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Simulation of the ultrafast excited-state dynamics and elastic X-ray scattering of the [Fe(bmip)2]2+ (bmip
= 2,6-bis(3-methyl-imidazole-1-ylidine)-4-pyridine) complex is presented and analyzed. We hereby employ
5-dimensional quantum wavepacket dynamics simulations on time-dependent density functional theory (TD-
DFT) potential energy surfaces (PESs) for 26 coupled diabatic states. In the case of resonant excitation
into singlet metal-to-ligand charge transfer (1MLCT) states, kinetic (exponential) population dynamics are
observed with small nuclear motion. In agreement with transient optical absorption spectroscopy experiments,
we observe a subpicosecond 1MLCT→ 3MLCT intersystem crossing and subsequent decay into triplet metal-
centered (3MC) states on a picosecond timescale. The simulated time-resolved (TR) difference scattering
signal is dominated by the 3MC component, for which the structural distortions are significant. On the other
hand, excitation into 1MC states leads to ballistic (non-exponential) population dynamics with strong nuclear
motion. The reason for these ballistic dynamics is that in this case, the excitation occurs in a nonequilibrium
position, i.e., far from the minimum of the 1MC PES. This results in wavepacket dynamics along the principal
breathing mode, which is clearly visible in both the population dynamics and difference scattering. Finally,
the importance of decomposing the difference scattering into component by electronic states is highlighted,
which information is not accessible from elastic X-ray scattering experiments.

Keywords: quantum dynamics, X-ray scattering, excited-state dynamics, MCTDH

I. INTRODUCTION

Photoinduced dynamics between electronically excited
states1 are ubiquitous across the fields of physics, chem-
istry, and even biology.2–4 A considerable amount of re-
search effort has been devoted to radiationless relax-
ation processes, i.e., internal conversion (IC) and inter-
system crossing (ISC), as well as vibrational dynamics.5–8

The ultrashort (fs-ps) timescales of these processes have
to be experimentally addressed by pump-probe tech-
niques employing very short pulses. In addition to probe
pulses with UV, visible, and IR wavelength, X-ray pulses
have been utilized for time-resolved (TR) scattering and
spectroscopic experiments. This has recently received
a strong impetus from the advent of X-ray Free Elec-
tron Lasers9 (XFELs) that enables both high brilliance
and sub-ps time resolution. The application of X-ray-
based techniques is advantageous in many aspects, such
as the access to high-resolution molecular structure10 and
optically-dark states.11 However, the recorded data can
be extremely complex, leading to difficulties and ambi-
guities in the interpretation of experimental results.

a)Electronic mail: papai@kemi.dtu.dk

Theory and computational methods offer powerful
complementary tools for the interpretation of X-ray ex-
periments. These can both reduce the complexity and
extract additional data that is otherwise hidden, i.e.,
within a conventional fingerprinting approach. Among
various approaches, those are in particular promising
that simulate TR spectroscopic or scattering signals, di-
rectly enabling assignation and analysis of the experi-
mental data. In the case of spectroscopy, this task re-
quires the combination of electronic structure calcula-
tions and nonadiabatic dynamics simulations. This tech-
nique has been recently employed for the simulation of
TR X-ray absorption12–17 and emission spectra.12

While X-ray spectroscopies are local, element-specific
probes by their nature, X-ray scattering is global, i.e.,
arising from all electrons in the sample. Henceforth, we
utilize the term X-ray diffuse scattering (XDS), in or-
der to differentiate from X-ray diffraction, i.e., scatter-
ing on crystals. XDS might arise from several electronic
states, as well as solvent molecules, if the measurement
is carried out in solution. Therefore, the XDS signal can
be especially difficult to interpret; the role of theory is
vital here. Debnarova et al. simulated the elastic TR-
XDS by the Fourier transform of the quantum-chemically
calculated electron density.18 They found moderate dis-
crepancies from the widely-adapted independent atom

mailto:papai@kemi.dtu.dk
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model (AIM) utilizing the Debye scattering equation, but
only for wide angle X-ray scattering (WAXS). Theoret-
ical frameworks for the simulation of TR X-ray scatter-
ing of molecules19,20 are under contuneous development;
most recent contributions were achieved by Kirrander et
al..21–23 Their ab initio method is based on the evaluation
of matrix elements of the scattering operator, utilizing
high-level multiconfigurational electronic wave functions
and nuclear wavepackets (WPs) obtained from quantum
dynamics (QD) simulations. Their approach did not
only yield high-accuracy results, but also accessed the
inelastic and coherent mixed components20,24–26 of the
scattering signal, in addition to elastic X-ray scattering.
However, due to its high computational cost, the method
has been applied so far to very small molecules (H2 and
CO2). In the present work, we study the excited-state dy-
namics between metal-to-ligand charge transfer (MLCT)
and metal-centered (MC) states (Figure 1) and elas-
tic XDS of an Fe-carbene complex, [Fe(bmip)2]2+ (bmip
= 2,6-bis(3-methyl-imidazole-1-ylidine)-4-pyridine).27,28

This molecule and its derivatives have been in the focus
of ultrafast spectroscopic27,29–32 and scattering33 experi-
ments due to their intriguing photophysics, in particular,
their long-lived photoactive MLCT states.28 We here ex-
tend our previously developed model Hamiltonian34 to
5 nuclear degrees of freedom (DoF) and implement the
electric field of the pump pulse35 utilizing different pulse
durations and laser frequencies. Subsequently, we con-
vert the time-dependent nuclear wavepacket, evolving in
a manifold of electronic states, to a TR elastic difference
XDS signal.

This article is organized as follows. Section II and III
respectively reviews the theory and reports the compu-
tational details of the QD and XDS simulations. Section
IV presents and analyzes the obtained results for QD
(IV A) and XDS (IV B). Section V summarizes the most
important results, draws the conclusions and discusses
the outlook for future works.

II. THEORITICAL BACKGROUND

A. Quantum Dynamics

The ultimate goal of quantum dynamics is to solve the
molecular time-dependent Schrödinger equation:

i~
∂Ψ

∂t
= ĤΨ , (1)

where Ψ and Ĥ are the molecular wave function and
Hamiltonian, respectively. In the case of nonadiabatic
systems, e.g., the manifold of coupled electronic states of
[Fe(bmip)2]2+, Ψ can be expanded in the basis of diabatic
electronic states {|α〉}:

FIG. 1. Molecular structure (top) and MLCT-MC excited-
state dynamics of the [Fe(bmip)2]2+ complex. The lifetimes
correspond to the 1MLCT → 3MLCT ISC and 3MLCT →
3MC decay process, as obtained from transient optical ab-
sorption spectroscopy.27

|Ψ〉 =

nel∑
α=1

ψ(α)(R, t)|α〉 . (2)

Here, ψ(α)(R, t) is the nuclear wavepacket in electronic
state α, and R is the vector of nuclear coordinates.
The diabatic electronic basis is convenient to remove the
singularities present in the adiabatic representation, by
transformation of the derivative nonadiabatic coupling
into off-diagonal elements of the electronic Hamiltonian
(diabatic coupling). This essentially also leads to smooth
potential energy surfaces (PESs) preserving electronic
character.

In the present work, we employ the Multiconfiguration
Time-Dependent Hartree36–38 (MCTDH) method to nu-
merically solve Equation 1 in multiple dimensions. In
MCTDH, within the multi-set formalism, i.e., Equation
2, the nuclear wavepacket in each electronic state |α〉
is expanded in a multiconfigurational series of Hartree
products of single particle functions (SPFs):

ψ(α)(R1, ..., Rf , t) =

n
(α)
1∑

j
(α)
1 =1

...

n
(α)
f∑

j
(α)
f =1

A
j
(α)
1 ...j

(α)
f

(t)ϕ
(1,α)

j
(α)
1

(R1, t)...ϕ
(f,α)

j
(α)
f

(Rf , t) , (3)

where A
j
(α)
1 ...j

(α)
f

(t) and ϕ
(i,α)

j
(α)
i

(Ri, t) are the time-
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dependent variatonally-optimized expansion coefficients
and SPFs, respectively, for f nuclear DoF. As seen in
Equation 3, a separate set of SPFs is utilized for each
electronic state |α〉; in this way, the SPFs adapt to the
dynamics occurring on each PES. The SPFs are fur-
ther expanded into a time-independent primitive basis

set {χ(i)
k (Ri)}:

ϕ
(i,α)

j
(α)
i

(Ri, t) =

Ni∑
k=1

a
(i,α)

kj
(α)
i

(t)χ
(i)
k (Ri) (4)

Up to this point, the MCTDH method, as presented, is
completely general. Hereby, we choose the nuclear coor-
dinates R as dimensionless mass-frequency weighted co-
ordinatesQ of ground-state normal modes. This is a con-
venient and widely-utilized choice for nonadiabatic dy-
namics involving relatively small nuclear displacements.
The conversion between Cartesian and dimensionless nor-
mal mode coordinates is performed by:

Q = L(x− x0) , (5)

where x and x0 are the actual and reference, i.e.,
Franck-Condon (FC) geometries in Cartesian coordi-
nates, respectively. The L transformation matrix con-
tains the eigenvectors of the mass-weighted Hessian,
scaled by

√
maΩi/~, where m and Ω are the masses

and vibrational frequencies, for each atom a and normal
mode i. Consistent with normal modes, we specify the

primitive basis {χ(i)
k (Qi)} to be a Hermite discrete vari-

able representation (DVR),37 i.e., a grid representation
of one-dimensional harmonic oscillator eigenfunctions.

B. Spin-Vibronic and Interaction Hamiltonians

The molecular Hamiltonian utilized for the QD simu-
lations of this work is expressed as:

H(t) = (T̂N + V0)1 +W + S + µεE(t) . (6)

With the exception of the last term, the right-hand side
of Equation 6 defines the diabatic spin-vibronic Hamilto-
nian. The first two terms are respectively the kinetic and
potential energy operators of the zeroth-order Hamilto-
nian for the electronic ground state (GS) within the har-
monic oscillator approximation:

Ĥ0 = T̂N + V0 =

f∑
i=1

Ωi
2

(
∂2

∂Q2
i

+Q2
i

)
. (7)

In Equation 6, 1 is the unity matrix of dimension nel.
The W matrix expresses the difference between ground-
state and excited-state PESs and the diabatic coupling

between excited states. As mentioned, diabatic PESs are
smooth by their nature; this allows us to expand W in
a Taylor series, in the present case up to second order,
around the FC geometry:

W = W (0) +W (1) +W (2) . (8)

W (0) is a Q-independent diagonal matrix, containing
the vertical excitation energies from the GS to the ex-
cited states at the FC geometry. W (1) has both on-
and off-diagonal elements, which depend linearly on Q.
The on-diagonal terms express the forces acting on the
excited-state PESs, relative to the forces on the ground-
state PES. The off-diagonal counterparts are the linear
approximation of the nonadiabatic couplings. W (2) is a
Q2-dependent diagonal matrix, whose elements describe
the changes between ground- and excited-state vibra-
tional frequencies.

The above-discussed, first three terms of the Hamil-
tonian of Equation 6 define the widely-used vibronic-
coupling Hamiltonian.39–41 As the excited-state dynam-
ics of [Fe(bmip)2]2+ involve both singlet and triplet elec-
tronic states,34 extension of the Hamiltonian by the inclu-
sion of spin-orbit coupling (SOC) is necessary; this leads
to the spin-vibronic Hamiltonian.7,34,42–46 S in Equation
6 is the SOC matrix, whose off-diagonal elements de-
scribe the singlet-triplet and triplet-triplet SOC.

The last component of our Hamiltonian in Equation
6 is an interaction term between the transition dipole
moment (TDM) µ of [Fe(bmip)2]2+ and the electric field
of the linearly-polarized pump pulse that promotes the
molecule to an electronic excited state, from the ground
state. The polarization vector ε is the vectorial compo-
nent of the field, and E(t) is the time-dependent ampli-
tude with Gaussian profile:

E(t) = E0 e
−2ln(2)(t−t0)2/τ2

cos(ω(t− t0)) , (9)

where E0 is the field amplitude, τ the intensity full
width at half maximum (FWHM), ω is the angular fre-
quency of the pump pulse, and t0 is the time shift of the
center of the pulse.

[Fe(bmip)2]2+ has D2d molecular symmetry in the
electronic ground state. As such, excitation into
electronically-degenerate states can occur; this will be
in fact the case in the present work, as 2-fold degener-
ate states, i.e., belonging to the E irreducible representa-
tion of the D2d point group, will be excited (see Section
IV A). In order to avoid artificial interference of relax-
ation pathways,35 we set ε to be parallel to the TDM
associated with an electronic transition from the ground
state to one of the two components of the pumped de-
generate manifold.
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C. Elastic X-ray Scattering

First, we review the theory of elastic X-ray scattering
in a single electronic state, we thus drop the electronic
state index α. Scattering signals are cast in terms of the
scattering vector q:

q = kin − ksc , (10)

where kin and ksc are the wave vectors of the incident
and scattered X-ray photons, respectively. q is commonly
expressed in units of Å−1. In the case of elastic XDS,
|kin| = |ksc| = k and

|q| = q = 2k sin(Θ/2) , (11)

where Θ is the scattering angle between kin and ksc.
The scattering signal S(q) in units of Thomson scat-

tering cross section (electronic units, e.u.) can, under a
reasonable set of approximations,47 e.g., neglecting elec-
tronic coherence, written as:

S(q) = 〈ψ(R)||F (R, q)|2|ψ(R)〉 =

∫
ρN(R)|F (R, q)|2dR ,

(12)
where ρN is the nuclear density. The central quantity

in Equation 12 and elastic XDS is the molecular form
factor F (R, q):

F (R, q) = 〈φ(r;R)|eiq·r|φ(r;R)〉 =

∫
ρe(r;R)eiq·rdr .

(13)
Here, r denotes the vector of electronic coordinates;

φ(r;R) and ρ(r;R) are the electronic wave function and
density, respectively. Equation 13 leads to the well-
known fact that the molecular form factor gives the
Fourier transform of the electron density.47

We now employ the independent atom model, in which
scattering from independent atoms with isolated, per-
fectly spherical electron densities is assumed. This leads
to the approximation of the molecular form factor by the
sum of atomic form factors:

F (R, q) ∼
nat∑
i=1

fi(q)e
iq·Ri , (14)

with the atomic form factors written as a linear com-
bination of Gaussians:

f(q) =

4∑
m=1

ame
−bm(q/4π)2 + c , (15)

where ai, bi, and c are the tabulated Cromer-Mann co-
efficients. In the present work, we simulate the isotropic

scattering signal, which implies that the probability of
finding the molecule in any orientation is taken to be
identical. Although XDS obtained by ultrafast pump-
probe experiments contains an anisotropic component
as well, decomposition of the experimental signal into
isotropic and anisotropic parts allows comparison to the
signal simulated by the present approach.47,48. Utilizing
nuclear pair densities, the isotropic scattering signal is
written as:49

S(q) =
∑
i

f2i (q) +
∑
i

∑
j 6=i

fi(q)fj(q)

× 4π

∫ R
0

ρij(D)
sin(qD)

qD
D2dD , (16)

where ρij(D) is the nuclear pair density, D is the dis-
tance between atom i and j, and R is the radius of the
sphere representing the coherence volume, over which the
X-ray beam is coherent. Equation 16 can be used to de-
rive S(q) in terms of radial distribution functions,49 read-
ily obtainable from molecular dynamics (MD) simula-
tions. In the present work, we utilize the time-dependent
center of the nuclear wavepacket in each electronic state
|α〉:

〈Q(α)
i 〉(t) =

〈ψ(α)(t)|Qi|ψ(α)(t)〉
〈ψ(α)(t)|ψ(α)(t)〉

=
〈ψ(α)(t)|Qi|ψ(α)(t)〉

p(α)(t)
,

(17)
to calculate the scattering signal. In Equation 17,

p(α)(t) are the time-dependent electronic populations,
whose sum is normalized to unity. Therefore, the nu-
clear distributions shrink into delta functions centered at
the wavepacket centroids, leading to the Debye scattering
equation:

S(q, t) =
∑
i

∑
j

fi(q)fj(q)
sin(qDij(t))

qDij(t)
. (18)

We point out that 〈Q(α)
i 〉(t) corresponds to the often-

used quantity to fit experimental elastic XDS signals.
Some of us employed this approach in a recent XDS
work on a complex related to [Fe(bmip)2]2+,10 where,
in that case, we utilized DFT-optimized and distorted
structures, to fit the experimental signal, which, in turn,
resulted in time-dependent structures. This approach
utilizing solely the wavepacket centroids neglects the
wavepacket width; we address and discuss this issue in
Section IV B.

Note the difference in nuclear coordinates between
Equations 17 and 18: while the former utilizes dimen-
sionless normal coordinates, the latter is cast in terms of
interatomic distances (in units of Å). We connect these
two equations by the transformation between normal and
Cartesian coordinates, see Equation 5.
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Equation 18 is applied for the Cartesian geometries re-

sulting from 〈Q(α)
i 〉(t), for each electronic state |α〉, at

each time t of the QD simulation, leading to S(α)(q, t).
The simulated time-dependent scattering signal is then
obtained by the sum of S(α)(q, t), weighted by the elec-
tronic populations:

S(q, t) =

nel∑
α=1

p(α)(t)S(α)(q, t) . (19)

Finally, the differential scattering signal ∆S is calcu-
lated by taking the difference of the pumped and non-
pumped signal:

∆S(q, t) = S(q, t)− S(q, 0) . (20)

We close this section by analyzing the validity of the
presented elastic XDS methodology. The IAM leads to
the efficient calculation of the XDS signal via the Debye
scattering equation (Equation 18). However, the IAM is
a rather simplistic model that importantly neglects chem-
ical bonding and does not distinguish between electronic
states. This has recently been confirmed by comparison
to ab initio-derived scattering signals, and the largest de-
viations were seen for very small molecules, such as H2.22

This is because, the electron density of these systems is
dominated by valence electrons, for which the AIM fails.
On the other hand, for larger molecules, the AIM per-
forms significantly better. For instance, in the case of stil-
bene, the AIM differential elastic XDS signal is basically
identical to the one derived by ab initio calculations up to
q = 2 Å−1; even at larger q values, the main features are
well reproduced, although the AIM overestimates the dif-
ference signal.18 For transition metal complexes, as is the
[Fe(bmip)2]2+ molecule studied in the present work, the
situation is even more favorable due to their high number
of core electrons. Furthermore, for photophysics, such as
IC and ISC without any bond cleavage, the AIM is ex-
pected to perform well for the simulation of difference
elastic scattering signals. It is also important to point
out that although the Debye scattering equation in it-
self reflects only the nuclear structure, not the electronic
state, we utilize Equation 18 for each state |α〉. Thus,
the simulated ∆S(q, t) does reflect the dynamics in each
electronic state, through the electronic populations p(α).
Finally, we recall that we employ Equation 18 only for the
wavepacket centroids without accounting for the width;
we will come back to this point in Section IV B.

III. METHODOLOGICAL DETAILS

A. Quantum Dynamics Simulations

The QD simulations were carried out using the Hei-
delberg MCTDH code.37 The initial nuclear wavepacket

was built from one-dimensional ground-state vibrational
harmonic oscillator eigenfunctions on ground-state PES,
as obtained from propagation in imaginary time (relax-
ation). The electronic excitation is achieved by the in-
teraction Hamiltonian of Equation 6; further details are
described in Section III B. In Table II of the Appendix,
we present the computational details of the simulations,
i.e., the size of SPF and primitive basis sets. These pa-
rameters ensured convergence for the whole 4 ps duration
of the simulations.

B. The Hamiltonian

The Hamiltonian used for the QD simulations in this
work is based on our previous studies.34,35 It includes 5
normal modes, 5 singlet and 7 triplet electronic states,
accounting for the 3 (−1, 0, 1) spin components of the
triplet states, 26 states, in overall. The original spin-
vibronic Hamiltonian of refs. 34 and 35 contained 4 nu-
clear DoF. These are all Fe-N/C stretching modes, ac-
counting for the most important nuclear (vibrational)
motion in the excited states (tuning modes, ν6 and ν36)
and nonadiabatic coupling between excited states (cou-
pling modes, ν11 and ν25). In addition to these 4 modes,
in the present work, we add another tuning mode, ν12,
the symmetric counterpart of ν11 that has predominantly
out-of-phase Fe-N/C stretching character. We recently
identified ν12 as a potential tuning mode, and hereby in-
vestigate how its inclusion affects the simulated excited-
state dynamics.

The electronic states of our model are the following:
the electronic ground state (1GS), a pair of degenerate
singlet MLCT (1MLCT) and MC (1MC), 4 triplet MLCT
(3MLCT), and 3 triplet MC (3MC) states. The excited
states were obtained using time-dependent density func-
tional theory (TD-DFT) within in the Tamm-Dancoff
approximation50 (TDA), at the TD-B3LYP*51/TZVP52

level of theory utilizing the ORCA3.0 program package.53

The resolution of identity54 and chain of spheres55 (RIJ-
COSX) methods were utilized to approximate the two
electron integrals. We recently have shown that the
excited-state PES of [Fe(bmip)2]2+ are not influenced by
a polar solvent, such as acetonitrile;56 we thus carried
out all TD-DFT calculations in vacuum. As these calcu-
lations leads to a set of adiabatic states, a diabatization
procedure is needed to transform into a diabatic elec-
tronic basis required for QD simulations. We employ the
procedure of diabatization by ansatz.7,57 In this method,
a diabatic to adiabatic transformation by diagonalization
is exploited to optimize the coefficients of the vibronic-
coupling Hamiltonian to the adiabatic PESs, calculated
by quantum chemistry. The fit is performed separately
for singlet and triplet states utilizing the VCHAM util-
ity of the Heidelberg MCTDH program package.37 The
SOC matrix S is calculated at the FC geometry by a
perturbative approach58 within the zeroth-order regular
approximation (ZORA).59 These calculations were car-
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FIG. 2. Diabatic excited-state PESs along a) ν6 and b) ν12.
Q6 and Q12 are dimensionless normal coordinates. For com-
parison, the corresponding Fe-N and Fe-C bond lengths are
also shown.

ried out at the B3LYP*/TZP level of theory using the
ADF2012.01 software.60 We ensured the consistency of
ORCA and ADF-calculated electronic states.

The diabatic excited-state PESs along the dominant
breathing mode for the dynamics, ν6, and the newly
added mode ν12 is shown in Figure 2. We present the
electronic energies, oscillator strengths, and dominant
electronic configurations at the FC geometry in Table
I. In Figure 3, we illustrate the MLCT and MC charac-
ters by natural transition orbitals (NTOs) of the singlet
excited states. We note that all excited states can be de-
scribed by one dominant elelectron configuration/NTO
pair, with the exception of T4 and T7, for which two con-
figurations have equal weights (see Table I). Furthermore,
NTOs occurring for the same hole/particle, for different
excited states (including the triplets), are very similar.

For the interaction Hamiltonian of Equation 6, the
TDM vectors to the 1MLCT 1MC are taken from ref.

TABLE I. Characters (symmetries within the D2d point
group), energies (E), oscillator strengths (f), and dominant
electronic configurations of the electronic states |α〉, as ob-
tained by TD-B3LYP*/TZVP calculations. For the illustra-
tion electronic configurations, see the NTOs shown in Figure
3.

|α〉 Character E (eV) f Electronic configuration

S0
1GS (1A1) 0.000 − 3d2xz3d2yz3d2xyL0

1-π*L0
2-π*3d0

z2

S1
1MLCT (1E) 2.564 0.0017 3d2xz3d2yz3d1xyL1

1-π*L0
2-π*3d0

z2

S2
1MLCT (1E) 2.564 0.0017 3d2xz3d2yz3d1xyL0

1-π*L1
2-π*3d0

z2

S3
1MC (1E) 2.740 0.0002 3d1xz3d2yz3d2xyL0

1-π*L0
2-π*3d1

z2

S4
1MC (1E) 2.740 0.0002 3d2xz3d1yz3d2xyL0

1-π*L0
2-π*3d1

z2

T1
3MC (3E) 2.041 0.0000 3d1xz3d2yz3d2xyL0

1-π*L0
2-π*3d1

z2

T2
3MC (3E) 2.041 0.0000 3d2xz3d1yz3d2xyL0

1-π*L0
2-π*3d1

z2

T3
3MC (3B1) 2.175 0.0000 3d2xz3d2yz3d1xyL0

1-π*L0
2-π*3d1

z2

T4
3MLCT (3A1) 2.447 0.0000

3d1xz3d2yz3d2xyL0
1-π*L1

2-π*3d0
z2

3d2xz3d1yz3d2xyL1
1-π*L0

2-π*3d0
z2

T5
3MLCT (3E) 2.456 0.0000 3d2xz3d2yz3d1xyL1

1-π*L0
2-π*3d0

z2

T6
3MLCT (3E) 2.456 0.0000 3d2xz3d2yz3d1xyL0

1-π*L1
2-π*3d0

z2

T7
3MLCT (3B2) 2.541 0.0000

3d1xz3d2yz3d2xyL0
1-π*L1

2-π*3d0
z2

3d2xz3d1yz3d2xyL1
1-π*L0

2-π*3d0
z2

FIG. 3. TD-DFT NTOs for the characterization of MLCT
and MC states (plotted for the 1MLCT and 1MC states). The
labels in parantheses are orbital symmetries within the D2d

point group. These NTOs illustrate the dominant electronic
configurations shown in Table I

.

35, also calculated at the TD-B3LYP*/TZVP level. We
utilize two values for both pulse parameters τ and ω.
τ = 10 fs (t0 = 20 fs) approaches the limit of instanta-
neous (impulsive) excitation, while τ = 60 fs t0 = 100 fs)
reflects a more realistic pump pulse duration for ultra-
fast experiments (e.g., the transient absorption measure-
ments of [Fe(bmip)2]2+ in ref. 27). We set the field angu-
lar frequency ω to be resonant with the 1GS → 1MLCT
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electronic excitation, and 0.2 eV above this resonance
energy (off-resonant with the 1MLCT), with the aim of
exciting the 1MC states. For the field amplitude we ap-
ply E0 = 0.0054 a.u.; this value ensures that no Rabi
oscillations occur between the ground and excited states.

The parameters of the applied spin-vibronic Hamilto-
nian for the original four modes (ν6, ν11, ν25, and ν36)
are taken from ref. 34. We report the corresponding co-
efficients of the Hamiltonian and fits to adiabatic PESs
for the new mode ν12 in Appendix A.

C. Elastic X-ray Scattering

We implemented Equations 18–20 in MATLAB2019a61

for simulating the time-resolved elastic XDS signal. For

this, we extracted 〈Q(α)
i 〉(t) and p(α)(t) from each 2 fs of

the QD simulation. The Cromer-Mann coefficients were
taken from ref. 62. In the case of iron, values for Fe2+

were used.

IV. RESULTS AND DISCUSSION

A. Quantum Dynamics

The results of the four QD simulations utilizing differ-
ent excitation conditions are shown in Figure 4. First,
we discuss the case of excitation resonant to the 1MLCT
states. In Figures 4a and 4b, we present the population
dynamics using 10 fs and 60 fs pump pulses, respectively.
In both cases, the initial 1GS→ 1MLCT excitation is fol-
lowed by a ∼100 fs ISC to 3MLCT states, which decay
into 3MCs on a ps timescale. These dynamics follow ex-
ponential kinetics, which we attribute to the weak nuclear
motion in the MLCT states, as the wavepacket is excited
to an equilibrium position, i.e., close to the minimum of
the 1MLCT PES. In particular, the 3MLCT/3MC inter-
section is not reached, the wavepacket thus slowly leaks
from 3MLCT into the 3MC states. These results are in
good agreement with our previous QD simulations using
the 4D Hamiltonian with impulsive excitation,34 as well
as with experimental observations.27 However, in com-
parison to refs. 34 and 35, the 3MC rise faster during
the first ps, due to the inclusion of the mode ν12. Fur-
thermore, as is clear from Figures 4a and b, the duration
of the pump pulse does not influence the excited-state
dynamics. The only notable difference is the damping
of the fast 1MLCT ↔ 3MLCT oscillations for the 60 fs
pulse. This is expected,8,63 as the pulse duration ap-
proaches the period of the observed oscillations. These
results also justify the utilization of impulsive excitation
to the 1MLCT states for the simulation of excited-state
dynamics of [Fe(bmip)2]2+.

We now investigate the effect of tuning the laser fre-
quency, ω, 0.2 eV above the 1MLCT resonance. Figures
4c and 4d present the results for 10 fs and 60 fs pump
pulses, respectively. In the 10 fs case, both 1MLCT and

1MC states are excited with a ca. 2:1 ratio. This is be-
cause although ω is now off resonant with the 1MLCT
and resonant with the 1MC states, the 10 fs pulse has
large spectral width that allows excitation into both
1MLCT and 1MC states. Note also that the oscillator
strengths to 1MLCT states are one order of magnitude
larger than those to the 1MCs (see Table I). Excitation
into the 1MC state leads to the appearance of oscillations
with a period of 330 fs, most apparent for the 1MC pop-
ulation. These oscillations are assigned to wavepacket
dynamics along the breathing mode ν6, whose period
matches the one of mode ν6. The reason for this os-
cillatory signal is the creation of the 1MC wavepacket in
a nonequilibrium position, i.e., displaced from the min-
imum of the 1MC PES; this displacement is the largest
along ν6. Therefore, vibrational dynamics takes place
in the 1MC along ν6, which modulates the population
transfer between 1MC and MLCT states. The dynamics
between the 1MC and 1,3MLCT states are thus not ki-
netic, but ballistic. This is a result of the fact that due
to the nuclear motion in the 1MC states, the wavepacket
reaches the 1MC/1,3MLCT crossing, where a transition
into the MCLT states takes place; this is reflected in
the abrupt steps of the 1MC population in Figure 4c.
We here mention that a ballistic mechanism has recently
been proposed for photoinduced ISCs.64,65

In the following, we discuss the dynamics resulting
from excitation by the 60 fs pump pulse; these results
are shown in Figure 4d. As seen in the figure, only a
small fraction of the population is excited to the 1MLCT
states, the dominant excitation process is now 1GS →
1MC. This is due to the fact that the 60 fs pulse has
narrow spectral width, and as ω is chosen to be 0.2 eV
off-resonant to the 1MLCT states, the excitation frac-
tion for these states significantly decreases. The ballistic
wavepacket dynamics is now more apparent, also for the
MLCT states, than for the 10 fs pump pulse, which is at-
tributed to the selective excitation into the 1MC states.
These results confirm the activation and dominance of
ν6 for the excited-state dynamics and highlight the im-
portance of modulating the excited-state dynamics by
tuning the laser frequency. We here note that although
we only include the first 4 singlet excited states in our
model, the next optically-allowed transition is ca. 0.3 eV
higher than the 1MC. This leads to the conclusion that in
the case of 60 fs pump pulse, the 1MC can be selectively
excited, even if higher-lying excited states are included in
the model. We mention that the experimental realization
of the 1GS→ 1MC excitation has not yet been reported.

B. Elastic X-ray Scattering

In the following, we utilize the above-discussed quan-
tum dynamics to simulate the TR elastic XDS signal of
[Fe(bmip)2]2+.

First, we calculate the scattering signals for the opti-
mized 1GS, 3MLCT, and 3MC states. In Figure 5, we
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FIG. 4. Excited-state population dynamics from the QD simulations. The four panels correspond to different excitation
conditions: a) τ = 10 fs (t0 = 20 fs), ω resonant to the 1GS → 1MLCT excitation, b) τ = 60 fs (t0 = 100 fs), ω resonant to the
1GS → 1MLCT excitation, c) τ = 10 fs (t0 = 20 fs), ω – 0.2 eV above 1MLCT resonance, d) τ = 60 fs (t0 = 100 fs), ω – 0.2
eV above 1MLCT resonance.

present the calculated scattering signal for 1GS, as well
as the difference XDS signal for the lowest-lying 3MLCT
and 3MC states. Note that for the difference signals, we
here assume 100% excitation fraction. As seen in Figure
5, the scattering signal ∆S is dominated by the negative
feature centered at ∼ 0.5 Å−1. This is a well-known char-
acteristic of expansion of the molecule due to elongation
of the Fe-ligand bonds, which has been observed exper-
imentally for related transition metal complexes.10,65–67

This negative difference signal is assigned to the decrease
of electron density within the dimensions of the molecule.
It is also clear from Figure 5 that ∆S exhibit signifi-
cantly larger changes for the optimized 3MC, than for
the 3MLCT structure. This is because the average struc-
tural changes for the 3MC sates, relative to 1GS, are
much larger, ∆RFe−N = 0.230 Å and RFe−C = 0.077 Å,
in contrast to ∆RFe−N = −0.003 Å and RFe−C = 0.026
Å, for the optimized 3MLCT. The structural changes in
the 3MC state is thus dominated by the Fe-N stretching,
which is explained by the occupation of the molecular
orbital with strong antibonding 3dz2 character (see Fig-

ure 3). The difference scattering is small for the 3MLCT
states, since the structural changes are small. This is due
to the occupation of an orbital with L-π* character, that
is not involved in the Fe-ligand bonding. The structural
distortion in the excited states is also reflected in ∆S at
q above 1 Å−1, albeit its amplitude is reduced by one
order of magnitude, compared to the low q feature, as
seen in Figure 5. We note that the optimizations of the
triplet MLCT and MC states were carried out within un-
restricted DFT. This method does not allow practical op-
timization of the singlet excited states, as they converge
to the electronic ground state. However, the structural
changes are mainly determined by the electronic charac-
ter, irrespective of the spin multiplicity. Therefore, very
similar difference scattering is expected for the singlet
excited states 1MLCT and 1MC, to those of the triplet
counterparts shown in Figure 5.

In the following, we discuss the TR difference scatter-
ing ∆S, simulated for the 5D QD shown in Figure 4b,
i.e., the case of excitation by a 60 fs pulse, resonant to
the 1GS → 1MLCT transition. Figure 6 presents the
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FIG. 5. Difference elastic XDS signal ∆S for the optimized
lowest-lying 3MLCT and 3MC structures, relative to the 1GS
scattering signal S, shown in the inset. The shown difference
signals correspond to 100% excitation fraction.

simulated TR-∆S. In the top panel of Figure 6, we ob-
serve the growth of the negative low-q difference signal
from ∼0.5 ps. Based on the amplitude of the simulated
TR-∆S, this has to correspond to the population of an
MC state. The population dynamics shown in Figure 4b
identifies that this low-q signal is dominated by the con-
tribution from 3MCs. This is consistent with the differ-
ence scattering, calculated for the optimized 3MC struc-
ture, assuming 100% excitation fraction, shown in Figure
5. Note that no 1MC states are populated here, as they
are energetically inaccessible from the excited 1MLCT
states, and thus they do not contribute to the difference
scattering. In Figure 6 bottom panel, we removed the
low-q region below 0.9 Å−1, which enables to resolve the
positive difference signal centered at ∼1.1 Å. This posi-
tive difference signal shows a very similar pattern to the
negative low-q counterpart. Both negative and positive
difference signals exhibit weak oscillations, which are dis-
cussed below.

Figure 7 shows the simulated decomposed TR-∆S sig-
nal at q = 0.5 Å−1 into components for electronic states
with different character and multiplicity. This confirms
that the difference scattering is dominated by the 3MC
contribution. Furthermore, the weak oscillations in ∆S,
observed in Figure 6, also appear in Figure 7. The oscil-
lations are most important for the 3MC states, as the
1,3MLCT difference scattering is very weak, and van-
ishes after ∼1 ps. Based on the Fourier transform of the
3MC signal, we assign the dominant component of the
oscillations to vibrational motion along ν6 in the 3MC
states. For the interpretation of the observed oscilla-
tory signal, in Figure 8, we plot the time-dependent 1D
reduced wavepacket density (integrated over all nuclear
DoF except ν6) in the 3MC states (weighted by the rel-
ative populations of the 9 3MC components) along the

FIG. 6. TR-∆S from 5D QD utilizing a 60 fs pump pulse,
whose laser frequency is tuned to the 1MLCT resonance (Fig-
ure 4b). Top: 0 Å−1 ≤ q ≤ 3 Å−1, bottom: 0.9 Å−1 ≤ q ≤ 3
Å−1.

principal breathing mode ν6, as well as the temporal evo-
lution of the wavepacket centroid (inset). Based on this
figure, we interpret the 3MC wavepacket as vibrationally-
excited harmonic oscillator eigenstates corresponding to
the potential energy at which the wavepacket is created
on the 3MC PES. From Figure 8, it is also apparent that
the 3MC wavepacket is almost stationary, which we at-
tribute to very fast dephasing. The 3MC wavepacket thus
exhibits rather small nuclear motion, which is the reason
for the weak oscillations observed in the simulated TR-
XDS (Figure 6). A similar scenario is expected for the
other two tuning modes ν12 and ν36.

We now recall that the XDS signal within our approach
is simulated using the centroid of the nuclear wavepacket
in each electronic state. We assessed the validity of this
approximation by simulating the TR difference scattering
by the reduced 1D wavepacket density along the principal
mode ν6. The obtained result (not shown) is in agree-
ment with the one resulting from the ν6 centroids, which
in turn accounts for most of the TR difference scattering
shown in Figure 6. We interpret this result and the va-
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FIG. 7. Decomposition of the TR-∆S shown in Figure 6
at q = 0.5 Å−1 for electronic states with different character
and multiplicity. These signals are obtained from the QD
simulation utilizing a 60 fs 1MLCT-resonant pump pulse (see
Figure 4b).

FIG. 8. Time-dependent 3MC reduced wavepacket density
along ν6, obtained from the QD simulation utilizing a 60 fs
1MLCT-resonant pump pulse (see Figure 4b) At Q6 = 5,
∆RFe−N = 0.057 Å and ∆RFe−C = 0.054 Å, relative to Q6 =
0, see also Fig. 3a for correspondence between Q6 and the
change in Fe-N/C bond lengths. The inset shows the temporal
evolution of the center of the 3MC wavepacket along ν6.

lidity of our wavepacket centroid approach based on the
dependence of ∆S on the nuclear coordinates. In case
of the low-q (q < 1.5 Å−1) XDS analyzed in this work,
the calculated difference scattering is expected to vary
linearly with the changes in nuclear coordinates. This is
due to the fact that in the low-q region, the change in the
sin(qDij)/qDij term of Equation 18 becomes practically
linear with respect to the changes in nuclear coordinates
∆Dij .

68 The ∆S-∆Dij (or ∆S-∆Qi) linearity eliminates
the effect of the wavepacket width on the difference scat-
tering and thus the wavepacket centroid approximation is
adequate at low-q. This adequacy was indeed numerically
observed in a previous theoretical study.49 Furthermore,

the approach of solely using the wavepacket centroid was
capable of extracting vibrational dynamics from the ex-
perimental TR difference scattering signal of a transi-
tion metal complex related to [Fe(bmip)2]2+.10 We note
that the centroid approximation might break down in the
high-q region, which points towards a possibility of refin-
ing the shape of the nuclear wavepacket with access to
high-q data. Experimentally, this can become available
when the European XFEL reaches its full design parame-
ters and with the LCLS II upgrade, both expected within
next year.

Finally, we investigate the effect of tuning the laser
frequency 0.2 eV above the 1MLCT resonance on the
simulated difference scattering. Figure 9 presents the re-
sulting TR-∆S, which is decomposed to components by
electronic states in Figure 10. First, we observe that
difference scattering amplitude is reduced by a factor of
∼20, compared to the 1MLCT resonant case shown in
Figure 6. This is because here mainly the 1MC states are
excited, which exhibit one order of magnitude smaller os-
cillator strength from the 1GS, relative to the 1MLCTs
(see Table I), and the same field amplitude E0 is ap-
plied for all simulations. This weak difference signal can
be enhanced by increasing E0. Importantly, the differ-
ence scattering signal rises already at early times, i.e.,
∼250 fs and exhibits strong coherent oscillations, whose
330 fs period, as identified by Fourier transformation,
matches the vibrational period of the breathing mode ν6
in the 1MC states. From this and Figure 10, we assign
the early time oscillatory signal to the 1MC states. The
large ∆S amplitudes stem from the large relative 1MC
population at early times and the strong vibrational mo-
tion along ν6 (with Fe-N and Fe-C amplitudes of ∼0.1 Å,
see Figure 13 in Appendix B), caused by the nonequilib-
rium excitation of the 1MC states. We illustrate these
vibrational dynamics in Figure 11, in which we plot the
1MC wavepacket cetroid along ν6 in function of time
(cyan). The dominance of ν6 in the nuclear dynamics is
confirmed by the oscillations of the time-dependent dis-
tances, RFe−N(t) and RFe−C(t), obtained by the evolu-
tion of wavepacket centroids along all 5 modes (Appendix
B, Figure 13). We recall that the strong vibrational mo-
tion along ν6 is the reason for the ballistic population
dynamics shown om Figure 4d. Figure 11 reveals that
the 1MC wavepacket is strongely non-stationary and de-
phases on the picosecond timsescale. At later times t > 1
ps, the 1MC ∆S signal is significantly reduced, due to the
combination of population transfer into the 3MLCT and
3MC states (see Figure 4d) and dephasing. At these later
times, the 3MC signal dominates, similarly to the case of
1MLCT-resonant excitation. The 3MC difference scat-
tering displayed in Figure 10 also exhibits oscillations,
dominated by the ν6 component. The corresponding
vibrational dynamics along ν6 are shown in Figure 11
(red). Although large-amplitude vibrations occur during
the first ps, this is only weakly reflected in ∆S, since the
3MC population is relatively small during these times, as
seen in Figure 4d. Later, the 3MC population is domi-
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FIG. 9. TR-∆S from 5D QD utilizing a 60 fs pump pulse,
whose laser frequency is tuned above 0.2 eV the 1MLCT res-
onance (Figure 4d).

FIG. 10. Decomposition of the TR-∆S shown in Fig. 9 at
q = 0.5 Å−1 for electronic states with different character and
multiplicity. These signals are obtained from the QD simu-
lation utilizing a 60 fs pump pulse, tuned 0.2 eV above the
1MLCT resonance (see Figure 4d).

nant, however, the 3MC wavepacket undergoes dephasing
leading to moderate-amplitude oscillations in the simu-
lated difference scattering signal. Still, these oscillations
are more prominent than those observed for the 1MLCT-
resonant excitation. This is due to the fact that the 3MC
wavepacket is non-stationary, preserving some of its co-
herence originating from the 1MC wavepacket, created in
a non-equilibrium position. We close our discussion by
noting that vibrational dynamics of other photoactivated
transition metal complexes have been also observed ex-
perimentally by elastic TR-XDS.65,68,69

FIG. 11. Temporal evolution of the center 〈Q6〉 of the 1MC
and 3MC wavepackets (weighted by the corresponding relative
1MC or 3MC populations), as obtained from the QD simula-
tion employing a 60 fs pump pulse, whose laser frequency is
tuned 0.2 eV above the 1MLCT resonance (see Fig. 4d). At
Q6 = 5, ∆RFe−N = 0.057 Å and ∆RFe−C = 0.054 Å, relative
to Q6 = 0, see also Fig. 3a for correspondence between Q6

and the change in Fe-N/C bond lengths.

V. CONCLUDING REMARKS AND OUTLOOK

In the present work, we simulated the excited-state
population dynamics and difference elastic XDS signal
of [Fe(bmip)2]2+ excited into 1MLCT and 1MC states.
In the case of 1MLCT-resonant excitation, only the the
1MLCT states are populated by the pump pulse, inde-
pendently of the pulse duration. This excitation pro-
cess takes place at an equilibrium position, leading to
weak nuclear dynamics in the excited-state manifold and
thus kinetic population flow. The simulated TR differ-
ence XDS signal ∆S is dominated by the low-q (∼0.5
Å−1) component assigned to 3MC states, for which the
structural changes, i.e., the elongation of Fe-N/C bonds,
are much larger than for the MLCTs. The 1MC states
would also have a strong ∆S signal, however, these states
are not excited by the pump pulse and are inaccessible
from the MLCTs. Therefore, the 1MC difference signal
is absent in this case. The TR-∆S exhibits only small-
amplitude oscillations, as only weak vibrational dynamics
occur in the 3MC states, along the tuning modes. This is
interpreted by the stationary 3MC wavepacket, created
by the kinetic population flow from the 3MLCT states
near the FC geometry.

Tuning the laser frequency 0.2 eV above the 1MLCT
resonance, the excitation fraction of 1MLCT and 1MC
states can be controlled by the pulse duration. While for
the short 10 fs pulse, both states are excited, the 1MC
states can be selectively excited by utilization of a longer
60 fs pump pulse. In both cases, the 1MC wavepacket
is created at a nonequlibrium position along the prin-
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cipal mode ν6, i.e., far from the minimum on the 1MC
PES. This induces strong nuclear motion, leading to bal-
listic dynamics, when the 1MC wavepacket reaches an
intersection between 1MC and 1,3MLCT PESs. These
prominent vibrational dynamics are clearly reflected in
the coherent oscillations in the TR difference scattering
during the first picosecond. These oscillations occur with
a dominant period of ∼330 fs, matching the vibrational
period of breathing mode ν6 in the 1MC states. These
results identify ν6 as the principal mode, and evidence
the importance of controlling excited-state dynamics by
detuning. The 1MC coherent oscillations in TR-∆S are
damped during the next picoseconds, which is the conse-
quence of the flow of the 1MC population into the MLCTs
and dephasing of the non-stationary 1MC wavepacket.
Finally, the difference scattering is governed by the 3MC
components, due to the population of these states via
the MLCTs. As the coherence of the nuclear wavepacket
is partially transferred into the 3MC states, the oscilla-
tions also appear in the 3MC difference signal, albeit with
smaller amplitudes, due to dephasing.

From an X-ray scattering point of view, the simula-
tions reported in this work are an important step for
the analysis of TR-XDS experiments. In particular, the
decomposition of the overall signal into components by
electronic states is very valuable, as this is not accessible
from elastic XDS experiments. Based on a recent compu-
tational study,56 the solute dynamics of the investigated
[Fe(bmip)2]2+ complex should not be affected by a po-
lar solvent, such as acetonitrile. However, this is clearly
not true for other molecules,56,70,71 which thus requires
the inclusion of the solvent, even for simulating the solute
difference scattering. In addition, the electrons of the sol-
vent also contribute to the difference XDS signal leading
to the cage and solvent heating terms. Coupling of the
solute quantum dynamics with solvation dynamics70 will
therefore be a high-priority goal for future studies that
will facilitate the analysis of ultrafast XDS experiments.
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Appendix A: Hamiltonian Parameters for Mode ν12

The vibrational frequency of mode ν12, as calculated
at the B3LYP*/TZVP level, is Ω12 = 187.4 cm−1. The
first-order off-diagonal coefficient (to be multiplied by

FIG. 12. Adiabatic PESs along mode ν12. The points display
energies computed by TD-DFT at the FC point and geome-
tries distorted along ν12. The lines represent the fits, obtained
by diagonalization of the diabatic Hamiltonian. Nuclear dis-
placements are given in the dimensionless mass-frequency
weighted normal coordinate Q12.

the corresponding value oe Q12 to yield the linear di-
abatic coupling) for singlet states is λS1,S3

= λS1,S4
=

λS2,S3
= λS2,S4

= 0.004 eV, for triplet states it is
λT1,T5

= λT1,T6
= λT2,T5

= λT2,T6
= 0.012 eV. The lin-

ear diabatic coupling between all other states along ν12
is zero. The diagonal first- (κα) and second-order (γα)
coefficients are tabulated in Table III (to be multiplied
by Q12 and Q2

12/2, respectively, to yield the diagonal
Hamiltonian matrix elements). The Hamiltonian param-
eters for the other 4 modes are given in ref. 34. The fits
to adiabatic TD-DFT PESs are shown in Figure 12.
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TABLE II. Computational details of the QD simulations. Ni is the number of primitive harmonic oscillator basis functions
used for each mode. nα are the number of single particle functions used to describe the wavepacket in each state.

Modes Ni nS0 ,nS1 ,nS2 ,nS3 ,nS4 ,nT1(−1,0,1),nT2(−1,0,1),nT3(−1,0,1),nT4(−1,0,1),nT5(−1,0,1),nT6(−1,0,1),nT7(−1,0,1)

ν6 121 10,10,10,10,10,10,35,35,10,35,35,30,25,25,12,10,10,10,10,10,10,10,10,10,10,10
ν11 61 10,10,10,10,10,10,25,25,10,12,12,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10
ν12 61 10,10,10,8,8,10,25,25,10,25,25,18,18,18,10,10,10,10,10,10,10,10,10,10,10,10
ν25 71 10,10,10,5,5,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10
ν36 71 10,10,10,10,10,10,12,12,10,12,12,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10

TABLE III. Diagonal first- (κα) and second-order (γα) Hamil-
tonian coefficients for ν12.

|α〉 κα (eV) γα (eV)
S1 −0.004 0.001
S2 −0.004 0.001
S3 −0.040 −0.005
S4 −0.040 −0.005
T1 −0.055 −0.002
T2 −0.055 −0.002
T3 −0.053 −0.002
T4 0.018 −0.004
T5 0.003 −0.002
T6 0.003 −0.002
T7 −0.004 −0.001

Appendix B: Fe-N and Fe-C Vibrational Dynamics in the
MC States

The nuclear dynamics is the strongest for the MC
states of the detuned simulation. For these MCs, we
report the time-dependent Fe-N and Fe-C distances, as
calculated from the wavepackets centroids along all 5 nu-
clear DoF, weighted by the relative populations of the
1MC or 3MC components, in Figure 13. These dynam-
ics are dominated by ν6 vibrational motion (330/285 fs
period for 1MC/3MC), a minor component arises due to
ν12 vibrations (200/190 fs period).
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M. Pápai, N. Sas, J. Uhlig, D. Zhu, G. Vankó, V. Sundström,
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