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Background: Nrg4 expression has been linked to brown adipose tissue activity and
browning of white adipocytes in mice. Here, we aimed to investigate whether these
observations could be translated to humans by investigating NRG4 mRNA and markers
of brown/beige adipocytes in human visceral (VAT) and subcutaneous adipose tissue
(SAT). We also studied the possible association of NRG4 with insulin action.

Methods: SAT and VAT NRG4 and markers of brown/beige (UCP1, UCP3, and
TMEM26)-related gene expression were analyzed in two independent cohorts (n = 331
and n = 59). Insulin resistance/sensitivity was measured using HOMAIR and glucose
infusion rate during euglycemic hyperinsulinemic clamp.

Results: In both cohort 1 and cohort 2, NRG4 and thermogenic/beige-related gene
expression were significantly increased in VAT compared to SAT. Adipogenic-related
genes followed an opposite pattern. In cohort 1, VAT NRG4 gene expression was
positively correlated with BMI and expression of UCP1, UCP3, TMEM26, and negatively
with adipogenic (FASN, PPARG, and SLC2A4)- and inflammatory (IL6 and IL8)-related
genes. In SAT, NRG4 gene expression was negatively correlated with HOMAIR and
positively with UCP1 and TMEM26 gene expression. Multiple linear regression analysis
revealed that expression of TMEM26 gene was the best predictor of NRG4 gene
expression in both VAT and SAT. Specifically, NRG4 and TMEM26 gene expression was
significantly increased in VAT, but not in SAT stromal vascular fraction cells (p < 0.001).
In cohort 2, the significant association between NRG4 and TMEM26 gene expression in
both VAT and SAT was confirmed, and SAT NRG4 gene expression also was positively
correlated with insulin action and the expression of UCP1.

Conclusion: Current findings suggest NRG4 gene expression as a novel marker of
beige adipocytes in human adipose tissue.
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INTRODUCTION

The modulation of brown adipose tissue activity and browning
of white adipose tissue has been proposed as a promising
therapeutic strategy in the treatment of obesity-associated
metabolic disturbances (Wu et al., 2012; Bartelt and Heeren,
2014; Hepler et al., 2017; Rabhi et al., 2018; Zhang S. et al., 2018),
with the intention of improving insulin sensitivity (Hepler et al.,
2017; Rabhi et al., 2018) and hepatic steatosis (Huang et al., 2017),
among others.

Several studies pointed to neuregulins as an important
family of ligands that regulate diverse aspects of glucose
and lipid metabolism and energy balance. In skeletal muscle
cells, recombinant neuregulin administration stimulated glucose
uptake in muscle cells (Suárez et al., 2001) in an alternative
insulin-independent mechanism, activating PI3K, PDK1, and
PKCzeta pathways (Cantó et al., 2004), and promoted glucose and
palmitate oxidation, enhancing mitochondrial oxidative capacity
(Cantó et al., 2007). In liver, neuregulin 1 (Nrg1) and neuregulin
4 (Nrg4) reduced gluconeogenesis and lipogenesis and increased
fatty acid oxidation, improving systemic insulin sensitivity and
glucose tolerance (Wang et al., 2014; Ennequin et al., 2015; Ma
et al., 2016; Chen et al., 2017; Zhang P. et al., 2018). In fact, the
Nrg4/ErbB4 signaling pathway protects hepatocytes from stress-
induced cell death, preventing the steatosis to steatohepatitis
progression (Guo et al., 2017). In human breast cancer cells,
NRG1 binding to ERBB4 activates SREBP-2 and led to increased
expression of LDL uptake- and cholesterol biosynthesis-related
genes (Haskins et al., 2015). A recent study demonstrated
that ErbB4 deletion accelerated the development of obesity,
dyslipidemia, hepatic steatosis, hyperglycemia, hyperinsulinemia
and insulin resistance after 24 week on a medium-fat diet (Zeng
et al., 2018). Nrg4, a specific ligand for ErbB4 involved in
neurite growth, administration in 3T3-L1 adipocytes inhibited
lipogenesis and induced browning and glucose uptake, but
did not exert any effects on adipogenesis and lipolysis (Zeng
et al., 2018). In fact, Nrg4 has been proposed as a marker
of brown adipose tissue (BAT) activity in mice, being highly
expressed in cold-induced BAT activity and white adipose tissue
(WAT) browning (Rosell et al., 2014; Wang et al., 2014). NRG4
was expressed in fully differentiated brown adipocytes, but
not in preadipocytes, and increased during brown adipocyte
differentiation (Rosell et al., 2014; Wang et al., 2014). In vitro
experiments showed that brown adipocytes-derived NRG4 might
promote the growth of neurites in adipose tissue, increasing
sympathetic innervation, enhancing BAT activity and browning
of WAT (Rosell et al., 2014). However, Wang et al. (2014)
reported that despite the abundant expression of Nrg4 in BAT, it
seems dispensable for cold-induced hypothermia response, being
Ucp1 and Dio2 induced to similar extent by cold exposure in WT
and NRG4KO mice. These findings indicated that Nrg4 did not
directly participate in BAT thermogenesis.

Diet-induced obesity led to a significant decreased Nrg4
gene expression in WAT but not BAT (Wang et al., 2014; Ma
et al., 2016; Chen et al., 2017) in mice. A recent study also
showed that diet-induced non-alcoholic steatohepatitis (NASH)
resulted in a significant reduced Nrg4 in both BAT and WAT

(Guo et al., 2017). These studies suggested that adipose tissue-
derived Nrg4 could exert positive effects on obesity associated
metabolic disturbances (Wang et al., 2014; Ma et al., 2016;
Chen et al., 2017; Guo et al., 2017), improving glucose tolerance
and insulin sensitivity and attenuating adipose tissue and liver
inflammation (Wang et al., 2014; Ma et al., 2016; Chen et al., 2017;
Guo et al., 2017).

In humans, only one study investigates NRG4 mRNA levels
in adipose tissue in association with body fat mass, liver lipid
content and glucose tolerance (Wang et al., 2014), but no
previous studies investigated the relationship between NRG4
and markers of adipose tissue browning in human adipose
tissue. Since previous mice studies demonstrated that NRG4
was a marker of BAT activity and browning of WAT (Rosell
et al., 2014; Wang et al., 2014; Ma et al., 2016; Chen et al.,
2017), in the present study we aimed to investigate the potential
relationship between human adipose tissue NRG4 and markers
of brown/beige adipocytes. Furthermore, the impact of adipose
tissue NRG4 on human obesity and insulin sensitivity was also
evaluated.

MATERIALS AND METHODS

Human Adipose Tissue Samples
In cohort 1, a group of 331 [155 visceral (VAT) and
176 subcutaneous (SAT) adipose tissues] (Cohort 1) from
participants with normal body weight and different degrees
of obesity, with body mass index (BMI) within 20 and
68 kg/m2, were analyzed. In a second cohort of morbidly
obese (BMI > 35 kg/m2) subjects with different degrees of
insulin action [measured using hyperinsulinemic-euglycemic
clamp (Moreno-Navarrete et al., 2013)], VAT (n = 34) and
SAT (n = 25) samples (Cohort 2) were studied. Altogether
these subjects were recruited at the Endocrinology Service of
the Hospital of Girona “Dr Josep Trueta.” All subjects were
of Caucasian origin and reported that their body weight had
been stable for at least 3 months before the study. Subjects
were studied in the post-absorptive state. BMI was calculated
as weight (in kg) divided by height (in m) squared. They had
no systemic disease other than obesity and all were free of any
infections in the previous month before the study. Liver diseases
(specifically tumoral disease and HCV infection) and thyroid
dysfunction were specifically excluded by biochemical work-up.
Samples and data from patients included in this study were
partially provided by the FATBANK platform promoted by the
CIBEROBN and coordinated by the IDIBGI Biobank (Biobank
IDIBGI, B.0000872), integrated in the Spanish National Biobanks
Network and they were processed following standard operating
procedures with the appropriate approval of the Ethics, External
Scientific and FATBANK Internal Scientific Committees.

Ethics Statement
This study was carried out in accordance with the
recommendations of the ethical committee of the Hospital
of Girona “Dr Josep Trueta.” The protocol was approved by the
ethical committee of the Hospital of Girona “Dr Josep Trueta.”
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All subjects gave written informed consent in accordance with
the Declaration of Helsinki, after the purpose of the study was
explained to them.

AT samples were obtained from SAT and VAT depots
during elective surgical procedures (cholecystectomy, surgery of
abdominal hernia and gastric bypass surgery). Adipose tissue
samples were washed, fragmented and immediately flash-frozen
in liquid nitrogen before being stored at −80◦C.

The isolation of adipocyte and stromal vascular fraction cells
(SVF) was performed from 17 SAT and 20 VAT non-frozen
adipose tissue samples. These samples were washed three to
four times with phosphate-buffered saline (PBS) and suspended
in an equal volume of PBS supplemented with 1% penicillin-
streptomycin and 0.1% collagenase type I prewarmed to 37◦C.
The tissue was placed in a shaking water bath at 37◦C with
continuous agitation for 60 min and centrifuged for 5 min at
400 g at room temperature. The supernatant, containing mature
adipocytes, was recollected. The pellet was identified as the SVF.
Isolated mature adipocytes and SVF stored at −80◦C for gene
expression analysis.

Analytical Methods
Serum glucose concentrations were measured in duplicate
by the glucose oxidase method using a Beckman glucose
analyser II (Beckman Instruments, Brea, CA, United States).
Intraassay and interassay coefficients of variation were less
than 4% for all these tests. HDL cholesterol was quantified
by a homogeneous enzymatic colorimetric assay through
the cholesterol esterase/cholesterol oxidase/peroxidase reaction
(Cobas HDLC3). Total serum triglycerides were measured by an
enzymatic, colorimetric method with glycerol phosphate oxidase
and peroxidase (Cobas TRIGL). We used a Roche Hitachi Cobas
c 711 instrument to perform the determinations.

RNA Expression
RNA purification was performed using the RNeasy Lipid Tissue
Mini Kit (QIAGEN, Izasa SA, Barcelona, Spain) and the integrity
was checked by the Agilent Bioanalyzer (Agilent Technologies,
Palo Alto, CA, United States). Gene expression was assessed by
real time PCR using a LightCycler R© 480 Real-Time PCR System
(Roche Diagnostics SL, Barcelona, Spain), using TaqMan R© and
SYBR green technology suitable for relative genetic expression
quantification. The RT-PCR reaction was performed in a final
volume of 12 µl. The cycle program consisted of an initial
denaturing of 10 min at 95◦C then 40 cycles of 15 s denaturizing
phase at 95◦C and 1 min annealing and extension phase at 60◦C.
A threshold cycle (Ct value) was obtained for each amplification
curve and a 1Ct value was first calculated by subtracting the Ct
value for human cyclophilin A (PPIA) RNA from the Ct value
for each sample. Fold changes compared with the endogenous
control were then determined by calculating 2−1Ct, so that gene
expression results are expressed as expression ratio relative to
PPIA gene expression according to the manufacturer’s guidelines.
PPIA Ct values in both SAT and VAT were comparable
(23.48 ± 0.81 in SAT vs. 23.49 ± 1.28 in VAT, p = 0.9,
n = 152). Primer/probe sets used were: neuregulin 4 (NRG4,
Hs00163592_m1), fatty acid synthase (FASN, Hs00188012_m1),

peroxisome proliferator-activated receptor gamma (PPARG,
Hs00234592_m1), solute carrier family 2 (facilitated glucose
transporter), member 4 (SLC2A4 or GLUT4, Hs00168966_m1),
perilipin 1 (PLIN1, Hs00160173_m1), PPARG coactivator 1
alpha (PPARGC1A, Hs00173304_m1), uncoupling protein
1 (UCP1, Hs01084772_m1), uncoupling protein 3 (UCP3,
Hs01106052_m1), transmembrane protein 26 (TMEM26,
Hs00415619_m1), interleukin 6 (IL6, Hs00174131_m1), C-X-
C motif chemokine ligand 8 (CXCL8 or also named IL8,
Hs00174103_m1), and peptidylprolyl isomerase A (cyclophilin
A) (4333763, PPIA as endogenous control).

Statistical Analyses
Statistical analyses were performed using the SPSS 12.0 software.
Unless otherwise stated, descriptive results of continuous
variables are expressed as mean and SD for Gaussian variables
or median and interquartile range for non-Gaussian variables.
Parameters that did not fulfill normal distribution criteria were
log transformed to improve symmetry for subsequent analyses.
The relation between variables was analyzed by simple correlation
(using Spearman’s and Pearson’s tests) and multiple linear
regression analyses. ANOVA and unpaired Student’s t-tests were
used to compare clinical variables and gene expression relative to
obesity and type 2 diabetes (T2D).

RESULTS

Representative Ct values of analyzed genes were shown in
Table 1.

Cohort 1
Anthropometric and clinical data from cohort 1 were detailed in
Table 2. Similar to thermogenic/beige-related gene expression,
NRG4 was significantly increased in VAT compared to SAT,
whereas adipogenesis-related genes followed an opposite gene
expression pattern (Figure 1A). In cohort 1, VAT NRG4 gene
expression was significantly increased in participants with obesity
(Table 2), but no significant differences were found between
non-diabetic obese and obese participants with T2D (Table 2).

TABLE 1 | Representative Ct values of analyzed genes.

Mean ± SD

PPIA 23.22 ± 0.25

FASN 25.91 ± 1.83

PPARG 29.49 ± 0.85

SLC2A4 27.71 ± 0.53

PLIN1 22.78 ± 0.49

PPARGC1A 30.86 ± 0.71

UCP1 36.82 ± 0.91

UCP3 34.11 ± 0.65

TMEM26 34.16 ± 0.95

IL6 31.81 ± 2.28

IL8 30.89 ± 1.92

NRG4 35.57 ± 0.99
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TABLE 2 | Anthropometric and clinical characteristics according to obesity and T2D in cohort 1.

Non-obese Obese Obese + T2D p

N 54 88 34

Age (years) 47.4 ± 10.1 45.6 ± 10.5 47.2 ± 9.5 0.5

BMI (kg/m2) 25.4 ± 3.8 43.9 ± 7.4∗ 44.7 ± 4.1∗ <0.0001

Fasting glucose (mg/dl)a 86 (80–94) 93 (84–100.5) 126 (93.5–169.5)∗# <0.0001

HOMAIR (n = 56)a 1.18 (0.79–1.76) 2.06 (1.44–3.39) 5.59 (3.93–7.05)∗# 0.001

Total-cholesterol (mg/dl)a 199 (174–219) 193 (167.5–218.7) 182 (166–214) 0.5

HDL-cholesterol (mg/dl)a 64.5 (50.7–77.5) 55 (45.5–62.6) 50.1 (42–62)∗ 0.04

LDL-cholesterol (mg/dl)a 114.5 (88.7–135.5) 116.8 (97.5–134.7) 101.5 (89.5–137.7) 0.5

Fasting triglycerides (mg/dl)a 79.5 (57.7–101.2) 98 (75–132) 136 (89.5–164.5)∗# <0.0001

VAT NRG4 (RU) ×10−3a 1.26 (0.217–4.11) 3.59 (2.24–5.56)∗ 4.58 (2.54−6.52)∗ 0.001

SAT NRG4 (RU) ×10−3a 0.141 (0.061–0.239) 0.168 (0.095–0.381) 0.083 (0.057–0.155) 0.2

VAT, visceral adipose tissue; SAT, subcutaneous adipose tissue; T2D, type 2 diabetes; HOMAIR, homeostasis model assessment – insulin resistance index; RU, relative
gene expression units.
aMedian and interquartile range.
∗p < 0.05 compared to non-obese participants after performing Bonferroni post hoc test.
#p < 0.05 compared to obese participants after performing Bonferroni post hoc test.
Bold values mean that p-value reached statistical significance.

No significant differences were observed on SAT NRG4 gene
expression according to obesity or T2D. In VAT, NRG4 gene
expression was positively correlated with BMI, and negatively
correlated with adipogenic-related genes (FASN, PPARG, and
SLC2A4) (Table 3). Interestingly, NRG4 gene expression was
significantly positively associated with expression of brown/beige
adipocyte activity-related (UCP1, UCP3, and TMEM26) and
negatively with inflammatory-related (IL6 and IL8) genes
(Table 3 and Figure 2A). In SAT, NRG4 gene expression was
negatively correlated with HOMAIR and positively with UCP1
and TMEM26 gene expression (Table 3 and Figure 2B).

In multiple linear regression analysis, TMEM26 (β = 0.58,
p < 0.0001; model adjusted R2 = 0.37, p < 0.0001), UCP3
(β = 0.24, p = 0.03; model adjusted R2 = 0.13, p = 0.001), IL6
(β = −0.32, p = 0.01; model adjusted R2 = 0.16, p = 0.001), IL8
(β = −0.36, p = 0.008; model adjusted R2 = 0.17, p < 0.0001),
FASN (β = −0.42, p = 0.001, model adjusted R2 = 0.12, p = 0.001)
and PPARG (β = −0.38, p = 0.005; model adjusted R2 = 0.11,
p = 0.008) significantly contributed to the variance of NRG4 gene
expression in VAT after controlling for BMI. In SAT, TMEM26
(β = 0.77, p < 0.0001; model adjusted R2 = 0.61, p < 0.0001)
significantly contributed to the variance of NRG4 gene expression
after controlling for BMI. Multiple linear regression analysis
revealed that expression of TMEM26 gene was the best predictor
of NRG4 gene expression in both VAT and SAT.

In addition, correlations between UCP1, a specific marker
of brown adipocytes, and clinical and metabolic parameters
were also explored. No significant correlation between SAT or
VAT UCP1 gene expression and BMI, fasting glucose, HOMAIR,
total-, LDL- and HDL-cholesterol, and fasting triglycerides were
observed. VAT, but not SAT, UCP1 was positively correlated with
SLC2A4 (r = 0.43, p < 0.0001), PPARGC1A (r = 0.36, p = 0.001)
and UCP3 (r = 0.31, p = 0.005) gene expression.

In adipose tissue fractions, NRG4 and TMEM26, but not
UCP1, gene expression was significantly increased in visceral
SVFs compared to visceral adipocytes, subcutaneous SVFs and
subcutaneous adipocytes (Figure 2C).

Cohort 2
To examine the findings replication of cohort 1 excluding the
effects of obesity, an independent cohort (cohort 2) composed
of morbidly subjects with different degrees of insulin action has
been analyzed. Anthropometric and clinical data from cohort
2 were detailed in Table 4. Similar to cohort 1, NRG4 and
thermogenic/beige- related gene expression was increased in
VAT (Figure 1B). No significant differences on SAT or VAT
NRG4 gene expression according to glucose tolerance or T2D
were found. VAT NRG4 gene expression were associated with
expression of TMEM26 gene (Table 5), and SAT NRG4 with
insulin sensitivity (M) and expression of SLC2A4, UCP1 and
TMEM26 genes (Table 5).

DISCUSSION

To the best of our knowledge, this is the first study showing
a significant relationship between NRG4 and TMEM26 gene
expression in human adipose tissue. Interestingly, this association
was found in both VAT and SAT, and validated in a second
independent cohort. TMEM26 has been described as a specific
marker of brite/beige adipocytes (Wu et al., 2012; Torriani et al.,
2016; Finlin et al., 2017). We also found positive associations
among NRG4 and markers of thermogenic activity (characteristic
of both brown and beige adipocytes) such as expression
of UCP1 and UCP3 genes. In addition, VAT NRG4 gene
expression was negatively correlated with expression of white
lipogenic/adipogenic (FASN and PPARG)- and inflammatory
(IL6 and IL8)-related genes, even after controlling for BMI.
Since beige adipocytes have less lipogenic capacity compared to
white adipocytes (Aziz et al., 2017; Zuriaga et al., 2017), and
browning/beiging of adipose tissue protected against visceral
adipose tissue inflammation (Wu et al., 2017; Gonzalez-Hurtado
et al., 2018), the negative association between NRG4 and white
adipogenic/inflammatory genes reinforced NRG4 as a marker of
beige adipocytes. In fact, these correlations were only observed
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FIGURE 1 | (A,B) Comparison of NRG4, UCP1, TMEM26, PPARGC1A, FASN, PPARG, and PLIN1 gene expression in paired VAT and SAT in cohort 1 (n = 132) (A)
and cohort 2 (n = 20) (B). ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001 compared to gene expression in VAT.

TABLE 3 | Correlation between NRG4 gene expression and anthropometric and clinical characteristics and selected gene expression in SAT (n = 176) and VAT (n = 155)
from cohort 1.

VAT SAT

r P r p

Age (years) −0.02 0.7 0.11 0.2

BMI (kg/m2) 0.28 <0.0001 0.06 0.5

Fasting glucose (mg/dl) 0.17 0.03 0.01 0.8

HOMAIR (n = 56) 0.17 0.3 −0.32 0.02

Total cholesterol (mg/dl) −0.10 0.2 0.11 0.2

HDL cholesterol (mg/dl) −0.01 0.9 0.15 0.1

LDL cholesterol (mg/dl) −0.09 0.3 0.08 0.4

Fasting triglycerides (mg/dl) 0.05 0.5 −0.09 0.3

FASN (RU) −0.37 <0.0001 −0.05 0.6

PPARG (RU) −0.39 <0.0001 0.05 0.6

SLC2A4 (RU) −0.33 0.002 0.12 0.2

PLIN1 (RU) −0.15 0.1 −0.10 0.4

PPARGC1A (RU) 0.06 0.5 0.18 0.05

UCP1 (RU) 0.30 0.005 0.30 0.001

UCP3 (RU) 0.29 0.005 0.13 0.1

TMEM26 (RU) 0.77 <0.0001 0.56 <0.0001

IL6 (RU) −0.45 <0.0001 0.06 0.5

IL8 (RU) −0.36 0.001 −0.05 0.6

Bold values mean that p-value reached statistical significance.
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FIGURE 2 | (A,B) Bivariate correlation between NRG4 and TMEM26 gene expression in VAT (A) and SAT (B). (C) NRG4, TMEM26, and UCP1 gene expression in
adipose tissue fractions (SVF and adipocytes) in both SAT (n = 17) and VAT (n = 20). ∗∗p < 0.01 and ∗∗∗p < 0.001 compared to gene expression in VAT SVF cells.

TABLE 4 | Anthropometric and clinical characteristics according to glucose tolerance in cohort 2.

NGT IGT T2D p

11 10 13

Age (years) 41.6 ± 4.1 50 ± 8.5∗ 51.5 ± 7.5∗ 0.004

BMI (kg/m2) 46.3 ± 8.7 47.8 ± 3.2 44.7 ± 8.1 0.6

Fasting glucose (mg/dl)a 90 (83–98) 102.5 (96–107) 121 (100.5–132)∗ 0.003

M [mg/(kg.min)]a 4.35 (2.21–6.28) 3.41 (1.92–5.21) 2.79 (1.68–4.31) 0.6

Total-cholesterol (mg/dl)a 182 (163–221) 207 (184.5–252) 179 (162–209) 0.07

HDL-cholesterol (mg/dl)a 49 (40–58) 45 (34.5–55.5) 46 (40.5–49.5) 0.5

LDL-cholesterol (mg/dl)a 105 (95–129) 147 (110.7–176.2) 108 (84.5–133) 0.03

Fasting triglycerides (mg/dl)a 99 (68–134) 141.5 (66.7–190.7) 139 (87.5–183) 0.4

VAT NRG4 (RU) ×10−3a 4.04 (1.11–6.08) 2.97 (0.141–5.92) 3.37 (2.14–6.17) 0.4

SAT NRG4 (RU) ×10−3a 0.172 (0.072–0.287) 0.099 (0.081–0.129) 0.131 (0.039–0.182) 0.4

VAT, visceral adipose tissue; SAT, subcutaneous adipose tissue; NGT, normal glucose tolerance; IGT, impaired glucose tolerance; T2D, type 2 diabetes; M, insulin
sensitivity obtained from hyperinsulinemic-euglycemic clamp; RU, relative gene expression units.
aMedian and interquartile range.
∗p < 0.05 compared to NGT participants after performing Bonferroni post hoc test.
Bold values mean that p-value reached statistical significance.

in the samples with the highest correlation between NRG4 and
TMEM26 (r = 0.77, p < 0.0001). However, the correlations
between VAT NRG4 and UCP1, UCP3, lipogenic/adipogenic -

and inflammatory-related gene expression were not replicated in
morbidly obese participants (cohort 2). Further studies in human
adipose tissue should be required to validate these correlations.
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TABLE 5 | Correlation between NRG4 gene expression and anthropometric and clinical characteristics and selected gene expression in SAT (n = 25) and VAT (n = 34)
from cohort 2.

VAT SAT

r p r p

Age (years) −0.07 0.7 −0.17 0.4

BMI (kg/m2) 0.06 0.7 −0.08 0.7

Fasting glucose (mg/dl) 0.13 0.4 −0.21 0.3

M [mg/(kg.min)] −0.03 0.9 0.43 0.04

Total cholesterol (mg/dl) −0.23 0.2 −0.22 0.3

HDL cholesterol (mg/dl) 0.07 0.7 0.11 0.5

LDL cholesterol (mg/dl) −0.07 0.7 −0.27 0.2

Fasting triglycerides (mg/dl) −0.14 0.4 −0.14 0.5

FASN (RU) 0.05 0.8 0.13 0.6

PPARG (RU) −0.09 0.6 0.17 0.4

SLC2A4 (RU) −0.09 0.6 0.49 0.01

PLIN1 (RU) 0.04 0.8 −0.15 0.5

PPARGC1A (RU) 0.37 0.1 0.04 0.8

UCP1 (RU) 0.29 0.1 0.43 0.04

UCP3 (RU) 0.13 0.6 0.03 0.8

TMEM26 (RU) 0.56 0.002 0.51 0.01

IL6 (RU) 0.03 0.9 −0.10 0.6

Bold values mean that p-value reached statistical significance.

Furthermore, in both cohort 1 and 2, similar to beige
adipocytes-related genes (TMEM26), NRG4 gene expression
was significantly more expressed in VAT, whereas, as expected
adipogenic-related genes were more expressed in SAT (Sauma
et al., 2007; Moreno-Navarrete et al., 2016; Zuriaga et al., 2017).
Contrary to mice, increased pattern of browning gene expression
in human VAT compared to SAT has been reported (Zuriaga
et al., 2017). Interestingly, NRG4 and TMEM26 gene expression
was enriched in SVFs from VAT compared to SVFs from SAT
or adipocytes from VAT or SAT. This finding points to a
specific population of beige precursor cells in VAT, characterized
by increased NRG4 and TMEM26 gene expression, and could
explain the increased expression of beige/browning-related genes
observed in this fat depot (current data and Zuriaga et al.,
2017). Reinforcing this idea, previous studies demonstrated
that TMEM26 gene expression was also increased in SVF and
decreased in the late stages of beige adipocyte differentiation, and
indicated its abundance in the precursors of beige adipocytes (Lee
et al., 2015; Garcia et al., 2016).

Altogether these findings indicated NRG4 as an additional
marker of beige adipocytes in human adipose tissue, and
suggested a possible role of this factor in the development of
beige adipocytes in human fat depots. Supporting this hypothesis,
Rosell et al. (2014) suggested that NRG4 might promote the
growth of neurites in adipose tissue, increasing sympathetic
innervation and in consequence, enhancing browning of WAT.
Regarding the possible role of NRG4 on thermogenic activity,
Wang et al. (2014) demonstrated in Nrg4 deficient mice that
Nrg4 did not directly participate in BAT thermogenesis, but Ma
et al. (2016) showed that Nrg4 overexpression enhanced BAT
activity with an increase of ∼1◦C body temperature, and BAT
and iWAT thermogenic gene expression. These studies supported
a possible role of NRG4 in beiging of human adipose tissue, but

contradictory data in relation to its thermogenic activity. Further
functional studies in human adipose tissue should be required to
confirm the possible role of NRG4 in this process.

Another interesting finding of current study was the
positive association between SAT NRG4 gene expression and
insulin sensitivity. In a previous study, SAT and VAT NRG4
was significantly decreased in patients with impaired glucose
tolerance (IGT) and T2D (Wang et al., 2014), but this study
did not evaluate insulin sensitivity. Even tough, no significant
differences were found in relation to IGT or T2D, probably
due to the relatively low number of adipose tissue samples
compared to the previous study (n = 642) (Wang et al., 2014).
The current study showed a positive association between SAT
NRG4 and insulin sensitivity in both cohort 1 and cohort
2, evaluated by two different methods (HOMAIR in cohort
1 and hyperinsulinemic-euglycemic clamp in cohort 2). In
agreement with these findings, mice studies demonstrated that
liver and adipose tissue Nrg4 overexpression improved insulin
sensitivity and glucose tolerance and prevented HFD-induced
hyperinsulinemia (Ma et al., 2016). In fact, two recent studies
(López-Soldado et al., 2016; Zhang P. et al., 2018) demonstrated
that recombinant neuregulin administration improved glucose
tolerance in both control and diabetic rats by enhancing hepatic
glucose utilization (López-Soldado et al., 2016) and insulin
sensitivity in high fat-fed mice (Zhang P. et al., 2018).

On the other hand, contrary to previous study that
demonstrated that SAT NRG4 was negatively correlated with
body fat mass (Wang et al., 2014), in the current study no
significant association was found between SAT NRG4 and BMI.
In cohort 1, VAT NRG4 gene expression was increased in obese
compared to non-obese participants, and positively correlated
with BMI, but in cohort 2, VAT NRG4 gene expression was not
correlated with BMI. Of note, similar NRG4 gene expression
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values were observed comparing obese participants from
cohort 1 vs. those from cohort 2. Strikingly, the positive
effects of diet-induced weight loss reducing body fat mass were
not associated with expression of brown/beige-related genes
(Barquissau et al., 2018). However, additional studies will be
necessary to clarify the relationship between human adipose
tissue NRG4 and obesity.

A significant limitation of current study was the absence of
VAT or SAT NRG4 protein analysis by scarce availability of
adipose tissue lysates for protein in the same tissue samples used
for RNA analysis. Similar to this, NRG4 protein analysis was
not evaluated in recent relevant studies that demonstrated the
importance of NRG4 in adipose tissue (Wang et al., 2014; Chen
et al., 2017; Guo et al., 2017; Nugroho et al., 2018; Pellegrinelli
et al., 2018). Thus, additional studies should be performed to
investigate if NRG4 protein follows the same pattern of mRNA
expression in human adipose tissue. Interestingly and consistent
with current findings, increased NRG4 mRNA and protein
release in human beige adipogenesis of mural-like mesenchymal
stem cell was more recently reported (Su et al., 2018), indicating
that NRG4 gene expression were correlated with NRG4 protein
levels and supporting NRG4 participation in beige adipocyte
differentiation. However, it is important to note that expression
of NRG4 and brown/beige adipose tissue markers (UCP1, UCP3,
and TMEM26) were extremely low, suggesting that browning of
white adipose tissue in humans may have less relevance than in
mice.

In conclusion, all these observations suggest NRG4 gene
expression as a novel marker of beige adipocytes in human
adipose tissue.
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