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A B S T R A C T

Filamentous fungi produce a vast number of bioactive secondary metabolites (SMs), some of which have found
applications in the pharmaceutical industry including as antibiotics and immunosuppressants. As more and more
species are whole genome sequenced the number of predicted clusters of genes for SM biosynthesis is ever
increasing – holding a promise of novel useful bioactive SMs. To be able to fully utilize the potential of novel
SMs, it is necessary to link the SM and the genes responsible for producing it. This can be challenging, but many
strategies and tools have been developed for this purpose. Here we provide an overview of the methods used to
establish the link between SM and biosynthetic gene cluster (BGC) and vice versa, along with the challenges and
advantages of each of the methods. Part I of the review, associating BCG with SM, is divided into gene ma-
nipulations native strain and heterologous expression strategies, depending on the fungal species. Part II, as-
sociating SM with BGC, is divided into three main approaches: (1) homology search (2) retro-biosynthesis and
(3) comparative genomics.

1. Introduction

Fungi are an extraordinary source of bioactive secondary metabo-
lites (SMs) including both medically utilized and novel unexplored
molecules. The best known exploited fungal bioactive SMs include an-
tibiotics such as penicillin and cephalosporin, hypercholesterolaemic
agents such as lovastatin, immunosuppressants such as cyclosporin and
mycophenolic acid, as well as antifungals such as echinocandin and its
derivatives (Keller et al., 2005; Hautbergue et al., 2018; Regueira et al.,
2011). Besides SMs with beneficial properties, fungal SMs also includes
harmful toxins. Highly carcinogenic aflatoxins are produced by mem-
bers of the genus Aspergillus (Bennett and Klich, 2003). Other toxins
that are detrimental to human, animal and plant health include fumo-
nisins, ochratoxin and gliotoxin (Bennett and Klich, 2003; Kwon-Chung
and Sugui, 2009). The natural biological functions of SMs can range
from defensive weaponry against competitors or predators, offensive
virulence factors in infecting/pathogenic fungi, agents of symbiosis,
metal transporting agents, to hormones and differentiation effectors
(Demain and Fang, 2000).

The genes responsible for producing the SMs are often arranged in
clusters on the genome, referred to as biosynthetic gene clusters (BGCs).
Such clusters typically contain genes encoding one or more enzymes
that synthesize the core structure of the compound (backbone

enzymes), tailoring enzymes modifying the core structure, and poten-
tially regulatory proteins such as transcription factors (TFs) and re-
sistance genes encoding e.g. transporters (Osbourn, 2010; Brakhage,
2013). The most common backbone enzymes are polyketide synthases
(PKSs) and non-ribosomal peptide synthetases (NRPSs). Due to this and
the arrangement of the genes in clusters, it is possible to predict BGCs in
fungal genomes using predicted sequence domains and knowledge-
based algorithms such as SMURF and antiSMASH (Khaldi et al., 2010;
Blin et al., 2017). There are however also BGCs that are difficult to
predict using these algorithms since they do not follow the basic con-
ventions. Examples include tryptoquivaline in Aspergillus clavatus (Gao
et al., 2011) and the echinocandin in Emericella rugulosa (Cacho et al.,
2012), which are split in two parts. In addition, some cluster types are
not easily detected by the prediction algorithms such as the terpenoid-
based clusters since the amino acid sequences of terpene synthases are
not as conserved as PKSs and NRPSs (Keller et al., 2005; Khaldi et al.,
2010). As the prediction algorithms do not readily identify them, ad-
ditional manual genome mining needs to be performed to identify them
as demonstrated by Bromann et al. (2012). Other algorithms identifying
BGCs include ClusterFinder (Cimermancic et al., 2014) and co-expres-
sion based methods (Andersen et al., 2012; Vesth et al., 2016). Weber
and Kim have recently created an excellent portal summarizing bioin-
formatic tools and methods used in identification and analysis of BGCs
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(Weber and Kim, 2016).
With the sequencing of the first fungal genomes, one of the major

discoveries was that the number of BGCs greatly outnumbered the
known SMs, thereby revealing an even bigger SM repertoire in these
species but also showing that most BGCs are not active or active enough
to produce a detectable amount of SM during standard laboratory
cultivation (Keller et al., 2005; Nierman et al., 2005; Payne et al., 2006;
Schneider et al., 2008). This indicated that there was a substantial
hidden potential of both novel and potentially useful bioactive SMs. To
fully understand and exploit the rich resource of fungal SMs, it is im-
portant to establish the link between the SM and the BGC, both to be
able to discover novel SMs and potentially to set the stage for industrial
production of SMs as it allows process optimization by metabolic en-
gineering and/or heterologous expression.

Here we present an overview of various strategies that can be used
to discover the connection between a SM and BGC. The aim of this
review is to give an overview of strategies that have been used to study
secondary metabolism in fungi, illustrated by selected examples. This
review consists of two main parts: (Part I) Associating a biosynthetic
gene cluster with the secondary metabolite and (Part II) Associating a
secondary metabolite with the biosynthetic gene cluster. Part I is di-
vided into two principal strategies: native and heterologous strategies
depending on the host. These are further divided into strategies for
silent and active clusters for native hosts, while the heterologous ex-
pression strategies are divided into selection of hosts and design of gene
constructs. Part II is divided into three sections depending on the ap-
proach: (1) homology search (2) retro-biosynthesis and (3) comparative
genomics.

2. Part I: Strategies associating a biosynthetic gene cluster with
the secondary metabolite it produces

The aim of the strategies in presented in Part I is to elucidate the
biosynthetic pathway and identify the secondary metabolite (SM) pro-
duced by a specific biosynthetic gene cluster (BGC). The starting point
is thus a putative BGC. The clusters are often selected by researchers for
further analysis either based on similarity to a cluster responsible for
the production of an important/known compound or because it has
completely new characteristics. Once a cluster of interest has been
identified, there are several ways of elucidating the molecule(s) it can
synthesise; which method to use depends on various circumstances. An
overview of the key questions to clarify and strategies is outlined in
Fig. 1. The first key question (Q1 Fig. 1) is whether the cluster is found
in a cultivatable fungus. If this is not the case then heterologous ex-
pression has to be used. If the fungus is cultivatable, the next question
(Q2 Fig. 1) is whether it is amenable to genetic engineering; if the
answer is negative again then heterologous expression must be used. If
the answer is affirmative, strategies in the native host can be used.
These strategies are divided based on the expression of the cluster. The
last question (Q3 Fig. 1) is thus whether the cluster is actively ex-
pressed. If the cluster is silent, there are various ways of activating the
cluster both based on external factors and genetic engineering strate-
gies. If the cluster is active, or have been activated, gene deletion
strategies can be used. Each of the mentioned strategies are explained
and discussed in detail in following sections. An overview of the various
strategies and their advantages and disadvantages can be seen in
Table 1. The examination of a BGC is usually not a single process and
the best studies requires a combination of various strategies to clarify
the link between SM and BGC and to elucidate all the steps in the
biosynthetic pathway.

It should be noted that the successfulness of the strategies men-
tioned here are highly sensitive to the methods used for chemical ex-
traction and isolation. The SM of interest needs to be detectable with
the extraction method used and isolated in amounts above the detection
limit of the instrument. It is therefore essential to select which methods
to use depending on the SM of interest. This is an important

consideration but will not be covered further in this review; for more
information refer to the following reviews (Luzzatto-Knaan et al., 2015;
Nielsen and Larsen, 2015).

2.1. Strategies in native hosts

If a BGC is found in a cultivable and genetic engineerable species, it
is possible to investigate the BGC directly in the native host. The pre-
requisite for this is that the BGC is transcriptionally active or that it is
possible to activate it in the laboratory, in many cases this is not a
trivial task. One method of investigating if a cluster is active could be to
perform RT-PCR analysis to see if the genes are transcribed at a certain
condition which could give an indication of the production of the SM of
interest (Schroeckh et al., 2009; Gallo et al., 2014). Below, we review
different strategies to activate BGCs ranging from simple to more
complex. This is followed by a section outlining gene deletion strategies
to demonstrate the link between BGC and SM synthesis and to dissect
the individual functions of the genes in the BGC towards formation of

Fig. 1. Flow diagram of key questions to ask determining which strategy to use
when starting from a cluster of interest. Questions are outlined in turquoise and
the strategies are outlined in orange.
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the SM.

2.1.1. Strategies for triggering activation of silent biosynthetic gene clusters
The BGCs that are not expressed during standard conditions are

often referred to as silent. Since the discovery of the large number of
silent and unexplored clusters, efforts have gone into developing stra-
tegies for activating these silent gene clusters, which were reviewed by
Brakhage and Schroeckh (2011). The strategies include global changes
such as modified growth conditions, global regulators and chromatin
remodelling plus cluster-specific strategies such as TF overexpression
and promoter replacement, which are outlined in the following sections
and in Fig. 2 S1-S4.

Environmental stimuli. The function in the natural niche of SMs are
often not entirely clear, but naturally BGCs are induced at specific
conditions to cope with certain environments. For instance some SM
have been shown to fight competitors, attack host systems, commu-
nicate with collaborators, or adjust to stress conditions such as starva-
tion or high salt concentrations and are synthesised under those triggers
(Fox and Howlett, 2008). These natural regulation mechanisms can be
used to activate gene clustersin vitroby changing the growth conditions
mimicking various environments by different media compositions and
other environmental conditions such as temperature or pH (Fig. 2S1).

The approach of systematically varying cultivation parameters to
increase and investigate the secondary metabolism of an organism was
termed ’OSMAC’ (One Strain; Many Compounds) by Bode et al. and
used to increase the number of compounds identified from six bacteria
and fungal species, thus identifying more than 100 compounds be-
longing to 25 structural classes (Bode et al., 2002). Similarly, aspo-
quinolones AD was discovered from A. nidulans by investigation of the
metabolome of Aspergillus nidulans grown at 40 different culture con-
ditions (Scherlach and Hertweck, 2006). The secondary metabolism of
Aspergillus fumigatus was also investigated varying the media composi-
tion and temperature (Frisvad et al., 2009).

Gressler et al. used a combination of metabolic profiling, monitoring
gene expression, and a lacZ reporter strain to identify on which media a
BGC of interest from Aspergillus terreus was active (Gressler et al., 2011).
This strategy led to the identification of isoflavipucine and dihy-
droisoflavipucine as the SMs produced by a BGC. Ionic liquids have
been shown to stimulate SM production in A. nidulans where 32% of
described backbone genes were up-regulated, whereas normally silentin
vitro(Alves et al., 2016). A number of studies have been made of the
aflatoxin/sterigmatocystin production in Aspergillus spp. showing that

environmental conditions like pH (Keller et al., 1997), nitrate (Leonard,
1998) and temperature (OBrian et al., 2007) affect the production.
Pseurotin A biosynthesis in A. fumigatus is activated by hypoxia
(Vödisch et al., 2011) and the secondary metabolism in Fusarium fuji-
kuroi has been shown to be affected by nitrogen sources (Teichert et al.,
2006, 2008).

Co-cultivation of fungal species with bacteria is another environ-
mental stimulus that has been used successfully to activate silent gene
clusters. Schroeckh et al. cocultivated A. nidulans with a collection of 58
soil-dwelling actinomycetes and showed fungal-bacterial interaction
lead to the activation of specific fungal secondary metabolism genes
including genes involved in the biosynthesis of orsellinic acid
(Schroeckh et al., 2009). Wakefield et al. grew A. fumigatus strain
MR2012 with isolates of Streptomyces leeuwenhoekii which led to the
production and identification of luteoride D (a luteoride derivative) and
pseurotin G (a pseurotin derivative) plus production of SMs not pre-
viously identified in this species (terezine D and 11-O-methylpseurotin
A) (Wakefield et al., 2017).

Global regulators of secondary metabolism. Global regulators are
proteins affecting the expression of several BGCs orchestrating a co-
ordinated response to environmental factors (Fig. 2 S3). The concept of
global regulators of SMs was introduced by Bok et al. with the in-
vestigation of the LaeA protein and its effects on SM production in
several Aspergillus species (Bok and Keller, 2004). In A. nidulans the
production of sterigmatocystin and penicillin decreased in a laeA de-
letion strain and a similar pattern was seen for A. fumigatus laeA mu-
tants where the production of gliotoxin decreased and overexpression
of laeA in A. terreus increased the production of lovastatin. LaeA was
thus established as a global regulator of secondary metabolism in As-
pergillus species (Bok and Keller, 2004). In a following study, laeA de-
letion and overexpression strains were used to identify active clusters
through expression analysis in A. nidulans. A gene deletion in one of the
clusters revealed that the cluster is responsible for producing terre-
quinone A (Bok et al., 2006). The study of LaeA has been expanded to
many other filamentous Ascomycetes where the link between LaeA and
secondary metabolite production has been established, for instance in
the synthesis of T-toxin in Cochliobolus heterostrophus (Bi et al., 2013)
and bikaverin, fumonisins, fusaric acid and fusarins in Fusarium verti-
cillioides (Butchko et al., 2012), just to mention a few. For an excellent
review of this topic, please refer to Jain and Keller (2013).

LaeA is part of the velvet complex with VeA and VelB, which con-
nects light-response, developmental regulation and regulation of

Table 1
Overview of strategies used in the association of biosynthetic gene clusters with the produced secondary metabolite along with the advantages and disadvantages for
each strategy.

Strategy Advantages Disadvantage

Strategies activating transcriptionally silent gene clusters
Environmental stimuli – Simple method

– Not requiring molecular tools
– Can be used on unexplored species

– Alters expression of many clusters
– Not specific
– Many conditions need to be tested

Global regulator – Relatively easy way of changing the expression of secondary metabolites – Affecting many clusters and hence not specific
– Requires genetic modifications

Chromatin remodelling factors – Relatively easy way of changing expression
– Does not require genetic modifications

– Affecting many clusters and hence not specific

Cluster specific Transcription Factor (TF) – Specific targeting the cluster of interest
– Only manipulation of one gene is required
– Coordinated expression of entire cluster of interest

– Requires genetic modifications
– Requires a cluster with a TF

Promoter exchange – Specific for the cluster of interest
– Does not require a TF
– Can be used on all clusters

– Requires genetic modification
– Labor intensive

Strategies for transcriptionally active gene clusters
Gene deletions – Provides direct link between gene and production of secondary metabolite – Requires an expressed cluster

– Requires molecular tools
Gene deletion libraries – Provides direct link between gene and production of secondary metabolite

– Allows larger scale investigations
– Requires an expressed cluster
– Requires molecular tools
– Labor intensive
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secondary metabolism (Bayram et al., 2008). A study comparing the
transcriptional profile of an A. fumigatus wild type, laeA deletion and a
complementation control strain found that 13 out of 22 BGCs were
positively regulated by LaeA on a transcriptional level (Perrin et al.,
2007). Of the LaeA-regulated clusters, 54% are located within 300 kb of
telomeres. This could suggest a relationship between LaeA activity and
chromatin modification that was hypothezised by Keller et al. (2005);
however the hypothesis that LaeA methylates histones has not yet been
verified nor refuted (Jain and Keller, 2013).

Several other proteins have general regulatory functions affecting
secondary metabolism. These includes the nitrogen regulator AreA
(Janevska and Tudzynski, 2018; Mihlan et al., 2003; Wiemann et al.,
2013), the pH regulator PacC (Espeso and Peñalva, 1996), and the
carbon regulator CreA (Dowzer and Kelly, 1991; Esperón et al., 2014).
Recently two additional global regulators of secondary metabolism,
MjkA and MjkB, have been identified using co-expression networks in
A. niger (Schäpe et al., 2019). In addition to this, many specialized
regulators exist, for instance the AtfA/AtfB regulators for the synthesis
of aflatoxin (Gressler et al., 2015; Wee et al., 2017).

Chromatin remodelling factors. As mentioned in connection with
LaeA, chromatin remodelling has been shown to be involved in reg-
ulation of secondary metabolites (SMs). The relationship between SM
and chromatin structure can be exploited to activate otherwise silent
gene clusters. The epigenetic landscape can both be modified by gene
manipulation methods e.g. gene deletion or chemically by adding small
molecules manipulating the fungal epigenome (Fig. 2 S2).

The hdaA gene encoding a histone deacetylase (HDAC) was deleted
in A. nidulans causing an increase in the levels of the two sub-telomeric
cluster products, penicillin and sterigmatocystin, while the non sub-
telomeric cluster product terraquinone A levels were unaffected (Shwab

et al., 2007). To investigate the mechanism in other fungi, Alternaria
alternata and Penicillium expansum were treated with a HDAC inhibitor
(Trichostatin A), which resulted in increased levels of several SMs in
both species. This study showed that HdaA plays an important role in
suppression of SM located in the sub-telomeric regions and that it might
be a conserved mechanism across fungal species (Shwab et al., 2007).

Williams et al. showed that small-molecule epigenetic modifiers
were effective in 11 out of 12 fungal species tested in that one or more
modifiers caused the production of new SMs or enhanced production of
known SMs compared to untreated controls. Two species were in-
vestigated further, Cladosporium cladosporioides and Diatrype disciformis,
and new SMs (oxylipins and cladochromes from C. cladosporioides and
lunalides from D. disciformis) were identified and characterised in each
species showing the applicability of the method (Williams et al., 2008).
In a study of A. niger, transcription of 36% of the predicted clusters in A.
niger were significantly upregulated by the deacetylase inhibitor sub-
eroylanilide hydroxamic acid (SAHA) (Fisch et al., 2009) illustrating
the potential of chromatin remodelling in the activation of silent gene
clusters. Again it was shown that the clusters located near the telomeric
regions were mainly affected.

Besides addition of small molecules, deleting genes involved in
chromatin remodelling impact SM production. In A. nidulans, deletion
of the gene encoding a small ubiquitin-like protein SUMO involved in
processes such as regulation of transcription, chromatin structure, and
DNA repair increased the production of asperthecin while decreasing
austinol/dehydroaustinol and sterigmatocystin production. This sub-
sequently allowed for identification of the biosynthetic genes involved
in asperthecin production (Szewczyk et al., 2008). CclA is a part of the
complex COMPASS, an eukaryotic transcriptional effector methylating
lysine 4 of histone H3 (H3K4) thus affecting chromatin-mediated

Fig. 2. Strategies for investigating a cluster in the native host. At the top are the strategies useful for activating silent gene clusters. S1 – Environmental stimuli
changing pH, temperature, media components or co-culture with other microorganisms, S2 – Epigenetics or chromatin remodelling; either by adding compounds
manipulating the epigenome or by gene deletions of epigenetic regulators, S3 – Overexpression of a global or cluster-specific transcription factor, S4 – promoter
exchange of all the biosynthetic genes. Ideally these strategies leads to the activation of the gene cluster and the production of new compounds in the chemical
analysis. In the bottom part are the strategies useful for active (expressed) biosynthetic gene clusters. A1 – gene deletion, A2 – the generation of a gene deletion
library. These strategies leads to changes in the chromatogram often by the disappearance of the final compound and potentially the appearance of intermediates.
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processes. Deletion of cclA in A. nidulans activated expression of
otherwise silent BGC including the new cluster generating mono-
dictyphenone, emodin and emodin derivatives, plus a cluster encoding
two anti-osteoporosis polyketides, F9775A and F9775B (Bok et al.,
2009). This study thereby showed that the deletion of genes involved in
chromatin remodelling can affect secondary metabolism and can be
used as a strategy to activate silent BGCs.

Cluster-specific transcription factors. In addition to global regulators
of the expression of genes in BGCs, cluster-specific TFs also exist. These
are located within the BGC and usually function as an activator of the
specific BGC (Keller et al., 2005).

Overexpressing of the cluster-specific TFs can therefore be used as a
targeted strategy (Fig. 2 S3). The method was first applied by Bergmann
et al. in A. nidulans where the cluster-specific TF was integrated ecto-
pically under the control of an inducible promoter. This led to the
elucidation of the novel SMs aspyridones A and B and identification of
the PKS-NRPS hybrid BGC responsible for the biosynthesis (Bergmann
et al., 2007). Subsequently, several SMs and clusters have been linked
and characterized using the same strategy; e.g. asperfuranone in A.
nidulans (Chiang et al., 2009), a diterpene in A. nidulans (Bromann
et al., 2012) and azaphilone in A. niger (Zabala et al., 2012). In F. fu-
jikuroi, a pathway specific TF and the PKS backbone enzyme was
overexpressed resulting in the production of 4 new SMs, fujikurins A-D
(Janevska and Tudzynski, 2018; Von Bargen et al., 2015). Scopularide
A and the responsible cluster was identified and verified by over-
expression of the cluster specific TF in Scopulariopsis brevicaulis
(Lukassen et al., 2015).

It is clear that the overexpression of a cluster-specific regulator can
be a powerful strategy to induce SM production. However, it is not
always straightforward. In a cluster containing two NRPS genes and a
regulatory gene named scpR (for secondary metabolism cross-pathway
regulator), the overexpression of scpR led not to the activation of the
NRPSs as expected, but to the activation of the asperfuranone cluster
located on another chromosome in A. nidulans (Bergmann et al., 2010).
Ther conclusion was that cluster-specific TFs are not necessarily located
within the cluster it is affecting, which thus adds another layer of
complexity to BGC regulation.

Promoter exchange. When no cluster-specific TF is available, another
option is to replace the promoters of all the genes in the BGC to force
the expression of the cluster genes (Fig. 2 S4). This was done by Yeah
et al. for the fellutamide B cluster in A. nidulans, where the promoters of
six genes were replaced with the regulatable alcA promoter, with se-
quential gene manipulations by recycling a selectable marker (Yeh
et al., 2016). A similar strategy was used in A. nidulans for the cluster
responsible for a conidiophore pigment where the promoters of three
genes (ivoA-C) were replaced with the alcA promoter (Sung et al.,
2017).

2.1.2. Gene deletion or disruption strategies in active clusters
Cluster-specific gene deletions or disruptions. If a BGC is active under

some known condition or it has been activated, it is possible to link the
BGC to a SM. This is typically performed by deleting or disrupting genes
encoding backbone synthases followed by subsequent metabolite pro-
filing (Fig. 2 A1). By comparing the chemical spectrum of a wild type
with the modified strain, it is possible to identify the SM missing in the
modified strain and potentially identify intermediates in the biosyn-
thetic pathway: this approach has been seen in numerous studies (e.g.
Sanchez et al., 2011; Lo et al., 2012; Umemura et al., 2014; Wang et al.,
2018). Elimination of gene function is by far the most used method for
dissecting gene clusters. To this end, we note that in cases where SM
enzymes exist in a complex, this approach may lead to accumulation of
intermediates that are not directly reflecting the genetically impaired
gene, but rather the activity of the complex as a whole since it may not
form in the absence of one of its subunits. Hence, it may be preferable to
include point mutations targeting catalytic essential residues in the SM
enzymes, in cases where such residues can be identified, in the

mutagenic dissection strategy.
The overall genetic strategy for BGC analysis is based on gene tar-

geting or genetic screens. Historically gene targeting has been a cum-
bersome process since it, in most fungi, is inefficient as the desired
strains typically were constructed with success rates below 10% due to
the fact that most foreign DNA is inserted randomly into the genome by
the non-homologous pathway (Krappmann, 2007). A higher efficiency
can be achieved by using bipartite gene targeting substrates where the
selectable marker is split into two non-functional but overlapping
fragments (Fairhead et al., 1996; Catlett et al., 2003). Alternatively,
gene-targeting efficiency can be dramatically elevated by eliminating
genes in the non-homologous end-joining (NHEJ) pathway, i.e. genes
that encode Ku70, Ku80 or DNA ligase IV (Ninomiya et al., 2004; Nayak
et al., 2006). In such strains, gene targeting efficiency are typically
higher than 90% (Krappmann, 2007). Hence, if many mutant strains are
planned in a given species or strain background it may be a good in-
vestment to eliminate the NHEJ pathway prior to BGC mutagenesis.
Importantly, to the best of our knowledge, no interference between
defective NHEJ and SM production has been reported in the literature.
However it has been shown that Ku deletions may lead to genetic in-
stability (Meyer et al., 2007; Zhang et al., 2011).

Two genetic marker dependent strategies are commonly used for
introducing genetic alterations in the genome. The first strategy is to
perform one step gene disruptions/deletions, where a selectable marker
is either inserted into the gene of interest to disrupt gene function; or
where it simply replaces the gene of interest to create a gene deletion.
This strategy only requires a single step, but if several genetic mod-
ification steps need to be performed, one may run out of selectable
markers (Goosen et al., 1987; Daboussi et al., 1989). The second
strategy is to use a two step loop-in/loop out method (Dunne and
Oakley, 1988; Takahashi et al., 2012). This method requires selectable/
counter selectable marker, e.g. pyrG, and is more time consuming.
However, iterative gene targeting can be performed as it allows for
marker re-cycling (Nielsen et al., 2006; Yeh et al., 2016). Other re-
cyclable markers systems include the beta-Rec/six (Hartmann et al.,
2010; Szewczyk et al., 2013) and the Cre/loxP (Krappmann et al.,
2005;Forment et al., 2006; Florea et al., 2009;Steiger et al., 2011;
Zhang et al., 2017) which are both based on site specific recombination
(SSR), as reviewed by Krappmann (2014). In addition to produce gene
disruptions and deletions, it can also be used to introduce specific point
mutations. If nutritional markers are used for mutagenesis, it is highly
recommended to restore the marker gene to wild-type as metabolic
marker genes may alter the phenotype of the strain (Lay et al., 1998;
Çakar et al., 1999; Pronk, 2002; Nielsen et al., 2007). It is further
generally good practice to restore the phenotype after a deletion by re-
insertion of the deleted gene, to prove that the phenotype is not the
effect of a random mutation.

The recent introduction of CRISPR (Clustered Regularly Interspaced
Short Palindromic Repeats) technology in fungi is expected to re-
volutionize fungal genetic engineering (Shi et al., 2017; Krappmann,
2017; Deng et al., 2017). CRISPR technologies are based on the fact that
the specificity of the Cas9 nuclease can be easily programmed by a short
RNA species that is embedded in the enzyme. Hence, specific DNA
double stranded breaks can be introduced into genes of interest to sti-
mulate mutations created by error prone non-homologous end-joining
or to stimulate gene targeting into that locus when a repair template is
provided using homologous recombination (Nødvig et al., 2015; Zheng
et al., 2018). Creating two double stranded breaks have been shown to
increase the efficiency and making it possible to delete large regions (up
to 48 kb region) (Zheng et al., 2018). A major advantage of the CRISPR
technology is that it, in principle, can be used directly in a new species
where little or no genetic tools are available and it is possible to per-
form all the classical gene-targeting tricks, even in a multiplexing setup,
with no need for a selectable marker (Nødvig et al., 2018). The CRISPR-
Cas9 system has successfully been established in a variety of fungal
species including Neurospora crassa (Matsu-ura et al., 2015),
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Trichoderma reesei (Liu et al., 2015), Ustilago maydis (Schuster et al.,
2016), Pyricularia oryzae (Arazoe et al., 2015), Candida albicans (Vyas
et al., 2015), Nodulisporium (Zheng et al., 2017) and several Aspergillus
species (Nødvig et al., 2015;Fuller et al., 2015; Katayama et al.,
2016;Nødvig et al., 2018) among others and more are constantly added.
Moreover, the need for complex gene-targeting substrate construction,
which is required for conventional gene targeting, is reduced to a
minimum as simple oligonucleotides can be used to introduce gene
deletions or specific point-mutations (Nødvig et al., 2018). It is im-
portant to stress that the methods listed above can be used in combi-
nation to further facilitate specific genetic engineering.

Comparisons of metabolite profiles obtained with mutant and re-
ference strains may reveal HPLC signals that disappear in mutant
strains, indicating that they represent the relevant SMs (Fig. 2). For
strategies that can be used to analyze the often complex metabolite
profiles, we refer the reader to (Nielsen et al., 2011; Nielsen and Larsen,
2015; Hubert et al., 2017). Importantly, false hits may occur in some
experiments due to the complexity of the fungal metabolism or due to
unpredictable genetic effects. Gene elimination experiments should
therefore be accompanied by a complementation test where the mu-
tated gene is returned to the mutant strain and, as a result production of
the SM should be restored. Alternatively, or in addition, conclusions
made from the analysis of synthase gene-deletion strains can be
strengthened by deleting the tailoring enzyme genes of the BGC. In this
set of mutant strains, the final SM should also be absent. As a bonus,
metabolite profiling of the latter mutant strains may uncover inter-
mediates for production of the final SM, hence, facilitating SM pathway
elucidation.

The strategy of gene deletions (Fig. 2 A1) has been used in countless
studies. In this paragraph, examples using variations of gene deletions
are presented showing some of the many uses. Disruption of the FUM5
gene combined with complementation studies revealed the involvement
in fumonisin production in Gibberella fujikuroi (Proctor et al., 1999).
Later FUM6-FUM9 were identified in Fusarium verticillioides, analysed
and disrupted showing that these genes are also involved in production
of fumonisins (Seo et al., 2001). To investigate the red pigment aur-
ofusarin produced by Fusarium pseudograminearum and F. graminearum
Malz et al. created aurofusarin deficient mutants using first random
mutagenesis to reveal a locus of interest including a PKS, PKS12. To
confirm the PKS12 gene involvement in aurofusarin production a tar-
geted gene disruption was performed (Malz et al., 2005). The cyclo-
piazonic acid (CPA) biosynthetic genes were identified in Aspergillus
flavus where three genes were disrupted and two of these mutants
completely abolished CPA production (Chang et al., 2009). In A. niger,
the albA gene was shown to be responsible for the production of pig-
ments as well as naphtho-γ -pyrones through a deletion study. This
helped identifying the link between SM and genes. In addition, it cre-
ated a useful strain for further analysis since some of the main SMs
produced by A. niger are disposed of, resulting in a more clean back-
ground strain (Chiang et al., 2011). Similarly, eight of the most highly
expressed BGCs were deleted in A. nidulans resulting in a strain of low
SM background allowing for the identification and characterization of
aspercryptin and the biosynthetic genes (Chiang et al., 2016). In some
cases gene deletion or disruption has turned out not to be possible and
RNA silencing has been used as an alternative. This method was used in
a study identifying the cytochalasin gene cluster in Penicillium expansum
(Schumann and Hertweck, 2007).

Gene deletion libraries. A further sophistication of the deletion
strategy focusing on one BGC of interest is the generation of deletion
libraries (Fig. 2 A2). Gene deletion libraries can be generated in a
number of ways, such as transposon disruptions, UV or chemical mu-
tagenesis, or single-gene deletion libraries. Screening these afterwards
for the absence of the compound of interest is a powerful approach.

A deletion library was created in Gibberella zeae, where 15 PKSs
were disrupted, following known SMs such as zearalenone, aurofusarin,
fusarin C and the black perithecial pigment were linked to specific

genes (Gaffoor et al., 2005). In a similar study in A. nidulans each of the
32 predicted PKSs were deleted and the mutants were grown in various
media and compared with the reference. This way they were able to
identify the PKSs involved in arugosins, violaceol, austinol and dehy-
droaustinol biosynthesis (Nielsen et al., 2011). Another deletion library
focused on the regulatory genes in A. nidulans, where 128 kinases were
deleted. In this study it was observed that the secondary metabolism
was affected in several of the mutants (De Souza et al., 2013). Yaegashi
et al. screened this knockout library for changes in secondary meta-
bolism. They found the SM aspernidine A and identified the secondary
metabolite genes (pkfA-F) in A. nidulans (Yaegashi et al., 2013). Using
panels of deletion mutants in the manner presented above has a great
potential for future studies, given the developments in efficient genome
editing technologies for fungi sparked by the CRISPR-Cas9 technologies
(Nødvig et al., 2015).

2.1.3. Future possibilities in native strategies
With the advancement of molecular tools such as CRISPR-Cas9 in

fungi (Nødvig et al., 2015), many of the native strategies will be ap-
plicable in more non-model species. Another future possibility based on
the CRISPR-Cas system is the development of synthetic TFs where a
deficient Cas9 can be fused to an effector domain thus inducing tran-
scription of specific genes which has already been applied in yeast
(Farzadfard et al., 2013).

2.2. Heterologous strategies

Heterologous expression strategies can be applied if the cluster of
interest is found in a species which is difficult or impossible to propa-
gate in the laboratory or if it is not easily genetically manipulated
(Fig. 1). In addition it may often serve as an attractive tool to deliver
insights that may complement those obtained with the native host.

The first thing to consider with heterologous expression is which
host to select. This choice depends on many factors. We will here focus
on three categories of hosts; bacteria, yeast, and filamentous fungi. The
second thing to consider is the construct and how comprehensive the
heterologous expression should be, including only backbone synthase,
promoter swap of a TF, or engineering of the whole cluster with new
promoters etc. for all genes in the cluster. Which construct to use de-
pends on the cluster and the aim. In the following section, the three
categories of hosts are examined followed by a section covering the
expression construct.

2.2.1. Selection of host for heterologous gene expression
In choosing a host for expression of eukaryotic pathways, there are

several factors to consider: (1) The amount of genetic optimization
needed to express the genes – codon optimization, ability to process
introns, change of promoter and terminator. (2) The natural ability to
produce SMs, e.g. the availability of precursors and capability of post-
translational modification to create active biosynthetic enzymes. (3)
The chemical background — the amount of compounds produced af-
fecting the chemical analysis. (4) The toxicity of the compound pro-
duced and the coping mechanism used in the natural producer (trans-
porters, detoxification or resistance genes Keller, 2015) which should
be included in a heterologous expression host as well. Here we will go
through each of the three categories of host we consider, showing ex-
amples of their uses along with advantages and disadvantages of each.

Bacterial host. Escherichia coli is mainly used as a prokaryotic host
due to the strong engineering toolbox and fast growth. Significant en-
gineering of E. coli is needed in order to be able to produce fungal
secondary metabolites since it does not naturally produce these com-
pounds. E. coli is therefore predominantly used for in vitro investigation
and characterization of specific enzymes in the pathway.

An early example of the use of bacterial host is the successful ex-
pression of the 6-methylsalicylic acid synthase gene from Penicillium
patulum in E. coli which thereby produced 6-methylsalicylic acid
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(Kealey et al., 1998). In a more recent study, the gene encoding the
BbBEAS nonribosomal peptide synthetase isolated from B. bassiana was
heterologously expressed in E. coli which was then able to produce
beauvericin when the precursor D-Hiv was added (Heneghan et al.,
2010; Xu et al., 2008).

Several of the tropolone biosynthetic genes from Talaromyces stipi-
tatus were expressed in E. coli and purified forin vitroanalysis thus
verifying the expected biosynthetic pathway (Davison et al., 2012). The
PKS4 protein from Gibberella fujikuroi was expressed in E. coli, purified
andin vitroanalysis was performed showing a functional enzyme pro-
ducing the secondary metabolite SMA76a (Ma et al., 2007). Similarly
the LovD protein from lovastatin biosynthetic cluster was expressed in
E. coli, purified and analyzedin vitro(Xie et al., 2006). In an investiga-
tion of the basidiomycete Coprinus cinereus, six sesquiterpene synthases
were expressed in E. coli and 5 of the products were identified directly
from E. coli cultures using GC-MS (Agger et al., 2009). Using the same
approach 11 sesquiterpene synthetase from Omphalotus olearus were
characterized by heterologous expression in E. coli (Wawrzyn et al.,
2012). In the investigation of the azaphilone gene cluster the gene AzaH
(a FAD-dependent monooxygenase) was expressed in E. coli in order to
make in vitro assays of the protein and investigate its function in aza-
philone biosynthesis (Zabala et al., 2012).

E. coli has several advantages as a host for heterologous expression;
(1) easy to cultivate and fast growing (2) a well-developed molecular
toolbox (3) a well-understood primary metabolism and (4) the absence
of endogenous secondary metabolite pathways thus limiting the risk of
cross-talk and interference with native proteins (Gao et al., 2010;
Pfeifer and Khosla, 2001).

There are however also several challenges when heterologously
expressing fungal secondary metabolite genes in bacterial hosts. The
challenges include: (1) inability of bacteria to process eukaryotic in-
trons which thus have to be eliminated; (2) codon bias can cause pro-
blems in expression; (3) correctly folding of the synthesized proteins;
(4) required post-translational phosphopantetheinylation/modifica-
tions; (5) potential anti-bacterial properties/toxicity of the product; and
(6) availability of the precursors (Alberti et al., 2017; Gao et al., 2010;
Heneghan et al., 2010). Bacterial hosts are therefore most often used for
in vitro enzyme analysis of a specific biosynthetic protein.

Yeast as a heterologous host. The second host we will examine is
yeast, in particular Saccharomyces cerevisiae. In the following we will go
through examples of uses and end with a summary of advantages and
challenges.

The team exploring the 6-methylsalicylic acid production in E. coli
also investigated it in S. cerevisiae (Kealey et al., 1998). The synthase 6-
methylsalicylic acid from P. patulum was expressed in a S. cerevisiae
strain including a heterologous phosphopantetheinyl transferase which
creates the active holo PKS from the apo-PKS (Lambalot et al., 1996;
Kealey et al., 1998). From this strain, 6-methylsalicylic acid was pro-
duced and the amount was twice as high as in the native species and
much higher than in E. coli (Kealey et al., 1998), hence a case where an
eukaryotic host performed superior compared to E. coli.

The lovastatin nonaketide synthase LovB from A. terreus was ex-
pressed in an engineered strain of S. cerevisiae containing the a phos-
phopantetheinyl transferase gene npgA from A. nidulans (Mootz et al.,
2002), in order to perform in-depth in vitro investigation of the catalytic
function and mechanism (Ma et al., 2009), showing that yeast can be
used to elucidate specific steps of biosynthetic pathways.

Ishiuchi et al. engineered a S. cerevisiae strain to include matB
(malonyl-CoA synthetase) and npgA and successfully used this for ex-
pression of five PKSs and one NRPS and characterization of the pro-
duced SMs (Ishiuchi et al., 2012). Several other studies have used op-
timized versions of S. cerevisiae for heterologous expression of synthase
genes, for identification of the products and characterization of the
mechanisms, including identification of 10,11-Dehydro-curvularin and
characterization of a mechanism for aryl-aldehyde (Wang et al., 2014;
Xu et al., 2013).

In addition to single synthase genes whole clusters have also been
expressed in S. cerevisiae. The biosynthetic genes from the hypothe-
mycin gene cluster from Hypomyces subiculosus were for instance ex-
pressed in a PKS -optimized yeast strain (Kealey et al., 1998; Reeves
et al., 2008) and based on these experiments, it was possible to propose
a biosynthetic pathway (Reeves et al., 2008). In another study by
Rugbjerg et al. three biosynthetic genes from Fusarium graminearum
were co-expressed with the npgA gene from A. fumigatus resulting in the
production of Rubrofusarin (Rugbjerg et al., 2013).

In a recent study, Harvey et al. developed HEx (Heterologous
EXpression) synthetic biology platform for fast and scalable expression
of fungal biosynthetic genes and their encoded metabolites in S. cere-
visiae (Harvey et al., 2018). In this study 41 BGCs from diverse asco-
mycete and basidiomycete fungal species were expressed in S. cerevisiae
and 54% resulted in SMs not natively found in yeast (Harvey et al.,
2018). This platform brings the method of heterologous expression in
yeast a big step forward and potentially opens the door to discovery of
many natural products.

Using S. cerevisiae as a heterologous host has many advantages,
some of which are similar to those mentioned for E. coli, but there are
additional advantages to using S. cerevisiae: (1) S. cerevisiae is a uni-
cellular organism, easy to culture and it grows faster than most fila-
mentous fungi; (2) Powerful genetic tools have been developed for
protein expression and pathway construction, including highly efficient
homologous recombination; (3) Native secondary metabolism is very
limited in S. cerevisiae thus minimizing the background and potential
cross-talk (Siddiqui et al., 2012); (4) The building blocks for polyketide
synthesis such as acetyl-CoA and malonyl-CoA plus cofactors such as
NADPH and S-adenosylmethionine are naturally produced in yeast; (5)
Lastly yeast also belongs to the fungal kingdom and it can typically
produce tailoring enzymes and support correct folding (Bond et al.,
2016; Alberti et al., 2017).

The challenges of using S. cerevisiae as a heterologous host include:
(1) A heterologous gene is required for activation of the synthase such
as the npgA gene from A. nidulans (Mootz et al., 2002); (2) S. cerevisiae
has different and few introns which can cause problems in mRNA
splicing (Kupfer et al., 2004); (3) In yeast codon usage is biased towards
AT which can cause problems if the gene of interest is GC rich (Mutka
et al., 2006); A low or even lacking production of required precursors
and building blocks (Kealey et al., 1998; Mutka et al., 2006); (4) Lack of
compartmentalization which might be important for SM production
(Roze et al., 2011); (5) Lastly there is a risk of toxicity of the produced
SM.

Filamentous fungi as heterologous host. Many of the challenges seen
for yeast and bacterial hosts can be overcome by using filamentous
fungal hosts. The model fungus Aspergillus nidulans is often used, be-
cause it has a well developed genetic toolbox, A. niger has been shown
to be a highly efficient host (Boecker et al., 2018) and A. oryzae which
has a limited endogenous secondary metabolism is often employed.

Initially many of the studies of heterologous expression were based
on a single gene, often the backbone enzyme. One example is the study
of albA from A. fumigatus which is involved in conidial pigment bio-
synthesis and it was heterologously expressed in A. oryzae to show that
the PKS is a naphthopyrone synthase (expected based on the sequence
similarity) and not a tetrahydroxynaphtalene synthase (expected from
the color) (Watanabe et al., 2000). The drawback of single gene studies
is that most often they do not give the final secondary metabolite or
elucidate the biosynthetic pathway.

Other studies have expressed whole clusters in heterologous hosts.
Smith et al. was one of the first to do this: they cloned the penicillin
BGC from Penicillium chrysogenum on to a cosmid vector, transferred it
to Neurospora crassa and A. niger and showed that penicillin was pro-
duced (Smith et al., 1990). This approach however relies on the native
promoters functioning in the new host and correct mRNA processing.

One method of circumventing this dependency is to place the TF
under a strong promoter. This approach was seen in a study of a cryptic
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polyketide cluster from Trichophyton tonsurans where four biosynthetic
genes of the cluster were expressed from their own promoters, and only
the cluster-specific TF promoter was replaced with the strong A. nidu-
lans gpdA promoter (Yin et al., 2013). A neat detail in the design of this
study was that the cluster was inserted in the wA locus of A. nidulans
encoding a pigment PKS, facilitating the screening of correct re-
combination. Another successful heterologous expression system was
made based on regulatory elements from the Aspergillus terreus terrein
gene cluster (Gressler et al., 2015; Brandt et al., 2017).

Many studies have been conducted investigating BGCs by hetero-
logous expression, including pyripyropene from A. fumigatus expressed
in A. oryzae (Itoh et al., 2010), the citrinin cluster from Monascus pur-
pureus expressed in A. oryzae (Sakai et al., 2008) and the Pfma cluster
from Pestalotiopsis fici expressed in A. nidulans synthesizing the melanin
8-dihydroxy- naphthalene (DHN) (Zhang et al., 2017) to mention a few.

Heterologous expression in filamentous fungi has some challenges,
the host can be affected by the inserted cluster causing a changed
metabolite profile or cross-talk between the inserted cluster and native
clusters can arise which makes it difficult to identify the correct new
SM. This was illustrated by a study expressing a polyketide gene cluster
originating from a fungal endophyte, in Fusarium verticillioides (Xie
et al., 2011), where the main product identified was fusaric acid, which
is a mycotoxin normally found in Fusarium species.

There are several studies optimizing heterologous hosts to make the
strategy more effective. Chiang et al. developed an optimized hetero-
logous expression system in A. nidulans (Chiang et al., 2013). Their first
step was to delete native BGCs (of sterigmatocystin, emericellamide,
orsellinic acid/F9775A,B, asperfuranone, monodictyphenone, and ter-
requinone) in order to reduce the SM background and facilitate de-
tection of novel products plus to increase the pool of pre-cursors for the
desired products. Next, they developed a method for heterologous ex-
pression of biosynthetic genes using a system of a recyclable marker
thus permitting the expression of entire clusters, which was shown for
the asperfuranone cluster from A. terreus.

Using fungal artificial chromosomes (FACs) and metabolomic
scoring (MS) it is possible to scale up analyses, which was demonstrated
by investigating 56 BGCs originating from A. terreus, A. aculeatus and A.
wentii in A. nidulans (Clevenger et al., 2017). In the study, 17 SMs
produced by 15 different FACs were detected. In a subsequent study the
FAC-MS method was used to elucidate the biosynthesis of acu-dioxo-
morpholine (Robey et al., 2018).

The advantages of using a filamentous fungus as host includes; (1)
The genetic systems are generally compatible correctly translation
folding and post-translational modifying the inserted gene(s) hence
obviating the need for codon optimization, intron removal etc. (2) The
secondary metabolite machinery is present, making most common
precursors available. The downside is that the complex chemical
background can make the chemical analysis difficult and cause cross-
chemistry making it complicated to identify the SM produced by the
inserted genes. An additional disadvantage is that it is time-consuming
using filamentous fungi as hosts since they are challenging to engineer
(mainly due to the possibility of heterokaryons) and slower growing
than many yeasts and bacteria.

2.2.2. Design of DNA constructs
Besides selecting the host for heterologous expression, another thing

to consider is the construct as mentioned earlier. Expressing a gene
heterologously either depends on the host having similar promoters and
terminators and mRNA transcript processing or it requires extensive
engineering of the gene. The design of the construct depends on the
composition of the gene cluster, the host and the aim. Here we have
divided it into three main strategies: (1) Expression of the synthase/
synthetase, (2) Inserting the entire cluster, potentially with engineering
of the TF and (3) Engineering of the whole cluster including new pro-
moter etc. for all genes.

Strategy 1 — only expressing the synthase of a cluster is often used

in initial studies of cryptic BGCs. This method is used to investigate the
core structure of the secondary metabolite (SM) to give an initial in-
dication of what structure is produced and can also be used in screening
studies. The strategy was used in the study of six sesquiterpene syn-
thases from mushroom-forming fungi (Agaricomycetes) where the ses-
quiterpene synthases were expressed in E. coli and/or S. cerevisiae,
thereby characterizing the enzymes and identifying the major sesqui-
terpene hydrocarbons produced (Agger et al., 2009). Ishiuchi et al.
expressed five PKSs and an NRPS in S. cerevisiae and identified the
corresponding natural products (Ishiuchi et al., 2012). Likewise two
polyketide synthases responsible for cladosporin production were ex-
pressed in S. cerevisiae to confirm the involvement in cladosporin pro-
duction and understand the mechanism and biosynthesis (Cochrane
et al., 2016). Munawar et al. expressed a nonribosomal peptide syn-
thetase from Fusarium sacchari in A. oryzae and showed that it is re-
sponsible for producing the siderophore ferrirhodin (Munawar et al.,
2013). There are examples where this strategy is not suitable such as
clusters containing trans acting enoyl reductase (ER) domains (Ames
et al., 2012; Simpson, 2014; Ugai et al., 2015).

Expressing only the synthase has the advantage that it is most often
only one gene, making it easier and less labor-intensive to exchange
promoter and occasionally terminator. The disadvantage is that it does
not give the final SM, but it gives the core structure of the SM and the
initial step in the biosynthesis.

Strategy 2 — Insertion of the entire BGC only modifying a cluster-
specific TF, if present. This strategy allows analysis of the entire bio-
synthetic cluster and the final product with minimal engineering but
requires compatible cellular machinery or a TF. It is possible to suc-
cessfully transfer an entire BGC to another species without modification
however this requires that the transcriptional and translational ma-
chinery are compatible between the donor and host. One example is the
citrinin gene cluster from Monascus purpureus, which was successfully
expressed in A. oryzae without modification of the BGC (Sakai et al.,
2008). It is often difficult to know if the donor and host are compatible
in advance and even when successful the amount of SMs produced are
often low. If the cluster contains a specific TF, it is possible to only
exchange the promoter of the TF and get increased expression of the
rest of the cluster; this is similar to the strategy of activating silent gene
clusters in Section 2.1.1. The citrinin cluster also contains a TF and
when this was overexpressed in A. oryzae, the production increased
400-fold compared to insertion without modification (Sakai et al.,
2008). Similarly, the geodin cluster from A. terreus was successfully
expressed in A. nidulans by replacing the native promoter of the TF with
a strong constitutive promoter (Nielsen et al., 2013).

The advantage of this strategy is that it produces the final SM of the
cluster and it requires minimal engineering of the cluster. The dis-
advantage is that it requires compatible cellular machinery of the native
and heterologous host and/or the presence of a cluster-specific TF.

Strategy 3 — engineering of the entire cluster exchanging all the
promoters, can be necessary if the cluster of interest does not contain a
TF. Four biosynthetic genes from Phoma betae were expressed in A.
oryzae in a vector-based approach using the starch-inducible promoter/
terminator from the amyB gene thereby producing aphidicolin (Fujii
et al., 2011). Bailey et al. successfully expressed seven biosynthetic
genes from the basidiomycete Clitopilus passeckerianus in A. oryzae using
constitutive A. oryzae promoters thereby producing pleuromutilin
(Bailey et al., 2016). An alternative to swapping all the promoters in the
cluster is using polycistronic gene expression which has been success-
fully applied in A. niger in a combination with the Tet-on system for
production of enniatin (Meyer et al., 2011; Schuetze and Meyer, 2017).

The advantage of engineering the entire cluster is that there are no
requirements or restrictions as to which clusters can be investigated.
The drawback is that it is a more labor-intensive method and it can be
difficult to know where the cluster borders are. If one has transcriptome
data available, there are established methods for using this to predict
cluster boundaries (Andersen et al., 2012; Umemura et al., 2013; Vesth
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et al., 2016). With the ever increasing numbers of fungal transcriptome
experiments (see e.g. Schäpe et al., 2019), these methods only become
more applicable in the future. There are several excellent reviews on
the subject of heterologous expression, for further reading please refer
to Alberti et al. (2017),Anyaogu and Mortensen (2015), and Lazarus
et al. (2014).

Future perspectives. As the price of synthesis of long stretches of DNA
keeps dropping due to improved chemistries and synthesis methods,
novel strategies are emerging, making it possible to circumvent several
time consuming cloning steps (intron removal, promoter swap, codon
optimization etc.) and thereby easier to investigate selected clusters or
screen more clusters. In particular, the strategy of promoter swapping
of all genes in a cluster becomes much more feasible when using syn-
thetic DNA.

3. Part II: In silico strategies associating secondary metabolites to
biosynthetic gene clusters based on whole genome sequences

The aim of the strategies presented in Part II is to identify a bio-
synthetic gene cluster (BGC) responsible for producing a specific sec-
ondary metabolite. The selected secondary metabolite is thus the
starting point, it can be a characterized compound with known che-
mical structure or it can simply be a new signal in a chromatogram.
Alternatively, the starting points can be already characterized SMs with
identified biosynthetic gene clusters, which are used to search for si-
milar BGCs in a genome and hence assess the potential of SM produc-
tion of an organism. If an interesting SM has been identified in a certain
species, there are several methods for identifying the responsible BGC.
Here we have divided it into three main approaches (1) Homology
search (2) Retro biosynthesis and (3) Comparative genomics (Fig. 3).

Which strategy to use essentially depends on the initial knowledge and
as seen in the strategies in Part I, a combination of several strategies is
often needed to identify and verify the BGC.

A prerequisite for all the strategies mentioned here is that whole
genome sequences are available for the producing organism(s). These
methods have thus only been made possible in the post-genomic era. As
whole genome sequences are becoming more and more attainable, the
use of these strategies will surely only increase. It is important to note
that the results of these strategies are putative and requires some ex-
perimental verification following the identification.

3.1. Homology search

In strategy 1, based on homology search, a biosynthetic genes
cluster producing a specific compound is identified by using a char-
acterized biosynthetic gene cluster producing the same or a similar
compound (Fig. 3, Strategy 1). The known biosynthetic cluster genes
are used as query to search for similar genes in the genome of the or-
ganism producing the selected compound of interest. In general the
most important genes are the synthase/synthetase responsible for pro-
ducing the backbone of the SM. This strategy only works if a similar SM
and BGC have been characterized previously, it can thereby only be
used to find known clusters or derivatives, but not truly new SMs.
Homology search is an extremely powerful and highly employed ap-
proach for coupling clusters and SMs especially in the investigation of
newly sequenced genomes. As the number of whole genome sequences
increases and the algorithms aiding in the predictions are improved,
this method is likely to expand.

A derivative of this strategy (genetic dereplication Theobald et al.,
2018) has a wider scope, not focusing on a single SM, but instead

Fig. 3. Three strategies for linking secondary metabolite to biosynthetic gene cluster using whole genome sequences. (1) Homology search — starting with a known
compound produced by organisms A and the same or similar compound produced by organism B where the cluster has been identified it is possible to use the known
cluster from organism B to search for a similar cluster in the genome of organism A and thereby identify the cluster of interest. (2) Retro-biosynthesis — starting with
a known compound but no similar clusters identified it is possible the predict the enzyme activities needed to produce the compound (backbone and tailoring
enzymes) and from these predictions find putative clusters matching the requirements in the genome. (3) Comparative genomics — starting with a set of organisms
where some produces the compound of interest and some do not, it is possible to identify homologous gene clusters in the producing and filter based on no homologs
in the non-producing and thereby identify candidate gene clusters. All the strategies lead to the identification of a candidate cluster which then have to undergo
functional verification.
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identifying homologs of all characterized SMs and BGCs. Hence all
known SMs and their BGCs can be used as query to search for homo-
logous clusters in a newly sequenced genomes. This way it is possible to
predict what kind of SMs the organism potentially can produce.

An example of the homology search strategy is the ochratoxin gene
cluster that was identified in A. carbonarius, using homology search of
the ochratoxin cluster predicted in A. niger. The following deletion of a
PKS in the predicted cluster eliminated all production of ochratoxin
confirming the biosynthetic role (Gallo et al., 2014). The method of
homology search can also be used to find the putative clusters for si-
milar SMs that could use parts of the same biosynthetic pathway. This
was shown for in the identification of the novofumigatonin cluster in A.
novofumigatus which was identified based on homology to another
meroterpenoid, the terretonin cluster from A. terreus (Kjærbølling et al.,
2018; Matsuda et al., 2018).

Using the derivative of homology search (genetic dereplication), it
is also possible to investigate the secondary metabolite potential of a
newly sequenced species. The secondary metabolism was investigated
in the wheat pathogen Zymoseptoria tritici using MultiGene Basic Local
Alignment Search Tools (BLAST) (Medema et al., 2013) to identify
known clusters. This strategy revealed a cluster similar to the ferri-
chrome-A biosynthetic locus from a maize pathogen, Ustilago maydis.
Putative clusters for carotenoid/opsin, an epipolythiodioxopiperazine,
fumonisin and AM-toxin were also identified (Cairns and Meyer, 2017).
After whole genome sequencing of Penicillium griseofulvum, various
cluster products were predicted based on homology to known clusters
from the MIBiG database (Medema et al., 2015). This revealed that P.
griseofulvum has putative gene clusters for patulin, roquefortine C/
meleagrin, griseofulvin, penicillin, cyclopiazonic acid, yanuthone D and
chanoclavine I (Banani et al., 2016). Similarly, the genome of A. ustus
— a rare human pathogen — was searched for the presence of known
clusters and several commonly known aspergillus SM clusters were
identified; monodictyphenone, sterigmatocystin, emericellamide, fer-
ricrocin and asperthecin. In addition a putative cluster for vir-
idicatumtoxin not previously identified in Aspergillus species was also
identified in Aspergillus ustus (Pi et al., 2015). A homology search ap-
proach (based on ClusterBLAST module embedded within FungiSMASH
Blin et al., 2017) was also applied in the investigation of the lichen,
Cladonia uncialis. This revealed genes homologous to the lichen meta-
bolite grayanic acid from C. grayi as well as clusters likely encoding
fungal SMs not identified in lichens before such as patulin and betae-
nones AC (Bertrand et al., 2018).

3.2. Retro in silico biosynthesis

In strategy 2, based on in silico retro-biosynthesis, a biosynthetic
genes cluster producing a specific compound is identified by deducing
what enzyme activities are needed to produce the compound and
searching the genome for those activities (Fig. 3). The stating point is
thus the chemically characterized secondary metabolite combined with
knowledge of secondary metabolite biosynthesis and an annotated
whole genome sequence.

The anticancer lipopeptide, scopularide A, is produced by a marine-
derived Scopulariopsis brevicaulis and the chemical structure consists of
a reduced carbon chain coupled to five amino acids. The SM is struc-
turally related to emericellamide A and W493-B from A. nidulans and F.
pseudograminearum, respectively. After the sequencing of S. brevicaulis,
Lukassen et al. wanted to identify the cluster responsible for scopu-
laride A production in order to optimize the production. This was done
primarily based on a retro-biosynthetic approach supported by homo-
logous comparisons. By combining the knowledge of the structure with
predicted BGCs it was possible to identify genes encoding the SM, a
NRPS with five modules and a reducing PKS. The identified genes also
showed homology to the clusters for the structurally related SMs
emericellamide A and W493-B. The putative cluster included a pre-
dicted TF. To further support the prediction and to improve the

production of scopularide A the TF was overexpressed which sig-
nificantly increased the production of scopularide A thus indirectly
verifying the prediction (Lukassen et al., 2015).

A retro-biosynthesis-based approach was also used in the identifi-
cation of the putative usnic acid cluster in the lichen fungal partner of
Cladonia uncialis (Abdel-Hameed et al., 2016). After de novo sequencing
of C. uncialis, the genome was mined for PKS genes. From the structure
of usnic acid and an earlier labelling experiment, it was suggested that
usinic acid biosynthesis requires a non-reducing PKS including a me-
thylation domain and a terminal Claisen cyclase (CLC) domain plus an
oxidative tailoring enzyme, most likely a cytochrome P450. Based on
this information, the predicted PKS clusters were screened, and only
one matched the requirements. To further support the prediction,
transcriptional analysis of the genes was performed under conditions
where only usnic acid was produced, which confirmed that the iden-
tified genes were transcriptionally active.

Khater et al. have attempted to develop a computational protocol
based on the concept of retro-biosynthesis to reconstruct biosynthetic
pathways of polyketides and nonribosomal peptides (Khater et al.,
2016). The aim is to predict the enzymes and the gene functions in-
volved in the biosynthesis of a certain SM and thus be able to predict
and identify the responsible BGC in an automated manner. The devel-
oped approach was tested based on 78 experimentally characterized
secondary metabolites (51 PKS/HYBRID, 27 NRPS), here it was able to
predict 37% correctly, 13% with minor errors, 24% partially correct
and 26% incorrectly. The predictive methods are still in the early stage
and need more knowledge of the mechanisms behind the secondary
metabolite production and development but it has the potential to be-
come a very powerful tool in the future.

3.3. Comparative genomics

In strategy 3, based on comparative genomics, biosynthetic gene
clusters producing a specific compound are identified by comparing the
genomes of a set of organisms producing the compound of interest
(Fig. 3). The starting point is thus a list of whole genome sequenced
organisms producing the compound of interest, the exact chemical
structure is not required. The species used could for instance be dis-
tantly related species producing the same SM or closely related species
sharing a high degree of secondary metabolism, but not the SM of in-
terest. This way the presence/absence pattern of the SM can be used to
search for similar patterns of BGCs across the full genome sequence.
This could be of interest when a bioactive compound of pharmaceutical
interest is known to exist, but the biosynthetic pathway and the BGC is
not. The advantage of this strategy is that no knowledge about the
biosynthetic gene cluster is needed nor the chemical structure of the
compound, only a set of organisms with a specific pattern of producing/
not producing a specific compound and their genomes are required.
One thing to be aware of is that non-producers could have silent clusters
and therefore a chemical negative should not be taken as an absolute,
but rather an indication. Currently this strategy has only been applied
on a limited scale but as more and more species are sequenced, we
expect that the comparative analysis will expand and more sophisti-
cated methods will develop.

The identification of the viridicatumtoxin and griseofulvin gene
clusters in Penicillium aethiopicum was accomplished using such com-
parative genomics strategies: P. aethiopicum was sequenced and com-
pared to the Penicillium chrysogenum genome which is a closely related
species but it does not produce the SMs of interest. This way 9 out of 30
predicted PKSs could be ruled out due to homology between them. To
further narrow it down, retro-biosynthetic methods was used to identify
the most likely kind of PKS and to the check that the surrounding genes
match the expected tailoring enzymes. This way candidate clusters for
both SMs were identified and these were verified by gene deletion and
RNA silencing (Chooi et al., 2010).

The biosynthetic clusters of the (+)/(-)-notoamide,
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paraherquamide and malbrancheamide pathways (all based on bicyclo
[2.2.2]diazaoctane indole alkaloid core) were identified based on
homology search and comparative genomics. The genomes of A. versi-
color NRRL35600, P. fellutanum ATCC20841, and M. aurantiaca were
sequenced and the (-) notoamide cluster known from Aspergillus sp.
MF297-2 (Ding et al., 2010) was used to search for homologs in the
newly sequenced species (Li et al., 2012). Comparison of the identified
clusters led to the identification of genes responsible in the formation of
the bicyclo[2.2.2]diazaoctane core along with specific enzymes re-
sponsible for specific differences in the chemical structures (Li et al.,
2012).

The malformin BGC was also identified using comparative genomics
in combination with retrobiosynthesis. Three Aspergillus section Nigri
species are known to produce malformin and these were searched for
predicted BGC clusters matching the functions expected based on ret-
robiosynthesis of the compound. This way a candidate cluster was
identified and experimentally verified (Theobald et al., 2018).

Comparative genomics strategies are often used with a combination
of retro-biosynthesis and/or homology search, again showing that a
combination of strategies is most often needed to establish the links
between SM and gene clusters.

4. Conclusion

Many strategies have been developed and employed in the quest to
link secondary metabolites to their biosynthetic gene clusters and vice
versa. As the technologies and tools continue to evolve and we gain a
deeper understanding of the mechanisms behind secondary metabolite
production the speed and efficiency of linking SM and clusters will
increase.

We see three major areas of advancement in the near future. Firstly,
molecular tools (such as CRISPR) are quickly developing, making it
feasible to work with many different species and thereby making it
possible to conduct analysis in the native species. We will therefore see
more studies from non-model organisms. Secondly, as the price of de
novo synthesis of DNA is rapidly decreasing heterologous expression of
silent clusters will become easier, opening for larger high throughput
screening studies. Thirdly, with the increasing number of whole
genome sequences and knowledge of secondary metabolism more
comparative genomics approaches will be used and advanced bioin-
formatic tools will emerge making more accurate and more advanced
predictions.
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