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ABSTRACT

The most prevalent routine for camera calibration is based on the detection of well-defined feature points on a
purpose-made calibration artifact. These could be checkerboard saddle points, circles, rings or triangles, often
printed on a planar structure. The feature points are first detected and then used in a nonlinear optimization to
estimate the internal camera parameters. We propose a new method for camera calibration using the principle
of inverse rendering. Instead of relying solely on detected feature points, we use an estimate of the internal
parameters and the pose of the calibration object to implicitly render a non-photorealistic equivalent of the optical
features. This enables us to compute pixel-wise differences in the image domain without interpolation artifacts.
We can then improve our estimate of the internal parameters by minimizing pixel-wise least-squares differences.
In this way, our model optimizes a meaningful metric in the image space assuming normally distributed noise
characteristic for camera sensors. We demonstrate using synthetic and real camera images that our method
improves the accuracy of estimated camera parameters as compared with current state-of-the-art calibration
routines. Our method also estimates these parameters more robustly in the presence of noise and in situations
where the number of calibration images is limited.

Keywords: camera calibration, inverse rendering, camera intrinsics

1. INTRODUCTION

Accurate camera calibration is essential for the success of many optical metrology techniques such as pose
estimation, white light scanning, depth from defocus, passive and photometric stereo, and more. To obtain
sub-pixel accuracy, it can be necessary to use high-order lens distortion models, but this necessitates a large
number of observations to properly constrain the model and avoid local minima during optimization.

A very commonly used camera calibration routine is that of Zhang.1 This is based on detection of feature
points, an approximate analytic solution and a nonlinear optimization of the reprojection error to estimate the
internal parameters, including lens distortion. Oftentimes, checkerboard corners are detected using Harris’ corner
detector,2 followed by sub-pixel saddle-point detection, such as that of Förstner and Gülch,3 which is implemented
in OpenCV’s cornerSubPix() routine. This standard technique can be improved for example by more robust and
precise sub-pixel corner detectors4,5 or use of a pattern different from the prevalent checkerboard.6,7 A different
line of work aims at reducing perspective and lens-dependent bias of sub-pixel estimates.8,9 In the work of
Datta,10 reprojection errors are reduced significantly by iteratively rectifying images to a frontoparallel view and
re-estimating saddle points. Nevertheless, such techniques are still dependent on how accurately and unbiased
the corners/features were detected in the first place. Perspective and lens-distortion are then not considered
directly, as their parameters are known only after calibration. Instead, the common approach is to try to make
the detector mostly invariant to such effects. However, for larger features such as circles, it is questionable
whether these can be detected in an unbiased way without prior knowledge of lens parameters. In addition, the
distribution of the localization error is unknown and least-squares optimization may not be optimal.

In this paper, instead of relying solely on the sub-pixel accuracy of points in the image, we render an image of
the calibration object given the current estimate of calibration parameters and the pose of the object. This non-
photorealistic rendering of the texture of the calibration object can be compared to the observed image, which
lets us compute pixel-wise differences in the image domain without interpolation. Because we are comparing
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differences in pixel intensities, we can model the errors as normally distributed which closely resembles the noise
characteristics usually seen in camera images. This process is iterated in an optimization routine so that we are
able to directly minimize the squared difference between the observed pixels and our rendered equivalent.

To ensure convergence of the optimization, the error must be differentiable with respect to camera parameters,
object pose, and image coordinates. We ensure this by rendering slightly smoothed versions of the calibration
object features.

2. RELATED WORK

We use a texture for our implicit rendering. This bears some resemblance to the version of texture-based camera
calibration11 where a known pattern is employed. We thus inherit some of the robustness and accuracy benefits
that this method earns because it is not relying exclusively on feature extraction. Our optimization strategy is
however simpler and more easily applied in practice as compared with their rank minimization problem with
nonlinear constraints.

The work by Rehder et al.12 is more closely related to ours. They argue that an initial selection of feature
points (like corners) is an inadequate abstraction. As in our work, they use a standard calibration technique
for initialization. With this calibration, they implicitly render the calibration target into selected pixels to get a
more direct error formulation based on image intensities. This is then used to further refine different calibration
parameters through optimization. Their approach results in little difference from the initial calibration values in
terms of intrinsic parameters. Instead, they focus on the use of their technique for estimating line delay in rolling
shutter cameras and for inferring exposure time from motion blur. Rehder et al. select pixels for rendering where
they find large image gradients in the calibration image. Our pixel selection scheme is different from theirs: we
use all the pixels that the target is projected to, and our objective function is different.

In more recent work, Rehder and Siegwart13 extend their direct formulation of camera calibration12 to
include calibration of inertial measurement units (IMUs). In this work, the authors introduce blurring into their
renderings to simulate imperfect focusing and motion blur. We also use blurring, and their objective function is
more similar to ours in this work. However, they still only select a subset of pixels for rendering based on image
gradients, and they, again, did well in estimating exposure time from motion blur but did not otherwise improve
results over the baseline approach.

In terms of improved image features, Ha et al.7 proposed replacing the traditional checkerboard with a
triangular tiling of the plane (a deltille grid). They describe a method for detecting this pattern and checkerboards
in an image and introduce a method for computing the sub-pixel location of corner points for deltille grids or
checkerboards. This is based on resampling of pixel intensities around a saddle point and fitting a polynomial
surface to these. We consider this approach state-of-the-art in camera calibration based on detection of interest
points, and we therefore use it for performance comparison.

3. METHOD

Our method builds on top of an existing camera calibration method. This is used as a starting guess for the
camera matrix K0, the distortion coefficients d0 and the poses of each calibration object Ri0, ti0. We use this
to render images of calibration objects, which we compare with images captured by the camera. Based on this
comparison, the optimizer updates the camera calibration until the result is satisfactory. An outline of our
method is in Figure 1.

The rendering is based on sampling a smooth function TG that describes the texture of the calibration object.
The initial calibration with a standard technique reveals which pixels the calibration target covers. Each of these
pixels is undistorted and projected onto the surface of the calibration object to get the coordinates for where to
sample TG. This inverse mapping from pixel coordinates to calibration object coordinates is advantageous with
respect to calculating the gradient used in optimization. Each sampled TG value is compared with the intensity
of its corresponding pixel, and the sum of squared errors is the objective function that we minimize.
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Figure 1: Overview of our method with a checkerboard as an example. All images are crops of a larger image.
Difference images: Red represents positive values and blue represents negative values. For clear visualization,
we have multiplied the focal length by 1.01 in our initial guess. Note that the converged difference image still
resembles a checkerboard pattern because we do not compensate for the board’s albedo.

3.1 Projection of points

Let us introduce a function that projects points in R3 to the image plane of a camera, including distortion

P (K,d,p) =

[
x
y

]
. (1)

Here, K is a camera matrix, d is a vector of distortion coefficients, and p is the point we are projecting, where
the elements are

K =

fx 0 x0
0 fy y0
0 0 1

 , d =
[
k1 k2 p1 p2

]
, p =

pxpy
pz

 . (2)

P is then implemented as follows. First, the points are projected to normalized image coordinates:[
xn
yn

]
=

1

pz

[
px
py

]
, r2 = x2n + y2n. (3)

The normalized points are distorted using the distortion model of Brown-Conrady.14,15[
xnd
ynd

]
=

[
xn
yn

] (
1 + k1r

2 + k2r
4
)

+

[
2p1xnyn + p2

(
r2 + 2x2n

)
2p2xnyn + p1

(
r2 + 2y2n

)] , (4)

and the distorted points are converted to pixel coordinates[
x
y

]
=

[
fxxnd + x0
fyynd + y0

]
. (5)



3.2 Rendering

Let each calibration board have its own u, v coordinate system, and let Ri and ti describe the pose of the ith
board. Let rij denote the ith column of Ri. The 3D position of a point on a board is then

p(i, u, v) =
[
Ri ti

] 
u
v
0
1

 =
[
ri1 ri2 ti

] uv
1

 . (6)

Using a camera matrix K and distortion coefficients d, we can project this point to the image plane[
x
y

]
= P(K,d,p(i, u, v)). (7)

We can solve for u, v in terms of x, y in the above expression and obtain a new function:[
u
v

]
= P−1(K,d, i, x, y). (8)

As mentioned, we use a function to define the texture of the calibration board (checkerboard, circles, deltille
grid, or likewise). Let us call this texture function T(puv). Because natural images are not always sharp, we
introduce a blurry version of the texture map by convolving it with a Gaussian kernel in u and v. This has the
additional advantage that the texture map becomes smooth, which makes the objective function differentiable.

TG(puv, σu, σv) = (Gσu ∗Gσv ∗ T)(puv). (9)

This blur is applied in texture space, but we actually want it to be uniform around the interest point in image
space. Thus, the standard deviations σu and σv, need to be corrected according to the length of the positional
differential vector of the projection to the image plane. We introduce this quantity as

Mu =

∣∣∣∣∣∣∣∣∂P(K,d,p(i, u, v))

∂u

∣∣∣∣∣∣∣∣
2

. (10)

Inserting Equations (8) and (10) in Equation (9), we obtain a function that enables the rendering of an image
of the calibration object:

Ci(x, y, σi,j) = TG

(
P−1 (K,d, i, x, y) , σi,j/Mu, σi,j/Mv

)
, (11)

where Mv is the same as Mu but with respect to v and σi,j is a measure of how blurry the image is around the
jth interest point on the ith calibration board. This implies that the formula is only valid in the neighborhood
of this point, and therefore we introduce

Ni,j (12)

to describe the set of pixel coordinates where the rendering is accurate. We choose Ni,j to be the pixels where
the corresponding u, v coordinate is no further away than one half of the interest point spacing in Manhattan
distance given by the initial camera calibration. For convenience of notation, let us define a set containing all
Ri, ti, and σi,j

β =
{
Ri, ti : i ∈ {1, . . . , ni}

}
∪
{
σi,j : i ∈ {1, . . . , ni}, j ∈ {1, . . . , nj}

}
, (13)

where ni is the number of calibration boards and nj is the number of interest points on each calibration board.
Using Equations (11) to (13), our optimization problem is then

K̂, d̂, β̂ = arg min
K,d,β

ni∑
i=1

nj∑
j=1

∑
x,y∈Ni,j

(
Ci(x, y, σi,j)− Ii(x, y)

)2
, (14)

where Ii(x, y) is the intensity of the pixel at x, y in the image containing the ith calibration board. We pa-
rameterize Ri as quaternions and solve Equation (14) using the Levenberg-Marquardt algorithm.16,17 Because
Equation (9) is defined to give values between 0 and 1, in the case where σ = 0, our optimization problem is
equivalent to maximizing the sum of pixels on white parts of T while minimizing the sum of pixels corresponding
to black parts of T.



3.3 Computation of P−1

Recall that P−1 is the function that, given a camera calibration and the pose of a calibration board, transforms
from x, y in pixel space to u, v coordinates on the board. The first step in computing this is to invert Equation (5)
by normalizing the pixel coordinates [

xnd
ynd

]
=

[
x−x0

fx
y−y0
fy

]
. (15)

Inverting Equation (4) is not possible to do analytically, so we use an iterative numerical approach.18 Note
however that we can compute analytical derivatives of the inverse of Equation (4) by applying the inverse function
theorem. To map the undistorted normalized coordinates to the calibration object, we combine Equations (3)
and (6):

s

xnyn
1

 =
[
ri1 ri2 ti

]︸ ︷︷ ︸
Hi

uv
1

 . (16)

From this, it is clear that Hi is a homography transforming from the space of the ith calibration board to the
normalized image plane. We invert the homography to perform the mapping

s

uv
1

 = H−1i

xnyn
1

 . (17)

Because the Levenberg-Marquardt algorithm is gradient-based, we need derivatives. We designed our texture
function TG to be smooth and differentiable, and fortunately the function P−1 is also differentiable, which implies
that Ci is differentiable. Our implementation uses dual numbers for computing analytical derivatives.

4. RESULTS

When comparing a camera calibration to the ground truth, one could measure errors of each parameter individ-
ually,11 but this is difficult to interpret, especially for distortion parameters as they can counteract each other.
Motivated by this, we introduce per-pixel reprojection error, which measures the root mean squared distance in
pixels between points projected with the true and estimated camera intrinsics. For each pixel, the image plane
coordinates x, y define a line in R3 along which we select a point qxy that projects to this pixel:

P(K,d,qxy) =

[
x
y

]
, (18)

where K is the true camera matrix and d are the true distortion coefficients. We can now compute the per-pixel
reprojection error E by using the estimated parameters to project the same points. Computing the differences,
we have

E =

√√√√∑
x,y

∣∣∣∣∣∣∣∣P(K̂, d̂,qxy)−
[
x
y

]∣∣∣∣∣∣∣∣2
2

, (19)

where K̂ is the estimated camera matrix, d̂ are the estimated distortion coefficients and x, y sum over all possible
pixel locations.

4.1 Synthetic data

We generate a set of 500 images of size 1920 × 1080 with a virtual camera with focal length f = 1000 each
containing a single 17 × 24 checkerboard. The images are rendered so that the pixel intensities lie in the range
[0.1; 0.9]. Figure 2 shows examples of these images. Each image is blurred by filtering it with a Gaussian kernel
with zero mean and standard deviation σ. After this we add normally distributed noise to each pixel with zero
mean and standard deviation σn, examples of this can be seen in Figure 3.



Figure 2: Sample images from our synthetic image dataset.

σ = 0.5, σn = 0 σ = 0.5, σn = 1.5 σ = 0.5, σn = 3 σ = 0, σn = 1 σ = 1, σn = 1 σ = 2, σn = 1

Figure 3: A corner from a checkerboard in a synthetic image with various levels of blur and noise added.

We select n random images from these and use the checkerboard detector from Ha et al.7 with default pa-
rameters to detect points. After this, we use the standard method by Zhang1 to compute the camera calibration.
This is a calibration we compare with (Ha et al.), but also our initial guess for Equation (14). We do this for
n ∈ {3, 20, 50} and for varying values of σ and σn. For each n, σ and σn we perform 25 trials with randomly
sampled images. The results of these experiments are in Figure 4. For comparison with OpenCV,18 we use the
detected points as initialization for cornerSubPix,3 with a 5 × 5 window. As the images are rendered without
distortion, we do the calibration without distortion as well.

We observe that our method performs better than Ha et al.7 and OpenCV3,18 for each n across various levels
of noise and blur, except for n = 3 in cases with much blur. We also observe that our method is consistently
better in noisy situations.
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Figure 4: Comparison of our method with Ha et al.7 and OpenCV3,18 for varying number of images used in
calibration (n). Left: Varying σn with fixed σ = 0.5. Right: Varying σ with fixed σn = 1%. OpenCV n = 3 lies
beyond the plotted area.



Figure 5: Sample images from our real image dataset.

4.2 Real data

When comparing camera calibrations on real data, an often reported measure is the reprojection error of all points.
That is however not something we are able to do as our method incorporates the constraint of the calibration
object geometry, and the reprojection error will thus per definition always be zero. Based on Figure 4, the
points detected by the detector from Ha et al.7 are clearly quite accurate, which motivates us to use it as a
pseudo-ground truth.

We use a dataset of 128 images at a resolution of 3376× 2704, each containing a 12× 13 checkerboard. We
randomly select 64 images to use as our test set, and detect points in them with Ha et al.7 which we use as
pseudo-ground truth. Then we select n of the images not in the test set and use them to compute the camera
intrinsics. For each image in the test set, we use the already detected points together with our camera calibration,
to compute the pose of the checkerboard, which in turn allows us to project points to the camera, and thereby
measure a reprojection error. For each n we partition the 64 images in the training set into non-overlapping
sets of size n and do the camera calibration for each of them. Figure 6 and Table 1 show the performance of
our method compared to Ha et al.7 and OpenCV.3 For n < 5 our method performs better and has a lower
standard deviation. For large n, Ha et al.7 achieve an extremely similar reprojection error, but the points
we are computing the reprojection error against are also detected by their method. It can also be seen that
the reprojection error of their method on the training data approaches the same values from below, so the best
achievable test set reprojection error is limited either by the camera model or the accuracy of the detected points.
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Figure 6: Reprojection error for images in the test set of our real dataset as a function of n. Bars on each point
show ±1 standard deviation.



Table 1: Data from Figure 6. ± indicates the standard deviation of the reprojection error.

n 2 3 4 5

OpenCV 0.61± 0.52 0.37± 0.10 0.32± 0.15 0.33± 0.14
Ha et al. 0.55± 0.36 0.37± 0.11 0.30± 0.15 0.26± 0.03
Ours 0.50± 0.22 0.36± 0.09 0.30± 0.13 0.27± 0.03

5. DISCUSSION

Although we have only used this method to compute intrinsics of a single camera in this paper, it is straight-
forward to extend to intrinsics of multiple cameras and their extrinsics. The homography Hi can easily incorpo-
rate the pose of the camera, and then all one needs is a separate set of parameters per camera.

Even though we have chosen to use the Brown-Conrady14,15 distortion model in our work, this is a choice
mostly motivated by being able to fairly compare with OpenCV.18 Our method is not tailored to this distortion
model, and one could replace it with another, such as the division model.19

We do not attempt to match the scaling of the image intensities in the rendering as in the work of Rehder et
al.12 We experimented with scaling the image intensities to match the rendering or including the local intensity
of the rendering as a parameter in the optimization as well, but we did not observe any increase in accuracy
when doing this.

Our method takes around three minutes to solve the optimization problem for 40 images from our real dataset,
where each image is 9 Megapixels. We find this to be an acceptable computation time, especially given that even
one such problem contains around 30 million residuals.

6. CONCLUSION

We have introduced a method for improving camera calibration based on minimizing the sum of squared dif-
ferences between real and rendered images of textured flat calibration objects. Our rendering pipeline consists
purely of analytically differentiable functions, which allows for exact gradients to be computed making the con-
vergence of the optimization more robust and fast, while still allowing us to blur the image in the image space
as would naturally occur. On synthetic data, our method outperforms state-of-the-art camera calibration based
on point detection, for images distorted by Gaussian blur and noise.

On real data, our method exhibits a clear advantage when only a few images are available for calibration,
and performs at least as well for a larger number of images, but we have not been able to verify whether our
method outperforms the existing methods in this case, due to the difficulty of evaluating which of two estimated
camera intrinsics is better.
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