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Summary (English)

This thesis deals with the development and application of models and algorithms
to leverage consumers’ flexibility for the provision of ancillary services (AS).

The output of most renewable sources is intermittent and can only be predicted
with a limited accuracy. Therefore, the increasing penetration of variable renew-
able sources leads to an unprecedented level of stochasticity and non-linearity in
power system dynamics. Such complexities cause various operational challenges
for power systems operators by requiring more AS resources. Larger integra-
tion of cost-effective renewable sources marginalises the operation of thermal
power plants, due to the lower energy prices. As thermal power plants consist
of the main source of AS, their retirement will intensify the lack of AS re-
sources. Moreover, as renewable sources become widespread at the distribution
level (e.g., with the installation of rooftop photovoltaic panels), AS requirements
will extend to the distribution grids, which is unprecedented in existing power
systems. For these reasons, it is necessary to look for alternative operational
flexibility to serve as new AS for the sake of continuity and security of electric-
ity delivery. In this regard, demand response is a valid solution that leverages
demand flexibility to provide services to the grid.

To optimally exploit consumers’ flexibility, it is important to account for con-
sumers’ different preferences and constraints. Specifically, studies must ap-
proach the heterogeneity of loads and understand what influences consumers’
behaviour. Unfortunately, no study in the technical literature has discussed the
aggregate potential of consumers’ flexibility, and estimation studies have been
carried out only for specific types of loads. The first part of this thesis intends to
fill this gap by proposing methodologies to estimate the potential of consumers’
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flexibility. To do so, we assume that consumers receive dynamic electricity prices
and can autonomously schedule their consumption to minimise the electricity
cost. Such studies consider several factors that influence consumers’ price re-
sponsiveness (i.e., loads’ rebound effect, outdoor temperature and electricity
price) and accounts for a heterogeneous pool of consumers. Finally, these flex-
ibility estimation models account for consumers’ stochastic behaviour toward
prices.

Consumers are effectively able to provide reliable services only if a proper frame-
work is developed. Such a framework must satisfy different power systems’ re-
quirements, e.g., the provision of services to different levels of the grid, as well
as account for consumers’ preferences. The second part of this thesis discusses
several alternatives to provide AS in smart grids. From the analysis, none of the
existing solutions is capable to optimally leverage consumers’ flexibility. There-
fore, we proceed in this research by proposing an innovative framework that can
exploit consumers’ flexibility at different grid levels. This solution is based on a
one-way communication structure and relies on dynamic electricity prices which
are broadcast to consumers. In this thesis, the simulations of this proposed
method are carried out to evaluate its potential in supporting frequency and
voltage management.



Resumé (Danish)

Denne afhandling beskæftiger sig med udvikling og anvendelse af modeller og
algoritmer til at udnytte forbrugernes fleksibilitet til systemydelser (SY).

Produktionen af de fleste vedvarende energikilder er intermitterende og kan kun
forudsiges med begrænset nøjagtighed. Derfor fører den stigende indtrængning
af variable vedvarende kilder til et hidtil uset niveau af stokasticitet og ikke-
linearitet i dynamiske egenskaber hos strømsystemerne. Sådanne kompleksiteter
medfører forskellige operationelle udfordringer for operatørerne af strømforsy-
ninger ved at kræve flere SY-ressourcer. Større integration af omkostningsef-
fektive vedvarende energikilder marginaliserer driften af termiske kraftværker
på grund af lavere energipriser. Da termiske kraftværker består af SY’s primære
kilde, vil deres pensionering intensivere manglen på SY-ressourcer. Da fornyelige
kilder bliver udbredt på distributionsniveau (fx ved installation af tagfotovoltai-
ske paneler), vil SY-kravene udvides til distributionssystemoperatørerne, hvilket
er uden fortilfælde i de eksisterende elsystemer. Af disse grunde er det nødven-
digt at søge alternative driftsfleksibilitet til at fungere som ny SY for at sikre
kontinuitet og sikkerhed for elforsyning. I denne henseende er efterspørgsels-
respons en gyldig løsning, der udnytter efterspørgselsfleksibilitet til at levere
tjenester til nettet.

For at udnytte forbrugernes fleksibilitet optimalt er det vigtigt at redegøre for
forbrugernes forskellige præferencer og begrænsninger. Specielt skal undersø-
gelser nærme sig heterogeniteten af belastninger og forstå, hvad der påvirker
forbrugernes adfærd. Desværre har ingen litteraturstudier diskuteret det sam-
lede potentiale for forbrugernes fleksibilitet, og estimeringsundersøgelser er kun
udført for bestemte typer laster. I den første del af denne afhandling har vi
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til hensigt at udfylde dette hul ved at foreslå metoder til at estimere potenti-
alet for forbrugernes fleksibilitet. For at gøre det antager vi at vi beskæftiger
os med forbrugere, der modtager dynamiske elpriser, og kan selvstændigt plan-
lægge deres forbrug for at minimere elprisen. Sådanne undersøgelser overvejer
flere faktorer, der påvirker forbrugernes prisresponsivitet (dvs. belastningernes
genvindingseffekt, udetemperatur og elpris) og tegner sig for en heterogen for-
brugerpool. Endelig tegner disse fleksibilitetsestimeringsmodeller forbrugernes
stokastiske opførsel mod priser.

Forbrugerne kan kun levere pålidelige tjenester, hvis der udvikles en ordentlig
ramme. En sådan ramme skal opfylde forskellige kraftsystemers krav, fx yde
tjenester til forskellige niveauer af nettet, samt tage hensyn til forbrugernes
præferencer. I den anden del af denne afhandling diskuterer vi flere alternativer
til at levere SY i smart grids. Fra analysen er ingen af de eksisterende løsninger
i stand til optimalt at udnytte forbrugernes fleksibilitet. Derfor fortsætter vi i
vores forskning ved at foreslå en innovativ ramme, som kan udnytte forbruger-
nes fleksibilitet på forskellige netniveauer. Denne løsning er baseret på en envejs
kommunikationsstruktur og bygger på dynamiske elpriser, der sendes til forbru-
gerne. I denne afhandling udføres simuleringerne af denne foreslåede metode for
at evaluere dens potentiale til understøttelse af frekvens- og spændingsstyring.



Preface

This thesis was prepared at the Department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark (DTU) in partial fulfil-
ment of the requirements for acquiring a Ph.D. degree.

The thesis deals with the development of methodologies to estimate the ag-
gregate flexibility potential of consumers’ electricity demand. Furthermore, it
proposes an innovative framework to leverage consumers’ flexibility for the pro-
vision of ancillary services in power systems.

This thesis consists of a summary report and five research papers, documenting
the work carried out during the period between April 2016 and March 2019.
Two of these papers are published in international peer-reviewed journals and
another paper is currently submitted. Finally, the remaining two papers appear
in conference proceedings.

Kgs. Lyngby, 31-March-2019

Giulia De Zotti
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Chapter 1

Introduction

Quite frankly, there is no answer to climate change
without substantially, dramatically, increasing the

amount of renewable energy in the global energy system.

Christiana Figueres

1.1 Context and Motivation

In the last decades, power systems have been experiencing significant changes
in design and operation. Grid operators used to manage electricity generated
by large centralised thermal plants and deal with predictable loads. Today, the
introduction of renewable energy sources (RES) and flexible energy resources
(e.g., storage devices and shiftable loads) is driving power systems toward a de-
centralised structure. In this new setting, generation and consumption follow
a dynamic and less predictable behaviour [1]. These changes also impact the
provision of ancillary services (AS), which grant the integrity of transmission
and distribution systems as well as power quality [2].

The higher penetration of RES naturally demands more AS [3]. Indeed, by
depending on meteorological variations [4], RES introduce an unprecedented
level of stochasticity, non-linearity in power systems dynamics [5]. Such com-
plexities bring severe operational challenges to power system operators (i.e.,
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frequency deviations and voltage excursions) which need to be addressed by a
higher amount of AS [6]. The increasing need for AS has already caused inflat-
ing AS prices [7] in Australia [8] and California, where in the latter the total
AS market value raised from US$20M in 2015 to US$172M in 2017 [9]. The
higher amount of RES also affects the need for AS at different levels of the
grid. In a conventional power system, AS are mainly required by the transmis-
sion system operator (TSO) at high voltage level. However, when RES become
more and more present at the distribution system (e.g., through the installa-
tion of photovoltaic panels), the associated risk of over-voltage and congestion
leads distribution systems to inevitably require AS which were previously not
necessary [10, 11].

Besides changes in AS demand, schemes for AS provision are evolving as well.
In the past, thermal power plants used to be the main source of AS. Today,
these plants have to compete with cost-efficient RES, whose operation is reduc-
ing electricity prices [12]. The higher competition marginalises the operation of
conventional power plants and results in reduced profit and ultimately retire-
ment [13, 14]. Furthermore, many countries in the world are investing to reduce
their overall dependence on thermal plants for electricity generation [15, 16], in
line with international environmental targets against climate change [17]. An
example of this is Strategy 2050 in Denmark, whose intent is to fully rely on
RES in the national energy mix by 2050 [18].

As AS need increases and conventional thermal plants are set to retire, it is
crucial to seek for alternative ways to provide AS at a minimum cost for the
future power grid [14, 19]. While electricity storage systems constitute a natural
solution to the problem, they are an expensive approach that is sometimes not
accessible to grid operators.

Alternatively, RES can be approached as a source of AS to adjust the genera-
tion according to grid needs. However, RES curtailment leads to green energy
spillage and opportunity losses [20]. In order to optimally provide AS, it is nec-
essary to investigate cheap and valid alternatives that can be readily available
to the system at different voltage levels.

Demand response (DR) is a promising alternative to address the need for services
in power systems. It promotes changes in electricity demand by relying on the
flexibility of consumers. The strength of DR is that it exploits flexible resources
that are already present in power systems. In this thesis, we consider DR for the
provision of AS for both transmission and distribution levels. Although several
programs have been proposed to exploit DR, their application is limited to
demonstration projects that do not consider heterogeneous types of consumers.
Therefore, their applicability is limited by loads capability. Furthermore, the
literature lacks a comprehensive analysis of the effects of AS provision from
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consumers’ flexibility on the entire power system. In fact, existing studies only
focus on portions of grids (e.g., frequency management at transmission level
in [21]). Due to the importance of AS provision for a reliable power system
operation, our research investigate the potential of demand flexibility for AS
provision. In particular, we aim to determine to which extent consumers are
able to provide AS and under which conditions they can optimally provide
services. To this purpose, we formulate a unified simulation model to assess
consumers’ flexibility potential and a DR-based AS framework for future power
systems.

1.2 Thesis Objectives

The objective of this thesis is to analyse and quantify the role of electrical
consumers for AS provision in the smart grid era. We formulate algorithms
to estimate consumers’ flexibility potential in AS provision. Furthermore, we
introduce a new AS framework to leverage consumers’ flexibility potential. This
thesis is organised around two core research questions, which we present in the
following.

1.2.1 How Can We Estimate the Potential of Consumers’
Flexibility in Providing AS?

Quantifying demand flexibility is key in planning AS for future power systems.
In this first question, we propose methodologies to estimate the flexibility po-
tential of electrical consumers. The aggregate price response of consumers is
analysed when providing AS through DR programs. In particular, we develop
procedures to account for different dynamics and the stochastic nature of con-
sumers’ behaviour.

1.2.2 Which Framework Can Help to Optimally Exploit
Consumers’ Flexibility for AS Provision at Different
Voltage Levels?

Unlocking the consumers’ flexibility potential is necessary to fulfil AS needs
in smart grids. As the success of using DR for AS provision highly depends
on the framework under which demand flexibility is obtained, we formulate a
procedure by means of dynamic electricity prices and individual local controllers.
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In particular, we develop a framework that provides a systematic solution for
system operators to fulfil their AS needs through one-way communication.

This thesis is motivated by a lack of existing research material addressing the
need for AS in smart grids with high penetration of variable RES. Despite
numerous existing research works on DR formulation and provision, the question
of how to exploit consumers’ flexibility both at transmission and distribution
levels is less investigated. Moreover, addressing services through DR has always
been approached from the demand perspective and not considering the users of
the demand flexibility. Therefore, the aggregate flexibility potential of different
types of consumers is overlooked in these studies. This thesis aims to fill this
gap by taking the system’s operator point of view and developing DR-based
procedures for AS provision in the smart grid era.

1.3 Thesis Contributions

As a motivation to this thesis, in Paper A, we discuss alternative approaches for
accommodating larger amount of RES at different levels of the grid in presence
of high stochasticity, dynamics and non-linearity of the resources. In particular,
we analyse pros and cons of mechanisms that leverage flexibility resources of
electrical consumers to provide services to the power system. From the analysis,
we conclude that none of the alternative methods satisfies all the requirements
for a future optimal grid operation, which calls for real-time management of
the entire electricity system. Therefore, there is a need for further analysis and
research to optimally exploit flexibility resources.

We address this task in Paper B, where we introduce the ancillary services
4.0 (AS4.0) framework. AS4.0 consists of an alternative solution to the cur-
rent market-operation structure for AS provision. It allows system operators
to exploit consumers’ price-responsiveness according to grid needs, by varying
the electricity prices offered to consumers. Consumers can automatically and
individually react to these prices and minimise their own cost. By offering a
price-based control mechanism to exploit the entire fleet of flexibility resources,
AS4.0 provides AS for the entire grid, and handles stochasticity, non-linearity
and dynamics. Furthermore, a one-way communication system supports fast
and simple operation and preserves consumers’ privacy. This way, electricity
demand is locally controlled by end-users without the requirement to exchange
any information with system operators in real-time.

Since AS4.0 is based on the exploitation of consumers’ flexibility, it is necessary
to obtain a better understanding of consumers’ behaviour and demand flexibil-
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ity dynamics. Such a study would respond to our first research question and
defines suitable procedures for the estimation of DR potential for the provision
of AS. Therefore, we investigate and estimate the aggregate consumers’ flexibil-
ity potential in Papers C and D. These studies are conducted at an aggregate
level, considering different categories of consumers and a DR program based on
time-varying electricity prices. The effect of stochasticity on consumers’ res-
ponse dynamics is handled in Paper C, where we leverage chance-constrained
programming to model consumers’ behaviour.

In Paper D, we investigate the effect of consumers’ operational constraints on
overall flexibility potential. Specifically, we develop an algorithm to assess dif-
ferent types of rebound effects that represent the behaviour of consumers. Fur-
thermore, we consider the effect of outdoor temperature on the overall DR
potential.

Finally, in Paper E, we demonstrate that AS4.0 can be a solution for the optimal
AS provision in smart grids. By modelling and simulating the AS4.0 framework,
we show that it performs up to 60% better in frequency management than
conventional AS provision. At the same time, this new framework successfully
deals with voltage deviations at the distribution system.

1.4 Thesis Structure

This thesis is structured as follows. Part I is a summary report outlining the
main contributions of the thesis. Chapter 2 provides an overview of the ap-
proaches that guarantee a reliable operation of power systems, with a focus on
DR. Chapter 3 describes the methodologies applied in this thesis, including the
concepts of control, optimisation, machine learning and power system modelling.
Chapter 4 deals with the potential of consumers’ flexibility for DR and presents
a solution for the provision of AS based on consumers’ flexibility. Chapter 5 pro-
vides conclusions and perspectives. Appendix A presents the main objectives of
the SmartNet project and discusses how they relate to our research.

Part II consists of the publications that contributed to this thesis. In such
regards:

Paper A is a conference paper published in IEEE ENERGYCON 2018. It discusses
alternative approaches for RES management and AS provision in the pres-
ence of significant uncertainties due to RES.

Paper B is a journal paper published in IEEE Access. It offers a conceptual design
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of a comprehensive AS provision mechanism that is based on dynamic
prices and indirect control techniques.

Paper C is a journal paper published in IEEE Transactions on Power Systems. It
deals with the formulation of a stochastic optimisation problem to estimate
the aggregate flexibility of rational consumers with different elasticity and
preferences at the TSO level in response to time-varying prices.

Paper D is a conference paper published in the IFAC Workshop CSGRES 2019. It
investigates different approaches for modelling the dynamics and rebound
effect of electrical consumers that respond to price-based DR programs.

Paper E is a paper under review in IEEE Transactions on Power Systems. This
publication presents the modelling and simulations of AS4.0 for the pro-
vision of AS from consumers.



Chapter 2
Reliable Operation in Smart

Power Systems

Please take responsibility for the energy you bring into
this space.

Oprah Winfrey

2.1 Introduction to Ancillary Services

The main purpose of power systems is supplying electricity to the consumers
that are located all over the grid. A reliable electricity supply service ensures
service continuity and power quality, i.e., handling unexpected operational is-
sues to deliver electricity without interruption [22]. Also, electricity supply must
take place under the condition that the integrity and the stability of the power
system are always respected: the system is meant to survive and recover from
a credible disturbance [23]. Operational issues that affect power system conti-
nuity include voltage and frequency deviations; these depend on the imbalance
between electricity demand and power supply from generation units. For this
reason, it is fundamental that the balance between generation and demand is
always guaranteed in real time.

To this end, AS consist of operations designed to support power system man-
agement and maintain a reliable electricity supply service [24]. Although in the
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technical literature there is no absolute definition of AS [25], they are supposed
to provide dedicated amount of electricity reserve that is used to address imbal-
ances between consumption and generation, ensure power system recovery and
maintain proper flow and direction of electricity. AS provision delivers different
services at different levels of the grid, whose management widely varies among
countries [2]. These services include frequency control services (such as spinning
reserve, remote automatic generation control and frequency regulation), voltage
control services (such as voltage regulation) and emergency services (such as
black-start capability and emergency control actions) [26, 27, 28]. In this thesis,
we focus on the regulation of frequency and voltage.

Frequency regulation is related to the management of active power in a grid.
Different levels of operation can be identified, i.e., primary, secondary and ter-
tiary frequency controls [29]. Primary frequency control represents the local
automatic response to frequency deviations which acts within seconds and up
to minutes [30]. Secondary frequency control operates as a centralised automatic
control to stabilise the frequency. It addresses imbalances at the interconnec-
tions, typically within minutes [30]. Tertiary frequency control is a manual
reserve used in the event of outages or unexpected activations of secondary
frequency control. Its activation time varies from minutes to hours.

On the other hand, voltage regulation depends on the management of reactive
power, which is injected and absorbed through synchronous sources and static
compensators. Voltage regulation mainly relies on automatic control of passive
reactive components, e.g., capacitor banks or reactors. Nevertheless, suppliers
that are capable of fast regulation can also modify their production/consumption
of reactive power until acceptable levels are achieved [24]. These suppliers in-
clude spinning generators, synchronous compensators, reactors and capacitors.
Voltage regulation is organised in a similar structure to frequency management,
normally providing service within thirty seconds [30].

Countries provide services for frequency and voltage regulation in a variety of
ways. Four main approaches can be identified [31]:

• Compulsory provision: Specific users, i.e., large generators with ramp-up
and -down capabilities, are supposed to provide a certain amount of AS upon
request of the TSO. This approach guarantees AS provision in a transparent
manner, as the requirements for providing AS are available to the public. On
the other hand, it might imply unnecessary costs for AS providers, since the
requested AS volume can exceed the needed amount. Compulsory provision
might also lead to an inefficient resource management, as AS providers are
treated in an equal manner despite the fact that they operate with different
costs [31].
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• Bilateral contracts: System operators and providers can negotiate on the
quantity and price for AS provision. Such an approach encourages a better use
of resources, as the TSO acquires the cheapest and needed amount of services.
However, the overall solution of bilateral contracts lacks transparency, as the
terms of negotiation are not disclosed to third parties. Furthermore, such a
negotiation can be time consuming, costly and difficult. Due to their high
transaction cost, bilateral contracts settle fixed AS prices and volumes for a
long time, which is not in line with the modern dynamic operation of power
systems [31].

• Tendering process: When services are needed, the TSO can initiate a ten-
der process and receive auction bids from AS providers. Such a solution
supports competition and transparency in AS provision. Nevertheless, ten-
dering processes deals mainly with AS that have long duration and therefore
do not follow the real-time operation of the power system, which is affected
by an increasing level of stochasticity, non-linearity and dynamics [19]. Also,
it requires extensive data management when dealing with the auctions bids.

• Spot market: Similar to the tendering process, AS providers participate in
the AS market by submitting their bids, i.e., prices and quantity values [32].
In spot markets, AS provision can take place daily, in a single session, or
hourly [26] and deals with products that have short duration (i.e., one week
or less [31]). In spite of its capability to better represent the condition of the
grid compared to the other approaches, spot markets still rely on bids that
are deterministic and linear. Furthermore, the market clearing process might
require few minutes to provide a solution, due to the large-scale optimisation
problems it must solve. Therefore, by dealing with thousands of variables
and constraints along with power flow equations, it might be too slow to cope
with the new level of uncertainty and dynamics [33, 34].

Besides these alternative approaches for AS procurement, the current AS pro-
vision still relies on conventional thermal plants with ramp-up and -down capa-
bilities. Furthermore, with the integration of RES in power systems, additional
AS are needed to manage the increased variability and uncertainty [35]. While
most of the RES are not able to provide balancing services effectively [36, 37],
thermal plants become less competitive and their capacity is reducing to meet
environmental targets [13]. For these reasons, it is challenging to ensure relia-
bility and stability of smart grids from alternative sources while reducing our
dependence on AS from thermal plants.
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2.2 Approaches to Stability in Smart Grids

Ensuring a reliable electricity supply can be pursued through alternative so-
lutions, as shown in Fig. 2.1. It is important to understand the benefits and
limitations of each alternative.

Figure 2.1: Various approaches for a reliable operation of power systems.

Investing in power system infrastructure can guarantee that electricity is trans-
ported to areas where consumers are located while minimising congestions. Nev-
ertheless, such a solution can be very costly, especially for large countries where
consumption and generation are geographically scattered.

Alternatively, electricity storage systems can be adopted to provide regulation
services [38]. They include batteries, hydro-pumped storage and hydrogen. Be-
sides the flexibility potential of such solutions, they have some limitations that
must be considered. In particular, batteries raise concerns over their limited life-
time, decreasing performance and recycling costs. Furthermore, the high prices
make them financially unattractive in many cases [38]. The main barriers to
hydrogen are related to the cost and the overall low efficiency compared to other
storage technologies [38]. Although hydro-pumped storage has high efficiency
(around 80% [39]), its operation is only suitable for specific sites, characterised
by geographical height and water availability.

A different approach considers the management of flexible generation units.
This solution addresses flexibility from conventional thermal plants, such as
ramping and minimum load operation [40], as well as from RES [28]. We al-
ready discussed the limitation of solely relying on conventional thermal plants
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in Section 1.1: their profitability is challenged by competitive RES which reduce
electricity prices. RES might provide regulation by adjusting their output, e.g.,
for windmill turbines [41]. However, this solution is limited in up-regulation by
the effective wind availability. Furthermore, the curtailment of RES leads to
green energy spillage and opportunity loss which must be compensated.

Although we mainly focus on electricity management in this thesis, it is possible
to consider other energy carriers, such as gas and heat. This concept is known as
multi-carrier energy systems [42]. By adjusting the choice of energy carrier used
according to grid condition, demand can be satisfied while providing services to
the power system. Furthermore, integrating the use of different energy carri-
ers in a single framework facilitates the optimal utilisation of resources thanks
to sharing flexibility and increases the overall efficiency of the integrated en-
ergy system. However, it has limited application in countries that do not rely
on combined-heat and power (CHP) systems or central heating systems (e.g.,
Australia).

Another way to support a reliable operation of power systems is demand-side
management (DSM) [43]. Such a solution relies on changing the way consumers
use electricity and can be implemented in two ways: i) by increasing loads’ en-
ergy efficiency or ii) through demand response (DR). In DR, electricity demand
acts as a source of flexibility, whose characteristics depend on the capabilities of
electrical devices and consumers’ preferences in altering their consumption. DR
can take the form of load curtailment and load shifting (see Fig. 2.2). While
load curtailment represents an overall reduction of electricity demand, load shift-
ing implies that a certain over-consumption results in a subsequent decrease in
consumption and vice versa.

Although a combination of these different approaches might be the optimal
solution in practice, this thesis focuses on DR. In particular, we consider the
application of load shifting, as it does not compromise the overall welfare of
consumers and models demand flexibility in a more conservative manner. In
order to provide services through DR, operators need to formulate dedicated
programs that can obtain consumers’ acceptance.

2.3 Services Provision through Demand Response

Over the last two decades, DR programs have been used to address operational
needs of power systems in numerous research studies [44]. As an example, time
of usage (ToU) rates programs feature prices that change by time periods, e.g.,
by peak and peak-off periods [45]. Such solutions are able to reduce electricity
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Figure 2.2: Concepts of load curtailment and load shifting.

consumption at peak hours, which is the main concern for a system relying on
controllable and predictable conventional plants. However, in an electricity grid
with significant amount of RES generation, new kind of DR programs is needed
to account for an unprecedented dynamic and unpredictable operation in real
time. Therefore, DR programs must be automatic and intelligent with high
granularity in time to facilitate consumers participation in power system oper-
ation in real time and provide services in a fast manner [43]. For these reasons,
new solutions have been proposed over the years, which can be divided into two
main categories: explicit and implicit DR programs. Their main functioning is
shown in Fig. 2.3.

Explicit DR programs

Implicit DR programs

= Control logic

Price

Control

Feedback
DR

operator

DR
operator

Figure 2.3: Concepts of implicit and explicit DR programs.

In explicit DR programs (also known as incentive-based mechanisms [46, 45]),
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flexibility is traded and committed by consumers through incentives [47, 48,
49]. These programs mainly rely on classical control mechanisms, i.e., direct
load control (DLC) techniques, and market-based mechanisms. In DLC, an ex-
ternal entity is entitled to directly control consumers’ load through a two-way
communication link [50]. This approach minimises the uncertainty of consumers’
response [51]. However, consumers’ privacy and autonomy can be dramatically
affected, by allowing an external entity to decide about the way they consume
electricity [52]. Indeed, some consumers may have also other priorities than
reducing electricity costs. For example, waste water treatment plants need to
prioritise the treatment of incoming waste water to ensure effluent water qual-
ity and environmental reasons [53]. As a consequence, DLC requirement may
result in limited participation of consumers in DR programs. This fact has been
shown in [54] and [55], where consumers were willing to accept automation of
consumption only if allowed to autonomously manage it. Furthermore, in the
implementation of DLC, the need for feedback from consumers to aggregator
(i.e., DR operator) requires the adoption of a two-way communication scheme, as
shown in Fig. 2.3. Such programs highly depend on the communication channels
(exposing them to significant cyber-security risks). Moreover, the infrastructure
can become very costly when scaled to millions of devices. DLC program agree-
ments can take place in the form of demand bidding or long-term contracts. In
the former case, consumers trade their flexibility through an aggregator, who
formulates a bid of the overall change in consumption [56]. However, scaling
this solution to a high amount of players might be very costly and complex, due
to the two-way communication required [57]. An alternative to demand bidding
is offered by long-term contracts. Long-term contracts consist of a simpler solu-
tion that does not need aggregation or bidding and has long duration. However,
they require consumers to plan their future consumption ahead of time - a non-
trivial task [48]. Therefore, DLC methods allow to exploit only a part of the
flexibility potential for power system services.

In implicit DR programs (or price-based mechanisms [46]), flexibility arises from
consumers’ reaction to price signals. These programs are referred to as indirect
load control (ILC) [1, 58, 59] and dynamic pricing schemes [59]. In ILC mech-
anisms, control signals are broadcast from a centre to consumers, which can
individually decide about their consumption [60, 59]. In order to be able to
make decisions, consumers must be equipped with individual controllers, also
known as home energy management systems (HEMS) [61, 62]. As shown in
Fig. 2.3, implicit DR programs are based on one-way communication, avoiding
any feedback from consumers to operator. Indeed, only aggregated consumers’
response can be measured by the operator. This approach addresses privacy and
comfort issues, as each individual controller can satisfy consumers’ constraints
and preferences locally [63]. Depending on the specific implementation of ILC,
consumers receive different dynamic signals, which can be either control or price
signals. Control signals are formulated by a central controller and depend on the
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model of specific types of loads. This condition implies that different specialised
control signals must be issued for every type of load, which is a limit for hetero-
geneous pools of devices [64], [65]. Furthermore, control signals are generated
based on simplified and linear models of the devices, which do not always repre-
sent the true dynamics of the underlying appliance and thus can be error-prone
[66]. Price signals have interesting properties that avoid these issues. Indeed,
the same price signal can be broadcast to a various pool of heterogeneous loads
[67], which then schedule the electricity consumption to minimise the individual
cost. Therefore, employing a single price signal simplifies the algorithm and
computation on the central controller side and the required communication on
the consumers’ side.

In our research, we focus on the potential of implicit DR programs and dynamic
prices to address operational challenges in power systems (i.e., frequency and
voltage deviations). As the penetration of RES affects both transmission and
distribution systems, AS challenges become ubiquitous in the grid. For this
reason, AS provision demands holistic changes in the way it is provided at both
levels of the grid. In this thesis, we firstly intend to understand the role of DR in
AS provision. For this reason, we need to investigate how to estimate demand
flexibility potential at an aggregate level. Secondly, we focus on the optimal
exploitation of consumers’ flexibility in AS provision. To do so, we study how to
facilitate consumers’ engagement in AS programs while solving the operational
challenges of power systems at the distribution and transmission levels. We
address these research questions with the support of mathematical models and
simulations which are covered in greater detail in the relevant papers. In the
next chapter, we present the applied methodologies that are key to developing
this research.



Chapter 3

Applied Methodologies

Look to the past to help create the future. Look to
science and to poetry. Combine innovation and

interpretation.

Drew Gilpin Faust

In this chapter we provide the reader with a basic understanding of the concepts
employed in Section II. The research questions addressed in this thesis translate
to a set of optimisation problems that describes the price responsiveness of con-
sumers. First, this chapter provides an introduction to the applied optimisation
concepts, discussing mixed-integer linear programming and chance-constrained
programming. In our studies, the aggregate responsiveness of consumers has
been exploited to support power system operation. Therefore, we needed to
model the behaviour of power systems following the reaction of consumers. This
chapter discusses the control techniques used for this purpose, such as load fre-
quency controllers. Power flow analysis is also briefly presented, as we have
employed it to calculate nodal voltages in distribution systems. In conclusion,
this thesis proposes a framework for AS provision which relies on the submis-
sion of dynamic electricity prices. Implementing this framework required a way
to generate dynamic prices according to system needs. To do so, we used an
artificial neural network whose concept is explained in the following. However,
alternative methods to artificial neural network might also have been used, such
as time series analyses [68, 69].

For additional details on these subjects, the reader can refer to [70] on mixed-



18 Applied Methodologies

integer linear programming, [71] on chance-constrained programming, [6] on load
frequency controllers, [72] on linear quadratic regulators, [73] on PID controllers,
[74] on power flow analysis and [75] on artificial neural network functions.

3.1 Mixed-integer Linear Programming

A mixed-integer linear program (MILP) consists of a mathematical optimisation
problem where some of the variables are integers [1]. We provide the canonical
form of a MILP in the following.

min
x,y

cTx+ hT y (3.1a)

subject to:
Ax+Gy ≤ b (3.1b)
x, y ≥ 0 (3.1c)
x ∈ Zn (3.1d)

In this formulation, x and y represent the decision vectors. In particular, xj is
constrained to be non-negative integer and yj is non-negative real [70].

MILP is a popular way to formulate optimisation problems, as binary variables
can describe categories or the status of the system. It is widely used in the
energy sector, e.g., for unit commitment problems [76]. In this setting, binary
variables describe whether generating units are on-line or off-line. MILP are
also suitable to solve the scheduling problem for electricity consumption in DR
programs. In this matter, binary variables allow the formulation of constraints
related to the duration of flexibility provision as well as maximum amount of
times that flexibility can be provided. In our studies, we have employed MILP
to model the scheduling of electricity consumption in the presence of electricity
prices, while also considering different dynamics of loads’ rebound effect.

3.2 Chanced-constrained Programming

Chanced-constrained (CC) programming belongs to a set of techniques to deal
with random parameters in optimisation problems. A major challenge posed
by power system problems is that decisions must be taken prior to observing
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uncertain parameters and cannot be lately amended (due to safety or economic
limitations). As prior decisions might result in future constraint violations, we
have to ensure that only a low percentage of realisations of the parameters
violates the constraints [77]. In CC, the objective function is maximised (or
minimised) while ensuring that the probability of meeting a certain constraint
is above a prescribed level. This condition is achieved by restricting the feasible
region in a way that the confidence level of the solution meets the requirement
[78]. We can start from the general formulation of a linear optimisation problem
(LOP) stated as follows:

min
x

cTx (3.2a)

subject to:
Ax ≤ b (3.2b)
x ≥ 0 (3.2c)

where x is the decision vector. In a deterministic formulation of the LOP, A is
the known coefficients matrix and b is the known coefficients vector. However,
when including stochasticity in the problem, we consider that the constraint
Ax ≤ b is affected by a certain amount of uncertainty, which can either appear
in A, b, or both. Therefore, A and/or b become stochastic. CC is applied by
replacing Eq. (3.2b) with:

Pr

(
Ax ≤ b

)
≥ β (3.3)

In Eq. (3.3), β represents the prescribed level of probability, or security level,
for which the constraints should not be violated. Its value can vary between
0 and 1. When dealing with CC, there is not a general solution method and
its solution widely depends on which parameter is uncertain (e.g., matrix A
and/or right-hand side vector b in Eq. (3.2b)), the convexity of the constraint
function and the probability distribution of the stochastic variables. Depending
on the specific case, CC can be solved through a variety of methods. In order
to provide a graphical illustration of CC, let us consider a simple case where b
is a null scalar and A is a vector contingent on a Gaussian random variable:

Pr

(
Ax ≤ 0

)
≥ β (3.4)
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In Fig. 3.1, the dashed rectangle represents the constraint Ax ≤ 0. The proba-
bility distribution (PD) of Ax is normal, and part of it lies outside the dashed
rectangle. Therefore, a higher uncertainty leads to a bigger area outside the
constraint.
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Figure 3.1: Normal distribution of the uncertainty and constraint. Case for
which b has dimension 1 with value zero. [79].

Being introduced by Charnes and Cooper in 1959 (see [80]), CC has been used
for a wide range of applications in engineering and finance. In power system
engineering, it is a popular method to deal with the uncertainty in unit com-
mitment problems [77] and reserve scheduling [81]. Furthermore, researchers
have been using CC for optimal storage sizing [82] and generating prices in DR
programs [83]. In our research, we have applied CC to estimate consumers’ flexi-
bility potential while considering the stochastic nature of consumers’ behaviour.

3.3 Load Frequency Controller

Load frequency controller (LFC) is a small-signal model used to manage the
frequency system-wide. A schematic representation of a single-area LFC model
is provided in Fig. 3.2. It includes the power system (i.e., loads and rotating
mass), an equivalent generating unit (composed of a speed governor and a tur-
bine) and a controller. In power systems, rotating masses have the property of
inertial response, i.e., act to overcome the immediate imbalance between elec-
tricity generation and demand. When a certain power disturbance ∆Pω occurs
in the system and the rotational frequency of rotating masses increases (i.e., for
excessive generation) or decreases (i.e., due to excessive demand), the effect of
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the disturbance results in a relatively small variation of frequency ∆f . This
condition is described by the swing equation, as:

∆PT (s)−∆Pω(s) = 2Hs∆f(s) +D∆f(s) (3.5)

Where H represents the inertia constant of rotating masses and D is the load
damping coefficient [6]. In order to handle the variation of frequency in the
system, we consider two main frequency control loops for system stability, i.e.,
primary and secondary frequency regulation, which rely on generating units.
In primary regulation, the speed governor is used to measure the frequency
locally and change the steam valve position to stop frequency changes. It acts
through the transfer function 1

R , where R = (f0−f)
f and f0 is the reference

frequency value. Secondary regulation is a central control that sends a signal
to a controller (or automatic generation control, AGC) to specify the amount
of power that the generator must produce, i.e., ∆PG. This amount of power
is applied by the steam valve of the turbine, i.e., ∆PT . The response of the
equivalent generating unit depends on the time constants of the generator and
turbine, i.e., Tg and Tt [6].
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Figure 3.2: Conceptual scheme of the LFC.

As, in reality, power systems are often interconnected, we are interested to ex-
tend the LFC formulation to a two-area power system, as shown in Fig. 3.3, and
add inter-tie power flows dynamics to the system. In the figure, we interconnect
areas i and j and the interconnection introduces three main elements in the
model: βi and βj representing the response coefficients of the two areas; Ti,j
describing the time constant of the tie-line flow; and αi,j , which guarantees cor-
rect power flow direction at the interconnection (i.e., areas i and j have opposite
sign of power flow direction), where αi,j =-1.

In the technical literature, LFC model has been widely used to analyse the
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Figure 3.3: LFC for two interconnected power systems.

effect of new energy resources in power systems. In [84] and [85], LFC has been
applied in a setting which combines conventional LFC with dynamic DR for a
multi-area interconnected power system. Moreover, various control techniques
can be considered when implementing AGC. In [86], authors discussed different
types of AGC, such as proportional-integral-derivative controllers and model
predictive control. In our research, we have used LFC to investigate the impact
of power disturbances on the frequency trend at the transmission level, when
relying on AS4.0 and CGU-based AS provision.
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3.4 Linear Quadratic Regulator

As mentioned in Section 3.3, various types of controllers can be used in AGC.
Among all, linear quadratic regulator (LQR) is a popular optimal control tech-
nique based on state-space representation. We consider the following system:

ẋ = Ax+Bu (3.6a)

y = Cx+Du (3.6b)

where x is the state vector and u is the control vector. The aim of LFC is to
stabilise the system through a feedback loop.

Kr

+

-

K

r y

x

ẋ = Ax+Bu

y = Cx+Du

Figure 3.4: Conceptual scheme of a LQR.

We provide the conceptual scheme of LQR in Fig. 3.4. The state vector x is
fed back and multiplied by a gain matrix K, as shown in Fig. 3.4. In order to
avoid steady-state reference tracking error, Kx is also subtracted to a scaled
reference, Krr. For the design of K, we need to decide the close-loop charac-
teristics of the system. In particular, we can select K as a trade-off between
transient response (i.e., control performance) and control effort. This study
can be approached by minimising a quadratic cost function J(x, u) in which all
the close-loop characteristics are associated to weights [72]. The cost function
J(x, u) can be designed in several ways. An example is provided as follows:

J(x, u) = 1
2

∫ ∞
0

(
xTQx+ uTRu

)
dt (3.7)

In Eq. (3.7), Q is the weight of the control performance while R refers to the
weight of the control effort. In this formulation, it is possible to penalise poor
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performance or high control effort by adjusting Q and R. In particular, Q must
be a symmetric positive semi-definite matrix, in a way that its product with the
state vector is positive and non zero. Similarly, R is considered as a symmetric
positive definite matrix. In the formulation of J(x, u), the integral calculates
the cost over time, which is required to become zero in steady state; the squared
values eliminate the problem of negative values. The feedback control law that
minimises the cost function J(x, u) [87] is:

u = −Kx (3.8a)

K = R−1BTP (3.8b)

where P is the solution of the Riccati equation [87, 88, 89].

LQR has many beneficial properties, e.g., generates static gain and achieves
infinite gain margin [88]. For these reasons, LQR has been applied in different
studies for the control of power systems [85, 90]. In our work, we have built an
LQR for secondary frequency regulation in the LFC formulation.

3.5 Proportional–Integral-Derivative Controller

Proportional-integral-derivative (PID) controller consists of a control loop feed-
back mechanism where the control signal is the sum of three main components.
They include P-term (which acts proportionally to the error), I-term (that deals
with the integral of the error) and D-term (which considers the derivative of the
error) [73]. The general PID formulation is:

u(s) = Kp e(s) + Ki e(s)
s

+Kd e(s) s (3.9)

where u(s) is the control signal and e(s) represents the control error. A block-
diagram of this type of controller is provided in Fig. 3.5.

As shown in Eq. (3.9), PID controller parameters include proportional, integral
and derivative gains, i.e., Kp, Ki and Kd. The choice of such gains can widely
affect the performance of the controller, and the tuning of each parameter de-
pends on the control element, control delays and the overall process. Depending
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Figure 3.5: Conceptual scheme of a PID controller.

on the type of applications and the control requirements, variations of PID con-
trollers can also be preferred. An example is the PI controller, which does not
react to small error variations.

Due to their simplicity and effectiveness, PID controllers have been widely used
in control engineering [91], by regulating flow, temperature and other industrial
processes variables [73]. In frequency regulation, PID controllers have been em-
ployed as AGC in the secondary frequency control loop [92]. In our studies, we
have used PI technology to control the price response of consumers, depending
on the voltage deviation measured at the distribution system. In other words,
we have used a PI controller to generate a control signal (i.e., price signal) that
can address a certain change in consumption from consumers.

3.6 Power Flow Analysis

Power flow (PF) analysis is a numerical tool used to investigate the power system
status in steady state. It studies node voltages and branch power flows in an
interconnected system. PF analysis is based on Ohm’s law and the definition of
apparent power. The relationships between voltage, electrical current intensity
and power are reported in the following.

Ii =
n∑
j=1

Yi,jVj i = 1, . . . , n (3.10a)
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Si = Pi − jQi = IiV ∗i (3.10b)

In Eq. (3.10a), Yi is the admittance matrix of the network, while Vi and Ii
describe the polar form of the voltage and current magnitudes at node i. In
Eq. (3.10b), Si, Pi and Qi represent the apparent, active and reactive power at
node i, while V ∗i is the conjugate of the voltage. By combining Eq. (3.10a) and
(3.10b), we obtain Eq. (3.11):

Pi − jQi
V ∗i

=
n∑
j=1

Yi,jVi i = 1, . . . , n (3.11)

This equation must be solved for each node to calculate the values of Pi, Qi,V.
Therefore, we face a system of non-linear algebraic equations, which can be
solved iteratively using Newton method [74]. Depending on the different infor-
mation that we have at each node of a power system, we can classify the nodes
in three main categories. In Fig. 3.6, we provide the diagram of a power system
with four nodes, showing different types of nodes. These categories include:

• PQ node, for which we have knowledge of active and reactive power. These
nodes mainly refer to load nodes, where electricity consumption is given. PQ
nodes are shown in Fig. 3.6 at nodes 2 and 4;

• PV node, where active power and voltage magnitude are known. These
nodes consider controllable reactive power resources and power plants. An
example of PV node is shown in Fig. 3.6 at node 3;

• Vθ node, (also called slack node), for which we know the voltage magnitude
and angle. In PF problems, only one node can be the slack node (usually the
largest unit participating in the AGC). The generator at this node compen-
sates for imbalance between generation and demand. Vθ node is shown in
Fig. 3.6 at node 1.

PF analysis is used to support the operation and planning of transmission and
distribution systems as well as smart grid management [93]. In particular, it
is useful to simulate the power system state after the introduction of flexibility
resources [94]. In our research, PF analysis has been used to quantify the effect
of AS4.0 on nodal voltages at the distribution level.
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Figure 3.6: Example of the power system with four nodes. Node 1 is the slack
node; node 2 and 4 are PQ nodes and node 3 is a PV node.

3.7 Artificial Neural Network

An artificial neural network (ANN) consists of a mathematical framework that
is inspired by the way our brain operates. The formulation of an ANN is based
on artificial neurons, i.e., functions that receive inputs, modify their internal
state and produce outputs. The output of each neuron, y(x), is formulated in
the following.

y(x) = f
( n∑
i=1

(
wTi xi

)
+ β

)
, i = 1, . . . , n (3.12)

In Eq. (3.12), x is the set of training inputs, w is the set of the weights and β is
the set of the biases. Weights consist of real numbers that show the importance
of a particular input, while biases are constants used to adjust the output along
with the weighted sum of the inputs to the neuron [95]. Neurons are organised
in layers and can be linked to the inputs of other layers. Such graphs include
input layers, multiple hidden layers and output layers, as shown in Fig. 3.7.

Depending on the complexity of the problem at hand, the most suitable number
of neurons and hidden layers can widely vary. Neurons learn the relationships
between inputs and outputs in a training process by tuning biases and weights
through a chosen algorithm. This algorithm minimises a certain loss function
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Figure 3.7: Conceptual ANN structure.

C(w, b), which can be written as:

C(w, b) = 1
2n
∑
x

||y(x)− ŷ(x)||2 (3.13)

where n is the number of training samples and ŷ(x) is the actual output of the
network for input x [95]. Several training algorithms have been developed to
minimise such a function. In particular, the Levenberg-Marquardt algorithm
gained popularity for its capability to achieve fast convergence [96].

ANN has been used in various applications, from medicine [97] to finance [98].
In electricity markets, it has been proposed as a way to forecast electricity
prices [99]. In our research, we have formulated an ANN to understand the
relationship between electricity prices and consumption. This information has
been used to generate dynamic electricity prices that can address a certain
change in consumption from consumers [59].



Chapter 4
Ancillary Services Provision
from Consumers’ Flexibility

Denmark should be a green and sustainable society with
a visionary climate and energy policy. (. . . ) The answer

to these challenges lies in the way we produce and
consume energy and in our ability to adapt our society

to climate change.

Connie Hedegaard

In this chapter selected results from the research work conducted within the
framework of this thesis are presented and discussed. Section 4.1 deals with
methodologies to estimate consumers’ flexibility potential for AS provision. Sec-
tion 4.2 discusses AS4.0 as an innovative control-based approach that provides
AS through consumers’ flexibility at different grid levels.

4.1 Analysis of the Factors Influencing Consumers’
Response

In order to fully exploit consumers’ flexibility potential, operators need to un-
derstand how consumers respond to prices at an aggregate level. Such an un-
derstanding facilitates the formulation of dynamic prices that trigger a certain
change in consumption from electrical consumers. Furthermore, it improves the
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power reserve allocation for system operation. For these reasons, the first re-
search question that we address explores consumers’ flexibility potential for AS
from an aggregate perspective. To do so, we first need to analyse the factors
that influence the aggregate consumers’ behaviour. In this thesis, we assume
that consumers’ flexibility mainly depends on electricity price [100], rebound
effect of consumers’ devices [101] and outdoor temperature [102]. Other factors
can also be considered, such as the type of day [103]. Indeed, our models could
be extended to include varying requirements for different days (i.e., different
reactions to prices and different electricity demand). However, a deeper un-
derstanding of this heterogeneity requires to collect specific data on the price
response of consumers for different days. Further analyses relative to house-hold
incomes [104], type of loads [105], on-site generation [106] and storage [107] are
also possible. However, they too require a larger amount of information on the
pool of consumers, which might be impractical to collect at scale. To avoid
the need for additional data in estimating the aggregate potential of consumers’
flexibility, these factors have been omitted in this work and and could be the
subject of future studies.

4.1.1 Price-Responsiveness of Consumers

In implicit DR programs, consumers are responsive to dynamic prices and the
overall flexibility provided derives from the aggregate reaction of consumers to
prices. To formulate an accurate estimator, we first need to find a relationship
between price and consumption for the aggregate pool of consumers. In this sec-
tion, we define price-responsiveness as the consumers’ willingness to change their
consumption to provide regulation for different prices. While previous studies
treated price-responsiveness as a constant (e.g., [108]) or a linear function (e.g.,
[109]), we describe it through a power function since it has been shown in [110]
that power functions can better describe consumers’ price-responsiveness than
linear models. In order to achieve a certain reaction from consumers, we consider
that consumers become responsive only beyond a certain price (see [108] and
[111]). Furthermore, they have a bounded capability of adjusting their consump-
tion according to a control signal, due to their finite and partially un-curtailable
loads [67]. Therefore, consumers cannot provide additional flexibility beyond a
certain price. In this matter, Paper C has proposed a power function to model
consumer responsiveness to prices. Such a model accounts for an economic
price threshold (i.e., dead-band price to which consumers start responding) and
physical limitations of consumers in providing flexibility (i.e., saturation price
at which no additional flexibility can be obtained).

The proposed model offers a deterministic formulation of consumer responsive-
ness to prices. However, when scaled to several heterogeneous consumers, this
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deterministic model might not represent the aggregate behaviour of the pool.
In the decision-making process, system operators need to quantify and factor in
the risk related to demand flexibility. Therefore, it is essential to consider the
stochastic nature of consumers’ behaviour in implicit DR programs and modify
consumers’ reaction accordingly in the model. In Paper C, the deterministic
model is replaced by a stochastic one, as shown in Fig. 4.1. In this figure, the
price-responsiveness of consumers is randomly drawn from a certain probability
distribution. The reaction to prices follows a power law and price-responsiveness
values are limited by the dead-band and saturation prices.
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Figure 4.1: Range of consumers’ price-responsiveness for different electricity prices.
Modified image from Paper C.

4.1.2 The Rebound Effect

The rebound effect (RE) is of paramount importance in flexibility dynamics es-
timation. It arises from loads technical constraints and consumers’ preferences
and consists of the change in consumers’ demand due to previous and future
price reactions. While RE has been mainly investigated in relation to thermal
loads or refrigerators, in our work we extend RE to general appliances by mod-
elling different RE dynamics. Indeed, thermal loads and general shiftable loads
(e.g., washing machine) have similar behaviour, in that they reduce (increase)
their base-line consumption scheduled at a certain time and consume more (less)
in the following time-steps. The main difference is the time span in which RE
phenomenon occurs, e.g., refrigerators have faster dynamics than washing ma-
chines. In other words, thermal loads cause instantaneous RE, while other types
of loads can be safely shifted forward by hours. In Paper D, we formulated a
general mathematical model of the RE for both thermal and shiftable loads.
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The different impact on dynamics is captured by the maximum RE duration
parameter.

In order to model the RE, we assume that the increase and decrease in consump-
tion perfectly match within a certain period of time, as shown in Fig. 4.2; we
define this condition as perfect RE. Although this assumption might not be re-
alistic for every type of load, it allows the estimation of the aggregate flexibility
potential while overcoming the requirement of detail models and field data.
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Figure 4.2: Basic concept of perfect RE. Modified image from Paper D.

Despite the importance of RE estimation, models of it have scarcely been pro-
posed in the technical literature; the majority of studies evaluate RE in relation
to the change in energy efficiency [112]. In [113], RE was modelled for a pool
of residential heat-pumps, assuming that an operator has direct access to the
consumption of the pool. In that study, RE included a delay period and a pay-
back period. In delay period, heat-pumps followed their baseline consumption.
In payback period, heat-pumps could deviate from their baseline consumption.
As the study evaluates loads dynamics for a pool of residential heat-pumps,
additional studies are needed to quantify the aggregate RE impact of different
types of consumers.

In Paper D, we have addressed this research question by formulating two dif-
ferent models of consumers’ behaviour. We model both a static RE, where we
consider specific time periods, and a dynamic one, which allows more convenient
scheduling of the consumers’ flexibility. Static RE sets a time interval for which
perfect RE occurs. This model of RE suits the operation of electric vehicles
(EVs) that are put in charge mode at a specific hour and must be fully charged
by a certain time in the future. A graphical representation of static RE is pro-
vided in Fig. 4.3. Dynamic RE imposes that perfect RE occurs at least once



4.1 Analysis of the Factors Influencing Consumers’ Response 33

within the maximum RE duration. This type of RE covers the requirements of
thermal loads, since they can always provide flexibility as long as some opera-
tional constraints are met. The concept of dynamic RE is shown in Fig. 4.4. In
the figure, when perfect RE is fulfilled (as shown in the grey area), a new RE
cycle can be started.
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Figure 4.3: Static RE. Modified image from Paper D.
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Figure 4.4: Dynamic RE. Modified image from Paper D.

4.1.3 Outdoor Temperature

Outdoor temperature can significantly influence consumers’ flexibility, due to
the close relationship between weather conditions and electricity consumption
[114]. As an example, in [115], authors showed that the overall reaction of
flexible consumers to prices was faster during cold weather. From the system
operator perspective, higher electricity consumption presents higher chances
that enough consumers are willing to provide services through DR, provided
that their comfort is unaffected. In Paper D, we include the effect of outdoor
temperature on the aggregate consumers’ flexibility estimation.



34 Ancillary Services Provision from Consumers’ Flexibility

4.1.4 Flexibility Modelling

After considering several factors that can influence consumers’ flexibility pro-
vision, we moved on to analyse the aggregate flexibility. In Paper C and Pa-
per D, we develop models that achieve cost minimisation for consumers, while
respecting their preferences and the technical constraints of their devices. These
models have been formulated as MILPs and encompass different types of elec-
trical consumers (i.e., industrial, commercial and residential). In these studies,
we estimated the consumers’ flexibility potential taking into account the uncer-
tainty of consumers’ price response and the role of RE dynamics and outdoor
temperature. In Paper C, the uncertainty of consumers’ behaviour has been
considered through the application of CC programming. In Paper D, we cov-
ered the modelling and benchmarking of static and dynamic RE formulation, as
well as the effect of outdoor temperature.

4.1.5 Case Study

The studies have been carried out using data provided by the Elforbrugspanel
project about Danish electricity consumption [116]. They represent the be-
haviour of 29 different types of consumers, e.g., paper industry, agriculture with
heating and restaurants, in hourly resolution. From this data, we investigated
the aggregate flexibility potential of electrical consumers in Denmark. Con-
sumers’ response has been simulated for various price-sets, in order to obtain
a flexibility range in numerous operational scenarios. In Paper C, a MILP has
been solved to schedule the daily electricity consumption, while understanding
the effect of consumers’ uncertainty in the overall flexibility provision. In Pa-
per D, we have solved an updated MILP for two-days simulations. This study
has covered the modelling of different RE types and has shown the performance
of static and dynamic RE. Below, we report the main results from the analysis
of consumers’ behaviour, RE modelling and outdoor temperature.

4.1.5.1 Analysis of the Uncertain Consumers’ Behaviour

In Paper C, we have estimated consumers’ flexibility in the presence of uncer-
tain consumers’ behaviour. Through the application of CC, we have investi-
gated the flexibility provision for a certain level of risk related to consumers’
price-responsiveness. We have analysed two different values of security levels
to estimate the flexibility for a conservative and a high-risk case (i.e., 95% and
50%). The results are shown in Fig. 4.5 and Fig. 4.6 for the two security levels.
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Figure 4.5: Flexibility achieved by CC optimisation for a 0.95 security level:
baseline consumption, flexibility for the reference dynamic price
component ∆λ∆λ∆λα∗t , and the dynamic price component. Image from
Paper C.

Figure 4.6: Flexibility achieved by CC optimisation for a 0.50 security level:
baseline consumption, flexibility for the reference dynamic price
component ∆λ∆λ∆λα∗t , and the dynamic price component. Image from
Paper C.

By comparing the figures, it can be noticed that the high-risk case has a flexibil-
ity range that is up to 76% higher than the low-risk case. Furthermore, Table 4.1
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shows that the average values of flexibility achieved for the conservative case de-
creases by 66% compared to the high-risk case. This large difference depends
on the different levels of risk: in high-risk case, the flexibility estimated is much
higher. However, the probability of achieving this amount of flexibility is only
50%. By neglecting a low-risk analysis of the uncertainty, we might expect a
much higher response from consumers than for the conservative case. Therefore,
these studies have proven the importance of considering uncertainty and risk in
the model.

Table 4.1: Average values of up- (down-) flexibility provided during one day,
considering different security levels. Table from from Paper C.

Study case Up- (down-) regulation [GWh]
50% security level 0.719
95% security level 0.243

Difference -66%

4.1.5.2 Analysis of Different RE Dynamics

In Paper D, we have considered the estimation of consumers’ flexibility through
the formulation of different RE, i.e., static and dynamic. For these studies, 95%
security level has been preferred, to keep a conservative viewpoint. The analysis
of the RE provides a better understanding of loads dynamics and supports
operators in estimating the achievable flexibility. The main outcome of this
study has been estimating consumers’ flexibility for different RE formulations.
In Fig. 4.7 we show the amount of flexibility achieved for static RE, while Fig. 4.8
covers the case of dynamic RE. From the figures it can be seen that dynamic RE
provides a higher amount of flexibility for the same price-sets. Finally, Table 4.2
reports the amount of flexibility achieved for different REs. As dynamic RE
offers 45% more flexibility than the static case, it is fundamental for operators
to understand which RE dynamics are most likely to happen on the consumers’
side.

Table 4.2: Average values of up- (down-) flexibility provided during two days
simulation, considering different RE formulations.

Study case Up- (down-) regulation [GWh]
Static RE 0.600

Dynamic RE 0.874
Difference +45%
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Figure 4.7: Range of consumption for static RE. Base-line consumption (in black);
Sample daily price response (in red). Image from Paper D.

Figure 4.8: Range of consumption for dynamic RE. Base-line consumption (in
black); Sample daily price response (in red). Image from Paper D.
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4.1.5.3 Analysis of Different Outdoor Temperatures

In Paper D, we have extended the analysis of different REs to include the impact
of weather conditions on the overall flexibility. Therefore, consumers responsive-
ness has been expressed as a function of the outdoor temperature. In Fig. 4.9,
such a relationship is shown for the case of extreme temperatures during hot
season. In the figure, Case I represents the base-line temperature (i.e., the case
discussed in our previous studies where we did not consider the effect of tem-
perature); Case II refers to higher outdoor temperatures and Case III models
the responsiveness for lower outdoor temperature. The results of this study are
reported for different cases in Table 4.3. The outdoor temperature and RE dy-
namics seem to significantly affect the overall flexibility, which varies between
0.482 and 1.032 GWh. Therefore, it is fundamental for the operator to account
for weather condition in estimating the flexibility provision from electrical con-
sumers.
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Figure 4.9: Relationship between temperature and price-responsiveness of con-
sumers. Modified image from Paper D.

Table 4.3: Average values of the flexibility provided in two days for different
temperatures.

RE model Outdoor temperature Flexibility provided
case [GWh]

Static
I 0.600
II 0.714
III 0.482

Dynamic
I 0.874
II 1.032
III 0.714

In this section we introduced procedures for the estimation of consumers flex-
ibility. In the rest of the chapter we address the second research question of
this thesis and introduce AS4.0 as an alternative DR-based framework for AS
provision.



4.2 A General Framework for Ancillary Services Provision 39

4.2 A General Framework for Ancillary Services
Provision

In future power systems, leveraging demand flexibility will be key to accom-
modating higher amounts of variable renewable generation. However, in the
absence of a proper framework to account for system operators requirements
and consumers’ preferences, consumers will not be able to provide any reliable
service. Indeed, power system operation requires real time provision of services
that cope with the stochasticity, dynamics and non-linearity of RES generation.
Such services must address needs at transmission and distribution systems in
a reliable and fast way. At the same time, consumers are keen on maintain-
ing the control over their demand and their stochastic behaviour can constraint
the overall flexibility. By analysing the existing AS procurement methods, it
emerges that none of them can successfully accommodate consumers’ flexibility
for AS in real time. Indeed, compulsory AS provision refers to generators only.
It cannot rely on consumers for flexibility exploitation, as it requires two-way
communication infrastructure in real time for a pool of heterogeneous loads and
imposes external control over consumers’ demand. Using demand flexibility
through bilateral contracts turns out to be complicated, since consumers have
to plan their consumption ahead of time - an unrealistic request. Tendering pro-
cesses require costly, complex and long negotiations, which do not fit with the
dynamic operation of the system. Although AS market mechanisms can deal
with a shorter time-frame, e.g., by running every five minutes, they are not able
to operate in real time. Furthermore, AS markets mainly rely on deterministic
and linear bids formulated by aggregators. In order to accommodate consumers’
flexibility in real time, alternative methods must, therefore, be investigated.

Research works have already proposed approaches to use consumers’ flexibility
in power systems. Such solutions are intended to provide AS beyond the trans-
mission system, down to the distribution system. In Paper A and Paper B, we
discussed transactive energy (TE), control-based approach (CBA) and peer-to-
peer (P2P) as potential solutions to AS markets for power system management
through consumers’ flexibility. These approaches address only some of the re-
quirements of power systems, where the benefits and drawbacks of each AS
method are summarised in Fig. 4.10.

As none of these approaches can optimally provide AS to power systems, there
is need for a new framework to take into account various requirements of power
systems, i.e., ensuring services at different levels of the grid. For this purpose,
in Paper B and Paper E, we formulated the AS4.0 framework. It consists of a
unified, demand-flexibility based mechanism for the future power systems. The
main novelty of AS4.0 is that distribution and transmission system operators
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Figure 4.10: Benchmark of AS market (ASM), TE, P2P, CBA for AS provi-
sion. Modified image from Paper B.

can exploit the flexibility of consumers located in their territories independently
and simultaneously. This is achieved by generating and submitting dynamic
prices based on the real-time condition of their portion of the grid. AS4.0 is in-
spired by the concept of the smart-energy operating-system (SE-OS) described
in [59], which promoted the adoption of hierarchical control techniques for bal-
ancing power systems. In AS4.0, prices are formulated at the operators’ levels,
considering the aggregate price response of consumers located in their part of
the grid, as shown in Fig. 4.11.

The AS4.0 framework has been described in Paper B, while modelling and sim-
ulations have been presented in Paper E. In the following subsection, we will
discuss the main requirements for the implementation of the AS4.0 framework.
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Figure 4.11: Basic concept of the AS4.0 mechanism. The three levels repre-
sent transmission system T , distribution system D and flexibility
resources F , where consumers are located. Each time a certain
power disturbance ω occurs in the system, operators formulate
price signals ∆λ through modelsM that have knowledge of the
overall price responsiveness of consumers. Modified image from
Paper E.

4.2.1 Ancillary Services 4.0

The AS4.0 framework requires the introduction of power system models at dif-
ferent levels of the grid, as shown in Fig. 4.12. First, we need to design ap-
propriate models of the grid at the transmission and distribution levels, which
account for system operation and requirements in real time. Furthermore, each
system operator needs to estimate consumers’ reaction to price signals in order
to generate dynamic electricity price signals that result in the needed change in
consumption. Finally, we model the actual consumers’ reaction to prices and
quantify the aggregate flexibility that is achieved after the submission of prices.
Although this last type of model is not going to be needed in a real imple-
mentation, we included it for simulation purposes. In Fig. 4.12, we formulate
different models when handling transmission and distribution levels. Indeed,
operational issues (e.g., voltage and frequency deviations) can always occur at
transmission and distribution levels. However, some of these issues are more
significant at specific levels of the grid. In particular, the transmission system
mainly focuses on frequency management while the distribution system has to
deal with voltage management. Indeed, size, type, and responsiveness of the
consumers are widely different for TSO and DSO: this requires different models
for the various operators. In Paper E, such models have been developed by
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using the methodologies discussed in Chapter 3.
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Figure 4.12: Models required for the implementation of the AS4.0 framework.
They differ for each level of the grid.

4.2.2 Case Study

In Paper E, AS4.0 has been implemented for the case of Denmark, using data
provided by the Elforbrugspanel project about Danish electricity consumption
[116] and a two-control areas transmission system representing DK1 and DK2.
In this study, we carried out simulations to verify the AS4.0 performance in
providing services at transmission and distribution levels. Therefore, we needed
to investigate the behaviour of frequency and voltage levels when power distur-
bances occur in a system built upon AS4.0. In this subsection, we present the
main findings of Paper E.
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4.2.2.1 Analysis of the Frequency Management

Frequency management has been analysed through an LFC model. In Paper E,
we modified the traditional LFC model to evaluate the impact of load flexibility,
as shown in Fig. 4.13. In the figure, the traditional LFC model (consisting of the
model in red and black) represents frequency regulation through conventional
generation units (CGU). The modified LFC model (in black and blue) shows
frequency management through AS4.0.
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Figure 4.13: LFC model: conventional model in black and red and AS4.0
model in black and blue. Modified image from Paper E.
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Figure 4.14: LFC model: conventional model in black and red and AS4.0
model in black and blue. In this setting, AS provision from con-
sumers’ flexibility is extended to primary frequency regulation.

In Paper E, simulations have been carried out for both LFC models; results
are compared in Fig. 4.15. It can be seen from the figure that the frequency
performance is significantly improved for the case of AS4.0 with respect to set-
tling time and overshooting. In Fig. 4.15(b), the zoomed-in part shows that, by
handling the same amount of power disturbance in the system, AS4.0 is able
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to reduce the frequency deviation by 52% compared to the CGU-based solu-
tion. Results are also reported in Table 4.4, showing that AS4.0 outperforms
the CGU-based AS provision by reducing the frequency deviation within 30
seconds. Such an improvement in frequency regulation highly depends on the
capability of consumers to provide faster response than CGUs. Therefore, it is
possible to remove CGU from the LFC and rely only on consumers’ flexibility,
as shown in Fig. 4.14, without affecting frequency management.

Figure 4.15: Frequency profile of the system. (a) Overall frequency. (b) Zoomed-in
part to see dynamics. Modified image from Paper E.

In Fig. 4.16, consumers’ price response is used to provide services to the trans-
mission system. The TSO is able to achieve an aggregate change in demand
that is up to 268 MW when broadcasting dynamic prices.
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Table 4.4: Performance benchmark for AS4.0 and CGU-based AS.

Time and disturbance Maximum frequency Deviation
injected, deviation, Hz reduction,

[sec, MW] CGUs-based AS AS4.0 %

[1, 1000] +0.10 +0.06 40%
[30, 350] -0.27 -0.13 52%
[60, 852] +0.21 +0.13 38%
[90, 500] -0.26 -0.16 38%

[120, 1148] +0.20 +0.12 40%
[150, 1000] -0.12 -0.08 33%
[180, 1300] +0.14 +0.08 42%
[210, 1056] -0.17 -0.11 35%
[240, 1500] +0.12 +0.07 41%

Figure 4.16: Delta prices and the corresponding response from consumers at the
TSO level. Modified image from Paper E.

4.2.2.2 Analysis of the Voltage Management

Although AS4.0 offers overall improvements in frequency management, it is
important that such a solution also guarantees proper voltage management at
the distribution level. Therefore, we need to investigate how voltage evolves at
different buses. Results from Paper E are presented in Fig. 4.17.
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Figure 4.17: Voltage at different buses. Modified image from Paper E.

From the figure, it is apparent that the injection of power disturbances initially
cause issues at different buses. However, the DSO is able to mitigate such issues
in less than 10 seconds in most cases using the prices shown in Fig 4.18.

Figure 4.18: Delta prices and corresponding flexibility at the DSO level. Modified
image from Paper E.

Furthermore, we evaluate voltage management by analysing the number of buses
with voltage issues in the distribution system. Fig. 4.19 shows that the number
of buses with voltage issues decreases over time, while TSO operation has not
been compromised by the DSO operation of voltage regulation. It confirms that
independent and simultaneous operation of TSO and DSO is plausible without
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jeopardising system stability.

Figure 4.19: Number of buses with voltage violations along with the system’s fre-
quency.
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Chapter 5

Conclusions

Nothing in life is to be feared, just understood.

Marie Curie

5.1 Contributions

In the course of the research described in this thesis, we provided a number of
novel contributions to the state of the art. We developed a set of methodolo-
gies for the estimation of aggregate flexibility potential of electricity consumers.
Furthermore, we proposed, modelled and simulated an alternative framework to
optimally exploit consumers’ flexibility for AS provision at different levels of the
grid. Finally, we demonstrated that the adoption of control-based approaches
for AS provision exploits consumers’ flexibility for the operation of future power
systems.

In the estimation of consumers’ flexibility, we considered multiple factors that
influence the overall responsiveness of consumers, such as uncertainty in con-
sumers’ behaviour, RE dynamics and outdoor temperature. These factors have
been included in the models to better estimate the flexibility potential from
consumers.

We investigated the application of CC programming to handle the risk in flex-
ibility provision from consumers. Simulation results showed the importance of
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risk analysis for the system operator. In fact, high-risk scenarios can lead to
three times the amount of flexibility estimated in the system. However, target-
ing such flexibility for AS can be a challenge for power system operation: this
amount of flexibility has only 50% probability to be delivered by consumers.

In the analysis of aggregate flexibility potential, we proceeded by taking into ac-
count the impact of RE. We proposed appropriate models to simulate different
RE dynamics. Moreover, we provided a benchmark of the overall flexibility pro-
vided for different RE formulations. These studies highlighted the importance
of understanding the constraints and dynamics under which loads operate. For
instance, a dynamic formulation of the RE resulted in 45% more flexibility than
in the case of static RE. For this reason, operators shall carefully investigate
the dynamics of consumers’ load for a better estimation of the aggregate flex-
ibility potential. Alternatively, for a more conservative approach to RE, static
RE shall be preferred. This solution avoids to over-estimate the flexibility when
the load dynamics are not known or are difficult to estimate from aggregate
measurements.

Finally, we extended the study of consumers’ flexibility to include the effect
of outdoor temperature, as it influences the overall responsiveness of the con-
sumers. This model is developed by formulating the overall responsiveness of
consumers as a function of outdoor temperature. This study shows the im-
portance of considering different weather conditions, as they affect the overall
flexibility.

These proposed models for demand flexibility estimation enable operators to un-
derstand consumers’ reaction toward prices at an aggregate level. Furthermore,
they help to formulate proper dynamic prices that induce a certain change in
consumption from electrical consumers.

In the second part of our research, we dealt with the AS4.0 framework to provide
fast and reliable services from flexible consumers to power systems. In AS4.0,
each operator generates and broadcasts prices in an independent and simulta-
neous manner. Such prices are able to reflect the real-time condition of power
system at different network levels. By relying on control mechanisms, prices can
be updated and submitted on a second-by-second basis. The criterion defining
the optimal price-based control can be tailored to handle various aspects of
the spectrum of AS needs for power systems operation. Therefore, prices can
influence the aggregate consumers price-response and meet system needs that
change very rapidly. In our study, we proved that consumers can be utilised
as a significant source of flexibility for frequency and voltage management. In
particular, the simulation studies showed the capability of TSO and DSO to
simultaneously handle their operational issues by AS4.0. At the TSO level, fre-
quency regulation has been significantly improved through AS4.0 compared to
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the conventional CGU-based AS provision. Overall, we can conclude that AS4.0
outperforms the existing approaches for AS management, as it provides services
to transmission and distribution system while respecting consumers’ autonomy.

5.2 Perspectives and Opportunities for Further
Research

In this thesis, we set the ground for a better management of consumers’ flex-
ibility potential. Despite the novel contributions achieved, additional analyses
are beneficial to better assess the role of consumers’ flexibility in AS provision.

In order to extend and improve the existing models, the collection of high reso-
lution data about consumers’ price-responsiveness is a necessary step. Such an
effort can provide a better understanding of the true potential of the proposed
methods. In particular, in Paper C and D, we presented several methodologies
to estimate the aggregate amount of consumers’ flexibility. In this regard, our
work could be extended by including additional factors that influence the price-
responsiveness of consumers, such as type of day, household income, on-site
generation, storage and type of loads.

Furthermore, in Paper E, we showed through a proof-of-concept study that
AS4.0 is a promising solution for AS provision in smart grids. Nevertheless,
additional studies are needed to investigate the power system operation in a
more realistic manner. As an example, future studies shall consider a more
detailed representation of the distribution system, i.e., extending the analysis
to several large-scale distribution systems.
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Appendix A
Research Affiliation: the

SmartNet Project

Alone we can do so little; together we can do so much.

Helen Keller

The research carried out in this thesis has been developed as part of the Smart-
Net Project. SmartNet consists of a three-year project funded by the European
Commission – Horizon 2020. This appendix briefly presents the main objectives
of SmartNet and shows how they relate to this research. For additional details
on this project, the reader can refer to [117] and the related publications.

A.1 About SmartNet

The SmartNet project proposes solutions to accommodate the integration of
renewable energy sources in power systems [117]. The increasing amount of
intermittent energy generation affects power system continuity and stability as
well as the interaction between TSOs and DSOs. In this regard, SmartNet has
developed tools to improve the coordination between grid operators at national
and local levels and provide ancillary services.

Different TSO-DSO interaction schemes have been compared in national key
cases (i.e., Italy, Denmark and Spain) and physical related pilots have been
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developed to provide ancillary services from distributed resources at the distri-
bution level.

Specifically, the Italian pilot deals with the feasibility of communication pro-
cesses to enable generators to provide grid services. The Danish pilot investi-
gates the capability of flexible demand to provide services, by leveraging the
thermal inertia of indoor swimming pools. Finally, the Spanish pilot focuses on
the flexibility potential of base-stations distributed storage for telecommunica-
tion [118].

A.2 The Danish Pilot

Figure A.1: Architecture of the Danish pilot [118].

Fig. A.1 shows the architecture of the Danish pilot. In the figure, the main
entities (in dashed rectangles) are the market operator (MO), TSO, DSO, dis-
tributed energy resources (DERs), commercial market party (CMP) and DER
aggregator. Such entities exchange information with each others (in red ar-
rows). In particular, the MO communicates with TSO and DSO for grid status
and interact with CMPs to obtain the needed flexibility. The CMP has knowl-
edge of consumers’ demand in function of electricity prices through a flexibility
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model [119]. Therefore, CMP submits prices and price forecasts to an aggrega-
tor, which finally calculates the optimal set-point for the summerhouses ther-
mostats. Measurements from summerhouses are collected and used to update
the flexibility model.

Although the solution proposed in this pilot still relies on market mechanisms at
the transmission level, it leverages the lowest level of the SE-OS setup by using
price-based control to obtain a certain change in consumption from distributed
energy sources. Furthermore, it discusses the formulation of a flexibility model
(i.e., flexibility function [119]) to support the generation of dynamic electricity
prices broadcast to consumers. A parallel setup in the CITIES project adopts
CO2-based control. This setting demonstrates that considerable CO2 savings
can be achieved [120].
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Abstract

Future power system will experience large amount of renewable gen-
eration with highly stochastic and partly unpredictable character-
istics. To safely operate power system, new Flexibility Resources
(FRs) are needed to participate in the operation. Some of the new
FRs are linked to the electricity system, but they are managed out-
side of the electrical network by other energy sectors. To this end,
an Integrated Energy System (IES) is needed to exploit such cross-
sectoral opportunities. On the other hand, small FRs at the distri-
bution level exist which can play an important role in the future.
To exploit existing FRs, however, new operational strategies are
needed. In this paper, Transactive Energy (TE) and Control-Based
Approaches (CBA) are explained as the two mainstream frameworks
in relation to the future energy system operation. The paper investi-
gates benefits and drawbacks of each framework and finally defines a
benchmark to better understand the potential of these solutions for
the future energy management. The paper also concludes that more
comprehensive operational approaches, beyond distribution system
management, are required to fulfil the upcoming requirements.
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A.1 Introduction

In the last decades, electricity transmission and distribution systems went through
significant changes by introducing large- and small-scale Renewable Energy Re-
sources (RES). These assets are scattered all around the network at different
voltage levels. Although RES provide unquestionable benefits to the power sys-
tem operation, e.g., sustainable and clean energy production and reduction in
energy losses and T&D costs [1], they imply some challenges. In fact, RES are
characterized by unpredictable and highly stochastic generation, mainly affected
by the weather condition. As a result, increasing penetration of RES implies
higher risk of local congestion and unbalances that need to be properly handled
in real-time. Since energy generated from RES changes instantaneously and it is
almost impossible to predict their generation accurately in different time steps,
new Flexibility Resources (FRs) are becoming more and more important and
valuable. FRs include shiftable and curtailable loads, storage devices, and in-
herent inertia of other energy carriers. Although the size of provided flexibility
could be significant when aggregated, it adds new stream of stochastic behaviour
to the power system operation which has to be managed. For instance, different
types of flexible load are constrained by end-users’ preferences and their behav-
ior. They might not be as reliable as their conventional counterparts, however,
predictability of their behavior can become acceptable when aggregated.

In the EU’s new legislative proposal, the so-called Clean Energy Packages (Win-
ter Package) [2] released on November 30th, 2016, a power system management
that becomes more consumers-centred and, from a grid perspective, more cen-
tered around distribution network is encouraged. As a part of the Clean Energy
Package, priority of dispatching RES disappears, and the main focus is going
to be on Distribution System Operator (DSO) to utilize local FRs and handle
grid issues.

Beside small FRs, Integrated Energy System (IES) is a concept that is attracting
more and more attention [3, 4, 5]. The concept states that there are synergies
between different energy carriers, such as electricity, gas, and heat, which can
be exploited for the benefit of secure operation of the entire energy system with
large amount of wind and solar power. This way, IES accounts for all the inter-
actions among different energy carriers and large-scale infrastructure including
waste-water treatment plants, transport and communication networks, and so
on [5]. IES also increases efficiency of the system as a whole, where different
assets are called to combine their strengths to work optimally together [6].
However, existing operational strategies in power system do not facilitate partic-
ipation of new FRs accounting for their inherent stochasticity neither support
IES. Therefore, it is crucial to create a smart transmission and distribution
management structure that can support emerging FRs and IES potential.
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In order to effectively deal with the magnitude of stochasticity and dynamics in
the future power system operation by new FRs, dedicated operational strategies
(particularly in shorter time intervals for Ancillary Services, AS) are required to
be fast (to work as close as possible to real-time operation), cheap (to be a viable
solution economically without increasing energy prices), simple (to guarantee
feasibility and service continuity), efficient (to allow optimal service at the lowest
cost), and to account for space and time differentiation, as shown in Fig. A.1 (to
focus on the local constraints of the network at different level). In fact, multiple
operational levels with unique objectives and constraints are expected to work
autonomously, while cooperating with each other on a broader perspective to
guarantee global optimality of the entire system operation.
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Figure A.1: Schematic of power system operation in different time and space

Nowadays, two mainstream solutions, namely Transactive Control/Energy (TC/TE)
and Control-Based Approach (CBA), are preferred for the future energy man-
agement of distribution systems. This paper offers thorough analysis of the
two energy management systems by addressing integration of FRs in the future
smart grid framework. The authors intend to investigate pros and cons of these
approaches and identify the caveats which urge more comprehensive solutions
for the future power systems.
The paper is organized as follows: Section A.2 presents TE and CBA from
a conceptual point of view together with some relevant applications. Direct
(DC) and Indirect controls (IC) for CBA are described in detail in Section A.2.
Section A.3 discusses limitations of the two approaches. Finally, the paper is
concluded in Section A.4, by focusing on the main findings and detailing future
possibilities for smart energy management in research.
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A.2 Approaches for Distribution-Level Energy
Management

Two different approaches have been proposed in literature to modernize distri-
bution level energy management: Transactive Energy (TE) and Control-Based
Approach (CBA). These approaches have been developed to handle new re-
quirements of operation at the distribution level. Specifically, these methods
are explained in the next two subsections.

A.2.1 Transactive Energy (TE)

According to the definition of the Gridwise Architecture Council (GWAC), TE
consists of a set of economic and control mechanisms that allows dynamic bal-
ance of supply and demand across the entire electrical infrastructure using a
value as key operational parameter. It proposes a scalable coordination ap-
proach to electricity distribution system operations [7] while being able to pro-
vide services to the upper grid. The approach becomes particularly interesting in
presence of high penetration level of DERs, by encompassing the entire electric
system to the end-use customer meters [8]. To better understand TE approach,
a conceptual block-diagram is shown in Fig. A.2. In the top layer, existing
wholesale market (both electricity and AS) is considered without any modifi-
cation in its structure nor functionality. The wholesale market operator (e.g.,
TSO) communicates with energy suppliers and Balancing Responsible Parties
(BRPs) to run power system effectively. In this framework, BRPs and energy
suppliers are responsible for any deviation in their generation and/or demand
from scheduled values. They have to purchase required balancing services from
AS market (in the conventional power system operation) to compensate their
variation. TE, however, provides mechanism to procure required services from
small FRs at the distribution level through Virtual Power Plants (VPPs) or
equivalently Aggregators. In fact, VPPs behave as effective power plants and
indirectly represent end-users’ flexibility located at the lowest level. VPP can
include small- and medium-scale generation, aggregated load flexibility, and
storage devices. Any request for up and down regulation services is submitted
to the Global Flexibility Agents (GFAs), which are main aggregators to coordi-
nate pools of Local Flexibility Agents (LFAs). This request is then broadcasted
to LEAs, which are entities representing and communicating with a pool of
end-users directly. By operating in the interest of the end-users, LFAs sub-
mit possible price signals to the pool to realize their reaction/responsiveness.
Then, end-users receive potential price signal by their Home Energy Manage-
ment Systems/Energy Management Systems (HEMSs/EMSs). By solving an
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optimization problem to minimize overall cost of energy, they decide about the
reaction to the price considering local preferences set by the user. Optimization
results are then communicated back to LFAs in the form of price-quantity bids.
Once all end-users feedback is received, LFAs submit the bids to GFAs where
information is aggregated and broadcasted to higher level agent. By receiving
all the bids from GFAs, VPP is able to aggregate the bids using forward market
principles and clear the price. Ultimately, the cleared price will be commu-
nicated to the end-users through the channels to procure required amount of
service.
In TE framework, Grid Agents (GAs) are also defined as entities whose respon-
sibility is to look after the grid benefits. Utility company and DSO are two
examples of the entities which can serve as GA in this setup.
As you can see, the market mechanism in TE uses feedback to determine price
and reach balance between supply and demand or procure services. As a result,
TE can be defined as "uberization of energy"- for its connotations of personal-
ized on-demand service and elimination of intermediates [9].
Several applications of TE have been developed in the last two decades, a few of
which are: Olympic Peninsula Demonstration [10] (USA, 1996-2007); AEP Ohio
gridSMART Real-Time Pricing Demonstration [11] (USA, 2010-2014); Pacific
North West Smart Grid Demonstration [10] (USA, 2010-2015); Couperus Smart
Grid [12] (EU, 2011-2015). These demo projects were evaluated successful by
the operators.

TE, beside providing mechanisms to activate small FR potential at the lowest
level of the grid, has several advantages which are summarized below:

• End-users’ Reaction: It requires a feedback from end-users to know their
reaction to a potential price. This way, uncertainty in end-users’ behavior is
minimized. In other words, TE does not need to model end-users’ reaction in
an abstract/aggregated way to predict their behavior and preferences. There-
fore, there is a better chance for operator to procure required services without
any surprises.

• Privacy: In this framework, no sensitive information from end-user is needed
to be shared with any agent because local operation and decision-making oc-
cur at the end-users’ level. The exchanged information is only price and energy
quantities which in turn reduces privacy and security issues and threats.

• Scalability: The TE framework operates based upon receiving bids from
participants and clearing the market accordingly. Therefore, numerous bids
can be aggregated and the approach can be used in high scale. Also, market
operation can be distributed among multiple LFAs and GFAs to accommodate
more FRs.
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• Accommodating IES: Very recently, studies emerged to show applicabil-
ity of TE approach in IES operation [13], which provides larger amount of
flexibility for power system operation.

Although TE satisfies some of the main requirements of the future smart grid
in terms of exploiting new FRs, it comes with its limitations, as explained in
the following items:

Market
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Figure A.2: Conceptual block-diagram of TE

• Over-simplification: The actual dynamics of the system is widely ignored in
this approach. Every interaction among agents ends up with a price-quantity
bid which is a linear representation of the underlying system. It is very
difficult, if not impossible, to integrate stochasticity, true dynamics and non-
linearity of FRs and power system operation through a set of linear supply
and/or demand bids.

• Computational effort: As explained earlier, TE framework requires a cy-
cle of bid-clearing mechanism whenever a new service request is received by
VPPs. Basically, EMS/HEMS are invoked upon receiving a new price signal
to generate new set of price-quantity bids. This requires to solve an optimiza-
tion problem which is computationally expensive. Then, bids aggregation and
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market clearing should take place which requires additional computational
efforts. As one can realize, the entire process seems to be computationally
intensive considering the fact that there could be millions of FRs participating
in this structure.

• Slowness: Service request from wholesale market participants are generated
according to the wholesale market operation, which is updated every 5 min-
utes or so. Compared to actual changes in power system operation, 5 minutes
is a long time to deal with true system condition. Additionally, every itera-
tion of TE operation, as explained earlier, requires intensive communication,
computation, and market processes which makes it substantially slow. Com-
munication delay also plays an important role in slowing down the whole
process.

• Security: While TE framework respects end-user’s privacy, many commu-
nications between end-users and system’s agents makes the framework vul-
nerable to cyber-attacks. It further threatens the power system operation in
real-time. Additionally, relying on too many instances of communication in-
creases sensitivity of power system operation with respect to communication
malfunction.

• Sub-optimal Solutions: If TE is going to be scaled up so much to ac-
commodate millions of FRs while accounting for physical limitation of the
network, more VPPs, LFAs and GFAs are required. These agents are operat-
ing autonomously which means that their solution for power system operation
might not be globally optimal.

A.2.2 Control-Based Approach (CBA)

CBA primarily is developed based on the application of control theories for man-
aging FRs at the distribution level [14]. The main idea is to replace slow and
linear market principles in FRs procurement with control problems which can
accommodate stochasticity, non-linearity, and true dynamics. To do so, CBA
offers a real-time pricing mechanism for FRs operation at the lowest level of the
grid. In this approach, every Sub-Aggregator (SA) defines a control problem
to determine appropriate varying price signals. To do that, SA needs to model
end-users’ response to different prices which creates a certain change in con-
sumption/generation of the rational end-users. To model end-user’s behaviour,
no real-time communication is needed in CBA. In fact, one-way communication
channel from SA to the end-user’s EMS/HEMS is the only required communi-
cation in real-time operation. At the consumers’ level, a control/optimization
problem (e.g., model-predictive control (MPC)) is solved to act upon receiving
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Figure A.3: Conceptual block-diagram of CBA

the price signal. Contrary to the TE approach, local end-users do not send feed-
back or share any information with other agents which makes the whole process
very fast and secure.
For a comprehensive understanding, the CBA entities and operation is shown in
a block-diagram for CBA in Fig. A.3. At the highest level, similar framework to
the one for TE, existing wholesale market is maintained including wholesale mar-
ket operator, energy suppliers and BRPs. When BRP or suppliers encounters
deviation from their schedules, they submit a service request to the aggrega-
tors. The aggregator submits the request to numerous Sub-Aggregators (SAs)
scattered all around the network. According to the end-users’ price-responsive
model, which is created offline using aggregated data, SAs are able to generate
price-quantity blocks of bids to participate in the wholesale market through ag-
gregators at the top level of the grid. The top aggregator is then responsible to
receive all the bids, aggregate them, and participate in the wholesale market on
behalf of SAs. When market is cleared and prices are determined, top aggrega-
tor dis-aggregates the market schedules and communicate prices and quantities
to the SAs. Later, SAs submit new prices to their associated pool of FRs to
achieve a certain amount of service, as awarded in the market. Additional Infor-
mation (AI) are agents with information which can improve SAs operation. It
could be an agent with information about weather which helps SAs to generate
more appropriate price according to the ambient conditions.
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It can be realized that TE and CBA have many operational characteristics in
common. An example of up and down bid generation based on end-users’ re-
action to a certain price signal is presented in the flexibility curve of Fig. A.4
(for the case of supermarket refrigeration system [15, 16]). The figure shows the
correlation between rebound effect and a modified consumption response. The
adoption of these curves is based on the simplification of flexibility characteris-
tics where stochasticity and non-linearity are not effectively represented. This is
effective when load response of end-users can be controlled directly. If no direct
control is assumed to the loads, an impulse response function is preferred, as
presented in Fig. A.5. The figure shows reaction of a pool of responsive loads to
varying price signal in a real-world demonstration in North West Project [10].
By increasing price at time 5:00, overall consumption decreased.
So far, CBA with Indirect Control (IC) to the FRs is presented. Alternatively,
each SA can coordinate the pool of end-users through Direct Control [17]. The
main difference between them is that DC directly alters power consumption of
load, while IC activates flexibility response through time-varying price.
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Figure A.4: Proposed bidding mechanism for CBA

In this study, we present both DC and IC methods for the sake of complete-
ness. However, IC method is considered as the optimal solution since it requires
very simple communication infrastructure while preserving end-users’ privacy.
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A.2.2.1 Direct Control (DC)

DC is based on a two-way communication where FRs are directly controlled
in a closed-loop feedback. In Fig. A.3, this type of control is adopted by sub-
aggregator A, which centrally runs an optimization problem. MPC is a popular
application of DC, optimizing a sequence of control moves over a finite prediction
horizon [18]. Such moves are computed at each time step as a solution to the
optimization problem [14]. The strength of MPC is that predicted behaviour and
constraints are directly formulated into the design of the problem, exploiting the
full flexibility of the resources. Also, adding predictions in the controller improve
control performance. A mathematical formulation of MPC is provided in Eq.
(A.1) [14]:

min
x,u

E[
N∑
k=0

J∑
j=1

φj(xj,k, uj,k)]

s.t. xk+1 = Axk +Buk + Edk,

yk = Cxk,

ymink ≤ yk ≤ ymaxk ,

umink ≤ uk ≤ umaxk

(A.1)

where k = 0, 1, ...N is the prediction horizon; x is the state; d is the disturbance
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(e.g., outdoor temperature); y is the output of the system (e.g., indoor tem-
perature); (A,B,C,E) represent the discrete time state-space model [14]; u is
the control input (e.g., electrical power). φ represents the aggregator objective
function to be minimized. It tracks a reference power consumption profile by
manipulating total power consumption zk =

∑
J uj,k via individual FRs [19].

The reference to track is formulated in Eq. (A.2), where λ represents penaliza-
tion factor related to control moves.

φtrack =
N∑
k=0

J∑
j=1
||zk − zref,k||22 + λ||uj,k||22 (A.2)

In MPC, it is also possible to consider individual costs related to FRs’ consump-
tion, formulated in Eq. (A.3).

φeco =
N∑
k=0

J∑
j=0

pTj,kuj,k (A.3)

This way, MPC should achieve a trade-off between tracking and economic ob-
jective, as expressed in Eq. (A.4).

φ = αφtrack + (1− α)φeco α ∈ [0, 1] (A.4)

A.2.2.2 Indirect Control (IC)

IC consists of one-way communication in real-time where SA formulates and
submits varying price signals to the pool of rational end-users to influence their
generation/ consumption patterns. In Fig. A.3, this type of control is adopted
by sub-aggregator B, as end-users of its pool are equipped with controller and
the optimization is run in a distributed way. Operating in an open-loop scheme,
IC does not need any feedback in real-time. However, SAs require end-users’
behaviour model which has to be created based on aggregated offline data. Such
a data is available today at the distribution system substations. Therefore,
CBA-IC only requires one-way communication in real-time from SAs to the
end-users’ EMS/HEMS. Optimization problem of a SA can be formulated as
follows:

min
p

E[
N∑
k=0

wj,k||ẑk − zref,k||+ µ||pk − pref,k||]

s.t. ẑk+1 = f(pk)

(A.5)
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where N is the length of the regulation horizon; µ is the penalization factor
related to the deviation from the reference in price; wj,k is the penalization
factor related to the deviation from the reference in load.

CBA has been implemented in several projects over the last decade. The most
prominent ones are CITIES [20] (a Danish Research project, 2014-2020) and
SmartNet [21] (an EU project, 2016- 2019), results of which are reported in [22,
14, 19, 23, 24]. Several advantages can be identified from CBA-IC approach, as
listed below:

• Suitable for Real-World Applications: CBA turns power system opera-
tion into a set of control problems where the model of system, devices, and
services can be non-linear, dynamic and stochastic. It requires one-way com-
munication, which is faster and cheaper solution. CBA-IC can be updated
fast, in the range of seconds if needed, to compensate for the sporadic changes
in RES and consumers’ behaviour.

• Privacy: CBA does not imply any privacy issue because there is no real-time
feedback from end-users to the system operators. Only offline historical data
are needed to develop consumers’ price-responsiveness model which is created
by using aggregated data.

• Security: In CBA-IC, a price signal is submitted to the end-users from SAs
to address a certain behaviour. Therefore, communication is not intensive
and system operation does not depend on the feedback signal from end-users.
As a result, lack of real-time feedback diminishes risk of communication mal-
functions and cyber attacks.

• Cost: Due to the one-way communication structure, CBA offers a cheaper
solution in terms of implementation and regular maintenance costs. The lim-
ited need of measurements to control grid condition (e.g., over-voltage) further
contributes to a lower management cost, where all expenses for distribution-
side measurement equipment are avoided.

• Interaction between Energy Carriers: CBA simplifies interaction among
energy carriers (e.g., shifting consumption from electricity to gas) by reducing
the problem to creating several prices.

Although CBA looks promising in addressing several requirements in the future
smart grid, it comes with limitations that are identified in the following items:
[12]:

• Uncertain End-Users’ Reaction: End-users do not provide real-time in-
formation to SAs in CBA-IC. This way, uncertainty related to the end-users’



A.3 Necessity of a Comprehensive Solution 83

behavior implies a risk if not properly estimated. The changing behaviour of
the end-users and the difficulty to include proper explanatory variables in a
model can also lead to wrong estimation in consumer’s behaviour. This could
be dangerous for power system operation in real-time.

• Market Inefficiency: In [12], market inefficiency is mentioned as an issue
of CBA. In economic terms, market inefficiency asserts that market prices are
not always accurately calculated and tend to deviate from the true discounted
value of their future cash flows.

• Slowness: Similar to TE approach, CBA operates according to the whole-
sale market requirements. Therefore, slowness and linearity in the wholesale
energy and AS markets can also affect CBA operation.

A.3 Necessity of a Comprehensive Solution

TE and CBA offer substantial improvements over existing operational approach,
which does not provide any solution to use FRs at the lower levels of the net-
work. The two methods are able to accommodate FRs in the power system
operation. However, these solutions have been formulated exclusively for dis-
tribution system management while maintaining the existing energy and AS
market structures at the transmission level. As a result, CBA and TE inherit
slowness from wholesale markets. Additionally, the wholesale market cannot
deal with the magnitude of stochasticity and non-linearity introduced by large
penetration of renewable generation. In the current structure of TE and CBA
approaches, incapability of the wholesale market deteriorates the effectiveness
of the FRs for power system operation. In other words, FRs cannot properly
be managed in the proposed TE and CBA approaches.

Moreover, both approaches seem to be incapable of properly addressing stochas-
ticity, dynamics and non-linearity. The reason is that FRs operation is repre-
sented by simple and linear price-quantity bids at the end. Although local
EMS/HEMS might consider stochasticity and non-linearity to full extent, the
true operational condition of FRs is ultimately reduced to several blocks of lin-
ear bids submitted to the LFA. This undermines the capability of TE and CBA
methods to model stochastic, nonlinear, and dynamic behaviour of the end-users
in the system operation.

The other drawback of the two approaches is the complexity in their structure
where many agents and entities are considered to deliver services requested
from FRs. Malfunction in any of these entities will result in the failure of
the approach completely. For these reasons, we still need more comprehensive
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solutions for the future energy management. Such an approach ideally replaces
existing electricity and AS markets with more suitable solutions, deals with
complexity characterized by new RES and FRs, and allows system operators at
different level of space and time to fulfill their requirements.

A.4 Conclusions

This paper explains two approaches, namely TE and CBA, for distribution
energy management in presence of high stochasticity due to RES. From analyses,
it emerges that CBA and TE offers new capabilities which are needed in the
future smart grid, and mechanisms to deal with FRs by considering end-users’
behaviour. However, they still do not satisfy all the requirements for a future
optimal energy system operation, such as extension to the entire electricity
system and real-time operation. More comprehensive solutions are therefore
needed in the future to optimally exploit FRs.
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B.1 Introduction

Power systems are experiencing high penetrations of renewable generation, with
stochastic and mainly unpredictable characteristics. According to the Global
Wind Energy Council, the global wind energy capacity reached 486.5 GW in
2016, meanwhile this is expected to double by 2021 [1]. Larger share of renewable
energy sources (RES) in the generation mix introduces an unprecedented level of
complex dynamics and non-linearity because of its dependency on meteorological
variations [2]. To guarantee the service continuity, the complexity must be
properly handled by the system operators (SOs) in real-time. Unfortunately,
this is not always possible for the SOs, as their current practices have not being
designed to handle high penetrations of RES. For this reason, an increase in
complexity will dramatically affect the service, with consequences to the power
system operation (e.g., increasing number of outages [3]) and to the ancillary
services (AS) provision (e.g., inflating AS prices [4]).

AS consist of a variety of operations, beyond the generation and transmission,
that guarantee service continuity and security from the distribution (e.g., voltage
regulation) to the transmission level (e.g., frequency regulation and congestion
management). The AS required capacity is procured through conventional mar-
ket mechanism, i.e., bidding and clearing procedure. This mechanism has been
originally implemented to deal with real-time operational issues in conventional
power systems. In such a framework, time-varying bids are received every couple
of minutes, and the market is cleared accordingly to obtain price and quantity
values. The changing market prices reflect the true condition of the grid over
time. This approach, which is implemented exclusively at the transmission level,
works satisfactorily in case of conventional power systems with low RES pene-
tration (below 30%) [5]. However, when the stochasticity and the dynamics of
the generation resources become prominent, the existing AS mechanism becomes
less effective, as it does not deal with the new complexity. Higher penetration of
renewable energy causes an overall increase of under- and over-frequency events,
which requires a higher amount of AS [6]. To avoid costly and environmentally
unfriendly capacity reserves for AS provision [7], flexible resources (FRs) found
to be a promising solution, by modifying their usual behaviour according to the
need of the grid. While different studies have already shown the great potential
of FRs [8], their application has been undermined because of the existing AS
mechanisms, which do not allow a wider utilisation of FRs. Structurally, ex-
isting AS mechanisms prohibit FRs at the distribution level from participating
in the market, as this is designed only for the resources at the transmission
level. Moreover, expanding the existing AS platforms to millions of flexibility
entities located at the distribution level would require extraordinary control and
computational power. Such a condition is neither practical nor desirable.



B.2 Ancillary services (AS) 91

Furthermore, an effective solution for the future AS provision should be able
to accommodate energy system integration (ESI) concept [9, 10, 11], as yet
another possibility to achieve higher levels of flexibility. ESI takes advantage of
the synergies between different energy carriers, e.g., electricity, gas, and heat,
to ensure safety and continuity of the service [12]. It provides flexibility and
potentially increases the efficiency of the energy system as a whole. In this
framework, different assets from various energy carriers are required to combine
their strengths to optimally work together [13]. Unfortunately, the existing
operational strategies in power system operation do not offer capabilities to
integrate multi-energy carriers in a single framework.

To guarantee service continuity and security in spite of the increasing penetra-
tion of the intermittent resources, it will be necessary in the future to include
every FR into the AS provision [14]. In order to exploit the flexibility potential
to the maximum extent, and for the benefit of power system operation, new AS
provision mechanisms should be developed. These solutions are a trade-off be-
tween computational complexity and simplification without compromising the
efficacy. In this paper, we propose a new framework for the AS provision in
the future smart grid. The proposed approach holistically changes current prac-
tices in the AS market. The structure is based on a hierarchy of nested control
problems. It allows participation of every flexibility at various levels of the grid
by developing time-varying electricity prices. To the best of our knowledge, no
previous study has approached AS provision through the adoption of control
problems.

The paper is organised as follows: Section B.2 introduces AS and their role in
electricity supply service. Section B.3 focuses on the existing alternatives to the
AS market . Section B.4 introduces the proposed approach of Ancillary Services
4.0 and the necessary tools and methods to implement the new mechanism.
Ultimately, the paper is summarised in Section B.5, where we outline the main
findings and suggest future focuses and practical applications.

B.2 Ancillary services (AS)

In presence of equipment outages and generation/consumption variations, it is
fundamental for the power system operation to maintain the balance between
generation and demand momentarily. This condition guarantees secure and effi-
cient operation of the power system by adequately responding to the frequency
and voltage deviations. At the distribution level, local varying generation and
consumption units inject/absorb active and reactive power into/from the sys-
tem, provoking deviations in the voltage level. At the transmission level, fre-



92 Paper B

quency is affected by any mismatch between generation and demand account-
ing for transmission losses. As a result, frequency and voltage vary with the
amount of generation and demand in real-time. For inadmissible values, op-
eration continuity and system stability are compromised. Also, frequency and
voltage deviations threaten synchronous operations of the generator machines,
which can cause widespread blackouts in the grid. In fact, the number of power
interruptions as well as the duration of such events have increased at a rate of
two percent in the USA over a period of ten years [15, 16].

In order to ensure the balance between consumption and generation, power
system operator should manage the variability of production and demand in
real-time. This condition cannot be handled by the energy markets, since they
run every 5 minutes or so. Therefore, power mismatch within an interval must be
compensated with other means. For the purpose, dedicated AS markets have
been designed as parallel services to ensure generation and demand balance
in real-time. In reality, AS markets need to procure capacity ramp-up and
down in real-time operation, and balance electricity generation, demand and
losses. Although literature suggests little harmonisation on the definition of
AS [17], they consist of all the services required by the transmission system
operator (TSO) and the distribution system operator (DSO), enabling them
to maintain integrity and stability of the transmission and distribution systems
operation as well as power quality [18]. These services may include spinning and
non-spinning reserves and remote automatic generation control for frequency
regulation, voltage control, black-start capability, grid loss compensation, and
emergency control actions [18, 19, 20]. Nowadays, AS are provided through
classical market operation, where market participants interact with AS market
operator through a two-way communication. In this setting, market participants
submit their bids, i.e., prices and quantity values [21] and the AS provision takes
place in a single session every 5 minutes before the delivery [22]. Various types
of commodities are traded in the AS market, depending on the characteristics
of the power system disturbances [23]. The AS market design varies from one
system operator to another. As an example, we explain here the AS market
operation for the case of Denmark. The Danish grid is divided into two main
control areas: DK1 and DK2 [24]. In DK1, frequency management is handled
through primary (FCR), secondary (aFRR) and manual (mFRR) reserves. For
frequency regulation, three levels of operation are defined as follows:

• Primary reserve: Named frequency-controlled reserve (FCR), it is the au-
tomatic response to frequency deviations. FCR is released increasingly with
time over a period of seconds to restore balance between production and con-
sumption. It stabilises the frequency at close to, but deviating from 50 Hz [24].
Characterised by instant response [25] and a full activation time of up to 30
seconds, FCR must be maintained by the production and consumption units
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for up to 15 minutes, before it is released. It can be activated automatically
and locally.

• Secondary reserve: Known as automatic frequency restoration reserve (aFRR),
it is applied to indirectly restore the frequency balance to 50 Hz following the
stabilisation of the frequency. Its purpose is to release FCR and restore imbal-
ances on the interconnections. Instead of FCR, aFRR is activated centrally,
delivering energy within 15 minutes [25].

• Manual reserve: Named manual frequency restoration reserve (mFRR), it
serves in the event of outrages, power restrictions affecting international con-
nections and unexpected sustained activation of aFRR. Activated manually,
mFRR has an activation time from 15 minutes to hours.

Additionally, voltage regulation in Denmark is automatically handled by the
grid through passive reactive components. Reactive power is injected and ab-
sorbed through synchronous sources and static compensators. However, when
automatic restoration of the voltage is not possible, suppliers capable of fast
regulation are ordered to modify the reactive production/consumption until
acceptable levels are achieved [24]. These entities may include spinning genera-
tors, synchronous compensators, reactors and capacitors. The request operates
similar to the frequency management, normally providing service within thirty
seconds [25].

Although this AS mechanism has successfully served power systems in the past,
it lacks of certain features and requirements to cope with the emerging re-
quirements. For example, the current AS market structures oversimplify assets’
operation to linear price-quantity blocks of bids. The inherent dynamics and
uncertainty of underlying systems and equipment are simply ignored. More-
over, the AS market procedures are understandably slow, due to the large-scale
optimisation problems they solve. In fact, such problems include thousands of
variables and constraints along with power flow equations and require a cou-
ple of minutes to provide the solution. The existing AS markets are designed
to procure services exclusively from conventional power plants, neglecting any
contribution of the end-users’ FRs. This flexibility cannot be included in the
current mechanism, as it would imply managing bids and activation of millions
of FRs, which is not practical. Also, being the current market designed only
for electricity resources, it is technically impossible to directly incorporate flex-
ibility of other energy carriers in an ESI framework. Finally, the existing AS
market structures are relatively expensive, as they require large power plants to
operate below their full capacity to provide the needed flexibility.
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B.3 Existing alternative solutions

To address the issues related to the existing AS markets, several solutions have
been proposed in literature in the recent years. In particular, three major al-
ternatives are transactive energy (TE), peer-to-peer (P2P), and control-based
approach (CBA). While not all of these mechanisms are designed for AS provi-
sion, they offer features and capabilities, which can partially address the issues
of the existing AS markets. In the rest of this section, we explain these solutions
in detail and provide a list of their strengths and weaknesses.

B.3.1 Transactive energy (TE)

TE proposes a market-based solution for energy management of small DERs,
storage devices, and other FRs at the distribution level [26]. It adopts classical
market principles to trade energy and AS among local players as well as the
upper grid, either individually or through aggregators [27]. In this framework,
prosumers generate price-quantity pairs through economic optimisation prob-
lems that minimise their operation costs [28]. These are submitted from the
prosumers to the local operator. Similar to the electricity market at the trans-
mission level, local market operators run day-ahead/real-time energy and AS
markets. The ultimate goal of the local markets is to maintain balance between
local generation and demand, and to provide services to the upper grid through
aggregators.

The core of TE is the definition of a feedback between prosumers and aggregator.
The feedback refers to a certain price reaction of the consumers. The market
structure uses this information to determine the price and reach the balance
between supply and demand at the local level [29]. The feedback is allowed
from a proper IT infrastructure to minimise the uncertainty of the customers’
behaviour and formulate an electricity price accordingly.

In Fig. B.1, a conceptual scheme of the TE framework is provided. In the
figure, market, energy suppliers and balance responsible parties (BRPs) mimic
the existing mechanisms while preserving the structure of the electricity market
schemes at the TSO level. In such a framework, BRPs consist of independent en-
tities that guarantee the constant balance between generation and consumption
in the grid. In case of deviation from their own schedule, BRPs can interact
with the entities located at the lower levels of the grid to purchase adequate
amount of flexibility. For this reason, BRPs are supposed to communicate with
the TSO electricity market as well as downstream virtual power plants (VPPs).
Every VPP represents a pool of FRs, which virtually behave as an effective
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Figure B.1: Conceptual block-diagram of the TE approach.

power plant. These include any combination of traditional generating units,
renewable generators, and pools of flexible prosumers.

To explain the TE operation, we assume a scenario where BRPs detect the
deviations from their market schedule. In order to solve such issues, each BRP
submits an up- or down-capacity request to the VPPs. At this level, VPPs
formulate potential price signals and submit them to the corresponding pool of
global prosumer agents (GPAs). GPAs handle a pool of aggregators of smaller
prosumer agents, called local prosumer agents (LPAs). LPAs represent specific
types of prosumers, which are located at the lowest level of the grid. Once an
LPA receives the price signal from the associated GPA, it has to adjust the
price signal according to the respective type of load, as each LPA responds to
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the price in a peculiar way.

In this framework, grid agents (GAs) are asked to provide additional informa-
tion about the grid condition to the LPAs, so that they can make an informed
decision accordingly. In the figure, GAs provide additional services for the
greater benefit of the power grid operation. Once the prices are set, each LPA
submits them to the pool of residential prosumers, equipped with home en-
ergy management systems (HEMS). For commercial and industrial businesses,
prices are submitted to energy management systems (EMS). These devices allow
prosumers to receive varying electricity prices and run individual optimisation
problems to estimate their optimal response. Afterwards, their reaction is com-
municated back to the PAs through HEMSs/EMSs, as their willingness to alter
their operation and provide flexibility. This potential response to price signals
is interpreted as the feedback signal, which refers to the quantity of energy that
the LPA is potentially willing to purchase/generate at that specific price.

Afterwards, the potential aggregated flexibility is communicated back to the
VPPs. At this stage, VPPs can aggregate the price-quantity bids and formulate
the ultimate electricity price signal that addresses a certain service at the BRP’
s level.

Several benefits can be identified in the TE approach, as highlighted below:

• Reducing uncertainty in prosumers’ response: Since TE acts upon re-
ceiving the reaction of the prosumers to a certain price in almost real-time,
the negative impact of stochastic behaviour of the prosumers is minimised.
Moreover, the definition of real-time feedback from the prosumers allows LPAs
to receive required information about their participation directly. Thus, ab-
stract modelling of prosumers’ response to different prices is not needed in
this approach.

• Privacy: As it was explained earlier, prosumers communicate their prefer-
ences in response to certain prices in price-quantity blocks of bids. Therefore,
there is no direct access to the prosumers’ appliances, generation, and/or stor-
age resources. Exchanged information among agents consists of only price and
quantity values, which does not compromise the privacy of the prosumers.

• Scalability: TE approach adopts simple bidding mechanism and distributes
market operation among various LPAs. For this reason, it allows the inclu-
sion of numerous prosumers into the system, while bid aggregation and price
determination can be extended effectively to thousands of prosumers through
multiple LPAs. However, scaling-up the approach requires the involvement of
many operators.
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While the TE approach offers a solution to exploit the FRs potential at the
distribution level, it also introduces challenges and limitations, which are high-
lighted below:

• Over-simplification: Similar to the existing market structure at the TSO
level, the TE method tends to over-simplify power system operational prob-
lems to simple linear bidding mechanism. In this approach, non-linear, dy-
namic and stochastic characteristics of the FRs are completely ignored.

• Complexity: The TE framework requires various entities (e.g., VPPs, GPAs,
LPAs, GAs) for the operation. Their coordination is very complex in practice.
Moreover, some entities might compete for the required services from the same
group of FRs.

• Optimal solution: The TE operation involves potential price calculation,
bidding aggregation and clearing price mechanism, which are computationally
expensive. The computational burden can be lowered by increasing the num-
ber of LPAs. However, the involvement of numerous local operations leads to
a solution that is not necessarily the global optimal one. This is due to the
fact that operators do not interact with each other.

• Computational time: Although TE can accommodate thousands of pro-
sumers and devices in a distributed manner, the aggregation and dis-aggregation
process can become very slow. For this reason, market schedules are not up-
dated fast enough to cope with the new level of uncertainty.

• Security: Because the TE approach demands an intensive exchange of in-
formation, it exposes critical operations of power systems to cyber-security
threats.

• No solution for ESI: While the necessity of the ESI becomes more ap-
parent among all stakeholders, the TE framework does not offer solutions to
accommodate multi-energy carriers operation in the framework.

• Cost: Although FRs at the prosumers’ level might be cheap, the TE method
requires minimum latency in two-way communication channels, which further
necessitates adequate IT infrastructure. Moreover, it needs the intervention
of different agents (i.e., GA, GPA, LPA). This condition implies high costs
for the overall TE operation, which increase when scaling up the approach.

Recently, several TE-based projects have been implemented. These include:
Olympic Peninsula Demonstration in USA (2006), represents one of the first
efforts to provide automatic load response to price signals every 5 minutes, and
the first demo to include the costs of transmission and distribution within that
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price [30]; Pacific Northwest Smart Grid Demonstration (2010), as a large-scale
project involving 60 000 metered customers in the USA [31]; AEP Ohio gridS-
MART Real-Time Pricing Demonstration (2010), adopting a two-way consumer
communication and information sharing approach to integrate RES, energy stor-
age systems and metering infrastructure in power system operation [32]; Coupe-
rus Smart Grid (2011) in The Netherlands [33], which manages a pool of heat
pumps for 300 residential houses.

B.3.2 Peer-to-peer (P2P)

Peer-to-peer (P2P) is an emerging electricity trading model, inspired by the
sharing economy concept that relies on numerous agents [34]. It consists of a
coordinated multi-lateral trading framework [35], whose ultimate goal is to max-
imise social welfare for all agents [36]. The P2P approach avoids any interference
of the market operator [37], as agents interact and trade directly among each
other through the use of an online platform that can be based on the blockchain
technology. Blockchain is becoming popular in power system as it is claimed
to be an "incorruptible digital ledger of economic transactions, programmed to
record virtually everything of value" (Dan Tapscott, co-founder and executive
director at Blockchain Research Institute [38]). It consists of an open and trans-
parent infrastructure that allows agents trading without any middle-man. In
such a structure, a digital ledger of transactions is created and shared between
distributed computers on a network [39]. The ledger is accessible to every agent
and not owned by any authority.

In Fig. B.2, we present a general structure of P2P approach. In this setting,
the current market structure is omitted. Instead, a community of agents is
created to facilitate local energy trading. These agents can include independent
prosumers (agents A and C), generators (agent D) and flexible consumers (agent
B). Each agent is equipped with HEMS/EMS to collect information about its
own consumption and generation in real-time.

Entities communicate with each other through HEMSs/EMSs in an online plat-
form [40], where the price of trading energy are set by each agent. Typically,
different surge-pricing algorithms are used for pricing and the generated price
varies as supply and demand conditions change [41]. The definition of each price
can take into account the preferences of the agents participating in the trade
(either buying or selling) by submitting information to the platform. This way,
agents’ willingness for trading can depend on demand/price condition, on the
specific trading agent (i.e., a more favourable price might be evaluated when
dealing with relatives), the distance (i.e., preferring short-distance trades to
minimise the losses) or on the type of energy resource. Once each agent pro-
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Figure B.2: Conceptual block-diagram of the P2P approach.

vides information to the peers, these can run an internal optimisation problem
in HEMS/EMS to define their optimal trade. When an agent intends to add a
transaction to the digital ledger in the online platform, the transaction infor-
mation is encrypted and verified by the others HEMSs/EMSs in the network
through cryptographic algorithms [39]. The transaction needs to receive the
approval from the majority of the HEMSs/EMSs. Afterwards, it is added as a
new block of price/quantity data and shared. At this stage, the transaction is
paid in crypto-currency.

Besides the agents, P2P operation requires additional two regulating entities:
the online-platform coordinator (OPC) (e.g., the utility [42]), which is respon-
sible for the platform maintenance; the regularising grid entity (e.g., the DSO),
which ensures the legitimate use of the distribution grid (e.g., limiting the trades
below the grid capacity).

To understand the P2P operation, we assume a scenario where agents C and D in
Fig. B.2 are encountering over-production (according to their HEMSs/EMSs).
Therefore, they need to sell their excess energy to other agents. At the same
time, agents A and B experience an over-consumption situation so that they
need to buy electricity from other agents. If the only preference among agents
is physical distance, it is more likely that agent A will trade with D, and that
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agent B will trade with C. The most notable strengths of the P2P method can
be identified as follows:

• Scalability: Depending on the definition of the community (e.g., neighbour-
hood, cities), P2P can be scaled-up to different groups of agents. Therefore,
there is no limit to the scale of the platform and number of agents to trade
energy in theory.

• Privacy: Since only price and quantity information is shared over through
the platform, the privacy of the prosumers is preserved, similar to the TE
approach. In other words, there is no direct access to the agents devices to
compromise privacy of the prosumers.

• Cost: Since intermediary entities are ignored in this framework, agents pur-
chase energy and other services directly from providers at the local level. As
a result, intermediary costs are avoided. Moreover, trading energy resources
within the community minimises the transmission/distribution costs and the
system-wide losses.

• FR exploitation: Since energy trading takes place in real-time, dynamics
of the community generation and demand are reflected in the real-time prices
computed by the P2P platform. As a result, it is possible to exploit the full
potential of FRs at the distribution level by time-varying prices if the negotia-
tion updates very fast. Moreover, by setting the preferences for trading green
electricity, P2P facilitates trading in real-time, where stochasticity, dynamics
and non-flexibility of the assets is accounted for to some extent.

• Computational complexity: As agents match their generation and demand
through a set of interdependent bilateral negotiations, they are able to reach
joint optimisation with reasonable computing power [36]. However, compu-
tational complexity can become higher for complicated pricing mechanisms.

• Security: The information shared in the P2P framework is based on the
blockchain concept. This solution prevents information leakage, reduces trans-
action time, and risk of cyber-attacks. It further allows to observe the trans-
action in real-time and removes transaction intermediaries [39]. However, it
might become more challenging in the future when the solution is extended
to large-scale applications.

In spite of the innovative structure and the new opportunities offered by the
P2P approach, several weaknesses and challenges can be realised in real-world
applications, as highlighted below:

• Multi-energy systems: The P2P approach does not offer unified mechanism
to integrate other energy carriers, which limits its application in the future.
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Also, some energy carriers, e.g., gas, are generated centrally and distributed
to consumers. Therefore, their operation cannot be easily accommodated in
the P2P framework anyway.

• Electricity availability shortage: When the trading process among agents
does not satisfy the total energy demand of the community, intervention of the
existing electricity market is inevitable. This condition leads to purchasing
energy from the upper grid. As a result, a new stream of uncertainty is
reflected in the TE operation of the upper level of the grid.

• Computational time: In real-time, a series of negotiations has to take
place among various agents, before settling the price and system operation.
This process can be time-consuming, while power system by nature changes
rapidly. Additionally, communication delay is always a concern in the P2P
approach.

Several P2P energy trading models have already been implemented as pilot
studies in different countries. In the Netherlands (2014), Vandebron developed
an online P2P energy marketplace [43] for consumers to buy electricity directly
from independent producers. In Germany (2015), Sonnen developed a software,
SonnenCommunity [44], to support energy sharing generated from RES within
a community of prosumers. In Spain (2015) and Finland (2015), EM-Power
project and P2P-SmarTest investigated formulation of local electricity markets
to promote the role of the prosumer and micro-generation [45, 46]. In the UK
(2015), Open Utility launched an online P2P marketplace for RES, which is
called Piclo [42]. In Australia, Power Ledger implemented P2P by adopting
blockchain technology to undertake energy transactions [47].

B.3.3 Control-based approach (CBA)

CBA refers to the adoption of control theories for energy management in the
distribution system [48, 49, 50]. It introduces an alternative approach to the
market operation, offered by the TE and P2P frameworks. In Fig. B.3, we
present the method and the main entities involved.

In the CBA setup, electricity market structure at the transmission level is pre-
served. It means that wholesale electricity market, energy suppliers and BRPs
entities remain intact. At the lower level of the structure, BRP communicates
with a new entity, named aggregator. This is an independent entity that oper-
ates as coordinator between FRs and the wholesale electricity market. When
BRP encounters imbalance in generation or demand from its own schedule,
it sends a request to the aggregator. Upon receiving the query, aggregators
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Figure B.3: Conceptual block-diagram of the CBA.

interact with different sub-aggregators, scattered all over the grid. Each sub-
aggregator represents a pool of prosumers and act on behalf of them. They are
expected to communicate with the pool of prosumers and collect offline data
from prosumers’ reaction to different prices. This way, sub-aggregators are able
to estimate an aggregated model of the pool, which is used to formulate price-
quantity bids for different price signals. In order to achieve a better accuracy
of prosumers’ behaviour modelling, specialised sub-aggregators can be sought
to manage a specific type of FRs. Moreover, sub-aggregators can optionally re-
ceive additional information, e.g., weather parameters, in order to improve the
accuracy of predicting consumers’ behaviour. Such additional services therefore
provide additional information (AI).

As shown in Fig. B.3, the interaction between sub-aggregators and prosumers
can take place in two different manners: through direct (sub-aggregator A) or
indirect control (sub-aggregator B) [51]. Direct control (DC) is based on a
two-way communication between prosumers and sub-aggregator. Although it
requires an adequate IT infrastructure, it enjoys the benefit of directly control-
ling the loads, minimising the uncertainty of the consumers’ response. On the
other hand, indirect control (IC) includes the utilisation of HEMSs/EMSs and
one-way communication. It implies a simpler communication infrastructure,
which significantly reduces the complexity and vulnerability of the system [52].
While DC enables the operator to directly alter prosumers’ power consumption
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and local generation, IC only provides flexibility by using a price signal. How-
ever, the optimal utilisation of these solutions relies on the available information
and infrastructure [51].

In this paper, we focus on the IC approach, which requires simpler infrastruc-
ture. This is formulated in two main steps: 1) a control problem at the sub-
aggregator level to determine the price signal, 2) a model-predictive control
(MPC) at the prosumers’ level, embedded in HEMSs/EMSs to act upon receiv-
ing the price signal. Different optimisation problems can be formulated through
control concepts at various levels to fulfil the requirements of different stake-
holders.

The benefits of the CBA approach through IC method can be summarised as
follows:

• Scalability: The structure guarantees a scalable solution for the future power
system operation at the distribution level because the control problems can
be extended to millions of devices without significant computational power
requirements.

• Dealing with mathematical complexity: It is based on formulating and
solving control problems at the sub-aggregator and prosumers’ level. There-
fore, it deals with non-linearity, real-world dynamics and stochasticity of the
power systems with rather simple, fast and cheap communication infrastruc-
ture by adopting one-way communication. This is valid only for the distri-
bution system, since the existing wholesale market structure is maintained at
the transmission level.

• Cheap: The simple architecture in the CBA-IC approach guarantees low-
cost implementation and maintenance costs. Moreover, the CBA-IC avoids
the cost for distribution-side measurement equipment, as it requires a few
measurements at the higher level of the grid for consumers’ modelling. This
condition facilitates troubleshooting of operational issues in real-time.

• Privacy: CBA-IC does not imply privacy issues, as only price signals are
broadcasted from the aggregator to the end-users.

• Security: The lack of real-time feedback from consumers to the sub-aggregators
diminishes risk of communication malfunctions and cyber-attacks.

• Integrated Energy Systems: Regarding the possibility of integrating the
entire energy system, CBA offers a valid solution via adoption of specialised
sub-aggregators for FRs of other energy carriers. These entities can develop
a flexibility price-reaction model suitable for their own load, offer a unique
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price signal, and act in the market afterwards through main aggregator, in
the same way as other sub-aggregators.

Despite all the benefits, CBA has its limitations, as highlighted below:

• Dependency on the market: Although it can partially exploit existing
FRs at the distribution level, it operates as a part of the AS market at the
transmission level. Consequently, CBA inherits slowness, linearity assump-
tion, and deterministic approach from the existing wholesale AS market which
does not fulfil many of the future power system needs.

• Uncertainty: Since prosumers’ price-responsiveness is an uncertain phe-
nomenon, the operation of CBA will inevitably have uncertainty with respect
to the prosumers’ reaction to the price signal [29]. It becomes a significant
issue when the model over-estimates consumers’ reaction to a set of price sig-
nal. This situation might in fact jeopardise the power system stability and
safe operation.

• Market Inefficiencies: By avoiding any market process, CBA is potentially
subject to market inefficiencies, where prices might deviate from the true
discounted value of their future cash flows [29].

Several CBA projects have been implemented in the past. These include: Flex-
Power [53, 54] in Denmark (2010), which is the first project using price-based
CBA to control individual power flow of intelligent controllable power units;
price-based control of electrical power systems (E-Price) in The Netherlands
(2010) [55], focusing on price-based control strategy to facilitate increasing
amounts of RES; CITIES [56] in Denmark (2013), which employs the aggre-
gated response of FRs in a control framework design; ECOGRID Eu project
in Denmark (2013) [57], where residential consumers participate with flexible
demand responses to real-time price signals; SmartNet [58] in Italy, Denmark
and Spain (2015), applying economic-model predictive control (E-MPC) tech-
nology to swimming-pools.

B.4 Ancillary Services 4.0 (AS4.0)

From the analysis of the alternative solutions to the existing AS market, it
emerges that these lack of certain features to comprehensively address the re-
quirements of the future smart grid. In this section, we propose a comprehensive
solution for AS provision, named AS4.0. In Fig. B.4, a schematic diagram of the
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proposed framework is shown. It refers to a control-based operation to procure
required AS, extended to the entire grid management. We build AS4.0 on two
main assumptions: firstly, every prosumer device is operated and controlled by
an HEMS/EMS. Therefore, we deal with rational prosumers through automated
systems (as implicitly assumed in the previous approaches) [49]. Secondly, power
system operation problems at different spatial and temporal scales can be split
into multiple independent problems in space and time. This assumption roots in
the fact that major operation entities, e.g., TSO and DSOs, handle problems at
different geographical scales and time-frames, as shown in Fig. B.5. It is worth
mentioning that the system operator (SO), in the proposed framework, refers to
any entity that regulates power system operation at different level. The major
SOs consist of TSO and DSO entities. For instance, frequency regulation is the
responsibility of TSO, which expands to the whole control area. Meanwhile,
voltage management at the DSO level is limited to a certain area of a DSO’ s
territory. The proposed mechanism employs delta prices to move FRs in the
right direction for the benefit of power system operation in real-time. Every SO
formulates an independent control problem, based on the required resolution of
space and time to generate adequate delta price signals. Afterwards, these delta
prices are constantly summed up to the base-line costs (e.g., taxes, profit margin
of SOs, O&M costs) and submitted to the rational prosumers, as flexible retail
electricity prices. Such new prices intend to exploit the rational behaviour of the
prosumers, promoting a certain behaviour from the pool to handle various AS
requirements. Time-varying utility pricing is the core concept of the proposed
method to effectively exploit FRs potential. Several studies have already been
done to evaluate the effectiveness and required mechanisms for real time-time
pricing [59, 60, 60, 61, 62], and associated benefits and impacts on the energy
flexibility [48].

At the highest level of the structure, SOs constantly measure the parameters of
their interest (e.g., frequency for TSO) in the grid. Due to the varying generation
and consumption, these parameters might show deviation from their schedule.
When this happens, SOs run independent control problems that evaluate the
required FRs from the lower level of the grid to compensate the deviation ac-
cording to their respective standards. In the definition of the control problems,
SOs need to estimate the reaction of their pool of rational prosumers to a certain
price. For this reason, each pool requires an accurate price-response model of
the associated FRs. Proper models are formulated from the offline information,
that is collected from real-time measurements. This is provided by the model
operators (MOs), which are specialised entities in modelling price-response be-
haviour of the prosumers in different time and space resolution. They can sell
their services (i.e., models) to SOs according to their needs. Once delta prices
are formulated with geotag, they are submitted to the ancillary services opera-
tor (ASO), which is responsible to sum-up different delta prices and broadcast
the final price to the prosumers located in the right area. ASO guarantees and
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Figure B.4: Conceptual block-diagram of the AS4.0 approach.

secures an easier communication with prosumers through their HEMSs/EMSs.
We can consider the case of a DSO that operates a low-voltage network of thou-
sands of buses. When a couple of buses has voltage issues, the DSO needs
to fix it by generating proper delta prices to submit to the prosumers located
in those buses and in the surrounding areas. For this reason, not all the pro-
sumers will receive the same delta prices. When these prices are submitted to
the HEMS/EMS, they will change the consumption/generation accordingly.

Studies have shown that FRs can make a significant contribution to the fre-
quency regulation [63, 64]. In the future, severe shortages of flexibility will be
avoidable [65] and AS will not need services from conventional generators. A
wider application of HEMS/EMS, as predicted for the next few years, will pro-
vide a higher amount of FRs at different levels of the grid. This way, the AS4.0
intends to provide all the AS requirements through FRs instead of conventional
generators with reserve capacity.

B.4.1 Generating delta prices at the DSO and TSO level

At the distribution level, numerous DSOs own and operate medium- and low-
voltage delivery network. Each SO attempts to satisfy its objective by gener-
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ating appropriate delta prices based on the system condition. In Fig. B.5, we
show a hypothetical power system, with a TSO at the highest level, and a DSO
at the lower level. These are generally referred to as Si, where i = TSO,DSO.
Every SO might need different services Sji , where j = 1...n and n is the number
of services of SOi. For example, the TSO might request services for frequency
regulations or congestion management. Each service is defined independently
with specific time and space tags.

ΔSTSO ΔλTSOCTSO

ΔSTSO
ref

TSO

ΔSDSO ΔλDSOCDSO

ΔSDSO
ref

DSO

TSO

DSO

FRs

Figure B.5: The interaction between two operators located at different levels
of the grid in the AS4.0 approach.

The SO constantly formulates delta prices ∆λi that can alter the generation/consumption
of prosumers. Such prices consist of the required efforts for the SO to fulfil ser-
vices. As shown in Fig. B.5, delta prices are generated through a control model,
Ci. It takes into account the price-response characteristics of FRs and it is for-
mulated independently at every SO level. Ci needs to be continuously updated,
ideally every few seconds, to follow the true conditions of the system. Exist-
ing standards (e.g., frequency regulations) can be accommodated in the control
problem of Ci and updated by the associated SO, when needed.
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B.4.2 Modelling prosumers’ behaviour

Prosumers’ price-response model is used to formulate appropriate delta prices.
Therefore, each SO needs to have access to the aggregated information of the
prosumers’ behaviour at their respective scale for an accurate modelling. The
aggregated data at the distribution substation is measured and collected so that
proper models can be created offline. Therefore, no real-time or extra commu-
nication channels are needed in AS4.0 framework from HEMS/EMS to the SOs
for prosumers’ modelling. In fact, aggregated prosumers’ models are different
at each SO level because of the different amount and composition of FRs. In
AS4.0 framework, models’ accuracy can be improved by MOs, which develop
aggregated models of the prosumers in different time and space scale. In fact,
these have directly access to the prosumers’ HEMS/EMS with their permis-
sion under bilateral contracts. They can also be specialised in a specific type
of prosumers’ load/generation (e.g., summer pools or roof-top PV) so that the
model can estimate prosumers’ behaviour more accurately. The models can be
updated frequently to increase the accuracy. This process can be done through
historical data time series modelling/analysis [48, 66] and machine learning ap-
proaches (e.g., neural network [67]). Moreover, prosumers could be represented
by different models that are specialised based on several factors, e.g., season and
day. This way, accuracy of the models will be improved, and the uncertainty of
the consumers’ response to a set of prices will diminish substantially.

B.4.3 Formulation of flexible AS-retail-price

Once delta prices are formulated by the SOs, these are submitted, together
with geographical tags, to the ASO. The tags determine the area requesting the
service. Afterwards, the ASO sums-up the delta price components, ∆λi, with
a baseline price, λ. The latter price is defined by the DSO to cover taxes and
fixed costs. This can be assumed as flat, as it is today in many utility companies
and retailers. Alternately, it can be based on the day-ahead market prices, to
ensure legitimacy from the bidding and clearing process. The aggregated price,
named flexible retail electricity price, is broadcasted to the HEMS/EMS at the
prosumers’ premises. In this setting, there will be different prices based on the
geographical tags of the delta prices. It implies that different end-users might
receive different prices according to the condition of the power system in their
respective areas. Naturally, such a mechanism can provoke an unfair penali-
sation of the end-users which are located in specific areas that receive higher
prices. In order to deal with this issue, the sum of the daily delta prices to
every prosumer should always be zero. In other words, the sum of the nega-
tive prices should be equal to the accumulated positive prices within every day.
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This solution prevents discrimination against prosumers that are located in dif-
ferent areas. In fact, consumers will be encouraged to modify their consumption
throughout a day in order to minimise their operational cost without reducing
their overall daily consumption. A similar concept has already been adopted by
PJM for frequency regulation [68], forcing the load deviation within one hour
to be zero.

B.4.4 Hierarchical operation model

SOs operate with different granularity in time and space. For this reason, it is
unlikely that they compete over the flexibility provided by a particular group
of end-users in a way that compromises the system operation. When such a
conflict of interest occurs, it might promote chattering and oscillations in the
prosumers’ response, by cancelling the delta prices of the counterparts. In order
to handle this situation, a hierarchical structure can be developed with pre-
specified priority list for different conditions. Hierarchical operation is delegated
to an independent entity (e.g., the federal energy regulatory commission for
the case of USA [69] or ASO), which meddles in for the greater benefit of the
power system security. This way, different SOs can fulfil their needs without
interfering or competing with other SOs. The priority is given to the SO, which
requires the most critical services for the benefit of power system operation
as a whole. In a scenario where TSO asks for frequency regulation-up service
(by generating a negative delta price to encourage more consumption), and a
DSO encounters low voltage issues in a specific area, priority is given to the
frequency regulation requested by the TSO, as it maintains the integrity of the
power system operation.

B.4.5 AS4.0 infrastructure and regulatory requirements

In this subsection, we investigate the required infrastructure and regulations for
successful implementation of AS4.0. At the prosumers’ level, HEMSs/EMSs run
optimisation problems to take advantage of the time-varying prices by minimis-
ing operational cost. Although a limited number of HEMSs/EMSs are installed
at the prosumers’ level, these already established a multi-billion dollar business
with increasing market value to US$4 billion in 2017 [14, 70]. By many brands
(e.g., Apple, Google and GE) being involved and invested tremendous amount
of money in this business, it is expected to have many enclosed areas equipped
with HEMSs/EMSs in the near future. Therefore, AS4.0 will be able to benefit
from the existing potential of HEMSs/EMSs and their capabilities at that time
to achieve their goals. Specifically, in AS4.0, HEMSs/EMSs are supposed to
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receive price signals from a communication channel. This channel might consist
of encrypted exclusive radio signal or a regular encrypted internet packet of
signal. Moreover, since an ASO is responsible for maintaining communication
channels and broadcasting the signal to the prosumers, it needs an adequate
IT security infrastructure. This can include several firewalls, where the access
to the information is always restricted and limited to the entities in charge. In
AS4.0, SOs formulate their own control problems, accounting for the technical
constraints of the system. To achieve this and determine the delta price ∆λi in
almost real-time operation, appropriate computational power is required. Also,
SOs have to measure and store prosumers’ response to different prices in order to
update the aggregated prosumers’ model. For this reason, big data warehouses
are needed to store and maintain large amount of information.

Besides physical infrastructures, AS4.0 requires a set of new regulations at differ-
ent levels of the electricity system to transform existing market-based AS into
a control-based structure. Real-time utility pricing, anti-discriminatory pric-
ing in different areas, subsidising HEMS/EMS business to develop faster, and
changing existing business models of AS at the transmission level are among
the most important regulatory revolutions, which have to be initiated by the
policymakers.

B.4.6 AS4.0 for the AS provision: Summary

The advantages of AS4.0 over the existing alternative approaches for AS provi-
sion can be identified as follows:

• Stochasticity, dynamics and non-linearity: The AS4.0 framework man-
ages stochasticity, non-linearity and dynamics of the prosumers by defining
a suitable control problem. In fact, a SO price-response controller could be
non-linear while accounting for the inherent stochasticity of the power system
operation. Different tools at the higher (optimisation control problems, e.g.,
price-based control) and lower level of the grid (HEMS/EMS, e.g., E-MPC)
can be employed to achieve this goal.

• Simplicity: It simplifies real-time energy management for AS provision for
the entire grid within a set of control-based problems, where the electricity
price is the only driver.

• ESI: The proposed methodology facilitates ESI because different energy carri-
ers can be represented to the prosumers by a price signal. In this framework,
each HEMS/EMS can select its preferred source of energy at any moment
based on economic preferences.
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• Scalability: Finally, this method can be extended to distribution and trans-
mission systems, enhancing the provision of the AS to every flexibility [51].
In fact, there is no operational nor computational limit in the number of FRs
and SOs involved in the AS4.0. approach.

In spite of its promising features for the future smart energy-system manage-
ment, some challenges have to be properly addressed:

• Lack of agreement on price: In classic market structure, buyers and sellers
submit their bids to determine a commodity price. This procedure implies
an indirect agreement among the entities. In AS4.0, however, prices are ob-
tained based on the expectations of the SO from the prosumers and their own
needs. Therefore, additional mechanisms should take place (e.g., upper limit
on the delta prices and daily price neutrality) to avoid price discrimination
and pressure on the prosumers with unreasonable delta prices.

• Models uncertainty: SOs model the prosumers’ behaviour considering
available historical data. Nevertheless, the aggregated price response must
be analysed considering a certain level of uncertainty. This is a challenge
for the SO, and the MOs tries to minimise it by specialising in prosumers’
behaviour modelling.

• Conflict of interest: When SOs look after fulfilling contradictory objectives,
there is conflict of interests. Such a situation can be handled by hierarchical
operational algorithms and prioritisation mechanisms.

B.5 Conclusions

In this paper, we present AS4.0 as a comprehensive and novel solution for AS
procurement in the future energy system. It is developed as an alternative to
the current market-operation structure for the AS provision. Nowadays, the
AS market is deterministic, linear, static and does not include any mechanism
to utilise FRs located at the distribution level. By offering price-based control
mechanism to exploit the entire fleet of FRs, AS4.0 is able to manage AS provi-
sion for the entire grid while handling stochasticity, non-linearity and dynamics
in a fast and simple way. This paper firstly explains the role of AS in presence
of smart grid functionality and investigates existing alternatives to the market-
based AS in literature. Analysing the alternative approaches (in terms of the
core challenges regarding the AS procurement in the future) shows that none of
them can provide a comprehensive solution accounting for spatial and temporal
variability and potential of FRs.
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In order to fill the gap, the concept of AS4.0 is here proposed. In the new frame-
work, SOs can exploit the price-responsiveness of the prosumers according to
their need by time-varying electricity prices. These are formulated through inde-
pendent control problems for every SO. Time-varying prices are lately summed-
up together with fixed price components (e.g., taxes) to generate flexible retail
electricity prices. These are received from the prosumers through HEMS/EMS
which can rationally react to minimise their own cost. The entire process is
automatic and requires no manual interaction from the consumers.
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Figure B.6: Comparing the current AS market with the main features of TE,
P2P, CBA, and AS4.0 frameworks, required by the future AS
provision.

To summarise the advantages of the proposed framework, different alternative
approaches are compared in Fig. B.6, in terms of core features required by the
future power system and AS procurement. In this benchmark, AS4.0 looks very
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promising as it deals with all the requirements of the smart AS provision. In
the future work, the AS4.0 mechanism will be implemented in several simulation
studies to quantify the associated benefits and challenges.
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Abstract

Demand flexibility will be an inevitable part of the future power sys-
tem operation to compensate stochastic variations of ever-increasing
renewable generation. One way to achieve demand flexibility is to
provide time-varying prices to customers at the edge of the grid.
However, appropriate models are needed to estimate the potential
flexibility of different types of consumers for day-ahead and real-time
ancillary services (AS) provision. The proposed method should ac-
count for rebound effect and variability of the customers’ reaction to
the price signals. In this study, an efficient algorithm is developed for
consumers’ flexibility estimation by the transmission system opera-
tor (TSO) based on offline data. No aggregator or real-time commu-
nication is involved in the process of flexibility estimation, although
real-time communication channels are needed to broadcast price sig-
nals to the end-users. Also, the consumers’ elasticity and technical
differences between various types of loads are taken into account
in the formulation. The problem is formulated as a mixed-integer
linear programming (MILP) problem, which is then converted to a
chance-constrained programming to account for the stochastic be-
haviour of the consumers. Simulation results show the applicability
of the proposed method for the provision of AS from consumers at
the TSO level.
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C.1 Introduction

In recent decades, a significant amount of renewable energy sources (RES) has
been integrated into power systems, supported by the increasing global aware-
ness towards climate change and the tremendous cost reduction in the new
technologies [1]. While offering unquestionable environmental benefits and sus-
tainability in energy production, large penetration of RES introduces new con-
cerns and challenges in power systems planning and operation because of an
unprecedented level of stochasticity, non-linearity, and dynamics [2]. Conse-
quently, it causes higher risk of frequency deviation, voltage excursion, and net-
work congestion in real-time operation. Furthermore, it requires larger amount
of ancillary services (AS) to compensate demand and generation imbalances in
real-time. AS consist of a variety of operations, beyond the electricity gener-
ation and transmission. These operations guarantee service quality, continuity
and security from distribution (e.g., voltage regulation) to transmission level
(e.g., frequency regulation and congestion management). Since RES are located
at different levels of the grid, challenges are extended to all aspects of AS pro-
vision. This further demands a holistic change in AS provision in the future
power system with high RES penetration.

An attempt of that nature is the so-called demand response (DR) programs. Dif-
ferent types of DR programs have been developed and tested in the last decade
or so [3]. These include the application of time-of-use (ToU) rates, incentives,
real-time prices (RTP) and direct load control (DLC). ToU schemes define dif-
ferent rates at different time of the day (i.e., usually two-tiered peak and off peak
[4]) but that do not change based on the condition of power system. Incentives
are designed to be added on top of a flat electricity retail price. The consumer is
always rewarded to alter its consumption to support the DR scheme voluntarily.
However, they are used in relation to two-way communication schemes [5, 6, 7].
Finally, RTP are generated to reflect the real-time condition of the grid [8]. RTP
is different from incentives, as in RTP consumers only receive a time-varying
price. On the other hand, in incentive-based schemes, consumers still receive
a flat retail price and, on top of that, they can agree on an incentive to alter
their consumption. This solution preserves consumers’ autonomy as it is based
on one-way communication structure. Prices are broadcast to consumers which
autonomously decide how to respond to them through decentralised controllers.
Also, no control signal is submitted to the consumers, and the same price signal
can be broadcast to a various pool of consumers (i.e., at their HEMSs), as its
formulation is not device-based.

Such price schemes have been used in the Olympic Peninsula Demonstration
project, where the procurement of demand flexibility in response to 5-minute
price signals was successfully tested [9]. Although RTP might potentially in-
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crease price volatility, it is possible to address such a concern by properly design-
ing the price, e.g., imposing a fixed price cap [10]. The RTP can also be agreed
in a market-based approach, such as in transactive energy (TE) [11]. TE allows
the consumers to be actively involved in the formation of the price, which in
turn reduces uncertainty in consumers’ response. However, this type of methods
requires regular feedback from the consumers for flexibility estimation, requiring
costly and cyber security-prone two-way communication infrastructure.

Another type of DR programs is centralised and decentralised DLC schemes [12].
In centralised DLC mechanisms, an external entity directly controls consumers’
load through a two-way communication link [13]. Although such solutions sub-
stantially reduce uncertainty in the consumers’ response [14], they compromise
consumers’ privacy and autonomy [11]. In fact, consumers have to allow an
external entity to decide about the way they consume electricity. In [15] and
[16], it is shown that consumers might be reluctant in losing control of their
consumption, and that automation of the consumption is accepted only if con-
sumers can autonomously manage it. To gain higher acceptance from consumers
towards DLC mechanisms, long-term contracts [17] have also been formulated.
The main challenge of such approaches is that consumers need to plan their
future consumption ahead of time, which most of the consumers are not ac-
customed to do so [6]. Therefore, only part of the available flexibility might
be exploited in such programs. An alternative to centralised DLC schemes is
decentralised DLC, which uses one-way communication [18]. It is implemented
by simply broadcasting a control signal from a centre, where the ultimate deci-
sion is made by the local controller at the consumer’s side. This arrangement
addresses privacy and comfort issues in the DLC schemes (i.e., each distributed
controller individually satisfies the consumer’ constraints [19]). However, the
control signal generated by the central controller is based on models for specific
types of loads. Therefore, different specialised control signals should be issued
for every type of loads in order to exploit the existing potential flexibility [20,
21]. In addition, the control signals are generated by assuming a linear model
for the device, which might not represent the true dynamics of the underlying
appliance, thus it might be error-prone. Nevertheless, it is true that the error
might decrease as the number of aggregated devices grows.

While the authors acknowledge the benefits and disadvantages of various RTP
and DLC methods, the RTP scheme is assumed in this study and the proposed
flexibility estimation algorithm is developed based on the RTP concept. From
the perspective of the transmission system operator (TSO), RTP must be prop-
erly formulated to address the desired aggregated change in consumption that
solves the operational problems. Therefore, understanding how end-users re-
spond to different price signals in an aggregated manner can help the TSO to
estimate the potential of demand flexibility and design price signals accordingly
[22]. In other words, by utilising appropriate models, the system operator can
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evaluate the impact of different prices on consumers’ flexibility to determine the
right price to obtain a certain amount of flexibility [23]. Unfortunately, literature
scarcely reported load flexibility estimation from the system operator’s point of
view. In [24], a daily load response model for different end-users’ categories is
proposed based on the day-ahead spot market prices. However, the stochas-
tic responsiveness of different end-users’ categories and consumers’ preferences
have not been studied. Moreover, only few papers investigated the flexibility
potential of various industrial loads [25], despite the fact that 80% of electricity
usage is consumed in this sector in some countries [26]. Therefore, there is a gap
in knowledge to properly estimate aggregated flexibility of the consumers while
accounting for stochasticity in their elasticity and preferences without real-time
communication links. In this paper, an optimisation problem is formulated to
estimate the aggregate flexibility of rational end-users (REUs) with different
elasticity and preferences at the TSO level in response to time-varying prices.
The proposed tool can be used to quantify the amount of demand flexibility
that is available for balancing. Estimating the amount of load flexibility in
response to different prices can be useful for an aggregator to build blocks of
load capacity bids for different time intervals (e.g., hourly, in CAISO). Although
how to generate the time-varying prices is out of the scope of this study, the
proposed method can also be used to evaluate the impact of different prices on
demand flexibility. Moreover, balancing requirements might change due to the
prediction errors in the load demand and renewable generation and unexpected
outages. Therefore, having an estimate of the available load flexibility can be
very useful during the real-time operation of the power system. Within this
context, our method can be used to provide such an estimate both in advance
or in real-time. Furthermore, having more flexible resources (from generation
and demand) enhances competition in the balancing market, resulting in price
reduction that ultimately reduces electricity prices for the end-users. In order
to reduce the negative impact of the consumers’ stochastic behaviour on the es-
timated flexibility, the original formulation is converted to a chance-constrained
(CC) programming, where the risk level of the solutions can be guaranteed. The
main contributions of the paper can be summarised as follows:

• Quantifying the aggregated up- and down- flexibility from various types of
consumers’ categories at the TSO level to address AS requirements;

• Formulating a chance-constrained optimisation to account for the stochastic-
ity in the consumers’ willingness in such an application;

• Developing a statistical model of aggregated consumers’ willingness (i.e., elas-
ticity and preferences) for different categories of consumers and incorporating
it in the optimisation problem.

The rest of the paper is organised as follows: Section C.2 presents the theoreti-
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cal foundation for the formulation in terms of time-varying prices and REUs. It
is followed by a deterministic optimisation formulation of the aggregated load
flexibility in Section C.3. Then, the formulation is converted to a CC program-
ming problem to address stochasticity of the end-users’ behaviour in Section
C.4. In Section C.5, a case study is proposed and a series of simulations are
carried out to show the effectiveness of the proposed model. Simulation results
are discussed and the paper is finally concluded in Section C.6.

C.2 Modelling Concepts

Quantifying demand flexibility at the TSO level with limited aggregated histor-
ical data inevitably involves complex parameters and conditions, which must be
simplified for appropriate modelling. To keep the proposed method practical
and computationally tractable, two important assumptions are made based on
the current trend in smart grid technologies, as explained below.

C.2.1 Time-varying prices

Time-varying prices are assumed to exist to activate consumers’ flexibility in
this study. In the smart grid era, the application of advanced metering infras-
tructure will further support the time-varying pricing mechanism in practice.
Without loss of generality and similar to the Olympic Peninsula Demonstration,
it is assumed that time-varying prices are superimposed on the existing retail
electricity price. We refer to the existing flat retail price as the "baseline price",
λbase, while the time-varying price component is called "delta price" in the rest
of the paper. The latter is denoted by ∆λ∆λ∆λαt , representing the time-varying price
for flexibility type α at time t. Depending on the grid condition, upward reg-
ulation (i.e., α = u) or downward regulation (i.e., α = d) may be required. In
the existing terminology, regulation is defined from the generators’ perspective,
e.g., in California ISO [27], where a load increase is equivalent to a decrease in
generation (i.e., down-regulation) and vice versa. Therefore, down-regulation is
achieved from negative delta prices, ∆λdt or equivalently ∆λ∆λ∆λαt : (∆λ∆λ∆λαt < 0). On
the other hand, load reduction is equivalent to an increase in generation (i.e.,
up-regulation), which is achieved by positive delta prices, ∆λut or equivalently
∆λ∆λ∆λαt : (∆λ∆λ∆λαt > 0). Since the source of real-time operation issues can be linked
to many entities (e.g., load, generation plants, transmission and distribution
networks, interconnected areas, and so on), it would be unfair to the consumers
to pay more because of the issues that were probably initiated by other stake-
holders [23]. To alleviate such a problem, zero accumulated delta prices should
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be enforced at the end of each day:

∑τ
t=1 ∆λ∆λ∆λut + ∆λ∆λ∆λdt = 0 (C.1)

Summing the delta prices to zero over a day of operation is preferred in this
paper instead of the alternative approach, which is the sum of the demand-
weighted prices. The main reason is that it is difficult to predict the aggregated
response of each consumers’ category in the hours ahead, which leads to higher
uncertainty in the demand-weighted prices. By providing delta-prices whose
sum is zero, some periods of low prices are ensured to exist from which the
consumers can benefit (i.e., by responding to the time-varying price). In the
simulation study, it is assumed that the delta prices are known in advance by
the TSO. In the electricity markets where energy and AS are procured simulta-
neously in the day-ahead market, e.g., California ISO [28], such AS prices are
available. Furthermore, the proposed tool could be readily used for real-time
operation in a rolling horizon fashion to incorporate potential updates of the
prices and load flexibility provided in previous hours.

C.2.2 Rational end-users (REUs)

Since manual consumers’ reaction to the price signal is not practical nor effec-
tive, energy management systems (EMS) are required to successfully implement
price-based DR programs in practice. Once the time-varying price is received by
the EMS, they run an individual optimisation and/or control problem locally to
minimise the incurred electricity cost accounting for the customers’ preferences
[29, 8, 30, 31]. As an important smart grid technology, the EMS market value
reached US$4 billion in 2017 [32]. With the current market trend, it is likely that
most of the future electricity consumers will have EMS at their premises. This,
in turn, will enhance the elasticity of demand to time-varying prices, which is a
key feature in successful DR implementation. In addition, application of EMSs
improves the predictability of consumers’ response to price signals while avoid-
ing communication of any sensitive information over communication channels
in real-time.

In this paper, we deal with EMS-equipped end-users, which are called REUs,
to receive the time-varying electricity prices through one-way communication
channels. The diversity of the REUs’ behaviour towards the delta prices is
modelled below.
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C.2.2.1 REUs’ responsiveness to the price signal

In order to appropriately model the diversity of consumers’ flexibility, the will-
ingness of each REU to deviate from its baseline demand, i.e., Lbase

t,j , is modelled
as a stochastic phenomenon. Generally, the price-responsiveness of a consumer
depends on various factors, e.g., weather conditions, electricity price, time and
type of day, and season, etc. [33]. As an example, in [34], it is shown that the
response of the load demand has been faster in the cold weather. In this paper,
however, only electricity price, type of consumers and time of the day are con-
sidered in the REUs’ responsiveness modelling, i.e., aαt,j , to keep the problem
tractable. Other factors, such as the weather condition and type of day, could be
included in the current model by adjusting the willingness parameter aαt,j , e.g.,
as a function of the ambient temperature and type of day. Weather conditions
are neglected because various types of end-users react differently to the weather
conditions. Therefore, proper data is needed to estimate the relationship, which
is not available to the public at the moment. The value of aαt,j varies within the
range of

[
−1, 1

]
, where 0 indicates no intention to change consumption and 1 (-

1) represents a 100%-increase (decrease) in consumption in response to the delta
price. From literature, [24] approached the consumers’ price-responsiveness in a
similar manner to investigate the behaviour of a pool of end-users. Consumers’
willingness, however, was considered constant over time and price in that study.
Halvgaard et al. in [35] adopted a linear model of price and consumption to for-
mulate the price response behaviour. In [36], Aalami et al. focused on nonlinear
functions, which better describe the price response behaviour compared to the
linear models. Following the work of Aalami, we adopted a power function to
model the consumers’ willingness, as shown in Fig. C.1. Similar to [24] and [37],
where the authors assumed a price threshold for achieving DR, a dead-band
is considered to address the fact that consumers become responsive beyond a
certain price. Therefore, for a delta price smaller than the dead-band price, i.e.,
∆λ∆λ∆λαj in the specific regulation direction, no response is expected from the pool
and the flexibility is zero:

aαt,j = 0 |∆λ∆λ∆λαt | < ∆λ∆λ∆λαj (C.2)

When the delta price increases beyond the dead-band, the pool of consumers
starts reacting, which is modelled as follows:

aαt,j = aαj
(

∆λ∆λ∆λαt −∆λ∆λ∆λαj
∆λ∆λ∆λαj −∆λ∆λ∆λαj

)γγγ
∆λ∆λ∆λαj ≤ |∆λ∆λ∆λαt | ≤∆λ∆λ∆λ

α

j (C.3)

Furthermore, we assume that, beyond a certain price, i.e., ∆λ∆λ∆λ
α

j , the pool cannot
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t

a t,j

Figure C.1: Willingness parameter aαt,j for time-varying electricity price ∆λ∆λ∆λαt .
Positive prices lead to up-regulation (i.e., α ≡ u), while negative
prices induce down-regulation (i.e., α ≡ d). The parameters ∆λ∆λ∆λαj
and ∆λ∆λ∆λαj determine the dead-band and the saturation prices for
each end-users’ category j.

provide additional flexibility because of the rebound effect and the un-curtailable
load, as discussed in [8]. Therefore, aαt,j becomes constant:

aαt,j = aαj |∆λ∆λ∆λαt | ≥∆λ∆λ∆λ
α

j (C.4)

To account for the stochasticity and the diversity among consumers even from
the same category of end-users, the six parameters defining the dead-band and
saturation, shown in Fig. C.1, are treated as normally-distributed random vari-
ables. In subsection C.5.1, the statistical properties and a simulation framework
will be introduced to generate a pool of consumers for each end-users’ category.
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C.3 Up- and down-flexibility: Deterministic case

The ultimate goal of this study is to estimate the amount of demand flexibility
that can be provided by different categories of end-users, under a time-varying
pricing scheme in the presence of stochasticity in consumers’ willingness. By
having the stochastic model of the consumers’ reaction to the price signal and
the assumptions made in the previous section, it is possible to formulate an op-
timisation problem for the REUs to estimate their flexibility. The formulation
is developed based on the conservative assumption that a perfect rebound exists
due to practical reasons and end-users’ comfort. In fact, more than 90% of the
flexibility resources at the residential premises is provided by appliances with
shiftable load (e.g., heating, ventilation, and air conditioning systems, clothes
dryers, and so on) [38]. Therefore, the rebound effect will be an inevitable as-
pect of demand flexibility modelling, although it adversely affects the overall
flexibility. As consumers might not be willing to increase their overall daily
consumption, which might result in higher electricity bills, a perfect load shift-
ing is preferred in the model that must be completed within a certain time
period. While this condition might further decrease the overall flexibility of the
load demand, it provides a more realistic model of consumers’ behaviour, which
consequently improves the accuracy of the estimated flexibility. Since the TSO
does not have direct access to the individual loads, and consumers only react
to the delta prices submitted by the TSO, flexibility should be estimated from
consumers’ perspective. Therefore, the model is formulated as a minimisation of
the daily cost of electricity consumption for each end-users’ category, as shown
below:

min
Lα
t,j

τ∑
t=1

(
λλλbase + ∆λ∆λ∆λut + ∆λ∆λ∆λdt

) J∑
j=1

(
LLLbase
t,j + Ldt,j − Lut,j

)
(C.5a)

subject to: (C.5b)
− rαj ≤ Lαt+1,j − Lαt,j ≤ rαj ∀ t, j, α (C.5c)
0 ≤ Ldt,j ≤ udt,j

(
Lmax
t,j − Lbase

t,j

)
adt,j ∀ t, j (C.5d)

0 ≤ Lut,j ≤ uut,j
(
Lbase
t,j − Lmin

t,j

)
aut,j ∀ t, j (C.5e)

(t−1)Rj+Rj∑
t′=(t−1)Rj+1

(
Ldt′,j − Lut′,j

)
= 0 (C.5f)

∀ t : [t ∈ T, (tRj ≤ τ)], j
udt,j + uut,j ≤ 1 ∀ t, j (C.5g)
yαt,j − zαt,j = uαt,j − uαt−1,j ∀ t, j, α (C.5h)
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yαt,j + zαt,j ≤ 1 ∀ t, j, α (C.5i)
τ∑
t=1

yαt,j ≤ nαj ∀ j, α (C.5j)

t+dα
j∑

t′=t
uαt′,j ≥ dαj yαt,j (C.5k)

∀t : [t ∈ T, (t+ dαj < τ)], j, α
t+dαj∑
t′=t

zαt′,j ≥ yαt,j (C.5l)

∀ t : [t ∈ T, (t+ dαj < τ)], j, α

The objective function in Eq. (C.5a) calculates the cost of each end-users’ cat-
egory for purchasing electricity within the time period τ (i.e, τ = 24 hours).
The constraints are formulated as follows: Eq. (C.5c) is related to the up- and
down-ramp limits of the flexible loads, which are represented for each end-users’
category j by the ramp-rate parameter rαj ; Eq. (C.5d) and (C.5e) impose lower
and upper bounds on the amount of flexibility that can be provided by each end-
users’ category. Note that the minimum and maximum load for each category
j at time t, i.e., Lmin

t,j and Lmax
t,j , represent the lowest and highest possible con-

sumption that each end-users’ category can sustain at time t. In other words,
they define the demand flexibility that can be achieved from each end-users’
category in a specific time. Eq. (C.5f) implements the energy conservation
rule for each end-users’ category, as explained at the beginning of this section.
In this constraint, the parameter Rj consists of the maximum rebound delay
by which the load shifting must be completed for each end-users’ category j.
Eq. (C.5g) ensures that only one type of flexibility (i.e., up- or down-regulation)
is provided by a specific end-users’category j at time t; Eq. (C.5h) and (C.5i)
represent the flexibility activation and deactivation for each end-users’category
j at time t; Eq. (C.5j) enforces a limit on the number of times that a certain
end-users’category can be activated in a day. In Eq. (C.5j), it is assumed that
only a certain number of processes can be shifted within the day; Eq. (C.5k)
and Eq. (C.5l) refer to the minimum and maximum duration for which the load
response can be sustained. Obviously, many of the parameters depend on the
end-users’category, and hence the above optimisation will be solved for a certain
number of consumers in each end-users’category, representing the characterisa-
tions and the statistical variability in that end-users’category.
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C.4 Up- and down-flexibility: Chance-constrained
programming

Due to the importance of AS in the power system operation and the stochastic
nature of the REUs, it is valuable for the TSO to quantify the risk in demand
flexibility and include it in the decision-making process. To do so, the deter-
ministic optimisation formulation from the previous section is converted to a
chance-constrained (CC) programming. This way, it is plausible to deal with
the level of risk associated with the provision of a certain amount of demand
flexibility. The CC formulation ensures that the probability of meeting a certain
constraint is above a preferred confidence level [39] by restricting the feasible
solution space. The CC programming has been used in the past to solve differ-
ent power system problems. For instance, it has been applied to optimal storage
sizing in [40], and to generate optimal price signals for DR programs from the
householders in [41]. Also, in [42], such a method has been used in an optimal
power flow model of a 30-bus system to schedule generation and reserve, where
controllable loads have been considered as thermal energy storage units.

From our model formulation, it can be seen that each end-users’ category acts
independently to minimise its operation cost. In Eq. (C.3), aαt,j is defined as
a function of the electricity price, consumers’ preferences, end-users’ category,
and time of the day. Even though this parameter does not explicitly depend on
its previous values in time, the load price-response is made time-dependent by
way of constraints (C.5f)-(C.5l), which directly limit the provision of flexibility
from consumers over time. For instance, Eq. (C.5l) prevents the loads from
providing flexibility beyond a certain period of time, in particular, dαj hours.
This way, the provision of flexibility by loads at one hour depends of its previous
values. Time dependency is also enforced by limiting the maximum number of
load flexibility activations or by modelling the rebound effect, as explained in
Section ??. On the other hand, as aαt,j does not depend on its previous values in
time, it is possible to evaluate each constraint independently by using a disjoint
CC method. From the formulation of the deterministic model, the flexibility
was limited by:

Ldt,j ≤ udt,j
(
Lmax
t,j − Lbase

t,j

)
adt,j ∀t, j

Lut,j ≤ uut,j
(
Lbase
t,j − Lmin

t,j

)
aut,j ∀t, j (C.6)

In order to apply CC programming, aαt,j is treated as a random variable and
denoted by ãαt,j . It is a function of input parameters ∆λ∆λ∆λαj ,∆λ∆λ∆λ

α

j , and aαj , as
given in Eq. (C.3). As argued in [43, 44], the input parameters are assumed
to be normally distributed because of their dependence on a large number of
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individual human behaviour:

Ldt,j ≤ udt,j
(
Lmax
t,j − Lbase

t,j

)
ãdt,j ∀t, j

Lut,j ≤ uut,j
(
Lbase
t,j − Lmin

t,j

)
ãut,j ∀t, j (C.7)

The right-hand side of Eq. (C.7) can be re-written in a compact form, as follows:

Adt,j ≡ udt,j(Lmax
t,j − Lbase

t,j )ãdt,j (C.8a)

Aut,j ≡ uut,j(Lbase
t,j − Lmin

t,j )ãut,j (C.8b)

Lαt,j ≤ Aαt,j ∀t, j (C.8c)

In CC programming, each constraint needs to be satisfied for a probability
higher than a predefined theoretical confidence level βββth, where th means that
it is the theoretical value imposed in the formulation.

Pr

(
Lαt,j ≤ Aαt,j

)
≥ βββth (C.9)

Adding mean µ(.) and standard deviation σ(.) of Aαt,j to the formulation, we
will have:

Pr

(
Lαt,j − µAαt,j

σAα
t,j

≤
Aαt,j − µAαt,j

σAα
t,j

)
≥ βββth (C.10)

If aαt,j follows a normal distribution, then it is possible to define the standard
score as zα:

Pr

(
Lαt,j − µAαt,j

σAα
t,j

≤ zα
)
≥ βββth (C.11a)

1− Pr
(
Lαt,j − µAαt,j

σAα
t,j

≥ zα
)
≥ βββth (C.11b)
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where the cumulative distribution function (CDF), called Φ, can be estimated
as follows:

1− Φ
(
Lαt,j − µAαt,j

σAα
t,j

)
≥ βββth (C.12)

Eq. (C.12) can be further rearranged:

Lαt,j ≤ µAαt,j + σAα
t,j

Φ−1(1− βββth) (C.13)

By defining Φ−1(1− βββth) as Φ−1
βββth

, the constraints can be written as:

Ldt,j ≤ µdaudt,j
(
Lmax
t,j − Lbase

t,j

)
+ σdau

d
t,j

(
Lmax
t,j − Lbase

t,j

)
Φ−1
βββth

(C.14a)

Lut,j ≤ µuauut,j
(
Lbase
t,j − Lmin

t,j

)
+ σuau

u
t,j

(
Lbase
t,j − Lmin

t,j

)
Φ−1
βββth

(C.14b)

According to the value of the binary variable uαt,j , two scenarios can be identified:

• Scenario I: uαt,j = 0, where:

Lαt,j = 0 (C.15)

In this scenario, the flexibility is zero.

• Scenario II: uαt,j = 1, where:

Ldt,j ≤ µda
(
Lmax
t,j − Lbase

t,j

)
+ σda

(
Lmax
t,j − Lbase

t,j

)
Φ−1
βββth

(C.16a)

Lut,j ≤ µua
(
Lbase
t,j − Lmin

t,j

)
+ σua

(
Lbase
t,j − Lmin

t,j

)
Φ−1
βββth

(C.16b)

According to Eq. (C.16a) and (C.16b), the amount of flexibility is bounded by
a certain value that takes into account the mean and standard deviation of aαt,j
and the quantile of a standard normal variable. The latter will depend on the
predefined theoretical confidence level, i.e., βββth, and the estimated flexibility by
this method will be guaranteed at that confidence level. Therefore, it will help
TSO to make an informed decision considering its risk.
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C.5 Simulation Study and Discussion

To show the effectiveness of the proposed model, a simulation study is carried
out using actual data, which are provided by Elforbrugspanel in 2008. Data is
collected by Energinet (the Danish transmission system operator) and Dansk
Energi (the Danish advocacy group for energy companies) by monitoring hourly
electricity demand for a selected pool of consumers in every Danish municipality
[45]. The selected pool has been defined to represent the national demand. 2106
meters have been installed to study the residential, agricultural, industrial and
commercial electricity demand in this project. The aggregated data of each end-
users’ category has been reported monthly to Elforbrugspanel. The main output
of the project has been the calculation of the average of the hourly individual
electricity demand for 29 end-users’ category.

The proposed formulation can possibly work with different AS markets and
time-frames in the order of minutes to hours, as long as the required data with
the right time resolution is available. In our simulation studies, we consider bal-
ancing services that are procured one day in advance and use data for the hourly
average consumption for 29 end-users’ categories, a list of which is given in Table
C.1. This way, the estimated delta prices are submitted to the REUs’ EMS in a
single shot 24 hours ahead, and the problem is solved once for all types of loads.
In order to compound the aggregated behaviour of the consumers, the actual
consumption of each category is weighted by the total number of consumers in
that category, which is obtained from [46]. The data used in the simulations is
also available in [47]. The simulation starts by generating a pool of consumers
of diverse flexibility in subsection C.5.1. Then, the normality assumption of the
consumers’ willingness, aαt,j , is checked for the CC optimisation problem. In
subsection C.5.4, the deterministic and CC optimisations are solved for differ-
ent load categories with two different confidence levels. In subsection C.5.4, the
impact of the confidence level on the results is analysed and the results of CC
optimisation are validated in subsection C.5.5. Finally, in subsection C.5.6, the
impact of different rebound effects on the results is investigated.

C.5.1 Generating a pool of consumers’ willingness

In the first part of the simulation, a pool of consumers is created with different
preferences, i.e., aαt,j , followed by checking the normality of their behaviour, as
shown in the flowchart of Fig. C.2. Then, the CC optimisation problem is solved
with the given theoretical confidence level, βββth, to quantify the aggregated load
flexibility.
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Figure C.2: Conceptual flowchart of the simulation study.

Prior to that, however, delta prices should be generated. As mentioned in
Section C.2, a certain delta price set will be communicated from the system
operator to the REUs to create a change in their consumption. In Eq. (C.5a),
the baseline electricity price, λλλbase, is set to 225 DKK cent/kWh [48], the hourly
delta price set is randomly generated by following a uniform distribution. The
magnitude of delta prices (i.e., absolute value) is within the range of

[
20, 75

]
cent DKK/kWh, following the rule defined in Eq. (C.1) and Eq. (C.3). As
one can see, the delta price range is set to be well beyond the dead-band and
below the flexibility saturation in consumers’ willingness to avoid violating the
upper and lower limits [8]. In fact, it is counterproductive for the TSO to
submit an insignificant price (i.e., lower than the dead-band price) to the pool of
consumers, as no reaction will be achieved. On the other hand, it is economically
inconvenient for the TSO and consumers to submit an excessive price (i.e., higher
than the saturation price), as the same price response can be achieved with a
smaller price. Considering the limited accuracy of the estimated prices due to
the unpredictable nature of AS requirements, the delta prices is unknown to a
large extent. Therefore, it is reasonable to treat it like a normally-distributed
random parameter. In this study, we simulate the aggregated flexibility response
for 5000 different daily profiles of delta prices. This is to estimate the range of
potential flexibility in each hour of the day, accounting for the stochasticity
in delta prices and quantifying the risk for the system operator in exploiting
load demand flexibility. In the future, these delta prices might be generated by
another optimisation problem [23].

In the simulations, we will refer to the absolute value of the maximum will-
ingness parameter |aαt,j |. This is because we consider that the magnitude (i.e.,
absolute value) of the maximum willingness parameter will be the same to pro-
vide up- or down-regulation for each end-users’ category j. For this reason, we
just provide the absolute value of aαt,j to calculate aαt,j . However, aut,j is sup-
posed to be negative and adt,j is positive, as shown in Fig. C.1. Therefore, we
calculate aut,j and adt,j from Eq. (C.3), using the same magnitude of |aαt,j | but
with opposite signs. The mean and standard deviation of the input parameters
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Table C.1: Average values µ(.) and standard deviations σ(.) of ∆λ∆λ∆λj ,∆λ∆λ∆λj
[DKK cent/kWh] and |aαj | [p.u.]; ramp [kW], flexibility activations
[p.u.], flexibility duration [h] and rebound delay [h] parameters for
different end-users’ categories. H = with heating. NH = without
heating.

End-users’ |aαj | |∆λαt,j | |∆λαt,j | r̃αj nαj dαj dαj Rj
category µ σ Reference µ σ µ σ Reference

Apartment 0.4 0.10 [49, 45, 50] 5 1.1 105 11 3 7 1 6 8 [51](NH)
House 0.5 0.11 [49, 45, 50] 6 1.2 100 12 3 8 1 6 8 [51](NH)
House 0.6 0.10 [49, 45, 50] 6 1.0 105 15 5 20 1 2 3 [51](H)
Cottage 0.5 0.13 – 6 1.1 100 13 4 13 1 4 6 –

Gardening 0.6 0.10 – 10 1.0 110 10 3 17 1 3 6 –
Agriculture 0.5 0.12 – 14 1.3 110 10 4 6 1 4 8 [52](NH)
Agriculture 0.7 0.08 – 14 1.3 110 11 5 20 1 2 3 [52](H)

Food 0.4 0.10 [49, 45, 53] 12 1.8 130 14 2 12 1 2 3 [51]
Basic metal 0.5 0.12 [49, 45, 53] 11 1.5 120 14 3 4 1 5 12 [51]

Wood 0.3 0.05 [49, 45, 53] 14 1.7 120 12 3 4 1 4 12 [51]
Textile 0.3 0.06 [49, 45, 53] 13 1.2 120 10 3 5 1 6 12 –
Paper 0.4 0.10 [49, 45, 53] 15 1.0 120 15 3 3 1 4 12 [54, 51]

Non-metallic 0.3 0.06 [49, 45] 12 1.1 120 10 3 5 1 8 12 –
Chemical 0.5 0.13 [49, 45, 53] 16 1.0 130 11 2 2 1 3 8 [55, 51]
Other 0.3 0.05 [49, 45, 53] 11 1.0 120 10 3 5 1 8 12 –industries

Construction 0.5 0.10 – 8 1.2 120 14 4 2 1 3 8 [51]
Retail 0.4 0.10 [49, 45] 8 1.2 120 14 6 4 1 3 4 [56]

Wholesale 0.4 0.10 [49, 45] 8 1.2 120 14 5 9 1 3 4 [56]
Bank 0.3 0.05 [49, 45] 17 2.0 150 10 6 8 1 2 3 –
Utility 0.3 0.06 – 14 1.4 110 10 3 3 1 2 3 [51]

Sewerage 0.3 0.05 – 17 2.0 150 12 3 3 1 2 3 [51]
Cultural 0.5 0.13 [49, 45] 10 1.2 140 10 6 11 1 3 4 –

Restaurant 0.6 0.10 [49, 45] 7 1.0 110 10 5 8 1 3 4 [51]
Health 0.3 0.06 – 17 2.0 150 11 3 4 1 4 6 –

Education 0.5 0.12 [49, 45] 10 1.2 140 16 5 20 1 2 3 –
Social 0.5 0.13 [49, 45] 10 1.2 140 15 4 12 1 3 4 –
Postal 0.6 0.10 [49, 45] 10 1.2 140 12 5 15 1 3 4 –
Public 0.6 0.11 [49, 45] 10 1.2 140 13 6 13 1 2 3 –

Public light 0.3 0.02 – 17 2.0 150 12 5 3 1 2 3 [57]
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used in the simulation study, i.e., ∆λ∆λ∆λαj ,∆λ∆λ∆λ
α

j , |aαj |, are reported in Table C.1.
The parameters are used to generate random numbers using a normal distribu-
tion. Due to data scarcity for different end-users’ categories, input parameters
are assumed to be the same for all time instances and up- and down-regulation.
In order to determine the values of |aαt,j | for each end-users’ category, refer-
ence [49] is used, where the amount of maximum flexibility is quantified for
several consumers’ sectors in Denmark. Such estimates are compared to the
consumption that we previously calculated for each end-users’ category from
the data set. For instance, according to [49], cement manufacturing and iron
foundries are able to provide 16 MW load reduction. From the consumption
we previously calculated from the data set, the total electricity consumption
of these consumers’ categories is 30 MW. Therefore, a maximum willingness
parameter of 0.5 (i.e., 50% of the total consumption) is estimated for these cat-
egories (i.e., basic metal and construction). In different studies, e.g., [58, 59],
various sectors and countries have been investigated in price elasticity, whose
concept is discussed in [60]. To include diversity in the willingness parameters
for those sectors whose estimate in [49] is provided only for aggregated loads,
this concept of price elasticity is used . Because of the lack of information, the
willingness parameters of the remaining sectors are randomly chosen. Moreover,
σaαj is defined in a way that the values of |aαj | are maintained between 0 and
1. When the value generated by the distribution function exceeds the higher
or lower limits (1 for higher and 0 for lower limits), another random number
is re-drawn from the normal distribution. The choice of ∆λ∆λ∆λαj is approximately
selected based on the nature of different end-users’ categories [24]. For instance,
we assumed that industries might behave such that they prevail the continuity
of their service, unless very high delta prices are offered. Similarly, ∆λ∆λ∆λ

α

j values
are intuitively determined. For the case of ∆λ∆λ∆λαj , the value of σ is chosen by
considering a normal distribution of prices and that each price has to be bigger
than zero. 5000 samples of |aαj | are generated for each category of end-users and
time. The results of a sample end-users’ category are shown in Fig. C.3. The
number of samples is chosen in a way to statistically represent the variability of
consumers’ willingness in every end-users’ category. These values are later used
in the optimisation studies, both deterministic and CC problems, to estimate
the aggregated load flexibility.

In the next step, we investigate the normality of aαt,j in order to justify the
application of CC programming. Eq. (C.3) is defined as the ratio of two normal
components, namely (∆λ∆λ∆λαt −∆λ∆λ∆λαj ) and (∆λ∆λ∆λ

α

j −∆λ∆λ∆λαj ), which might lead to a
non-normal distribution. In Fig. C.4, a statistical analysis using QQ plot and
histograms of aαj is carried out for a sample load category j and up- and down-
flexibility at a specific time. In the QQ plots, the two vertical lines represent ±2
standard deviations of the data, meaning that the values within those lines are
95% of the data. Fig. C.4 shows that the behaviour of up- and down-willingness
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Figure C.3: Range of aαt,j achieved for a sample end-users’ category for different
∆λ∆λ∆λαt .

is approximately normal due to the dominating variance of aαj in Eq. (C.3).

C.5.2 Selection of γ

In [35], the price responsiveness of consumers is modelled as a linear function,
which is equivalent to a value of γ equal to 1 in Eq. (C.3). In spite of that, it
is reasonable to assume that consumers might be more inclined to alter their
consumption profile when they receive big delta prices, as also suggested in
[36]. The value of γ will be limited by the fact that consumers have different
sensitivities to prices and some of them might always be responsive to achieve
cost minimisation. In Fig. C.5, the distribution of aαt,j is analysed for different
values of γ (i.e., 1, 1.5 and 2). It is clear from the figure that a reasonable choice
of γ does not compromise the normality assumption. In this paper, γ is equal
to 1.5.
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Figure C.4: QQ plots and histograms for au
t,j and ad

t,j of a sample end-users’ cate-
gory j at a specific time t.

C.5.3 Explanation of the consumers’ constraints parame-
ters

In the simulations, Lmin
t,j and Lmax

t,j are calculated from the available data set
[45], by identifying the minimum and maximum values of the historical elec-
tricity consumption for each time t and end-users’ category j. This method is
preferred in this study as it is the only information that was available at the
time. Following a similar approach, Lbase

t,j is calculated from the data set by
averaging the consumption of each end-users’ category at time t. Parameters
related to the consumers’ constraints (e.g., ramp, flexibility provision duration
and flexibility activation times) are estimated due to the current lack of more
detailed information and provided in Table C.1. The ramp parameter rαj is de-
termined from the consumption data set, as rαj = r̃αj max

1≤t≤τ
(Lmax

t,j ), where r̃αj is
a parameter that depends on the type and characteristics of the loads of each
end-users’ category j. Considering hourly resolution of data and proposed for-
mulation, it is reasonable to assume that r̃αj will not be very restrictive since
loads can change relatively fast. In fact, the majority of the loads have faster
dynamics than an hour, i.e., they can go from 0 to 100% consumption in less
than an hour. For the consumers’ categories with mainly thermal loads (e.g.,
public [49]) and whose processes can be shifted in time (e.g., paper [54]), a
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Figure C.5: QQ plot and histogram for generic aαt,j of a sample end-users’
category j at a specific time t for values of γ equal to 1, 1.5 and
2.

larger r̃αj is assumed. For the industrial consumers, however,it will be more
restrictive. In order to determine the amount of activation times for each end-
users’ category nαj , it is assumed that the industrial consumers have generally
less shiftable processes compared to the residential and commercial consumers.
Therefore, nαj for industrial consumers is considered smaller than for residential
consumers. By generally accounting on the flexibility from ventilation, heating
and air conditioning (HVAC), it is feasible for the residential and commercial
consumers to be activated and deactivated several times during the day without
technical constraints. On the other hand, a waste water treatment facility from
the industrial sector might be the only shiftable process, limiting the overall
consumption flexibility. In determining dαj , it is assumed that end-users’ cat-
egory can provide flexibility for a minimum duration of 1 hour, as HVAC is
present in almost every end-users’ category. Regarding the choice of the max-
imum flexibility duration values in Table C.1, the commercial consumers are
assumed to be mainly affected by the thermal dynamics of HVAC [49]. For
the industrial and residential consumers, longer dynamics are expected, as their
loads are not only thermal and they might have different characteristics (e.g.,
electric vehicle charging, laundry machine and so on). In the simulation studies,
the case of perfect daily rebound is solved for each end-users’ category (i.e., Rj
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= 23 for each j). Afterwards, a conservative case is considered by applying
strict rebound effects, given in Table C.1, in order to evaluate the impact of the
rebound on the overall flexibility. To determine the parameter Rj for the case of
strict rebound, it is assumed that the end-users’ flexibility is mainly constrained
by the thermal dynamics of their loads. However, there are cases like the paper
industry where production processes can be shifted to other times of the day
[54]. For end-users’ categories where processes can be shifted within the day,
the rebound constraint is relaxed. Also, for the agricultural consumers, Rj is
estimated by accounting for the processes involving animal waste treatment,
irrigation and curing tobacco [52].

C.5.4 Up- and down-flexibility estimation

In this section, the CC optimisation problem is solved for different theoretical
confidence levels using the aαt,j values from subsection C.5.1.

• Low-risk case

For a conservative simulation study, βββth = 0.95 is selected as theoretical confi-
dence level. It implies that, globally, the constraints in Eq. (C.5d) and (C.5e)
will be respected with a probability that is equal or higher than 95%. In other
words, it guarantees that the estimated flexibility from the consumers, given
their stochastic behaviour, will be achieved 95% of the time or higher.

In Fig. C.6, the achievable flexibility for different prices is shown in relation to
the baseline consumption for βββth = 0.95. It emerges that the maximum flexibil-
ity is about 7% of the hourly load demand. It is also noticeable that the flexibil-
ity in the early morning is mainly for up-regulation, while the down-regulation
potential seems to be small, i.e., around 3% of the hourly load demand. Al-
though such a result may appear counter-intuitive, it is due to the selected
values of Lmin

t,j and Lmax
t,j that are used in the simulation studies. They are ex-

tracted from annual data by finding the minimum and maximum consumption
values of each end-users’ category at each hour of the day. Since the data set
at hand does not include the impact of consumers’ response to the prices, the
maximum load in early hours is very close to the average consumption, which
resulted in lower down-flexibility in the simulation results. In the future, ad-
vanced methods can be developed to calculate these parameters by collecting
aggregated data from REUs in response to the delta prices. The correla-
tion between delta prices and flexibility is −0.73, confirming a strong negative
correlation between the two parameters. The correlation does not reach −1
because of the constraints applied to the minimisation problem and the dif-
ferent amount of flexibility available for up- and down-regulation. In order to
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Figure C.6: Flexibility achieved for different delta prices by CC optimisation
for βββth =0.95 considering daily rebound: baseline consumption,
flexibility for the reference delta price ∆λ∆λ∆λα∗t , and the delta price.

verify the correlation between flexibility and delta prices visually, the flexibility
obtained in response to a randomly-selected daily delta prices, i.e., ∆λ∆λ∆λα∗t , is
shown in Fig C.6. It can be noticed that the highest amount of down-regulation
(i.e., increased consumption) is achieved at hour 23:00, with 3.6% increase in
demand, corresponding to the biggest negative delta price. The highest amount
of up-regulation is achieved at hour 19:00 with 5.8% decrease in total demand,
coinciding with a relatively large positive delta price.

• High-risk case

The CC optimisation for 5000 delta prices is repeated for βββth = 0.50. As
expected, the up- and down-flexibility patterns are identical to the “low-risk
case.” However, their magnitude increases substantially for all hours, as shown
in Fig. C.7. It can be seen that the flexibility range raises by 76% compared to
the “low-risk case.” At hour 23:00, the demand is expected to increase by about
7% in response to the given price, while 12.2% decrease in demand is observed at
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hour 19:00. The simulation results show that the TSO might over-estimate the
flexibility potential if the associated risk is not considered in the formulation.
It will, in turn, result in unsuccessful demand flexibility procurement in the
real-time operation.

Figure C.7: Flexibility achieved for different delta prices by CC optimisation
for βββth =0.50 considering daily rebound: baseline consumption,
flexibility for the reference delta price ∆λ∆λ∆λα∗t , and the delta price.

C.5.5 Validation of CC formulation

In this sub-section, we investigate the quality of the CC solutions for the case of
daily rebound. As it was mentioned earlier, the CC solutions are valid only if the
actual confidence level (i.e., βββac achieved in the Monte Carlo simulation study) is
bigger than or equal to the theoretical confidence level (i.e., βββth imposed on the
formulation and associated simulation study) of the CC programming. To do so,
we need to impose a theoretical confidence level and solve the CC formulation for
a given price set. From the results, the flexibility Lαt,j is obtained. Afterwards,
this value is used in Eq. (C.5d) and (C.5e) to investigate how many times the
constraints are violated. In Eq. (C.5d) and (C.5e), aαt,j is the generated pool
of consumers’ willingness discussed in subsection C.5.1. Since we are dealing
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with thousands of constraints in this simulation, while our intent is to provide a
readable plot of the results, we calculate the mean value of the actual confidence
level of the various constraints. This process is repeated for different values of
theoretical confidence level, i.e., βββth ∈ [0.1, 0.98], and the mean values of βββac are
plotted in Fig. C.8(a) in comparison to the βββth imposed. From the figure, it
can be seen that the actual confidence level is always higher than the theoretical
counterpart. Therefore, it can be concluded that the constraints are always
satisfied for the given confidence level, and that the normality assumption of aαt,j
was correct. Moreover, Fig. C.8(a) shows that the CC programming behaves
more conservatively on the lower range of βββth, where the actual confidence
level is always greater than the theoretical one (e.g., for βββth = 0.50, the actual
confidence level is 0.54). This is because the constraints are loosely confined for
small βββth values, which result in more availability of load demand to provide
flexibility.

Also, in order to understand the value of using CC, we include a study where
we compare the different performances of the deterministic and stochastic cases.
Therefore, we solve the stochastic and deterministic formulations, where in the
latter it is imposed a βββth of 0.95. Afterwards, we calculate for each formula-
tion what is the percentage of the constraints that achieve a certain βββac. In
Fig. C.8(b), the results are provided through probability density functions. For
the actual βββac show that, for the stochastic case (i.e., blue line), 92% of the
constraints have a βββac that is slightly above 0.95. In a few instances, βββac = 1 is
obtained because of the condition imposed in Eq. (C.5f) and the rebound effect.
For the deterministic case (i.e., black line), however, the actual confidence level
lies below 92% for 95% of the constraints and is lower than the one obtained by
the CC formulation. These results prove that quantifying the risk and trying to
maintain a specific level of certainty is of paramount importance for the TSO
in real-time operation, which is provided by the CC formulation in this study.

C.5.6 Effect of the rebound constraint

In the simulation studies so far, we investigated the CC validation for the case
of daily rebound. However, in reality, different consumers’ categories can defer
their loads for a shorter range of time, leading to a strict rebound. In order to
quantify the effect of the rebound on the flexibility estimation, Table C.2 reports
the difference in flexibility obtained by the daily and strict rebound constraints.
The values are calculated as the average amount of up-regulation flexibility (i.e.,
the amount of down-regulation will be the same, as we imposed perfect rebound
in Eq.(C.5f)) provided during the day for the different price scenarios. It emerges
that having a strict rebound reduced the flexibility provision by 35%.
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Figure C.8: CC validation for the case of daily rebound: (a) Imposed βββth and
achieved βββac in CC method for price set ∆λ∆λ∆λ∗t ; (b) Probability of
βββac for deterministic and stochastic case for price set ∆λ∆λ∆λ∗t .

In Fig. C.9, the CC validation is repeated for the case of strict rebound.

From Fig. C.9(a), it can be seen that the actual confidence level is more con-
servative when dealing with a strict rebound by reaching βββac of 0.96 for an
imposed theoretical confidence level of 0.95. Also, Fig. C.9(b) confirms the rel-
evance of adopting CC, where the deterministic approach leads to a confidence
level that is lower than 0.92 for 73% of the constraints. Such a result violates
the requirement of the TSO, which imposed a βββth of 0.95.

C.6 Conclusions

This paper offers a methodology to estimate the aggregated load flexibility of
consumers given a certain price response function. It is formulated by consid-
ering the uncertainty in the consumers’ willingness to react to the price sig-
nals. The proposed approach only requires aggregated historical consumption
data to operate. In the proposed framework, the load flexibility at the TSO
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Table C.2: Analysis of the flexibility provided during the day, considering
different rebound effects and βββth=0.95.

Study case Up- (down-) regulation (GW)
Daily rebound 0.374
Strict rebound 0.243

Difference -35%

level is quantified. Time-varying prices are submitted by the system opera-
tor to the end-users at the edge of the grid to alter their consumption while
minimising their operation cost locally. A nonlinear and stochastic consumers’
price-response function is considered in this study. In order to quantify the risk
in the amount of estimated demand flexibility, a CC formulation of the prob-
lem is developed and its applicability is proven by the simulation studies. This
approach allows to estimate the flexibility that can be achieved under a certain
confidence level. Actual load data from Elforbrugspanel in Denmark is used for
simulation studies. The simulation results show that the choice of confidence
level significantly affects the flexibility estimation. For a conservative confidence
level (i.e., 0.95), the method estimates a consumption change that is up to 7%
of the total consumption. The quality of the CC solutions is also verified in two
different ways. It is shown that the application of CC can provide a meaningful
management of risk for the TSO, which is fundamental for AS provision. We
finally evaluate the case of daily and strict rebound constraints, showing that a
strict rebound effect limited the overall flexibility provision by 35%. The pro-
posed approach can be used at the TSO level to quantify demand flexibility for
day-ahead or real-time AS procurement. In our future work, we will investigate
how to enhance our model to account for other uncertainties (such as uncertain
delta prices) that the REU’s EMS will most likely consider. Also, we will model
aαt,j as a function of weather and type of day.
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Nomenclature

Sets:

T Set of time, indexed by t, t ∈ [1, . . . , τ ].
J Set of end-users’ categories, indexed by j.
α Type of regulation, i.e., up- or down-regulation.

Parameters:

λλλbase Baseline electricity price [DKK cent/kWh].
∆λ∆λ∆λαt Time-varying electricity price (called delta price) for regulation type α at

time t [DKK cent/kWh].
∆λ∆λ∆λαj Minimum delta prices for regulation type α of end-users’ category j [DKK

cent].
∆λ∆λ∆λ

α

j Maximum delta prices for regulation type α of end-users’ category j [DKK
cent].

Lbase
t,j Baseline end-users’ demand of category j at time t [kW].

Lmin
t,j Minimum electricity consumption of end-users’ category j at time t [kW].

Lmax
t,j Maximum electricity consumption of end-users’ category j at time t [kW].

aαt,j Actual willingness of end-users’ category j to provide flexibility type α at
time t [p.u.].

aαj Maximum willingness of end-users’ category j to provide flexibility type
α [p.u.].

rαj Ramp-rate of end-users’ category j for regulation type α [kW/h].
nαj Maximum number of activation times for end-users’ category j to provide

flexibility type α.
dαj Minimum continuous flexibility duration of end-users’ category j when

activated to provide flexibility type α [h].
dαj Maximum continuous flexibility duration of end-users’ category j when

activated to provide flexibility type α [h].
βββth Theoretical confidence level imposed in the chance-constrained program-

ming.
βββac Actual confidence level achieved in the chance-constrained programming.
Rj Maximum rebound delay for end-users’ category j [h].

Variables:

Lαt,j Flexibility of end-users’ category j at time t for regulation type α [kW].



C.7 Acknowledgement 149

uαt,j Binary variables, indicating flexibility status of end-users’ category j at
time t for regulation type α.

yαt,j Starting binary variables of end-users’ category j at time t indicating
flexibility type α.

zαt,j Stopping binary variables of end-users’ category j at time t indicating
flexibility type α.
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Flexible Electrical Consumers
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Henrik Madsen1, and Niels Kjølstad Poulsen1

Abstract

Demand response (DR) will be an inevitable part of the future
power system operation to compensate for stochastic variations of
the ever-increasing renewable generation. A solution to achieve DR
is to broadcast dynamic prices to customers at the edge of the grid.
However, appropriate models are needed to estimate the potential
flexibility of different types of consumers for day-ahead and real-
time ancillary services provision, while accounting for the rebound
effect (RE). In this study, two RE models are presented and com-
pared to investigate the behaviour of flexible electrical consumers
and quantify the aggregate flexibility provided. The stochastic na-
ture of consumers’ price response is also considered in this study
using chance-constrained (CC) programming.

D.1 Introduction

Demand response (DR) programs are solutions that target changes in the power
consumption of electrical consumers through economic incentives. With the
higher penetration of renewable energy resources in the system, such programs
are becoming a popular solution to better meet the stochastic electricity gener-
ation and support the power system operation. Several DR solutions have been
proposed in literature, e.g., by offering long-term contracts, or by broadcasting
dynamic prices.
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In the long term contracts, consumers allow an external operator to decide about
their electricity consumption in exchange for an economic incentive (see e.g. [1]).
In dynamic price schemes, however, consumers receive a time-varying price by
their home-energy management system (HEMSs) and decide individually their
electricity consumption schedule to minimise overall cost while preserving com-
fort and privacy (see e.g. [2]). As the latter does not restrict end-users’ auton-
omy or independence, dynamic price schemes are most likely to be accepted by
consumers. As a result, we focus on DR programs based on the dynamic prices
as the control signal in this study.

In order to fully exploit the potential of DR programs, it is important for the
operators (i.e., DR aggregators and system operators) to understand how con-
sumers respond to prices on an aggregated level. Such an understanding can
facilitate the formulation of proper dynamic prices that achieve a certain change
in consumption from consumers. Furthermore, it can support the operators in
quantifying the potential flexibility that can be achieved from DR programs and
better allocate the reserve requirements for the power system operation.

Of particular importance in this matter is the rebound effect (RE), which con-
sists of the change in consumers’ consumption due to previous and future price
reactions and is related to the technical constraints of loads and consumers’ pref-
erences. RE represents the power consumption increase (decrease) that follows
an event of up- (down-) regulation, for which the consumption is decreased (in-
creased) ([3]). In the literature, RE is mainly investigated in relation to thermal
loads or refrigerators ([3]) that will need to recover their consumption immedi-
ately after a decrease in their consumption by their own dynamics. In this paper,
we extend this concept to shiftable loads (i.e., washing machines, as discussed
in [4]) as they follow a similar behaviour. Both thermal and shiftable loads can
be modelled by consumers that reduce (increase) their base-line consumption
scheduled at a certain time and consume more (less) in the following time steps.
The main difference between the types of loads is the time period for which
the RE phenomenon must be completed (i.e., refrigerators have faster dynamics
than washing machines). Therefore, we can formulate a general mathematical
model of the RE for both thermal and shiftable loads, where the different dy-
namics impact appears in the maximum RE duration parameter. In this paper,
the RE is formulated assuming that the increase and decrease in consumption
perfectly compensate each other in a certain period of time, defined as perfect
RE. Although such an assumption might not be realistic for all types of loads,
a practical model of such requires detail models and field data. An alternative
representation to perfect RE will be investigated in our future studies.

Despite the importance of quantifying consumers’ price response, proper RE
modelling has scarcely been investigated and the majority of studies evaluated
RE in relation to the change in energy efficiency ([5]). In [6], RE was modelled
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for a pool of residential heat-pumps, assuming that an operator could decide
the consumption of a pool of consumers. In that study, the RE was modelled
by a delay period with no deviations from the baseline consumption, and a
payback period during which deviations in consumption occurred to allow the
heat-pumps to return to their baselines. Although the study evaluated the
dynamics of loads for a pool of residential heat-pumps, additional studies are
needed to quantify the aggregate RE impact of different types of consumers.

The main contributions of this paper can be summarised as follows. First, we
present two different formulations to model RE on an aggregated level with
different types of consumers using mixed-integer linear programming (MILP).
Second, we compare both formulations and use them to quantify the overall flex-
ibility provision that can be achieved from a heterogeneous pool of consumers.
Furthermore, we benchmark the two formulations with each other in terms of
computational time and model sizes.

The paper is organised as follows: in Section D.2, the two formulations of RE
are explained; in Section D.3, results of the models are presented and discussed;
in Section D.4, we summarise the conclusions.

D.2 Modelling

We start by briefly explaining the concept of perfect RE. In Fig. D.1, the condi-
tion of perfect RE is shown for a consumer of type j that provides regulation in α
direction at time t. Load flexibility Lαt,j can be provided either for up-regulation
(α = u) or down-regulation (α = d).

In Fig. D.1, the increase in electricity consumption achieved from consumers
responding to a DR program (i.e., Ldt,j) is always compensated with a decrease
(i.e., Lut,j) of the same magnitude in the following time steps. This concept
is also valid vice versa, where an increase in electricity consumption follows a
previous decrease. The duration period for which the RE must be completed
depends on the characteristics of the loads and is here defined as maximum of
Rj periods for each consumer type j. If we define Θt,j = Ldt,j −Lut,j , the general
RE condition can be formulated as

∑t+Rj
t Θt,j = 0. Depending on the type and

the dynamics of a load, it is possible to consider the RE duration as static (i.e.,
for specific time periods) or dynamic (i.e., allowing a more adaptable scheduling
of the flexibility). These two different formulations are presented in the Sections
D.2.1 and D.2.2, while the overall aggregation model of the consumers is given
in Section D.2.3.
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Figure D.1: Basic concept of perfect RE.

D.2.1 Modelling rebound for static RE duration

In this subsection, we model the RE for consumers that require a static RE du-
ration. An example of this condition could be the charging of an electric vehicle
(EV) that starts at 11:00 and needs to be completed by 16:00. In Fig. D.2,
this RE model is graphically presented. With static time steps, the RE can be
formulated as:

(t−1)Rj+Rj∑
t′=(t−1)Rj+1

Θt,j = 0 (D.1a)

∀t : [t ∈ T, (t ·Rj ≤ τ)], j

For this formulation, we divide the time set T by the RE duration of each
type of consumers j. In this manner, we set the time intervals for which the
total amount of flexibility provided by consumers type j up to time t must be
nullified. Therefore, in Eq. D.1a, the overall flexibility provided by each type of
consumers j must be nullified within each RE cycle.
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Figure D.3: Rebound effect for duration.

D.2.2 Modelling rebound for dynamic RE duration

Not all loads can be represented by a static RE model. An example is thermal
loads, which can always provide flexibility as long as some operational con-
straints are respected. For this type of loads, the condition that the perfect
RE is completed must be imposed only when flexibility is being provided. This
concept is visualised in Fig. D.3.

In Fig. D.3, the RE duration is set dynamically whenever regulation is provided.
However, the RE must be completed at least once within Rj (i.e., to guarantee a
certain temperature in the room). When the perfect RE is achieved (highlighted
as light grey area in Fig. D.3), a new RE cycle can be started. This RE model
can be formulated as:

εxt,j −Mwt,j − εvt,j ≤
t∑

t′=1
Θt′,j ∀t, j (D.2a)
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t∑
t′=1

Θt′,j ≤ −εwt,j +Mxt,j + εvt,j ∀t, j (D.2b)

xt,j + wt,j + vt,j = 1 ∀t, j (D.2c)

vt−1,j − vt,j ≤
t+Rj∑
t′=t

vt′,j ,∀t : [t ∈ T, t ≤ τ −Rj ], j (D.2d)

The total amount of flexibility provided by consumer type j until time t,
∑t

1 Θt,j ,
can either be zero (when the amounts of down- and up-regulation perfectly
compensate each other), positive or negative. For this reason, we define three
possible regions for the value of

∑t
1 Θt,j in Eqs. (D.2a)-(D.2b). These regions

are modelled through three binary variables where only one of them can be non-
zero at time t. xt,j=1 represents the region where

∑t
1 Θt,j has positive values;

wt,j=1 describes the region where
∑t

1 Θt,j has negative values and vt,j=1 models
the region where

∑t
1 Θt,j is zero (see Fig. D.4). To define the three possible

regions in the model, we use a big-M formulation, where M is a large constant
and ε is small constant. Eq. (D.2c) guarantees that

∑t
1 Θt,j can only be in

one of these regions at time t. Eq. (D.2d) ensures that when consumers start
providing flexibility, the RE must be perfectly completed at least once within
Rj periods.
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D.2.3 Quantifying the flexibility provision

In this subsection, we provide the overall MILP that can schedule the flexibility
provision to achieve cost minimisation for each customer type j (see [7]).

min
Lα
t,j

τ∑
t=1

(
λλλbase + ∆λ∆λ∆λut + ∆λ∆λ∆λdt

) J∑
j=1

(
LLLbase
t,j + Θt,j

)
(D.3a)

subject to: (D.3b)
− rαj ≤ Lαt+1,j − Lαt,j ≤ rαj ∀ t, j, α (D.3c)(
Lmax
t,j − Lbase

t,j

)
= Θd (D.3d)(

Lbase
t,j − Lmin

t,j

)
= Θu (D.3e)

0 ≤ Lαt,j ≤ uαt,jΘαaαt,j ∀ t, j, α (D.3f)
udt,j + uut,j ≤ 1 ∀ t, j (D.3g)
yαt,j − zαt,j = uαt,j − uαt−1,j ∀ t, j, α (D.3h)
yαt,j + zαt,j ≤ 1 ∀ t, j, α (D.3i)

(tD−1)24+24∑
t′=(tD−1)24+1

yαt′,j ≤ nαj ∀ j, α, tD (D.3j)

t+dαj∑
t′=t

uαt′,j ≥ dαj yαt,j (D.3k)

∀ t : [t ∈ T, (t+ dαj < τ)], j, α
t+dαj∑
t′=t

zαt′,j ≥ yαt,j (3k) (D.3l)

∀ t : [t ∈ T, (t+ dαj < τ)], j, α
τ∑
t=1

Θt,j = 0, ∀ j (D.3m)

The objective function (D.3a) minimises the cost of customer type j for pur-
chasing electricity within the planning horizon of τ periods. In the objective
function, the electricity price consists of a base-line component λbase (that cov-
ers fixed costs and taxes) and a dynamic component, which might be positive
(∆λu

t ) or negative (∆λd
t ) depending on the type of regulation needed. The dy-

namic price components are assumed to achieve a certain change in consumption
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Figure D.5: Modelling consumers’ willingness, aαt,j , as a function of delta price.

from the consumers. The constraints are formulated as follows: Eq. (D.3c) is
related to the up- and down-ramp limits of the flexible loads, which are repre-
sented for each consumer type j by the ramp-rate parameter rαj ; Eq. (D.3d)-
(D.3f) enforce lower and upper bounds on the amount of flexibility that can be
provided by each consumer type j. Note that the minimum and maximum load
for each consumer type j at time t, i.e., Lmin

t,j and Lmax
t,j , represent the lowest

and highest possible consumption that each consumer type can sustain at time
t. In other words, they define the demand flexibility that can be achieved from
each consumer type in a specific time.

In Eq. (D.3f), aαt,j represents the willingness of consumers to provide DR for
regulation type α. It is a function of the price and can vary between -1.0 and
1.0. Beyond a certain price threshold, which we define as ∆λj , consumers have
a willingness of:

aαt,j = aαj
(∆λαt −∆λαj

∆λαj −∆λαj

)γ
(D.4)

However, beyond a certain cap price, denoted by ∆λj , price response saturates
and no additional flexibility can be provided. The parameter aαt,j is also illus-
trated in Fig. D.5.

In order to include the stochastic behaviour of consumers, we apply chance-
constrained (CC) programming to Eq. (D.3f) for a confidence level of β = 95%.
In order to do that, we assume that aαt,j follows a normal distribution, as it is
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related to human behaviour. Eq. (D.3f) is therefore reformulated to:

0 ≤ Lαt,j ≤ µαauαt,jΘα + σαau
α
t,jΘαΦ−1

βββ (D.5)

In this formulation, µαa and σαa represent the mean value and the standard
deviation of aαt,j . For more information about the use of CC programming in
this setting, the modelling of aαt,j and the validity of the normality assumption,
please refer to [7].

Eq. (D.3g) ensures that only one type of flexibility (i.e., up- or down-regulation)
is provided by consumer type j at time t; Eq. (D.3h) represents the flexibility
activation and deactivation for consumer type j at time t; Eq. (D.3i) implies
that flexibility provision cannot be activated and deactivated at time t for con-
sumer type j; Eq. (D.3j) enforces a limit on the number of times that a certain
consumer type can be activated in a day. Eq. (D.3k)-(3k) refer to the minimum
and maximum duration for which the load response can be sustained. Eq. (3m)
guarantees that the overall flexibility provided is nullified over the time period.

For the numerical results, we combine the overall model with the two types
of RE modelling. In the remainder of this paper, the model with static RE
duration is referred to as model A and it consists of Eq. (D.1a) and Eq. (D.3a-
D.3l). The model with dynamic RE duration is referred to as model B and
involves Eq. (D.2a-D.2d) and Eq. (D.3a-D.3l).

D.3 Numerical results

In this section, we provide the numerical results to quantify the overall flexibil-
ity provision when considering different RE models and a computational study
of the models. To solve the MILP problem, we use data related to the Dan-
ish electricity consumption for different consumers’ categories (i.e., residential,
commercial and industrial). The data have been collected by Energinet and
Dansk Energi during the Elforbrugspanel project and are available at [8]. The
values of the parameters which have been used in the simulation studies can be
found in [7].

In this study, we investigate the two models A and B for 2 days (i.e., τ = 48
hours) for different delta price sets and temperature settings to identify the
range of flexibility that can be provided at each hour. Therefore, we generate
1000 random delta price sets with uniform distribution, assuming that λbase
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Figure D.6: Relationship between temperature and willingness parameter aαt,j .

is equal to 2.25 DKK/kWh and that the dynamic price set component varies
within ∆λαj = 0.2 DKK/kWh and ∆λαj = 0.75 DKK/kWh.

Although aαt,j is represented only as function of the price in Eq. (D.4), it is
possible to extend its modelling and include the effect of the outdoor temper-
ature. In fact, the temperature can have a close relationship to the electricity
consumption (see [9]). For example, in summer, extreme temperatures require
higher electricity consumption for cooling, as shown in Fig. D.6. Therefore,
there might be higher chances for the operator that consumers are willing to
provide DR under the condition that their comfort is guaranteed. To include
the outdoor temperature in the aαt,j formulation, we multiply aαj of Eq. (D.4)
by a correcting parameter, ν. We consider three cases of outdoor temperatures:
Case I deals with a base-line temperature and refers to the initial mean value of
aαj (i.e., ν=1); Case II considers aαj for higher outdoor temperature (i.e., ν=1.1);
Case III models aαj for lower outdoor temperature (i.e., ν=0.9).

We modelled both MILPs in GAMS 24.9.1 using Gurobi 8.1.0 as solver. The
experiments where carried out on Intel(R) Core(TM) i7-2600 CPU 3.40GHz
processor with 16 GB of RAM.

D.3.1 Socioeconomic analysis

In this subsection, we investigate the overall benefits achieved by the opera-
tor (by procuring flexibility) and the consumers (by minimising their electricity
cost) through the proposed DR program with different RE models. The over-
all electricity cost for the consumers and the aggregate amount of flexibility
achieved are given in Table D.1.

From the table, it can be seen that model A achieves a lower amount of flexibility
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Table D.1: Average values of the flexibility provided and of the overall elec-
tricity cost.

RE Case Flexibility Electricity
model provided cost

[MWh] [million DKK]
A I 600.31 380.47
B I 874.59 380.11
A II 714.67 380.33
B II 1032.10 379.92
A III 482.89 380.60
B III 714.50 380.30

than model B (about 31.3%). This is due to the fact that consumers in model A
are more constrained by the RE formulation. Consequently, consumers in model
A pay a higher cost for procuring electricity (i.e., 0.1%, 360,000 DKK). However,
the difference in electricity cost depends on the price formulation (which in this
case are capped and, therefore, limiting the cost reduction). From Table D.1,
it can be further seen that the temperature affects the overall flexibility and
cost, where Case II leads to an amount of flexibility that is around +45% more
than Case III, and consequently, to an overall electricity cost that is around
320,000 DKK lower. In Figs. D.7 and D.8, the ranges of the overall flexibility
that can be achieved for the two different types of RE are plotted. The results
are obtained by running the simulations for 1000 different price sets considering
Case I for the temperature setting.

From Figs. D.7 and D.8, we can see differences in the daily electricity con-
sumption. This is due to the choice of the type of days represented, which are
Sunday and Monday. The plots confirm the results given in Table D.1, because
Fig. D.7 shows less flexibility in comparison with Fig. D.8. For example, model
A achieves a range of flexibility between 4.5 and 4.7 MW for hour 37, while
this range is between 4.4 and 4.7 MW for model B (i.e., +50% than model
A). Furthermore, when referring to the sample daily price response plotted in
red, we can see that the total amount of flexibility provided by model A for
up-regulation (or down-regulation, as the amount of regulation flexibility is the
same for each flexibility direction α) is only 436 MWh, while model B provides
700 MWh. It also confirms that model B is able to achieve a higher amount of
flexibility throughout the day.

In summary, it can be concluded that, when approaching model A for the entire
pool of heterogeneous consumers, the operator might behave rather conservative
in setting the dynamic prices. In fact, such a model overlooks a significant
amount of the flexibility potential, which could be delivered between different
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Figure D.7: Range of consumption achieved when considering static RE (i.e., model
A). Base-line consumption (in black); Sample daily price response (in
red).

Figure D.8: Range of consumption achieved when considering dynamic RE (i.e.,
model B). Base-line consumption (in black); Sample daily price res-
ponse (in red).
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Rj periods. Therefore, it is crucial for the operator to understand the dynamics
of the flexible loads and combine the two RE models to be able to quantify the
aggregate flexibility potential. Moreover, the operator needs to take into account
the effect of the temperature on the overall price response of consumers, as this
factor influences the overall results. If the dynamic prices submitted to the
consumers are capped, the overall cost reduction might not be that significant
for the consumers.

D.3.2 Modelling benchmark

Beside the different results in electricity cost and amount of flexibility provided,
it is also interesting to investigate the computational performance of the two
modelling approaches. In Table D.2, we report the solution time, number of
binary variables, MIP gap, number of equations and number of discrete variables
for model A and B. From the table, we can conclude that model B takes longer
to solve than model A. In our experimental setup, model A could be solved in
less than 1 second on average, while model B required more then 82 seconds.
The longer solution time can be explained by the larger amount of variables and
equations in model B, in particular, the additional binary variables related to
Eqs. (D.2a)-(D.2d). However, both models can be solved to optimality within
a reasonable amount of time, which is indicated by the remaining MIP gap of
0.00 (i.e. less than the MIP gap tolerance of 10−5 set in the solver). We can
conclude that the more flexible formulation of the RE requires some additional
computational effort.

Table D.2: Computational results of the two RE models (solution time (t);
MIP gap (Gap); number of variables (#Var), number of binary
variables (#Bin.V), number of equations (#Eq)

RE t[s] Gap[%] #Var. #Bin.V. #Eq.
A 0.61 0.00 15402 8352 28451
B 82.41 0.00 19578 12528 33573

D.4 Conclusions

This paper investigates different approaches for modelling the RE of electrical
consumers that respond to price-based DR programs. Two RE models are for-
mulated as MILPs and applied to quantify the aggregate amount of flexibility
that can be achieved when time-varying electricity prices are submitted to flex-
ible consumers. In this study, the stochastic nature of consumers’ behaviour
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toward prices is considered by approaching CC programming. The effect of the
temperature is also investigated on the overall consumers’ price response. More-
over, a computational study is provided for both models’ performance, where
the overall electricity cost of consumers and the amount of flexibility achieved
by the operator are highlighted and compared for different RE models.

From the numerical results, it can be concluded that different RE models lead
to significant changes in the overall flexibility provision. Therefore, it is crucial
for the operators to have a deep understanding of the types of loads they deal
with so that they can estimate the amount of flexibility more accurately.

Due to the field data scarcity, we assume the condition of perfect RE in this
study (i.e., where increase and decrease in consumption perfectly compensate
each other). However, in future studies, an imperfect RE condition will be
investigated for different consumers’ categories.
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Nomenclature

Sets:

T Set of time periods, indexed by t, t ∈ [1, . . . , τ ].
J Set of consumers types, indexed by j.
α Types of regulation, i.e., up- or down-regulation.
D Set of days, indexed by tD, tD ∈ [1, . . . , τ24 ].

Parameters:

Rj Maximum rebound effect duration for consumer type j [h].
λλλbase Base-line electricity price [DKK cent/Wh].
∆λ∆λ∆λu

t Dynamic electricity price for up-regulation at time t [DKK cent/Wh].
∆λ∆λ∆λd

t Dynamic electricity price for down- regulation at time t [DKK cent/Wh].
∆λ∆λ∆λαj Minimum delta prices for regulation type α of consumer type j [DKK

cent].
∆λ∆λ∆λ

α

j Maximum delta prices for regulation type α of consumer type j [DKK
cent].

Lbase
t,j Base-line consumption of consumer type j at time t [W].

Lmin
t,j Minimum electricity consumption of consumer type j at time t [W].

Lmax
t,j Maximum electricity consumption of consumer type j at time t [W].

aαt,j Willingness of consumer type j to provide flexibility type α at time t
[p.u.].

aαt,j Maximum willingness of consumer type j to provide flexibility type α at
time t [p.u.].

rαj Ramp-rate of consumer type j for regulation type α [W/h].
nαj Maximum number of activations for consumer type j to provide flexibility

type α.
dαj Minimum continuous flexibility duration of consumer type j when acti-

vated to provide flexibility type α [h].
dαj Maximum continuous flexibility duration of consumer type j when acti-

vated to provide flexibility type α [h].

Variables:

Lαt,j Flexibility of end-users’ category j at time t for regulation type α [W].
xt,j Binary variable defining the region when the overall flexibility provided

up to time t by end-users’ category j is positive.
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wt,j Binary variable defining the region when the overall flexibility provided
up to time t by end-users’ category j is negative.

vt,j Binary variable defining the region when the overall flexibility provided
up to time t by end-users’ category j is perfectly compensated.

uαt,j Binary variables, indicating flexibility status of end-users’ category j at
time t for regulation type α.

yαt,j Starting binary variable of end-users’ category j at time t for flexibility
type α.

zαt,j Stopping binary variable of end-users’ category j at time t for flexibility
type α.

Θt,j Overall flexibility provided at time t from consumer type j [W].
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Abstract

This paper presents a new methodology to exploit consumers’ flex-
ibility for the provision of ancillary services (AS). The proposed
framework offers a control-based approach that adopts price signals
as the economic driver to modulate consumers’ response. In this
framework, various system operators broadcast price signals inde-
pendently to fulfil their AS requirements. Appropriate flexibility es-
timators are developed from the transmission system operator (TSO)
and distribution system operator (DSO) perspectives for price gen-
eration. An artificial neural network (ANN) controller is used for the
TSO to infer the price-consumption reaction from pools of consumers
in its territory. A PI controller is preferred to represent the con-
sumers’ price-response and generate time-varying electricity prices
at the DSO level for voltage management. A multi-timescale simu-
lation model is built in MATLAB to assess the proposed methodol-
ogy in different operational conditions. Numerical analyses show the
applicability of the proposed method for the provision of AS from
consumers at different levels of the grid and the interaction between
TSO and DSOs through the proposed framework.
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E.1 Introduction

Ancillary services (AS) are key elements to guarantee the stability and continu-
ity of the electricity supply. They consist of up- and down-regulation services
in different timescales to assist in grid frequency and voltage regulation, and
congestion management. Traditionally, AS were provided by conventional gen-
eration units (CGUs) with fast ramp-up and down capabilities. However, in a
power system with large penetration of renewable energy sources (RES), where
most of the RES are not able to provide balancing services effectively [1], the
AS provision cannot solely rely on the CGUs [2]. This issue is intensified by
many CGUs retiring from the generation fleet due to low energy prices. In ad-
dition, higher penetration of RES leads to a higher demand of AS [3], which
must be properly addressed to avoid extreme AS pricing events. This is hap-
pening already in the California Independent System Operator (CAISO), where
the total AS market value raised from US$20M in 2015 to US$172M in 2017
[4]. Therefore, finding cheap flexibility resources (such as load demand flexi-
bility) is necessary to provide short- and medium-term AS [5] that can cope
with the sources of uncertainty involved in the future power system operation
[6]. Although the potential of demand flexibility for AS has been proven in
many research studies, only a marginal contribution from load flexibility has
been realised for AS provision in practice. One reason is that involving millions
of consumers in the AS provision requires tremendous computational power
and increases the complexity of the existing AS markets due to non-linearity,
stochasticity and dynamic characteristics of the demand. Therefore, the true
potential of the demand flexibility has yet to be exploited in power systems.

In the last decade or so, the potential of different types of flexible consumers has
been investigated for AS provision at different levels of the grid. For instance, a
flexibility platform (called Flex operator) was proposed in the SmartNet project
[7] to aggregate demand flexibility and offer AS to the system operators (SOs)
in real time. However, as discussed in [8], such a framework might lead to
operational conflicts (i.e., prioritisation of operators) and remuneration issues
(i.e., double remuneration when an asset can satisfy the needs of both TSO and
DSO). It also increases the complexity of the AS market for dealing with numer-
ous aggregators with specific capabilities and drawbacks. In [9], the transactive
energy (TE) approach was proposed as a market-based solution to unlock the
flexibility from the end-users through the adoption of a two-way communication
scheme. However, requiring feedback from the end-users complicates the grid
infrastructure, compromises the scalability of the solution, and raises concerns
regarding cyber-security and required computational efforts. The pros and cons
of the TE framework are outlined by the authors in [10].

Quantifying demand flexibility is key to the AS planning of future power sys-
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tems. In this direction, [11] characterises energy flexibility by a dynamic func-
tion. Such a tool enables the SO to determine which grid problem could be
managed by the consumers’ flexibility after the submission of a certain signal.
In [12], aggregate flexibility of residential loads is estimated based on consump-
tion availability, typical usage patterns, and technical constraints. However,
such an approach is not data-driven, which makes the estimation less practical.

In this paper, we implement a new AS mechanism (called AS4.0) based on delta
price signals. In the proposed method, each SO is allowed to optimally fulfil its
requirements by quantifying the available demand flexibility in their area. Each
SO generates a real-time price that is submitted to a pool of price-responsive
consumers. Such prices are created by the demand flexibility estimator that each
SO formulates based on its requirements and the pool of consumers. When con-
sumers receive the time-varying prices, they alter their consumption to minimise
their operation cost using local controllers, i.e., energy management systems
(EMSs). In order to examine the performance of the proposed AS method, a
multi-timescale simulation model is developed in this study including TSO and
DSO operation. The load-frequency control (LFC) model is implemented at
the TSO level for frequency regulation. At the DSO level, voltage is monitored
at steady state by solving a power flow problem. The goal is to allow TSO
and DSO to regulate frequency and voltage, respectively, by submitting a sin-
gle delta price to their respective pool of consumers. The time-varying prices
are generated at the TSO and DSO levels independently through an artificial
neural network (ANN) and a PI controller, respectively. At the TSO level, the
aggregated price-response of the consumers is modelled through a mixed-integer
linear program (MILP) that minimises the operational cost of the end-users [13].
Multiple simulation studies are carried out to reveal the performance of AS4.0
for frequency and voltage regulation. The proposed approach can be thought
as a supporting tool for AS provision, similar to the Flexible Ramping Prod-
uct (FRP) in CAISO [14] and the Ramp Capability (RC) in Midcontinent ISO
(MISO) [15]. The main contributions of the paper can be summarised as follows:

• Developing a comprehensive multi-timescale model of TSO and DSO interac-
tion for AS4.0 evaluation.

• A novel demand flexibility formulation at the TSO level which considers a
dynamic rebound effect.

• Offering an ANN-based price generator for the TSO operation.

The rest of the paper is organised as follows. In Section E.2, the AS4.0 setup
is briefly explained, while Section E.3 provides the mathematical models for
its implementation. In Section E.4, simulation results are discussed in detail.
Finally, Section E.5 concludes the paper.
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E.2 A Brief Description of the AS4.0 Mecha-
nism

The AS4.0 mechanism uses control techniques to provide AS at different spatio-
temporal scales of the grid using a delta price signal. Through the generation
and submission of time-varying prices that depend on the actual conditions of
the grid, each SO is able to exploit the flexibility of the consumers that are
located in its territory. Upon receiving time-varying prices by the EMSs [16],
consumers react to minimise their electricity cost.

A high-level discussion of the AS4.0 setup is provided in [10] and [13].

T

D

F

MT

MD

∆λαt,ξT

∆λαt,ξD

ωt,ξT

ωt,ξD

Figure E.1: Conceptual representation of the AS4.0 mechanism.

Structurally, the grid can be divided into three spatial levels, i.e., ξ ∈ Ξ =
{T1, · · · , TM ,D1, · · · ,DN ,F}, for the operation of the AS4.0 in an intercon-
nected power system with multiple control areas, as shown in Fig. E.1. These
levels consist of G control areas, i.e., ξT = {T1, · · · , TG}, N distribution systems,
i.e., ξD = {D1, · · · ,DN}, and demand flexibility resources, F . Based on the re-
quired AS, each spatial level can further be divided in different time scales. AS
is required when a disturbance occurs in the power system (planned/unexpected
outages, renewable generation variations, load changes, etc.). Regardless of the
source of the disturbance, the TSO operation will observe a frequency deviation.
Let the total power disturbance (which is the one that is seen by the TSO) be
denoted by ωξT = {ωt,ξT ∈ R+ : t ∈ τ} at time t ∈ τ = {k∆t | 1 ≤ k ≤ B}.
The disturbance at the DSO level is given by ωξD = {ωt,ξD ∈ R+ : t ∈ τ},
which is a fraction of ωξT , i.e., ωξD = χ ωξT . It is worth mentioning that
frequency regulation is performed continuously in a large power system. In this
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paper, we solve LFC model on a continuous basis, however control actions in
the AS4.0 are discrete, i.e., every ∆t seconds. Once the power disturbance hits,
the TSO solves a control problem, denoted by MT , to quantify the required
AS based on the frequency deviation and formulate the price signal, denoted by
∆λαξT

= {∆λαt,ξT
∈ R+ : t ∈ τ}. Superscript α specifies the type of regulation

(i.e., α = u for up-regulation, and α = d for down-regulation). The price signal
is submitted to the EMS of all flexible consumers located within the TSO’s ter-
ritory [17]. If the delta price is appropriate, the collective consumers’ reaction
will result in the desired change in consumption to compensate for the original
disturbance and, therefore, stabilises system’s frequency.

At the distribution level, a similar idea can be adopted for voltage regulation,
congestion management, or load curtailment. In this case, only the flexible con-
sumers connected to the distribution system in the DSO’s territory will receive
a time-varying price, denoted by ∆λαξD

= {∆λαt,ξD
∈ R+ : t ∈ τ}. In principle,

it is possible for the two SOs to broadcast delta prices asynchronously to their
respective territories according to their requirements at different timescales.

The issues related to the DSO (e.g., voltage violation) are local and the DSO
requires flexibility from a limited portion of consumers, as opposed to frequency
issues, which are system-wide. Therefore, it is unlikely for the TSO and DSOs
to compete for flexibility procurement. However, with the lack of coordination
between different SOs, contradicting delta prices could be submitted to the same
group of consumers with the aim of unlocking flexibility in opposite directions
[8], leading to system instability. Therefore, a coordination scheme between
different SOs is imperative to avoid such conditions. Since a TSO-territory
involves a larger pool of consumers compared to that of a DSO, it is reasonable
to assume that the TSO has a higher chance to gain a certain aggregate response.
Hence, the priority is given to the DSO in times of conflict. This way, consumers
in the conflicting zones will only receive the time-varying prices submitted by
the DSO. The remaining pool of consumers will still receive the prices generated
by the TSO.

E.3 AS4.0 Modelling

In this section, we provide models to simulate the power system’s response at
various spatio-temporal scales. Without loss of generality, the network issues
at the TSO and DSO levels are limited to frequency and voltage regulation,
respectively. As shown in Fig. E.2, the behaviour of the system frequency is
simulated by the load-frequency control (LFC) model at the transmission level,
ξT . Layer D models the aggregate effect on the low- and medium-voltage dis-
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tribution grids. The different parts of the simulation model in Fig. E.2 are
explained in detail in the following.

χ

ω LFC ANN LP

PF PI

APR MILP

∆P α,C
t,ξT

∆λαt,ξT

∆λ̂αt,ξT
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+

-

+

-

+ +

ωt ∆ωt,ξT

∆ωt,ξD

∆P α,F
t,ξD

∆P α,F
t,ξT

T

D

F

Figure E.2: The structure of AS4.0 simulation model.

E.3.1 TSO Model

To study the system’s frequency response to disturbances, an LFC model is used
[18]. The LFC model consists of a primary and secondary frequency control
loop. The output of the controller is the amount of power, i.e., ∆Pα,CξT

=
{∆Pα,Ct,ξT

∈ R+; t ∈ τ}, that should be changed to stabilise frequency. The
main role of the primary regulation is to arrest frequency excursions within a
second or so. Therefore, it is a local control that is automatically provided
by the CGUs and is generally modelled as a droop control [18]. Secondary
regulation is a central automatic control carried out by the TSO to correct the
steady-state frequency error within a couple of minutes by ramping up or down
the eligible generators [18]. Various control methodologies, such as a linear-
quadratic regulator (LQR) in [19] and a model-predictive control in [20], have
been developed to this end. In Fig. E.3, a two-area LFC model (resembling the
Danish transmission network with DK1 and DK2 areas [21]) is shown with an
inter-tie connection, and primary and secondary control loops, in black and red
blocks. For simplicity, the overall effect of the CGUs is modelled by a single
non-reheat steam turbine unit [18]. The power disturbance and the resulting
frequency deviation are denoted by ωt,ξT1

and ∆ft,ξT1
, respectively, for area T1,
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and ωt,ξT2
and ∆ft,ξT2

, respectively, for area T2 at time t ∈ τ . An LQR is used
in this study as the LFC controller, whose design is discussed in [19].

β1

LQR1

β2

LQR2

α1,2 α1,2

1
R1

1
R2

1
1+Tg1s

1
1+Tt1s

1
D1+2H1s

2πT1,2
s

1
D1+2H2s

1
1+Tt2s

1
1+Tg2s

MILPANN LP

+

-

+ -

-

ωt,ξT 1

ωt,ξT 2

+

-

-

+

+

+

+

-

+

+

+

-

∆P α,C
t,ξT1

∆P α,C
t,ξT2

∆ft,ξT1
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Figure E.3: LFC model of a two-area power system at the TSO level: Con-
ventional model in black and red, AS4.0 model in black and blue.

The AS4.0-LFC model is shown in black and blue blocks in Fig. E.3. The
conventional secondary loop is replaced by demand’s contribution to frequency
regulation in area T2, to evaluate AS4.0 performance. In the modified LFC
model, ∆Pα,Ct,ξT2

is the required control effort for frequency regulation in area T2.
The TSO generates delta prices based on ∆Pα,Ct,ξT2

, and the realised flexibility
affecting the balance between generation and demand is denoted by ∆PFt,ξT2

.

E.3.1.1 Artificial Neural Network (ANN)

A functional relationship between the amount of flexibility required by the TSO,
i.e., ∆Pα,Ct,ξT2

, and the price signal, i.e., ∆λαt,ξT2
, is needed for the TSO operation

in the AS4.0 framework. ANN is found to be a suitable tool as it can map
complex and non-linear inter-dependencies between electricity price, historical
consumption and other factors (e.g., temperature and day of the week) [22]. In
this study, we assume that consumers react to price signals by shifting their loads
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throughout the day. As a result, the input/output parameters to/from the ANN
model should be daily profiles. Required data for ANN training are generated by
simulation studies, where thousands of daily price profiles, ∆ΛαξT

= {∆Λαh,ξT
∈

R+ : h ∈ N24}, are generated using a normal distribution, as proposed in [13].
Then, the reaction of the consumers to the price signals is modelled through a
MILP problem. This problem and the aforementioned ANN model are described
in subsections E.3.3.1 and E.4.1.1, respectively.

E.3.1.2 Daily Price Neutrality

Due to the heterogeneous condition of the transmission and distribution system
infrastructures in different areas, the consumers in under-developed areas will
potentially face higher prices compared to others. In an attempt to avoid price
discrimination, the sum of all delta prices is enforced to be as close as possible
to zero over a day. To achieve that, the TSO solves a linear program (LP) that
tries to marginally change a given delta price profile so that

∑H
h=1 ∆Λαh,ξT

→ 0,
∀α ∈ {u, d}. The new price signal is denoted by ∆Λ̂αξT

and the LP is formulated
as:

min
L,∆λ̂α

h,ξT

L (E.1a)

subject to:
24∑
h=1

∆λ̂αh,ξT
+ L = 0 (E.1b)

∆λ̂αh,ξT
−∆λαh,ξT

≤ ψ ·∆λαh,ξT
∀ h, α (E.1c)

∆λ̂αh,ξT
−∆λαh,ξT

≥ −ψ ·∆λαh,ξT
∀ h, α (E.1d)

where Eq. (E.1b) defines the overall deviation from neutrality, denoted by L,
over a day; and ψ is the maximum allowed relative difference between the new
and old price at time h, which is enforced by Eq. (E.1c) and (E.1d).

E.3.2 DSO Model

Voltage issues may especially arise in populated areas with a large number of
roof-top PV panels in the low-voltage networks. When voltage violation occurs
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due to disturbance ωt,ξD , the issue may be resolved by load demand flexibility in
that area. To exploit that flexibility, the DSO generates a delta price, denoted
by ∆λαt,ξD

, through a control problem. The dynamic prices are then submitted
to the buses with voltage issues. The load flexibility service continues for a
certain amount of time (30 seconds in this study) until the source of the voltage
disturbance disappears.

Since the voltage at a bus depends on the load and generation in that bus and
in neighbouring buses, and in order to increase the chances of getting enough
load demand response, a price signal will be sent to a cluster of buses (and not
only to the single bus with the voltage issue). Therefore, the DSO formulates a
delta price for each cluster in accordance with an effective voltage metric (e.g.,
average voltage deviation of each cluster) in that cluster. In this study, the
buses are clustered in two groups based on their location in the network. A PI
controller is used to generate a dynamic price for each cluster from the voltage
metric. In order to avoid extreme prices, a price cap, ∆λξD , is imposed, which
also represents the upper limit of price reaction. It means that the pool of
consumers cannot provide additional flexibility beyond this value due to load
characteristics [23].

E.3.3 Flexibility resources

Next, we provide models to estimate the aggregate consumers’ price-response
from the TSO’s and DSOs’ standpoints. Since the TSO and DSO deal with two
different pools of consumers (in size, type and response time), we use specific
models for each of them. The load flexibility model at the DSO level is only used
to quantify load changes due to delta prices. For the TSO, however, a MILP for-
mulation is used to develop an ANN-based controller and to quantify the actual
flexibility obtained from the consumers for simulation purposes. In practice, the
actual load variations can be estimated by the aggregate measurements at the
distribution and transmission substations.

E.3.3.1 Consumers’ price response model at the TSO level

AMILP is formulated in this paper in which consumers’ cost of electricity is min-
imised. Theoretical background, assumptions, and the parameters of the 29 load
categories that are considered here are discussed in detail in [13]. The proposed
MILP formulation accounts for the rebound effect that occurs when providing
flexibility from consumption [24], and it constitutes a major improvement with
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respect to our previous model in [13]. The MILP problem is formulated as
follows:

min
Lα
h,j,ξT

[ 24∑
h=1

(
λbase
ξT

+ ∆λuh,ξT
+ ∆λdh,ξT

) J∑
j=1

(
P base
h,j + ∆P d,Fh,j,ξT

−∆Pu,Fh,j,ξT

)]
(E.2a)

subject to: (E.2b)
− rαj ≤ ∆Pα,Fh+1,j,ξT

−∆Pα,Fh,j,ξT
≤ rαj ∀ h, j, α (E.2c)

0 ≤ ∆P d,Fh,j,ξT
≤ udh,j

(
Pmax
h,j − P base

h,j

)
adh,j,ξT

∀ h, j (E.2d)

0 ≤ ∆Pu,Fh,j,ξT
≤ uuh,j

(
Pbase
h,j − Pmin

h,j

)
auh,j,ξT

∀ h, j (E.2e)

εxh,j −Mwh,j − εvh,j ≤
h∑

h′=1

(
∆P d,Fh′,j,ξT

−∆Pu,Fh′,j,ξT

)
∀ h, j

(E.2f)
h∑

h′=1

(
∆P d,Fh′,j,ξT

−∆Pu,Fh′,j,ξT

)
≤ −εwh,j +Mxh,j + εvh,j ∀ h, j

(E.2g)
xh,j + wh,j + vh,j = 1 ∀ h, j (E.2h)

vh−1,j − vh,j ≤
h+Rj∑
h′=h

vh′,j ∀ h : [h ∈ N24, h ≤ τ −Rj ], j (E.2i)

udh,j + uuh,j ≤ 1 ∀ h, j (E.2j)
yαh,j − zαh,j = uαh,j − uαh−1,j ∀ h, j, α (E.2k)
yαh,j + zαh,j ≤ 1 ∀ h, j, α (E.2l)
τ∑
h=1

yαh,j ≤ nαj ∀ j, α (E.2m)

h+dα
j∑

h′=h
uαh′,j ≥ dαj yαh,j ∀ h : [h ∈ N24, (h+ dαj < τ)], j, α (E.2n)

h+dαj∑
h′=h

zαh′,j′ ≥ yαh,j ∀ h : [h ∈ N24, (h+ dαj < τ)], j, α (E.2o)

The objective function in Eq. (E.2a) calculates the cost of electricity for each
end-users’ category j within a day. The electricity price contains a flat price,
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λbase (covering fixed costs and taxes), and a time-varying price, ∆λαh,ξT
, that

is generated by the TSO. The electricity consumption is given by a baseline
consumption, P baseh,j , and the overall flexibility provided is ∆Pα,Fh,j,ξT

from load
category j at time h for regulation type α (i.e., α = u for a decrease in con-
sumption, and α = d for an increase in consumption). Eq. (E.2c) enforces the
up- and down-ramp-rate limits, rαj , for category j; Eq. (E.2d) and (E.2e) define
minimum and maximum load flexibility that can be provided by category j.
In this study, the minimum and maximum load for category j at time h, i.e.,
Pmin
h,j and Pmax

h,j , are obtained from historical aggregate data for that category at
time h. In this equation, uαh,j is the flexibility status variable for category j at
time h for regulation type α. The parameter aαh,j,ξT

represents the willingness
of each consumer in category j to adjust load at time h for a certain flexibility
type α. The consumers’ willingness depends on the price they receive among
other factors (e.g., temperature and day of the week). More details about the
modelling of consumers’ willingness is presented in [13]. We assume that aαh,j,ξT
is computed by:

aαh,j,ξT
= aαj,ξT

∆λαh,ξT

max
(
∆λαh,ξT

) (E.3)

where aαj,ξT
is the maximum price responsiveness of category j for flexibility type

α and max
(

∆λαh,ξT

)
is the maximum value of the price set received. Eqs. (E.2f-

E.2i) enforce the energy rebound effect (RE) for category j. In particular,
we consider that the total amount of flexibility provided by consumer type j
until time t can either be zero (when the amounts of up- and down-regulation
perfectly counterbalance), positive or negative. These three cases are modelled
by Eqs. (E.2f)-(E.2g) through binary variables wh,j , vh,j and xh,j , and the large
and small constants M and ε, respectively. Eq. (E.2h) guarantees that only
one of these binaries can be nonzero at time t. Eq. (E.2i) ensures that, when
consumers start providing flexibility, the RE must be realised within Rj periods.
Eq. (E.2j) ensures that only one type of flexibility (i.e., up- or down-regulation) is
provided by category j at time h; Eqs. (E.2k) and (E.2l) represent the flexibility
activation and deactivation for category j at time h, where yαh,j and zαh,j are the
starting and stopping binary variables of category j at time h, respectively, for
flexibility type α. Eq. (E.2m) enforces a limit on the number of times that
category j can be activated in a day, where nαj is the number of times that a
flexibility resource can be activated for load category j for flexibility type α.
Eqs. (E.2n-E.2o) refer to the minimum (dαj ) and maximum (dαj ) duration for
which the load response can be sustained. The values of the parameters used in
the MILP are provided in [13].
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E.3.3.2 Consumers’ price-response model at the DSO level

The composition of the loads changes from one area to another from the DSO’
s perspective. Therefore, using the MILP model at the DSO level will be over-
whelming computationally as it will require specific model for each area. More-
over, it needs a profound knowledge of the load composition at each bus or area,
which is not available. Therefore, an alternative solution is proposed for price
response estimation at the DSO level, as the following aggregate price response
(APR) function:

∆PD,αF,t = 0 |∆λD,αt | ≤ ∆λD,αt (E.4a)

∆PD,αF,t = aD,αt P baset

(
∆λD,αt −∆λD,αt

∆λD,αt −∆λD,αt

)γ
(E.4b)

∆λD,αt ≤ |∆λD,αt | ≤ ∆λD,αt

∆PD,αF,t = aD,αt P baset |∆λD,αt | ≥ ∆λD,αt (E.4c)

In Eq. (E.4b), ∆Pα,Ft,ξD
is modelled as the product of three terms, consisting of

the baseline consumption P baset , the willingness parameter, aαt,ξD
, and a price

ratio. aαt,ξD
represents the flexibility of consumers, which varies between 0 and

1. It can be a function of weather conditions, and load and day type, whose
values are provided in [13]. A certain price response is achieved only when the
price signal is bigger than a threshold price, i.e., ∆λαξD

, [25]. Also, according to
[26], the response saturates beyond a certain price signal, i.e., ∆λαξD

.

The block-diagram shown in Fig. E.4 provides an overview of the simulation
model of the entire system that was shown in Fig. E.2. As it can be seen from
the figure, some assumptions are made:

• From the timescale point of view, two sets of simulations and models are de-
signed in this paper: hourly (h ∈ N24) and second-by-second (t ∈ τ). The
former timescale is used in consumers’ reaction modelling, as it is the only
way to account for the consumers rebound effect. Therefore, the ANN model,
the MILP model in Eq. (E.2a)-(E.2o) and the LP formulation in Eq. (E.1b)-
(E.1d) are hourly for an entire day. In the hourly models, prices, i.e., ∆ΛαξT

,
are generated and submitted every hour and the disturbance is given by ωξT .
The latter timescale, i.e., second-by-second, is used to run simulation for fre-
quency (TSO model) and voltage regulations (DSO model). In this timescale,
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Figure E.4: Conceptual block-diagram of the simulation model.

prices (∆λαξT
and ∆λαξD

) are generated by TSO and DSO, respectively, and
submitted every second (i.e., ∆t = 1 second), and the system disturbances



190 Paper E

are ωξT and ωξD . In order to solve hourly functions (e.g., MILP, price neu-
trality function and ANN) within the dynamic simulation model at hour h,
as shown in Fig. E.4, the price/disturbance is placed in the hourly vector for
hour h. While the hourly operation was inevitable because of limited data
availability, all algorithms can be performed in higher resolution when high
resolution data is available. As it is shown in Fig. E.4, values of the hourly
vectors from hour 0 to hour h − 1 are known, while the values of the future
(i.e., from h+ 1 to 24) are estimated by prediction.

• Required flexibility from the consumers throughout the day at the TSO level is
estimated with hourly resolution, denoted by ∆Pα,CξT

=
{

∆Pα,Ch,ξT
: h ∈ N24

}
.

This value is updated by the LFC model for hour h, and the new vector will
be used as the input in the ANN model.

• It is assumed that delta prices are estimated for the entire day, which is
defined in hourly basis and denoted by ∆ΛαξT

=
{

∆λαt,ξT
∈ R : t ∈ τ

}
. When

running the simulations at hour h, only the present and future time steps are
generated by the ANN, while the previous time steps are given by historical
values.

• A certain external power disturbance is imposed on the system every ∆t = 30
seconds during dynamic simulations, denoted by ωξT =

{
ωt,ξT ∈ R : t ∈ τ

}
.

Only a portion, i.e., χ, of the ωξT reaches the DSO level, i.e., ωξD . Therefore,
the DSO’s load is modified according to the ωξD disturbance at each iteration.

From the figure, it can be seen that the consumers’ response to the delta prices
issued by an SO affect the operation of other SOs. This has been modelled
properly in the proposed framework. In this study, the DSO and TSO solve
their control problems simultaneously.

E.4 Simulation Studies

In this section, simulation studies are carried out to assess the validity of the
AS4.0 mechanism under different power disturbances. The LFC model is imple-
mented for the Danish transmission system consisting of two areas of 3 GW peak
demand each. Actual data from the Elforbrugspanel project [27] is used for the
TSO level MILP model. A modified IEEE 33-bus standard distribution system
is used to model the DSO network, where original loads are modified to avoid
voltage violations at the beginning of the simulation. We consider to deal with
158 distribution grids, each based on the IEEE 33-bus system. Such a number
is decided from the maximum power handled by a single DSO model and the
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size of the TSO area. Frequency and/or voltage regulation is initiated if the
deviation exceeds a certain threshold. In order to show the impact of rebound
effects on the performance of AS4.0, simulations are repeated for two hours,
h = {5:00, 15:00}. The daily required flexibility (∆Pα,CξT

) and prices (∆ΛαξT
)

at the TSO level are generated randomly. Other general simulation parameters
are given in Table E.1.

Table E.1: General simulation parameters.

ωt injection every ∆t Time period simulated Max range of ωt
[sec] ,B [sec] [MW]
30 270 1500

Simulation models are implemented in MATLAB and GAMS, which uses OS-
IGUROBI solver. The power flow problem at the DSO level is solved using the
MatPower 6.0 package in MATLAB.

E.4.1 AS4.0 Operation at the TSO Level

In this sub-section, the AS4.0 performance and the ANN training will be anal-
ysed for frequency regulation at the TSO level. In Table E.2, specific simulation
parameters to TSO operation are given.

Table E.2: TSO parameters in the simulations study.

ψ ∆λαξT
∆λαξT

ANN training ε M f tol.
[−] [DKK

kWh ] [DKK
kWh ] price-sets [−] [−] [pu]

0.01 0.2 1 5000 0.1 20000 ±0.01

The ANN model is trained using 5000 sets of daily delta prices generated by
random uniform distribution. Each delta price set is bounded by the dead-band
and saturation price values, as discussed in subsection E.3.3.2, and has a null
sum over the day. The ANN is trained using MATLAB Neural Net Fitting
toolbox.

E.4.1.1 Artificial neural network performance

To define the optimal ANN structure (i.e., number of neurons in the hidden
layer and training sample size), a sensitivity analysis is executed. The results are
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reported in Table E.3 along with mean squared error (MSE) and the correlation
coefficient [28] for comparison. Typically, the number of neurons in the hidden
layer is between the size of the input and the output [29], and it was changed
between 10 to 24 for the sensitivity analysis. On the other hand, larger training
samples, if providing better statistical representation of the underlying system,
can improve ANN performance. The number of samples are varied from 1000
to 5000 in this study.

Table E.3: Sensitivity analysis for ANN model structure.

Observations Neurons in Training perform. Test perform.
sample size the hidden layer MSE R MSE R

1000 10 0.25 0.65 0.27 0.62
5000 10 0.25 0.64 0.26 0.64
1000 24 0.02 0.97 0.02 0.97
5000 24 0.01 0.98 0.01 0.98

It can be noticed that larger training samples and 24 neurons led to the best per-
formance. However, despite the outstanding performance of the ANN, a small
modelling error exists (i.e., R=0.98 and MSE=0.01), which indirectly represents
the lack of perfect knowledge of the consumers’ behaviour. In other words, if the
MILP solutions are the actual realised flexibility from the consumers, then ANN
model drifts away from true values by a small amount, as expected in practice.
The existence of controller (i.e., LQR) at the TSO level, however, guarantees
obtaining frequency regulation over time.

E.4.1.2 Frequency regulation

Table E.4 shows the system’s frequency deviations at the end of each disturbance
at steady state. The values are reported for the two areas: Area T1 in which
CGUs provide secondary regulation services, and Area T2, where flexibility is
provided through AS4.0.

Overall, the results show that the AS4.0 mechanism always outperforms CGU-
based AS, reducing the frequency deviation up to 60% after 30 seconds. This is
because of the faster response of load flexibility to price signals. From the table,
it can be noticed that availability of the consumers’ flexibility depends on the
time of the day, which depends on the values of Pmin

h,j ,Pmax
h,j and Pbase

h,j as well as
the rebound effect. The dynamic performance of frequency regulation is shown
in Fig. E.5. It is clear from the figure that the frequency regulation is superior
in AS4.0 mechanism in comparison with the CGU-based AS in terms of settling
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Table E.4: Performance benchmark for AS4.0 and CGU-based AS.

Time and Maximum frequency Deviation
disturbance deviation, Hz reduction, %
injected, CGUs- AS4.0

[sec, MW] based AS Hour 5 Hour 15 Hour 5 Hour 15
[1, 1000] +0.10 +0.04 +0.06 60% 40%
[30, 350] -0.27 -0.14 -0.13 48% 52%
[60, 852] +0.21 +0.13 +0.13 38% 38%
[90, 500] -0.26 -0.15 -0.16 42% 38%

[120, 1148] +0.20 +0.12 +0.12 40% 40%
[150, 1000] -0.12 -0.07 -0.08 41% 33%
[180, 1300] +0.14 +0.09 +0.08 35% 42%
[210, 1056] -0.17 -0.10 -0.11 41% 35%
[240, 1500] +0.12 +0.07 +0.07 41% 41%

time and overshooting.

Figure E.5: Frequency profile of the system in T2 area at hour 15:00. (a) Overall
frequency. (b) Zoomed-in part to see dynamics.

E.4.1.3 Price response

In Fig. E.6, the delta prices and consumers’ reactions are shown for the same
simulation study at the TSO level in hour 15:00. From the figure, it can be seen
that the TSO obtained 268 MW flexibility from the load demand (in a system
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with 3 GW peak load) by submitting a positive delta price of 0.84 DKK/kWh.
On the other hand, the TSO could manage to increase load consumption by 211
MW through a negative delta price of 0.82 DKK/kWh.

Figure E.6: Delta prices and the corresponding response from consumers at the
TSO level at hour 15:00.

E.4.2 AS4.0 Operation at the DSO Level

In this sub-section, the performance of AS4.0 at the DSO level is examined for
voltage regulation. Related parameters for the simulation model at the DSO
level are presented in Table E.5. The PI controller coefficients, i.e., Kp and Ki,
are selected in a way to achieve fastest response without oscillation and large
overshoot by trial and error. In the APR function, γ = 2 models conservative
consumers that only respond to large delta prices.

Table E.5: DSO parameters in the simulations study.

γ Kp Ki ∆λαξD
Buses V tol. DSOs affected

[−] [−] [−] [DKK
kWh ] clusters [pu] by ∆ωt,ξD

2 -4 -0.5 1 2 ±0.05 10%

E.4.2.1 Voltage regulation

In Fig. E.7, the voltage at different buses are shown over time. It can be seen that
the voltage at several buses violate the lower limit (i.e., 0.95) at the beginning
of the disturbances. However, the delta prices offered by the DSO manage to
mitigate the issues in less than 10 seconds in most cases. Moreover, the figure
shows that the voltage violations are not the same in the two different hours,
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i.e., h = {5:00, 15:00}, because of the different consumers preferences during
the day, as discussed in subsection E.4.1.1.

Figure E.7: Voltage at different buses in hour 5:00 and 15:00.

In Fig. E.8, the number of buses with voltage issues are plotted along with the
frequency response of the system. It is observed that i) the number of buses with
voltage issues decreases in time and ii) the frequency evolution in time shows
that the DSO operation does not compromise the TSO operation for frequency
regulation. Therefore, independent and simultaneous operation of TSO and
DSO is indeed plausible without jeopardising the system stability.

Figure E.8: Number of buses with voltage violations along with the system’s fre-
quency at hour 15:00.
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E.4.2.2 Price response

In Fig. E.6, the delta prices and corresponding consumers’ response are provided
for the two clusters at the DSO level. When a voltage violation occurs, the PI
controller starts generating a price signal that keeps increasing until the voltage
issues are resolved within the cluster. The delta price will be maintained until
the power disturbance disappears or another disturbance hits the network.

Figure E.9: Delta prices and corresponding flexibility at the DSO level at hour
15:00.

It can be seen from the figure that a significant power disturbance caused low
voltage issues at many buses at 30 seconds. During this time, the PI controller
generated a positive delta price that increased to 0.57 DKK/kWh to induce
202 kW of decrease in consumption to regulate voltage in those buses. This
operation did not have any negative impact on the rest of the system.

E.5 Conclusions

This paper provides a control-based solution for the provision of AS from the
consumers, which is called AS4.0. In this alternative approach, the SOs at differ-
ent levels of the grid submit time-varying prices to the pool of consumers at their
territory to address different operational issues. Consumers receive price signals
in their energy management systems and react to minimise their electricity cost.
The proposed AS mechanism is explained and appropriate simulation models
and estimation algorithms are developed to implement the proposed mechanism.
At the transmission level, we used a MILP to represent the price-response of
the consumers accounting for the loads’ rebound effect. Then, an ANN model is
developed based on the MILP problem to generate appropriate prices to induce
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the required flexibility. At the distribution level, the aggregate price response
of the consumers is modelled through an APR function and appropriate delta
prices are generated by a PI controller.

Simulation results prove that both TSO and DSO are able to resolve operational
issues through the AS4.0 approach simultaneously, and the performance of fre-
quency regulation is better by way of AS4.0 compared to the conventional AS
provision. In spite of the promising results in this paper, the AS4.0 approach
needs to be further tested with high-resolution data, allowing a better repre-
sentation of the price-response of the consumers at a higher scale. Moreover,
the possibility of conflict and competition between TSO and DSO in obtaining
flexibility from the load demand should be further investigated and appropriate
coordination methods should be developed.
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