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Abstract: African swine fever (ASF) is a severe disease of suids caused by African swine fever virus 
(ASFV). Its dsDNA genome (170–194 kbp) is scattered with homopolymers and repeats as well as 
inverted-terminal-repeats (ITR), which hamper whole-genome sequencing. To date, only a few 
genome sequences have been published and only for some are data on sequence quality available 
enabling in-depth investigations. Especially in Europe and Asia, where ASFV has continuously spread 
since its introduction into Georgia in 2007, a very low genetic variability of the circulating ASFV-strains 
was reported. Therefore, only whole-genome sequences can serve as a basis for detailed virus 
comparisons. Here, we report an effective workflow, combining target enrichment, Illumina and 
Nanopore sequencing for ASFV whole-genome sequencing. Following this approach, we generated an 
improved high-quality ASFV Georgia 2007/1 whole-genome sequence leading to the correction of 71 
sequencing errors and the addition of 956 and 231 bp at the respective ITRs. This genome, derived 
from the primary outbreak in 2007, can now serve as a reference for future whole-genome analyses of 
related ASFV strains and molecular approaches. Using both workflow and the reference genome, we 
generated the first ASFV-whole-genome sequence from Moldova, expanding the sequence knowledge 
from Eastern Europe. 

Keywords: African swine fever virus (ASFV); next-generation sequencing (NGS); whole-genome 
sequencing; Nanopore sequencing; target enrichment 

 

1. Introduction 

Over the last decade, tremendous progress has been made in the field of DNA sequencing [1]. With 
the introduction of modern next-generation sequencing (NGS) platforms—e.g., Roche 454, Illumina, Ion 
Torrent and PacBio—the amount of generated sequences has dramatically increased while the costs 



Viruses 2019, 11, 846 2 of 18 

 

have rapidly decreased [1,2]. Especially in the field of emerging infectious diseases, whole-genome 
sequencing using NGS has become an essential and widespread tool in understanding molecular 
epidemiology and pathogen evolution [3,4]. 

One emerging animal pathogen for which the need for whole-genome sequences has massively 
increased in recent years is African swine fever virus (ASFV) [5]. 

ASFV was first described and is endemic in sub-Saharan Africa [6] where it can be detected in wild 
African suids—e.g., forest hog, red river hog and bushpigs—and is transmitted in a sylvatic cycle 
between warthogs and Ornithodoros soft ticks [7]. Since only distantly related giant viruses with double-
stranded DNA genomes are known so far, ASFV is the only member of its genus Asfivirus and family 
Asfarviridae [5]. ASFV causes a disease in domestic pigs and European wild boar called African swine 
fever (ASF), which is characterised by high fever, haemorrhages, respiratory, gastro-intestinal and 
neurological signs and cyanosis [8,9]. The animals show a lethality of up to 100% depending on the 
strain-specific virulence and usually succumb to the infection within 7 to 10 days after infection [9]. 
Neither vaccines nor treatments are available [10]; thus, stopping ASFV spread relies solely on strict 
quarantine measures including the culling of infected herds, establishment of restriction zones and 
movement control leading to enormous socio-economic consequences in affected countries [11,12]. 

From Africa, ASFV was introduced into Europe (Portugal) two times and subsequently spread to 
other European countries; e.g. Spain, France, Italy, Belgium and the Netherlands [13,14]. After the virus 
was eradicated from most affected countries (with the exception of Sardinia, where ASFV is still 
endemic) [11], ASFV was reintroduced in Georgia in 2007 [15]. Since then, the virus has subsequently 
spread through wild boar and domestic pig populations of Eastern Europe (Georgia, Armenia, Russia, 
Belarus, Moldova, Ukraine) [13,16–18] and the European Union (Bulgaria, Hungary, Czech Republic, 
Slovakia, Romania, Estonia, Latvia, Lithuania and Poland) [18]. More recently, the virus spread to 
Western Europe (Belgium) [19] and reached Asia, causing devastating outbreaks (China, Cambodia, 
Mongolia, Vietnam, North Korea, Laos and Myanmar) [13,20]. 

The sequencing of partial genomes by Sanger sequencing has been used for decades to identify 
viral genotypes and trace virus introductions through molecular epidemiology, especially in Africa 
where ASFV is widely distributed and different genotypes occur [21–27]. The viral genome consists of 
one linear molecule of double-stranded DNA with a length of 170–194 kbp [28]. It shows a low mutation 
rate typical for DNA viruses that leads to a very low genetic variability, especially in close geographic 
regions [23,29,30]. However, the identification of attenuated viruses with large deletions, inversions or 
duplications as well as novel genotypes in Africa might be explained by mechanisms leading to genetic 
reorganisations such as homologous recombination, as was suggested and described for other large 
dsDNA viruses [31]. Therefore, the analysis of partial sequences quickly becomes ineffective for detailed 
analyses of phylogeny, molecular epidemiology, or virus evolution, as observed especially in Eastern 
Europe [19]. 

The first ASFV whole-genome sequence was published in 1995 and generated from the Spanish 
cell-culture-adapted ASFV strain BA71V using Sanger sequencing [32,33]. Since then, only a few 
additional genomes have been published using the same technique [34,35] (Table 1). In 2009, the first 
ASFV genome sequence was published using the Roche 454 GS FLX NGS technique in combination 
with Sanger sequencing [36]. Subsequently, different platforms have been used to generate ASFV 
whole-genome sequences including Illumina HiScanSQ, MiSeq, HiSeq, NextSeq500 and PacBio [37–46] 
(Table 1). 

Since the ASFV genome includes extensive homopolymer and repeat regions including inverted 
terminal repeats (ITR) of variable length [28], platform-specific limitations especially in homopolymer 
sequencing need to be considered [47,48]. In particular, the short read data generated by sequencing 
platforms of the second generation—e.g. Roche 454, Illumina and IonTorrent—need to be handled with 
care. Used for mapping against a reference sequence, genomic reorganisations such as inversions or 
duplications might be missed, and the quality of the consensus-sequence strongly relies on the sequence 
used as reference. Furthermore, when used for assembly, the small reads (200–300 bp) might have only 
small overlapping regions and therefore can be misassembled and—especially in homopolymer and 
repeat regions—the quality of the consensus-sequence might be low. 



Viruses 2019, 11, 846 3 of 18 

 

Therefore, data on sequence quality such as coverage, mappings and alignments are crucial to 
assess the results of whole genome sequencing and the analysis of genetic variations including single 
nucleotide variants (SNV) analyses and molecular epidemiology experiments [3]. 

In particular, reference sequences frequently used as a basis for experiments and analyses [45,49,50] 
need careful validation. Especially for ASFV, where only little data on gene expression and protein 
translation are available and most of the between 150 and 167 ORFs have only been predicted [28,37], 
reliable whole genome sequences are the basis needed for transcriptome and proteome analyses and 
up-to-date annotations. 

Here, we describe a sequencing protocol combining ASFV-specific target enrichment, Illumina 
sequencing and long-read Nanopore sequencing to generate high-quality complete ASFV genome 
sequences. We used the described protocol for resequencing of the ASFV Georgia 2007/1 genome, 
leading to the correction of 71 homopolymer errors and other sequencing artefacts, a longer ITR region 
and ultimately updated annotations [37] of the corrected genome sequence. Using this high-quality 
sequence as a reference, we used target enrichment in combination with Illumina sequencing and 
sequenced ASFV directly from organ tissue, thereby providing an ASFV whole-genome sequence from 
an outbreak in Moldova.
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Table 1. African swine fever virus (ASFV) whole-genome sequences available from public databases (status 11.03.2019). 

Number Accession 
Number ASFV Isolate Country of 

Origin 
Submission 

Date 
Collection 

Date Host P72 
Genotype 

WGS 
Publication Method Coverage 

1 NC_001659.2 BA71V Spain 1995 1967 Vero cells I [32] Sanger sequencing N/A 
2 AY261360.1 Kenya 1950 Kenya 2003 1950 Domestic pig X N/A N/A N/A 
3 AY261362.1 Mkuzi 1979 South Africa 2003 1979 Tick XII N/A N/A N/A 
4 AY261365 Warmbaths South Africa 2003 N/A Tick III / I N/A N/A N/A 

5 AY261363.1 Pretorisuskop/96/4 South Africa 2003 1996 Tick XX / I N/A N/A N/A 

6 AY261361.1 Malawi Lil-20/1 Malawi 2003 1983 Tick VIII [34] N/A N/A 
7 AY261366.1 Warthog Namibia 2003 1980 Warthog IV N/A N/A N/A 
8 AY261364.1 Tengani 62 Malawi 2003 1962 Domestic pig V / I N/A N/A N/A 
9 AM712239.1 Benin 97/1 Benin 2007 1997 Domestic pig I [35] Sanger sequencing N/A 

10 AM712240.1 OURT 88/3 Portugal 2007 1988 Domestic pig I [35] Sanger sequencing N/A 

11 FN557520.1 E75 Spain 2009 1975 Domestic pig I [36] 
 Roche 454 GS FLX, 
Sanger sequencing 

N/A 

12 FR682468.1 Georgia 2007/1 Georgia 2010 2007 Domestic pig II [37]  Roche 454 GS FLX N/A 

13 KM102979.1 26544/OG10 
Italy 

(Sardinia) 
2014 2010 Domestic pig I [46] 

Illumina HiScanSQ, 
Sanger sequencing 

20 

14 KJ747406.1 Kashino 04/13 Russia 2014 2013 Wild boar II N/A Sanger sequencing N/A 
15 KM111295.1 Ken06.Bus Kenya 2014 2006 Domestic pig X [39] Illumina HiSeq N/A 

16 KM262844.1 L60 Portugal 2014 1960 Domestic pig I [38] 
Amplicon sequencing 
on Roche 454 GS FLX, 

Sanger sequencing 
N/A 

17 KP055815.1 BA71 Spain 2014 1971 Domestic pig I [44] Sanger sequencing N/A 

18 KM262845.1 NHV Spain 2014 1968 Domestic pig I [38] 
Amplicon sequencing 
on Roche 454 GS FLX, 

Sanger sequencing 
N/A 
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19 KM111294.1 Ken05/Tk1 Kenya 2015 2005 Tick IX [39] Illumina HiSeq N/A 
20 KP843857.1 Odintsovo_02/14 Russia 2015 2014 Wild boar II N/A  Roche 454 GS FLX N/A 

21 LP643842.1 Patent WO2015091322 N/A 2015 N/A N/A N/A N/A N/A N/A 

22 KX354450.1 47/Ss/2008 
Italy 

(Sardinia) 
2016 2008 Domestic pig I [40] Illumina MiSeq; PacBio N/A 

23 MG939585.1 Pol16_20540_o10 Poland 2018 2016/2017 Sus scrofa II [51] Illumina MiSeq 20-40 
24 MG939587.1 Pol17_03029_C201 Poland 2018 2016/2017 Sus scrofa II [51] Illumina MiSeq 20-40 
25 MG939583.1 Pol16_20186_o7 Poland 2018 2016/2017 Sus scrofa II [51] Illumina MiSeq 20-40 
26 MG939588.1 Pol17_04461_C210 Poland 2018 2016/2017 Sus scrofa II [51] Illumina MiSeq 20-40 
27 MG939584.1 Pol16_20538_o9 Poland 2018 2016/2017 Sus scrofa II [51] Illumina MiSeq 20-40 
28 MG939586.1 Pol16_29413_o23 Poland 2018 2016/2017 Sus scrofa II [51] Illumina MiSeq 20-40 
29 MG939589.1 Pol17_05838_C220 Poland 2018 2016/2017 Sus scrofa II [51] Illumina MiSeq 20-40 

30 MH681419.1 ASFV/POL/2015/Podlaskie Poland 2018 2015 Wild boar II [41] Illumina MiSeq 103 

31 MH766894.1 ASFV-SY18 China 2018 2018 Domestic pig II N/A N/A N/A 
32 MH025918.1 R25 Uganda 2018 2015 Domestic pig IX [42] Illumina NextSeq 500 869 
33 MH025920.1 R35 Uganda 2018 2015 Domestic pig IX [42] Illumina NextSeq 500 1487 
34 MH025917.1 R7 Uganda 2018 2015 Domestic pig IX [42] Illumina NextSeq 500 439 
35 MH025916.1 R8 Uganda 2018 2015 Domestic pig IX [42] Illumina NextSeq 500 309 
36 MH025919.1 N10 Uganda 2018 2015 Domestic pig IX [42] Illumina NextSeq 500 23 
37 LS478113.1 Estonia 2014 Estonia 2018 2014 Domestic pig II [43] Illumina MiSeq 100 
38 MH910495.1 Georgia 2008/1 Georgia 2018 2008 Domestic pig II [45] Illumina MiSeq 8.5 
39 MH910496.1 Georgia 2008/2 Georgia 2018 2008 Domestic pig II [45] Illumina MiSeq 118 
40 MK128995.1 China/2018/AnhuiXCGQ China 2019 2018 Domestic pig II [52] BGISEQ-500 271 
41 LR536725.1 Belgium 2018/1 Belgium 2019 2018 Wild Boar II [53] Illumina MiSeq 292 

N/A: data not available; WGS: whole-genome sequence. 



Viruses 2019, 11, 846 6 of 18 

 

2. Materials and Methods 

2.1. Virus Cultivation 

The original ASFV Georgia 2007/1 isolate from Georgia reported in 2011 [37] was passaged once 
on porcine bone marrow cells (PBMs) prior to sequencing. 

To generate high molecular weight (HMW)-DNA to facilitate long reads through Nanopore 
sequencing, ASFV Georgia 2007/1 was passaged a second time on porcine primary peripheral blood 
monocytes (PBMCs) as described elsewhere [54]. 

2.2. DNA Extraction 

For Illumina sequencing, DNA was extracted from PBMC cell culture supernatant using the 
NucleoMag® VET Kit (Macherey Nagel, Düren, Germany) according to the manufacturer’s instructions. 

The Moldovan organ sample (spleen), collected from infected domestic pigs, was homogenised in 
a 2 mL reaction tube containing one 5 mm steel bead and 200 µL phosphate buffered saline (PBS) in a 
TissueLyser II (Qiagen, Hilden, Germany) for 3 min at 30 Hz. After centrifugation at 10,000× g for 3 min, 
DNA was extracted from the supernatant as described above. 

For Nanopore sequencing, HMW-DNA was extracted using a customised protocol. PBMCs [54] 
were infected with ASFV Georgia 2007/1 at an MOI of 0.1 and harvested after 24 h. After one freeze-
thaw-cycle of infected PBMCs, cell debris was removed by centrifugation at 1000× g for 10 min at 4 °C 
and the virus particles were concentrated using ultracentrifugation through a sucrose cushion. Briefly, 
6 mL 40% sucrose (in PBS) were carefully overlaid with the virus-containing supernatant (30 mL) and 
centrifuged for one hour at 50,000× g at 4 °C. The resulting pellet was resuspended in 100 µL PBS and 
heat-inactivated for 30 min at 75 °C. Subsequently, the virus suspension was mixed with 3 mL TEN 
buffer (40 mM Tris-HCl, 1 mM EDTA pH 8.0, 150 mM NaCl) and 1.5 mL sarcosyl buffer (3% sodium 
lauroyl sarcosinate, 75 mM Tris-HCl pH 8.0, 25 mM EDTA) and incubated at 65 °C for 15 min. The DNA 
was extracted using equal volumes of phenol (Roth) in a first step, phenol/chloroform/isoamyl alcohol 
(Roth) in a second step and finally chloroform (Roth)/isoamyl alcohol (Merck) (24:1) in a final step. 
Precipitation of the DNA was carried out using 0.1 volumes of sodium acetate buffer (3 M, pH 4.8) and 
2.5 volumes of ethanol at −20 °C for 16 h. The precipitated DNA was pelleted and washed with 70% 
ethanol and air-dried before final resuspension in 70 µL EB buffer (Qiagen). 

2.3. Illumina Sequencing 

Samples were prepared for and analysed on an Illumina MiSeq platform in the 300 bp paired-end 
mode, as previously described [55]. 

2.4. Nanopore Sequencing 

Library preparation was carried out using the Rapid Barcoding Sequencing Kit (SQK-RBK004, 
Oxford Nanopore Technologies, Oxford, UK) according to the manufacturer’s instructions. The finished 
library was loaded onto a R9.5.1 MinION flow cell (FLO-MIN107, Oxford Nanopore Technologies). 
Sequencing was conducted under the standard settings using a MinION (Mk1B, Oxford Nanopore 
Technologies) in combination with a MinIT (MNT-001, Oxford Nanopore Technologies). Signal 
information (fast5) was basecalled with MinIT and Guppy v2.1.3 (Oxford Nanopore Technologies). 

2.5. Target Enrichment 

For the enrichment of ASFV-specific sequences prior to Illumina MiSeq sequencing, the myBaits® 
kit with 1–20K unique baits (Arbor Bioscience, Ann Arbor, MI, USA) was used according to the 
manufacturer’s instructions (Figure 1). Briefly, RNA baits (11,958 unique baits) were designed in silico 
to cover the ASFV Georgia 2007/1 sequence (FR682468.1) and the ASFV Ken06.bus sequence 
(KM111295) with a three-fold coverage by Arbor Bioscience. After DNA extraction and standard library 
preparation [55], 100–500 ng of indexed libraries were heat-denatured at 95 °C and, after cooling to 
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hybridisation temperature (65 °C), adapter sequences were blocked using Illumina-specific blocking 
oligos supplied by the kit (Arbor Bioscience). Denatured and blocked libraries were combined with the 
pre-heated hybridisation mix containing the ASFV-specific biotinylated RNA-baits and incubated at the 
pre-set hybridisation temperature (65 °C) for 16 h for bait to target hybridisation. Subsequently, the 
hybridised bait–target mix was mixed with MyOne™ Streptavidin C1 beads (Thermo Fisher Scientific, 
Waltham, MA, USA). After immobilisation on a magnetic rack and washing using pre-heated washing 
buffer (65 °C), target sequences were eluted from the beads by adding 10 mM Tris-HCl, 0.05% 
TWEEN®-20 solution (pH 8.0–8.5) and incubating for 5 min at 95 °C. Enriched libraries were amplified 
using the AccuPrime™ Taq DNA Polymerase System (Thermo Fisher Scientific) according to the 
manufacturer’s instructions for 14 cycles prior to Illumina MiSeq sequencing [55]. Sequencing was 
performed using a MiSeq v3 600 cycle kit in 2 × 300 bp mode. 

 
Figure 1. Workflow for the enrichment of ASFV-specific target sequences using MyBaits® (Arbor 
Bioscience) prior to Illumina MiSeq sequencing. Extracted DNA including ASFV target sequences (red) 
is fragmented and library is prepared by adding Illumina specific sequencing adapters (yellow) (A). 
After initial denaturation (95 °C), the library is cooled to hybridisation temperature (65 °C) and adapter 
specific blocking oligos (green) are added to prevent the re-hybridisation of adapter sequences during 
bait hybridisation (B). Biotinylated ASFV-specific RNA baits are added to the blocked library, and the 
reaction is incubated at hybridisation temperature for 16 h (B). Streptavidin-coated magnetic beads are 
added and bind to biotinylated RNA baits hybridised to ASFV target sequences (C). After magnetic 
separation and washing (C), ASFV target sequences are eluted from the baits and amplified (D). ASFV 
read-enriched libraries are sequenced on an Illumina MiSeq, and the resulting data are analysed in silico 
(E). 

2.6. Data Analysis 

Sequence data from the Illumina libraries lib02645 and lib02679 were mapped against the ASFV 
Georgia 2007/1 genome sequence (FR682468.1) using the Newbler 3.0 Software (Roche, Basel, 
Switzerland), and mapped reads were assembled using SPAdes 3.11.1 [53] in the mode of read error 
correction prior to assembly. 

Basecalled fastq data from Nanopore sequencing were assembled in a hybrid assembly with the 
Illumina reads mapped to FR682468.1 (see above) using SPAdes v3.10.0. Contigs were used as a further 
reference for an iterative mapping approach using the generic mapper in Geneious v11.1.5 (Biomatters, 
Auckland, New Zealand). Regions with a coverage lower than 2.5 times standard deviations from the 
mean were excluded from consensus generation and further analysis. Nanopore fastq reads were used 
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in a mapping approach in parallel using KMA [56], applying pre-sets optimised for Nanopore reads 
sensitive for indels. Coding sequences (CDS) were predicted with Glimmer3 [52] using FR682468.1 
(ASFV Georgia 2007/1) for model generation. CDS were manually annotated and used to update INSDC 
entry FR682468.1, now available under FR6824681.2. 

Single nucleotide variants (SNVs) were determined using the generic SNP finder of the Geneious 
software suite, applying parameters of a maximum p-value of 10−5 and filter for strand bias. The 
threshold for SNP identification was set at 10% and a minimum coverage of 100 was defined. Variants 
were checked manually for accuracy. Due to the low read quality at the genome ends, variants within 
the ITR regions were not included in the analysis. Read duplicates from all data used for SNV analysis 
and coverage estimation were removed using Samtools v. 1.9 [57] prior to analysis. 

2.7. PCR and Sanger Sequencing 

For conventional PCR, Phire Green Hot Start II PCR Master Mix (Invitrogen, Carlsbad CA USA) 
and the primers 457F CGGGCCAGACAAAATTGACC and 1223R AACAGGAAATACAAGGCGGC 
were used in a peqSTAR Thermocycler (VWR, Darmstadt, Germany) with the following cycling 
conditions: 30 s at 98 °C, 35 cycles each of 10 s at 98 °C, 30 s at 64 °C, 2 min at 72 °C and final elongation 
10 min at 72 °C. Corresponding bands (751 bp) were purified from a 1.5% agarose gel with the QIAquick 
Gel Extraction Kit (Qiagen) and used for sequencing reactions (BigDye Terminator v3.1 Cycle 
Sequencing Kit, Applied Biosystems, Darmstadt, Germany). The reaction products were purified using 
NucleoSEQ columns (Macherey–Nagel) and sequenced on an ABI PRISM® 3100 Genetic Analyzer (Life 
Technologies, Darmstadt, Germany). Obtained sequences were assembled using the Geneious software, 
v11.1.5. 

2.8. Data Availability 

Whole-genome sequences are available from the International Nucleotide Sequence Database 
Collaboration (INSDC) databases under the study accession number PRJEB33279, and under the 
GenBank accession number FR682468.2. 

3. Results 

3.1. ASFV-Specific Target Enrichment Prior to Illumina Sequencing Provides High Amounts of Target Reads 

For the resequencing of ASFV Georgia 2007/1, we compared a shotgun and a target enrichment 
approach. For shotgun sequencing, two libraries were prepared and sequenced; Table 2 summarises the 
key figures of these sequencing efforts. Library lib02645 was sequenced twice on the Illumina MiSeq 
platform. The first run resulted in 1,764,078 reads, from which 8438 reads (0.48%) were identified as 
ASFV-specific by mapping and resulted in a whole-genome sequence. However, the mean coverage of 
13 was too low to assemble a reliable whole-genome sequence, especially in repeat and homopolymer 
regions. Therefore, in a second run, we sequenced 7,316,924 total reads, from which 36,670 reads were 
identified as ASFV-specific by mapping (0.5%), resulting in a whole-genome sequence with a mean 
coverage of 57 (Table 1) and leading to a better resolution. 

Using target enrichment on the shotgun lib02679 prior to sequencing, we were able to increase the 
amount of ASFV reads identified by mapping to 44,862 from 60,174 total reads (66.78%), and whole-
genome assembly was successful with a mean coverage of 57.2 (Table 1), also leading to a good 
resolution combined with less sequencing capacity. 

However, the assembly of the resulting data was complicated by the extensive repeat regions in 
the ASFV genome as shown by the drop in coverage in the specific regions (Figure 2). 

Table 2. Comparison of shotgun and target enrichment sequencing approaches for the generation of 
ASFV whole-genome sequences. 
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ASFV 
Sample 

Type 
Library 
Number 

Sequencing 
Mode 

Total 
Reads 

Total ASFV 
Reads 

% ASFV 
Reads 

Mean 
Coverage 

Georgia 
2007/1 

Cell culture 
supernatant 

lib02645 shotgun 1,764,078 8309 (8150) 0.47 (0.46) 12.7 (12.5) 

lib02645 shotgun 7,317,744 36,268 (33,454) 0.5 (0.46) 56.5 (52.1) 

lib02679 myBaits 67,174 44,862 (40,234) 66.78 (59.89) 57.2 (51.7) 

Moldova 
2017/1 

Spleen 
lib02487 myBaits 829,408 690,206 (207,763) 83.89 (25.0) 1055 (317) 

lib02577 shotgun 8,232,518 4042 (3986) 0.05 (0.048) N/A 

*Number/percentage of unique reads and coverage of the corresponding ASFV whole-genome sequence 
are given in brackets. 

 
Figure 2. Coverage of ASFV Georgia 2007/1 with ASFV-specific reads from the different sequencing 
strategies. Blue line, coverage Illumina (left axis); red line, coverage Nanopore (right axis); green line, 
coverage total (Illumina + Nanopore) (left axis). Indicated below the figure are regions showing low 
coverage due to inverted terminal repeats (ITR) or G/C homopolymer stretches (red). 

3.2. Hybrid Assembly of Nanopore and Illumina Data Provide an Improved ASFV Georgia 2007/1 Whole-
Genome Sequence with Novel Information about the Genome Length 

To overcome the limitations of short reads and to analyse the sequence of the inverted terminal 
repeat regions, long reads were generated by sequencing a library (lib02923) prepared from ASFV 
Georgia 2007/1 infected PBMCs using Nanopore sequencing. A total of 136,627 reads was generated 
with an estimated base calling accuracy of around 88.8%, and 1648 ASFV-specific Nanopore reads 
(1.20%) were identified by mapping and used for further analysis. The mean length of the used reads 
was 7881.4 nt, the median read length was 5517 nt, the N50 read length was 13,165 nt, with the longest 
read spanning was 43,474 nt (Figure S1). ASFV-specific Nanopore reads were used in a hybrid assembly 
with the ASFV-specific Illumina reads (lib02645, lib02679). The resulting contig was used as reference 
for further mapping and assembly, resulting in a new ASFV Georgia 2007/1 (FR682468.2) sequence with 
an improved overall coverage, particularly in repeat regions (Figure 2), and a length of 190,594 bp. 

With a mean coverage of 67.5-fold, Nanopore reads were found to cover 100% of the ASFV Georgia 
2007/1 reference sequence (Figures 2 and S1) using a method not adapted to the Nanopore read 
characteristics. A mapping approach using only Nanopore reads and applying an algorithm with 
parameters adapted to the specific features of these data (KMA see methods) gained a consensus with 
only four differences (99.9% identical) to the reference sequence, with differences occurring in only one 
large homopolymer region (17xC in reference; 14xC in gained consensus), underlining the potential of 
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this technique to support the assembly of large virus genomes and pointing to its constraints to dissolve 
homopolymers. 

3.3. Sequence Alignment with the Improved ASFV Genome Reveals 71 Differences in Homopolymer Regions 
and Open Reading Frames 

After gene predictions using Glimmer 3 in Geneious, the improved ASFV Georgia 2007/1 sequence 
was annotated on the basis of the available ASFV Georgia 2007/1 sequence. The annotation was 
manually checked and modified to accommodate changes in ORFs; e.g. split, fusion or truncations. 
Modified annotations include the ORFs (including small ORFs and ORFs within larger ORFs): MGF360 
1L, G ACD 00070, G ACD 00160, 285L, MGF 110-10L, MGF110-14L, MGF 110-13L, G ACD 00290, MGF 
300-2R, G ACD 01760, DP63R, MGF100-3L and MGF 360-19R (Table S1). 

Through the pairwise alignment of the original ASFV Georgia 2007/1 sequence (FR682468.1) with 
the improved ASFV Georgia 2007/1 sequence (FR682468.2), we identified 71 differences in the updated 
genome sequence leading to an overall sequence identity of 99.851%. From these differences, 58 are 
insertions or deletions (indels) in A/T homopolymer regions, seven are indels in G/C homopolymer 
regions, four are single nucleotide insertions and two are transversions. From these 71 differences, 22 
are located in predicted and annotated open reading frames (ORF) causing frame shifts, while 49 do not 
affect ORFs. From the 22 frameshifts, eight lead to a shortened ORF, four to enlargement, three to the 
fusion of two ORFs, two to the split into two ORFs and five to the variation of codons in an ORF (Table 
S1). Altogether, 13 changes affect ORFs previously shown to be expressed including the CP204L and 
KP177R ORFs coding for the structural proteins P30 (CP204L) and P22 (KP177R), A151R, C84L, QP383R, 
three members of the MGFs 110 and 360 and the small ORFs ASFV G ACD 00290, 350, 01760 (Table S1). 
These differences to ASFV Georgia 2007/1 (FR682468.1) can also be identified in the published whole-
genome sequences of ASFV Estonia 2014 [43], ASFV-POL/2015/Podlaskie [41] and ASFV Belgium 2018/1 
[53] and are in agreement with differences to ASFV Georgia 2007/1 described in ASFV China [52], ASFV 
Georgia 2008 [45] and ASFV Poland [51]. 

As another important result, we were able to expand the 5’-ITR region of ASFV Georgia 2007/1 by 
956 bp and the 3’-ITR region by 231 bp leading to a total length of 1378 bp of each ITR region, the 
annotation of the ORFs DP60R and ASFV G ACD 01990 at both ITR regions and a total genome length 
of 190,594 bp (Table S1). 

For validation of the in silico assemblies, the junction at the 5’ ITR was confirmed by PCR and 
Sanger sequencing. 

3.4. Application of Target Enrichment Prior to Illumina Sequencing Enabled Whole-Genome Assembly of ASFV 
Moldova from Organ Samples Using the New Improved Sequence as Reference 

Sequencing spleen samples from an ASFV infected pig from Moldova using a shotgun sequencing 
approach, we generated 8,232,518 reads, from which only 0.05% were ASFV-specific. However, the total 
amount of 4042 reads was not sufficient to generate a whole-genome sequence, neither by mapping nor 
by assembly (Table 1). By using the established target enrichment protocol on a shotgun library prior to 
sequencing, we were able to increase the amount of ASFV-specific reads to 690,206 (83.89%), from which 
207,763 (25.0%) were unique. Mapping these data against the improved reference sequence (ASFV 
Georgia 2007/1—FR682468.2) and using SPAdes for the assembly, we were able to generate a whole-
genome sequence of ASFV Moldova 2017/1 with a mean unique coverage of 317 (Table 1). 

3.5. Variant Analysis Reveals Possible Single Nucleotide Polymorphisms 

By mapping all data from ASFV Georgia 2007/1 libraries against the improved ASFV Georgia 
2007/1 consensus sequence, we identified 49 locations with nucleotide variant frequencies of more than 
10%. From these, 30 are located within 21 annotated ASFV-ORFs, leading to 26 amino acid substitutions, 
one truncation and one extension, while two do not change the corresponding amino acid. While the 
observed variant frequency is below 15% at 44 positions, we observed frequencies between 17.6% and 
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29.3% at positions 2963, 12,525 and 176,519. In addition, we observed frequencies in two poly G/C 
homopolymer regions of 40.8% and 47.7% (Table S3). 

For ASFV Moldova 2017/1, we identified 12 locations with nucleotide variant frequencies of more 
than 10%. From these, eight are located within seven annotated ORFs leading to frameshifts in six, a 
substitution and corresponding amino acid change in one and a silent mutation in another case (Table 
S4). 

3.6. Alignment of ASFV Moldova 2017/1 and ASFV Georgia 2007/1 Reveals Only Single Nucleotide 
Differences and a Tandem Repeat Variation 

Comparing the ASFV Moldova 2017/1 genome with the improved ASFV Georgia 2007/1 sequence, 
we identified an overall sequence identity of 99.98% and 11 locations showing differences in single 
nucleotides (Table S2). From these 11 locations, five were insertions or deletions in A/T homopolymer 
regions, three nucleotide transversions and three transitions. While four were located in non-coding 
regions, five are non-synonymous, leading to a codon change in annotated genes. From these, one leads 
to a stop codon integration causing the truncation of the MGF-110 1L ORF by 18 codons from the 5’-end 
(Table S2) not affecting the predicted endoplasmic reticulum retention motif [58]. Furthermore, one 
leads to a frameshift, causing the variation of 23 and addition of five codons of the DP60R ORFs 5’-end 
as previously described in other whole-genome sequences from Eastern Europe [51] (Table S2). In 
addition, we identified the integration of a 10 bp repeat in the previously described variable tandem 
repeat region between I73L and I329L [59] as well as differences in four non-coding poly G/C regions 
(Table S2). Comparing these differences with all available Eastern European whole-genome sequences, 
only three of these differences were found exclusively in the genome sequence of ASFV Moldova 2017/1 
(Table S2). 

3.7. Alignment and Phylogenetic Reconstruction of All Available ASFV Whole-Genome Sequences Shows a 
Very High Overall Nucleotide Sequence Identity of All Eurasian Strains 

The alignment of all available ASFV whole-genome sequences revealed an overall nucleotide 
sequence identity of all Asian, Western and Eastern European whole genome sequences of over 99.9%. 
This high degree of identity is also shown by phylogenetic analysis; e.g. the resulting phylogenetic tree 
(Figure 3). While ASFV Moldova 2017/1 showed the highest nucleotide sequence identity to ASFV 
Belgium 2018/1 (99.99%), ASFV Georgia 2007/1 was most similar to ASFV Moldova 2017/1 and 
ASFV_Pol16_29413 _o23_ MG939586 (99.98%). 
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Figure 3. Phylogenetic tree showing all available ASFV whole-genome sequences. The maximum-
likelihood (ML) tree was constructed using IQ-TREE v1.6.5 based on MAFFT v7.388 aligned ASFV 
whole-genome sequences. Standard model selection was used, resulting in the best-fit model K3Pu + F 
+ R3 (three substitution types model + empirical base frequencies + FreeRate model with 3 categories). 
Statistical support of 10,000 ultrafast bootstraps is indicated at the nodes. Taxon names include, where 
available, ASFV-designation and INSDC accession number. 

4. Discussion 

In this study, we used a combined workflow including target enrichment, Illumina and Nanopore 
sequencing (Figure 4) for the resequencing of the ASFV Georgia 2007/1 isolate representing the first 
ASFV introduced into Eastern Europe in 2007. 

Since the ASFV strains circulating in Eastern Europe and Asia are highly similar (Figure 3), 
molecular epidemiology analyses will rely on small changes and even single nucleotide variations. 
Therefore, the availability of high-quality sequences and the sharing of raw data as well as data on 
alignments and mappings is highly desirable to evaluate the quality of a sequence prior to analysis and 
search for a distinct pattern that could help to draw spatial and temporal conclusions. 

With the use of ASFV target-specific enrichment prior to sequencing, we were able to increase the 
amount of target-specific reads allowing for whole-genome assembly while reducing the total number 
of reads considerably. As shown by our sequencing results, target-specific enrichment is especially 
useful when sequencing samples with a low virus to host ratio—e.g. organ tissue (Figure 4)—while 
samples with higher virus to host ratio—e.g. cell culture supernatant—do not necessarily call for 
enrichment (Figure 4). 

However, since target-specific enrichment is performed using a bait set designed on known 
sequences, the enrichment and therefore the sequencing is limited to these. Although a hybridisation of 
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baits to target sequences showing up to 90% identity can be expected [58], regions with extensive genetic 
variations or longer insertions might be missed. Therefore, bait sets should be designed carefully for the 
corresponding scientific question; e.g. specific sets for the whole-genome assembly of known viral 
genomes or sets including different genome variants for a broader enrichment. Furthermore, 
hybridisation parameters—e.g. temperature—can be optimised to include sequence variants [60]. In 
addition, the bias introduced by the amplification needed to generate the size of the library required for 
sequencing must be considered, especially when working on samples with a very low amount of target-
specific sequences, and corresponding datasets need to be de-duplicated prior to analysis. 

Since the ASFV genome includes extensive repeat regions, ITRs of unknown length and 
homopolymer regions with up to 17 C and 16 G, even data from target enrichment approaches have 
proven difficult for the de novo assembly of a high-quality reference sequence (Figure 2). 

Through the employment of single molecule Nanopore sequencing (Figure 4), we were able to 
generate long viral reads of up to 43.5 kb. However, the low accuracy of the Nanopore reads (see above) 
hampers precise consensus sequence generation. While Nanopore reads reach an accuracy of around 
90%, Illumina data sets usually have accuracies around 99.9%. Hence, the higher accuracy of the 
Illumina data sets can be used for better precision, whereas the Nanopore reads can be taken for correct 
assembly. Therefore, using these in a hybrid assembly, we were able to further improve the sequence 
quality, especially in the ITR regions. Although we were able to enlarge the ITR regions considerably, 
because of the decreasing sequence coverage at the ends, we cannot exclude the possibility that they are 
even longer. Due to their proposed involvement in ASFV replication involving head to head 
concatemers [61] (similar to poxviruses [62]), a complete sequence of the ITR regions including the 
terminal hairpin loops [63] would be especially interesting. 

In our opinion, the presented workflows offer the best possible quality of ASFV sequences using 
the technology available to date. The sequences presented here are therefore of a reference nature and 
improve the analysis of additional ASFV sequences by far. Nonetheless, even with the combination of 
Nanopore and Illumina reads in a hybrid assembly, the sequencing of the poly G/C homopolymer 
regions has proven to be difficult, and we can neither completely exclude the existence of viral variants 
nor sequencing or bioinformatics artefacts, respectively. Therefore, it remains speculative if these 
homopolymer stretches might be involved in differential gene expression (maybe in the arthropod 
vector) or other unknown mechanisms, as might be suggested by the observed fusion or split of ORFs 
depending on the length of the homopolymer regions. 

For all sequencing platforms, their specific sequencing limitations always need to be considered. 
For the 454 technology used for the generation of the original ASFV Georgia 2007/1 sequence 
(FR682468.1), limitations especially in sequencing homopolymer regions are well known [64]. Therefore, 
it is not surprising that we discovered numerous differences between the original and the improved 
sequence in A/T homopolymer regions, as also identified previously [41]. Since even the most recently 
developed sequencing technologies have their limitations, as shown by the evaluation of the IonTorrent 
and Illumina systems especially for homopolymer sequencing [64–66], selecting the adequate 
sequencing platform is crucial for each scientific question and should be done carefully. Furthermore, 
sequence information from the database should be evaluated thoroughly using the available 
information on the employed sequencing platform and data analysis prior to their use in experimental 
designs or bioinformatic analyses. 

Using the ASFV-specific target enrichment prior to sequencing and the now available improved 
ASFV Georgia 2007/1 sequence as a reference, we could easily provide a reliable whole-genome 
sequence for ASFV Moldova 2017/1 from organ material without prior need for virus cultivation (Figure 
4B). While the overall nucleotide sequence identity is more than 99.9% similar to the circulating ASFV 
strains from Eastern Europe and Asia, only a few single differences in nucleotides as well as a previously 
described tandem repeat insertion could be observed. However, the observed nucleotide differences, 
together with the available whole-genome sequence information, unfortunately do not allow for any 
further conclusions regarding phylogenetic or geographic relationships. 

Although some of the single nucleotide changes in ASFV Georgia 2007/1 and ASFV Moldova 2017/1 
reported in this study affect annotated ORFs, due to the lack of expression data for most of the ASFV 
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ORFs and the lack of observations of virus attenuation from the field, no conclusion regarding their 
influence on virus replication or pathogenicity can be given. Therefore, transcriptome and proteome 
studies and infection experiments are needed to validate and update annotations, evaluate the influence 
of these changes on the viral phenotype and identify essential viral genes that might serve as targets for 
vaccine development (e.g., epitopes for T- or B-cells). 

However, analysing SNVs in the viral genomes, we detected a clear difference in the number of 
SNVs. While we identified 49 SNVs in ASFV Georgia 2007/1, only 12 were detected in ASFV Moldova 
2017/1. Since ASFV Georgia 2017/1 was passaged and sequenced from cell culture while ASFV Moldova 
2017/1 was sequenced directly from organ material, it might be hypothesised that SNVs accumulate in 
cell culture-raised ASFV as was suggested for other viruses [67–69]. However, this observation might 
be influenced by the differences in coverage at the SNV sites, and although ASFV Moldova 2017/1 has 
a higher coverage, which should lead to a higher number of SNVs and a low sample size, further 
experiments with cell culture and field samples will be essential to confirm this hypothesis. In addition, 
more data on SNV in ASFV populations might be used in fine-tuning the intra-genotype phylogeny 
[70]. 

In conclusion, we used a workflow including target enrichment and Nanopore sequencing to 
provide an improved genomic sequence of ASFV Georgia 2007/1 (FR682468.2). Using this sequence as 
a reference, we subsequently generated the first whole-genome sequence from ASFV Moldova 2017/1, 
and showed that it is highly similar to the known circulating strains, showing only a few specific 
differences in single nucleotides from which only three seem to be specific for ASFV Moldova 2017/1. 

We believe that our deep-sequencing workflow for ASFV and the provided reference sequences 
will be highly valuable to generate further high-quality ASFV whole-genome sequences and can serve 
as a basis for variant, transcriptome and proteome analyses. We are convinced that these sequences, 
along with coordinated efforts to improve data sharing and harmonised protocols, might pave the way 
for the identification of the new genetic markers that are desperately needed to understand virus 
evolution and trace routes of ASFV to eliminate the burden of this devastating animal disease. 

 
Figure 4. Comparison of sequencing workflows used in this study. (A) Overview of the possible 
strategies tested here for sequencing. (1) Illumina shotgun library preparation plus target enrichment 
prior to Illumina sequencing; (2) pure Illumina shotgun sequencing; (3) Nanopore sequencing. (B) 
Decision tree derived from the experiences in this study. Depending on the known or expected virus/host 
ratio and genome complexity, different workflows should be chosen. In this study, ASFV Georgia 2007/1 
was treated as being a low virus/host ratio and high genome complexity sample and hence was 
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sequenced according to all strategies (1/2/3), while ASFV Moldova 2017/1 had a low virus/host ratio but 
a suitable reference sequence was available, and hence target enrichment was sufficient, so only 
workflow (1) had to be applied. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: Read length 
distribution of ASFV-specific ONT reads and mapping positions on the ASFV Georgia 2007/1 genome. Table S1: 
Comparison of ASFV Georgia 20007/1 FR682468.1 with ASFV Georgia 2007/1 FR682468.2. Table S2: Comparison of 
ASFV Moldova2017/1 and ASFV Georgia 2007/1 FR682468.2. Table S3: Single nucleotide variant analysis of ASFV 
Georgia 2007/1. Table S4: Single nucleotide variant analysis of ASFV Moldova 2017/1. 
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61. Rojo, G.; Garcıá-Beato, R.; Viñuela, E.; Salas, M.L.; Salas, J. Replication of African Swine Fever Virus DNA in 
Infected Cells. Virology 1999, 257, 524–536. 

62. Du, S.; Traktman, P. Vaccinia virus DNA replication: Two hundred base pairs of telomeric sequence confer 
optimal replication efficiency on minichromosome templates. Proc. Natl. Acad. Sci. USA 1996, 93, 9693–9698. 

63. Gonzalez, A.; Talavera, A.; Almendral, J.M.; Vinuela, E. Hairpin Loop Structure of African Swine Fever Virus-
DNA. Nucleic Acids Res. 1986, 14, 6835–6844. 

64. Loman, N.J.; Misra, R.V.; Dallman, T.J.; Constantinidou, C.; Gharbia, S.E.; Wain, J.; Pallen, M.J. Performance 
comparison of benchtop high-throughput sequencing platforms. Nat. Biotechnol. 2012, 30, 434–439. 

65. Schirmer, M.; D'Amore, R.; Ijaz, U.Z.; Hall, N.; Quince, C. Illumina error profiles: Resolving fine-scale variation 
in metagenomic sequencing data. BMC Bioinform. 2016, 17, 125. 

66. Minoche, A.E.; Dohm, J.C.; Himmelbauer, H. Evaluation of genomic high-throughput sequencing data 
generated on Illumina HiSeq and genome analyzer systems. Genome Biol. 2011, 12, R112. 

67. Bonnaud, E.M.; Troupin, C.; Dacheux, L.; Holmes, E.C.; Monchatre-Leroy, E.; Tanguy, M.; Bouchier, C.; 
Cliquet, F.; Barrat, J.; Bourhy, H. Comparison of intra- and inter-host genetic diversity in rabies virus during 
experimental cross-species transmission. PLoS Pathog. 2019, 15, e1007799. 

68. Renner, D.W.; Szpara, M.L. Impacts of Genome-Wide Analyses on Our Understanding of Human Herpesvirus 
Diversity and Evolution. J. Virol. 2018, 92, e00908-17. 

69. Gong, Y.N.; Tsao, K.C.; Chen, G.W.; Wu, C.J.; Chen, Y.H.; Liu, Y.C.; Yang, S.L.; Huang, Y.C.; Shih, S.R. 
Population dynamics at neuraminidase position 151 of influenza A (H1N1)pdm09 virus in clinical specimens. 
J. Gen. Virol. 2019, 100, 752–759. 

70. Höper, D.; Freuling, C.M.; Müller, T.; Hanke, D.; von Messling, V.; Duchow, K.; Beer, M.; Mettenleiter, T.C. 
High definition viral vaccine strain identity and stability testing using full-genome population data—The next 
generation of vaccine quality control. Vaccine 2015, 33, 5829–5837. 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under 
the terms and conditions of the Creative Commons Attribution (CC BY) license 
(http://creativecommons.org/licenses/by/4.0/). 


