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Abstract 
A simple model for online forecasting of ammonium (NH4

+) concentrations in sewer systems is 
proposed. The forecast model utilizes a simple representation of daily NH4

+ profiles and the 
dilution approach combined with information from online NH4

+ and flow sensors. The method 
utilizes an ensemble approach based on past observations to create model prediction bounds. The 
forecast model was tested against observations collected at the inlet of two WWTPs over an 11-
month period. NH4

+ data were collected with ion-selective sensors. The model performance 
evaluation focused on applications in relation to online control strategies. The results of the 
monitoring campaigns highlighted a high variability in daily NH4

+ profiles, stressing the 
importance of an uncertainty-based modelling approach. Model performance was strongly affected 
by maintenance of the NH4

+ sensors, which resulted in important variations of the sensor signal. 
The forecast model succeeded in providing outputs that potentially can be used for integrated 
control of wastewater systems. This study provides insights on full scale application of online 
water quality forecasting models in sewer systems. It also highlights several research gaps which - 
if further investigated - can lead to better forecasts and more effective real-time operations of 
sewer and WWTP systems. 
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INTRODUCTION 
Models for forecasting water quality in different parts of the integrated urban drainage-wastewater 
system (sewers, wastewater treatment plants - WWTP) can provide useful information for 
improving the operation of integrated urban drainage-wastewater systems (Yuan et al., 2019). These 
models can be used to quantify discharges from Combined Sewer Overflows (CSO), or in an online 
context as part of real-time control strategies aiming at optimizing WWTP operations (the so-called 
“software sensors” – e.g. Stentoft et al. (2017)). Further potential applications include Model 
Predictive Control approaches, allowing water quality based control of sewer systems (e.g. Vezzaro 
et al., 2013) or WWTPs (Stentoft et al., 2019) over different forecast horizons. 
 
As pointed out in Langeveld et al. (2017), the increased availability of long-term times series of 
water quality parameters with high resolution in time (e.g. Schilperoort et al., 2012; Métadier and 
Bertrand-Krajewski, 2012; Alferes et al., 2013) allows the development of new models utilizing 
such information. There is a wide experience with the application of data-driven software sensors in 
WWTPs (Haimi et al., 2013; Newhart et al., 2019), and several studies on simulating WWTP 
influent quality (Martin and Vanrolleghem, 2014). Many of these studies employ 
empirical/phenomenological approaches (Langeveld et al., 2017; Gernaey et al., 2011), while 
Talebizadeh et al. (2016) proposed a stochastic influent generator to provide a more realistic 
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description of the natural variability of WWTP influent. These examples are mostly based on 
offline simulation studies, using pre-validated data (e.g. Flores-Alsina et al., 2014), a condition that 
is not available under actual real-time conditions. The majority of research on forecasting of water 
quality indicators at WWTPs focuses on quantities within the process tanks or at the plant outlet. 
Few examples deal with predictions of the WWTP influent (e.g. Kusiak et al., 2013; Yu et al., 
2018), despite its potential use in feed-forward control. Furthermore, model predictive power is 
often evaluated in terms of statistical assumptions regarding residuals, while online application 
requires more robust, ad-hoc metrics, focusing on the intended use of the model outputs. 
 
This paper presents a simple phenomenological model specifically developed for online prediction 
of ammonium (NH4

+) loads and concentrations along with their uncertainty. The model relies on a 
flow forecast and continuous online NH4

+ measurements from an ISE (ion-selective electrode) 
sensor. In the evaluation of forecast skill in this study, the forecasts of ammonia loads are based on 
ex-post flow forecasts, i.e. measured flow values that are used “as if” they are forecasted values. In 
an operational setup, the measured flow should obviously be exchanged for real-time forecasts of 
flow. However, the ex-post setup in this paper ensures that the performance evaluation of the 
ammonium forecasts is independent of errors in the flow domain. The forecasts are tested at the 
inlet of two Danish WWTPs and the performance of the forecast model is evaluated over an 11-
month period. The evaluation also aims at identifying further research gaps and improvements with 
specific focus on application in online control strategies. 
 
 
MATERIAL AND METHODS 
 
Water quality monitoring 
Flow and ammonia measurements have been collected with a 2-minute frequency at the Viby 
WWTP (Aarhus, Denmark – since June 2018) and the Damhusaaen WWTP (Copenhagen, Denmark 
– since April 2018). The Viby catchment consists of 678 ha combined and 748 ha separate systems 
(Ahm et al., 2013). The majority of the system is gravity driven, while the flow from two minor 
subcatchments is pumped to the plant. The Damhusaaen WWTP receives wastewater from a 67 km2 
combined system, which is mainly gravity driven (flow from an adjacent catchment can be pumped 
in case of extreme events).  
 
NH4

+ is measured with ion-selective sensors. The sensors in Viby and in Damhusaaen are placed at 
different locations of the plants for logistical reasons (Figure 1): after the primary clarifier and a 
pumping station in Damhusaaen and after the grit removal in Viby (Table 1). Their sensor 
maintenance follows different schedules (Table 1). Data from the plants’ SCADA systems are 
transferred to the AQUAVISTATM  cloud-based system (based on the STAR® system described in 
Nielsen and Onnerth, 1995), where they are automatically quality controlled based on simple rule 
methods (e.g. running variance, physical ranges, flat lines). 

 
Figure 1. Schematic placement of the sensors in the two plant layouts. 
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Table 1. Relevant information for the two WWTPs included in the study. 
 Damhusaaen Viby WWTP 

Sensor placement (Figure 1) After primary clarifier and 
pumping station 

At plant inlet (after grit 
removal) 

Sensor cleaning and 
performance check Weekly Weekly  

Sensor calibration If sensor deviation from lab 
measurements >10% 

If sensor deviation from lab 
measurements >5% 

Start of monitoring campaign April 2018 June 2018 
Threshold used to define wet 

weather events (at WWTP inlet) 5000 m3/hr 400 m3/hr 

Forecast model parameters Six (α0,α1,α2, β1,β,2,V) Eight (α0,α1,α2,β1,β,2,γ1,γ2,γ3) 
 
Forecast model 
Ammonium Forecasts. The proposed model builds upon the widely applied concept of daily 
ammonium loads, i.e. the concept that NH4

+ loads (i) only originates from domestic sources that can 
vary between weekdays and weekends, (ii) follows a typical diurnal profile over 24 hours, and (iii) 
is unaffected by wet weather events (e.g. Langeveld et al., 2017; Martin and Vanrolleghem, 2014). 
Forecasts of NH4

+ loads during the i-th day are generated based on observations that have been 
collected in the most recent dry days (Figure 2a). Specifically, daily load profiles from n previous 
days are used to forecast NH4

+ loads (i.e. the model uses a moving window of length n on previous 
observations). By combining the NH4

+ loads with flow data it is then possible to estimate NH4
+ 

concentrations by using a simple dilution approach. The operations of the forecast model for day i 
are schematized in Figure 2 and further explained in the following paragraphs: 
Step 1: Every day, after midnight, flow measurements from day i-1 are analysed for identifying 
potential wet weather events. 
Step 2: If the previous day was a dry day, the parameters of the NH4

+ daily profile for day i-1 are 
estimated and stored in a database (Figure 2b). 
Step 3: Optimal parameter sets from the previous n dry days of corresponding day type 
(weekday/weekend) are retrieved.  
Step 4: Ammonium forecasts for day i are generated by running the model every 2-minutes. 
Forecast uncertainty is created as an ensemble with n members consisting of ammonia load profiles 
from the past n corresponding days (weekday/weeknd). 
 
Model structure. The online model runs in two-minute time steps and uses a Fourier series to 
represent the diurnal variation of the NH4

+ load over a day (as in Bechmann et al., 1999):  
 
 𝐹𝐹𝑁𝑁𝑁𝑁4(𝑡𝑡) = 𝛼𝛼0 + ∑ �𝛼𝛼𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠(2𝜋𝜋𝜋𝜋𝑡𝑡) + 𝛽𝛽𝑘𝑘𝑐𝑐𝑐𝑐𝑠𝑠(2𝜋𝜋𝜋𝜋𝑡𝑡)�2

𝑘𝑘=1  (1)  
 
where α0,α1,α2 and β1,β,2 are the Fourier coefficients, and the time t is expressed as fraction of a day. 
Ammonium concentrations SNH4 are then calculated by dividing the estimated loads by the flow Q(t) 
[m3/hr], as in Langeveld et al. (2017):  
 
 𝑆𝑆𝑁𝑁𝑁𝑁4(𝑡𝑡) = 𝐹𝐹𝑁𝑁𝑁𝑁4(𝑡𝑡) 𝑄𝑄(𝑡𝑡)⁄  (2)  
 
As mentioned earlier, the flow values Q(t) that are used as input to the forecasting scheme are the 
values that were observed later in the day, and thus not real forecasts of the flow (also referred to as 
ex-post forecasts).  
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Figure 2. Conceptual schematization of the proposed forecast setup: (a) moving window of 
historical data (in this example with n = 8 days) and classification into weekdays, weekends, and 
wet days; (b) procedure for parameter estimation (run every day after midnight); (c) example 
showing how the forecast model is applied for a period from day i to day i+1. 
 
Given the specific setup at the Damhusaaen site, the volume of the primary clarifiers (about 12,000 
m3) is included in the model as it leads to a time delay and to an attenuation of ammonium profiles 
between the inlet and the sensor location. To account for these issues, the estimated NH4

+ loads at 
the inlet (from eq. 1) are routed through three cascading Continuously Stirred Tank Reactors.  
 
The NH4

+ concentration is then calculated by looking at the outlet of the last tank (eq. 3d). The mass 
balance of the three tanks is: 
 
 𝑑𝑑𝑀𝑀1,𝑆𝑆𝑆𝑆𝑆𝑆4

𝑑𝑑𝑑𝑑
= 𝐹𝐹𝑁𝑁𝑁𝑁4 −

𝑀𝑀2,𝑆𝑆𝑆𝑆𝑆𝑆4
𝑉𝑉

𝑄𝑄 (3a)  

 𝑑𝑑𝑀𝑀2,𝑆𝑆𝑆𝑆𝑆𝑆4
𝑑𝑑𝑑𝑑

= �𝑀𝑀1,𝑆𝑆𝑁𝑁𝑁𝑁4 − 𝑀𝑀2,𝑆𝑆𝑁𝑁𝑁𝑁4�
𝑄𝑄
𝑉𝑉

 (3b)  

 𝑑𝑑𝑀𝑀3,𝑆𝑆𝑆𝑆𝑆𝑆4
𝑑𝑑𝑑𝑑

= �𝑀𝑀2,𝑆𝑆𝑁𝑁𝑁𝑁4 − 𝑀𝑀3,𝑆𝑆𝑁𝑁𝑁𝑁4�
𝑄𝑄
𝑉𝑉

 (3c)  
 SNH4′(t) = M3,SNH4(t) V⁄  (3d) 
 
where V [m3] is the volume of each tank (kept as a calibration parameter), and Mi [kg] are the mass 
of NH4

+ as model states.  
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Furthermore, a preliminary analysis of the NH4
+ loads measured at the Viby WWTP showed how 

the morning peak was characterized by a quite steep increase between 08:00 and 10:00. Since the 
Fourier series used by the model (eq. 1) encountered difficulties in representing such behaviour, an 
additional ammonium “pulse” was added. This is represented by an asymmetrical term:  
 

 𝐹𝐹𝑁𝑁𝑁𝑁4′ (t) = 𝐹𝐹𝑁𝑁𝑁𝑁4(𝑡𝑡) + 𝛾𝛾1𝑒𝑒
�−𝛾𝛾2�𝑙𝑙𝑙𝑙𝑙𝑙10(𝑑𝑑)−𝑙𝑙𝑙𝑙𝑙𝑙10(𝛾𝛾3)��

2

 (4) 
 
where γ1 provides the magnitude of the additional peak (equivalent to a mass added to mimic the 
steep increase), γ2 defines the duration of the peak, and γ3 the timing of the extra peak, constrained 
to be between 07:00 and 11:00. Compared to a tabular description of the daily profile (as in 
Langeveld et al., 2017), this formulation was chosen to obtain a profile closer to the observations 
without significantly increasing the number of parameters. 
 
Estimation of model parameters. The model parameters are estimated by using an optimization 
routine based on the Simplex method, minimizing the Root Mean Square Error (RMSE) between 
simulated and observed loads. The optimization is run once per day (just after midnight), using the 
data collected in the previous 24 hours. An optimal parameter set for the load model (θopt,i ),

 is 
obtained for each calendar day. It is assumed that rain-induced phenomena (e.g. first flush, WWTP 
inlet bypass) would affect the estimation of the NH4

+ profiles. Therefore, the optimization 
procedure is not run for wet days. These are defined as the days when the measured flow exceeded 
the threshold for wet weather (Table 1) that is used to activate the wet weather controls at the plant. 
Small rain events, generating flows below the threshold, would therefore not be considered, as they 
would not lead to a change in the plant operations. In daily operation, the threshold value depends 
on the plant characteristics and status (based e.g. actual capacity of the biological treatment, settling 
conditions in the secondary clarifier). Once the flow falls back below the threshold, the following 
12 hours (24 hours if the event volume is above 20,000 m3) are still characterized as wet periods . 
This is done because NH4

+ concentrations are still affected by slow catchment runoff and 
concentrations are still below typical dry weather values. Days characterized by small rain events, 
generating flows below the threshold, are classified as dry periods, and thereby included in the 
calibration.  
 
Evaluation of model performance 
Experimental setup. The proposed forecast model was tested on the data collected from June 2018 
to May 2019 (i.e. the performance evaluation covered 318 days for both locations). Online 
operations were mimicked by following the procedure described earlier (Figure 2c). 
 
Performance evaluation. The model performance was calculated on a daily basis by comparing 
measured NH4

+ concentrations against the output of the model for the specific i-th day. Two 
performance indicators were used: the Mean Absolute Relative Error (MARE) for evaluating the 
performance of the ensemble median forecast, and the coverage of observations to evaluate the skill 
of the ensemble spread:  
 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑘𝑘
∑ �𝑆𝑆𝑆𝑆𝑆𝑆4,𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠−𝑆𝑆𝑆𝑆𝑆𝑆4,𝑜𝑜𝑜𝑜𝑠𝑠,𝑠𝑠

𝑆𝑆𝑆𝑆𝑆𝑆4,𝑜𝑜𝑜𝑜𝑠𝑠,𝑠𝑠
�𝑘𝑘

𝑖𝑖=1  (5)  

 

 Coverage=1
𝑘𝑘
∑ 𝐼𝐼𝑖𝑖𝑘𝑘
𝑖𝑖=1  with �

𝐼𝐼𝑖𝑖 = 0 𝑓𝑓𝑐𝑐𝑓𝑓 𝑆𝑆𝑁𝑁𝑁𝑁4,𝑠𝑠𝑖𝑖𝑠𝑠05,𝑖𝑖 > 𝑆𝑆𝑁𝑁𝑁𝑁4,𝑙𝑙𝑜𝑜𝑠𝑠,𝑖𝑖 𝑐𝑐𝑓𝑓 𝑆𝑆𝑁𝑁𝑁𝑁4,𝑠𝑠𝑖𝑖𝑠𝑠95,𝑖𝑖 < 𝑆𝑆𝑁𝑁𝑁𝑁4,𝑙𝑙𝑜𝑜𝑠𝑠,𝑖𝑖
𝐼𝐼𝑖𝑖 = 1 𝑓𝑓𝑐𝑐𝑓𝑓  𝑆𝑆𝑁𝑁𝑁𝑁4,𝑠𝑠𝑖𝑖𝑠𝑠05,𝑖𝑖 < 𝑆𝑆𝑁𝑁𝑁𝑁4,𝑙𝑙𝑜𝑜𝑠𝑠,𝑖𝑖 < 𝑆𝑆𝑁𝑁𝑁𝑁4,𝑠𝑠𝑖𝑖𝑠𝑠95,𝑖𝑖

 (6)  
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Where k is the number of simulated values; SNH4,obs,i is the observations; SNH4,sim,i is the median of 
the simulated values; SNH4,sim05,i and SNH4,sim95,i are the 5% and the 95% percentile of the 
simulated values, respectively.  
 
Among the potential applications of the online forecast model, the following options were 
hypothesized in order to investigate the performance during wet-weather events: 
• Estimation of incoming ammonium loads, including potential first-flush peaks from the 

upstream catchment (as described by e.g. Krebs et al., 1999). Such forecasts can potentially be 
used to optimize the removal efficiency of the WWTP by using a Model Predictive Control (e.g. 
Stentoft et al., 2019). 

• Estimation of ammonium dilution during a rain event. This information might open the 
possibility for water-quality based controls involving prioritizing bypass or diverting low 
pollution flows to natural waters, as described by e.g. Hoppe et al. (2011). 

 
In the first case, the relative error was calculated on the ammonium load for the first 30 minutes of a 
rain event. In the second case, a contingency table (Bennett et al., 2013) was used to evaluate the 
ability of the forecast model to estimate dilution in the plant influent. Dilution is here defined a 10% 
drop of concentration below dry weather values (e.g. if dry weather concentration is 40 mg/l, a 
dilution event starts when the concentration drops below 36 mg/l). Since ammonium concentrations 
vary throughout the day and sensor measurements are affected by variability and outliers, the dry 
weather concentration threshold was defined as the 5th percentile concentration measured during the 
2 hours before the start of the event. 
 
 
RESULTS AND DISCUSSION 
 
Measurement campaigns 
The available datasets from the two plants are shown in Figure 4a-d. A total of 35 and 57 wet 
weather events were observed in Damhusaaen and Viby, respectively. The data at the Damhusaaen 
WWTP show the influence of the sensor’s location within the plant, as the flow (light blue in Figure 
4a) is affected by a pumping station, showing spikes often exceeding the wet-weather threshold. 
Therefore, flow measurements were smoothed by using a simple moving average with 60 steps 
(dark blue). The daily variations in NH4

+ concentrations exhibit clear effects of attenuation by the 
volume of the primary clarifier (Figure 4c). Conversely, the data from the Viby WWTP show the 
characteristic daily patterns associated with dry-weather WWTP inlets. 
 
Effects of sensor calibration in Damhusaaen is seen in the sudden changes in NH4

+ concentrations, 
which in the most extreme cases can jump more than 20 mg/l before and after the calibration. This 
is consistent with the observations in Cecconi et al. (2019), who highlighted the (potentially 
negative) influence of the sensor calibration on the sensor readings. The effect of the different 
calibrations can be seen in the calculated ammonium load profiles (Figure 4e,g), which shows 
variations in the average daily level. Nevertheless, the daily load profiles measured at both 
Damhusaaen (Figure 4e,g) and Viby (Figure 4f,h) show a great inter-day variability. An approach 
based on e.g. only tabular values or fixed ammonium profiles, neglecting the natural variability of 
the simulated process, would be affected by important uncertainty. This stresses the importance of 
the proposed ensemble approach to generate model prediction bounds and allow for a more 
confident application of model forecast for online applications. 
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Figure 3. Overview of the measured flow (a,b) and ammonium (c,d) measurement at Damhusaen 
(left column) and Viby (right column). Blue line: raw flow data; dark blue line: filtered flow data. 
Wet weather events are shown with light blue background. Measured ammonium loads for 
weekdays (e,f) and weekends (g,h). Fluxes measured during different calibration periods in 
Damhusaaen (e,g) are shown by using different colour codes. 
 
Long term performance  
The performance of the forecast model over the whole analysed period is shown in Figure 4 where 
each red dot represents the average skill over a single day. Figure 4 shows how the sensor 
maintenance resulted in a deterioration of the forecast model performance after the signal 
correction. In fact, after calibration MARE tends to increase (Figure 4a), while the coverage drops 
(Figure 4b). This is explained by the fact the model uses a moving window of values preceding the 
forecast, which may include days where sensor calibration takes place. This result in predictions 
which are consistently over- or underestimating the NH4

+ concentrations compared to the signal 
after the sensor is calibrated. Subsequently, prediction improves in the days following the 
calibration, since the window moves further, including an increasing number of days with the new 
sensor calibration and thereby discarding values from the “old” calibration.  
 
Results from Viby (Figure 4c,d) show a deterioration of the forecast model performance following 
wet weather events. In the periods when the forecast model provided the best performance, MARE 
ranged 20-25% for both the plants, while the coverage was better in Damhusaaen (often achieving 
100%). This can be explained by the difficulties in the proposed model structure to fully describe 
the specific daily ammonium pattern in Viby. The performance of the forecast model in terms of 
coverage could be improved by either modifying the model structure (i.e. identifying a better 
equation than eq. 4) or by increasing the length of the moving window. 
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Figure 4. Performance of the forecast model during the simulation period for Damhusåen (a,b) and 
Viby (c,d). Each red dot represents the average performance for a given day, a blue background 
indicates wet periods, brown lines indicate sensor calibrations, and green lines indicate sensor 
cleaning (no calibration). Information on maintenance in Viby before November 2018 is missing. 
 
Performance during wet weather events 
Figure 5 provides an overview of the forecast model performance regarding its potential 
applications for online control applications (e.g. controlling aeration in case of first flush 
phenomena, or diverting low polluted flow to bypass structures). When looking at the prediction of 
NH4

+ in the first phase of a rain event, the forecast model in Damhusaaen (Figure 5a) mostly 
remains in a ±40% range. In the majority of the events, the load was overestimated. Conversely, in 
Viby (Figure 5b), the forecast model consistently underestimated the initial load. It should be 
pointed out that such performance analysis is strongly affected by the sensor calibration as some of 
the over/underestimation might be explained by events taking place shortly after sensor 
maintenance. Generally, the data show that rain-induced peaks have longer duration than 30 
minutes, i.e. the benefits of using such forecast for predictive control would be limited (after 30 min 
the wet-weather control would be fully operational). Figure 5c-d show the ability of predicting 
whether there are dilution effects from stormwater in each time step during an event. Here, the 
forecast model provided correct predictions (both correct positives and correct negatives) over 75% 
of the time for 22 events (63%) and 35 events (61%) in Damhusaaen and Viby, respectively. For 
some events the number of false positives (predicting a dilution while the concentration is still high, 
i.e. a prediction which might have negative consequences on the environment) was higher in 
Damhusaaen than in Viby. The number of events where the false positives exceeded 10% of the 
total event period was 13 (37%) in Damhusaaen and 5 (9%) in Viby. Figure 6 shows four examples 
of how the forecast model performed during different wet weather events. The examples suggest 
that the simple modelling approach based on dilution of ammonium loads is sufficient to grasp the 
dynamics at the beginning of a rain event, while it fails to represent the behaviour in the receding 
phase (Figure 6e).  
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Figure 5. Forecast model performance during wet weather events in Damhusaaen (a,c) and Viby 
(b,d). (a,b) relative error in estimation of first flush load (first 30 min); graphical visualization of 
contingency table for dilution prediction (c,d). 
 
Such behaviour is in line with the findings of Langeveld et al. (2017), who added an additional term 
to the model structure in order to obtain a better representation of the transition from the wet 
weather concentrations back to dry weather values. Considering that the majority of online 
applications for the proposed forecast model would focus on the initial phase of the event, structural 
shortcomings in the end of the events are not expected to affect its performance. Furthermore, this 
analysis illustrates the importance of evaluating the model performance in terms of its potential 
applications, instead of limiting the analysis to an evaluation of the model residuals.  
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Figure 6. Examples of the forecast model predictions for selected events at the inlet of Damhusaaen 
(left column) and Viby (right column). Measured flow (a-b,g-h); measured and simulated NH4

+ 
fluxes (c-d,i-j); and concentrations, along with dry weather NH4

+ concentrations used to define 
dilution events (e-f,k-l). The values from the corresponding contingency table are shown at the 
bottom of the concentration graph (e-f,k-l). Simulated values are described as median values 
(dashed line) and 90% prediction bounds (solid line). Violet background identifies the first 30 min 
of the event used to evaluate first flush. 
 
Figure 6(d,j) confirm the inadequacy of the model structure in Viby in representing the overall 
events. The available measurements suggest an increase in the ammonium loads, which might 
resemble the process described by Krebs et al. (1999). The model structure should therefore be 
adapted accordingly. Nevertheless, Figure 6(f,l) show how the model was still capable of detecting 
the dilution during wet weather events. Figure 6(i,k) also highlight an issue linked to the moving 
window approach: the updating of the window can in fact result in discrete jumps of the predicted 
values. For an ensemble-based approach as the one in this study, these variations could be reduced 
by increasing the size n of the window.  
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Research gaps and future developments 
The available results show how the predictions of the proposed setup are strongly dependent on the 
signal provided by the ion-selective sensors and by the maintenance operations. As pointed out by 
Cecconi et al. (2019), excessive maintenance and/or improper sensor calibration might significantly 
decrease the reliability of ammonium measurements. Furthermore, the performance of the forecast 
model cannot be evaluated in a complete manner, since a major cause of poor indicator values is 
due to changes in the signal rather than in the model structure and/or parameters. Possible 
improvement of the proposed approach might include: 
• Correction and transformation of the signal from the ion-selective sensor. Ideally, the raw signal 

from the sensor could provide a more reliable data source compared to the existing situation. A 
follow-up study on how to correct the raw ISE-based signal is currently being undertaken. 

• Variable uncertainty description: the proposed ensemble approach equally weighs all the days in 
the calibration window. Approaches such as exponential filtering, weights on most recent days, 
etc. can be used to increase the importance of the most recent data for cases where this is 
desired. 

• Use of stochastic models that combine a deterministic model with a stochastic term capable of 
describing the natural variability of the NH4

+ concentrations. Possible techniques include the so-
called grey-box models or the external bias description (Del Giudice et al., 2015). 

• A thorough evaluation of the influence of the different model parameterizations on the resulting 
predictions. The effect of the length of the moving window, the number of ensemble members, 
the intervals used in the parameter estimation, etc. should be fully evaluated. This would 
provide robust guidelines for a wide application of the proposed method to other systems. 

• Performance evaluation of the proposed approach at CSO structures, i.e. where the installation 
of a permanent online NH4

+ sensor is less likely compared to WWTPs. Here the model would 
use historical data from monitoring campaigns of limited duration (e.g. an online sensor 
installed over a 2-3 months period) to forecast NH4

+ concentrations. The duration of the 
historical dataset should be sufficient to confidently estimate representative daily profiles (and 
their variations). 

• Performance evaluation using real flow forecasts, based on e.g. radar rainfall forecasts or 
numerical weather predictions. There is ample research on flow uncertainty estimation, and this 
comparison could show if the uncertainties discussed here are significant compared with those 
related to the rainfall forecasts, which are known to be very large. 

• Performance evaluation based on event definitions that are not strictly linked to the plant 
operational settings. For example, a variable flow threshold, defined on the actual dry weather 
flow conditions rather than the used fixed value, could improve the understanding of the model 
behaviour in wet weather.  

• Modification of the model structure by including additional terms, such as those included in the 
model from Langeveld et al. (2017). This would expand the applicability of the model to other 
applications outside WWTP control (e.g. for quantification of CSO and bypass load) 

 
 
CONCLUSIONS  
This work investigated the performance of simple model for online prediction of NH4

+ 

concentrations intended for real time control applications. The analysis of the forecast model results 
showed that: 
• The analysis of data from two Danish WWTPs showed high inter-diurnal variations in the 

incoming ammonium loads. This underlines the importance of using an uncertainty-based 
approach, which explicitly accounts for this natural variability. 
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• The simple structure of the model (based on Fourier series) should be adapted to the specific 
locations of the sensors and/or to the characteristics of the catchment. 

• Calibration of the ammonium ISE sensors significantly affected the model performance. The 
proposed data-driven forecast model uses data from previous calibration periods, and its 
capability of matching the measured values drops just after the sensor is calibrated. This 
suggests a strong need for new approaches that can reduce the impact of the sensor calibration 
on the operation of online forecast models. 

• The performance of the forecast model in relation to potential online control strategies provide 
satisfactory results. Specifically, the model provided good simulations of both the ammonium 
loads at the beginning of a rain event and the dilution induced by wet-weather events. 

 
Overall, the proposed data-driven forecast model creates interesting opportunities for online 
forecasts of WWTP influent quality. Although further research is needed to improve the accuracy of 
the forecast model in terms of predicted concentrations, it can already open various possibilities for 
the implementation of online control strategies. The forecast model can also be applied for 
forecasting of incoming NH4

+ loads and concentrations, creating new opportunities for Model 
Predictive Control of WWTPs. 
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