

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Oct 25, 2019

Greedy Gaussian Segmentation of Multivariate Time Series

Hallac, David; Nystrup, Peter; Boyd, Stephen

Published in:
Advances in Data Analysis and Classification

Link to article, DOI:
10.1007/s11634-018-0335-0

Publication date:
2019

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Hallac, D., Nystrup, P., & Boyd, S. (2019). Greedy Gaussian Segmentation of Multivariate Time Series.
Advances in Data Analysis and Classification, 13(3), 727-751. https://doi.org/10.1007/s11634-018-0335-0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/228211927?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/s11634-018-0335-0
https://orbit.dtu.dk/en/publications/greedy-gaussian-segmentation-of-multivariate-time-series(50b2e2e0-c202-4e06-a0fc-bda35f8b7f93).html
https://doi.org/10.1007/s11634-018-0335-0

Greedy Gaussian Segmentation
of Multivariate Time Series

David Hallac Peter Nystrup Stephen Boyd

April 2018

Abstract

We consider the problem of breaking a multivariate (vector) time series into seg-
ments over which the data is well explained as independent samples from a Gaussian
distribution. We formulate this as a covariance-regularized maximum likelihood prob-
lem, which can be reduced to a combinatorial optimization problem of searching over
the possible breakpoints, or segment boundaries. This problem can be solved using
dynamic programming, with complexity that grows with the square of the time series
length. We propose a heuristic method that approximately solves the problem in lin-
ear time with respect to this length, and always yields a locally optimal choice, in the
sense that no change of any one breakpoint improves the objective. Our method, which
we call greedy Gaussian segmentation (GGS), easily scales to problems with vectors
of dimension over 1000 and time series of arbitrary length. We discuss methods that
can be used to validate such a model using data, and also to automatically choose
appropriate values of the two hyperparameters in the method. Finally, we illustrate
our GGS approach on financial time series and Wikipedia text data.

Keywords: Time series analysis; Change-point detection; Financial regimes; Text segmen-
tation; Covariance regularization; Greedy algorithms.

1 Introduction

Many applications, including weather measurements [Xu02], car sensors [HSS+16], and fi-
nancial returns [NHL+17], contain long sequences of multivariate time series data. With
data sets such as these, there are many benefits to partitioning the time series into seg-
ments, where each segment can be explained by as simple a model as possible. Partitioning
can be used for denoising [AFNA05], anomaly detection [RR06], regime-change identification
[NHML16], and more. Breaking a large data set down into smaller, simpler components is
also a key aspect of many unsupervised learning algorithms [HTF09, Chapter 14].

In this paper, we analyze the time series partitioning problem by formulating it as a
covariance-regularized likelihood maximization problem, where the data in each segment can
be explained as independent samples from a multivariate Gaussian distribution. We propose

1

an efficient heuristic, which we call the greedy Gaussian segmentation (GGS) algorithm, that
approximately finds the optimal breakpoints using a greedy homotopy approach based on the
number of segments [ZG81]. The memory usage of the algorithm is a modest multiple of the
memory used to represent the original data, and the time complexity is linear in the number
of observations, with significant opportunities for exploiting parallelism. Our method is able
to scale to arbitrarily long time series and multivariate vectors of dimension over 1000. We
also discuss several extensions of this approach, including a streaming algorithm for real-time
partitioning, as well as a method of validating the model and selecting optimal values of the
hyperparameters. Last, we implement the GGS algorithm in a Python software package
GGS, available online at https://github.com/cvxgrp/GGS, and apply it to various financial
time series and Wikipedia text data to illustrate our method’s accuracy, scalability, and
interpretability.

1.1 Related work

This work relates to recent advancements in both optimization and time series segmentation.
Many variants of our problem have been studied in several contexts, including Bayesian
change-point detection [BS82, Lee98, SK05, CK10, BR12], change-point detection based on
hypothesis testing [Cro88, VS96, DG06, GW14, Li15], mixture models [VVK03, AFNA05,
PLBR11, SCGA11], hidden Markov models and the Viterbi algorithm [RTÅ98, GS01, Bul11,
HRH+15, NML17], and convex segmentation [KC14], all trying to find breakpoints in time
series data sets.

The different methods make different assumptions about the data (see [EA12] for a
comprehensive survey). GGS assumes that, in each segment, the mean and covariance are
constant and unrelated to the means and covariances in all other segments. This differs from
ergodic hidden Markov models [RTÅ98, GS01, Bul11, HRH+15, NML17], which implicitly
assume that the underlying segments will repeat themselves, with some structure to when
the transitions are likely to occur. In a left-to-right hidden Markov model [Bak76, CMR05],
though, additional constraints are imposed to ensure non-repeatability of segments, similar
to GGS. Alternatively, trend filtering problems [KKBG09] assume that neighboring segments
have similar statistical parameters; when a transition occurs, the new parameters are not too
far from the previous ones. Other models have tried to solve the problem of change-point
detection when the number of breakpoints is unknown [BN93, CD03], including in streaming
settings [GS99, Gus00].

GGS uses a straightforward approach based on the maximum likelihood of the data (we
address how to incorporate many of these alternative assumptions in §5). In real world
contexts, deciding on which approach to use depends entirely on the underlying structure of
the data; a reasonable choice of method can be determined via cross-validation of the various
models. Our work is novel in that it allows for an extremely scalable greedy algorithm to
detect breakpoints in multivariate time series. That is, GGS is able to solve much larger
problems than many of these other methods, both in terms of vector dimension and the
length of the time series. Additionally, its robustness allows GGS to be used as a black-box
method which can automatically determine an appropriate number of breakpoints, as well

2

as the model parameters within each segment, using cross-validation.
Our greedy algorithm is based on a top-down approach to segmentation [DP73], though

there has also been related work using bottom-up methods [KCHP04]. While our algorithm
does achieve a locally optimal solution, we note that it is possible to solve for the global opti-
mum using dynamic programming [Bel61, FPK04, KNP06]. However, these globally optimal
approaches have complexities that grow with the square of the time series length, whereas
our heuristic method scales linearly with the time series length. Our model approximates
`1/`2 trend filtering problems [KKBG09, WRA11, WBAW12], which use a penalty based on
the fused group lasso [TSR+05, BV11], to couple together the model parameters at adjacent
times. However, these models are unable to scale up to the sizes we are aiming for, so we
develop a fast heuristic, similar to an `0 penalty [CWB08], where each breakpoint splits the
time series into two independent problems. To ensure robustness, we rely on covariance-
regularized regression to avoid errors when there are more dimensions than samples in a
segment [WT09].

1.2 Outline

The rest of this paper is structured as follows. In §2, we formally define our optimization
problem. In §3, we explain the GGS algorithm for approximately solving the problem in a
scalable way. In §4, we describe a validation process for choosing the two hyperparameters
in our model. We then examine in §5 several extensions of this approach which allow us to
apply our algorithm to new types of problems. Finally, we apply GGS to several real-world
financial and Wikipedia data sets, as well as a synthetic example, in §6.

2 Problem setup

2.1 Segmented Gaussian model

We consider a given time series x1, . . . , xT ∈ Rn. (The times t = 1, . . . , T need not be
uniformly spaced in real time; all that matters in our model and method is that they are or-
dered.) We will assume that the xt’s are independent samples with xt ∼ N (µt,Σt), where the
mean µt and covariance Σt only change at K � T breakpoints b1, . . . , bK . These breakpoints
divide the given T samples into K + 1 segments; in each segment, the xt’s are generated
from the same multivariate Gaussian distribution. Our goal is to determine K, the break
points b1, . . . , bK , and the means and covariances

µ(1), . . . , µ(K+1), Σ(1), . . . ,Σ(K+1)

in the K + 1 segments between the breakpoints, from the given data x1, . . . , xT .
Introducing breakpoints b0 and bK+1, the breakpoints must satisfy

1 = b0 < b1 < · · · < bK < bK+1 = T + 1,

3

and the means and covariances are given by

(µt,Σt) = (µ(i),Σ(i)), bi−1 ≤ t < bi, i = 1, . . . , K.

(The subscript t denotes time t; the superscript (i) and subscript on b denotes segment i.)
We refer to this parametrized distribution of x1, . . . , xT as the segmented Gaussian model
(SGM). The log-likelihood of the data x1, . . . , xT under this model is given by

`(b, µ,Σ) =
T∑
t=1

(
−1

2
(xt − µt)TΣ−1t (xt − µt)−

1

2
log det Σt −

n

2
log(2π)

)

=
K+1∑
i=1

bi−1∑
t=bi−1

(
−1

2
(xt − µ(i))T (Σ(i))−1(xt − µ(i))− 1

2
log det Σ(i) − n

2
log(2π)

)

=
K+1∑
i=1

`(i)(bi−1, bi, µ
(i),Σ(i)),

where

`(i)(bi−1, bi, µ
(i),Σ(i)) =

bi−1∑
t=bi−1

(
−1

2
(xt − µ(i))T (Σ(i))−1(xt − µ(i))− 1

2
log det Σ(i) − n

2
log(2π)

)

= −1

2

bi−1∑
t=bi−1

(xt − µ(i))T (Σ(i))−1(xt − µ(i))

−bi − bi−1
2

(
log det Σ(i) + n log(2π)

)
is the contribution from the ith segment. Here we use the notation b = (b1, . . . , bK), µ =
(µ(1), . . . , µ(K+1)), and Σ = (Σ(1), . . . ,Σ(K+1)), for the parameters in the SGM. In all the
expressions above we define log det Σ as −∞ if Σ is singular, i.e., not positive definite. Note
that bi − bi−1 is the length of the ith segment.

2.2 Regularized maximum likelihood estimation

We will choose the model parameters by maximizing the covariance-regularized log-likelihood
for a given value of K, the number of breakpoints. We regularize the covariance to avoid
errors when there are more dimensions than samples in a segment, a well-known problem in
high dimensional settings [HLPL06, BL08, WT09]. Thus we choose b, µ,Σ to maximize the
regularized log-likelihood

φ(b, µ,Σ) = `(b, µ,Σ)− λ
K+1∑
i=1

Tr(Σ(i))−1 =
K+1∑
i=1

(
`(i)(bi−1, bi, µ

(i),Σ(i))− λTr(Σ(i))−1
)
, (1)

where λ ≥ 0 is a regularization parameter, with K fixed. (We discuss the choice of the
hyperparameters λ and K in §4.) This is a mixed combinatorial and continuous optimization

4

problem since it involves a search over the
(
T−1
K

)
possible choices of the breakpoints b1, . . . , bK ,

as well as the parameters µ and Σ. For λ = 0, this reduces to maximum likelihood estimation,
but we will assume henceforth that λ > 0. This implies that we will only consider positive
definite (invertible) estimated covariance matrices.

If the breakpoints b are fixed, the regularized maximum likelihood problem has a simple
analytical solution. The optimal value of the ith segment mean is the empirical mean over
the segment,

µ(i) =
1

bi − bi−1

bi−1∑
t=bi−1

xt, (2)

and the optimal value of the ith segment covariance is

Σ(i) = S(i) +
λ

bi − bi−1
I, (3)

where S(i) is the empirical covariance over the segment,

S(i) =
1

bi − bi−1

bi−1∑
t=bi−1

(xt − µ(i))(xt − µ(i))T .

Note that the empirical covariance S(i) can be singular, for example when bi − bi−1 < n,
but for λ > 0 (which we assume), Σ(i) is always positive definite. Thus, for any fixed choice
of breakpoints b, the mean and covariance parameters that maximize the regularized log-
likelihood (1) are given by (2) and (3), respectively. The optimal value of the covariance (3)
is similar to a Stein-type shrinkage estimator [LW04].

Using these optimal values of the mean and covariance parameters, the regularized log-
likelihood (1) can be expressed in terms of b alone, as

φ(b) = C − 1

2

K+1∑
i=1

(
(bi − bi−1) log det(S(i) +

λ

bi − bi−1
I)− λTr(S(i) +

λ

bi − bi−1
I)−1

)

= C +
K+1∑
i=1

ψ(bi−1, bi),

where C = −(Tn/2)(log(2π) + 1) is a constant that does not depend on b, and

ψ(bi−1, bi) = −1

2

(
(bi − bi−1) log det(S(i) +

λ

bi − bi−1
I)− λTr(S(i) +

λ

bi − bi−1
I)−1

)
.

(Note that S(i) depends on bi−1 and bi.) Without regularization, i.e., with λ = 0, we have

ψ(bi−1, bi) = −1

2
(bi − bi−1) log detS(i).

5

More generally, we have reduced the regularized maximum likelihood estimation problem,
for fixed values of K and λ, to the purely combinatorial problem

maximize −1
2

∑K+1
i=1

(
(bi − bi−1) log det(S(i) + λ

bi−bi−1
I)− λTr(S(i) + λ

bi−bi−1
I)−1

)
, (4)

where the variable to be chosen is the collection of breakpoints b = (b1, . . . , bK). These can
take

(
T−1
K

)
possible values. Note that the breakpoints bi appear in the objective of (4) both

explicitly and implicitly, through the empirical covariance matrices S(i), which depend on
the breakpoints.

Efficiently computing the objective. For future reference, we mention how the objec-
tive in (4) can be computed, given b. We first compute the empirical covariance matrices
S(i), which costs order Tn2 flops. This step can be carried out in parallel, on up to K + 1
processors. The storage required to store these matrices is order Kn2 doubles. (For com-
parison, the storage required for the original problem data is Tn. Since we typically have
Kn ≤ T , i.e., the average segment length is at least n, the storage of S(i) is no more than
the storage of the original data.)

For each segment i = 1, . . . , K + 1, we carry out the following steps (again, possibly in
parallel) to evaluate ψ(bi−1, bi). We first carry out the Cholesky factorization

LLT = S(i) +
λ

bi − bi−1
I,

where L is lower triangular with positive diagonal entries, which costs order n3 flops. The
log-determinant term can be computed in order n flops, as 2

∑n
i=1 log(Lii), and the trace

term in order n3 flops, as ‖L−1‖2F . The overall complexity of evaluating the objective is order
Tn2 + Kn3 flops, and this can be easily parallelized into K + 1 independent tasks. While
we make no assumptions about T , n, and K (other than K < T), the two terms are equal
in order when T = Kn, which means that the average segment length is on the order of
n, the vector dimension. This is the threshold at which the empirical covariance matrices
(can) become nonsingular, though in most applications, useful values of K are much smaller,
which means the first term dominates (in order). With the assumption that the average
segment length is at least n, the overall complexity of evaluating the objective is Tn2.

As an example, we might expect a serial implementation for a data set with T = 1000
and n = 100 to require on the order of 0.01 seconds to evaluate the objective, using the very
conservative estimate of 1Gflop/sec for computer speed.

Globally optimal solution. The problem (4) can be solved globally by dynamic program-
ming [Bel61, FPK04, KNP06]. We take as states the set of pairs (bi−1, bi), with bi−1 < bi,
so the state space has cardinality T (T − 1)/2. We consider the selection of a sequence of K
states, with the state transition constraint that (p, q) must be succeeded by a state of the
form (q, r). The complexity of this dynamic programming method is n3KT 2. Our interest,
however, is in a method for large T , so we instead seek a heuristic method for solving (4)
approximately, but with linear complexity in the time series length T .

6

Our method. In §3, we describe a heuristic method for approximately solving problem
(4). The method is not guaranteed to find the globally optimal choice of breakpoints, but it
does find breakpoints with high (if not always highest) objective value, and the ones it finds
are 1-OPT, meaning that no change of any one breakpoint can increase the objective. The
storage requirements of the method are on the order of the storage required to evaluate the
objective, and the computational cost is typically smaller than a few hundred evaluations of
the objective function.

3 Greedy Gaussian segmentation

In this section we describe a greedy algorithm for fitting an SGM to data, which we call
greedy Gaussian segmentation (GGS). GGS computes an approximate solution of (4) in a
scalable way, in each iteration adding one breakpoint and then adjusting all the breakpoints
to (approximately) maximize the objective. In the literature on time series segmentation,
this is similar to the standard “top-down” approach [KCHP04].

3.1 Split subroutine

The main building block of our algorithm is the Split subroutine. The function Split(bi−1, bi)
takes segment i and finds the t that maximizes ψ(bi−1, t)+ψ(t, bi) over all values of t between
bi−1 and bi. (We assume that bi − bi−1 > 1; otherwise we cannot split the ith segment into
two segments.) The time t = Split(bi−1, bi) is the optimal place to add a breakpoint between
bi−1 and bi. The value of ψ(bi−1, t) + ψ(t, bi) − ψ(bi−1, bi) is the increase in the objective if
we add a new breakpoint at t. This is highest when we choose t = Split(bi−1, bi). Due to the
regularization term, it is possible for this maximum increase to be negative, which means
that adding any breakpoint between bi−1 and bi actually decreases the objective. The Split
subroutine is summarized in Algorithm 1.

Algorithm 1 Splitting a single interval into two separate segments

Input: xbi−1
, . . . , xbi , along with empirical mean µ and covariance Σ.

1: initialize µleft = 0, µright = µ, Σleft = λI, Σright = Σ + λI.
2: for t = bi−1 + 1, . . . , bi − 1 do
3: Update µleft, µright, Σleft, Σright.
4: Calculate ψt = ψ(bi−1, t) + ψ(t, bi).
5: end for
6: return The t which maximizes ψt and the value of ψt − ψ(bi−1, bi) for that t.

In Split, line 3, updating the empirical mean and covariance of the left and right segments
resulting from adding a breakpoint at t, is done in a recursive setting in order n2 flops [Wel62].
Line 4, evaluating ψt, requires order n3 flops, which dominates. The total cost of running
Split is order (bi − bi−1)n3.

7

3.2 GGS algorithm

We can use the Split subroutine to develop a simple greedy method for finding good choices
of K breakpoints, for K = 1, . . . , Kmax, by alternating between adding a new break point to
the current set of breakpoints, and then adjusting the positions of all breakpoints until the
result is 1-OPT, i.e., no change of any one breakpoint improves the objective. This GGS
approach is outlined in Algorithm 2.

Algorithm 2 Greedy Gaussian segmentation

Input: x1, . . . , xT , Kmax.
1: initialize b0 = 1, b1 = T + 1.
2: for K = 0, . . . , Kmax-1 do

AddNewBreakpoint:
3: for i = 1, . . . , K + 1 do
4: (ti, ψincrease) = Split(bi−1, bi).
5: end for
6: if All ψincrease’s are negative and K > 0 then
7: return (b1, . . . , bK).
8: else if All ψincrease’s are negative then
9: return ().

10: end if
11: Add a new breakpoint at the ti with the largest corresponding value of ψincrease.
12: Relabel the breakpoints so that 1 = b0 < b1 < · · · < bK+1 < bK+2 = T + 1.

AdjustBreakpoints:
13: repeat
14: for i = 1, . . . , K do
15: (ti, `increase) = Split(bi−1, bi+1).
16: If ti 6= bi, set bi = ti.
17: end for
18: until Stationary.
19: end for
20: return (b1, . . . , bK).

In line 2, we loop over the addition of new breakpoints, adding exactly one new breakpoint
each iteration. Thus, the algorithm finds good sets of breakpoints, for K = 1, . . . , Kmax,
unless it quits early in line 6. This occurs when the addition of any new breakpoint will
decrease the objective. In AdjustBreakpoints, we loop over the current segmentation and
adjust each breakpoint alone to maximize the objective. In this step the objective can either
increase or stay the same, and we repeat until the current choice of breakpoints is 1-OPT. In
AdjustBreakpoints, there is no need to call Split(bi−1, bi+1) more than once if the arguments
have not changed.

The outer loop over K must be run serially, since in each iteration we start with the
breakpoints from the previous iteration. Lines 3 and 4 (in AddNewBreakpoint) can be run

8

in parallel over the K+1 segments. We can also parallelize AdjustBreakpoints, by alternately
adjusting the even and odd breakpoints (each of which can be parallelized) until stationarity.
GGS requires storage on the order of Kn2 numbers. As already mentioned, this is typically
the same order as, or less than, the storage required for the original data.

Ignoring opportunities for parallelization, running iteration K of GGS requires order
KLn3T flops, where L is the average number of iterations required in AdjustBreakpoints.
When parallelized, the complexity drops to Ln3T flops. While we do not know an upper
bound on L, we have observed empirically that it is modest when K is not too large; that is,
AdjustBreakpoints runs just a few outer loops over the breakpoints. Summing from K = 1 to
K = Kmax, and assuming L is a constant, gives a complexity of order (Kmax)2n3T (without
parallelization), or Kmaxn3T (with parallelization). In contrast, the dynamic programming
method [Bel61, FPK04, KNP06] requires order Kmaxn3T 2 flops.

4 Validation and parameter selection

Our GGS method has just two hyperparameters: λ, which controls the amount of (inverse)
covariance regularization, and Kmax, the maximum number of breakpoints. In applications
where the reason for segmentation is to identify interesting times where the statistics of the
data change, K (and λ) might be chosen by hand, or by aesthetic or other considerations, such
as whether the segmentation identifies known or suspected times when something changed.
The hyperparameter values can also be chosen by a more principled method, such as Bayesian
or Akaike information criterion [HTF09, chapter 7]. In this section, we describe a simple
method of selecting the hyperparameters through out-of-sample or cross validation. We first
describe the basic idea with 10:1 out-of-sample validation.

We remove 10% of the data at random, leaving us with 0.9T remaining samples. The
10% of samples are our test set, and the remaining samples are the training set, which we
use to fit our model. We choose some reasonable value for Kmax, such as Kmax = (T/n)/3
(which corresponds to the average segment length 3n) or a much smaller number when T/n
is large. For multiple values of λ, typically logarithmically spaced over a wide range, we run
the GGS algorithm. This gives us one SGM for each value of λ and each value of K. For
each of these SGMs, we note the log-likelihood on the training data, and also on the test
data. (It is convenient to divide each of these by the number of data points, so they become
the average log-likelihood per sample. In this way the numbers for the train and test sets
can be compared.) To calculate the log-likelihood on the test set, we simply evaluate

`(xt) = −1

2
(xt − µ(i))T (Σ(i))−1(xt − µ(i))− 1

2
log det Σ(i) − n

2
log(2π),

if t falls in the ith segment of the model. The overall test set log-likelihood is then defined,
on a test set X , as

1

|X |
∑
xt∈X

`(xt).

9

Note that when t is the time index of a sample in the test set, it cannot be a breakpoint of
the model, since the model was developed using the data in the training set.

We then apply standard principles of validation. If for a particular SGM (found by GGS
with a particular value of λ and K) the average log-likelihood on the train and test sets is
similar, we conclude the model is not over-fit, and therefore a reasonable candidate. Among
candidate models, we then choose one that has a high value of average log-likelihood. If
many models have reasonably high average log-likelihood, we choose one with a small value
of K and a large value of λ. (In the former case to get the simplest model that explains the
data, and in the latter case to get the least sensitive model that explains the data.)

Standard cross-validation is an extension of out-of-sample validation that can give us
even more confidence in a proposed SGM. In cross-validation we divide the original data
into 10 equal size ‘folds’ of randomly chosen samples, and carry out out-of-sample validation
10 times, with each fold as the test set. If the results are reasonably consistent across the
folds, both in terms of train and test average log-likelihood and the breakpoints themselves,
we can have confidence that the SGM fits the data.

5 Variations and extensions

The basic model and method can be extended in many ways, several of which we describe
here.

Warm-start. GGS builds SGMs by increasing K, starting from K = 0. It can also be
used in warm-start mode, meaning we start the algorithm from a given choice of initial
breakpoints. As an extreme version, we can start with a random set of K breakpoints, and
then run AdjustBreakpoints until we have a 1-OPT solution. The main benefit of a warm
start is that it allows for a significant computational speedup. Whereas a (parallelized) GGS
algorithm has a runtime of O(KmaxTn3), this warm-start method takes only O(Tn3), since
it can skip the first Kmax − 1 steps of Algorithm 2. However, as we will show in §6.2, this
speedup comes with a tradeoff, as the solution accuracy tends to drop when running GGS
in warm-start mode as compared to the original algorithm.

Backtracking. In GGS we add one breakpoint per iteration. While we adjust the previous
breakpoints found, we never remove a breakpoint. One variation is to occasionally remove a
breakpoint. This can be done using a subroutine called Combine. This function evaluates,
for each breakpoint, the decrease in objective value if that breakpoint is removed. In a
backtracking step, we remove the breakpoint that decreases the objective the least; we then
can adjust the remaining breakpoints, and continue with the GGS algorithm, adding a new
breakpoint. (If we end up adding the breakpoint we removed back in, nothing has been
achieved.) We also note that backtracking allows for GGS to be solved by a bottom-up
method [KCHP04, BU08]. We do so by starting with T − 1 breakpoints and continually
backtracking until only K breakpoints remain.

10

Streaming. We can deploy GGS when the data is streaming. We maintain a memory of
the last M samples and run GGS on this data set. We could do this from scratch as each new
data point or group of data points arrives, complete with selection of the hyperparameters
and validation. Another option is to fix λ and K, and then to run GGS in warm-start mode,
which means that we keep the previous breakpoints (shifted appropriately), and then run
AdjustBreakpoints from this starting point (as well as AddBreakpoint if a breakpoint has
fallen off our memory).

In streaming mode, the GGS algorithm provides an estimate of the statistics of future
time samples, namely, the mean and covariance in the SGM in the most recent segment.

Multiple samples at the same time. Our approach can easily incorporate the case
where we have more than one data vector for any given time t. We simply change the sums
over each segment for the empirical mean and covariance to include any data samples in the
given time range.

Cyclic data. In cyclic data, the times t are interpreted modulo T , so xT and x1 are
adjacent. A good example is a vector time series that represents daily measurements over
multiple years; we simply map all measurements to t = 1, . . . , 365 (ignoring leap years), and
modify the model and method to be cyclic. The only subtlety here arises in choosing the
first breakpoint, since one breakpoint does not split a cyclic set of times into two segments.
Evidently we need two breakpoints to split a cyclic set of times into two segments. We
modify GGS by arbitrarily choosing a first breakpoint, and then running as usual, including
the ‘wrap-around’ segment as a segment. Thus, the first step chooses the second breakpoint,
which splits the cyclic data into two segments. The AdjustBreakpoints method now adjusts
both the chosen breakpoint and the arbitrarily chosen original one.

Regularization across time. In our current model, the estimates on either side of a
breakpoint are independent of each other. We can, however, carry out a post-processing
step to shrink models on either side of each breakpoint towards each other. We can do this
by fixing the breakpoints and then adjusting the continuous model parameters to minimize
our original objective minus a regularization term that penalizes deviations of (Σ(i), µ(i))
from (Σ(i−1), µ(i−1)).

Non-Gaussian data. Our segmented Gaussian model and associated regularized maxi-
mum likelihood problem (4) can be generalized to other statistical models. The problem is
tractable, at least in theory, when the associated regularized maximum likelihood problem
is convex. In this case we can compute the optimal parameters over a segment by solving a
convex optimization problem, whereas in the SGM we have an analytical solution in terms
of the empirical mean and covariance. Thus we can segment Poisson or Bernoulli data, or
even heterogeneous exponential family distributions [LH15, TPSR15].

11

6 Experiments

In this section, we describe our implementation of GGS, and the results of some numerical
experiments to illustrate the model and the method.

6.1 Implementation

We have implemented GGS as a Python package GGS available at

https://github.com/cvxgrp/GGS.

GGS is capable of carrying out full ten-fold cross-validation to help users choose values of the
hyperparameters. GGS uses NumPy for the numerical computations, and the multiprocessing
package to carry out the algorithm in parallel for different cross-validation folds for a single
λ. (The current implementation does not support parallelism over the segments of a single
fold, and the advantages of parallelism will only be seen when GGS is run on a computer with
multiple cores.)

6.2 Financial indices

In financial markets, regime changes have been shown to have important implications for
asset class and portfolio performance [AT12, SS12, NHML15, NHL+17]. We start with
a small example with n = 3, where we can visualize and plot all entries of the segment
parameters µ(i) and Σ(i).

Data set description. Our data set consists of 19 years of daily returns, from January
1997 to December 2015, for n = 3 indices for stocks, oil, and government bonds: MSCI World,
S&P GSCI Crude Oil, and J.P. Morgan Global Government Bonds. We use log-return data,
i.e., the logarithm of the end-of-day price increase from the previous day. The time series
length is T = 4943. Cumulative returns for the three indices are shown in Figure 1. We can
clearly see multiple ‘regimes’ in the return series, although the individual behaviors of the
three indices are quite different.

GGS algorithm. We run GGS on the data with Kmax = 30 and λ = 10−4. Figure 2 shows
the objective function versus K, i.e., the objective in each iteration of GGS. We see a sharp
increase in the objective up to around K = 8 or K = 10 — our first hint that a choice in
this range would be reasonable. For this example n is very small, so the computation time
is dominated by Python overhead. Still, our single-threaded GGS solver took less than 30
seconds to compute these 30 models on a standard laptop with a 1.7 GHz Intel i7 processor.
The average number of passes through the data for the breakpoint adjustments was under
two.

12

Figure 1: Cumulative returns over the 19-year period for a stock, oil, and bond index.

Figure 2: Objective φ(b) vs. number of breakpoints K for λ = 10−4.

13

Figure 3: Average train and test set log-likelihood during 10-fold cross validation for various λ’s
and across all values of K ≤ 30.

(a) λ = 10−6 (b) λ = 10−5

(c) λ = 10−4 (d) λ = 10−3

14

Cross-validation. We next use 10-fold cross-validation to determine reasonable values
for K and λ. We plot the average log-likelihood over the 10 folds versus K in Figure 3 for
various values of λ. When λ is large, the curves stop before K = Kmax, since GGS terminates
early. These plots clearly show that increasing K above 10 does not increase the average
log-likelihood in the test set; and moreover past this point the log-likelihood on the test and
training sets begin to diverge, meaning the model is overfit. Though Figure 3 only goes up
to K = 30, we find that for values of K above around 60, the log-likelihood begins to drop
significantly. Furthermore, we see that values of λ up to λ = 10−4 yield roughly the same high
log-likelihood. This suggests that choices of K = 10 and λ = 10−4 are reasonable, aligning
with our general preference for models which are simple (small K) and not too sensitive to
noise (large λ). Cross-validation also reveals that the choice of breakpoint locations is very
stable for these values of K and λ, across the 10 folds.

Results. Figure 4 shows the model obtained by GGS with λ = 10−4 and K = 10. We plot
the covariance matrix by showing the square root of the diagonal entries (i.e., the volatilities),
and the three correlations, versus t. During the financial crisis in 2008, the mean return of
stocks and oil was very negative and the volatility was high. The stock market and the oil
price were almost uncorrelated before 2008, but have been positively correlated since then.
It is interesting to see how the correlation between stocks and bonds has varied over time:
It was strongly positive in 1997 and very negative in 1998, in 2002, and in the five years
from mid-2007 to mid-2012. The sudden shift in this correlation between 1997 and 1998
is why GGS yields two relatively short segments in the [1997, 1999] window, rather than
breaking up a longer segment (such as [1999, 2002], where the correlation structure is more
homogenous). The extent of these variations would be difficult to capture using a sliding
window; the window would have to be very short, which would lead to noisy estimates.
The segmentation approach yields a more interpretable partitioning with no dependence on
a (prespecified, fixed) window length. Approaches to risk modeling [Ale00] and portfolio
optimization [PC04, Meu09] based on principal component analysis are questionable, when
volatilities and correlations are changing as significantly as is the case in Figure 4 (see also
[FPW+11]). We plot the cumulative index returns along with the chosen breakpoints in
Figure 5. We can clearly see natural segments and boundaries, for example the Russian
default in 1998 and the 2008 financial crisis.

Comparison with random warm-start. We fix the hyperparameters K = 10 and λ =
10−4, and attempt to find a better SGM using warm-start with random breakpoints. This
step is not needed; we carry this out to demonstrate that while GGS does not find the model
that globally maximizes the objective, it is effective. We run 10000 warm-start random
initial breakpoint computations, running AdjustBreakpoints until the model is 1-OPT and
computing the objective found in each case. (In this case the number of passes over the data
set far exceeds two, the typical number in GGS.) The complementary CDF of the objective
for these 10000 computations is shown in Figure 6, as well as the objective values found by
GGS for K = 8 through K = 11. We see that the random initializations can sometimes

15

Figure 4: Segmented Gaussian model obtained with λ = 10−4, K = 10.

Figure 5: Cumulative returns with vertical bars at the model breakpoints.

16

Figure 6: Empirical complementary CDF of φ(b) for 10000 randomly initialized results for K = 10,
λ = 10−4. Vertical bars represent GGS solutions for different values of K.

lead to very poor results; over 50% of the simulations, even though they are locally optimal,
have smaller objectives than the K = 9 step of GGS. On the other hand, the random
initializations do find some SGMs with objective slightly exceeding the one found by GGS,
demonstrating that GGS did not find the globally optimal set of breakpoints. These SGMs
have similar breakpoints, and similar cross-validated log-likelihood, as the one found by
GGS. As a practical matter, these SGMs are no better than the one found by GGS. There
are two advantages of GGS over the random search: First, it is much faster; and second, it
finds models for a range of values of K, which is useful before we select the value of K to
use.

17

6.3 Large-scale financial example

Data set description. We next look at a larger example to emphasize the scalability of
GGS. We look at all companies currently in the S&P 500 index that have been publicly listed
for the entire 19-year interval from before (from 1997 to 2015), which leaves 309 companies.
Note that there are slightly fewer trading days for the S&P 500 each year than the global
indices, since the S&P 500 does not trade during US holidays, while the global indices still
move. The 19-year data set yields a 309 × 4782 data matrix. We take daily log-returns for
these stocks, and run the GGS algorithm to detect relevant breakpoints.

GGS scalability. We run GGS on this much larger data set up to Kmax = 10. Our serial
implementation of the GGS algorithm, on the same 1.7 GHz Intel i7 processor, took 36
minutes, where AdjustBreakpoint took an average of 3.5 passes through the data at each K.
Note that this aligns very closely with our predicted runtime from §3.2, which was estimated
as (Kmax)2LTn.

Cross-validation. We run 10-fold cross-validation to find good values of the hyperparam-
eters K and λ. The average log-likelihood of the test and train sets are displayed in Figure
7. From the results, we can see that the log-likelihood is maximized at a much smaller value
of K, indicating fewer breakpoints. This is in part because, with n = 309, we need more
samples in each segment to get an accurate estimate of the 309× 309 covariance matrix, as
opposed to the 3× 3 covariance in the smaller example. Our cross-validation results suggest
choosing K = 3 and λ = 5 × 10−2, and as in the small example, the results are very stable
near these values.

Results. We plot the mean, standard deviation, and cumulative return of a uniform, buy-
and-hold portfolio (i.e., investing $1 into each of the 309 stocks in 1997). The results are
shown in Figure 8. Note that there is a selection bias in the data set, since these companies
all remained in the S&P 500 in 2016, and the total return is 8x over the 19-year interval.
Like before, the 2008 financial crisis stands out. It is the only segment with a negative mean
value. The partitioning seems intuitively right. The first, highly volatile, segment includes
both the build-up and burst of the dot–com bubble. The second segment is the bull market
that led to the financial crisis in 2008. The third segment is the financial crisis and the fourth
segment is the market rally that followed the crisis. These break points were also found in
the multiasset example in Figure 4 and 5.

18

Figure 7: Average train and test set log-likelihood during 10-fold cross validation for various λ’s
for the 309-stock example. Note that not all λ’s go all the way up to K = 10 because our algorithm
stops when it determines that it will no longer benefit from adding an additional split.

(a) λ = 5× 10−3 (b) λ = 10−2

(c) λ = 5× 10−2 (d) λ = 10−1

19

Figure 8: Mean, standard deviation, and cumulative return for a uniform portfolio with K = 3,
λ = 5× 10−2.

20

6.4 Wikipedia text data

We examine an example from the field of natural language processing (NLP) to illustrate
how GGS can be applied to a very different type of data set, beyond traditional time series
examples.

Data set description. We look at text data from English-language Wikipedia. We obtain
our data by concatenating the introductions, i.e., the text that precedes the Table of Contents
section on the Wikipedia webpage, of five separate articles, with titles George Clooney,
Botany, Julius Caesar, Jazz, and Denmark. Here, the “time series” consists of the sequence
of words from these five articles in order. After basic preprocessing (removing words that
appear at least five times and in multiple articles), our data set consists of 1282 words,
with each article contributing between 224 and 286 words. We then convert each word into
a 300-dimensional vector using a pretrained Word2Vec embedding of three million unique
words (or short phrases), trained on the Google News data set of approximately 100 billion
words, available at

https://code.google.com/archive/p/word2vec/.

This leaves us with a 300× 1282 data matrix. Our hope is that GGS can detect the break-
points between the five concatenated articles, based solely on the change in mean and co-
variance of the vectors associated with the words in our vector series.

GGS results. We run GGS to split the data into five segments — i.e., K = 4 — and use
cross-validation to select λ = 10−3. (We note, however, that this example is quite robust
to the selection of λ, and any value from 10−6 to 10−3 yields the exact same breakpoint
locations.) We plot the results in Figure 9, which show GGS achieving a near-perfect split of
the five articles. Figure 9 also shows a representative word (or short phrase) in the Google
News data set that is among the top five “most similar” words, out of the entire three million
word corpus, to the average (mean) of each GGS segment, as measured by cosine similarity.
We see that GGS correctly identifies both the breakpoint locations and the general topic of
each segment.

21

Figure 9: Actual and GGS predicted breakpoints for the concatenation of the five Wikipedia
articles, along with the predicted most similar word to the mean of each GGS segment.

22

6.5 Comparison with left-to-right HMM on synthetic data

We next analyze a synthetic example where observations are generated from a given sequence
of segments. This provides a known ground truth, allowing us to compare GGS with a
common baseline, a left-to-right hidden Markov model (HMM) [Bak76, CMR05]. Left-to-
right HMMs, like GGS, split the data into non-repeatable segments, where each segment is
defined by a Gaussian distribution. The HMMs in this experiment are implemented using
the rarhsmm library [XL17], which includes the same shrinkage estimator for the covariance
matrices used in GGS (see §2.2). The shrinkage estimator results in more reliable estimates
not only of the covariance matrices but also of the transition matrix and the hidden states
[FFvSK17].

Data set description. We start by generating 10 random covariance matrices. We do
so by setting Σi = A(i)A(i)T , i = 1, . . . , 10, where A(i) ∈ R25×25 is a random matrix where
each element A

(i)
j,k was generated independently from the standard normal distribution. Our

synthetic data set then has 10 ground truth segments (or K = 9 breakpoints), where segment
i has zero mean and covariance Σi. Each segment is of length 100 (so the total time series
has T = 1000 observations). Each of the 100 readings per segment is sampled independently
from the given distribution. Thus, our final data set consists of a 25 × 1000 data matrix,
consisting of 10 independent segments, each of length 100.

Results. We run both GGS and the left-to-right HMM on this data set. For GGS, we
immediately notice a kink in the objective at K = 9, as shown in Figure 10a, indicating that
the data should be split into K + 1 = 10 segments. We use cross-validation to choose an
appropriate value of λ, which yields λ = 10. We plot the train and test set log-likelihoods
at λ = 10 in Figure 10b. (Similar to the Wikipedia text example, though, the breakpoint
locations are relatively robust to our selection of λ. GGS returns identical breakpoints for
any λ between 10−3 and 103). For this value of λ (and thus for the whole range of λ between
10−3 and 103), we split the data perfectly, identifying the nine breakpoints at their exact
locations.

Left-to-right HMMs have various methods for determining the number of segments, such
as AIC or BIC. Here we instead simply use the correct number of segments, and initialize
the transition matrix as its true value. Note that this is the best-case scenario for the left-
to-right HMM. Even with this advantage, the left-to-right HMM struggles to properly split
the time series. Whereas GGS correctly identifies [100, 200, 300, 400, 500, 600, 700, 800, 900]
as the breakpoints, the left-to-right HMM gets at least one breakpoint completely wrong
(and splits the data at, for example, [100, 200, 300, 400, 500, 600, 663, 700, 800]).

These results are consistent. In fact, when this experiment was repeated 100 times (with
different randomly generated data), GGS identified the correct breakpoints every single
time. We also note that GGS is robust to n (the dimension of the data), K (the number of
breakpoints), and T/(K+1) (the average segment length), perfectly splitting the data at the
exact breakpoints for all tests across at least one order of magnitude in each of these three
parameters. On the other hand, the 100 left-to-right HMM experiments correctly labeled on

23

Figure 10: GGS correctly identifies that there are 10 underlying segments in the data (from the
kink in the plots at K = 9).

(a) Objective vs. breakpoints for λ = 10. (b) Average train/test log-likelihood for λ = 10.

average just 7.46 of the nine true breakpoints (and never more than eight). In these HMM
experiments, instead of ten segments of length 100, the shortest segment had an average
length of 26, and the longest segment had an average length of 200. Additionally, the left-
to-right HMM struggles as the parameters change, performing even worse when K increases
and when T/(K + 1) is small compared to n (though formal analysis of the robustness of
left-to-right HMMs is outside the scope of this paper). This comes as no surprise, because
finding the global maximum among all local maxima of the likelihood function for an HMM
with many states is known to be difficult problem [CMR05, Chapter 1.4]. Therefore, as
shown by these these experiments, GGS appears to outperform left-to-right HMMs in this
setting.

24

7 Summary

We have analyzed the problem of breaking a multivariate time series into segments, where the
data in each segment could be modeled as independent samples from a multivariate Gaussian
distribution. Our greedy Gaussian segmentation (GGS) algorithm is able to approximately
maximize the covariance-regularized log-likelihood in an efficient manner, easily scaling to
vectors with dimension over 1000 and time series of any length. Examples on both small
and large data sets yielded useful insights. Our implementation, available at https://

github.com/cvxgrp/GGS, can be used to solve problems in a variety of applications. For
example, the regularized parameter estimates obtained by GGS could be used as inputs to
portfolio optimization, where correlations between different assets play an important role
when determining optimal holdings.

Acknowledgments

This work was supported by DARPA XDATA, DARPA SIMPLEX, and Innovation Fund
Denmark under Grant No. 4135-00077B. We are indebted to the anonymous reviewers who
pointed us to the global solution method using dynamic programming, and suggested the
comparison with left-to-right HMMs.

25

References

[AFNA05] J. Abonyi, B. Feil, S. Nemeth, and P. Arva. Modified Gath–Geva clustering
for fuzzy segmentation of multivariate time-series. Fuzzy Sets and Systems,
149(1):39–56, 2005.

[Ale00] C. Alexander. A primer on the orthogonal GARCH model. Unpublished
manuscript, ISMA Center, University of Reading, U.K., 2000.

[AT12] A. Ang and A. Timmermann. Regime changes and financial markets. Annual
Review of Financial Economics, 4(1):313–337, 2012.

[Bak76] R. Bakis. Continuous speech recognition via centisecond acoustic states. Journal
of the Acoustical Society of America, 59(S1):S97, 1976.

[Bel61] R. Bellman. On the approximation of curves by line segments using dynamic
programming. Communications of the ACM, 4(6):284, 1961.

[BL08] P. J. Bickel and E. Levina. Regularized estimation of large covariance matrices.
Annals of Statistics, 36(1):199–227, 2008.

[BN93] M. Basseville and I. V. Nikiforov. Detection of Abrupt Changes: Theory and
Application, volume 104. Prentice Hall: Englewood Cliffs, 1993.

[BR12] L. Bauwens and J. Rombouts. On marginal likelihood computation in change-
point models. Computational Statistics & Data Analysis, 56(11):3415–3429,
2012.

[BS82] N. B. Booth and A. F. M. Smith. A Bayesian approach to retrospective identi-
fication of change-points. Journal of Econometrics, 19(1):7–22, 1982.

[BU08] E. Borenstein and S. Ullman. Combined top-down/bottom-up segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(12):2109–
2125, 2008.

[Bul11] J. Bulla. Hidden Markov models with t components. Increased persistence and
other aspects. Quantitative Finance, 11(3):459–475, 2011.

[BV11] K. Bleakley and J.-P. Vert. The group fused lasso for multiple change-point
detection. arXiv preprint arXiv:1106.4199, 2011.

[CD03] A. Chouakria-Douzal. Compression technique preserving correlations of a multi-
variate temporal sequence. In M. R. Berthold, H.-J. Lenz, E. Bradley, R. Kruse,
and C. Borgelt, editors, Advances in Intelligent Data Analysis V, volume 2810
of Lecture Notes in Computer Science, pages 566–577. Springer: Berlin, 2003.

26

[CK10] S. Cheon and J. Kim. Multiple change-point detection of multivariate mean
vectors with the Bayesian approach. Computational Statistics & Data Analysis,
54(2):406–415, 2010.

[CMR05] O. Cappé, E. Moulines, and T. Rydén. Inference in Hidden Markov Models.
Springer: New York, 2005.

[Cro88] R. B. Crosier. Multivariate generalizations of cumulative sum quality-control
schemes. Technometrics, 30(3):291–303, 1988.

[CWB08] E. J. Candès, M. B. Wakin, and S. Boyd. Enhancing sparsity by reweighted `1
minimization. Journal of Fourier Analysis and Applications, 14(5–6):877–905,
2008.

[DG06] J. De Gooijer. Detecting change-points in multidimensional stochastic processes.
Computational Statistics & Data Analysis, 51(3):1892–1903, 2006.

[DP73] D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the number
of points required to represent a digitized line or its caricature. Cartograph-
ica: The International Journal for Geographic Information and Geovisualiza-
tion, 10(2):112–122, 1973.

[EA12] P. Esling and C. Agon. Time-series data mining. ACM Computing Surveys,
45(1):12, 2012.

[FFvSK17] M. Fiecas, J. Franke, R. von Sachs, and J. T. Kamgaing. Shrinkage estimation
for multivariate hidden Markov models. Journal of the American Statistical
Association, 112(517):424–435, 2017.

[FPK04] P. Fragkou, V. Petridis, and A. Kehagias. A dynamic programming algorithm for
linear text segmentation. Journal of Intelligent Information Systems, 23(2):179–
197, 2004.

[FPW+11] D. J. Fenn, M. A. Porter, S. Williams, M. McDonald, N. F. Johnson, and N. S.
Jones. Temporal evolution of financial-market correlations. Physical Review E,
84(2):026109, 2011.

[GS99] V. Guralnik and J. Srivastava. Event detection from time series data. In Pro-
ceedings of the Fifth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 33–42, 1999.

[GS01] X. Ge and P. Smyth. Segmental semi-Markov models for endpoint detection in
plasma etching. IEEE Transactions on Semiconductor Engineering, 259:201–
209, 2001.

[Gus00] F. Gustafsson. Adaptive Filtering and Change Detection. Wiley: West Sussex,
2000.

27

[GW14] P. Galeano and D. Wied. Multiple break detection in the correlation structure of
random variables. Computational Statistics & Data Analysis, 76:262–282, 2014.

[HLPL06] J. Z. Huang, N. Liu, M. Pourahmadi, and L. Liu. Covariance matrix selection
and estimation via penalised normal likelihood. Biometrika, 93(1):85–98, 2006.

[HRH+15] B. Hu, T. Rakthanmanon, Y. Hao, S. Evans, S. Lonardi, and E. Keogh. Using
the minimum description length to discover the intrinsic cardinality and dimen-
sionality of time series. Data Mining and Knowledge Discovery, 29(2):358–399,
2015.

[HSS+16] D. Hallac, A. Sharang, R. Stahmann, A. Lamprecht, M. Huber, M. Roehder,
R. Sosič, and J. Leskovec. Driver identification using automobile sensor data
from a single turn. In IEEE 19th International Conference on Intelligent Trans-
port Systems, pages 953–958, 2016.

[HTF09] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Springer: New York, 2nd edition, 2009.

[KC14] I. Katz and K. Crammer. Outlier-robust convex segmentation. arXiv preprint
arXiv:1411.4503, 2014.

[KCHP04] E. Keogh, S. Chu, D. Hart, and M. Pazzani. Segmenting time series: A survey
and novel approach. In M. Last, A. Kandel, and H. Bunke, editors, Data Min-
ing in Time Series Databases, volume 57 of Series in Machine Perception and
Artificial Intelligence, chapter 1. World Scientific: Singapore, 2004.

[KKBG09] S.-J. Kim, K. Koh, S. Boyd, and D. Gorinevsky. `1 trend filtering. SIAM Review,
51(2):339–360, 2009.

[KNP06] A. Kehagias, E. Nidelkou, and V. Petridis. A dynamic programming segmen-
tation procedure for hydrological and environmental time series. Stochastic
Environmental Research and Risk Assessment, 20(1):77–94, 2006.

[Lee98] C.-B. Lee. Bayesian analysis of a change-point in exponential families with
applications. Computational Statistics & Data Analysis, 27(2):195–208, 1998.

[LH15] J. Lee and T. Hastie. Learning the structure of mixed graphical models. Journal
of Computational and Graphical Statistics, 24(1):230–253, 2015.

[Li15] J. Li. Nonparametric multivariate statistical process control charts: a hypothesis
testing-based approach. Journal of Nonparametric Statistics, 27(3):383–400,
2015.

[LW04] O. Ledoit and M. Wolf. A well-conditioned estimator for large-dimensional
covariance matrices. Journal of Multivariate Analysis, 88(2):365–411, 2004.

28

[Meu09] A. Meucci. Managing diversification. Risk, 22(5):74–79, 2009.

[NHL+17] P. Nystrup, B. W. Hansen, H. O. Larsen, H. Madsen, and E. Lindström. Dy-
namic allocation or diversification: A regime-based approach to multiple assets.
Journal of Portfolio Management, 44(2):62–73, 2017.

[NHML15] P. Nystrup, B. W. Hansen, H. Madsen, and E. Lindström. Regime-based versus
static asset allocation: Letting the data speak. Journal of Portfolio Manage-
ment, 42(1):103–109, 2015.

[NHML16] P. Nystrup, B. W. Hansen, H. Madsen, and E. Lindström. Detecting change
points in VIX and S&P 500: A new approach to dynamic asset allocation.
Journal of Asset Management, 17(5):361–374, 2016.

[NML17] P. Nystrup, H. Madsen, and E. Lindström. Long memory of financial time
series and hidden Markov models with time-varying parameters. Journal of
Forecasting, 36(8):989–1002, 2017.

[PC04] M. H. Partovi and M. Caputo. Principal portfolios: Recasting the efficient
frontier. Economics Bulletin, 7(3):1–10, 2004.

[PLBR11] F. Picard, É. Lebarbier, E. Budinská, and S. Robin. Joint segmentation of multi-
variate Gaussian processes using mixed linear models. Computational Statistics
& Data Analysis, 55(2):1160–1170, 2011.

[RR06] V. Rajagopalan and A. Ray. Symbolic time series analysis via wavelet-based
partitioning. Signal Processing, 86(11):3309–3320, 2006.

[RTÅ98] T. Rydén, T. Teräsvirta, and S. Åsbrink. Stylized facts of daily return series
and the hidden Markov model. Journal of Applied Econometrics, 13(3):217–244,
1998.

[SCGA11] A. Samé, F. Chamroukhi, G. Govaert, and P. Aknin. Model-based clustering and
segmentation of time series with changes in regime. Advances in Data Analysis
and Classification, 5(4):301–321, 2011.

[SK05] Y. S. Son and S. Kim. Bayesian single change point detection in a sequence of
multivariate normal observations. Statistics, 39(5):373–387, 2005.

[SS12] A. Sheikh and J. Sun. Regime change: Implications of macroeconomic shifts on
asset class and portfolio performance. Journal of Investing, 21(3):36–54, 2012.

[TPSR15] W. Tansey, O. H. M. Padilla, A. S. Suggala, and P. Ravikumar. Vector-space
Markov random fields via exponential families. In Proceedings of the 32nd In-
ternational Conference on Machine Learning, volume 1, pages 684–692, 2015.

29

[TSR+05] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and
smoothness via the fused lasso. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 67(1):91–108, 2005.

[VS96] J. H. Venter and S. J. Steel. Finding multiple abrupt change points. Computa-
tional Statistics & Data Analysis, 22(5):481–504, 1996.

[VVK03] J. Verbeek, N. Vlassis, and B. Kröse. Efficient greedy learning of Gaussian
mixture models. Neural Computation, 15(2):469–485, 2003.

[WBAW12] B. Wahlberg, S. Boyd, M. Annergren, and Y. Wang. An ADMM algorithm for
a class of total variation regularized estimation problems. IFAC Proceedings
Volumes, 45(16):83–88, 2012.

[Wel62] B. P. Welford. Note on a method for calculating corrected sums of squares and
products. Technometrics, 4(3):419–420, 1962.

[WRA11] B. Wahlberg, C. Rojas, and M. Annergren. On `1 mean and variance filtering.
In Proceedings of the Forty Fifth Asilomar Conference on Signals, Systems and
Computers, pages 1913–1916, 2011.

[WT09] D. Witten and R. Tibshirani. Covariance-regularized regression and classifica-
tion for high dimensional problems. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 71(3):615–636, 2009.

[XL17] Z. Xu and Y. Liu. Regularized autoregressive hidden semi Markov model.
https://github.com/cran/rarhsmm, 2017.

[Xu02] N. Xu. A survey of sensor network applications. IEEE Communications Maga-
zine, 40(8):102–114, 2002.

[ZG81] W. I. Zangwill and C. B. Garcia. Pathways to solutions, fixed points, and equi-
libria. Prentice Hall: Englewood Cliffs, 1981.

30

