constant of ~70 µM. Data points are missing a plateau phase at increasing 

sEGFR concentrations, which needed to be assumed for the fitting model (black data points). A 

value of 1 M EGFR was assumed as EGFR concentration at a maximum anisotropy of 200 mA, 

since in previous experiments with proteins and peptides of the same molecular weight a difference 

of about 150 mA between minimal and maximal anisotropy was observed. A plateau could not be 
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achieved, because the material input is not related to the added value of the data. Compared to other 

EGFR binders this value is considerably low showing that the affinity towards the dimerization 

arm limited. The pattern of binding is more complex at it seems initially. The peptide binding site 

in domain II is only accessible in the extended conformation of the receptor. The tethered structure 

shows an intramolecular interaction between subunit II and subunit IV which is potentially pre-

ferred over the dimerization, as domain IV has a higher local concentration (Figure 17C). Prefor-

mation of a receptor dimer in absence of a ligand has not been described.109 In presence of a ligand, 

dimerization occurs with a KD~1 µM.110 Ligand binding allows a transition into the extended con-

formation and thus, also a clear shift of the equilibrium in the direction of dimerization. Perfor-

mance of this experiment with the addition of the natural ligand EGF would not have simplified 

this experiment, as dimerization would again be preferred and in direct competition with the bind-

ing of the EGFR-specific peptide. Hence, the direct binding model by Roehrl et al. does not describe 

this relationship in full detail and we hypothesize that the real dissociation constant for the peptide 

is even lower.  

 

Figure 17: Fluorescence polarization assay for determination of the dissociation constant for binding of the fluores-

cent-labelled peptides to the soluble EGFR. (A) Normalized anisotropy of pep1jhf and pepEDA was plotted against 

EGFR concentration. Fitting was not successful as no change in anisotropy was observed. (B) Anisotropy data for 

pep1osy shows an increase which was fitted according to equations described in literature by Roehrl et al..108 Assum-

ing an anisotropy maximum of 200 mA at 1 M sEGFR (black points), a dissociation constant of 68.6 µM was deter-

mined. Errors were calculated for three independent triplicates using Gaussian error propagation. (C) Complex bind-

ing pattern during fluorescence polarization assays. The tethered form of the EGFR is not able to bind the fluorescent-

labelled peptide. Preformation of a receptor dimer competes with binding of the fluorescent-labelled peptide. 

 

Results of this assay summarize the previously observed findings. The natural derived peptide pep-

EDA showed no detectable binding to the receptor, which might be attributed to a low binding 

affinity. Likewise, no binding affinity was observed for the rational designed peptide pep1jhf. Here 
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the peptide might, as also seen in other assays, not be present in the correct β-hairpin conformation 

and binding to the receptor is inhibited. As already observed in the previous assays, pep1osy 

showed an affinity towards EGFR. Nonetheless, the KD is considerably low and random internali-

zation was observed. In order to avoid these problems, a system was found with the AAVs in which 

a high number of peptides increases the avidity and the larger size also prevents random internali-

zation. 

5.2.6. Integration of peptide ligands into rAAV2 

Analysis of the synthetic peptide showed interesting features of the rationally designed EGFR-

binding peptides in comparison with the already characterized variant pepEDA. Our aim was to 

incorporate all peptides into the capsid structure of an adeno-associated virus. Here, the 587-loop 

region of the VP proteins was selected for the site of integration resulting in 60 modified viral 

proteins composing a capsid Figure 18A. Increasing the number of available ligands with low af-

finity increases the avidity of the overall molecule. We aimed at incorporation of the peptides into 

the capsid to selectively target cancer cells expressing high levels of EGFR and deliver a gene of 

interest (GOI) into the cell for therapy. In the context of the synthetic peptide, we evaluated the 

ability of internalization which is an important feature for internalization of the whole capsid into 

the tumor cells.  

As shown in Figure 18A incorporation of peptide ligands at residue position 587 of the VP protein 

occurred on a genetic level. Here, amino acid sequences were introduced without the addition of 

terminal cysteine residues not required for interaction with EGFR. As starting point, a plasmid 

coding for the capsid proteins of AAV serotype 2 was used (pZMB0216) that enables the insertion 

into the 587 loop region via unique restriction site BamHI and PvuII. Hybridized oligonucleotides 

were used to incorporate the right DNA sequence after restriction digest of the starting plasmid. To 

prevent resulting rAAV2 from transducing cells via their natural tropism two amino acid mutations 

were further introduced (R585A, R588A). Both amino acid residues are known to mediate the con-

tact of the virus capsid towards HSPG and mutation to alanine’s was shown to dramatically reduce 

the ability to successfully transduce cells.111 The position of amino acids mutations is highlighted 

in Figure 18A in context of the crystal structure (left) and amino acid sequence (right). Plasmids 

with integrated sequences were verified for their correctness via Sanger sequencing before appli-

cation in rAAV2 production. Ten 100 mm plates were used in a standard rAAV production in 

adherent HEK293 cells. The final titer of a sample concentrated at about 500 µl was determined by 

qPCR by direct comparison to a standard curve. As seen in Figure 18B final titers of all produced 

rAAV variants are equivalently high showing that introduction of peptides into the 587 position 

does not interfere with capsid assembly. The final preparations were also assayed for their correct 

VP protein ratios in a Western blot (Figure 18C) proving that the normal molar ratio of 1:1:10 for 

VP1,VP2 and VP3 is maintained.  
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Figure 18: Incorporation of EGFR-binding peptides into rAAV2. (A) Representation of the VP protein with yellow 

highlighted integration site at amino acid residues 587 (PDB 1LP3). Sequences of variable region VIII and of all 

peptides are presented and the integration site shown. Yellow bars indicate R585A and R588A mutations leading to 

a HSPG knock out. (B) Genomic titers of rAAV2 peptide variants determined via qPCR. Yields were obtained from 

10× 100 mm dishes after purification using iodixanol ultracentrifugation. (C) Western blot analysis of rAAV2 587 

pep1jhf and rAAV2 587 pep1osy. VP proteins were detected using the anti-VP antibody B1, which is detected in a 

chemiluminescence reaction upon binding of the secondary HRP-coupled antibody.  

 

All produced rAAV variants carry the expression cassette of the fluorescent protein mVenus with 

a CMV promoter in between the ITRs. If the peptides mediate transduction, lysosomal escape and 

transgene delivery to the nucleus of EGFR-overexpressing cells, expression of the fluorescent pro-

tein mVenus takes place. Thus, analysis of successful transduction was observed via flow cytome-

try after cells were incubated with a multiplicity of infection (MOI) of 50,000 for a duration of 

96 h. Here, four rAAV2 variants were analyzed for their transduction ability on A431 and MCF7 

cells in comparison to a buffer control (negative). The transduction ability of rAAV2 HSPGko is 

in the range of the negative control indicating that two arginine mutations to alanine reduce the 

transduction ability dramatically. Nonetheless, a slight difference can be observed between the two 

cell lines. The wild-type rAAV2 is known to transduce several cell lines to very high extents.112 

Control experiments with wild-type rAAV serotype 2 are included in chapter 5.3.1. For the pep-

EDA insertion in rAAV2, transduction efficiency is located in the range of the negative control 

showing that retargeting of the EGFR is not reached by integration of the natural sequence of the 

EGFR dimerization arm. As shown in chapter 5.2.4, this peptide is able to internalize into both cell 

lines, but transduction of cells requires also a successful lysosomal escape as well as delivery of 

the transgene into the nucleus for gene expression. If one of these steps is prohibited, mVenus will 

not be expressed, even if internalization occurred. Integration of rational designed pep1osy and 

pep1jhf resulted in about 30% of mVenus positive cells proving a successful transduction of A431 

while for MCF7 cells the percentage of fluorescent cells is in the range if the negative control. By 

comparing the data of the synthetic peptide with the data from rAAV insertion this was not expected 
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as for pep1jhf no clear secondary structure could be formed. A possible explanation can be given 

by the β-hairpin structure that is already present in the loop region 587 of the VP protein. During 

the design of the cloning, care was taken to ensure that this structure is retained even after peptide 

introduction. The rigid fixation may also result in pep1jhf showing this secondary structural ele-

ment. In context of rAAV, this peptide was shown to be functional. In general, increasing the avid-

ity of the peptide, by presentation on the capsid surface, and the size of the whole capsid decreases 

the amount of unspecific internalization in comparison to the synthetic peptide and thus, transduc-

tion should only occur via receptor-mediated endocytosis of the EGFR. 

 

Figure 19: Results of transduction experiments using rAAV 587 peptide variants on A431 and MCF7 cells. A431 and 

MCF7 were seeded, rAAV samples at a MOI of 50,000 were applied and incubated over 96 h at 37 °C. Successful 

transduction is verified by expression of the delivered gene of interest mVenus which is under the control of a CMV 

promoter. Fluorescence was measured using flow cytometry at a FACScalibur by counting 10,000 events for biolog-

ical duplicates. Data analysis was performed using FlowJo software and Origin2019. 

 

5.2.7. Assaying AAVR dependency of rAAV2 variants 

We were further interested on the dependency on the AAV receptor (AAVR or KIAA0319L). This 

receptor was described in literature to be necessary for AAV2 transduction.40 Introduction of re-

targeting motifs and usage of a different internalization pathway might influence dependency on 

the AAVR. To investigate the influence on transduction, a stable cell line was generated using 

CRISPR/Cas9 to induce a AAVR knock out. The CRISPR target sequences for exon 2 was chosen 

from literature but was until now not tested for this cell line (Figure 20A).40 The target sequence 

was cloned into pSpCas9(BB)-2A-GFP (PX458) from the Zhang laboratory113, transfected and cells 

were subsequently sorted for EGFP expression using a FACS S3e system (BioRad). Monoclonal 

colonies were cultivated and genomic DNA isolated before subcloning and subsequent analysis via 

Sanger sequencing. A431 cells are diploid for chromosome 1p34-36 and a total knock out both 

copies of the AAVR needed to be affected. For one A431 clone a 20 bp deletion (del20) leading to 

a frame-shift and complete loss of the protein was observed. For the second copy a 36 bp deletion 

(del36) in the exon-intron junction was detected. As this represents a multiple of three, a total loss 

cannot be excluded, but due to the position on the intron-exon junction it was expected, that at least 
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a loss of domains occurs, resulting in a stable A431 cell line with extremely reduced AAVR ex-

pression. Furthermore, the first transmembrane domain is located in this area, which is severely 

affected by the large del36 mutation. 

 

Figure 20: Generation of a A431 AAVRko cell line using CRISPR/Cas9. (A) Genomic sequence of Exon2 of chromo-

some 1p34-36. Showing the CRISPR target site (sgRNA sequence) and the protospacer adjacent motif (PAM) sequence 

for induction of the AAVR knock out. Positions of sequencing primers are given as green bars. (B) Results of Sanger 

sequencing analysis after extraction and sub-cloning of A431 genomic DNA showing that two events occurred either 

del20 (top) or del36 (bottom). 

 

Engineering of the A431 cell line might influence the EGF receptor level on the cells surface. Thus, 

EGF-mCherry was used to determine the EGFR expression level. Cells were incubated with 100 nM 

EGF-mCherry for 15 min before analysis using a FACScalibur system. Analysis revealed that the 

mean fluorescence intensity is located in the same range for both cell lines, proving that the EGFR 

is still presented in the surface. Further transduction experiments were conducted using a previously 

described rAAV variant.60 Here, a DARPinE01 was introduced in the rAAV2 capsid. DARPins are 

synthetically designed proteins that can be selected to bind different targets. Incorporation of these 

14-17 kDa proteins into the rAAV capsid was shown to be tolerated by N-terminal fusion to the 

VP2 protein.59,60 Resulting viral particles present the DARPinE01 in all VP2 proteins, meaning 

about five incorporations within the whole capsid structure. This variant was used as a positive 

control as various working groups have demonstrated its ability to bind and internalize into cells. 

As represented in the heat map of Figure 21, the AAV2-DARPin variant shows selective transduc-

tion of A431 cells in comparison to wild-type AAV2. In this assay also the transduction ability on 

the novel created A431-AAVRko cell line was evaluated proving that in comparison to the parental 

A431 cell line the transduction ability is dramatically reduced. Nonetheless, a complete reduction 

was to be expected, which was not observed. This might be explained by the del36 mutation, which 

does not lead to a full eradication of the AAVR. We also tested AAV2-pep1osy’s transduction 

ability on the A431-AAVRko cell line in comparison to the parental A431 and the MCF7 cell line. 

Previous results could be verified showing a specific transduction of A431 cells but no fluorescent 

signal on MCF7 cells. For the A431-AAVRko cell lines a reduction in transduction ability was 

observed proving that besides the change in internalization pathway the AAVR protein still has an 

important role in the transduction process. It remains unclear at which point this protein takes part 

A

B



5 Results and Discussion 

34 

 

in the transduction process, either as a cell surface receptor or as part of the intracellular pro-

cessing.114 However, the impact even on strongly modified rAAV variants with changed tropism is 

clearly observed in this experiment. 

 

Figure 21: Heat map of transduction results. Cell were seeded directly before transduction with rAAV variants at a 

MOI of 50,000. Transduction was analyzed for expression of the delivered transgene mVenus by flow cytometry using 

a FACScalibur. 10,000 events were counted and analyzed using FlowJo and Origin2019. 

 

5.2.8. Testing serotype dependency of peptides 

Next, we were interested if this retargeting mechanism is transferable to other AAV serotypes. A 

plasmid system was developed allowing for the introduction of peptide motifs into loop structure 

of AAV6 and AAV9 (detailed description can be found in chapter 5.3.2). For both serotypes, in-

sertion took places at amino acid residue position 588 in correspondence to crystal structure anal-

ysis and comparison to AAV2 (Figure 22). Introduction of hybridized oligonucleotides was enabled 

by the restriction enzymes MscI and BamHI. Both serotypes have been described to tolerate mod-

ifications in this variable region. For AAV9 insertion at residue position 589 was described by 

Michelfelder et al.61 We chose incorporation at 588 as we wanted to elongate this variable region 

under maintenance of the β-hairpin structure (Figure 22A). In comparison for AAV6 only an inser-

tion at residue 585 was described for insertion of an RGD peptide.62 Again, we chose incorporation 

at the 588 site to obtain the structural properties of the peptide and the loop region (Figure 22B). 

AAV2

MOI 50,000 AAV2 AAV2 HSPGko AAV2DARPinE01 AAV2 pep1osy

A431 52 1 86 58

A431 AAVRko 20 1 53 11

MCF7 53 1 8 0
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Figure 22: Incorporation of EGFR-binding peptides into rAAV9 and rAAV6. (A) Representation of the AAV9 VP 

protein with yellow highlighted integration site at amino acid residues 588 (PDB 3UX1). Sequences of the variable 

region VIII and of all peptides are presented and the integration site shown. (B) Representation of the AAV6 VP 

protein with yellow highlighted integration site at amino acid residues 588 (PDB 3OAH). Sequences of the variable 

region VIII and of all peptides are presented and the integration site shown. 

 

Viral particles of all constructs were produced with satisfying yields and used for transduction of 

A431 and MCF7 cells at the same MOI as used for the previous rAAV2 experiments. Viral AAV9 

particles with a wild-type capsid show, as expected, low transduction efficiencies in both cell lines 

(Figure 23).112 For AAV9 pep1jhf a comparable efficiency was detected on MCF7 cells, while on 

A431 cells higher amounts of fluorescent cells have been detected. Here, an increase in specificity 

was observed compared to wild-type capsids. For rAAV9 pepEDA comparable low transduction 

results were obtained in either cell line. This was to be expected as insertion of this peptide was not 

introducing an EGFR-tropism in the AAV2 context as well. The most surprising results were ob-

tained for rAAV9 pep1osy. A dramatic increase in transduction efficiency was observed in context 

of serotype 9. Even higher values were measured for MCF7 in comparison to A431 cells. In this 

setting the transduction properties improve surprisingly. We hypothesize, that properties of the in-

corporated peptide change within their surrounding structural context, leading to overall higher 

transduction abilities. This was also observed in the context of AAV6, which was chosen because 

of its known secondary receptor EGFR. The first idea was, that incorporation of EGFR-targeting 

peptide might increase the specificity of transduction. For AAV6 with a wild-type capsid nearly 

100% transduction efficiency was observed on A431 and MCF7 cells. Incorporation of a hexahis-

tidine-tag at the same position reduced the amount of fluorescent cells to the same extent. Incubat-

ing cells with rAAV6 pep1jhf leads to an even higher reduction in transduction ability compared 

to rAAV 587His. Comparable to the results for AAV9, this was not observed and might be related 
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to the structural properties of the capsid surrounding. In this context rAAV6 pep1osy also led to a 

reduction of transduction ability.  

Figure 23: Transduction analysis of rAAV9 and rAAV6 variants. A431 and MCF7 cells were incubated with a MOI 

of 50,000 and incubated for 96 h before flow cytometry analysis. 10,000 cells were analyzed for their mVenus fluo-

rescence signal using a FACScalibur. Data was analyzed using FlowJo and heat maps were generated in Excel.  

Overall these results suggest, peptides are not easily transferable from one serotype to another. 

Structural properties of the capsid play a major role in the definition of a tropism, which is not 

easily modified. Comparing these results, it needs to be outlined, that for rAAV2 the natural HSPG 

tropism was knocked out by introduction of two point mutations. Mutations leading to a dramatic 

loss of receptor affinity are also described for AAV9 and AAV6 and need to be implemented into 

this system to study the effects on re-targeting strategies by peptide insertion. 

5.2.9.  Wild-type rAAVs prove functionality in egg xenografts 

Gaining deeper inside into peptide-modified rAAV vector variants, a more sophisticated approach 

besides cell culture is required. Chick chorioallantoic membrane (CAM) assays have been used in 

the past to study tumor growth and vascularization.115–117 The CAM surrounds the fertilized chicken 

embryo and is composed of a multilayer epithelium.118 After opening of the egg-shell, human can-

cer cells are transplanted on the CAM (Figure 24, Day 4 and Day 8). After four days incubation, a 

solid tumor is formed, which has a highly vascularized structure, multiple cell types and an extra-

cellular matrix (see Figure 24, Day 12).116 This rapid growth of a tumor with properties close to 

human tumors is a great advantage in comparison to mouse models, where time expenditure is a lot 

higher. Differences in time and effort are also seen in the cost of an experiment, which is consider-

ably lower for the CAM model. We used the in ovo model to study the effectiveness of rAAV 

delivery to tumor tissue in collaboration with Dr. Lea Krutzke (University Hospital Ulm). We chose 

transplantation of A431 cells in this assay, as this epidermoid carcinoma cell line is known for a 

high EGFR expression level and previous assays show that rAAV transduction via the introduced 

peptide motifs is possible. The rAAV preparations were injected intravenously at 1×1011 viral vec-

tors per egg on Day 12 and incubated for two more days. At Day 14 the tumor and the organs were 

isolated for analysis. 

AAV6

MOI 50,000 AAV6 AAV6 588 His AAV6 pep 1jhf AAV6 pep1osy

A431 99 16 2 9

MCF7 95 16 2 11

AAV9

MOI 50,000 AAV9 AAV9 pep1jhf AAV9 pepEDA AAV9 pep1osy

A431 8 18 4 43

MCF7 7 8 4 60
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Figure 24: Overview on the in ovo chick chorioallantoic membrane assay procedure. The assay starts at day 0 with 

the arrival of the fertilized eggs. On day 4 the eggs are opened before on day 7 a silicon ring is placed on the CAM to 

provide a boundary for the tumor cells. The next day a suspension of tumor cells is added inside the silicon ring. A 

solid tumor had been formed until day 12 before injection of 1×1011 viral vector intravenously. On day 14 propofol 

is injected and organs of the embryo are isolated for further analysis.  

 

Systemically delivered rAAV vectors that were stable in the blood circulation and were able to 

escape the vascular system have the chance to transduce tissues. In ovo CAM assays have, to our 

knowledge, not yet been described for AAVs. Thus, we were the first to perform such experiments 

and we wanted to see if this tumor model is comparable to existing platform technologies, e.g. 

tumor mouse model. Viral vectors were produced in adherent HEK293 cells and purified via iodix-

anol-gradient ultracentrifugation for rAAV2 and rAAV9 with a wild-type capsid. Vectors were 

injected systemically and both preparations showed no adverse effects in the chicken embryos after 

injection. Both rAAVs are packaging the gene for the fluorescent reporter protein mVenus which 

is under the control of a CMV promoter. Detection of fluorescence as well as determination of 

genomic copies from the extracted organ give information about the distribution of viral vectors in 

the tissues. Fluorescence intensity determination of the tissues was not possible due to unsuitable 

equipment. We only had the opportunity to characterize the genomic copy distribution in isolated 

organs. Here, DNA was isolated from the collected organ material and subsequently used as tem-

plate in qPCR experiments. In qPCR experiments 20 ng isolated DNA was used per reaction with 

a primer pair specifically binding the mVenus gene. The house-keeping gene β-actin was used for 

normalization and results are presented in box-whisker diagrams in Figure 25. Eggs with injected 

PBS buffer serve as a negative control and are shown in comparison to rAAV2 and rAAV9. In 

general, we see that transduction efficiency of rAAV9 is elevated compared to rAAV2. This is in 

good agreement with data obtained in mouse experiments119, but stands in contrast to experiments 

performed in cell culture experiments112. These experiments showed, that in cell culture transduc-

tion efficiency of AAV2 outweighs that of AAV9. Due to fast blood clearance and poor transcytosis 

AAV2s transduction efficiency remains low in in vivo experiments.120 In comparison AAV9 shows 

slow blood clearance and high transcytosis resulting in a longer persistence in the embryo. By 

gaining a deeper insight into the distribution of viral genomes, the expected tropism for certain 

organs, which corresponds to that in mice, becomes clear. AAV2 was reported to transduce a broad 

Day 0 Day 4 Day 7 Day 8 Day 12
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range of tissue types but shows elevated transduction of kidneys. This was also observed in the 

CAM assay, where the kidney was the predominant target of the vector (Figure 25E). For AAV9 

transduction a similar but more efficient profile was observed but here especially the liver and the 

brain were described to show improved transduction.121 Targeting of the brain is possible because 

it was described that AAV9 is able to cross the blood-brain barrier via transcytosis, while AAV2 is 

only able to transduce cells of the endothelial membrane without crossing it.122,123 These finding 

were also transferrable from mouse to CAM model where a transduction of the brain was only 

observed for AAV9 while the number of genomic copies for AAV2 is in good agreement with the 

PBS control. 

 

Figure 25: Determination of viral genomes for rAAV2 and rAAV9 via qPCR. A total amount of 1×1011 viral genomes 

was injected systemically and after 48h incubation organs were extracted from chicken embryos and DNA was isolated 

before qPCR analysis was performed. Box-whisker diagrams were created using Origin2019 and represent the overall 

replicates for all samples (PBS: 10 replicates; rAAV2:5 replicates, rAAV9: 13 replicates).. 

 

5.2.10. rAAV2 pep1jhf demonstrates efficacy in CAM assays 

Another focus lies on the analysis of rAAV with integrated peptide sequences. Larger viral prepa-

rations were produced and CAM assays were performed by our collaboration partners. For rAAV2 

pep1osy no adverse effects have been observed after systemic injection. In comparison the injection 

of rAAV2 pep1jhf led to a high mortality of the embryos (7 out of 15) and surviving animals 

showed severe cerebral haemorrhages and gastric bleeding. The blood clotting time in chicken em-

bryos was shown to be slow and thus, also slight bleedings can be lethal.124 As two different AAV 

preparations and furthermore a reduced vector amount (5×1010 vectors per egg) were used for these 

experiments, we can exclude that contaminants or a too high dose led to this severe phenotype.  

Rational design of peptides was performed using the PDB model 1IVO which represents the crystal 

structure of the human EGFR. The chicken EGFR shares about 70% sequence homology with the 

human EGFR. Taking a closer look into the interaction between the designed peptides and the 

crystal structure of the human EGFR demonstrates the binding interface with atomic contacts based 
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on the van der Waals (VDW) radii (Figure 26A, B). Comparing the regions of contacts with the 

sequence alignment of human and chicken EGFR indicates that interacting regions are almost iden-

tical between the organisms (Figure 26C). Thus, transduction not only of the human EGFR in the 

tumor tissue of A431 cells should be possible, also the transduction of chicken EGFR in the whole 

organism might be feasible. 

 

Figure 26: Identification of the binding interface of pep1jhf and pep1osy. PDB files of the bound peptide to the EGFR 

are the results of the rational peptide design of pep1jhf (A) and pep1osy (B). Contacts between atom pairs of peptide 

and receptor were determined using UCSF Chimera. A cut-off of 1.0 Å distance was defined to identify atoms pairs. 

The binding interface is highlighted in magenta (peptide) and dark blue (EGFR). (C) Alignment of the human EGFR 

(UniProt P00533) and the chicken EGFR (UniProt A0A1D5NZB4) was generated using Geneious. Regions identified 

from previous contact determination are highlighted in magenta. 

 

Figure 27A-F represents the results of qPCR analysis for detection of delivered genomic copies to 

the respective organs. Again systemic PBS injection served as negative control and here transduc-

tion was not detected. For rAAV2 pep1osy almost no transduction was observed in any tissue. This 

was not expected as previous cell culture experiments demonstrated that receptor binding, intracel-

lular trafficking, nuclear entry and genome conversion is possible upon integration of the targeting 

peptide. The most important difference between the previous cell culture experiments and the in 

vivo model lies within the blood clearance and the vascular escape. Since, peptides should be able 

to interact not only with the human EGFR, but also with the chicken EGFR, rAAV2 variants should 

also be detected in EGFR-expressing tissues The inefficient transduction of tissues by rAAV2 

pep1osy can thus only be explained via the blood clearance and the vascular escape. 

A

C

B
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The qPCR analysis for rAAV2 pep1jhf showed genomic copies in all organs of the chicken embryo 

even elevated compared to transduction with the wild-type rAAV2 capsid. The EGFR is widely 

overexpressed in foetal tissues and thus transduction of all organs is likely. The high lethality after 

systemic injection due to severe cerebral haemorrhages and gastric bleeding might be explained by 

qPCR results. The highest amounts of genomic copies were found in these organs. The high amount 

in the brain is surprising as for the rAAV2 wild-type variant no transduction was observed and it is 

known that rAAV2 is not able to cross the blood-brain barrier.123 However, it was shown that the 

blood-brain barrier of one-day old chicken is humiliated, which might allow for transcytosis of the 

re-targeted rAAV vector.125 EGFR expression in the foetal brain is elevated which might contribute 

to the high transduction efficiency. Gastric bleeding on the other hand was also rarely observed in 

patients for other EGFR-targeting pharmaceuticals already in clinic.126,127 Bleeding in the embryo 

might be the result from an effective EGF receptor blocking. Interruption of the downstream sig-

naling is involved in different cellular processes and if the receptor is not only overexpressed in the 

tumor but also in the embryo’s organs this can have severe side-effects. 

 

Figure 27: Determination of viral genomes for rAAV2 pep1jhf and rAAV2 pep1osy via qPCR. A total amount of 1×1011 

viral genomes was injected systemically and after 48h incubation organs were extracted from chicken embryos and 

DNA was isolated before qPCR analysis was performed. Box-whisker diagrams were created using Origin2019 and 

represent overall replicates (rAAV2 pep1jhf: 7; rAAV2 pep1osy: 11 replicates).. 

 

Besides analysis of genomic copies in the embryonic organs, the transduction of the tumor tissue 

is of great interest. The mammalian epidermoid carcinoma cell line A431 was transplanted in the 

CAM and during the incubation time of 96 h a solid tumor was formed. This model was used to 

evaluate the vectors properties in an in vivo system. Again the genomic copy number in the tumor 

tissues has been determined in qPCR. A comparison between wild-type rAAV2 and rAAV9 and 

the re-targeted viral vectors rAAV2 pep1jhf and rAAV2 pep1osy is given in Figure 28. The buffer 

control as well as wild-type rAAV2 and rAAV2 pep1osy show nearly no transduction at all. 

rAAV2 wt can only rely on the natural tropism via the primary receptor HSPG. Cell culture exper-

iments showed that in general rAAV2 wild-type is able to transduce A431 cells. In context of the 
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whole chicken embryo, this vector might show a fast blood clearance and a reduced vascular es-

cape.120 Results for rAAV2 pep1osy were expected since this vector was not able to transduce any 

tissue in the chicken embryo. In contrast, rAAV9 wild-type shows slightly elevated copy numbers 

which can also be related to blood clearance and vascular escape. Particularly remarkable are the 

values for rAAV2 pep1jhf, which exceed all other values, showing that targeting of the tumor tis-

sues is possible. Comparison of tumor-liver ratios (Figure 28B) showed that the best ratio is ob-

tained for this re-targeted vector.  

 

Figure 28: Analysis of tumor tissues transduction via qPCR. (A) The genomic copy number was determined in 20 ng 

isolated DNA and is presented in a box-whisker diagram. (B) The tumor-to-liver ratio was calculated for all viral 

vector. The best ratio was obtained for rAAV2 pep1jhf showing that targeting of the tumor tissues is possible via the 

rational designed peptides. 

 

Summarizing the results from first in vivo experiments confirmed the transduction pattern which 

was already described for rAAV wild-type vectors in mouse experiments. These findings provide 

necessary information to avoid more time-consuming experiments in mice. Experiments conducted 

for the re-targeted rAAV variants showed that the transfer from an in vitro cell culture-based system 

to an in vivo model can be complex. Here, the transfer from cell culture to in ovo experiments was 

not successful for rAAV2 pep1osy but showed interesting results for rAAV2 pep1jhf. rAAV2 

pep1jhf in general shows an elevated transduction efficiency. This was also observed for transduc-

tion of the tumor tissue. The severe complications after virus injection show the need for further 

optimization of the re-targeting viral vector. The side effects need to be reduced in the future to 

allows for a specific transduction of the tumor tissue. Combining the pep1jhf capsid with an intra-

cellular transcriptional or translational targeting might allow for a more specific expression of the 

gene of interest. Being under the control of, e.g. a tumor specific promoter, might prevent gene 

expression in healthy tissue and promotes expression in the tumor tissue. 
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5.3. Establishing plasmid systems for the production of different AAV 

serotypes  

Results of this project were partially summarized in manuscripts. Results regarding AAV2 have 

been submitted to Scientific Reports with the title “rAAV engineering for capsid-protein enzyme 

insertions and mosaicism reveals resilience to mutational, structural and thermal perturbations”.  

5.3.1. Characterization of AAV2 produced with the virus construction kit 

Production of rAAVs using the helper-free plasmid system requires three plasmids. The helper 

plasmid delivering necessary adenoviral elements is accompanied by ITR and RepCap plasmid. 

The RepCap (pZMB0216_Rep_VP123_453_587wt_ p5tataless) plasmid used as a starting point in 

my work was developed during the iGEM competition 2010 in Freiburg.128 It offers the possibility 

to easily introduce modifications at residue position 453 and 587 located within the variable regions 

IV and VIII of the VP protein. Genetic information that is finally packaged in rAAV capsids is 

provided by the ITR plasmid. We constructed an ITR plasmid, in which the viral ITRs are part of 

a pUC19-based backbone (pZMB0522_ITR_EXS_CMV_mVenus_hGHpA). Construction of a 

new ITR plasmid was necessary as with the iGEM ITR plasmid AAV production was not possible 

any more. Recombination events during the propagation of E. coli led to larger deletions within the 

important ITR structures, that are necessary during the production process. Verifying the correct-

ness of the ITR sequences is challenging due to the strong secondary structure formation that defies 

Sanger cycle sequencing. A protocol was established by Julian Teschner that prior to the sequenc-

ing reaction includes a restriction digest with BsaHI. This enzyme generated two halves of the ITRs 

that are each on their own suitable for sequencing. We observed a 11 bp deletion in the 3’-ITR 

while the 5’-ITR is completely intact. First we assayed general functionality of the ITR plasmid in 

combination with either the RepCap plasmid (pZMB0216_Rep_VP123_453_587wt_ p5tataless) or 

a commercially available counterpart (pAAV-RC, GenBank: AF369963.1) in small-scale transfec-

tions. Genomic titers were determined for the crude cell lysates in qPCR reactions of several bio-

logical and technical replicates. As seen in Figure 29A no difference can be observed. 



  5 Results and Discussion 

43 

 

 

Figure 29: Characterization of rAAV2 after production using the helper-free plasmid system. (A) Comparison of 

genomic titers from crude cell lysates using RepCap (pZMB0216) and commercial pAAV-RC. Standard deviations of 

three biological and two technical replicates were calculated for each sample type in this comparison. (B) Transmis-

sion electron microscopy of a rAAV2 preparation at a magnification of 39,000. Viral particles were detected with a 

size of about 25 nm. (C) Analysis of a larger purified rAAV2 preparation for genomic and transducing titer using 

qPCR or transduction of HT1080 cells respectively. (D) Transduction of different cell lines with iodixanol-purified 

rAAV2 at a MOI of 10,000. Successful transduction was visible upon expression of the gene of interest mVenus which 

was measured by counting 10,000 events for two biological duplicates using a FACScalibur. Data analysis was per-

formed using FlowJo V10. 

 

In a next step, a larger production of rAAV2 with this plasmid system was generated and purified 

via a discontinuous iodixanol gradient ultracentrifugation. The protocol for this purification method 

was established in this work and is based on methods described previously.129 Before this ultracen-

trifugation protocol was established purification was carried out using a protocol published by Guo 

et al.130 Viral preparations purified using this precipitation-based method were used for transmis-

sion electron microscopy. In transmission electron micrographs, capsid diameter measurements re-

sulted in an average of 23.8 ± 1.8 nm, which is in good agreement with the expected value of 25 nm 

(Figure 29B).131 Manually counting over 500 particles yielded a proportion of full capsid between 

60% and 80%. A main problem of the precipitation-based purification method was observed espe-

cially during transduction experiments. The unsatisfying purity of the preparation led to a strong 

reduction in cell viability and transduction efficiency, which required a change in the method. The 

first ultracentrifugation protocol was based on caesium chloride as density gradient medium in a 

continuous gradient. The time-consuming protocol was very quickly replaced by the density gradi-

ent medium iodixanol.129 Genomic titers of viral preparations after iodixanol ultracentrifugation 

were determined using qPCR and are given in Figure 29C. The ratio of genomic copies to infectious 

units yields the specific infectivity of the preparation, which was 16:1. This is in agreement to 

reported results as for wild-type AAV a ratio of 1:1 and for rAAV2 a ratio between 55:1 and 124:1 

have been observed.132 Functionality of the rAAVs was investigated in transduction assays on 

HT1080 cells. These cells are known to express high levels of the rAAV2s primary receptor 
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HSPG.38,39 Successful transduction was detected by the expression of the delivered fluorescence 

reporter mVenus using flow cytometry. In addition to commonly used target cell lines such as 

HT1080 and Hela, we treated the cancer cell lines A431, MCF7, MDA-MB-231 and the normal 

cell line HDFa with a MOI of 10,000. Figure 29D presents the results of a flow cytometry analysis, 

showing that our rAAV2 was able to transduce a variety of different cells with high efficiencies. In 

agreement to previous reports, only the breast cancer cell line MCF7 showed lower transduction 

values.112  

Production of mosaic viral particles was described for our plasmid system for N-terminal VP2 pro-

tein fusions.60 A mutation in the RepCap plasmid leads to knock out of the VP2 start codon 

(pZMB0299). An N-terminally-modified VP2 sequence is provided in trans on a separate plasmid. 

Splicing during VP protein expression results in two mRNA transcripts that code for VP1 and for 

VP2/3, respectively, and a leaky-scanning mechanism induces expression of either VP2 or VP3.13,14 

Thus, when the VP2 sequence is extracted, the coding sequence of VP3 is always included. For N-

terminal modifications this does not pose any problems since VP2 and VP3 share the same C-

terminal sequence but differ in their translation start and thus their N-terminus. Since the 587 loop 

region lies within the coding sequence of both VP proteins, VP2 modifications require that the 

parallel expression of a likewise modified VP3 has to be suppressed. 

We saw the need for a detailed expression analysis of the plasmid system. The starting point for 

our experiment was the CMV VP23 plasmid from literature (CMV VP23).60 As expected, a strong 

expression of VP2 and VP3 proteins is observed (Figure 30A, lane 2). In comparison, expression 

of all three VP proteins after transfection with the unmodified RepCap plasmid shows the expected 

molar ratio between the three VP proteins (1:1:10) (Figure 30A, lane 1). To prevent undesired VP3 

expression, the VP3 start codon knocked out by a point mutation in the start codon (ATG to ATC 

(Ile)) in CMV VP2 (Figure 30A). As seen in the third lane of Figure 30A, expression of VP3 is still 

observed, which might be due to a second start codon located 24 bp downstream. To suppress leaky 

scanning, a strong Kozak sequence (GCC ACC) was introduced into CMV VP2 in front of the start 

codon. Finally, solely the expression of VP2 (lane four of Figure 30A) was detected with an ex-

pected increase in chemiluminescence intensity, indicating a higher level of expression. 
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Figure 30: Development of a mosaic rAAV system allowing for partial modification of the 453 and 587 loop region. 

(A) Expression analysis of VP proteins after transient transfection of CMV VP plasmids. For the RepCap plasmid VP 

protein expression was confirmed by the anti-VP antibody B1 with the expected ratio of 1:1:10 for VP1, VP2 and 

VP3. Three versions of a VP2 plasmid were analyzed: 1) VP2 and VP3 expression cassette under CMV promoter 

control (lane 2, CMV VP23), 2) VP2 expression cassette with VP3 start codon knock out (lane 3, CMV VP2), and 3) 

VP2 expression cassette with upstream Kozak sequence and VP3 start knock out (lane 4, CMV Kozak VP2). (B) Sche-

matic explanation of the final CMV-Kozak-VP2 plasmid. (C) Western Blot analysis of crude HEK293 lysate after 

quadruple transfection using different plasmid ratios. The ratio of the Cap delivering plasmids was tested in two 

approaches either 1:4 or 4:1 (VP13:VP2_587bla) showing that a reduced amount of the CMV-containing plasmids 

also reduces the expression of the VP2-587bla. (D) Crystal structure representation of a mosaic rAAV2_VP2_587_bla 

with incorporation of five β-lactamase enzymes. The structure was assembled from PDB 1LP3 and PDB 3DTM using 

UCSF Chimera.  

 

The gene of the stabilized β-lactamase variant 14FM was cloned into CMV Kozak VP2. The re-

sulting plasmid was used for rAAV production in combination with pZMB0299, the ITR plasmid 

and pHelper. Different from the three-plasmid system, the molar ratio of these plasmids needs to 

be optimized for transfection. The two plasmids contributing to the expression of VP proteins need 

to be in an optimal proportion to provide the right amount of each VP protein (1:1:10) for correct 

capsid assembly. In this experiment it was observed that the molar ratio 5:5:1:4 of 

pHelper:ITR:Rep2Cap_VP13:CMV_VP2_587bla was associated with a greatly increased propor-

tion of VP2 protein (Figure 30C). This would lead to a higher portion of modified VP2 proteins in 

the assembled viral capsid compared to the ratio of 1:1:10 of VP1, VP2 and VP3 in the wild-type 

AAV. Due to the differences in promoter strength (AAV’s p40 is much weaker compared to CMV) 

we used a change in plasmid ratio to reduce the expression level of VP2_587_bla and thus the 

resulting capsid modification level. In addition to Western blot analysis, viral samples were also 

analyzed regarding their genomic titer. Determination in samples of crude cell lysate showed that 

reduced expression VP2_587_bla protein results in roughly three times higher amounts of viral 

particles (7.98×1010 vg/ml for a 4:1 VP13:VP2_587_bla ratio compared to 2.48×1010 vg/ml for a 

1:4 VP13:VP2_587_bla ratio). 
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Shown to yield more promising results regarding the number of total modified VP2 proteins, mo-

saic rAAV2-VP2_587bla particles were produced using the 5:5:4:1 ratio of 

pHelper:ITR:Rep2Cap_VP13:CMV_VP2_587bla. We assume that the purified particles present a 

β-lactamase in every VP2 protein, thus a total of five modified proteins as illustrated in Figure 30D. 

Incubation of HT1080 cells with a MOI of 50,000 resulted in about 57 ± 2% mVenus positive cells. 

Comparison with transduction values of rAAV2 wt shows a significant reduction of transduction 

ability for the enzyme-bearing particles. 

5.3.2. Transferring the virus construction kit to rAAV serotype 6 and 9 

A broad range of AAV serotypes and variants is known and for some even a more detailed charac-

terization was performed. In this work the previously designed virus construction kit for AAV2 

was transferred to other serotypes to promote easy modification and further characterization of 

AAV6 and AAV9. For both serotypes integration into variable region VIII was already proven for 

the integration of peptide sequences.61,62 The integration sites in both Cap reading frames was iden-

tified at position 587 and furthermore also the tolerability of insertion in variable region IV at res-

idue position 453 was to be assayed (Figure 31A). The system developed for rAAV2 offers the 

possibility for integration of peptide motifs via single cutting restriction sites that were introduced 

under the premise that the coding region is unaltered. Here a combination of SalI and SspI as well 

as BamHI and PvuII allow for integration of DNA sequences with corresponding overhangs in the 

453 region and the 587 region respectively. Applying the same restriction site combinations directly 

to the sequence of AAV6 and AAV9 was not possible and therefore we opted to find other single 

cutting enzymes in this region. A detailed sequences analysis showed that for both serotypes single 

cutting enzymes could be found in the 453 and the 587 region (Figure 31B). A combination of 

BspEI and BsrGI was chosen to make the 453 region accessible, while MscI and BamHI were 

chosen for the 587 region. The pSB1C3_001 backbone needed to be adapted to the new cloning 

strategy as BspEI and MscI were detected in the chloramphenicol acetyltransferase gene of the 

backbone (Figure 31C). The new backbone pSB1C3_002 was generated by site-directed mutagen-

esis and was further used as a backbone for AAV6 and AAV9 cap sequences. The coding sequences 

of Cap6 and Cap9 have each been ordered as a string synthesis and were recloned in the new 

pSB1C3_002_Rep2_Cap2 plasmid via the unique restriction sites SwaI and PstI. Final constructs 

were analyzed for their correctness using Sanger cycle sequencing. 
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Figure 31: Establishment of a cloning strategy to allow for easy accessibility of the variable regions IV and VIII. (A) 

Amino acid sequence around the 453-(violet) and 587-exchange region (dark red) highlighting the insertion site at 

position 453 and position 587 respectively for AAV9 and AAV6. (B) DNA sequence of both exchange regions for AAV9 

and AAV6 showing the potential single cutting restrictions sites. (C) Chloramphenicol acetyltransferase gene (CAT 

marker) of the pSB1C3_002 backbone eliminating the MscI and BspEI recognition sites by site-directed mutagenesis. 

 

5.3.3. Characterization of AAV6 and AAV9 

Functionality of AAV6 and AAV9 plasmids in rAAV production was tested in adherent HEK293 

cells. Viral preparations of AAV6 and AAV9 with a wild-type capsid were used for a first charac-

terization of the serotype. A Western blot analysis was performed with the anti-VP antibody B1 to 

prove the correct size and ratio of all three VP proteins. As seen in Figure 32A visible bands are 

detected with the expected size and the frequency of the VP3 protein is as expected strongly ele-

vated compared to VP1 and VP2 emphasizing the 1:1:10 ratio. For AAV9 a more detailed analysis 

was performed using transmission electron microscopy and atomic force microscopy. Figure 32B 

presents AAV9 particles after staining with uranyl acetate. The size of the presented particles was 

determined to be 25.23±0.94 nm. In AFM micrographs (Figure 32C,D) the diameter was calculated 

with 33.43±1.00 nm. The method of determination differs between both methods and is dependent 

on the analysis program, which might explain such great difference between the diameter measure-

ments of viral particles of the same preparation. 

 

Figure 32: Characterization of new rAAV variants. (A) Western blot analysis of rAAV6 and rAAV9. VP proteins were 

detected upon incubation with the B1 antibody (Progen). (B) Transmission electron micrograph of rAAV9 after neg-

ative staining with uranyl acetate (2%). Images were acquired with a Philips CM100 (PW6021) at a magnification of 

21.000×. Analysis was performed with ImageJ (C, D) Atomic force microscopy (AFM) was performed on a Multimode 

8 AFM (Bruker) with Tap300Al-G cantilevers in tapping mode in air. Data analysis was performed using Gwyddion 

2.48.  
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A direct comparison of the self-cloned Rep2Cap9 plasmid (pZMB0551) and an AAV9 version 

distributed via the Penn Vector Core (PVC) (pZMB0504) was carried out and surprisingly a great 

difference in genomic titer was observed. Production with the PVC Rep2Cap9 plasmid resulted in 

average in genomic titers one potency higher compared to our Rep2CapX plasmids. First experi-

ments were conducted to see which part of the plasmid is accountable for such a great difference. 

Both plasmids have almost identical sequences for Rep and Cap protein but differ in their backbone. 

As previous experiments comparing Rep2Cap2 (pZMB0216) with the Agilent variant (Figure 29A) 

resulted in equal titer we thought the backbone might not be relevant and took a closer look on the 

Rep and Cap part. Here we saw differences in the N-terminal sequences of the rep coding se-

quences. As several alternative splicing occurs at this site, we hypothesized that changing the N-

terminal sequence would lead to an increase in titer. The resulting variant pZMB0576 was tested 

in adherent HEK293 and suspension 293F cells. Results of this experiment are presented in Figure 

33 and prove that, regardless of the production cell line, the difference of one potency is still ob-

served. Thus, reasons for this difference in production efficiency still need to be analyzed and might 

unexpectedly be related to the different plasmid backbone. 

 

Figure 33:Comparison of different AAV9 RepCap plasmids. Triple transfection were performed with the same pHelper 

and ITR plasmid (pZMB0522) but using either pZMB0504 (PennVectorCore), pZMB0551 (Rep2Cap9 from string 

synthesis) or pZMB0576 (Rep2Cap9 after exchange of the N-terminal Rep part). Genomic titers were determined from 

crude cell lysate using a standard curve equilibrated with the same amount of lysed untransfected cells.  

 

Furthermore, both serotypes were analyzed for their temperature stability using a method based on 

genome release upon thermal incubation. Subsequent qPCR analysis results in a sigmoidal rela-

tionship between incubation temperature and percentage of genomic copies which can be used to 

determine the disintegration temperature Td. Various methods have been described, such as differ-

ential scanning calorimetry (DSC), differential scanning fluorimetry (DSF) and electron micros-

copy, all of which monitor capsid disintegration but do not detect DNA release.133–135 We assume 

that rAAV particle integrity can be analyzed by DNase accessibility and repurposed the standard 

assay to determine DNaseI-resistant viral particles. Results for the thermal stability of AAV9 and 

AAV6 are presented in Figure 34A and B respectively. Regarding this disintegration temperature 

AAV9 seems to be more stable compared to AAV6. In comparison of AAV6 to AAV2, the disin-

tegration temperatures are located in the same range (Td(AAV2)=56.1 °C), Td(AAV6)=56.9 °C 
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(Manuscript under revision)), while AAV9 seems to be more stable regarding the release of ge-

nomic DNA (Td(AAV9)=61.4 °C). Comparing these values with data obtained by DSF; DSC or 

electron microscopy shows that overall values are 15-20 °C lower. Capsids appear to be more stable 

in terms of protein stability than protection of their genomic content. The identified stability trends 

are not fully reflected in the protein stability data. Here, AAV6 and AAV9 should have approxi-

mately the same stability, which is almost 10 °C higher than serotype 2.134 However, it can be seen 

that AAV9 has a considerably higher disintegration temperature than AAV6 and AAV2. A model 

of the dependency between genomic and protein stability for AAV2, AAV6 and AAV9 is given in 

Figure 34C.  

 

Figure 34: Characterization of AAV6 and AAV9 stability and transduction ability. (A, B) Thermal stability assays of 

AAV6 and AAV9 measured in PBS by qPCR. The percentage of intact genomic copies is plotted against the incubation 

temperature in °C. Each point represents the standard deviation of a technical duplicate. Fitting curves (red) were 

calculated using a logistic5 function to determine the disintegration temperature in Origin2019. Red highlighted data 

points were masked and have not been integrated into the fit.  Temperature are given within the graph. (C) Degrada-

tion of AAV capsids upon thermal heating. This model described the relationship between genomic and protein sta-

bility that is evaluated using different methods. Data from literature is compared to the data from A and B.  

 

Three different AAV serotypes are now available for further analysis. Transduction ability of these 

wild-type variants in general was described in literature for a broad range of cell lines.112 Not all 

cell lines we use in our laboratory have been included in this overview and thus, we were interested 

how the different serotype behave in context of these cell lines. A broad range of cancer cell lines 

including A431, A431 AAVRko, MCF7, MDA-MB-231, HeLa and HT1080 beside the normal cell 

human dermal fibroblast cell lines (HDFa) have been tested using a MOI of 10,000. Cells were 
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incubated and analyzed for the delivered fluorescent protein mVenus by flow cytometry. Results 

are presented in a heat map diagram in Figure 34C and are in good correspondence with in literature 

described values.112 For AAV2 and AAV6 with a wild-type capsid high transduction efficiencies 

were observed in nearly all types of cells. Low transduction efficiencies for A431 AAVRko were 

anticipated as all serotypes (AAV2, AAV6 and AAV9) are dependent on this receptor.40 The overall 

low transduction ability of AAV9 was expected as for in vitro cell culture experiments this serotype 

was already described to be ineffective. Interestingly, these observations cannot be made in in vivo 

mouse experiments, where AAV9 was able to reach maximal vector expression.119 

 

Figure 35: Characterization of transduction ability. AAV2, AAV9 and AAV6 have been used to transduce a moiety of 

different cell lines with a MOI of 10,000. Cells were analyzed for their mVenus expression after 48 h incubation. 

10,000 events were counted using a FACScalibur system and data was analyzed using FlowJo and Excel. 

 

To study the effects of motif insertion on the natural serotype tropism a hexahistidin-tag has been 

inserted into 588 position of AAV6 and AAV9. Western blot analysis of AAV9 variants showed 

the presence of the VP3 protein in the viral preparation. Due to low sample concentration VP2 and 

VP1 are not detectable.  

 

Figure 36: Western blot analysis of AAV9 variants with hexahistidin-tags in 588 or 453 position, respectively in 

comparison to AAV9 wild-type. VP proteins were detected upon incubation with the B1 antibody (Progen) and chem-

iluminescence detection of the secondary antibody. 

 

For AAV9 transduction experiments were conducted on HT1080 cells, as this was the only cell line 

where transduction was observed in higher efficiencies. Here, the insertion of the hexahistidin-tag 

led to a total decrease of transduction ability down to below 1%. Data for AAV9 were already 

presented in Figure 23 and also demonstrate a strong reduction of transduction ability from 99% to 

MOI 10,000 AAV2 AAV9 AAV6

A431 99 3 94

A431 AAVRko 14 2 10

MCF7 20 3 51
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about 16% on both MCF7 and A431 cells. Both experiments show the importance of the loop 

structure for the tropism. K531 was described as the determinant for AAV6 HSPG binding and is 

located in the three-fold spike.136 Binding of AAV9 to N-terminal galactose was characterized by 

N272 and W503, which are also located in the three-fold spike of the capsid.37 In both cases the 

integrated sequence might be partially shield the important amino acids from the elongated loop 

structure. 

5.4. Optimizing the production of rAAVs 

Projects described in this chapter are summarizing different attempts to optimize the production of 

rAAVs in mammalian cells. 

5.4.1. Production of rAAVs using a 293F suspension cell line  

The results of this project were presented at the 25th European Society for Animal Cell Technology 

Meeting in Lausanne 2017 and published in BMC Proceedings with the title “AAV production in 

suspension: evaluation of different cell culture media and scale-up potential”. The original publi-

cation is included in the appendix. 

Production of rAAVs using mammalian cells mostly relies on the use of adherent HEK293 cells.137 

Here, transfection protocols as well as downstream processes yield in preparations with high titer 

and high purity. For upscaling processes the use of adherent cells is problematic since the growth 

area of cells is limited. Suspension cultures on the other hand allow for higher cell densities and 

require less space for cultivation. However, production and purification methods need to be adapted 

to this method. We started with experiments on the commercially available cell line 293F (Ther-

moFisher Scientific), which was derived from the adherent HEK293 cell line. The calcium phos-

phate transfection protocol, which is routinely used for adherent HEK293 cannot be transferred to 

suspension culture. Thus the first step to bring rAAV production to suspension was establishment 

of a suitable transfection protocol. Since expertise in working with suspension culture was available 

in our group for CHO K1 cells, we adapted the polyethylenimine (PEI) transfection protocol from 

this cell line. The transfection efficiency was determined from the ITR plasmid harboring the fluo-

rescent reporter mVenus under control of a CMV promoter. Different DNA:PEI ratios in combina-

tion with different DNA amounts per 3×106 cells were tested to increase the overall efficiency and 

best results were reproducibly obtained for 2 µg DNA in a 1:4 DNA:PEI ratio. Transferring the 

transfection protocol from 6-well plates to shaker flasks even increased the transfection efficiency 

(Figure 37).  
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Figure 37: Transfection efficiencies were determined by mVenus expression 48 h after triple-transfection using flow 

cytometry analysis. The DNA amount is given per ml of culture volume (3×106 cells/ml starting culture). 

 

These first pre-experiments were used to analyze optimal conditions for rAAV production in 293F 

suspension culture. Using triples transfections in shaker flasks allowed for investigating different 

parameters each day to determine the optimal time point for harvest of the culture (Figure 38A). 

As expected the viable cell density (VCD) is increasing over the production process with stable 

high viabilities. The amount of DNaseI-resistant particles was determined from raw cell lysates 

using qPCR. It was shown that the highest titer was typically achieved between day three and four. 

A decrease in viability marked the decline in genomic copies per ml, showing that a prolongation 

of the process, e.g. by addition of a feed, would probably not increase yield. This experiment also 

clearly proved that in downstream processes the focus needs to be laid on purification from the cell 

pellet, as nearly no viral particles were observed in the cell culture supernatant.  

In a first scale-up process, the rAAV production was transferred to a 2 l bioreactor (Figure 38B). 

This scale-up showed potential bottlenecks, because the transfection protocol that was applied re-

quired several steps that are not easily realized in bioreactor processes. Prior to the bioreactor pro-

cess it was observed that a medium change before transfection significantly increases the transfec-

tion efficiency. To prevent the centrifugation step which would increase the risk of contamination, 

the culture was grown to high cell densities and finally diluted to 3×106 cells/ml prior to transfec-

tion. Transfection efficiencies in bioreactors of up to 55% were comparable to that obtained in a 

simultaneous shaker flask experiment. Transfection efficiencies were lower compared to prior ex-

periments due to the change in the transfection protocol and controlled conditions in the bioreactor. 

Nonetheless the titer with up to 1×105 genomic copies per cell was elevated compared to that of 

shaker flasks.  
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Figure 38: Transferring rAAV production to suspension 293F culture. (A) Viable cell densities (VCD), viabilities and 

genomic copies per ml (GC) of a rAAV production with 293-F batch cultivations in shaker flasks. Genomic copies per 

ml refer to the titer determined in 1 ml culture volume. Error bars represent biological and technical duplicate meas-

urements of samples. (B) Viable cell densities and genomic copies per cell of a rAAV production with 293-F batch 

cultivation in a 2 l bioreactor. For reasons of comparability between shaker and bioreactor data genomic copies are 

given per cell. Error bars represent technical duplicate measurements of samples. 

 

First experiments with 293F cells in HEK-TF medium showed promising results of transferring 

rAAV production from the adherent system to suspension. After improvement of transfections by 

the adjustment of DNA amounts in small scale experiments, AAV production was analyzed in 

shaker flasks. The batch process showed an expected increase in cell density with low variability 

between biological replicates. The genomic titer increased according to the viable cell density until 

day four where a sudden drop started. From optimized protocols, a batch process in a 2 l bioreactor 

was carried out. Interestingly the bioreactor cultivation resulted in lower overall viable cell densi-

ties but in higher genomic copies per cell compared to shaker flasks. These results are comparable 

to already published data for suspension cells. The work on rAAV production in suspension 293F 

cells was progressed in the master theses of Irina Schierbaum and Thilo Pohle. Until now we were 

able to produce comparable yields of rAAVs in suspension culture than in adherent cells. The main 

problem which was not solved during this work, was the downstream processing yielding in rAAV 

preparations of high yield and purity. Standard purification protocols used during this thesis were 

relying on gradient density ultracentrifugation with iodixanol. Transferring this protocol from pu-

rification from adherent cells was not successful and we think that this is related to the composition 

of the media which remains unknown. Probably ingredients of the medium influence the purifica-

tion and hinder the viral particles to sediment on the gradient. Thus the viral vectors used in this 

thesis were produced in adherent HEK293 cells.  

5.4.2. Characterization of a novel rAAV production cell line 

Results of this project were summarized in a manuscript with the title “HEK293-KARE, a cell line 

with stably integrated adenovirus helper sequences simplifies rAAV production” and submitted to 

BMC Biotechnology.  
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HEK293 cells were generated by transfection with fragments of mechanically sheared adenovirus 5 

DNA. During this process the adenoviral elements E1A and E1B were randomly integrated into 

chromosome 19 (19q13.2) and in previous work it was shown that both gene products are ex-

pressed.138–140 Production of rAAV in mammalian HEK293 cells requires additional helper func-

tionality delivered by the pHelper plasmid.47,141 This plasmid unites the necessary adenoviral ele-

ments E2A, E4 and VA RNA and has a size of about 11.6 kb. For triple-transfection large quantities 

of pHelper plasmids are required beside the RepCap and ITR plasmid. In collaboration with Kathrin 

Teschner and Julian Teschner a cell line was planned with stably integrated pHelper sequences. In 

a first step the resistance gene of a blasticidin deaminase (bsd) was cloned into the pHelper plasmid 

to allow for selective pressure during the cell line generation. HEK293 cells were transfected with 

the linearized plasmid and after three days, selective pressure was applied. Two more weeks of 

incubation were necessary to detect cell growth and subsequently a limiting dilution was performed 

to select for single cell colonies. Four monoclonal cell clones HEK-KARE1a-d were isolated and 

further characterized for successful integration. Resistance to blasticidin already proved that an 

integration possibly occurred because any remaining plasmid contaminants had been extremely 

diluted during long time period of incubation. To prove genomic integration, we extracted genomic 

DNA using Chelex100 and performed PCR reactions with two sets of primers to prove the fully 

integration of the large fragment. Bsd-for and Bsd-rev as well as Ad5-for and Ad5-rev anneal at 

different at both ends of the plasmid fragment and in the case of a successful complete integration, 

amplification products with a size of 499 bp and 524 bp respectively for E2A and bsd should 

emerge. Experimentally obtained fragments are shown in Figure 39A for all samples, demonstrat-

ing that both genes were integrated successfully into the genome of HEK293. Microscopy analysis 

of clone KARE1c proved in comparison with the parental HEK293 cells line that cell morphology 

was not affected by the integration of such a large fragment (Figure 39B). Furthermore, cell growth 

was monitored over a time period of 70h and the doubling time of each clone was calculated in 

comparison with HEK293 cells. Here, data points indicate that growth was not strongly altered 

upon integration and doubling times for clone HEK293-KARE1a and 1c were equally compared to 

HEK293 (Figure 39C). A slower growth rate was fitted for HEK293-KARE1b, which can be ex-

plained by the higher initial cell density limiting growth after 96 h. 
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Figure 39: Analysis of cell morphology and growth. (A, B) Comparison of cell morphology in bright field images of 

(A) HEK293-KARE1c and (B) HEK293. The morphology of HEK293-KARE1c looks similar to the one of the parental 

HEK293 cell line. (C) Growth curves of HEK293-KARE1 clones and HEK293 were recorded. Cells were seeded on 

a 12-well plate and harvested after the indicated incubation time. Viable cell density and viabilities were analyzed 

using an automated cell counting system (CEDEX, Roche Diagnostics). Doubling times td were calculated from an 

exponential fit with Origin 2018 (OriginLab) and are given in the inset of the graph. (D) Agarose gel of the PCR 

analysis of pHelper-BSD integration. Genomic DNA of the four clones HEK293-KARE1a to HEK293-KARE1d probed 

by PCR using the primer pairs given above each lane. 

 

For successful rAAV production gene products of all incorporated adenoviral elements needs to be 

present. The expression level of E2A and E4 gene products was verified after extraction of mRNA 

from the cells. RT-qPCR analysis was performed after cDNA synthesis with three different subsets 

of primers for HEK293 cells and clones Kare1a-c. Expression of E1A was used to normalize be-

tween the parental cell line and KARE1 clones as expression levels should be equal. The primer 

pair for E2A expression analysis anneals at the coding sequence of the DNA-binding protein of 

human adenovirus type 2.142 E4 expression was verified using a primer pair annealing at open read-

ing frame 6 (ORF6) of E4 generating the 34k protein, which is mainly involved in the AAV pro-

duction.143 Figure 40A shows the elevated relative expression level of both gene products after 

calculation of the ΔΔCt value in the KARE1 clone compared to the parental cell line. Furthermore, 

the qPCR amplicons were analyzed for their correct size in an agarose gel (Figure 40B). For all 

qPCR products the corrects size is observed with 68 bp, 65 bp and 143 bp for E1A, E2A and E4 

respectively. Interestingly, the expression level of E2A was found to be higher in all cases in com-

parison to E4. Each early adenoviral gene has its own promoter which becomes active upon ex-

pression of E1A.144 The strength of expression is dependent on this individual promoter, which can 

lead to totally different amounts of mRNA even if integration occurs at the same genomic site. A 

low relative expression level was expected for all surviving clones as it was previously described, 

that high E2A expression would compromise cell growth in the presence of E1 proteins.145 The 
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gene dose necessary for high-titer rAAV production is to our knowledge unknown. But we suggest 

that even low levels of all necessary adenoviral elements is sufficient for rAAV production.  

 

Figure 40: Characterization of HEK293-KARE1 cell clones. (A) RT-qPCR analysis of mRNA extraction of HEK293 

and KARE1 cells. The error bars represent the standard deviation from three technical replicates. ΔΔCt values were 

calculated from the difference between expression in HEK293 and KARE1 cells after normalizing to the E1A gene 

expression. (B) qPCR products were analyzed for correct size using 1% agarose gel electrophoresis. (C, D) Effects 

on cell cycle progression of HEK-KARE1c and HEK293 by nucleic acid staining with propidium iodide followed by 

flow cytometry analysis. Evaluation of the cell cycle states over the typical production time of 72 h of the cultivation. 

Percentage of cell in different cell cycle phases are presented for each cell line. HEK293 TF represent triple-trans-

fected HEK293 cells for AAV production. Analysis was performed using ModFit LT. 

 

It is known from literature that gene products of adenoviral elements can contribute to a reduced 

cell viability and also have an influence on cell cycle progression.145 It was described that an accu-

mulation in the S-phase occurs upon expression of the ORF6 protein 34k.146 To fully characterize 

our new KARE1 cell line a cell cycle analysis was performed. From Figure 40C and D an accumu-

lation in the S-phase was not observed for all clones. The shown distribution into cell cycle states 

over the typical production time period of 72h. Comparison between the HEK293 cells lines and 

the KARE1 clones shows no difference. A triple-transfected HEK293 sample was used as control, 

because adenoviral elements should be expressed here. Straight after transfection a high accumu-

lation in G1 phase was observed. After longer incubation, the cells adapt to the new conditions and 

show a similar behavior compared to the other samples. 

After complete characterization of the new cell HEK293-KARE1 cell line the AAV production 

ability was assessed. First small-scale transfections were carried out to optimize the production 

process and we were able to reduce to the total DNA amount and the contamination by the antibiotic 

blasticidin. Finally, we produced rAAV2 harboring the fluorescence reporter mVenus under control 

of a CMV promoter as genomic payload in larger scales and purified the preparation using the 
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established discontinuous iodixanol ultracentrifugation protocol. The final product was analyzed 

for genomic titer and transduction ability. Genomic titers obtained seem to be low in comparison 

to production yields using the three-plasmid system (Figure 41) but this can be related to a small 

number of 100 mm dishes that were used for transfection. The transducing titer is as expected one 

potency below the genomic titer and indicates that rAAV2 vectors produced using HEK293-

KARE1 have the same properties regarding transduction ability. The efficiency of transduction was 

determined using flow cytometry analysis where the fluorescence of the gene of interest mVenus 

was measured. Different dilutions of the rAAV2 preparation were applied to HT1080 cells and 

incubated before detection of the fluorescence signal.  
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Figure 41: Comparison of genomic and transducing titer for rAAV2 produced using the new HEK-293-KARE cell 

line. Genomic titers were determined in qPCR reaction. Transducing titers were calculated from transduction effi-

ciencies determined after transduction of HT1080 cells. Transduction efficiency was measured upon expression of the 

delivers transgene mVenus using flow cytometry analysis.  

In summary, a new AAV production cell line was generated in collaboration with Kathrin Teschner 

and Julian Teschner. A detailed characterization of this cell line was performed before analysis of 

its production capability. A further collaboration with Axel Rossi from the Büning group in Hano-

ver showed that further optimization needs to be carried out to ensure reproducibility of the proto-

cols. To this end, he provided RepCap and ITR plasmid from their laboratory and we analyzed it 

in context of our cell line showing that rAAV production is possible.  

Finally, we yielded a cell line that has a great potential for simplification of rAAV production 

because it reduces the amount of DNA used for transfection. There are also further applications 

where this cell line offers new possibilities, e.g. directed evolution approaches using rAAVs.147,148 

Previous works rely on either co-transduction using the adenovirus, which is considered to be bi-

osafety level 2 or requires the transfection of cells with pHelper plasmid, which results in transfec-

tion stress for the cells. Furthermore, adaptation of this cell line to suspension might offer more 

possibilities in scale-up potential. 
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6. Conclusion and Outlook 

Recombinant adeno-associated viruses are a promising platform for gene therapy approaches. 

Gaining a deeper insight into the mechanism of re-targeting via rationally designed peptide motifs 

towards the EGF receptor was the main aim during this work. 

The continuation of this project required in first steps an optimization of the AAV production and 

purification protocols used so far. Standard methods, e.g. ultracentrifugation, have been established 

which allow a higher quality of the produced AAV preparations. In this context, plasmid systems 

providing the opportunity to produce AAV2, AAV6 and AAV9 with capsid modifications have 

been developed and furthermore the production in the suspension cell line 293F was analyzed. The 

plasmid systems for AAV6 and AAV9 still allow for a broad range of modification that could be 

analyzed in the future, e.g. presentation of larger proteins as DARPins. 

In addition, the EGF receptor density on the available cell lines was determined after the develop-

ment and characterization of an EGF-mCherry fusion protein. During the course of cell line devel-

opment, e.g. A431-AAVRko, changes in protein expression could occur and thus influence receptor 

density. Especially in case of cell lines used for EGFR transduction experiments a change in recep-

tor density needs to be prevented. 

Analysis of rationally designed peptides was the focus of this work and started with analysis of the 

synthetic peptides. Cyclization of the peptides occurred via a disulfide bridge and further attach-

ment of a carboxyfluorescein-label allows for direct visualization in cell culture experiments. All 

characterization experiment showed that the β-hairpin pep1osy is the most promising rationally 

designed peptide for EGFR targeting. Here the well-known problem of random diffusion into the 

cell was observed in flow cytometry and confocal microscopy experiments. 

A megadalton complex such as the rAAV inhibits random diffusion and thus provides an optimal 

scaffold the peptide. Furthermore, decoration of the rAAV capsid with 60 peptides increases the 

avidity towards the targeted receptor. Integration of the sequences on the genetic level allowed for 

production of rAAV peptide variants. Both rational designed peptides were able to target the parti-

cles towards EGFR-overexpressing cells, while cells with low presentation level of EGFR were not 

reached. This strategy was also transferred to AAV6 and AAV9 but showed contradictory results. 

A more detailed characterization of integration sites in AAV6 and AAV9 is necessary to prevent 

those problems in re-targeting strategies. Finally, the rAAV peptide variants were tested in in ovo 

CAM assays and for AAV2 pep1jhf an increased delivery towards the tumor tissues was observed. 

Various side effects, e.g. cerebral haemorrhages, have been observed during the experiments. To 

prevent or reduce them, a detailed analysis of subsequent experiments should be performed. Find-

ings might help to design better in ovo working variants in the future. A combination with tran-

scriptional and translational approaches might also increase the specificity towards the tumor tissue. 
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7. Experimental part 

All reaction conditions, experimental procedures and analytical results not listed in this chapter can 

be found in the publications. 

7.1. Peptide synthesis 

The resin was deprotected twice with 20% piperidine/DMF (N,N-dimethylformamide), 0.1 M 1-hy-

droxybenzotriazole (HOBt) for 20 min and washed. Fmoc-Cys(Trt)-OH (4 equiv) and ethyl cyano-

hydroxyiminoacetate (Oxyma) (4 equiv) were dissolved in DMF, combined, N,N′-diisopropylcar-

bodiimide (DIC) (4 equiv) was added and the mixture was shaken for 0.5 min. This solution was 

added to the resin and incubated for 2 h and rt. Afterwards the resin was filtered, washed and cap-

ping was carried out twice with acetic anhydride (Ac2O) (10 equiv) and pyridine (10 equiv) in 

DMF. 

7.1.1. Loading of a Rinkamide resin 

Rink-amide resin (0.5 mmol/g) was swollen in DMF (10 ml/g) for 15 min. Prior to coupling the 

first amino acid, the resin is incubated in 20% piperidine in DMF, 0.1 m 1-hydroxybenzotriazole 

(HOBt) for 2× 20 min to remove the terminal Fmoc protecting group. The respective amino acid 

(4 equiv) and Oxyma (4 equiv) were dissolved in DMF, combined, DIC (4 equiv) was added and 

the mixture was shaken for 0.5 min. This solution was added to the resin and incubated for 2 h at 

rt. Afterwards the resin was filtered, washed and capping was carried out twice with Ac2O 

(10 equiv) and pyridine (10 equiv) in DMF. To determine the loading capacity of the resin, 1 mg 

of the dried resin is mixed with 3 ml 20% piperidine in DMF in a 1 cm quartz cuvette and the 

absorption of the reaction solution is determined at 290 nm (A290 nm) after 20 min of incubation. 

As reference for measurements 20% piperidine in DMF was used. The loading capacity was calcu-

lated as described in this equation: Loading capacity [
𝑚𝑚𝑜𝑙

𝑔
] =

𝐴290 𝑛𝑚

𝑚𝑟𝑒𝑠𝑖𝑛[𝑚𝑔] × 1.65
. 

7.1.2. Synthesis of triazolyl-bridged peptides 

7.1.2.1. Microwave-assisted solid phase peptide synthesis 

The further synthesis was conducted automatically using the microwave-assisted peptide synthe-

sizer Liberty (CEM Corporation). All amino acids were double coupled using TBTU (O-(benzotri-

azol-1-yl)-N,N,N',N'-tetramethyluronium tetrafluoroborate) and DIPEA (N,N-diisopropylethyla-

mine) with N-terminal acetylation using a mixture of acetic anhydride (Ac2O), DIPEA and HOBt. 

7.1.2.2. N-terminal 5(6)-carboxyfluorescein coupling 

Peptides were labelled after cyclization on-resin with 5(6)-carboxyfluorescein. Oxyma (3 equiv) 

and 5(6)-carboxyfluorescein (3 equiv) were solubilized in DMF before addition of DIC (3 equiv). 

The resin was equilibrated in DMF before addition of the solution. The reaction mixture was stirred 
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at RT for 12 h protected from light. The resin was washed with DMF (5 x), 20% piperidin in DMF 

(1 x, 2 min incubation), 20% piperidin in DMF (1 x, 10 min incubation) and DMF (5 x). 

7.1.2.3. Cleavage of the peptide from the solid support and final deprotection 

After completion of the synthesis, the peptide was cleaved off the resin with a solution of 95% 

trifluoroacetic acid (TFA), 2.5% water and 2.5% triisopropylsilane (TIPS) in the presence of a 

spatula tip of dithiothreitol (DTT) at room temperature for 5 h. Full vacuum was applied to the 

crude material before addition of a 1:1 (v/v) acetonitrile and water mixture. The crude peptide was 

purified by C18 RP-HPLC with a linear acetonitrile gradient (5-100% in 55 min, 0.1% TFA). Fi-

nally, the TFA salt of the peptides was isolated. 

7.1.3.  Synthesis of disulfide-bridged peptides 

7.1.3.1. Manual solid phase peptide synthesis 

Peptide synthesis was conducted according to standard protocols using the Fmoc/tBu-strategy in a 

plastic syringe fitted with a polypropylene porous disk at rt. Washing steps were performed after 

each reaction with DMF (5×) with 10 ml/g resin. Solvents and soluble reagents were removed by 

suction. During couplings the resin was shaken with a horizontal shaker. SPPS was conducted with 

scales at 0.07 mmol using 10 ml/g resin for reactions. Reaction control was performed by MALDI 

or LC-MS and Kaiser test. Peptides containing 5(6)-carboxyfluorescein were handled in the dark. 

Rink-amide resin (0.5 mmol/g) was swollen in DMF (10 ml/g) for 15 min. For Fmoc-deprotection 

the resin was treated twice with a solution of 20% piperidine/DMF, 0.1 M HOBt for 20 min. Cou-

pling steps were repeated twice. Fmoc-Xaa-OH (4 equiv) and Oxyma (4 equiv) were dissolved in 

DMF, combined and DIC (4 equiv) were added. After inverting the solution for 0.5 min, it was 

incubated with the resin for 60 min.  

Coupling of 5(6)-carboxyfluorescein (3 equiv) with Oxyma (3 equiv) and DIC (4 equiv) was car-

ried out overnight in the dark. Afterwards the resin was treated twice with a solution of 20% piper-

idine/DMF for 20 min. For peptide pep1osy coupling was incomplete and repeated with 12 equiv 

of 5(6)-carboxyfluorescein and PyAOP ((7-azabenzotriazol-1-yloxy)tripyrrolidinophosphonium 

hexafluorophosphate) in a mixture of DMF and NMP and incubated in the dark for 72 h.149 

7.1.3.2. Cleavage from the resin 

Peptides were cleaved from the resin with a mixture of TFA/H2O/TIPS/DTT (92.5:2.5:2.5:2.5 

v/v/v/w) for 2×3 h each. For EDA the cleavage solution was purged with argon. The solvent was 

evaporated under reduced pressure, peptides 1 and 2 were additionally precipitated in ice cold ether, 

freeze dried and linear peptides are purified by RP-HPLC. 

7.1.3.3. Cyclization of peptides 

Linear peptides pep1osy and pep1jhf were diluted at 1 mg/ml with 0.1 M NaHCO3 buffer (pH 7.8) 

and stirred open to atmosphere until completion (2-24 h). Cyclic peptides were desalted using a 

manual C18 column (25 g, 400-220 mesh) using water/0.1% TFA for desalting (200 ml) and 

MeOH/0.1% TFA (300 ml) for eluting. The solvent was evaporated under reduced pressure and the 
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crude peptides were freeze dried before purification using RP-HPLC. For pepEDA, the linear pep-

tide was dissolved in degassed MeOH/water (5:95) at 1 mg/ml. A solution of I2 in MeOH (0.06 M) 

was added dropwise until the solution stays slightly yellow (~ 3 ml).150 After completion (0.5 to 

1 h) the reaction was quenched with 1 M ascorbic acid obtaining a colorless solution and the solvent 

was removed under reduced pressure. Crude peptides were freeze-dried and purified by RP-HPLC. 

For fluorescent labeled peptides experiments and purification were performed in the dark. 

7.1.4. General protocols for peptide analysis 

Analytical RP-HPLC was performed on a Shimadzu Nexera XR UHPLC equipped with a pump 

LC-20AD, an autosampler SIL-20AXR, a column oven CTO-2CA, a diode array detector SPD-

M20A and a communication module CBM-20A using a Phenomenex Luna C18 column (3.0 µm, 

100×2.0 mm). Analytical LC-MS (Phenomenex Luna C18 column, 3.0 µm, 100×2.0 mm) and de-

termination of HRMS (C18 Hypersil Gold column; 1.9 µm, 50×2.1 mm) was performed on an Ag-

ilent 6220 TOF-MS with a dual ESI-source, 1200 HPLC system with autosampler, degasser, binary 

pump, column oven, diode array detector operating with a spray voltage of 2.5 kV. Nitrogen gen-

erated by a nitrogen generator NGM11 served both as nebulizer gas and dry gas. External calibra-

tion was performed with ESI-L Tuning Mix. MALDI-TOF-MS was conducted with an Ultraflex 

(Bruker), 355 nm Nd:YAG laser, 50 Hz, positive mode, 1000 shots/spectrum using DHB or CHCA 

as matrix, calibration with PEG 400-1200. Preparative HPLC was performed using a Merck-Hita-

chi LaChrom HPLC consisting of interface D-7000, pump L-7150, detector L-7420 and a Hypersil 

Gold C18 column (1.9 µm, 250×21.2 mm) or a Hypersil Gold C18 column (7 µm 250×10.0 mm). 

7.2. Molecular-biological methods 

7.2.1. Oligonucleotides 

Oligonucleotides used in this work were purchased at Sigma Aldrich. Molecular cloning procedures 

are described in the manuscripts and in more detail in the following chapter. 

 Name Sequence 5’- 3’ 

RFE1 Cap2 587 1jhf for GATCCGTATC TACCAACCTC CAGGCTGGCA ACTGGGCCAA GAGCCAGGGC 

AACAAGAGCG AGTACCAGGCC CAAGCAGCTA CAG 

RFE2 Cap2 587 1jhf rev CTGTAGCTGC TTGGGCCTGG TACTCGCTCT TGTTGCCCTG GCTCTTGGCC CAGTT-

GCCAG CCTGGAGGTT GGTAGATACG 

RFE3 Cap2 587 1osy for GATCCGTATC TACCAACCTC CAGGCTGGCA ACGTGGTGTT CGAGGTGAAC 

GGCAGAGACC TGGGCTGGGC CCAAGCAGCT ACAG 

RFE4 Cap2 587 1osy rev CTGTAGCTGC TTGGGCCCAG CCCAGGTCTC TGCCGTTCAC CTCGAACACC ACGTT-

GCCAG CCTGGAGGTT GGTAGATACG 

RFE5 Cap2 587 EDA for GATCCGTATC TACCAACCTC CAGGCTCTGT ACAACCCCAC CACCTACCAG 

ATGGACGCCC AAGCAGCTAC AG 

RFE6 Cap2 587 EDA rev CTGTAGCTGC TTGGGCGTCC ATCTGGTAGG TGGTGGGGT TGTACAGAGC CTG-

GAGGTTG GTAGATACG 

RFE51 NheI-Start-EGF-for AAAAAGCTAG CATGAACAGC GACAGCGAGT GCCC 

RFE52 GGSG_EGF_rev AGATCCTCCA CCAGATCCAC CACCCCTCAG CTCCCACCAC TTCAGG 
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RFE53 Linker-mCherry-for GGTGGTGGAT CTGGTGGAGG ATCTATGGTG TCCAAGGGCG AAGAGG 

RFE54 mCherryXhoI-Rev AAAACTCGAG TCAGTGGTGG TGGTGGTGGT GCTTGTACAG CTCATCCATG CCGC 

RFE56 Cap6/9 SwaI for ATAATAATTT AAATCAGGTA TGGCTGCCG 

RFE57 RFC10 rev ATAATACTGC AGCGGCCGCT ACTA 

RFE58 EcoRV MscIdel for GCGAGCTCGA TATCAAATTA CGCC 

RFE59 CAT MscIdel rev CGTGGCTAAT ATGGACAACT TCTTCG 

RFE60 CAT MscIdel for CGAAGAAGTT GTCCATATTA GCCACG 

RFE61 EcoRI MscIdel rev GCCGCGAATT CCAGAAATCA 

RFE62 Cap9 453 His for CCGGATTAGG CCATCATCAT CATCATCATA GCCAGAATCA ACAAACGCTA 

AAATTCAGTG TGGCCGGACC CAGCAACATG GCT 

RFE63 Cap9 453 His rev GTACAGCCAT GTTGCTGGGT CCGGCCACAC TGAATTTTAG CGTTTGTTGA 

TTCTGGCTAT GATGATGATG ATGATGGCCT AAT 

RFE64 Cap9 587 His for CCACAAACCA CCAGAGTGCC CAATTAGGCC ATCATCATCA TCATCATAGC 

GCACAGGCGC AGACCGGCTG GGTTCAAAACC AAGG 

RFE65 Cap9 587 His rev GATCCCTTGG TTTTGAACCC AGCCGGTCTG CGCCTGTGCG CTATGATGAT 

GATGATGATG GCCTAATTGG GCACTCTGGT GGTTTGTGG 

RFE66 Cap9 587 EDA for CCACAAACCA CCAGAGTGCC CAACTGTACA ACCCCACCAC CTACCAGATGG AC-

GCACAGGC GCAGACCGGC TGGGTTCAAA ACCAAGG 

RFE67 Cap9 587 EDA rev GATCCCTTGG TTTTGAACCC AGCCGGTCTG CGCCTGTGCG TCCATCTGGT AG-

GTGGTGGG GTTGTACAGT TGGGCACTCT GGTGGTTTGT GG 

RFE68 Cap9 587 1jhf for CCACAAACCA CCAGAGTGCC CAATGGGCCA AGAGCCAGGG CAACAAGAGC GAG-

TACCAGG CACAGGCGCA GACCGGCTGG GTTCAAAACCA AGG 

RFE69 Cap9 587 1jhf rev GATCCCTTGG TTTTGAACCC AGCCGGTCTG CGCCTGTGCCT GGTACTCGCTC 

TTGTTGCCCT GGCTCTTGGC CCATTGGGCA CTCTGGTGGT TTGTGG 

RFE70 Cap9 587 1osy for CCACAAACCA CCAGAGTGCC CAAGTGGTGT TCGAGGTGAA CGGCAGAGAC 

CTGGGCTGGG CACAGGCGCA GACCGGCTGG GTTCAAAACC AAGG 

RFE71 Cap9 587 1osy rev GATCCCTTGG TTTTGAACCC AGCCGGTCTG CGCCTGTGCC CAGCCCAGGT 

CTCTGCCGTT ACCTCGAACAC CACTTGGGCA CTCTGGTGGT TTGTGG 

RFE72 CAT BspEI del for CATACGAAAT TCCGGGTGAG CATTC 

RFE73 CAT BspEI del rev GAATGCTCAC CCGGAATTTC GTATG 

RFE78 Cap6 453His for CCGGATTAGG CCATCATCAT CATCATCATA GCAGTGCCCA AAACAAGGAC 

TTGCTGTTTA GCCGGGGGTC TCCAGCTGGC ATGTCT 

RFE79 Cap6 453His rev GTACAGACAT GCCAGCTGGA GACCCCCGGC TAAACAGCAA GTCCTTGTTT TGGG-

CACTGC TATGATGATG ATGATGATGG CCTAAT 

RFE80 Cap6 587His for CCACCGAAAG ATTTGGGACT GTGGCAGTCA ATCTCCAGAG CAGCAGCTTA 

GGCCATCATC ATCATCATCA TAGCACG 

RFE81 Cap6 587His rev GATCCGTGCT ATGATGATGA TGATGATGGC CTAAGCTGCT GCTCTGGAGA 

TTGACTGCCA CAGTCCCAAA TCTTTCGGTG G 

RFE82 Cap6 5871jhf for CCACCGAAAG ATTTGGGACT GTGGCAGTCA ATCTCCAGAG CAGCAGCTGG 

GCCAAGAGCC AGGGCAACAA GAGCGAGTAC CAGACG 

RFE83 Cap6 5871jhf rev GATCCGTCTG GTACTCGCTC TTGTTGCCCT GGCTCTTGGC CCAGCTGCTG CTCTG-

GAGAT TGACTGCCAC AGTCCCAAAT CTTTCGGTGG 

RFE84 Cap6 5871osy for CCACCGAAAG ATTTGGGACT GTGGCAGTCA ATCTCCAGAG CAGCAGCGTG 

GTGTTCGAGG TGAACGGCAG AGACCTGGGC TGGACG 

RFE85 Cap6 5871osy rev GATCCGTCCA GCCCAGGTCT CTGCCGTTCA CCTCGAACAC CACGCTGCTG CTCTG-

GAGAT TGACTGCCAC AGTCCCAAAT CTTTCGGTGG 
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7.2.2. General cloning procedures 

Modifications of the 453 and 587 loop were carried out using the unique restriction enzyme sites 

for all AAV serotypes. The Rep2Cap2 plasmid was already equipped with unique SspI and SalI 

(453 region) as well as PvuII and BamHI (587 region). Plasmids for serotype 6 and 9 were created 

starting from the Rep2Cap2 plasmid. Cap6 and Cap9 were ordered as string syntheses at GeneArt 

(ThermoFisher Scientific). Before introduction into the pSB1C3_001-Rep2 plasmid, restrictions 

sites, enabling loop modifications, had to be eliminated from the plasmid backbone. By PCR reac-

tion MscI (RFE60+RFE61) and BspEI (RFE72+RFE73) restriction sites were eliminated from the 

CAT marker region. The oligonucleotide pair RFE56 and RFE57 was used to amplify Cap6 and 

Cap9 from strings before ligation with the Rep2 plasmid which was opened with SwaI and PstI. 

Introduction of peptide motifs in loop regions is possible using the now unique restriction sites 

BspEI/BsrGI (453 region) and MscI/BamHI (587 region). Complementary oligonucleotides with 

overlapping ends between those recognition sites were designed, that match the overhangs gener-

ated during a restriction digest. After phosphorylation (T4 PNK) and annealing of complementary 

oligonucleotides a subsequent ligation into the digested and dephosphorylated (AnP) vector can 

occur. 

Table 3: Standard protocols for common cloning procedures. Incubation temperatures or detailed procedures are chosen 

according to the manufacturer’s instructions. 

Restriction digest, preparative 

CutSmart buffer  5 µl 

Enzyme   1 µl 

Plasmid    1 µg 

Water   until 50 µl 

Phusion PCR 

GC buffer  10 µl 

10 mM dNTPs  1 µl 

DNA template  100 ng 

10 µM Primer for/rev  each 2.5 µl 

DMSO (final 3%) 0.5 µl 

Phusion HF polymerase 0.5 µl 

Water   to 50 µl 

T4 DNA ligase 

Ligase buffer  2 µl 

T4 DNA Ligase (5 U/µl) 1 µl 

Vector DNA  100 ng 

Insert DNA 1:1 to 5:1 molar ratio over vector 

Water   to 20 µl 

pJET blunt protocol 

(CloneJet PCR cloning Kit #K1231) 

2× Reaction buffer  5 µl 

PCR product  4 µl 

pJET1.2   0.5 µl 

T4 ligase   0.5µl 

 

Polymerase chain reactions (PCRs) were carried out using Phusion polymerase (NEB) with the 

standard protocol described by the manufacturer. All restriction and cloning enzymes were pur-

chased at NEB and used according to manufacturer’s instructions. For ligation reactions a T4 ligase 

from ThermoFisher Scientific was applied with the provided manual. Plasmids were transformed 

into chemically competent E. coli DH5α cells, plated on LB agar plates with the corresponding 

antibiotic and incubated at 37 °C overnight. Plasmid DNA was isolated from bacterial colonies 

using the NucleoSpin Plasmid Kit from Macherey-Nagel. Cloning success was verified via se-

quencing at the Bielefeld University Sequencing Core Facility. Larger quantities of plasmid DNA 

for transient transfections were generated according to the instructions for the NucleoBond Xtra 

Midi Kit from Macherey-Nagel. 
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7.2.3. Plasmids 

Table 4: List of plasmids used during this work. 
Number Name Source 

pZMB0088 pHelper Agilent 

pZMB0091 pSB1C3_001_pCMV_DARPinE01_mli_VP23 _453_587koHis iGEM 

pZMB0154 pSB1C3_001_Rep_VP123_453_587ko_p5tataless iGEM 

pZMB0155 pSB1C3_001_Rep_VP13_453_587ko_p5tataless iGEM 

pZMB0165 pSB1C3_001_Rep_VP123_453_587ko1jhf_p5tataless RFE master thesis 

pZMB0166 pSB1C3_001_Rep_VP123_453_587ko1osy_p5tataless RFE master thesis 

pZMB0193 pSB1C3_001_Rep_VP123_453_587koEDA_p5tataless RFE master thesis 

pZMB0246 pSB1C3_001_CMV_VP1up_NLS_mVenus_VP23_453_587koHis iGEM 

pZMB0307 pSB1C3_001_pCMV_Kozak_VP23_453_587wt KSC 

pZMB0490 pET21a-EGF-mCherry-His6 This work 

pZMB0493 pSB1C3_001_FUCA1 This work 

pZMB0494 pSB1C3_001_FUCA1_T2A_EGFP This work 

pZMB0495 pSB1C3_FUCA1_T2A_EGFP_hGHpA This work 

pZMB0496 pSB1C3_CMV_FUCA1_T2A_EGFP_hGHpA This work 

pZMB0497 pUC19bb_ITR_EXS_CMV_FUCA1_T2A_EGFP_hGHpA This work 

pZMB0522 pUC19bb_ITR_EXS_pCMV_mVenus_hGHpolyA PBO 

pZMB0550 pSB1C3_002_RepCap2_VP123_453_587wt_p5tataless This work 

pZMB0551 pSB1C3_002_RepCap9_VP123_453_587_p5 This work 

pZMB0552 pSB1C3_002_RepCap9_VP123_453His_587_p5 This work 

pZMB0553 pSB1C3_002_RepCap9_VP123_453_587His_p5 This work 

pZMB0554 pSB1C3_002_RepCap9_VP123_453_587EDA_p5 This work 

pZMB0555 pSB1C3_002_RepCap9_VP123_453_5871jhf_p5 This work 

pZMB0556 pSB1C3_002_RepCap9_VP123_453_5871osy_p5 This work 

pZMB0573 pSB1C3_002_RepCap6_VP123_453_587wt This work 

pZMB0574 pSB1C3_002_RepCap6_VP123_453_587wt_p5 This work 

pZMB0575 pSB1C3_002_RepCap6_VP123_453_587wt_p5tataless This work 

pZMB0576 pSB1C3_002_Rep(PVC)Cap9_VP123_453_587_p5 This work 

pZMB0592 pSB1C3_002_Rep2Cap6_453His_587_p5 This work 

pZMB0593 pSB1C3_002_Rep2Cap6_453_587His_p5 This work 

pZMB0594 pSB1C3_002_Rep2Cap6_453_5871jhf_p5 This work 

pZMB0595 pSB1C3_002_Rep2Cap6_453_5871osy_p5 This work 

7.3. Biochemical methods 

7.3.1. Recombinant protein expression in E. coli and 293F 

During this work, recombinant proteins were expressed using two different expression systems 

depending on the protein to be expressed. 

The fusion protein EGF-mCherry was expressed using the prokaryotic pET system in E. coli 

BL21(DE3). The plasmid was transformed into chemical competent E. coli and a preculture was 

grown overnight (37 °C, 180 rpm) before inoculation of 0.5 l LB medium containing 100 μg/ml 

ampicillin. This culture was grown (37 °C, 180 rpm) up to an OD600 of 0.5 before induction of 
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protein expression with isopropyl-β-D-thiogalactopyranoside (IPTG) (0.1 mM). Cells were culti-

vated at 30 °C, 180 rpm for 4 h. Afterwards, cells were harvested by centrifugation (3220×g, 

30 min), washed with 100 mM Na2HPO4 buffer (pH 7.4) and stored at -20 °C. 

The soluble EGFR was expressed from eukaryotic cells using suspension adapted 293F cells (Free-

style 293-F, Thermo Fisher Scientific) in chemically defined animal component free medium (Xell 

AG). Prior to transfection of 293F cells, cells were washed with PBS. Transient transfection of 

3×106 cells/ml was carried out with polyethylenimine Max in a 1:4 DNA-PEI ratio (w/w) with 2 µg 

DNA (0.6 pg per cell). Transfections were carried out in 125 ml shake flasks in a volume of 30 ml. 

The cultivation of cells lasted until the viability of cells dropped below 60%. Cells were harvested 

at 2000×g for 5 min, the cell culture supernatant was sterile filtered and applied to subsequent pu-

rification as recombinant proteins are secreted from the cells. The supernatant was stored at -20 °C 

until purification. 

7.3.2. Purification of recombinant protein 

Recombinant proteins used during this work were expressed with a terminal His6-tag allowing the 

purification using immobilized metal affinity chromatography (IMAC) on a Ni-NTA resin (Ma-

cherey-Nagel).  

For protein purification, cells from E. coli cultivation were thawed and suspended in 30 ml equili-

bration buffer (50 mM Na2HPO4, 300 mM NaCl, 10 mM imidazole pH 8). The cell membrane of 

bacteria was disrupted in three repeated French press cycles at a pressure of 1000 psi. Cell debris 

was separated from soluble protein by centrifugation at 15.000×g for 30 min at 4 °C and the super-

natant filtered subsequently. 

The cell lysate after French press and the cell culture supernatant from 293F expression can both 

be applied to subsequent chromatography. The solution was applied to a self-packed Ni-NTA col-

umn using an ÄKTA start protein purification system. After washing with 30 CV buffer containing 

50 mM imidazole in equilibration buffer, the protein was eluted with an elution buffer containing 

300 mM imidazole. If not further purified using other methods, the eluted protein was concentrated 

in PBS using Amicon Ultra centrifugal filter units (Merck Millipore) (MWCO corresponding to the 

molecular weight of the recombinant protein). 

If a higher purity was required or the first step purification did not result in satisfying purity an ion 

exchange chromatography (IEX) was performed on an ÄKTA start protein purification system. The 

protein was applied to a self-packed Q Sepharose Fast Flow column (GE Healthcare) with a column 

volume of 1 ml and a gradient from 0 to 2000 mM NaCl in 50 mM Tris. The pH value of the Tris 

buffer was chosen dependently on the recombinant proteins characteristic isoelectric point (pI). 

Fractions with a volume of 1 ml were collected. Finally, eluted protein was concentrated in PBS 

using an Amicon Ultra centrifugal filter unit. 
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7.3.3. SDS-PAGE and Western blot 

Polyacrylamide gels for SDS-PAGE were generated using the Hoefer SE260 system. Samples with 

5× SDS loading buffer (20% (w/v) glycerin, 200 mM DDT, 10% (v/v) SDS, 0.2 M Tris-HCl, 0.05% 

(w/v) bromophenol blue) were prepared and incubated at 95 °C for 10 min followed by centrifuga-

tion for 1 min at 10,000×g and finally 20 µl per lane were loaded on a SDS-polyacrylamide gel. 

Electrophoresis conditions were 100 V for 30 min before increasing to 180 V for 60 min according 

to the percentage of the gel. Polyacrylamide gels were stained with Coomassie Blue staining solu-

tion if not used for western blot analysis.  

Samples were blotted onto a 0.45 µm nitrocellulose membrane (Thermo Fisher Scientific) using 

semi-dry electrophoretic transfer (V20-SDB, Sci Plas). Transfer conditions were chosen according 

to the size of the protein and the SDS-PAGE gel. For a standard gel (10%) and protein in the range 

of 30-80 kDa 4 mA/cm2 were applied for 30 min. After blocking the membrane with 10% (w/v) 

non-fat milk in TBS, the membrane was incubated for 1.5 h with a primary antibody in blocking 

buffer (see antibodies and dilutions in Table 5). After subsequent incubation with a secondary anti-

mouse IgG linked to a horseradish peroxidase, blots were imaged by luminescence detection (Pierce 

ECL Western Blot Substrate, Thermo Fisher Scientific). 

Table 5: Primary antibodies used for Western Blot analysis. 
Antibody Host  Dilution Supplier 

anti-AAV VP1/VP2/VP3, B1, supernatant, monoclonal Mouse 1:100 Progen 

anti-AAV2 (intact particle), A20R, recombinant Mouse 1:250 Progen 

β-Actin (8H10D10), monoclonal Mouse 1:1000 Cell Signaling Technology 

Tetra·His antibody Mouse  1:2000 QIAGEN 

Anti-mouse IgG, HRP-linked Antibody Horse 1:5000 Cell Signaling Technology 

7.3.4. mRNA quantification using qPCR 

Total cellular RNA from HEK293 and HEK293-KARE1 clones was isolated using Trizol Reagent 

(Invitrogen). 5×106 cells were pelleted and 1 ml Trizol (ThermoFisher Scientific) was added. The 

pellet was resuspended, vortexed for 35 s and incubated at room temperature for 5 min before an-

other 15 s of vortexing. Samples were mixed for 15 s after the addition of 200 µl chloroform. A 

3 min incubation was followed by centrifugation at 12,000×g for 15 min at 4 °C. The aqueous phase 

(approx. 500 µl) was separated in a new tube and an equal amount of 100% iso-propanol was added. 

The sample was incubated at room temperature for 10 min before the top phase is removed and 

1 ml of 75% ethanol was added. After strong vortexing, the sample was centrifuged at 7,500×g for 

5 min at 4 °C. The supernatant was aspirated and the pellet was dried for 5-10 min before resus-

pending in 35 µl RNase-free water. Incubation at 55 to 60 °C for 10-15 min increased solubility of 

RNA. 1 µg of RNA was subsequently digested by 1 U DNase I (ThermoFisher Scientific) for 30 

min at 37 °C. cDNA was synthesized using oligo(dT)18 primer and Revert Aid M-MuLV reverse 

transcriptase (ThermoFisher Scientific). Quantitative real-time PCR using GoTaq® qPCR Master 

Mix (Promega) was performed with a LightCycler 480 II detection system (Roche) according to 
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the manufacturer’s protocol. The following primer pairs were used to detect E1A (E1A for 5’-

AACCAGTTGC CGTGAGAGTTG-3’; E1A rev 5’-CTCGTTAAGC AAGTCCTCGA TACAT-

3’), E2A (E2A for 5’-TCAGGCACAA CCATCCGCGG-3’; E2A rev 5’-GGTCGGGCGC CGA-

TATCTTGA-3’) and E4 (E4 for 5’-GAACCCTAGT ATTCAACCTG CCACCTCCC-3’; E4 rev 

5’-CCACACGGTT TCCTGTCGAGCC-3’). All samples were run in triplicate. Ct values of tech-

nical replicates were averaged and averages were used for further calculations. The relative expres-

sion ΔΔCt of E2A and E4 in HEK293-KARE1 cells was calculated from the differences in HEK293 

and HEK293-KARE1a to HEK293-KARE1c after normalizing to E1A gene expression 

ΔΔCt=Ct(GeneHEK293-KARE)-Ct(E1AHEK293-KARE)-[Ct(GeneHEK293)-Ct(E1AHEK293)]). 

7.4. Biophysical measurements 

7.4.1. Circular dichroism (CD) 

CD spectra were recorded with a Jasco J-810 CD-spectrometer equipped with a Peltier-type tem-

perature controller. Measurements of peptides were conducted at a concentration of 100 µM in 10% 

TFE/water (v/v). Each spectrum was recorded thrice in the range 190-250 nm at a constant temper-

ature of 25 °C at a scanning rate of 50 nm/min. 

Measurements of proteins were conducted in 10 mM Na2HPO4, 5 mM NaCl, pH 7.4. Temperature 

stability measurement were recorded in the range 200 to 240 nm with increasing temperature up to 

90 °C. Three spectra were recorded every 1 K with a scanning speed of 50 nm/min and a heating 

rate of 1 K/min. Data was analyzed using Origin2019 (OriginLab). 

7.4.1. Transmission electron microscopy (TEM) 

Carbon-coated copper grids, 200 mesh (Electron Microscopy Science) were treated with oxygen 

plasma (Zepto, Diener electronic GmbH). After this, 3 µl of precipitation-purified rAAV sample151 

was applied to the grid and incubated for 2 min. Excess liquid was drained off, the grid was dried 

at room temperature and washed with three drops of distilled water. Negative staining was per-

formed using 3 µl 2% (v/v) uranyl acetate (Science Services) for 30 s. Excess liquid was drained 

off and grids were dried before channeling the sample into the microscope. rAAVs were visualized 

with a Philips CM100 (PW6021) instrument with an acceleration voltage of 80 kV. Images were 

analyzed using the Soft Imaging Viewer (Olympus) and ImageJ. 

7.4.2. Atomic force microscopy (AFM) 

AFM measurement were performed on a Multimode 8 AFM (Bruker) with Tap300AI-G cantilevers 

(BudgetSensors) in tapping mode in air. 2 µl of UC purified sample were spotted onto freshly 

cleaved mice for 1 min before it was rinsed three times with distilled water and dried under a gentle 

flow of nitrogen. Data analysis was performed with Gwyddion 2.48. Obtained images were treated 

with offset and plane correction algorithms and the size of visualized particles was measured at half 

maximum particle height. 
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7.4.3. Fluorescence polarization (FP) 

Fluorescence polarization assays were performed to evaluate the binding affinity of the carboxyflu-

orescein-labelled peptide (FAM-labelled peptide) towards the soluble EGFR (sEGFR). Series of 

dilutions were prepared in FP buffer (0.05% Tween®20 in 1× PBS (137 mM NaCl, 2.6 mM KCl, 10 

mM Na2HPO4, 1.8 mM KH2PO4, pH 7.2) for sEGFR starting with a concentration of 25 µM (2.5× 

dilution). A volume of 15 µl of the dilutions was pipetted into 384-well plates (BRANDplates®, 

384-well, pureGrade™, black). The fluorescent-labelled peptide (20 µM stock) was diluted to a 

final concentration of 40 nM in FP buffer. A volume of 5 µl peptide dilution (10 nM final) was 

added to each well. The plate was incubated at 4 °C for 1h before centrifugation at 1000×g, 2 min. 

Fluorescence polarization was measured using a Tecan Spark 10M with Ex 485/20 nm and Em 

520/20 nm. Each sample was measured as a technical triplicate. Polarization was converted into 

anisotropy and analysis of experimental data was performed in Origin2019 for the normalized val-

ues. The 1:1 binding model equation is shown below with 𝑟 as anisotropy, 𝑟0 as anisotropy of the 

free peptide, 𝑟𝑏 as anisotropy of the EGFR:FAM-labelled peptide, 𝐾𝑑 as dissociation constant, [𝐿]𝑡 

as total labelled ligand concentration and [𝑃]𝑡 as total protein concentration.  

𝑟 = 𝑟0 + (𝑟𝑏 − 𝑟0)
𝐾𝑑 + [𝐿]𝑡 + [𝑃]𝑡 − √(𝐾𝑑 + [𝐿]𝑡 + [𝑃]𝑡)2 − 4[𝐿]𝑡[𝑃]𝑡

2[𝐿]𝑡
 

7.4.4. Biolayer interferometry (BLI) 

Protein-protein interactions were analyzed using a BLItz system (ForteBio). An ARG2 sensor was 

equilibrated in water for 10 min. The sEGFR was immobilized on the sensor using EDC/NHS cou-

pling chemistry. The following five steps were performed to immobilize the sEGFR on the sensor: 

Initial baseline in water (30 s), activation of the surface with 10 µM EDC (1-ethyl-3-(3-dimethyla-

minopropyl)carbodiimid) and 5 µM NHS (N-hydroxysuccinimid) (300 s), loading of sEGFR 

(1 µg/ml in 10 mM sodium acetate, pH 3.5) (600 s), quenching with 1 M ethanolamine (300 s), re-

generating with 50 mM NaOH and final equilibration with water. A loaded sensor can be used for 

multiple interaction measurements. The scheme for measuring protein-protein interactions is de-

scribed in the following: Initial baseline in water (30 s), association with varying analyte concen-

trations (120 s), dissociation in water (180 s), regeneration with 50 mM NaOH (40 s) and final base-

line in water (120 s). The EGF-mCherry concentration of the initial solution was determined in 

three replicates using a NanoDrop2000c (ThermoFisher Scientific). Concentrations of measured 

samples were estimated from the dilution series. As a negative control for sEGFR binding, bovine 

serum albumin (BSA) was tested, proving no association. Finally, sensorgrams were fitted globally 

to a 1:1 binding model by Blitz Pro 1.2.1.3. Curves and global fits were plotted using Origin2019 

(OriginLab). 
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7.5. Cell culture techniques 

7.5.1. Cultivation of eukaryotic cells 

All cells were maintained at 37 °C with 5% CO2 and a humidity of 95% at subconfluency in their 

appropriate medium. Adherent cells were cultivated in T75 flask (Sarstedt) before usage in final 

experiments. Suspension culture was maintained in tube spin bioreactors (TPP) with orbital shaking 

at 185 rpm and 5 cm amplitude.  

7.5.2. Cryopreservation of eukaryotic cells 

Cultures of mammalian cells can be stored long-term in an ultra-low freezer. In a first step the 

number of viable cells was determined from a subconfluent culture. Cells were pelleted and resus-

pended in freezing medium to a concentration of 1×107 cells/ml. Freezing medium consists of the 

complete medium containing 10% dimethylsulfoxide (DMSO). Cells were aliquoted to 1 ml in cry-

ogenic vials and frozen slowly at 1 °C/min in an insulated freezing container in a -80 °C freezer. 

For long-term storage vials were transferred to an ultra-low freezer (-150 °C) 

Cryopreserved cells were thawed immediately in a 37 °C water bath. The cells were added to 20 ml 

of PBS and centrifuged for 5 min at 700xg. The supernatant was discarded and 20 ml of fresh 

medium supplemented with 10% fetal calf serum (FCS) and 1% P/S (P4333, Sigma Aldrich).  

7.5.3. Counting and seeding of eukaryotic cells 

The number and viability of mammalian cells was determined using the Luna Automated Cell 

Counter system (Logos Biosystems). A sample of cells was taken during passaging of cells and 

mixed with an equal volume of 0.4% trypan blue solution (Sigma Aldrich). A volume of 10 μl was 

applied to an associated cell counting slide and inserted into the counting system. The device anal-

yses the sample automatically and gives the total cell number, viable cell number and percentage 

of viability. Results were used to calculate the cell number needed for experiments and finally, a 

desired cell number was seeded in an appropriate plate. 

7.5.4. Confocal microscopy 

Live cell imaging was performed on an inverted confocal laser scanning microscope Zeiss LSM780 

to visualize binding and internalization of carboxyfluorescein-labelled peptides. Cells (1.5x104) 

were seeded in an 8-well µ-slide (Nunc, LabTek) in 300 µl medium and incubated overnight. Mi-

croscopy was performed using an incubation chamber at 37 °C to maintain cell culture conditions. 

Cells were incubated with 10 µl NucBlue Live ReadyProbes Reagent (Invitrogen) and 50 nM 

Lysotracker DND-99 (Invitrogen) for 10 min. Peptides were diluted to 100 µM stock solution in 

DMSO and added to the cells with 5 µM concentration for 10 min at 37 °C (final DMSO concen-

tration 5%). Five extensive washing steps with RPMI (w/o phenolred and FCS) were performed 

before imaging the cells with the 63× objective of the inverted laser scanning Zeiss LSM780 mi-

croscope. Laser and detector ranges were used with corresponding main beam splitters as given in 
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Table 6. Image acquisition was performed with Zeiss Zen 2011 and image analysis with ImageJ. A 

macro was used to analyze areas of colocalization between the carboxyfluorescein signal of the 

peptide and the Lysotracker DND-99 signal. 

Table 6: Laser and detector ranges used during live cell imaging.  
Channel Color Laser line Detector Range 

NucBlue (Hoechst 33342) Blue 405 nm 414-417 nm (Ch1) 

Carboxyfluorescein Green 488 nm (argon) 499-553 nm (ChS1) 

Lysotracker-DND99 Red 594 nm 609-700 nm (Ch2) 

7.5.5. Wound healing assay 

A431 cells (2×105 cells/ well) were seeded in 24-well plates (TC-treated, Sarstedt) and cultivated 

in RPMI-1640 culture media (D8758, Sigma Aldrich; supplemented with 10% FCS and 1% P/S) at 

37 °C and 5% CO2 for 24 h until a confluent monolayer was formed. Cells were serum-starved 

overnight in RPMI-1640 without FCS. Two scratches per well were made using a sterile 10 µl pipet 

tip. After washing with PBS thrice, cells were treated with the test substance at a certain concen-

tration (e.g. 1 nM EGF) in RPMI-1640 with 1% P/S. Control cells received an equal volume of 

buffer (1 ml RPMI-1640 with PBS). Cells were maintained at cultivation conditions and cell mi-

gration was observed using a Leica DMI6000 microscope at selected time points ranging from 0 h 

to 8 h of incubation. The analysis of identical positions is guaranteed by the Mark and Find feature 

of Leica in combination with a high-precision motorized stage. The area of cell-free surfaces was 

determined using the MRI Wound Healing Tool plug-in (Volker Bäcker) for ImageJ version 

1.51.152 A linear regression of the surface area versus time was used to determine the cell migration 

rate in Origin2019 (OriginLab) using 𝑣𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 =
|𝑆𝑙𝑜𝑝𝑒|

2 × 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑎𝑝
 . The length of the gap was 

measured using ImageJ. All experiments were carried out in two independent experiment.  

7.6. Virological methods 

7.6.1. rAAV vector packaging 

rAAV particle were typically produced in adherent HEK293 by transfection using the adenovirus-

helper-free plasmid system.153 The day before transfection, cells were seeded in either 100 mm 

(3×106 cells) or 150 mm (9×106 cells) cell culture dishes, respectively. Transfection was performed 

24 h after seeding of cells using the calcium phosphate method. Depending of the size of cell culture 

dish a total DNA amount of 15 µg or 45 µg was used (5 pg DNA per cell). For triple transfection 

the pHelper, ITR and RepCap plasmid were applied in equimolar concentrations. For one 100 mm 

dish DNA was added to 0.5 ml of 0.3 M calcium chloride solution and mixed well. The DNA mix-

ture was then added dropwise to sterile 2× HBS buffer (50 mM HEPES, 1.5 mM Na2HPO4, 280 mM 

NaCl, pH 7.05), vortexed thoroughly and immediately added dropwise to the plate of cells. Trans-

fected cells were harvested after 72 h of incubation at 37 °C. Cells and media were separately col-

lected and stored until final purification at -80 °C.  
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7.6.2. Discontinuous iodixanol density gradient ultracentrifugation 

To release viral particles, cell pellets were first resuspended in lysis buffer (50 mM Tris, 150 mM 

NaCl, 2 mM MgCl2, pH 7.5-8) and then subjected to three freeze-thaw cycles. Unwanted DNA and 

RNA contamination was digested by benzonase nuclease (50 U per ml lysis buffer) at 37 °C for 

30 min following by addition of 0.5% of the detergent CHAPS (3-[(3-cholamidopropyl)dime-

thylammonio]-1-propanesulfonate hydrate). The samples were centrifuged at 3000×g for 10 min. 

Viral particles in the spent cell culture medium were isolated from the medium by ammonium 

sulfate precipitation. Ammonium sulfate (12.52 g per 40 ml volume) was dissolved and incubated 

for 30 min on ice before centrifugation at 8300×g for 10 min at 4 °C. The pellet after centrifugation 

was resuspended in the previously generated supernatant from the cell pellet. This final sample was 

used for iodixanol ultracentrifugation to remove further contaminants. Iodixanol (Progen) solutions 

of 1.25 ml 60%, 1.25 ml 40%, 1.5 ml 25% and 2.25 ml 15% were layered in an open top polyal-

lomer 16 x 76 mm tube (Science Services). Finally, the sample was applied with a maximal volume 

of 5 ml. Tubes were sealed with cap assemblies and tared before centrifugation in a T-880 rotor 

(Sorvall) at 340,000×g for 2 h at 18 °C. The rAAV containing fraction was collected at the inter-

phase between 60% and 40% iodixanol layer with a 21G × 1 1/2” injection needle and buffer was 

exchanged to 1× HBSS (Sigma Aldrich) via Amicon Ultra-4 100K centrifugal filter units (Merck 

pore). Aliquots of the final sample were stored at -80 °C before final application in experiments. 

Table 7: Composition of iodixanol solution for application in density gradient ultracentrifugation.  
Solution 60% Iodixanol PBS-MK Additionally 

54%  8 ml 0.887 ml 10× PBS-MK  

40% 4 ml 1.4 ml 1× PBS-MK  

25% 2.5 ml 2.9 ml 1× PBS-MK 50 µl Phenolred 

15% 1.5 ml 1.2 ml 1× PBS-MK 2.7 ml 1× PBS-MK 2 M NaCl 

7.6.3. Determination of genomic titers 

Genomic titers of viral vector preparations were determined by qPCR of freshly frozen samples. 

Prior to qPCR, samples were treated with 10 U DNaseI (New England Biolabs) in 10× DNaseI 

buffer in a final volume of 50 µl at 37 °C for 30 min before heat inactivation (75 °C, 20 min). For 

samples from crude lysate additionally 0.8 U Proteinase K (New England Biolabs) was incubated 

for 50 min at 37 °C before heat inactivation (95 °C, 10 min). Different dilutions of the DNaseI 

digest were used as template in the qPCR reaction. The sample was mixed with 2.5 µl primer qPCR-

hGH-for (5'-CTCCCCAGTG CCTCTCCT-3') and 2.5 µl primer qPCR-hGH-rev (5'-ACTT-

GCCCCT TGCTCCATAC-3'), each at a stock concentration of 4 µM, and 10 µl of 2× GoTaq qPCR 

Mastermix (Promega). The PCR reaction was carried out as described in the manual (TM318 6/14, 

Promega) with an increased time interval for the first denaturation step (95 °C, 10 min) using a 

LightCycler 480 II (Roche). The genomic titer was calculated from a standard curve of 10 to 106 

copies of the ITR plasmid (pZMB0522 containing the hGH polyA motif) with an efficiency be-

tween 90-110% and an R value less than 0.1. Genomic titers for crude lysates were estimated from 

a standard curve spiked with the same amount of a non-transfected cell lysates.  
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7.6.4. Cell transduction assay 

Transduction efficiencies of viral preparations were assayed on cells. Cells to be transfected were 

seeded in 12-well plates in 500 µl of complete media. Viral samples were applied in different mul-

tiplicities of infection (MOI) after cells have settled for about 1 h. On average, MOIs ranging from 

100 to 100,000 were used in all experiments. The exact MOI is given in each individual experiment. 

After overnight incubation, 500 µl of fresh complete medium was added to each well. Cells are 

incubated for at least 48 h at 37 °C prior to detection of the fluorescence reporter mVenus. Incuba-

tion time was increased for modified rAAVs up to 96 h. Fluorescence was detected using fluores-

cence microscopy with a Leica DMI6000. Afterwards cells were trypsinized and applied to subse-

quent flow cytometry analysis using a FACScalibur. Here, at least 10,000 events were measured 

and analyzed using FlowJo V10 software. 

7.6.5. In ovo chorioallantoic membrane (CAM) assays 

Besides production and purification of viral vectors, all steps of the CAM assays have been con-

ducted by Dr. Lea Krutzke, Ulm. 

7.6.5.1. CAM assay 

Fertilized eggs at embryonic day 0 were carefully cleaned with tap water before incubation at hor-

izontal position at 37.8 °C and 58-60% relative humidity (ProCon Grumbach, Compact S84 with 

automatic turning trays). Automatic turning of the egg five times by 180° at 6 °C/s prevents vibra-

tion. After 96 hours, a small hole was punctured into the pointed end of the egg. The eggs were 

then incubated for 10 min in an upright position to allow air to escape and deepening of the egg 

content. Before enlargement of the hole with scissors to a diameter of 1 cm, the hole was sealed 

with a patch (Leukosilk S). After closing the larger hole with a second patch, eggs were incubated 

in upright position without turning until day 7 where a 1 mm thick silicon ring with an inner diam-

eter of 5 mm was placed on the chorioallantoic membrane atop a branching vessel. During all in-

cubation steps the opening of the egg is closed with a patch. The day after, a suspension of 3×106 

A431 cells in a final volume of 15 µl was mixed with 10 µl ice-cold matrigel (Corning) and added 

to the silicon ring on the CAM. A431 cells were detached from adherent culture using accutase 

before washing with PBS and resuspension in serum-free medium. At day 12 a second enlargement 

of the hole took place to allow for intravenous injection of 1×1011 rAAVs in 100 µl PBS with a 

G27x 3/4" / ø 0,40 x 20 mm cannula. After injection the cannula was left at the site of injection to 

prevent severe bleedings due to poor coagulation of the chick blood. The syringe was removed, the 

cannula sealed with a silicon plug and fixed with several patches. At day 14 chick embryos were 

sacrificed by systemic injection of propofol (3 mg per egg) before extraction of tumors and organs. 

All biologic samples were deep-frozen in liquid nitrogen and stored at -80 °C. 

7.6.5.2. DNA isolation from organs 

DNA isolation from organs was performed using the GenElute™ Mammalian Genomic DNA Min-

iprep kit. Organs were thawed and cut into small pieces of about 10 mg before addition of 180 µl 
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lysis buffer T. Proteinase K (20 µl) is added and the samples are incubated at 56 °C overnight to 

assure complete digestion of the tissue. Further steps were performed according to the manufac-

turer’s instructions. Finally, DNA is eluted in 200 µl 10 mM Tris, pH 8.0 and stored either at 4 °C 

(short term) or -80 °C (long term). 

7.6.5.3. Quantification of viral DNA by qPCR 

Viral DNA is quantified from samples of isolated DNA. The DNA concentration was determined 

photometrical and samples diluted in ddH2O to a final concentration of 10 ng/µl. The qPCR reaction 

was performed using 10 µl Kapa SYBR FAST (# KK4602 Kapa Biosystems), 0.4 µl primer forward 

(concentration of 10 pmol/µl), 0.4 µl primer reverse and 7.2 µl ddH2O with 2 µl DNA sample per 

well (20 ng DNA total). Sequences of oligonucleotide primers for qPCR are given in Table 8. PCR 

reactions were performed as described by the manufacturer with an increased time interval (10 min) 

for the initial denaturation step. A standard curve from 1×109 to 1×102 copy numbers per well was 

prepared from pZMB0522 and used to finally quantify the viral DNA amount. 

Table 8: Oligonucleotide primers used for vial DNA quantification in qPCR reaction. The β-actin primer pair for gallus 

gallus was only used for organs while the β-actin pair for human was used for the tumor tissue. β-actin served as house-

keeping gene for normalization of the data set. 

 Name Sequence 5’- 3’ 

LK46 ß-Aktin (gallus gallus) for ATTGCCCCACCTGAGCGCAA 

LK47 ß-Aktin (gallus gallus) rev CATCTGCTGGAAGGTGGACA 

LK56 ß-Aktin (human) for GCTCCTCCTGAGCGCAAG 

LK57 ß-Aktin (human) rev CATCTGCTGGAAGGTGGACA 

LK50 mVenus for AAACTGATTTGCACCACCGG 

LK51 mVenus rev GCAAAGCATTGCAGGCCATA 
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Abstract 

Introduction:  

Epidermal growth factor receptor (EGFR) expression is upregulated in many tumors and its aberrant 

signaling drives progression of many cancer types. Consequently, EGFR has become a clinically 

validated target as extracellular tumor marker for antibodies as well as for tyrosine kinase inhibitors. 

Within the last years, new mechanistic insights were uncovered and, based on clinical experience as 

well as progress in protein engineering, novel bio-therapeutic approaches were developed and 

tested. 

Areas covered: 

The potential therapeutic targeting arsenal in the fight against cancer now encompasses bispecific or 

biparatopic antibodies, DARPins, Adnectins, Affibodies, peptides and combinations of these binding 

molecules with viral- and nano-particles. We review past and recent binding proteins from the 

literature and include a brief description of the various targeting approaches. Special attention is 

given to the binding modes with the EGFR. 

Expert Commentary:  

Clinical data from the three approved anti EGFR antibodies indicate that there is room for improved 

therapeutic efficacy. Having choices in size, affinity, avidity and the mode of EGFR binding as well as 

the possibility to combine various effector functions opens the possibility to rationally design more 

effective therapeutics. 



Keywords 

erbB1, EGF-R, tumor targeting, cancer targeting, antibody, antigen-binding scaffolds, virus-like 

particles 

1 Introduction to the ErbB family of tyrosine kinases 

1.1 ErbB tyrosine kinases 

ErbB receptors are a well-studied receptor protein kinase (RTK) family comprising four members: the 

epidermal growth factor receptor (EGFR/ErbB1) as well as the closely related Her2 (ErbB2/NEU), 

Her3 (ErbB3) and Her4 (ErbB4). As type 1 transmembrane tyrosine kinases they play important roles 

in cell signaling affecting processes related to cell growth and development, differentiation, cell cycle 

progression, apoptosis and transcription [1,2]. They are expressed ubiquitously in epithelial, 

mesenchymal and neuronal cells and their progenitors. The gene name erbB originates from the 

name of the erythroblastic leukemia viral oncogene, which is homologous to the receptors [3]. Based 

on early analysis of the primary amino acid sequence with 1186 residues Ulrich et al. suggested that 

the receptor has an extracellular domain, a single hydrophobic α-helical transmembrane domain, and 

an intracellular domain with a protein kinase activity [4]. This picture was later detailed by crystal 

structure analyses [5]. The extracellular domain mediates ligand binding as well as homo- and 

heterodimerization of the ErbB family members. Dimerization upon ligand binding leads to 

conformational changes that are transmitted to the intracellular juxtamembrane helix and result in 

the activation of the kinase domain [6]. The kinase then phosphorylates one or more tyrosine 

residues in the neighboring RTKs which serve as docking sites for the assembly and activation of 

intracellular signaling proteins [1]. 



1.2 Structure of ErbB extracellular domains 

ErbB receptors consist of an N-terminal extracellular domain, which has in the case of EGFR a size of 

622 amino acids. This domain can be divided in four subdomains I-IV. Domains I and III are leucine-

rich segments and contact the ligands, whereas domains II and IV are cysteine rich and contain 

several disulfide bonds. Domain II is of special interest, because it mediates ErbB receptor homo- and 

heterodimerization via the exchange of a so called dimerization arm [2,7].  

1.3 EGFR ectodomain autoinhibition 

Once domain I and III of the EGFR sandwich one of the natural ligands, the receptor is stabilized in 

the extended conformation [8]. As a result the dimerization arm of domain II becomes exposed 

promoting dimerization and subsequent signalling [9]. For the inactive state crystallographic data 

suggest a resting state, the so called auto-tethered form, in which domain II is completely occluded 

by intramolecular interaction with domain IV (Figure 1). This auto-tethered conformation represents 

a monomeric form that is unable to dimerize [10]. In experiments an equilibrium of receptor 

monomers to ligand-free receptor dimers was found on living cells promoting the idea of preformed 

dimers prior to ligand binding, which may originate from non-tethered conformations [11]. 

Molecular dynamic studies indeed suggest that the extended monomer is not stable, a compact 

conformation is most likely, and that the receptor might be able to form ligand-free dimers with the 

need for autoinhibition in healthy cells [12]. Many cellular and biophysical studies of ErbB ligand 

binding and activation are limited to one specific cell type or model system making direct 

comparisons or generalizations difficult. In nature, a plethora of combinations of receptor ligands, 

homo- and heteromers and cellular factors such as receptor densities on the cell surface, cell 

membrane composition and availability of accessory proteins exists, mounting to a continuing 

challenge to pinpoint precise inactive and active states. Even activation with a single ligand has been 

reported [13].  



1.4 EGFR and ErbB receptor homo- and heteromeric interactions 

The formation of dimers or higher oligomers is essential for the activation of all receptor protein 

tyrosine kinases including the ErbB family. Members of the ErbB family are capable of forming 

homodimers and heterodimers in combination with each other. The dimerization arms in the 

extracellular domain II share great homology between all members of the family [14]. As an example, 

the EGFR is able to form heterodimers with ErbB2, ErbB3 and ErbB4 after stimulation with the 

natural ligand EGF [15]. The ErbB2 (Her2) receptor is not able to bind any physiological known ligand 

and therefore the formation of a homodimer is unlikely [3]. The ectodomain of ErbB2 is fixed in an 

open conformation similar to a ligand-activated state, but unique structural features block the site 

where binding occurs in the other receptors of the family [7]. Since ErbB2 is always ready for 

dimerization, it is the most favorable binding partner for the other ErbB family members. 

Overexpression of ErbB2 receptor, which is often observed in the pathogenesis of different types of 

cancer, can lead to the formation of active homodimers [3], thus stimulating cell signaling processes. 

In contrast to the other family members, the ErbB3 receptor lacks a catalytically active kinase 

domain, and homodimerization cannot activate the tyrosine kinase signaling. Nevertheless, ErbB3 is 

able to activate the kinase domains of the other ErbB family members. Surprisingly, the heterodimer 

formed by ErbB2 and ErbB3 is known to build the most robust signaling complex in the ErbB family 

[3]. 

2 Intracellular protein-protein interactions 

Upon ectodomain dimerization or activation respectively, the transmembrane region transfers the 

signal to the intracellular domain and initiates the formation of an asymmetric dimer of the two 

kinase domains, which starts the downstream signaling. One kinase domain therein acts as an 

activator domain, whereas the other domain acts as the receiver domain (Figure 1) [16]. Reasons 

why structural similar EGFR ligands can induce various biological effects was studied over the past 

decades [17]. Based on molecular dynamic calculations the presence of two different 



transmembrane helix states was proposed: an N-terminally associated and a C-terminally associated 

transmembrane dimer. Simulations by Arkhipov et al. showed that the N-terminal dimer corresponds 

to the active EGFR dimer, whereas the C-terminal transmembrane dimer is associated with the 

inactive EGFR dimer. This hypothesis is supported by mutational analyses [18]. On the intracellular 

side, the juxtamembrane region (residues 645-682) [19], which is located in direct proximity to the 

transmembrane region, attained attention. This region can be subdivided into two segments: the N-

terminal half (JM-A) and the C-terminal half (JM-B). It was shown that the JM-A segment forms an α-

helix and that upon dimerization these helices interact in an antiparallel manner [19]. Research 

suggested that ligand binding sterically influences these helices, which could explain why different 

EGF ligands induce different cellular responses. Doerner et al. found three different JM-A 

conformations upon binding of different natural ligands [20]. These different conformations might 

enable recruitment of different proteins known to bind the JM-A region and might be responsible for 

various different biological signaling pathways [20].  

2.1 ErbB signaling network and associated proteins 

Several of the main intracellular protein-protein interaction pathways are involved in the 

downstream signaling processes of the ErbB receptors. These include the phosphatidylinositol 3-

kinase (PI3K)/AKT signal route, the Ras-MAP kinase pathway and the phospholipase C (PLCγ) 

signaling. Taking all processes into consideration the output of the ErbB signaling is ranging from cell 

division and migration to adhesion, differentiation and apoptosis. The specific output depends on the 

ErbB dimer pair and the specific ligand [21]. The PI3K/AKT signaling route is involved in cell survival. 

The PI3K is recruited by the phosphotyrosines of the ErbB receptor and phosphorylates the 

membrane-bound substrate phosphatidylinositol-4,5-bisphosphate (PIP2) into phosphatidylinositol-

3,4,5-trisphosphate (PIP3). Because of its high affinity towards PIP3 the protein kinase B, also known 

as AKT, is recruited to the membrane following the activation of mTOR (mammalian target of 

rapamycin), which is a key component of many cellular processes. [2,22,23]. For activation of the 

Ras-MAP kinase pathway, autophosphorylations of the receptors’ C-terminal tyrosines result in 



docking sites for several proteins, such as Grb2. The adaptor protein Grb2 itself serves as a docking 

site for other proteins, e.g. the Ras-guanine nucleotide exchange factor SOS (son of sevenless). SOS 

then activates the Ras/MAP kinase pathway which leads to the activation of ERK. ERK1/2 has several 

substrates including transcriptions factors that are involved in cell division processes [2]. The third 

important EGFR-activated pathway is the PLCγ cascade. This enzyme is able to bind to the PLCγ 

phosphotyrosine binding sites and upon activation catalyzes the hydrolysis of PIP2 into inositol-1,4,5-

trisphosphate (IP3) and diacyl-glycerol (DAG). IP3 is an upregulator of the calcium ion concentration in 

the cell, whereas DAG activates the protein-serine/threonine kinase C (PKC). The PKC acts on several 

substrates and can thus induce several physiological processes [2,24]. A brief overview of the 

signaling pathways of the EGFR is given in Figure 2. 

2.2 EGFR downregulation and internalization 

Ligand binding induces a series of events in the downstream machinery of the EGFR and a strong 

downregulation is required in order to prevent abnormal cell growth. For the control of the EGFR 

response, the receptor is clustered over clathrin-coated regions on the cell membrane. After 

internalization within clathrin-coated vesicles, the vesicles fuse with early endosomes [21]. Inside 

these early endosomes recycling of free EGFRs to the membrane is possible whereas ligand-bound 

receptors undergo a degradation process. During maturation of the endosome the C-terminal 

domain of the receptor is segregated to prevent interaction with proteins of the signaling cascade. 

Late endosomes fuse with lysosomes that break down the ligand-receptor complexes by lysosomal 

proteases [25]. A second route of downregulation and degradation of the EGFR is the ligand-induced 

polyubiquitination, which is mediated by the intracellular adapter protein Cbl. Cbl acts as an E3 

ubiquitin-protein ligase and binds via SH2 proteins to a specific tyrosine residue in the C-terminal 

region of the EGFR [26]. The RING finger domain of Cbl recruits the E2 ubiquitin-conjugating 

enzymes. The polyubiquitination of the receptors leads to degradation of the receptor by the 26S 

proteasome [25]. Both downregulation processes play an important part for the signaling and 

aberrant regulation can promote cancer. 



3 Extracellular protein-protein interactions 

Extracellular interactions between proteins and the EGFR can be differentiated into interactions of 

the receptor with its natural ligands and with targeted therapeutic agents. 

3.1 EGFR natural ligands 

Seven different peptide growth factors are known to bind and activate the EGFR. The EGF-family 

includes EGF, transforming growth factor α (TGFα), heparin-binding EGF-like growth factor (HBEGF), 

amphiregulin (AREG), betacellulin (BTC), epiregulin (EREG) and epigen (EPGN) [27]. All peptides are 

synthesized as type I transmembrane proteins with a cytosolic C-terminus and an extracellular N-

terminus. The peptide growth hormones are released from the membrane by an enzymatic cleavage 

via proteases called ADAM (a disintegrin and metalloprotease). ADAMs belong to the class of 

membrane-anchored metalloproteases and play the most important part in protein ectodomain 

shedding [28,29]. Crystallographic studies of the EGF:EGFR interaction by Ogiso et al. revealed that 

the EGF molecule interacts with three different interaction sites named 1 to 3 [5]. The main 

interactions are illustrated in Figure 3A. Site 1 is located on domain I of the receptor and is in contact 

with the B loop of EGF, which forms a β-parallel sheet (residues 20-31). The contact is characterized 

by hydrophobic interactions between Leu14, Tyr45, Leu69 and Leu98 of the EGFR and Met21, Ile23 

and Leu26 of EGF. The other two interactions sites are located in domain III of the receptor (Figure 

3B). The A loop region (residues 6-19) interacts with site 2 and the C-terminal region with site 3. Site 

2 interactions mainly consist of hydrophobic interactions between the receptor amino acids Val350 

and Phe357 with Leu15 and Tyr13 of the ligand. Furthermore, a salt bridge between receptor Asp355 

and ligand Arg41 enhances the strength of interaction. The contact area of site 3 is characterized by 

hydrophobic interaction between Leu382, Phe412 and Ile438 of the receptor and Leu47 of EGF as 

well as hydrogen bonds between the Gln384 side chain of the EGFR and Gln43 and Arg45 (EGF) [5]. 

The precise binding epitopes for the other ligands are not known, as there are no crystallographic 

data available. 



3.2 Recent progress in therapeutically EGFR targeting  

The EGF receptor and its ligands are an important regulatory system to control the cell state and 

differentiation. Dysregulation of these pathways can lead to several diseases such as cancer, diabetes 

and autoimmune, cardiovascular, inflammatory and nervous disorders [30]. Growth of human 

malignant tumors is often driven by the overexpression or constitutive activation of ErbB receptors. 

Analyses of patient samples demonstrated EGFR overexpression in several types of cancer, which in 

several cases was associated with poor prognosis [31]. Unfortunately, a common definition of 

overexpression and a widely accepted standard for determining the EGFR status remains elusive [32]. 

So far three antibodies targeting the EGFR obtained regulatory approval: Cetuximab for EGFR-

expressing metastatic colorectal cancer and squamous cell carcinoma of the head and neck (SCCHN), 

Panitumumab for metastatic cancer of the colon or rectum with wild-type Ras, and Necitumumab for 

advanced squamous non-small-cell lung carcinoma (NSCLC) [33]. 

Targeting of the EGFR and blocking the ligand binding site was proposed already in the early 1980s 

[34]. First experiments in cell culture proved that competitive binding of a monoclonal antibody to 

the receptor can disrupt EGFR signaling and hinder cellular proliferation [34]. Since then several 

efforts focused on the development of EGFR antagonists on the basis of monoclonal antibodies 

(mAbs) directed towards the ectodomain. In contrast small molecule inhibitors such as IRESSA 

(Gefitinib) and TARCEVA (Erlotinib), which are not in the focus of this review, bind to the intracellular 

catalytic domain of the tyrosine kinase and inhibit autophosphorylation.  

3.2.1 Antibodies 

Monoclonal antibodies (mAb) typically had been selected for blocking EGFR activation. This is 

exemplified by the monoclonal antibody 225, which advanced to the clinic as chimeric C225 with the 

international nonproprietary name (INN) Cetuximab and which is marketed as Erbitux. The 

monoclonal antibody C225 was one of the first biological EGFR antagonists brought to the clinic and 

the first EGFR directed mAb approved by the US Food and Drug Administration (FDA) and the 



European Medicines Agency (EMA) for treatment of colorectal and head and neck cancer in 

combination with chemotherapy in 2004. C225 binds to site 3 of domain III (residue 449-463) of the 

EGFR whereby the light chain of the antibody interacts with the C-terminal region of the binding site. 

C225 binding prevents EGF binding and sterically hinders the adoption of the extended conformation 

required for dimerization [35] (Figure 4A). Upon binding, Cetuximab also initiates internalization and 

subsequent degradation of the receptor resulting in a block of the cell cycle, inhibition of 

proliferation and induction of programmed cell death [36].  

A further mAb co-crystal structure with domain III is available for Matuzumab (EMD 72000), which 

has been in several clinical trials [37]. Matuzumab was derived from the mouse monoclonal antibody 

mAb425. This antibody binds in proximity to Cetuximab and the natural ligands, but with little to no 

overlap on the β-helix of domain III (Figure 4A). The main interaction with the receptor is 

characterized by about 11 hydrogen bonds and two salt bridges that stabilize the binding. The 

crystallographic structure of the Fab fragments of Cetuximab and Matuzumab are shown in Figure 4A 

in combination with domain III of the EGFR. The binding epitopes for the natural ligand EGF and the 

Fab fragments of both antibodies are mapped on the surface of domain III of the EGFR in Figure 4C-E.  

Panitumumab (E7.6.3, ABX-EGF), as the first fully human mAb and active ingredient of Vectibix, was 

approved in 2006 for metastatic colorectal cancer. This antibody was isolated from antibody-

producing XenoMouse strains that carry the genetic information for the human antibody gene 

repertoire [38]. After immunization of those mice with A431 epidermoid carcinoma cells, that are 

known to overexpress the EGFR [39], hybridomas were screened for EGFR-binding antibodies [38], 

resulting in a mAb that binds to EGFR with high affinity, blocks the receptor and disrupts downstream 

signaling [40].  

The latest antibody approved is Necitumumab (IMC-11F8, Portrazza), which was approved in late 

2015 to treat metastatic squamous non-small cell lung cancer (NSCLC). The Fab fragment of 

Necitumumab was found by screening a naïve human Fab phage display library for high affinity 



binders to A431 cells even in competition with Cetuximab. The crystallographic analysis of the 

binding mode showed that Necitumumab hits exactly the same epitope as Cetuximab. However, the 

mode of binding differs between both antibodies [41]. 

Monoclonal antibodies of the IgG class have a molecular weight of about 150 kDa. Size, weight and 

composition of these molecules greatly influence the biodistribution and the ability to penetrate a 

solid tumor [42,43]. Tumor penetration of large molecules can be restricted and therefore multiple 

ways to improve this ability are tested. One typical approach is to reduce the size of the targeting 

molecule. To this end different antibody and antibody-mimetic formats were engineered: antigen-

binding fragments (Fab), single-chain variable fragments (scFv), nanobodies (camel VH) or domain 

antibodies (camelized VH) as well as “third generation” molecules. These molecules can then be 

multimerized for example by attaching multimerization domains to generate miniantibodies [44] or 

by daisy chaining the modules. Fab fragments represent the oldest class of antibody fragments. 

Historically, they were created by proteolysis of a monoclonal antibody but nowadays they can be 

produced directly in eukaryotic or prokaryotic expression hosts. Up to now three different Fab 

fragments were approved for therapeutically uses by the FDA, however none of them for therapy of 

cancer [45–47]. Single chain variable fragments (scFvs) are recombinant molecules that are 

comprising the variable regions of light and heavy chains of the antigen-binding region are joined by 

a flexible linker, which is designed to maintain binding affinity and stability [48]. scFvs have size of 

about 27 kDa and therefore renal clearance from the circulation is rapid [49] leading to an overall 

efficiency that is still lower than desired for therapeutic approaches. This limitation can be overcome 

by increasing the size for example by dimerization and multimerization of scFvs [48]. 

To enhance efficacy of EGFR targeting, research and development increasingly focuses on the 

development of novel binding molecules or novel binding modes such as bispecific antibodies. Bi- or 

multispecific targeting of a molecule enables to reach cells expressing different cancer specific 

antigens and avoid escape or alternatively can direct immunological cytotoxicity to tumor cells. Early 

work demonstrated that EGFR targeting scFvs based on the 425 antibody can be combined with 



further specificities via heteromerization modules [50,51]. In the BiTE (Bi-specific T-cell Engager) 

format scFvs are connected via another linker, joining a T-cell engaging anti-CD3 scFv and a tumor-

specific (for example anti-EGFR) scFv fragment [52]. A new approach is a single antibody variable 

domain that recognizes more than one antigen. This two-in-one or dual-specific antibody concept 

was demonstrated by Bostrom et al by mutating the light chain complementary determining regions 

(CDRs) of a monospecific Her2 antibody mainly interacting via the heavy chain CDRs such that also 

VEGFR can be bound via the light chain [53]. This technique was also used to generate a bispecific 

antibody directed against EGFR and HER3 [54] by modifying a monospecific EGFR antibody that was 

selected from a phage display Fab library with diversity restricted to the heavy chain. A single, high 

affinity clone was then further diversified with a library of mutations in the light chain CDRs and this 

library was selected for binding to both receptors. The two-in-one antibody Fab fragment named 

DL11f (or MEHD7945A when reformatted as IgG) was characterized by crystallization and its epitope 

on domain III overlaps with that of Cetuximab (Figure 4B) [54]. 

A further approach to modulate efficacy and mode of action of antibodies is the engineering of the 

Fc-domain. Based on the knowledge of the biological effector functions of natural antibody isotype 

variations the engagement of the Fc-receptors and thus complement-dependent cytotoxicity (CDC), 

antibody-dependent cell mediated cytotoxicity (ADCC), and antibody dependent cellular 

phagocytosis (ADCP) can be exploited. Immune cells are recruited by Fc receptors and since most 

therapeutic antibodies belong to the IgG class FcγRI, FcγRIIa and c, and FcγRIIIa and b are typical 

targets [55]. Testing the genetic FCGR status can predict clinical outcome as seen in Cetuximab 

treated colorectal cancer patients [56]. In addition, half-life is influenced by binding to the neonatal 

Fc receptor FcγRn and this interaction can be optimized as well [42]. 

Another approach of increasing the potency and efficacy of monoclonal antibodies is the generation 

of antibody-drug conjugates (ADCs). Monoclonal antibodies are often lacking the ability to trigger 

long lasting therapeutic effects. An enhancement of the activity can be reached by coupling the 

monoclonal antibody to a potent drug by a cleavable linker. The antibody is able to target cells 



expressing specific antigens. After internalization via endocytosis, the ADC is degraded and the 

cytostatic agent is released and can induce apoptosis [57,58]. The first EGFR antagonist to be in 

clinical trials is ABT-414, which is built up from a human IgG linked with monomethyl auristatin F 

(MMAF). This anti-EGFR ADC is currently tested in phase I/II for the treatment of squamous cell 

tumors [59].  

Last but not least antibodies targeting the EGFR can be combined for enhanced efficacy. Sym004 and 

MM-151 are formulations of two or three monoclonal antibodies, respectively [60,61]. The latter was 

designed to overcome high affinity ligand signaling and was also shown to overcome therapeutic 

evasion by extracellular domain mutations [62].  

3.2.2 Repeat proteins 

In nature, binding of proteins is often a feature of repeat proteins. These proteins are characterized 

by homologous structural motifs, which stack together in elongated structures. Homologous 

structural motifs have a size of about 20 to 40 amino acids that can range from simple to complex 

structures [63]. Two different repeat proteins for EGFR protein-protein interaction are described in 

the following.  

Ankyrin repeat proteins were first found in the human erythrocyte protein ankyrin. The L-shaped 

subunit structure is composed of usually 33 amino acid residues forming two antiparallel α-helices 

followed by a β-turn [64]. They bind to other proteins via the extended groove formed by the 

repetitive structure. Engineering of such ankyrin repeat proteins resulted in so called designed 

ankyrin repeat proteins (DARPins) [65]. Sandwiched between capping domains at the N- and C-

terminal end, which enhance stability and enable bacterial expression, the structure presents a 

binding surface to the environment [66]. Binding to various targets of interest is possible through 

residue randomization combined with ribosome or phage display selection. Phage display was used 

to select four EGFR binding DARPins named E01, E67, E68 and E69 [67]. The binding epitopes were 

mapped using alanine scanning mutation experiments that highlighted important amino acid 



residues for binding (Fig 5A-B)[68]. Three DARPins (E01, E67, E68) bind to domain III and one to 

domain I (E69) of EGFR. To further improve efficacy, two DARPins with different epitopes (E01 and 

E69) were linked either by a flexible linker or by a dimerizing leucine zipper domain, while the latter 

results finally in a tetrameric construct with two specificities. The tetravalent construct induced G1 

arrest in A431 cells and inhibited receptor recycling [69].  

A second repeat protein studied for targeting is a structure called ‘Repebody’. Their basic structure 

was derived from leucine-rich repeats (LRR). LRRs are built up from short repeats of about 20 amino 

acids that are organized in a β-strand-turn-α helix structure. They are present in more than 2000 

proteins that mediate a broad range of protein-protein interactions [70]. In variable lymphocyte 

receptors (VLRs) they play an important role in the adaptive immune system of jawless vertebrates 

and are therefore able to act as immunoglobulin substitutes [71]. The LRR structure was also used to 

design a scaffold for targeted interactions, which was named repebody. In a current study this 

structure was directed against the EGFR and additionally a cytostatic drug was attached [72]. The 

interaction between the repebody and the EGFR domain III was shown in a crystal structure analysis 

(Figure 5C). Interaction occurs with a binding affinity in the sub-nanomolar range in domain III 

overlapping with the epitope of the antibody Cetuximab [72].  

3.2.3 Affibody 

For identification of tumor metastases in the body radionuclide molecular imaging is a standard 

method albeit with limited availability of tumor specific targeting molecules for radionuclides. Since 

these agents can conceptually also be used for therapy they are often referred to as theranostics. 

Utilizing the ErbB family receptors for imaging has been tested with radiolabeled monoclonal 

antibodies and radiolabeled natural ligand EGF. Tests with antibodies demonstrated the general 

applicability but using mAbs such as Cetuximab can be hampered by poor contrast due to their long 

presence in the circulation and slow accumulation in the specific tumor tissue [73]. Radiolabeled EGF 

can yield improved tumor to blood rations due to its smaller size and the resulting quick renal 



clearance and improved malignant tissue penetration. However, EGF based imaging needs higher 

concentrations and can induce also adverse reactions possibly due to agonistic properties [74]. For 

imaging, targeting molecules are often labeled with DOTA which chelates radioisotope such as 68Ga, 

86Y or 55CCo for the use in PET (positron emission tomography) scans or 111In for SPECT (single-photon 

emission computed tomography) scans. The developers of a small binding molecule named Affibody 

aim at combining small size with high affinity for imaging in a molecule that can be produced in 

bacteria of by chemical synthesis [75]. Affibodies are derived from the Z-domain of staphylococcus 

protein A and have a size of about 6.5 kDa. The 58 amino acid scaffold forms a three helix bundle 

where 13 amino acids of helix 1 and 2 are randomized in order to increase affinity [76,77]. Site 

specific conjugation of DOTA via a cysteine to an EGFR targeted Affibody (DOTA-ZEGFR:2377) was 

evaluated in mice xenograft models. The bio-distribution showed that a radiolabeled Affibody can be 

used to visualize malignant tumors [78].  

3.2.4 Fibronectin/Monobody/Adnectin 

Monobodies, also proprietarily named Adnectins, represent a further family of designed targeting 

proteins. They are based on the 10th type III domain of fibronectin (10Fn3). Fibronectin is an abundant 

human protein of the extracellular matrix, which is based on a modular structure. The structure of 

10Fn3 and the variable fragment of an antibody resemble a similar topology even if they lack any 

sequence homology. Like the variable region of antibodies, the 10Fn3 domain is built up from a 

sandwich of two anti-parallel β-sheets with loops at each pole of the molecule [79–81]. Unlike the 

antibody domain, the 10Fn3 domain has no disulfide bridges or free cysteine residues. Using the 10Fn3 

domain as a starting point, Fibronectin monobodies were designed that have target-binding 

properties [81] and subsequently EGFR targeted monobodies were selected by yeast surface display 

(e.g. EI3.4.3) [82] or mRNA display (e.g. E#1, Adnectin 1) [83,84].  

Adnectins are suitable for multimerization, and bispecific Adnectins can be generated by connecting 

two moieties with a flexible glycine-serine linker sequence. Such a bispecific molecule with a ten 

amino acid linker, a specificity for EGFR and for IGF-IR as well as a PEG-extension (EI-tandem), 



showed improved pharmacological properties [83]. Fibronectin based targeting proteins can also be 

used for radionuclide molecular imaging upon chemical coupling with DOTA. An EGFR targeted DOTA 

monobody complexed with 64Cu was stable in serum for at least 24 h and exhibited good tumor 

localization in tumorgrafted mice. The only disadvantage was the high renal uptake and retention 

which is often a problem for small antibody mimetics [85]. Protein-protein interaction between 

Adnectin1 and the EGFR extracellular domain was analyzed by crystallography [86]. Co-crystal 

structures revealed that Adnectin1 is interacting with domain I of the EGFR. The epitope for 

Adnectin1 is presented in Figure 6A in the context of the whole extracellular domain of the EGFR and 

in detail in Figure 6B.  

3.2.5 VHH/Nanobodies 

In the early 1990s a new type of antibodies was discovered in the camelidae family (dromedary, 

camel and llama). In contrast to the well characterized human and rodent antibodies, which consists 

of heavy and light chains, the camelid antibodies naturally are only formed of heavy chain 

homodimers and they also lack the second constant domain. These antibodies, which are also 

referred to as heavy-chain antibodies (HCAb), have only one single immunoglobulin domain (Ig) 

variable fragment (VHH) with three CDRs forming the antigen-binding domain, which is structurally 

slightly distinct from the artificially generated heavy chain Fv domain antibodies. The three camelid 

CDRs are in average larger in size compared to human antibodies, which presumably compensates 

the lack of light chain CDRs and allows for a higher flexibility in antigen binding [87]. For the VHH 

domain the proprietary name ‘Nanobody’ has been introduced. These small fully functional antigen-

binding fragment have a size of 15 kDa. They are typically obtained from immunized llama VHH 

libraries, which are recloned and selected by phage display [87]. Well behaved nanobodies are easy 

to produce in bacteria and they do not require artificial linkers as in the case of the scFv [88]. As with 

the other antibody mimetics, the therapeutic approaches with VHH antibody fragments can be 

divided in three different categories based on their application. First, naked and multimerized 



nanobodies are used as antagonists. Second, nanobodies are fused to effector domains, and third 

nanobodies are presented on the surface of nanoparticles such as liposomes [89].  

Nanobodies specifically targeting the EGFR were selected and optimized using phase-display and 

studied for their cellular and structural properties [90–92]. The nanobodies 7D12, EgA1 and 9G8 

were compared to existing antibodies Cetuximab and Matuzumab as well as to EGF with regard to 

their binding site by Schmitz et al 2013 (Figure 7) [91]. The co-crystal structure of VHH 7D12 with 

domain III of EGFR shows that 7D12 interacts with domain III of the receptor primarily on the EGF 

binding site 2 and thus overlaps only partially with the EGF epitope, since EGF binds to site 2 and site 

3 [5] (Figure 7A-C). The interactions of 7D12 with domain III is mainly mediated by salt bridges and 

hydrogens bonds between amino acid residues Asp355, Arg353, Phe357 and Gln384 of domain III 

and Arg30, Glu100f and Asp101 of the nanobody, respectively. Some of these amino acid interactions 

are also important for binding of the natural ligand EGF such as e.g. Asp355 and Phe357. The binding 

site of EgA1 in comparison to the antibody Matuzumab site is shown in Figure 7D-F. Both epitopes 

are on the same side but show only minimal overlap. 

A bispecific construct, in context also called biparatopic, which combines two VHH fragments with 

two distinct binding sites on EGFR and a linker which is too short to allow for binding to a single 

receptor was constructed. In cellular studies, this construct significantly increased receptor 

internalization and in combination with juxtamembrane mutations a model of receptor clustering 

and internalization was inferred [93]. An even higher order of multivalency was obtained with 

nanoparticles, which were used for drug delivery [94,95]. 

3.2.6 Peptides 

Peptides have the advantage of being able to diffuse in to tissue and having a low immunogenicity, 

yet they are prone to degradation and rapid clearance. Thus, peptides are often used in a stabilized 

form or as a modular targeting domain in a larger context. Several approaches have been used to 

identify EGFR targeted peptides. EGF itself, which is 53 amino acids long and stabilized by three 



disulfide bridges, was the first choice to deliver e.g. cytostatic drugs into cancer cells. However, the 

mitogenic and neoangiogenic activity hampered further clinical development.  

A novel targeting peptide was identified using a commercial peptide phage-display library and the 

extracellular domain of EGFR as target. The 12 residue peptide GE11 (sequence: YHWYGYTPQNVI) 

was shown to have no mitogenic activity and it was successfully internalized by EGFR overexpressing 

cells. Surface plasmon resonance experiments measured an approximate Kd of 22 nM. The fact that 

the affinity is lower compared to EGF might be explained by the much smaller size of GE11 and the 

structural flexibility [96]. Peptide GE11 was used in several further studies.  

Performing phage display against an EGF-binding mAb resulted in a peptide (sequence: EHGAMEI) 

that should mimic EGF. Analysis of this peptide indeed showed antagonistic behavior [97]. 

A further peptide that was characterized is D4 (sequence: LARLLT), which was identified by a 

computer-assisted design process using the available EGFR crystal structures. A surface pocket in 

EGFR domain I served as a starting point, which is not located in or near the epitope of the natural 

ligand EGF. Six amino acid residue peptides were computationally sampled and finally 10 different six 

residue peptides were obtained. Peptide D4 showed significant binding to the receptor in cell culture 

experiments. A liposome was decorated with the D4 peptide and experiments showed an uptake of 

the particle. Also, tumor-specific accumulation was observed in a xenograft model [98].  

Another starting point for the design of peptide EGFR antagonists was the EGFR itself. The 

dimerization of the extracellular domain is mainly depended on interaction of the dimerization arm 

in domain II of the receptor. A peptide mimicking the EGFR dimerization arm should thus interact 

with the receptor. Mizuguchi et al. analyzed various disulfide clamped version of the EGFR 

dimerization arm sequence [99]. Hanold et al. generated a peptidomimetics of the dimerization arm 

named EDA (e.g. EDA1: AhaYNPTTYQPg) in which the termini are covalently connected via a triazolyl 

bridge or in a further study by selenylsulfide-bridges [100]. It was shown that this proteolytically 

stable peptide is able to downregulate dimerization, phosphorylation and downstream signaling. Due 



to the small size peptides are an easy to use fusion partner and are well suited for targeting 

approaches involving chemical methods.  

Also intracellular peptides for EGFR inhibition were identified. A six amino acid peptide named 

Disruptin represents a cytosolic wild-type EGFR segment that is important for dimerization and 

interacts with the heat shock protein 90 (HSP90.) The peptide infers with dimerization and promotes 

degradation [101]. 

3.2.7 Nanoparticles and viral particles 

An emerging field of EGFR targeting is the delivery of larger entities such as viral particles and 

nanoparticles. In ‘Trojan horse’ strategies they allow for the delivery of lager amounts of payloads or 

more complex payloads such as gene assemblies [102]. Nanoparticles have a size between a few to 

several hundreds of nanometers, a range equivalent to that of larger proteins to cellular organelles 

[103]. Nanoparticles offer opportunities for the delivery of cytotoxic agents, certain physical effectors 

or agents for molecular imaging. They can be manufactured from inorganic compounds or by means 

of organic chemistry as polymer structures or as biological or biomimetic structures such as 

liposomes or protein polymers. The surface of these shells is functionalized for targeting and the 

cargo can be embedded within the particle or be attached to the surface as well. Nanoparticles can 

be functionalized with different structures, e.g. antibody fragments or peptides, and provide 

opportunities for multi-targeting. For example, albumin nanoparticles were targeted with an anti-

EGFR nanobody and loaded with a kinase inhibitor [104]. Li et al. used maleimide-functionalized 

poly(ε-caprolactone) bovine serum albumin particles coated with Cetuximab and additional 131I 

arming for analyzing effects on various cell lines [105]. A Fab C225 fragment or an anti-EGFR scFv 

were used to specifically deliver liposomes to tumor cells [106]. Also, the EGFR binding peptide D4 

directed liposomes to tumor cells in vitro and in vivo [98]. 

For the delivery of genes viruses or viral-like particle (VLPs) provide sophisticated designs. Replication 

competent oncolytic viruses address tumor cells mainly based on their physiology whereby virus-like 



particles are typically addressed via capsid modifications. In VLPs, targeting is preferably introduced 

by genetic means during viral particle production albeit chemical coupling similar to that used for 

nano-particles is also an option. The delivery of genes can be used to compensate cancerous 

mutations and rehabilitate normal cell function or provide the basis for what is referred to as 

molecular chemotherapy. Virus directed enzyme prodrug therapy (VDEPT) is based on the 

introduction of an enzyme that can activate a prodrug in cells. The activation leads to a cellular 

suicide and, when taking advantage of the bystander effect, also eradication of neighboring cells. 

This approach was shown to work in cell culture for the non-enveloped human adeno-associated 

virus serotype 2 (AAV2) by Hagen et al [107]. In this work, an EGFR targeting DARPin (E01) or 

Affibody (ZEGFR:1907) were genetically fused to a capsid protein, and upon EGFR-dependent 

transduction of target cells enzymatic conversion of either the prodrug 5-fluorouracil or ganciclovir 

lead to apoptosis. An enveloped oncolytic measles virus was retargeted to EGFR or EGFRVIII using the 

scFv 425 or MR1, respectively, fused to protein H6. The enveloped oncolytic herpes virus HSV1716 

was targeted to EGFR expressing cells via a scFv (derived from mAb108) fusion to surface protein gD 

[108]. Adenovirus was retargeted to EGFRVIII by including the peptide PECPHC1 [109]. A second 

approach, which may require less genetic engineering of the viral production, is the use of adaptor 

proteins that bind the virus and the target. Verheije et al. used the nonhuman coronavirus for 

targeting the EGFR by using adaptor proteins, which they encoded in the viral genome. These 

proteins consist of a soluble domain that targets coronavirus natural receptor fused to EGF 

(mCEACAM1a EGF fusion). Experiments showed that these viruses are active as oncolytic agents in 

vivo [110].  

4 Expert commentary 

Several proteins and peptides are available that target different parts of the EGFR and a plethora of 

data from detailed structures to cellular effects and in some cases even for clinical performance are 

accessible for these molecules. Modular combinations of these targeting molecules have been 



studied and binding molecules have been tested for the delivery of linked compounds ranging from 

radioactive isotopes via chemicals and toxins to viral- and nano-particles.  

Despite all these successes targeting of EGFR is still not an off the shelf endeavor particular when the 

goal is a clinical application. EGFR overexpression and signaling is a moving target. There are high and 

low affinity-, auto tethered-, extended-, preclustered-, homo-, and heteromeric forms of EGFR which 

can be of wild-type sequence or mutated and which can be connected to several major downstream 

signaling pathways, and ultimately tumors might evolve resistance by introducing additional 

alterations in the receptor itself or the downstream signaling.  

Due to this complicated context, in some cases experimental reporting could be improved. Even in 

seemingly stringently controlled cellular experiments quantitative data such as internalization may 

be confounded by unreported experimental details such as previous cell culture conditions. In 

addition, terms such as “rapid internalization” need to be provided as biophysical time constants 

and/or in the context with a reference system such as cetuximab. 

Many clinically relevant engineering ideas have been developed, but clinical testing of all variations is 

neither ethically nor financially justified. Unfortunately, simple mouse xenograft models are of 

limited predictive value for clinical success and the lack of predictive and manageable preclinical 

models for the various EGFR overexpressing tumor types poses a current bottleneck. For some 

targeting approaches, in particular the smaller sized antibody mimetics, the theranostic approach 

might help to first obtain pharmacokinetic and distribution data before moving to the more 

demanding therapy.  

As seen by the rise of data for heavily engineered antibodies and antibody mimetics, future 

therapeutic molecules will have to address more than just binding.  



5 Five-year view 

Within the next five years the now available cellular data on receptor activation and internalization 

as well as the clinical data on EGFR therapy evasion will guide further design. Rather than simply 

blocking EGFR activation new therapies will continue to harness additional modes of action as there 

are bispecific targeting, antibody drug conjugates, additional immune system recruitment. Using 

EGFR guided viral particles will enable to impose further levels of specificity at the transcriptional and 

translational level while at the same time exploiting the multivalency of surface modifications. As 

binding scaffold of choice antibodies will still dominate but antibody mimetics will gain ground due to 

lower manufacturing costs in particular for multispecific constructs. For bringing drugs or genes into 

the cell, internalization without activation is desired, for immune system recruitment binding without 

internalization is desired, and in both cases concomitant blocking of EGFR activity should occur and 

healthy cells with low amounts of EGFR should be spared. The best candidates to achieve these goals 

are hard to predict from the current data and likely there is more than one good solution. 

6 Key issues  

• Epidermal growth factor receptor (EGFR) is overexpressed in various types of cancers and

can drive malignancy. It is a validated marker for targeted cancer therapeutics either by

disrupting its signaling activity or by using it as a surface marker for cancerous cells.

• EGFR targeting by biotherapeutics is almost exclusively achieved by binding the extracellular

domain. Peptides and the following classes of proteins have been developed for EGFR

targeting: antibodies, antibody fragments, cameloid VHH, DARPin, Affibody, Fibronectin

Domain Fn10. Many EGFR targeting proteins and peptides are selected to compete for EGF

binding and bind to domain III of EGFR, but binders for others sites are available.

• EGFR signaling is well studied, but the molecular mechanisms of how the various external

binding events are mechanistically coupled to signaling and internalization are still under



investigation. Biotherapeutic blocking of EGFR signaling is achieved by interfering with ligand 

binding, blocking dimerization, or induction of downregulation or by inhibition of the kinase 

activity with small molecules. 

• Using EGFR as cellular marker requires discrimination from healthy cells, which express lower

amounts of EGFR but are more abundant. Therapies need take into account that cancers are

heterogeneous and can evolve to sidestep EGFR overexpression or signal dependence

• Researchers responded to the complex requirements of EGFR targeted therapy, by

developing multifunctional molecules beyond antibody binding and natural ADC and ADCC.
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Figure 1: Schematic representation of the EGFR structure as a monomer and as a dimer. The N-

terminal extracellular domain is build up from four domains I-IV followed by a transmembrane helix, 

a juxtamembrane segment and the kinase domain. (A) As a monomer without ligand the receptor is 

mainly present in the autoinhibited form in which domain II and IV are tethered by the dimerization 

arm. (B) Natural ligands are bound in an open conformation sandwiched between domain I and III, 

whereby the dimerization arm is exposed promoting dimerization. After homo- or 

heterodimerization internalization starts and the intracellular kinase domains form an asymmetric 

complex initiating phosphorylation. 
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Figure 2: Schematic overview of the four main signaling pathways, that are activated upon receptor 

phosphorylation: the Ras-Map kinase pathway (blue), the JAK-STAT way (orange) as well as the PI3K 

(green) and PLCγ (yellow) pathways. All of these pathways are involved in processes controlling cell 

growth and proliferation. 
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Figure 3: Crystal structure of an EGFR:EGF complex, illustrating the interacting sites. (A) Crystal 

structure of one EGFR ectodomain monomer (grey) in the open conformation bound to EGF (blue). 

(B) EGF binds to three different binding sites (1-3) on two different domains of the EGFR. The B-loop 

of the EGF (Cys14-31) interacts with site 1 located in domain I of the receptor. The A- and the C-loop 

are interacting with site 2 and 3, respectively. Amino acid residues are highlighted that mediate the 

main interactions between domain III and the EGF molecule. The binding is mainly stabilized by 

hydrophobic bonding between specific residues. Models were created from PDB [1IVO] with UCSF 

Chimera. 
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Figure 4: Crystal structure analysis of protein-protein interactions with domain III of the EGFR. (A) 

The position relative to domain III (blue) for the EGFR antagonists Matuzumab (brown) and 

Cetuximab (yellow) is shown in comparison to the natural ligand EGF (cyan). For reasons of 

simplification only the Fab fragments are shown in combination with domain III. (B) The dual specific 

Fab DL11 is shown in binding to domain III the same orientation as in (A). (C-E) The epitope of EGF 

(cyan), Cetuximab (yellow) and Matuzumab (brown) are mapped on domain III. Structures were 

created from PDB files: EGFR [1IVO], Matuzumab [3C08], Cetuximab [1YY9], and DL11 [3P0Y].  
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Figure 5: Crystal structure binding analysis of the EGFR targeted DARPin and repebody molecules. (A) 

DARPin E01 (red) and E68 (yellow) epitopes are mapped on domain III based on mutational analyses 

by Boersma et al.[68]. The merge area shows the overlap of both epitopes (orange). (B) DARPin E69 

(red) binds to domain I of the EGFR as confirmed by mutation analysis experiments [68]. (C) The 

repebody interacts with domain III and is shown here in the context of an autotethered 

conformation. Structures were created from PDB files: EGFR [1IVO], repebody [4UIP].  
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Figure 6: Representation of the Adnectin1 binding. (A) Adnectin1 (green) with the interface region 

highlighted in pink interacts with domain I of EGFR (blue) with the interface highlighted in green. (B) 

For clarity the interaction is shown in a ribbon model of domain I and Adnectin1. The crystal 

structure was generated from PDB Adnectin1 [3QWQ].  
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Figure 7: Binding mode of nanobodies to domain III of the EGFR. (A) Ribbon model of the nanobody 

7D12 (pink) with domain III (blue). (B) The epitope of 7D12 is mapped on domain III in pink. (C) The 

epitope of the natural ligand EGF given for comparison in cyan on domain III depicted the same 

orientation. (D) The ribbon model of the EgA1 nanobody is shown interacting with domain III (blue). 

(E) The epitope of EgA1 is mapped on domain III in pink. (F) The epitope of Matuzumab is given for 

comparison on domain III in the same orientation. Structures were generated from PDB files: EGFR 

[1IVO], 7D12 [4KRL], EgA1 [4KRO], Matuzumab [3C08].  
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Table 1: List of EGFR interacting molecules 

Molecule 
(Laboratory 
code, INN, 
Tradename) 

Type of molecule; generation method; epitope Rxa Ref 

Antibodies and antibody fragments 
IMC-C225 
Cetuximab 
Erbitux 

mAb IgG1, chimerized by Fv grafting; obtained from  
mice immunized with EGFR from A431; binds domain III 

A  [11
1] 

E7.6.3 
ABX-EGF 
Panitumumab 
Vectibix 

mAb IgG2; human; obtained from transgenic mice immunized with 
EGFR from A431; binds domain III 

A [40]

h-R3 
Nimotuzumab 
TheraCIM 

mAb; humanized by CDR grafting; obtained from  
mice immunized with placental EGFR; binds linear Epitope on 
domain III 

(A) [11
2] 

IMC-11F8 
Necitumumab  
Portrazza 

mAb, humanized, obtained from a naïve Fab phage display library 
selected on A431 cells 

A  [41]

2F8 
Zalutumumab 
HuMax-EGFr 

mAb, human, obtained from transgenic mice immunized with EGFR 
and A431; binds domain III 

(A); 
D 

[11
3] 

425 
EMD 55700 

mAb; murine; mice immunized with EGFR from A431; used for 
radioisotope targeting 

II; D [11
4] 
[11
5] 

EMD72000 
Matuzumab 

mAb; mAb 425 humanized by CDR grafting II; D [11
6]  

ICR62 mAb, rat, obtained from rats immunized with EGFR from MDA-MB 
468; binds domain III 

I [11
7] 

Hum ICR62, 
GA201, RG7160 
RO5083945,  
Imgatuzumab  

mAb; humanized by CDR grafting; glycoengineered for bearing 
bisected, afucosylated carbohydrates 

II; D [11
8] 

ch806 mAb; chimerized by Fv grafting; obtained from mice immunized with 
EGFRvIII (de2-7 EGFR) from fibroblasts; binds cryptic epitope on 
domain II 

II [11
9] 

ABT-414 mAB ch806 monomethyl auristatin F conjugate II [12
0] 

Sym004 mAb; mixture of mAB 992 and 1024; obtained from mice immunized 
with recombinant EGFR fragments; bind non-overlapping epitopes 
on domain III 

II [60]

MM-151 mAb, mixture of three human IgG1 monoclonal antibodies obtained 
by yeast display 

I [61]

D2C7 mAb; obtained from mice immunized with 14-mer peptide 
corresponding to the the EGFRvIII fusion junction; binds EGFR and 
EGFRvIII 

 [12
1] 

D2C7-(scdsFv)- mAb D2C7 fused with truncated Pseudomonas Exotoxin A [12



PE38KDEL 2] 
13A9 mAb; blocks TGFα binding much stronger than EGF binding [12

3,1
24] 

29.1 mAB; obtained from mice immunized with paraformaldehyde-fixed 
A431 cells, binds carbohydrate on EGFR 

 [12
5] 

scFv MR1 scFv; obtained from mouse immunized with the first 13 amino acids 
of the EGFRvIII N terminus and selection of a resulting scFv phage 
display library; used for toxin targeting 

 [12
6] 

VHH 8B6, EGa1 VHH/nanobody; obtained from Ilama glama immunized with A431 
preparations and phage display selection with EGF elution; 8B6 used 
for 99mTc targeting [127] and EGa1 for liposome targeting [95] [94] 

 [90]

VHH D10 and 
E10 

VHH/nanobody; obtained from immunized llamas by alternating 
phage display selections on recombinant EGFR-human Fc fusion 
protein and A431 cells; bind only ligand free EGFR 

 [12
8] 

VHH G10 VHH/nanobody; obtained from immunized llamas; binds EGFR with 
and without ligand; used for EGFR conformation studies 

 [12
8] 

Designed binding molecules 
Affibody ZEGFR:955;

ZEGFR:1907; ZEGFR2377 
Protein A Z-Domain scaffold; synthetic phage display library selected 
on EGFR-ECD with glycine–HCl elution, affinity maturation by 
directed evolution; 111In-DOTA-ZEGFR:2377 and 89Zr-DFO-ZEGFR:2377 used 
for imaging 

 [75,
129
] 

DARPin E01, 
E68, E69 

Designed Ankyrin Repeat protein; synthetic phage N3C DARPin 
library with signal recognition particle export selected on EGFR 
domain I-III fused to IgG1-Fc, E01 and E68 bind domain II, E69 binds 
domain I 

 [67]

Adnectin 1 Fibronectin tenth type III domain protein; synthetic library selected 
on EGFR-ECD-Fc by mRNA display; binds domain I 

 [84]

E6.2.6; EI3.4.3, 
A’, D’  

Fibronectin type III domain protein; synthetic library selected on 
EGFR 404SG produced in yeast by yeast display and cell sorting; 64Cu-
DOTA-fibronectin used for PET imaging 

 [82,
130
] 

rAC1 Repebody Variable lymphocyte receptor of jawless vertebrates derived 
scaffold; synthetic library selected on EGFR-ECD by phage display; 
binds domain III; chemo-enzymatically coupled to monomethyl 
auristatin F 

 [72]

Bi-specific formats 
MDX-447 
EMD 82633 

Bispecific/crosslinked of F(ab’) from mAb H22 binding CD64/FcγRI 
and F(ab’) from humanized mAb 425 

I; D [13
1] 

EGFR/CD2 CHCL 

Miniantibody 
scFv 425 and anti CD2 scFv M1 heterodimerized by fusion to IgG CH1 
and CL, respectively  

 [51]

EGFR/CD2 DiBi 
Miniantibody 

scFv 425 and anti CD2 scFv M1 fused to the N- and C-terminus of a 
helical dimerization domain resulting in a dimeric bispecific 
construct 

 [50]

BsALFH, BsFLAH 
(11F8, 2F8) 

IgG-like tetravalent bispecific mAbs composed of anti EGFR scFv 
11F8 and anti IGFR1 scFv 2F8 fused to CL or CH1-CH2-CH3, respectively 

 [13
2] 

Di-Diabody IgG 
(11F8, A12) 

Anti-EGFR Fv IMC-11F8 and anti-IGFR IMC-A12 Fv diabody fused to 
IgG Fc 

 [13
3] 

C-BiTE and P-
BiTE 

Bispecific T-cell engager, anti-CD33 scFv fused to scFv derived from 
Cetuximab or scFv derived from Panitumumab, respectively 

 [52]

bscEGFRvIIIxCD3 Bispecific T-cell engager, anti-CD33 scFv fused to anti-EGFRvIII scFv 
MR1-1 

 [13
4] 

DL11f (Fab- Two-in-one antibody with Fv specificity for EGFR and Erb3; selection [54]



Format) 
MEHD7945A (Ig-
Format) 

of a heavy chain only CDR Fab library for blocking TGFα binding to 
EGFR yielded D1.5 which was CDR light chain randomized and 
selected for ErbB3 binding by phage display 

E01_GS_E69; 
E01_LZ1_E69 

Bispecific DARPin binding two epitopes on EGFR made by fusion of 
E01 and E69 either by a GlySer-linker or a homodimerizing leucine 
zipper/coiled coil domain 

 [68]

CONAN-1 (7D12 
and 9G8) 

COoperative NANobody comprising 7D12 and 9G8 binding two 
epitopes on EGFR and albumin binding nanobody Alb1 fused via a 30 
aa flexible GlySer linker; nanobodies obtained by phage selection of 
a library by competitive elution on EFGR-ECD; binding competes for 
mAb425 or Cetuximab, respectively 

 [92]

E#1-GS10-I-PEG 
and E#4-GS10-I-
PEG 

Tandem/bispecific Adnectin comprising anti-EGFR (E) and anti-IGFR 
(I) Adnectin linked by a GlySer-linker; Adnectins obtained by mRNA 
selection  

 [83]

MetHer1 2+1 antibody comprinsing cetuximab Fv grafted on both heteromeric 
knobs-into-holes Fc IgG1 and one anti-MET scFv from mAb 5D5 
(onartuzumab) fused to one Fc part 

 [13
5] 

ME22S mAb-scFv antibody comprising Anti-Met Ab SAIT301 fused C-
terminally with a disulfide stabilized anti-EGFR scFv obtained from a 
synthetic scFv library by phage display 

 [13
6] 

FL518  four-in-one antibody combining anti-EGFR and anti-erbB3 two-in-
one antibody Fab MEHD7945A via a knobs-into-holes Fc with two-in-
one anti-HER2 anti-VEGF Fab bH1-44 

 [13
7] 

CRTB6 tetra-specific antibody combining dual Fv domain, CrossMAb and 
knobs-into-holes technology; the Fv from anti-Her2 Trastuzumab on 
top of the Fv from Cetuximab Fv is combined via an knobs-into-holes 
Fc with the anti-erbB3 Fv from RG7116 and anti-VEGF Fv from 
Bevacizumab 

 [13
7] 

CT9, CB12, RT6 mAbs based on CrossMab and knobs- into-holes technology 
combining the specificities of Trastuzumab×Cetuximab, 
Cetuximab×Bevacizumab and Trastuzumab×RG7116 respectively 

 [13
7] 

EGFRBi Cetuximab chemical herteroconjugated with anti-CD33 mAb OKT3 I [13
8,1
39] 

Bival1, Bipar1, 
Bipar2 

Bivalent and bispecific/biparatopic VHHs linked by a 10aa GlySer 
linker; Bival1 (7D12-7D12), and Bipar1 (7D12–9G8), Bipar2 (9G8–
EGb4) binding two eptiopes on EGFR 

 [93]

Ligand based (recent examples) 
EGF-Dianthin Ribosome inhibiting toxin genetically fused to EGF [14

0] 
EGF-PAMAM-
DNA 

Charge based self-assembling nano particles composed of EGF, DNA, 
and polyamidoamine 

 [14
1] 

EGF-FTH1 EGF genetically fused to human ferritin H-chain protein, which forms 
nano particels 

 [14
2] 

Peptides 
GE11 12 aa peptide obtained by selecting a commercial phage display 

peptide library on EGFR 
 [96]

D4 6 aa peptide obtained by computational design on a EGFR surface 
pocket, used for liposome targeting 

 [98]

2a-4c; EDA1-
EDA6 

7-8 aa peptides; EGFR dimerization arm mimetics stabilized by a 
selenylsulfide or a triazolyl bridge 

 [10
0,1
43]



Inherbin3 17 aa peptide derived from the dimerization arm of ErbB3 (244-
LVYNKLTFQLEPNPHTK-260) also blocks EGFR:EGF stimulation 

 [14
4] 

Clone 1 - 4 7 aa peptides; obtained from a phage display library selected on 
EGFR 

 [97]

Peptide 1 - 28 Variations of cysteine bridged dimerization arm mimetics most with 
8 aa wt hairpin structure 

 [99,
145
] 

EC The C-loop of epidermal growth factor (22 amino acids of EGF COOH 
terminal) genetically fused to toxins 

 [14
6] 

PEPCH1 EGFRVIII 15 aa peptide with complement hydopathy to the EGFRvIII deletion 
junction 

 [14
7] 

CVRAC; 
D(CVRAV) 

5 aa peptide binding EGF ligand and its retro inverso peptide that 
binds EGFR 

 [14
8] 

Cp28 Peptidomimetic low affinity binder of the ligand EGF [14
9] 

ERRP EGFR-related protein from rat can block EGFR activity when 
expressed 

 [15
0] 

Disruptin 6 aa peptide from the cytosolic domain, which blocks dimerization 
and promotes degradation in transfection experiements 

 [10
1] 

Viral capsids and adaptors 
DARPIn-VP2 
rAAV; 
Affibody-VP2 
rAAV 

DARPin_E01 and Affibody_ZEGFR:1907 genetically fused to VP2 of 
Adeno-associated virus with natural tropism knock-down for a virus 
directed enzyme prodrug approach 

 [15
1] 

oncolytic 
measles viruses 

scFv 425 genetically fused to mutated H in a full length viral genome [15
2] 

Adenobody Anti-Adenovirus fiber-protein scFv genetically fused to EGF for 
retargeting Adenovirus 

 [15
3] 

sCAR-EGF EGF genetically fused to soluble coxsackie-Ad receptor (CAR) for 
Adenovirus retargeting 

 [15
4] 

DARPin scFV 
Adapter 

Trimerized bispecific DARPin comprising an anti-Adenovirus-knob 
protein, a trimerization motif with linker and DARPin_E01 or 
DARPin_E69 

 [15
5] 

ESV1 EGFR-specific virus based on Sindbis virus (SINV) displaying EGF 
fused to E2, optimized by tandem selection and enrichment system 
(TSES) 

 [15
6] 

Ad5.GE11.KO1 Adenovirus with peptide GE11 inserted in HI loop and natural 
tropism mutation 

 [15
7] 

MR1-1-gCΔ HSV Herpes simplex virus (HSV) produced with scFv MR1-1 genetically 
fused to gC deleted for natural binding 

 [15
8] 

MHVsoR-EGF coronavirus murine hepatitis virus (MHV) produced with genetically 
encoded EGF fused to mCEACAM, a soluble receptor 

 [11
0] 

AdFK4m:Ecoil-
EGF 

Adenovirus with tropism mutations carrying K-coil peptide at fiber C-
terminus interacts with E-coil peptide fused to EGF 

 [15
9] 

Ad5-E1/AFP-
E3/NIS:PAMAM-
G2-PEG-GE11 

Adenovirus was coated with cationic poly(amidoamine) (PAMAM) 
dendrimer linked to peptide GE11 for delivery of iodine enriching 
channel gene 

 [16
0] 

Cet-LV Lentivirus with streptavidin fused to vesicular stomatitis virus G 
protein were conjugated to biotinylated EGF or 111Indium labeled 
mAb Cetuximab 

 [16
1,1
62] 

HSV1716EGFR Herpes simplex virus (HSV) 1716 variant displaying a scFv derived 
from mAB108 

 [10
8]



Via fusion to 274–393 of gD 
a Clinic phase: A: approved in major markets; (A): approved in smaller markets or limited approval; I, 

II, III: testing in clinical phase I to III; D: further clinical development discontinued as hinted on web 

pages 
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Background
Recombinant adeno-associated virus (rAAV) approaches have an out-
standing reputation in gene therapy and are evaluated for cancer
therapy [1]. Advantages include long-term gene expression, targeting
of dividing and non-dividing cells, and low immunogenicity. Estab-
lished rAAV production utilizes triple transfection of adherent HEK
293 cells, which hardly meets product yield requirements for clinical
applications. We transferred the AAV production system to HEK 293-
F suspension cells. This process is scalable and uses serum-free

BMC Proceedings 2018, 12(Suppl 1):3 Page 72/73 of 78
media streamlining downstream procedures. After optimization of
transfection efficiencies and shaker cultivations, we produced titers
of 1×105 viral genomes per cell in a 2 l bioreactor.
Materials and methods
The suspension adapted HEK-FreeStyle 293-F cell line was used for
the experiments in chemically defined animal component free media
(HEK-TF, HEK-GM (Xell AG), Freestyle F17 (Thermo Fisher Scientific)).
Samples for viable cell density and viabilities were taken daily and
analyzed using an automated cell counting system (CEDEX, Roche
Diagnostics). Transient transfection of 3×106 cells/ml was carried out
with polyethylenimine Max in a 1:4 DNA-PEI ratio (w/w) with 2 μg
DNA. Three plasmids (pGOI, pRepCap, pHelper) were applied in a
molar 1:1:1 ratio (Fig. 1a). Pretests were performed in orbital shaking
tube spin bioreactors. For scale-up, batch processes were carried out
in 125 ml shake flasks as well as in 2 l stirred bioreactors at 30% air
saturation and pH 7.1. Transfection efficiencies and rAAV production
were quantified by flow cytometry using a GOI coding for a fluores-
cent protein and qPCR of genomic copies, respectively.
Results
By optimizing the DNA amount for transfection of 293-F cells more
than 90 % of the cells were reproducibly transfected. Batch cultiva-
tions in shaker flasks revealed that rAAV were produced in the first
24-96 h after transfection. Figure 1b shows viable cell densities and
viabilities in relation to the genomic titer. Genomic titers were deter-
mined from raw cell extracts and up to 109 copies/ml were repeti-
tively achievable. A decrease in viability marked the decline in
genomic copies per ml showing that a prolongation of the process
e.g. by addition of a feed would probably not increase yield. In a
first scale-up, the rAAV production was transferred to a 2 l bio-
reactor (Fig. 1c). Transfection efficiencies in bioreactors of up to
55% were comparable to that obtained in a simultaneous shaker
flask experiment. Transfection efficiencies were lower compared
to prior experiments due to controlled conditions in the bioreac-
tor. Nonetheless the titer with up to 1×105 genomic copies per
cell was elevated compared to that of shaker flasks.
Conclusions
First experiments with 293-F cells in HEK TF medium showed
promising results of transferring rAAV production from the adher-
ent system to suspension. After improvement of transfections by
the adjustment of DNA amounts in small scale experiments, AAV
production was analyzed in shaker flasks. The batch process
showed an expected increase in cell density with low variability
between biological replicates (Fig. 1b). The genomic titer in-
creased according to the viable cell density until day four where
a sudden drop started. This observation was made for AAV pro-
ductions in HEK-TF, HEK-GM and Freestyle F17 medium. For opti-
mal yields, we assume that a slight decrease in viability marks
the point in time for harvest. From optimized protocols, a batch
process in a 2 l bioreactor was carried out. Interestingly the bio-
reactor cultivation resulted in lower overall viable cell densities
but in higher genomic copies per cell compared to shaker flasks
(Fig. 1c). These results are comparable to already published data
for suspension cells [2]. Subsequent optimization of the bioreac-
tor protocol will lead to further increase in rAAV yield.
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Fig. 1 (abstract P-349). a Schematic overview of rAAV production
in HEK293 cells with triple-transfection system. b Viable cell densities
(VCD), viabilities and genomic copies per ml (GC) of a rAAV production
with 293-F batch cultivations in shaker flasks. Genomic copies per ml
refer to the titer determined in 1 ml culture volume. Error bars repre-
sent biological and technical duplicate measurements of samples.
c Viable cell densities and genomic copies per cell of a rAAV produc-
tion with 293-F batch cultivation in a 2 l bioreactor. For reasons of
comparability between shaker and bioreactor data genomic copies are
given per cell. Error bars represent technical duplicate measurements
of samples
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ABSTRACT: The epidermal growth factor receptor
(EGFR) is a transmembrane protein involved in cell
signaling processes, and dysregulation of its activity often
drives tumor growth. EGFR is a clinically validated tumor
marker and target for antibodies and tyrosine kinase
inhibitors. We demonstrate that a fusion protein of the
natural ligand epidermal growth factor (EGF) with the
fluorescent reporter mCherry can be expressed in the
cytosol of E. coli in high yields and with a high biological
activity. Biophysical characterization by mass spectrome-
try analysis confirmed three disulfide bonds that are
crucial for protein structure. Biolayer interferometry data
of the protein−protein interaction of EGF-mCherry with
the soluble EGFR are comparable to that of unmodified
EGF. Cell culture experiments demonstrated that this
fusion replicates all important features of the natural
ligand. Finally, fluorescent assays based on EGF-mCherry
provided a simple and convenient method to compare
EGFR levels on cells and to determine competition of
EGFR-binding molecules. These assays will help to rank
competitive properties of EGFR inhibitors.

Epidermal growth factor (EGF) is one of seven main
natural ligands of the epidermal growth factor receptor

(EGFR), also named ErbB1 as member of the ErbB receptor
family.1,2 EGF is synthesized as a type I transmembrane
protein with an extracellular N-terminus and a cytosolic C-
terminus.3 In the transmembrane form, EGF binds juxtaposed
EGFR. Enzymatic cleavage with disintegrin and metal-
loproteases releases mature EGF.4 EGF is a 53 amino acid
polypeptide of about 6 kDa.5 Six cysteines within the chain
form three internal disulfide bonds, which are important for
biological activity.6 The ErbB family is ubiquitously expressed
in epithelial, mesenchymal and neuronal cells and their cellular
progenitors.7 According to the standard model, EGFR
dimerizes upon ligand binding inducing intracellular tyrosine
kinase activity and phosphorylation. Cellular responses vary
with the type of ligand and the type of receptor dimer pair.8

EGFR signaling is involved in cell growth and migration as well
as proliferation and differentiation and the receptor was shown
to be overexpressed in different types of cancer.9 To analyze
expression levels of EGFR, internalization, and inhibition of
ligands, mostly [125I]-labeled EGF is used.10 An advantage of
this system is the high detection sensitivity, which contrasts
with the handling demands and short half-life of the

radioactivity. Using a fluorescent protein coupled to EGF is
environmentally friendly and compatible with modern
fluorescent workflows. The 28.8 kDa monomer mCherry is a
modification of the fluorescent protein DsRed from the
organism Discosoma sp, which maintains fluorescence under
acidic conditions.11 This offers the opportunity to trace
mCherry during internalization. EGFR internalization is
clathrin-dependent, and the forming vesicles fuse with early
endosomes.12 A pH stable reporter benefits tracing of the
receptor until the final degradation in lysosomes. A variant of
EGF with a fluorescent reporter fused to its N-terminus and
expressed in E. coli (eGFP-EGF) was already described by
Jiang et al.,13 who also analyzed colocalization with the EGFR.
However, detailed aspects of the fusion protein have not yet
been discussed. We close this gap with further data on
biological activity and biophysical characterization.
According to long-standing publications, EGF expressed in

the cytosol of E. coli is mainly sequestered to inclusion
bodies.14 In the reducing environment of the E. coli, cytosol
proteins are not expected to form disulfide bonds, if not
enforced by structural proximity. Protein fusions seem to
increase solubility, and recent publications showed that EGF
fusions can be expressed in the cytosol of E. coli.15 As these
reports lack a characterization of the disulfide state and a
comparison with a third party human EGF (hEGF), we expand
on this work and additionally test a fusion to the C-terminus of
EGF with a more acid-stable fluorescent protein.
We constructed a fusion of EGF with mCherry attached to

the C-terminus at the genetic level in a standard pET21a
vector. Crystal structure analyses and the cell-bound state of
full EGF indicate that the C-terminus of mature EGF is equally
if not better suited for insertions than previous N-terminal
fusions as it is more distant to a disulfide bridge (Figures S1
and S2). The fusion protein was expressed in E. coli
BL21(DE3) and purified via immobilized metal ion affinity
chromatography (IMAC) (Figure 1A) followed by anion
exchange chromatography (Figure S3A). Good yields of EGF-
mCherry have been obtained (14.9 mg per 500 mL shaker
culture in LB). Only a small amount of EGF-mCherry was
found in inclusion bodies in SDS-PAGE analysis. We assume
that the well folding, larger mCherry, which comes off the
ribosome second, prevents the EGF from improper folding,
facilitates the adoption of the correct 3D structure, and enables
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purification from the soluble fraction. Disulfide bonds may
form during production or upon cell disruption and
purification. In the final product, disulfide bonds were analyzed
using mass spectrometry. The reduced and nonreduced EGF-
mCherry samples were analyzed in a LC-ESI-TOF mass
spectrometer. Each disulfide bond results in a mass difference
of 2 Da in the molecular weights of the reduced vs unreduced
proteins. As a control, commercially available hEGF (Gibco)
with tested biological activity was used. A shift of 6 Da is
expected as three disulfide bridges should be reduced to thiols.
This shift (6.7 Da) is approximately observed for EGF-
mCherry (Figure 1B).
The two side peaks with +33 Da each are best explained by

trisulfide formation at one or two disulfide spots or
alternatively by methionine oxidation to a Sulphone.16 For
the purchased hEGF, only a 5 Da shift was observed (Figure
S4). EGF-mCherry was further analyzed on a SDS gel under
reducing and nonreducing conditions with and without boiling
(Figure S5). For the non-DDT-nonboiled sample, partial
formation of oligomers was observed, which were reduced
upon DTT addition. Analysis of MS and SDS-PAGE data also
revealed fragmentation at the chromophore N-acylimine at
elevated temperatures.17 Structural properties and thermal
stability of EGF-mCherry were also determined with circular
dichroism spectroscopy. Figure 1C−D presents measurements
from 46 to 90 °C, demonstrating a high stability. Even at 90
°C, the spectrum shows remaining structural elements, which
is in accordance with literature values for mCherry.18

The affinity of EGF to the soluble extracellular domain of
EGFR (sEGFR residues 1−621) was investigated with biolayer
interferometry (BLI). sEGFR was secreted from 293F
suspension culture after transient transfection and purified
via IMAC (Figure S3B). The receptor was immobilized on an
amine-reactive biosensor (ARG2, BLItz system), and EGF-

mCherry was measured at different concentrations. No binding
was observed for the control bovine serum albumin (BSA),
demonstrating specificity of the EGF-EGFR interaction. A
dissociation constant KD for EGF-mCherry of 7.6 nM was
determined using a global fit based on a 1:1 kinetic binding
model on three concentrations shown in Figure 1E. The value
is in agreement with the 1.8 nM reported for surface plasmon
resonance experiments of the EGF−EGFR interaction.19 It is
known that the 1:1 binding model does not adequately
describe the interaction because different receptor forms are
known to be present in solution.20 Nevertheless, these data
enable a comparison and show an interaction in the expected
range corroborating that production of EGF in the cytosol of
E. coli yields a biological active form.
In addition to biophysical properties, we were also interested

in the biological activity. EGF is known to stimulate several cell
signaling processes upon binding to the EGFR. These effects
can be analyzed in wound healing assays. Here, the closure of a
scratch mark in a monolayer of cells of the EGFR-
overexpressing A431 cell line is evaluated. The size of the
wound, which typically diminishes linearly, at different time
intervals yields the cell migration rate (Figure 2).21 A detailed
analysis is presented in Figure S6. The cell migration rate for
EGF-mCherry was 21.2 ± 1.6 μm/h. A commercial hEGF
preparation showed a rate of 13.16 ± 0.22 μm/h at an equal
molar concentration. Differences could be explained by
multimeric EGF-mCherry forms that might contribute to a
higher activity.
The EGF-mCherry fusion offers further applications in cell

culture experiments. We expand previous work by showing
that EGF-mCherry is a versatile tool to assess the relative
EGFR surface concentration in a comparison of different cell
lines. Cell lines expressing varying levels of EGFR were chosen
to test whether fluorescence intensity increases with increasing

Figure 1. Characterization of EGF-mCherry. (A) EGF-mCherry was purified using Ni-NTA affinity chromatography (second lane) followed by an
ion exchange chromatography (lanes 3−6). (B) LC-ESI-MS analysis of EGF-mCherry under nonreducing and reducing conditions. (C, D) Circular
dichroism spectra of a temperature course experiment from 46 to 90 °C in 1 °C steps. (E) A soluble EGFR was immobilized on an ARG2 sensor
for biolayer interferometry (BLI). Different concentrations of EGF-mCherry were measured, and the data was fitted.

Biochemistry Communication

DOI: 10.1021/acs.biochem.9b00021
Biochemistry 2019, 58, 1043−1047

1044

http://pubs.acs.org/doi/suppl/10.1021/acs.biochem.9b00021/suppl_file/bi9b00021_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.biochem.9b00021/suppl_file/bi9b00021_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.biochem.9b00021/suppl_file/bi9b00021_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.biochem.9b00021/suppl_file/bi9b00021_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.biochem.9b00021/suppl_file/bi9b00021_si_001.pdf
http://dx.doi.org/10.1021/acs.biochem.9b00021


receptor density. The cancer cells lines A431, HeLa, and
MCF7 present EGFR in decreasing concentrations. A431 were
shown to present about 3.0 × 106 receptors per cells.22 For

HeLa and MCF7, cells values of 2.0 × 105 and 1.5 × 104,
respectively, were reported.23,24 As seen in Figure 3A,
fluorescence microscopy after incubation with 5 nM EGF-
mCherry visualized a strong EGF-mCherry signal for A431
cells, whereas the intensity of fluorescence decreased for HeLa
and further for MCF7 cells. A more detailed analysis was
performed using flow cytometry analysis (Figure 3B). Here a
variety of cell lines expressing different EGFR levels were
analyzed with an excess of EGF-mCherry. The data agrees with
the values described in literature, and also allows for an
assessment of EGF receptor density of unknown cell lines
compared to those described in literature. A stably EGFR-
expressing cell line generated in our lab (ZMB-HEK293-
EGFR) presents a EGFR signal in the range of HeLa cells and
about three times more than the parental HEK293. Figure 3C
shows internalization in A431 cells incubated with 10 nM
EGF-mCherry after 15 and 30 min, revealing internalization
into vesicles as previously described for eGFP-EGF.13

EGF-mCherry was further tested in cellular competition
assays, which are compatible with today’s fluorescent high-
throughput equipment. This will help to characterize binding
inhibitors and blocking antibodies for the EGFR tumor
target.25,26 Incubation of A431 cells with EGF-mCherry at
increasing concentrations at 37 °C for 15 min entails several
processes such as receptor binding, internalization, and
depletion. The measured signal thus reflects bound and
internalized EGF-mCherry. In Figure 4A, an expected
sigmoidal curve can be seen with signal or receptor saturation,
respectively, at this time point. Fitting a sigmoidal function, the
half-maximal effective concentration EC50 was determined to

Figure 2. Wound healing assay using A431 cells. Cells incubated with
0 nM (buffer control) and 1 nM EGF-mCherry or a commercial
hEGF. Cell-free areas and cell migration rates were determined using
the ImageJ software plugin MRI Wound Healing Tool. Scale bars in
the upper right corner represent 250 μm.

Figure 3. Characterization of EGF-mCherry in cell culture experiments. (A) A431, HeLa, and MCF7 cells were incubated with 5 nM EGF-mChery
for 15 min before fluorescence microscopy. (B) Flow cytometry analysis of cells expressing different levels of EGFR. Cells were incubated with 150
nM EGF-mCherry for 15 min before measurements. Folds of mean fluoresce difference with and without EGF-mCherry are presented for each cell
line. (C) Internalization of EGF-mCherry was shown using A431 cells. Cells were incubated with 10 nM EGF-mCherry, fixed and counterstained
with DAPI.
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be 53.4 ± 4.2 nM. This allowed estimation of the adequate
EGF-mCherry concentration in subsequent competitive assays
to be 50 nM, which was kept constant, while hEGF (Gibco)
was added as a a competitor at increasing concentrations. A
dose−response equation fit was used to determine an
inhibitory concentration at half-maximum (IC50) (Figure
4B). The IC50 value for hEGF was 146.3 ± 36.2 nM, which
is almost three times the expected value, if both EGF would be
equally effective. Differences in this value might be explained
by the observed formation of multimers in EGF-mCherry and
structural deficits in the hEGF. Competition assays based on
this method are easy and simple to implement using standard
laboratory equipment. Unlike commercial assays with radio-
activity or special dyes, only a plate reader with an excitation in
the range of 560 nm and emission above 580 nm is required.
In summary, we demonstrated cytosolic expression of EGF

fused to the N-terminus of a fluorescent protein in E. coli and
characterized its biophysical properties and product hetero-
geneity. Interaction of this EGF variant with soluble EGFR was
demonstrated by BLI and with cell-bound EGFR by
fluorescence microscopy and flow cytometry. Application in
competition assays makes this protein interesting for analysis
of any nonfluorescent protein interacting with the EGFR.
Additionally, the fusion protein is also suitable for interaction
measurements using FRET, for example, in combination with
EGFP. Protein expression and purification are quick and
simple using standard laboratory methods, and the results were
consistent over different batches of EGF-mCherry productions
(Figure S7).
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■ MATERIALS AND METHODS

Materials and Instrumentation. Reagents and chemicals were obtained at Sigma-Aldrich, VWR or 

Thermo Fisher Scientific. DNA oligonucleotides were ordered at Sigma-Aldrich. The BLI measurements 

were performed using a BLItz (ForteBio) instrument. DNA and Protein concentration were determined by 

absorbance at 260 and 280 nm respectively using a NanoDrop 2000c spectrophotometer. 

Construction of pET21a-EGF-mCherry-His6. The human soluble EGF gene (UniProt ID P01133) 

was amplified by PCR from plasmid pZMB0008 with the primers (NheI_Met_EGF-for 5’-AAAAAGCTAG 

CATGAACAGC GACAGCGAGT GCCC-3’ and GGSG_EGF_rev 5’-AGATCCTCCA CCAGATCCAC 

CACCCCTCAG CTCCCACCAC TTCAGG-3’). The mCherry gene (UniProt ID X5DSL3) was amplified 

by PCR from pZMB0267 with the primers GGSG_mCherry_for 5’-GGTGGTGGAT CTGGTGGAGG 

ATCTATGGTG TCCAAGGGCG AAGAGG-3’ and mCherryHisStopXhoI_rev 5’-AAAACTCGAG 

TCAGTGGTGG TGGTGGTGGT GCTTGTACAG CTCATCCATG CCGC-3’. A third PCR reaction was 

used to fuse PCR product 1 and PCR product 2 to generate a DNA-fragment named NheI-Start-EGF-GGSG-

mCherry-His6-Stop-XhoI. The NheI/XhoI digested fragment was integrated in the likewise opened pET21a 

vector to generate pZMB0490. Resulting inserts were analyzed for their correctness by Sanger DNA-

sequencing (Sequencing Core Facility, CeBiTec, Bielefeld, Germany).  

Construction of pcDNA6A EGFR-ECD-His6. The soluble EGF-receptor (UniProt ID P00533, 

residues 1-621) was provided in pcDNA6A for expression in 293F suspension culture. This plasmid was 

obtained by removing the EGFR transmembrane coding region within plasmid pcDNA6A-EGFR ECD (1-

644), which was a gift from Mien-Chie Hung (Addgene plasmid #42666)1, by amplifying the complete 

plasmid with primer FWD EGFR-TMD 5’-CTCGAGTCTA GAGGGCCC-3‘ and REV EGFR-TMD 5’-

GGACGGGATC TTAGGCCC-3‘ with subsequent self-ligation. The insert in resulting plasmid pZMB0202 

was analyzed for correctness by Sanger DNA sequencing (Sequencing Core Facility, CeBiTec, Bielefeld, 

Germany).  

EGF-mCherry expression and purification. Plasmid pET21a-EGF-mCherry-His6 was 

transformed into competent E. coli BL21(DE3). An overnight culture (37 °C, 180 rpm) was used to inoculate 

a culture in 0.5 L LB medium containing 100 μg/mL ampicillin. This culture was grown (37 °C, 180 rpm) 

up to an OD600 of 0.5. Protein expression was then induced with isopropyl-β-D-thiogalactopyranoside 

(IPTG) (0.1 mM) and the cells were cultivated at 30 °C, 180 rpm for 4 h. Afterwards, cells were harvested 

by centrifugation (3220×g, 30 min), washed with 100 mM Na2HPO4 buffer (pH7.4) and stored at -20 °C. 

For protein purification, cells were thawed and resuspended in 30 mL equilibration buffer (50 mM 

Na2HPO4, 300 NaCl, 10 mM imidazole, pH 8). The cell membrane of bacteria was disrupted in three 

repeated French press cycles at a pressure of 6.9 mPa (1000 psi). Cell debris was separated from soluble 

protein by centrifugation at 15.000×g for 30 min at 4°C. The supernatant was filtered and applied to a 1 ml 

Protino Ni-NTA column for purification. After washing with 30 CV buffer containing 50 mM imidazole in 

equilibration buffer, the protein was eluted with an elution buffer containing 300 mM imidazole. Further 
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purification included an ion exchange chromatography (IEX) using an ÄKTA start protein purification 

system. The protein was applied to a self-packed Q Sepharose Fast Flow column (GE Healthcare) with a 

column volume of 1 ml and a gradient from 0 to 2000 mM NaCl in 50 mM Tris pH 8. Fractions with a 

volume of 1 ml were collected. Finally, eluted protein was concentrated to 14.9 mg/ml in 1× PBS using an 

Amicon Ultra centrifugal filter unit (MWCO 30 kDa).  

Soluble EGFR expression and purification. The suspension adapted HEK-FreeStyle 293-F cell 

line (Thermo) was used for transient expression and cultivated in chemically defined HEK-TF (Xell AG) 

medium in 125 ml shake flasks with orbital shaking at 185 rpm and 5 cm amplitude at 37°C and 5% CO2. 

Prior to transfection, 293F cells were washed with 1× PBS. Transient transfection of 3×106 cells/ml was 

carried out with polyethylenimine Max (PEI) (Polysciences) by mixing 2 µg DNA with 8 µg PEI (1:4 DNA-

PEI ratio) in 250 µl HEK-TF for the transfection of 1 ml cells.  4 h post transfection 1 ml medium was added 

per 1.25 ml culture. Transfections were carried out in 125 ml shake flasks with initial 30 ml cell suspension. 

The cultivation of cells lasted until the viability of cells dropped below 60 %. Cells were harvested at 2000×g 

for 5 min, the cell culture supernatant was sterile filtered and applied to subsequent Ni-NTA purification as 

describe above.  

CD spectroscopy. Determination of temperature stability was assayed using CD spectroscopy. 

Protein was dialyzed against 10 mM Na2HPO4, 5 mM NaCl, pH 7.4 overnight. CD spectra were recorded 

with a Jasco J-810 spectropolarimeter equipped with a Peltier-type temperature controller. The CD spectrum 

was recorded from 200 to 240 nm at different temperatures from 46 to 90 °C. A scanning speed of 50 

nm/min and a heating rate of 1 K/min were used. Spectra were recorded every 1 K. Data was analyzed using 

Origin2017 (OriginLab). 

Biolayer interferometry. A BLItz system (ForteBio) was used to determine protein-protein 

interactions. The ARG2 sensor was equilibrated in H2O for 10 min. The sEGFR was immobilized on the 

sensor using EDC/NHS coupling chemistry. The following five steps were performed to immobilize the 

sEGFR on the sensor: initial baseline in H2O (30 s), activation of the surface with 10 µM EDC/5 µM NHS 

(300 s), loading of sEGFR (1µg/ml in 10 mM sodium acetate, pH 3.5) (600 s), quenching with 1 M 

ethanolamine (300 s), regenerating with 50 mM NaOH and final equilibration with H2O. A loaded sensor 

can be used for multiple interaction measurements. The scheme for measuring protein-protein interactions 

is described in the following: initial baseline in H2O (30 s), association with varying analyte concentrations 

(120 s), dissociation in H2O (180 s), regeneration with 50 mM NaOH (40 s) and final baseline in H2O (120 

s). The EGF-mCherry concentration of the initial solution was determined in three replicates using the 

NanoDrop2000c (Thermo Fisher Scientific). Concentrations of measured samples were estimated from the 

dilution series. As a negative control for sEGFR binding, bovine serum albumin (BSA) was tested, proving 

no association. Finally, sensorgrams were fitted globally to a 1:1 binding model by Blitz Pro 1.2.1.3. Curves 

and global fits were plotted using Origin2017 (OriginLab).  

Mass spectrometry. A sample of protein (0.1 mg/ml) in PBS buffer was incubated with a final 

concentration of 10 mM tris(2-carboxyethyl)phosphine (TCEP) for 30 min at room temperature. After 

incubation the sample was acidified to a final concentration of 0.1 % formic acid (FA). A final volume of 

50 µl of used for mass spectrometry measurements. A non-reduced sample was treated similarly without 

addition of TCEP. The samples were separated on a LaChrom Ultra HPLC system (VWR) using a reversed 

phase column (MAbPac RP 4µm 2.1 x 50 mm, Thermo Scientific). Eluents were 0.1% FA in water and 

0.1% FA in acetonitrile. The mass spectrometric analysis was performed with a micrOTOF-Q II (Bruker 

Daltonik). 

Cell culture. A431, MCF7 and MDA-MB-231 (DSMZ) were cultivated in Roswell Park Memorial 

Institute medium RPMI 1640 (D8758, Sigma Aldrich) supplemented with 10 % (v/v) fetal calf serum (FCS) 

and 1 % (v/v) penicillin/streptomycin (P/S) (P4333, Sigma Aldrich). Human Dermal Fibroblasts adult 

(HDFa), Hela, HEK293 and HEK293-EGFR cells were cultivated in Dulbecco’s Modified Eagle Medium 

(DMEM) supplemented 10 % (v/v) FCS and 1 % (v/v) P/S. 
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Fluorescence microscopy. 5×104 cells were seeded in 24-well plates on poly-D-lysine coated 

coverslips. On the next day, media was removed and cells washed twice with 1× PBS. Cells were incubated 

at 37 °C with the desired protein concentration followed by three washing steps. All samples were fixed for 

20 min with 4 % PFA (paraformaldehyde) and counterstained with 10 µM DAPI (4′,6-Diamidino-2-

phenylindole) for 10 min. Finally, coverslips were mounted with Mowiol 4.88/Dabco (Roth). Images were 

acquired using a DMI6000B fluorescence microscope (Leica) with a 5× objective for wound healing assays 

(Figure 2), a 20× objective for EGFR expression level (Figure 3A), and a 63× objective with oil for EGF-

mCherry internalization (Figure 3C). mCherry fluorescence was imaged with a TX2 filter bloc (ex 540-580, 

dc 595, em 607-683) and DAPI with a 405 filter bloc (ex 375-435, dc 455, em 445-495). 

Wound healing assay. A431 were used to determine the biological activity of hEGF proteins in a 

wound healing assay. A431 cells (2×105 cells/ well) were seeded in 24-well plates (TC-treated, Sarstedt) 

and cultivated in RPMI-1640 culture media supplemented with 10 % FCS and 1 % P/S at 37 °C and 5 % 

CO2 for 24 h until a confluent monolayer was formed. Cells were serum-starved overnight in RPMI-1640 

without FCS. Two scratches per well were made using a sterile 10 µL pipet tip. After a washing using PBS, 

cells were treated with either the purified or a commercial hEGF (PHG0311, Gibco/Thermo Fisher 

Scientific), both at concentrations of 1 nM and 10 nM in RPMI-1640 with 1 % P/S. Control cells received 

an equal volume of buffer (1000 µL RPMI-1640 with PBS). Cells were maintained in cultivation conditions 

and cell migration was observed using a Leica DMI6000 microscope at selected time points ranging from 0 

h to 8 h of incubation. The analysis of identical positions is guaranteed by the Mark and Find feature of 

Leica in combination with a high-precision motorized stage. The area of cell-free surfaces was determined 

using the MRI Wound Healing Tool plug-in (Volker Bäcker) for ImageJ version 1.51.2 A linear regression 

of the surface area versus time was used to determine the cell migration rate in Origin2017(OriginLab) using 

𝑣𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 =
|𝑆𝑙𝑜𝑝𝑒|

2 × 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑎𝑝
 . The length of the gap was measured using ImageJ. 

Cell binding and competitions assay. For the cell-based fluorescence assay, 7×104 cells per well 

were seeded in 1 mL medium on a 24-well plate and incubated overnight at 37 °C. The medium was removed 

and cells were serum starved in 1 ml DMEM for 4 h at 37 °C. After washing with 1× PBS, 250 µl of the 

desired EGF-mCherry concentration in DMEM (w/o FCS and P/S) were applied to the cells ad incubated 

for 15 min at 37 °C. In competition assays EGF-mCherry (50 nM) and EGF (Gibco) (varying 

concentrations) were preincubated before application to cells. Cells were washed twice with PBS before 

detachment of the cells using 100 µl Accutase cell detachment solution for 10 min at 37 °C. Cells were 

diluted to a final volume of 200 µl and the cell suspension was transferred to a black 96-well plate (Sarstedt). 

Fluorescence measurements was carried out in duplicates using a Spark microplate reader (Tecan) set to 

550 excitation and 610 nm emission. Data analysis was performed using Origin2017 (OriginLab) using the 

Dose response fit (𝑦 = 𝐴1 +
(𝐴2 − 𝐴1)

1 + 10(log 𝑥0−𝑥) × 𝑝). EC50 and IC50 values are given by the parameter log 𝑥0 and

p represents the hill slope. 

SDS-PAGE. Samples with 5× SDS loading buffer were prepared and incubated at 95 °C for 10 min 

followed by centrifugation for 1 min at 10,000×g and finally 20 µl per lane were loaded on a 12 % SDS-

polyacrylamide gel (Hoefer SE260). Polyacrylamide gels were stained with Coomassie Blue staining 

solution.  
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■ SUPPLEMENTAL FIGURES

Figure S1. Crystal structure 

representation of EGF and EGF-

mCherry. (A) EGF:EGFR 

crystal structure showing both 

termini to be amenable for fusion 

to other proteins (PDB ID 

1IVO). Three essential disulfide 

bonds for EGF are highlighted in 

red. (B) Cartoon of EGF-

mCherry from PDB ID 1JL9 and 

2H5Q.  

C EGF-mCherry with His-tag and restriction sites DNA sequence 

GCTAGCATGAACAGCGACAGCGAGTGCCCCCTGAGCCACGACGGCTACTGCCTGCACGACGGCGTGTGCATGTACATCGAGGCCCTG

GACAAGTACGCCTGCAACTGCGTGGTGGGCTACATCGGCGAGAGGTGCCAGTACAGGGACCTGAAGTGGTGGGAGCTGAGGGGTGGT

GGATCTGGTGGAGGATCTATGGTGTCCAAGGGCGAAGAGGACAACATGGCCATCATCAAAGAGTTCATGCGGTTCAAGGTGCACATG

GAAGGCAGCGTGAACGGCCACGAGTTCGAGATTGAGGGCGAGGGCGAAGGCAGACCCTATGAGGGAACCCAGACCGCTAAGCTGAAA

GTGACCAAGGGCGGACCCCTGCCCTTCGCCTGGGATATCCTGTCCCCTCAGTTTATGTACGGCAGCAAGGCCTACGTGAAGCACCCC

GCCGACATCCCCGACTACCTGAAGCTGTCTTTCCCAGAGGGCTTCAAGTGGGAGAGAGTGATGAACTTCGAGGACGGCGGCGTCGTG

ACCGTGACCCAGGATAGCTCTCTCCAGGACGGCGAGTTTATCTACAAAGTGAAGCTGCGGGGCACCAACTTCCCTTCCGACGGCCCT

GTGATGCAGAAAAAGACAATGGGATGGGAGGCCAGCTCCGAGCGGATGTACCCTGAAGATGGCGCTCTGAAGGGCGAGATCAAGCAG

CGGCTGAAGCTGAAGGATGGCGGCCACTACGACGCCGAAGTGAAAACCACCTACAAGGCCAAAAAGCCCGTGCAGCTGCCTGGCGCT

TACAATGTGAACATCAAGCTGGACATCACCTCCCACAACGAGGACTACACCATCGTGGAACAGTATGAGCGGGCCGAGGGCAGACAT

TCCACCGGCGGCATGGATGAGCTGTACAAGCACCACCACCACCACCACTGACTCGAG 

EGF-mCherry with His-tag protein sequence 

MASMNSDSECPLSHDGYCLHDGVCMYIEALDKYACNCVVGYIGERCQYRDLKWWELRGGGSGGGSMVSKGEEDNMAIIKEFMRFKVH

MEGSVNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILSPQFMYGSKAYVKHPADIPDYLKLSFPEGFKWERVMNFEDGGV

VTVTQDSSLQDGEFIYKVKLRGTNFPSDGPVMQKKTMGWEASSERMYPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKAKKPVQLPG

AYNVNIKLDITSHNEDYTIVEQYERAEGRHSTGGMDELYKHHHHHH 

Figure S2. Schematic overview of pET21a(+)-EGF-mCherry. (A) Plasmid map section of EGF-mCherry 

from pET21a. Primers used in PCR reactions are highlighted in light or dark green with their distinct name. 

(B) Plasmid map of pET21a(+)_EGF-mCherry. The fusion construct was integrated into the backbone via 

NheI and XhoI restriction enzymes. (C) DNA and protein sequences of EGF-mCherry, flanking XhoI and 

NheI sites are underlined in the DNA sequence.  

A B

N-Terminus

C-Terminus

A B
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Figure S3. SDS PAGE of EGF-mCherry and sEGFR after purification via IMAC. (A) Visualization of 

EGF-mCherry after IMAC and following anion exchange chromatography. (B) sEGFR was secreted from 

293F suspension culture after transient transfection. The soluble receptor was purified via IMAC.  

Figure S4. LC-ESI-MS analysis of 

EGF-mCherry and hEGF 

(GibcoTM). (A) Visualization of the 

whole spectrum range for EGF-

mCherry incubated either without 

or with TCEP. The theoretical mass 

for the primary sequence of 

EGFmCherry was calculated with 

34,555 Da. During cyclization of 

the chromophore tripeptide water is 

eliminated and in a second step the 

N-acylimine is formed leading to a 

deviation in mass of -22 Da. 

Oxidation of the free thiols (-6 Da) 

results  in the expected mass of 

34,527 Da, which was found (left 

panel). The mass peak of 16,951 Da 

can be attributed to the internal 

standard. Two masses of 14,860 Da 

(N-terminal part EGF-mCherry) 

and 19,684 Da (C-terminal part of 

EGF-mCherry) can be explained by the degradation products of EGF-mCherry. LC-MS is performed on a 

column heated to 65 °C, which led to the partial degradation of the N-acylimine. Under reducing conditions 

the N-acylimine seems more stable. A more detailed overview is given in Figure S5C. (B) Spectrum for 

hEGF (GibcoTM) without and with TCEP.  
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Figure S5. SDS PAGE of EGF-mCherry under various conditions. EGF-mCherry was incubated with 

reducing (+DTT) and without reducing agent (–DTT) either at room temperature or at 95 °C for 10 min 

before application to a 12 % SDS-PAGE. Images under white light are shown before (A) and after staining 

(B) with Coomassie Blue. Without staining the prestained marker and the functional mCherry chromophore 

are visible. (C) Schematic EGF-mCherry fusion. EGF has a size of 6.5 kDa and mCherry of 26.7 kDa. The 

overall mass of 34.5 kDa corresponds to the whole fusion construct with glycine-serine linker and His6-tag. 

The chromophore tripeptide highlights the position of the N-acylimine, which is preferentially hydrolyzed 

upon heat denaturation. Two fragments result from this hydrolysis corresponding to 14.9 kDa and 19.6 kDa. 
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Figure S6. Wound healing assay. Analysis of the wound area during the course of the experiment for the 

buffer control (A), EGF-mCherry (B) and hEGF (GibcoTM) (C). Linear regressions for all replicates are 

shown.  

Figure S7. EGF-mCherry competition assay. Different batches of EGF-mCherry production were used for 

competition assays with hEGF (GibcoTM). Differences in mean fluorescence were expected as these 

experiments were independently performed with different gains at the Tecan Spark. Batch 3 represent the 

batch from Figure 4B. The IC50 values were not explicitly determined, but the curves of the three batches 

are similar, indicating reproducibility of the experiment.   
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