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General introduction and outline of this thesis 

13 

Pulmonary hypertension 

Pulmonary hypertension (PH) is a chronic pathophysiological disorder of the 

pulmonary vasculature and is defined as a chronic pulmonary artery pressure 

(PAP) ≥ 25mmHg at rest (26). Pulmonary hypertension is a collective name for 

different types of PH. The world health organization (WHO) distinguishes 5 

different subgroups of PH, based on etiology: type 1, pulmonary arterial 

hypertension; type 2, pulmonary hypertension due to left heart disease; type 3, 

pulmonary hypertension due to lung diseases and/or hypoxia; type 4, chronic 

thromboembolic pulmonary hypertension and other pulmonary artery 

obstructions; and type 5, pulmonary hypertension with unclear and/or 

multifactorial mechanisms (14) (Figure 1).  

 
Figure 1. Pulmonary Hypertension definition and subtypes. 
Indicated is the definition, and the subtypes, of pulmonary hypertension as an elevated 
mean arterial pressure ≥ 25 mmHg measured by right heart catheterization. Image 
provided by, and used with permission of Jorge Muniz (www.medcomic.com). 

Symptoms of PH are very non-specific and include shortness of breath, 

fatigue, syncope, chest pain, palpitations, angina, weakness, dry cough and a 

reduced exercise capacity. All these symptoms contribute to a decreased quality 
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of life for the pulmonary hypertension patients (66). Due to the unspecific nature 

of the symptoms, PH is often diagnosed late in the process, or in some cases even 

remains undiagnosed. The true incidence and prevalence of PH in the general 

population are unknown and since it is even suggested that a group of patients is 

undiagnosed, all reported numbers are probably an underestimation (49). 

 Currently, treatment modalities for PH are still very limited and, even when 

treated, the disease often progresses to right heart failure and death. Heart 

failure means that the heart is not capable of pumping enough blood to the body 

to meet the oxygen demand of the body.  

General cardiovascular physiology 

In patients with PH, the work load of the right ventricle is increased, and the 

pump capacity of the right ventricle ultimately falls short. In order to understand 

the problems that may arise in PH, this section will first describe the healthy 

cardiopulmonary system. 

Cells require oxygen and nutrients to be able to function and essentially 

keep the human body alive. In tissue, oxygen and nutrients are metabolized and, 

in this process, carbon dioxide (CO2) is produced. Oxygen is taken up by the lungs, 

where CO2 is released. The medium to transport these substances through the 

body is blood. Blood is transported though the body using blood vessels, called 

the circulatory system (Figure 2).This circulatory system is divided into two 

circulations, the pulmonary circulation and the systemic circulation. The 

movement (flow) of blood through these circulations is actively driven by the 

heart. The heart functions as a pump which contracts about 60 times each minute 

and ejects about 5 liters of blood per minute at rest. Heart rate can increase to 

200 times each minute, circulating 20 liters of blood per minute during exercise 

(34, 35). The heart consists of two collecting compartments, called the atria, and 
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two ejecting compartments, called the ventricles. In short, deoxygenated blood 

from the body is collected in the right atrium, then goes in to the right ventricle, 

which subsequently pumps it in to the pulmonary circulation. Blood is oxygenated 

in the lungs where after it is collected in the left atrium. The left atrium pumps the 

oxygen rich blood to the left ventricle which subsequently pumps it to the various 

organs in the body via the aorta. The pressure in the aorta is what is commonly 

called “the blood pressure” as measured by the general practitioner. This mean 

systemic blood pressure is approximately 90mmHg in health. In the organs oxygen 

is absorbed and deoxygenated blood returns to the right atrium where the cycle 

starts again (69). 

Pulmonary circulation 

The pulmonary circulation is the part of the cardiovascular system which 

is affected in pulmonary hypertension. In the pulmonary circulation, the right 

ventricle pumps deoxygenated blood into the pulmonary artery (PA), from which 

it flows into the pulmonary vasculature for oxygenation and removal of carbon 

dioxide. The oxygen is supplied by the airways (bronchi) which subdivide into 

bronchioles and ultimately branches into the smallest air sacs (alveoli) which are 

in contact with the pulmonary capillaries for the diffusion of oxygen and carbon 

dioxide. 
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Figure 2. Schematic representation of the cardiovascular system.
Oxygen rich blood is depicted in red and oxygen deprived blood is depicted in blue. The 
arrows indicate the direction of flow.

Following oxygenation,  blood is transported to the left side of the heart via the 

pulmonary veins. To optimize gas exchange in the pulmonary circulation, the  

blood-gas barrier needs to be thin, which results in a low-pressure, high-flow 

circulation. The pulmonary blood flow is equal to the systemic cardiac output 

while the mean pulmonary artery pressure is approximately 15mmHg in health 

(>25mmHg in PH patients). Since the pressure drop over the pulmonary 

vasculature from the PA to the left atrium (LA) is very low (approximately 7 

mmHg) to enable blood to flow through the lungs, the pulmonary vascular 

resistance (PVR) is also very low (approximately one tenth of the systemic 
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resistance) in healthy individuals (69). In PH patients, this PVR is substantially 

increased due to constriction, remodeling and rarefaction of the pulmonary blood 

vessels, resulting in a higher pressure to maintain blood flow through the 

pulmonary vascular bed. 

CTEPH 

The World Health Organization differentiates 5 groups of PH based on their 

etiology. Chronic thromboembolic pulmonary hypertension (CTEPH), categorized 

as group 4 PH, is pulmonary hypertension caused by thrombo-emboli in the 

pulmonary vasculature. These thrombo-emboli can be, for instance, originating 

from a deep vein thrombosis, from which the emboli are released and travel 

through the body. The first small vascular bed these emboli travel through is the 

pulmonary vascular bed, in which these emboli get stuck. This is called acute 

pulmonary embolism and can be treated by anticoagulation and thrombolysis (30, 

31). However, in a subgroup of these patients, not all the emboli will resolve. 

When these emboli remain in the pulmonary vasculature, most likely in 

combination with other risk factors, CTEPH can develop. Some of the risk factors 

that are linked and hypothesized to play a role in the development of CTEPH are 

genetics, ineffective endogenous fibrinolysis, hypercoagulability, deficient 

angiogenesis, inflammation and platelet endothelial cell adhesion molecule-1 

deficiency (37, 59). In these patients the pressure and resistance in the pulmonary 

vasculature will rise and eventually result in chronic PH. CTEPH develops in about 

3-4% of patients after acute pulmonary embolism and up to 10% of patients with 

recurrent pulmonary embolism (11, 65, 70). The definition of CTEPH is therefore 

defined as a persistent PAP above 25mmHg at rest for at least 3 months, despite 

therapeutic anticoagulation (14, 26, 27, 33), although pulmonary artery pressures 

≥ 19mmHg at rest following embolism are already associated with increased 

mortality at long term (63). The prevalence of CTEPH is still largely unknown. The 
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reported annual incidence of acute pulmonary embolism ranges from 750 to 2700 

per million adults (30, 50, 68) of which 3-4% of the survivors develop CTEPH (11, 

65). According to these numbers, the expected incidence of CTEPH would be 22.5 

to 108 per million adults, while the reported numbers of diagnosed patients with 

CTEPH are substantially smaller. Three countries assessed the CTEPH incidence 

through nationwide registries. In the United Kingdom the CTEPH incidence was 

1.75 per million (6), in Spain it was 0.9 per million adults (12) and in Germany it 

was 5.7 per million adults (32). Between approximately 300 and 400 patients were 

newly diagnosed with CTEPH per year in France and Germany (32, 58), while the 

disease is still incompletely understood and therapeutic interventions are still 

limited, showing the importance of research into this disease. 

The symptoms of CTEPH are the same as of other forms of PH, such as 

shortness of breath, fatigue, syncope, chest pain, palpitations and reduced 

exercise capacity, which (together with physician unawareness) contribute to the 

late diagnosis in a large number of patients. This delayed diagnosis in turn impacts 

the prognosis negatively (29). Unfortunately, to this day, treatment options for 

CTEPH patients are also not optimal. The main treatment options for CTEPH are 

surgical interventions to remove proximal obstructions such as pulmonary 

endarterectomy or balloon angioplasty (10, 16, 23) although these can only be 

performed in eligible patients. Therapeutic agents to modulate the pulmonary 

vascular tone are limited to date. Riociguat, which is a soluble guanylyl cyclase 

stimulator, that activates the nitric oxide (NO) pathway without endogenous NO, 

thus acting as a vasodilator, inhibiting pulmonary smooth muscle cell growth and 

antagonizes platelet inhibition (i.e. preventing clot formation) is the only 

approved therapeutic agent in CTEPH (2, 10, 21, 46). Nevertheless, treatment 

modalities for CTEPH are very limited and, even when treated, the disease often 

progresses to right heart failure and even death. 

General introduction and outline of this thesis 
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Changes in the control of vascular tone and remodeling of the pulmonary 

vasculature 

The pathogenesis of CTEPH encompasses a combination of endothelial 

dysfunction, pulmonary vascular structural remodeling, thrombophilia, 

inflammation, vasoconstriction and impaired vasodilation (39). In the healthy 

pulmonary vasculature, endothelin and nitric oxide are key players in regulating 

pulmonary vascular resistance. In PH, pulmonary vascular resistance increases due 

to endothelial dysfunction resulting in a shift towards vasoconstriction and 

remodeling.  

The vessel diameter is set by the contractile state (tone) of the smooth 

muscle cells in the vascular wall. Smooth muscle cells are lined underneath the 

endothelial cells of which the inner lining of the arterial wall is composed. 

Vascular tone is determined by many competing constricting (vasoconstrictor) and 

relaxing (vasodilator) influences acting on the muscular layer of the blood vessel. 

These influences can be divided into metabolic, mechanic, neurohumoral, 

endocrine, paracrine and endothelial influences. The endothelium plays a very 

important role in the regulation and excretion of vasodilators such as the key 

factor nitric oxide (NO), and vasoconstrictors, such as the key factor endothelin-1 

(ET-1), which are the key regulators of vascular tone in the pulmonary circulation 

(55).  

Nitric oxide is a vasoactive agent synthesized from L-arginine by 

endothelial NO synthase (eNOS) in the endothelium. NO diffuses from the 

endothelial cell to the adjacent vascular smooth muscle cell where it binds to, and 

thereby activates, soluble guanylyl cyclase (sGC). This enzyme increases the 

conversion rate of guanosine triphosphate (GTP) to cyclic guanosine 

monophosphate (cGMP). cGMP in turn leads to relaxation of the vascular smooth 
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monophosphate (cGMP). cGMP in turn leads to relaxation of the vascular smooth 
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muscle cells via reduction of Ca2+release from the sarcoplasmic reticulum and 

activation of K+ channels (55). Via this pathway, NO acts as a potent vasodilator 

(Figure 3), inhibits pulmonary smooth muscle cell growth and inhibits clot 

formations.

Figure 3. Vascular anatomy with the NO and ET-1 pathways.
Healthy human artery with endothelium and smooth muscle cell layers depicted on the 
left. The interplay of nitric oxide (NO) and endothelin-1 (ET-1) in the regulation of vascular 
tone in the right. L-arg, L-arginine; eNOS, endothelial nitric oxide synthase; sGC, soluble
guanylyl cyclase; GTP, guanosine triphosphate; cGMP, cyclic guanosine monophosphate; 
ppET-1, preproendothelin-1; Big-ET-1, Big endothelin-1; ECE-1, endothelin converting 
enzyme-1; ETA, endothelin receptor A; ETB, endothelin receptor B; IP3, inositol 
triphosphate.

Endothelin-1 is a peptide which is synthesized from big ET (produced from 

preproendothelin by furin-like enzymes) by the endothelin converting enzyme 

(ECE)-1, which is found on the endothelial cell membrane (38). Upon release, ET-1 

binds to its receptors on either the endothelium (ETB receptor) or the vascular 

smooth muscle cell (ETA or ETB receptor). NO is one of the substances that is able 

to inhibit this ET-1 release which shows the delicate balance between these 

regulatory substances. Activation of the ETB receptor on the endothelium leads to 

vasodilation by releasing prostacyclin and NO. In healthy conditions, ET-1 

predominantly binds to the ETA or ETB receptor on the vascular wall, leading to 
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increases of inositol triphosphate (IP3) concentrations which in turn release Ca2+ 

from the sarcoplasmic reticulum. This Ca2+ release subsequently leads to 

contraction of the vascular smooth muscle cells (55). Via this pathway, ET-1 acts 

as a potent vasoconstrictor (Figure 3). 

The obstructions in the pulmonary vascular bed in CTEPH cause a direct 

increase in pulmonary vascular resistance, and a redistribution of flow through 

the unobstructed parts of the pulmonary vasculature, which result in an increase 

in PAP. Both the increase in pressure and the local increase in flow are thought to 

contribute to remodeling of the unobstructed pulmonary vascular bed (15, 43). 

This remodeling encompasses structural remodeling of both the pulmonary small 

arteries (diameter >50μm) as well as the microvasculature (diameter <50μm). The 

structural remodeling presents predominantly with an increase in pulmonary 

vascular wall thickness which encroaches on the vascular lumen thereby 

increasing the resistance. In addition, the prolonged endothelial dysfunction, 

either as a cause or a consequence of the increased PAP, results in a shift towards 

vasoconstriction, even further increasing the vascular resistance, leading to a 

vicious cycle. 

It is well known that both dysfunction of the endothelin and the nitric 

oxide pathway play important roles in the dysregulation of pulmonary vascular 

tone as well as microvascular remodeling in pulmonary arterial hypertension 

(PAH)(13, 60). However, how alterations in these pathways affect pathogenesis of 

microvascular structural and functional remodeling in CTEPH remains 

incompletely understood. Plasma markers of oxidative stress and the endogenous 

endothelial NO synthase (eNOS) inhibitor asymmetric dimethyl arginine (ADMA) 

are increased in patients with CTEPH (71). Moreover, circulating ET-1 levels are 

elevated in patients with CTEPH and correlate with clinical severity of the disease 

as well as with hemodynamic outcome after pulmonary endarterectomy (51). 
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However, there is some controversy as to whether therapeutic agents that 

interfere with the NO and the ET-1 systems, such as phosphodiesterase 5 (PDE5)-

inhibitors and ET-receptor antagonists, that are the cornerstones of PAH therapy, 

are equally effective in CTEPH (10, 21, 46). The only approved therapy for CTEPH 

is the sGC stimulator Riociguat (10, 21, 46), suggesting that the NO-pathway is 

compromised in CTEPH.  

Remodeling of the heart 

The high pressure and resistance in the pulmonary vasculature impose an 

increased afterload on the right ventricle. As contractile reserve of the RV is 

limited (22), initially, subacute RV dilation and dysfunction present (59). With 

sustained PH, the increased pressure subsequently produces an augmentation of 

wall thickness by increasing the muscle mass resulting in right ventricular 

hypertrophy (59), in order to normalize RV wall stress. Although RV remodeling is 

initially beneficial and aims to normalize wall stress, the RV is not capable of 

sustaining a long-term progressive pressure overload. The dilation increases wall 

stress which requires a higher oxygen demand and thus decreases the perfusion 

of the RV leading to a vicious circle of compromised contractility of the 

cardiomyocytes and dilation which eventually leads to the development of RV 

failure. 

V/Q mismatch in CTEPH 

Obstructions in the pulmonary vasculature as observed in CTEPH patients impair 

ventilation (V) and perfusion (Q) matching. In the embolized lungs, there are areas 

that are overventilated and underperfused and areas that are underventilated 

and overperfused. This heterogeneity can be explained by the fact that some 

areas are not perfused due to the obstructions and some areas are overperfused 

due to redirection of the blood flow. Ventilation-perfusion inequality hampers 

General introduction and outline of this thesis 

23 

(i.e. reduces) the arterial oxygen uptake and carbon dioxide clearance, and leads 

to compensatory hyperventilation in an attempt to increase the carbon dioxide 

clearance but inadvertently leads to increased dead space ventilation of the lungs. 

Moreover, this hyperventilation of the lungs is insufficient to increase oxygen 

uptake (40). This decreased oxygenation of blood and increased lung ventilation 

contribute to the shortness of breath experienced by patients.  

Exercise intolerance in CTEPH 

Exercise intolerance is one of the symptoms of CTEPH and evaluation of RV 

function during stress testing has been shown to be of prognostic value in patients 

(24, 25, 52). RV dysfunction is exacerbated during exercise, when cardiac demand 

increases and the RV is required to pump more blood against an even more 

elevated afterload. Therefore, RV functional measurements during stress enable 

the evaluation of the capacity of the RV to cope with an elevated afterload and 

can facilitate early detection of RV dysfunction (56). Although the main cause of 

exercise intolerance in CTEPH is cardiac, the V/Q mismatch is thought to also play 

a role in the exercise intolerance observed in patients with CTEPH (4, 5, 52). To 

date, however studies describing animal models of CTEPH have not evaluated the 

pathophysiology during exercise.  
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CTEPH Animal models 

Dating back to 1984, many investigators have attempted to establish a large 

animal model to study the pathophysiology of CTEPH using different embolization 

frequencies and embolization materials including air, autologous blood clots, 

sephadex beads and glue (Table 1). Although the PAP increases acutely upon 

embolization in these models, most studies were unsuccessful in establishing a 

sustained level of elevated PAP during prolonged follow-up (7, 9, 18, 35, 42, 61, 

64, 73, 74). Those studies that did report CTEPH during prolonged follow-up (8, 

36, 45, 64, 73) have in common that they used repeated (between 4 and 40 times) 

embolization procedures, thereby obstructing a significant fraction of the 

pulmonary vasculature. In these studies, PAP also decreased in between 

embolization procedures, but gradual increase in PAP occurred over time. 

However, most studies did not determine whether this gradual increase in PAP 

was solely due to the progressive embolization of pulmonary vessels or that distal 

pulmonary microvasculopathy also developed. Recent findings by Boulate et al. 

suggest that distal vasculopathy was present in their model of left pulmonary 

artery ligation in combination with glue-embolizations (74). However, in the latter 

study, as in most of the aforementioned studies, hemodynamic measurements 

were performed under anesthesia, which may have influenced cardiac function 

and pulmonary hemodynamics (7, 36, 74). Moreover, and in most cases due to 

the use of anesthetic agents, pulmonary hemodynamics were not assessed during 

exercise. This shows the need for a large CTEPH animal model without all the 

previous limitations.   

General introduction and outline of this thesis 

27 

Outline of this thesis 

The general aim of this thesis is to characterize and study the complex 

mechanisms involved in the development and progression of CTEPH. For this 

purpose, we developed and utilized a novel large animal model for CTEPH and 

studied the effects of cardiopulmonary exercise testing. In addition, we 

investigated the role of pulmonary endothelial (dys)function in the development 

and progression of CTEPH and characterize (molecular) pathways involved in 

cardiac remodeling with the emphasis on hypertrophy, contractility, 

inflammation, oxidative stress, apoptosis and angiogenesis 

Part I Development and Validation   

In order to study hemodynamic changes in a large animal model in the 

awake state, we developed a model of chronic instrumentation of swine as 

described in Chapter 2. The chronic instrumentation of swine allows for serial 

examination of hemodynamic parameters as well as blood samples in the awake 

state, and facilitates the infusion of embolizing material. In addition, treadmill 

exercise is possible with these catheterized animals, allowing cardiopulmonary 

exercise testing in health and disease in the experimental setting.  

 To investigate the development and pathophysiology of CTEPH, we aimed 

to develop a novel CTEPH large animal model to overcome the shortcomings, as 

described above, of previous animal models. We therefore developed a 

chronically instrumented, double-hit CTEPH swine model, by using the 

instrumentation method of Chapter 2 and a combination of inducing endothelial 

dysfunction and emboli. We investigated the development of the disease and 

utilized cardiopulmonary exercise testing to allow for earlier detection of the 

disease in Chapter 3 of this thesis. In Chapter 4, we present a state of the art 
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imaging modality, 4D flow MRI. The goal of this study was to validate this imaging 

modality against the established 2D MRI and the in vivo flow measurement, 

enabled by the catheterization described in Chapter 2. In addition, we 

investigated potential differences in pulmonary and aorta flow profiles in the 

CTEPH swine, as developed in Chapter 3, compared to healthy swine. 

Part II Characterization 

Since the pathophysiology of CTEPH is incompletely understood, we 

studied changes in both pulmonary microvascular (Chapter 5) and cardiac 

(Chapter 6) remodeling. We aimed to elucidate some of the mechanisms involved 

in this remodeling to better understand the pathophysiology of the disease. The 

pressing importance to elucidate this pathophysiology are all the patients for 

which no clear therapy is present to date. We believe that endothelial dysfunction 

plays a key role in the progression of the disease, and therefore focus on 

investigating pulmonary vascular remodeling and the role of the NO and 

endothelin pathways. Other factors involved in the development and progression 

of disease such as pulmonary and cardiac inflammation and angiogenesis were 

investigated as well. In addition, the influence of exercise on the pulmonary 

ventilation/perfusion and cardiac function was investigated for both contributions 

to exercise limitations and role for disease detection in patients.  

A summary of the study protocol and the chapters in which we investigate what 

parts are depicted in Figure 4. 
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Abstract 

This protocol describes the surgical procedure to chronically instrument swine and 

the procedure to exercise swine on a motor-driven treadmill. Early 

cardiopulmonary dysfunction is difficult to diagnose, particularly in animal 

models, as cardiopulmonary function is often measured invasively, requiring 

anesthesia. As many anesthetic agents are cardiodepressive, subtle changes in 

cardiovascular function may be masked. In contrast, chronic instrumentation 

allows for measurement of cardiopulmonary function in the awake state, so that 

measurements can be obtained under quiet resting conditions, without the 

effects of anesthesia and acute surgical trauma. Furthermore, when animals are 

properly trained, measurements can also be obtained during graded treadmill 

exercise.  

Flow probes are placed around the aorta or pulmonary artery for measurement of 

cardiac output and around the left anterior descending coronary artery for 

measurement of coronary blood flow. Fluid-filled catheters are implanted in the 

aorta, pulmonary artery, left atrium, left ventricle and right ventricle for pressure 

measurement and blood sampling. In addition, a 20 G catheter is positioned in the 

anterior interventricular vein to allow coronary venous blood sampling.  

After a week of recovery, swine are placed on a motor-driven treadmill, the 

catheters are connected to pressure and flow meters, and swine are subjected to 

a five-stage progressive exercise protocol, with each stage lasting 3 min. 

Hemodynamic signals are continuously recorded and blood samples are taken 

during the last 30 sec of each exercise stage.  

The major advantage of studying chronically instrumented animals is that it allows 

serial assessment of cardiopulmonary function, not only at rest but also during 
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physical stress such as exercise. Moreover, cardiopulmonary function can be 

assessed repeatedly during disease development and during chronic treatment, 

thereby increasing statistical power and hence limiting the number of animals 

required for a study. 
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Introduction 

Adequate cardiopulmonary function is essential to supply the body with oxygen 

and nutrients, particularly during conditions of increased metabolic demand such 

as during exercise (9). The cardiopulmonary response to exercise is characterized 

by a number of adaptations in cardiac function, i.e., an increase in heart rate, 

contractility and stroke volume, and microvascular function, i.e., vasodilation in 

the vascular beds supplying exercising muscles as well as in the pulmonary 

vasculature, and vasoconstriction in the vascular beds supplying the 

gastrointestinal system as well as inactive muscles (9). Impaired exercise capacity 

is an early hallmark of cardiopulmonary dysfunction, and cardiopulmonary 

exercise testing is used as an effective method to delineate between cardiac 

dysfunction, vascular dysfunction and/ or pulmonary dysfunction in patients with 

impaired exercise capacity (2). Early cardiopulmonary dysfunction is difficult to 

diagnose, particularly in animal models, as cardiopulmonary function is often 

measured invasively, requiring anesthesia, with many anesthetic agents 

possessing cardiodepressive properties (20). Chronic instrumentation allows for 

measurement of cardiopulmonary function in the awake state, and when the 

animals are fully adjusted to the laboratory conditions measurements can be 

obtained under quiet resting conditions without the effects of anesthesia and 

acute surgical trauma. Furthermore, when the animals are appropriately trained, 

measurements can also be obtained during graded treadmill exercise (4, 18). 

More specifically, left and right ventricular function can be assessed and related 

to myocardial perfusion, while regulation of vasomotor tone in the coronary, 

systemic and pulmonary microcirculation can be determined. The use of fluid-

filled catheters allows measurement of pressure as well as taking blood samples 

without imposing additional stress on the animals. Another advantage of studying 

chronically instrumented animals is that cardiopulmonary exercise testing can be 
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repeated allowing the use of an animal as its own control, either during disease 

development or during chronic treatment, thereby increasing statistical power 

and hence limiting the number of animals required for a study. Cardiopulmonary 

anatomy of swine closely resembles that of humans and it is possible to induce 

various forms of cardiopulmonary disease, such as diabetes (19), myocardial 

infarction (23), pulmonary hypertension (11, 15) and pacing-induced heart failure 

(16, 21). Moreover, the size of swine allows chronic instrumentation, and 

repeated blood sampling of sufficient quantity to analyze not only blood gases, 

but also to perform neurohumoral measurements and/or to search for 

biomarkers of disease. This protocol describes the surgery used to chronically 

instrument swine as well as the protocol for exercising the swine on a motor-

driven treadmill. 

Protocol 

Procedures involving animal subjects have been approved by the Animal Care 

Committee at Erasmus Medical Center Rotterdam (NL). Swine with weights 

between 6 and 80 kg have been successfully instrumented using this protocol.  

1. Adaptation of the Animals to Human Handling  

1. After arrival in the facility, house the animals solitarily but enable them 

to interact with each other.  

2. Accustomize swine to human handling and transportation from the 

animal facility to the experimental laboratory, by handling the animal at 

least once a day for one week.  

Cardiovascular exercise testing in chronically instrumented swine 
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3. Train the animals appropriately for exercise experiments on a motor-

driven treadmill by exercising them on the treadmill for a minimum of 

three times before surgery.  

4. Animals should be fasted O/N before surgery to prevent nausea, 

vomiting and thereby potential aspiration of stomach fluids.  

2. Preparation for Surgery  

1. Sedation  

1. Prepare medication for sedation in a 10 ml syringe. Premedication 

consists of tiletamine/zolazepam (5 mg/kg), xylazine, (2.25 mg/kg) and 

atropine (1 mg).  

2. Inject the medication intramuscularly in the trapezius muscle with a 19 

G 1.5'' needle to sedate the pig.  

3. Wait for approximately 10 min and check for muscle relaxation and 

unconsciousness to confirm appropriate and stable level of sedation.  

4. Place a 20 G peripheral safety catheter in an ear vein for subsequent 

intravenous administration of anesthesia and/or fluids.  

2. Intubation and Ventilation  

1. Place the animal on a table and/or trolley in supine position.  

2. Open the mouth of the animal with an oral spreader.  

3. In case of insufficient relaxation of the jaws or presence of swallowing 

reflexes, which hinder intubation, administer thiopental (10 mg/ kg) 

Kelly Stam Dissertatie V5.indd   46 12-8-2019   09:51:49



2

Chapter 2. 

46 

repeated allowing the use of an animal as its own control, either during disease 

development or during chronic treatment, thereby increasing statistical power 

and hence limiting the number of animals required for a study. Cardiopulmonary 

anatomy of swine closely resembles that of humans and it is possible to induce 

various forms of cardiopulmonary disease, such as diabetes (19), myocardial 

infarction (23), pulmonary hypertension (11, 15) and pacing-induced heart failure 

(16, 21). Moreover, the size of swine allows chronic instrumentation, and 

repeated blood sampling of sufficient quantity to analyze not only blood gases, 

but also to perform neurohumoral measurements and/or to search for 

biomarkers of disease. This protocol describes the surgery used to chronically 

instrument swine as well as the protocol for exercising the swine on a motor-

driven treadmill. 

Protocol 

Procedures involving animal subjects have been approved by the Animal Care 

Committee at Erasmus Medical Center Rotterdam (NL). Swine with weights 

between 6 and 80 kg have been successfully instrumented using this protocol.  

1. Adaptation of the Animals to Human Handling  

1. After arrival in the facility, house the animals solitarily but enable them 

to interact with each other.  

2. Accustomize swine to human handling and transportation from the 

animal facility to the experimental laboratory, by handling the animal at 

least once a day for one week.  

Cardiovascular exercise testing in chronically instrumented swine 

47 

3. Train the animals appropriately for exercise experiments on a motor-

driven treadmill by exercising them on the treadmill for a minimum of 

three times before surgery.  

4. Animals should be fasted O/N before surgery to prevent nausea, 

vomiting and thereby potential aspiration of stomach fluids.  

2. Preparation for Surgery  

1. Sedation  

1. Prepare medication for sedation in a 10 ml syringe. Premedication 

consists of tiletamine/zolazepam (5 mg/kg), xylazine, (2.25 mg/kg) and 

atropine (1 mg).  

2. Inject the medication intramuscularly in the trapezius muscle with a 19 

G 1.5'' needle to sedate the pig.  

3. Wait for approximately 10 min and check for muscle relaxation and 

unconsciousness to confirm appropriate and stable level of sedation.  

4. Place a 20 G peripheral safety catheter in an ear vein for subsequent 

intravenous administration of anesthesia and/or fluids.  

2. Intubation and Ventilation  

1. Place the animal on a table and/or trolley in supine position.  

2. Open the mouth of the animal with an oral spreader.  

3. In case of insufficient relaxation of the jaws or presence of swallowing 

reflexes, which hinder intubation, administer thiopental (10 mg/ kg) 

Kelly Stam Dissertatie V5.indd   47 12-8-2019   09:51:49



Chapter 2. 

48 

intravenously via the ear vein catheter. Alternatively, the pig could be 

masked with isoflurane to induce sedation.  

4. Use a conventional laryngoscope with a light and a Miller blade to allow 

the laryngoscopist to directly view the larynx. If there is laryngospasm, 

apply 2% lidocaine to the cords and larynx to reduce the spasm and allow 

intubation.  

5. Insert an intubating stylet into the endotracheal tube to make the tube 

conform better to the upper airway anatomy and pass the tube through 

the mouth and between the vocal cords into the trachea.  

6. Inflate the balloon cuff with a 10 ml syringe to help secure it in place, to 

prevent leakage of respiratory gases, and to protect the airways from 

possible aspiration of stomach fluid.  

7. Connect the tube to a breathing filter (heat and moisture exchanger) 

and to the mechanical ventilator.  

8. Place the animal on its right side on the surgical table.  

9. To achieve pO2 levels of 100-120 mmHg, ventilate the animal with a 

mixture of oxygen and nitrogen (1:2 v/v), using the following ventilator 

settings: Pressure control mode: positive end-expiratory pressure (PEEP) 4 

cmH2O; peak inspiratory pressure 16 - 18 cmH2O; breathing frequency 

depending on the size of the animal (for a 20 kg animal, decrease 

frequency with increasing body weight) this should result in a tidal volume 

of ~10 ml/kg, monitor ventilation with capnography.  
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10. Monitor temperature using a rectal thermometer and maintain 

temperature between 37 - 39 ºC using a heat lamp or heat mat. 

Moreover, monitor heart rate with electrocardiography.  

3. Anesthesia  

1. Induce and maintain anesthesia preferably by adding 2.0% of isoflurane 

(v/v) to the ventilation gas-mixture or alternatively by intravenous 

administration of fentanyl (10 μg/kg/h) via the ear vein catheter.  

2. Check adequate depth of anesthesia by testing pain reflexes with a hind 

leg toe pinch before starting surgery. When necessary, add additional 

anesthesia or wait for a few minutes. Check pain reflexes regularly 

throughout the surgery.  

4. Fluids and Antibiotics  

1. Administer the first dose of amoxicillin (25 mg/kg) intravenously via the 

ear vein catheter. 2. Connect a transfusion system to the ear vein catheter 

to enable slow infusion of glucose 10% (500 ml) during surgery.  

5. Sterilization of Surgical Site  

1. Shave and clean the skin of the animal over an area of approximately 25 cm 

width from the vertebral column all the way to the left axilla.  

2. Scrub the moisturized skin with povidone-iodine scrub (75 mg/ml) for 

approximately 5 min. 

3. Remove the povidone-iodine soap from the skin with wet sterile gauzes, before 

sterilizing the skin with povidone-iodine lotion (100 mg/ ml).  
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4. Cover the animal with sterile surgical drapes to reduce bacterial transfer and 

subsequent contamination of the surgical site.  

3. Surgery  

1. Opening the Thorax (Thoracotomy)  

1. Make an incision in the skin, starting 1 cm caudal to the left inferior 

angle of the scapula down to the left axilla (Figure 1). Use diathermy to 

cauterize blood vessels in the skin to prevent excessive bleeding.  

2. Cut through the serratus muscle and pectoralis major muscle, using the 

cutting modality of the diathermy. Also use diathermy to cauterize blood 

vessels in the muscle layer to prevent excessive bleeding.  

3. Use blunt dissection to carefully divide the intercostal muscle of the 

fourth left intercostal space with a mosquito clamp. Now the costal 

surface of the left lung covered with visceral and parietal pleura should be 

exposed.  

4. To enter the pleural cavity, carefully pierce both layers of the pleura 

and tear them open.  

5. Use a thoracic retractor to separate the edges of the wound and the 

ribs and to forcefully drive tissues apart to obtain good exposure of the 

pleural cavity.  

6. Push away the left lung in the caudal direction and keep it in place with 

a wet gauze. Now the heart and great vessels should be clearly exposed.  
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2. Placement of Catheters and Flow Probes (Figure 1)  

1. Use blunt dissection to remove ~2 cm2 of the surrounding connective tissue of 

the descending thoracic aorta.  

2. Perform a purse-string suture, consisting of three stitches, in the aortic 

wall with a non-absorbable USP3-0 braided silk suture (Ø0.2 mm).  

3. Penetrate the aortic vessel wall with a stainless steel 16 G needle in the 

middle of the purse-string suture.  
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suture.  

5. To keep the catheter in place, wind the suture 3 times around the 

catheter above the ring and again tie the two strings of the suture. 

Further secure the catheter with a new stitch approximately 1 cm cranial 

from the insertion place.  

6. Connect the fluid-filled catheter to the calibrated pressure transducer, 

which is connected to the computer, to monitor the mean arterial 

pressure during the surgery. Obtain an arterial blood gas to verify or 

adjust for correct ventilation settings.  

7. Open the pericardium with a crossed cut. Be aware to keep the phrenic 

nerve that runs over the pericardium intact.  

8. Identify the pulmonary artery and pull it slightly in the caudal direction 

with a Farabeuf retractor. Now the ascending aorta and aortic arch should 
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subsequent contamination of the surgical site.  

3. Surgery  

1. Opening the Thorax (Thoracotomy)  

1. Make an incision in the skin, starting 1 cm caudal to the left inferior 

angle of the scapula down to the left axilla (Figure 1). Use diathermy to 

cauterize blood vessels in the skin to prevent excessive bleeding.  

2. Cut through the serratus muscle and pectoralis major muscle, using the 

cutting modality of the diathermy. Also use diathermy to cauterize blood 

vessels in the muscle layer to prevent excessive bleeding.  

3. Use blunt dissection to carefully divide the intercostal muscle of the 

fourth left intercostal space with a mosquito clamp. Now the costal 

surface of the left lung covered with visceral and parietal pleura should be 

exposed.  

4. To enter the pleural cavity, carefully pierce both layers of the pleura 

and tear them open.  

5. Use a thoracic retractor to separate the edges of the wound and the 

ribs and to forcefully drive tissues apart to obtain good exposure of the 
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be exposed. Monitor mean arterial pressure while retracting the 

pulmonary artery.  

9. Make a small cut (~1 cm) in the connective tissue between the 

ascending aorta and the pulmonary artery using Metzenbaum scissors, to 

be able to dissect either the ascending aorta or the pulmonary artery with 

a large curved mosquito clamp to place the flow probe.  

10. Place the rubber band of the flow probe around the vessel. To make 

this easier, place a suture through one end of the rubber band, place this 

suture around the vessel and pull it until the rubber band surrounds the 

vessel.  

11. Fix the flow probe measurement device on the rubber band. Connect 

the flow probe to the computer and check the cardiac output signal on 

the computer to confirm a correct placement of the flow probe.  

12. Place fluid-filled catheters in the pulmonary artery, right ventricle, left 

ventricle and left atrium at the same manner as described for the aortic 

fluid-filled catheter (3.2.2 - 3.2.5). Note that it is not necessary to remove 

connective tissue before performing a purse-string suture in these 

structures.  

13. Expose and dissect the proximal part of the left anterior descending 

coronary artery by first lifting the tissue with a forceps and making a small 

(2 - 3 mm) cut with Metzenbaum scissors, followed by carefully teasing 

the tissue away from the artery with a cotton swab. Ensure complete 

dissection of the coronary artery by passing a small straight angled 

mosquito clamp underneath.  
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14. Make a stitch parallel to the anterior interventricular coronary vein 

with a suture, which is connected to the coronary venous catheter.  

15. Puncture the coronary vein with the 20 G needle of the coronary 

venous catheter and insert the cannula of the catheter intravenously.  

16. Remove the needle and secure the catheter with the already 

performed stitch (3.2.14). Further secure the catheter with a new stitch 

approximately 1cm from the place of initial puncture.  

17. Place the coronary flow probe around the previously dissected left 

anterior descending coronary artery. When the artery is constricted and is 

hardly visible, use lidocaine 10% spray to relax the vessel to get a better 

exposure of the vessel. Check the signal of the coronary flow on the 

computer to confirm a correct placement of the flow probe (Figure 2).  

3. Tunneling  

1. Tunnel the flow probes individually through the third left intercostal 

space beneath the muscle and above the rib by using a large curved 

mosquito clamp.  

2. Tunnel the fluid-filled catheters through either the third or the fifth left 

intercostal space by piercing the intercostal muscle. Clamp off the fluid-

filled catheters and remove the three-way stopcock to minimize the 

piercing area and prevent leakage of the fluid-filled catheters during the 

tunneling.  

3. Fix the flow probes and the fluid-filled catheters with non-absorbable 

USP2-0 braided silk (Ø0.3 mm) by means of a purse string suture on the 
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intercostal muscle. This suture also serves to prevent air leakage after re-

instating negative intrathoracic pressure.  

4. Make three incisions in the skin approximately 2 cm sinister and parallel 

to the vertebral column, approximately 3 cm in length 3 cm apart of each 

other.  

5. Pierce a trochar beneath the left latissimus dorsi muscle from rostral 

incision site to the incisions on the back. Tunnel the flow probes and fluid 

catheters to the back within this trochar.  

6. Place the stopcocks on the fluid-filled catheters and remove the clamp. 

Withdraw blood to remove clots and air bubbles and fill the fluid-filled 

catheters with 1,000 IU/ml heparin. Coronary venous catheters should be 

filled with 5,000 IU/ml heparin.  

4. Closing the Thorax 

1. Make an incision with a length of approximately 1.5 cm, 8 cm caudal 

and parallel to the first incision.  

2. Lead the drain from the pleural cavity through the sixth intercostal 

muscles subcutaneously to this incision with a large curved mosquito 

clamp. Connect the drain to the suction device to remove any remaining 

fluid and reinstate negative pressure in the pleural cavity during the 

closing of the thorax.  

3. Relieve and inflate the lung with an end-inspiratory hold. Ensure 

adequate filling of the lung by visual monitoring.  
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4. Close the thorax by pulling the ribs of the fourth intercostal space 

together at two separate sites with non-absorbable USP6 braided 

polyester (Ø0.8 mm).  

5. Close the serratus muscle and pectoralis major muscle with a running 

stitch and the skin with a running subcuticular suture using nonabsorbable 

USP2-0 braided silk (Ø0.3 mm)  

6. Suture the incisions on the dorsal side with non-absorbable USP2-0 

braided polyester (Ø0.3 mm) between the catheters. First tie a knot 

directly onto the skin to close the incision, then fixate the catheters to the 

suture with a knot 1 cm from the skin. For the flow probes, use an 

absorbable USP2-0 braided polyglactin (Ø0.3 mm) suture to prevent 

cutting of the suture in the flow probe wire (Figure 1).  

7. Carefully remove the drain while applying pressure on the cranial side 

of the incision to maintain negative pressure in the pleural cavity. Close 

the incision with a purse string suture using non-absorbable USP2-0 

braided polyester (Ø0.3 mm) and seal the wound with petroleum jelly. 

5. Termination of anesthesia and recovery from surgery  

1. Stop anesthesia when all incision sites are closed.  

2. Provide analgesia by administering buprenorphine (0.015 mg/kg) i.m. in 

the gracilis muscle.  

3. Stop the ventilation when the animal is breathing independently and 

disconnect the tracheal tube from the ventilator. Check regularly if the 

animal is breathing sufficiently.  
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4. Place gauze pads between exteriorization sites of the catheters to 

absorb wound fluid.  

5. To protect the external segments of the catheters, give the animal an 

elastic vest and package the catheters between two pieces of artificial 

sheepskin.  

 
Figure 1. Overview of the Surgery.  
Top left panel: The sterile area of the animal, which should be shaved and sterilized lies 
between the bleu lines. The incision site is depicted as the red dotted line. Bottom left 
panel: Picture of catheters and flow probes: fluid-filled catheter (A), aorta/ pulmonary flow 
probe including rubber band (B), coronary venous catheter including 20 G needle (C) and 
the coronary flow probe (D). Top right panel: Schematic overview of placement of the 
catheters and flow probes. MAP, mean arterial pressure; Cor venous, coronary venous 
catheter; LAP, left atrial pressure; LVP left ventricular pressure; RVP, right ventricular 
pressure; PAP, pulmonary artery pressure; CO, cardiac output; CBF, coronary blood flow. 
Bottom right panel: Tunneled catheters exiting the back secured with a stitch and a knot at 
approximately 1 cm distance along the suture.  
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6. Deflate the balloon of the tracheal tube and extubate when the animal 

regains its swallowing reflex.  

7. Provide long-term analgesia by means of a Fentanyl slow-release patch 

(12 µg/hr for a 20 kg pig; adjust strength according to bodyweight). Place 

the patch on a thin part of the skin (such as the lower abdomen) to ensure 

adequate delivery of analgesia.  

8. House the animal separately for the entire post-operative period. 

Provide a heating lamp for the first week after surgery to keep the animal 

warm. 

9. Supply enough fluid i.v. if the animal is not drinking independently.  

10. Flush the fluid-filled catheters daily, by first withdrawing blood to 

remove clots, then refilling with saline and finally with heparinized saline 

(1,000 - 5,000 IU/ml) to prevent blood clot formation. Take care not to 

infuse any air bubbles while flushing the catheters.  

11. Administer amoxicillin (25 mg/kg) i.v. daily for 6 days after surgery to 

prevent post-surgical infections. 

4. Treadmill Experiment (Figure 2)  

1. Flush the fluid-filled catheters as described (3.5.10) and attach the 

flushed catheters to the pressure transducers. Measure the rectal 

temperature to be able to obtain temperature corrected blood gas values.  

2. Flush the pressure transducers with saline to prevent damping of the 

signals due to air bubbles. Attach the pressure transducers to the elastic 

vest on the dorsal side.  

Kelly Stam Dissertatie V5.indd   56 12-8-2019   09:51:50



2

Chapter 2. 

56 

4. Place gauze pads between exteriorization sites of the catheters to 

absorb wound fluid.  

5. To protect the external segments of the catheters, give the animal an 

elastic vest and package the catheters between two pieces of artificial 

sheepskin.  

 
Figure 1. Overview of the Surgery.  
Top left panel: The sterile area of the animal, which should be shaved and sterilized lies 
between the bleu lines. The incision site is depicted as the red dotted line. Bottom left 
panel: Picture of catheters and flow probes: fluid-filled catheter (A), aorta/ pulmonary flow 
probe including rubber band (B), coronary venous catheter including 20 G needle (C) and 
the coronary flow probe (D). Top right panel: Schematic overview of placement of the 
catheters and flow probes. MAP, mean arterial pressure; Cor venous, coronary venous 
catheter; LAP, left atrial pressure; LVP left ventricular pressure; RVP, right ventricular 
pressure; PAP, pulmonary artery pressure; CO, cardiac output; CBF, coronary blood flow. 
Bottom right panel: Tunneled catheters exiting the back secured with a stitch and a knot at 
approximately 1 cm distance along the suture.  

Cardiovascular exercise testing in chronically instrumented swine 

57 

6. Deflate the balloon of the tracheal tube and extubate when the animal 

regains its swallowing reflex.  

7. Provide long-term analgesia by means of a Fentanyl slow-release patch 

(12 µg/hr for a 20 kg pig; adjust strength according to bodyweight). Place 

the patch on a thin part of the skin (such as the lower abdomen) to ensure 

adequate delivery of analgesia.  

8. House the animal separately for the entire post-operative period. 

Provide a heating lamp for the first week after surgery to keep the animal 

warm. 

9. Supply enough fluid i.v. if the animal is not drinking independently.  

10. Flush the fluid-filled catheters daily, by first withdrawing blood to 

remove clots, then refilling with saline and finally with heparinized saline 

(1,000 - 5,000 IU/ml) to prevent blood clot formation. Take care not to 

infuse any air bubbles while flushing the catheters.  

11. Administer amoxicillin (25 mg/kg) i.v. daily for 6 days after surgery to 

prevent post-surgical infections. 

4. Treadmill Experiment (Figure 2)  

1. Flush the fluid-filled catheters as described (3.5.10) and attach the 

flushed catheters to the pressure transducers. Measure the rectal 

temperature to be able to obtain temperature corrected blood gas values.  

2. Flush the pressure transducers with saline to prevent damping of the 

signals due to air bubbles. Attach the pressure transducers to the elastic 

vest on the dorsal side.  

Kelly Stam Dissertatie V5.indd   57 12-8-2019   09:51:50



Chapter 2. 

58 

3. Connect the pressure transducers and flow probes to the amplifier. 

Start measuring in the computer program and calibrate the pressure 

transducers and flow probes with 0 mmHg being open to the air (and 

closed to animal) and 100 mmHg using a manometer.  

4. Switch the three-way stopcock in a way that the fluid catheters have an 

open connection with the pressure transducers. Note that the blood 

pressures can now be obtained. Check signals for shape and amplitude 

(Figure 2).  

5. If required, connect an extension line to either of the fluid catheters for 

sampling of mixed venous and arterial blood.  

6. Measure hemodynamics when the animal is lying as well as standing 

quietly on the treadmill. Average blood pressures are measured over a 

timeframe of 10 sec.  

7. Obtain arterial and mixed venous blood samples by first withdrawing 5 

ml of blood using a 10 ml syringe so that 1 ml of pure blood can be 

obtained using a heparinized 1 ml syringe. For the coronary venous blood 

samples, a 2 ml syringe is used instead of the 10 ml syringe and 

withdrawal of 1 ml is sufficient to obtain pure blood.  

8. Keep the sealed 1 ml syringes on ice before processing the blood 

samples with a blood gas analyzer to determine the metabolic and 

ventilatory condition of the animal.  

9. Subject the swine to a five-stage exercise protocol on the treadmill, 3 

min per speed, 1 - 5 km/hr (~85% of maximal heart rate). Obtain 
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hemodynamics and blood gases after 1.5 - 2 min per speed on each speed 

as in the resting position.  

 
Figure 2. Treadmill Experiment.  
Left panels: Instrumented swine on the treadmill. Fluid-filled catheters are connected to 
the pressure transducers, placed on the back of the swine. Top right panel: Overview of the 
total experimental set-up, including treadmill, amplifier and recording computer. Bottom 
right panel: Typical example of recorded hemodynamic data. From top to bottom; aortic 
pressure (AoP, blue) and left ventricular pressure (LVP, red); left atrial pressure (LAP,blue) 
and left ventricular pressure (red); pulmonary artery pressure (PAP, blue) and right 
ventricular pressure (RVP, red); aortic flow/cardiac output (AoF, blue); coronary blood flow 
(CBF, red). 

10. After the exercise protocol close the stopcocks and check if drift has 

occurred in the 0 mmHg calibration, make a note of this calibration. 

Remove the pressure transducers of the fluid-filled catheters and 

disconnect the flow probes.  

Kelly Stam Dissertatie V5.indd   58 12-8-2019   09:51:50



2

Chapter 2. 

58 

3. Connect the pressure transducers and flow probes to the amplifier. 

Start measuring in the computer program and calibrate the pressure 

transducers and flow probes with 0 mmHg being open to the air (and 

closed to animal) and 100 mmHg using a manometer.  

4. Switch the three-way stopcock in a way that the fluid catheters have an 

open connection with the pressure transducers. Note that the blood 

pressures can now be obtained. Check signals for shape and amplitude 

(Figure 2).  

5. If required, connect an extension line to either of the fluid catheters for 

sampling of mixed venous and arterial blood.  

6. Measure hemodynamics when the animal is lying as well as standing 

quietly on the treadmill. Average blood pressures are measured over a 

timeframe of 10 sec.  

7. Obtain arterial and mixed venous blood samples by first withdrawing 5 

ml of blood using a 10 ml syringe so that 1 ml of pure blood can be 

obtained using a heparinized 1 ml syringe. For the coronary venous blood 

samples, a 2 ml syringe is used instead of the 10 ml syringe and 

withdrawal of 1 ml is sufficient to obtain pure blood.  

8. Keep the sealed 1 ml syringes on ice before processing the blood 

samples with a blood gas analyzer to determine the metabolic and 

ventilatory condition of the animal.  

9. Subject the swine to a five-stage exercise protocol on the treadmill, 3 

min per speed, 1 - 5 km/hr (~85% of maximal heart rate). Obtain 

Cardiovascular exercise testing in chronically instrumented swine 

59 

hemodynamics and blood gases after 1.5 - 2 min per speed on each speed 

as in the resting position.  

 
Figure 2. Treadmill Experiment.  
Left panels: Instrumented swine on the treadmill. Fluid-filled catheters are connected to 
the pressure transducers, placed on the back of the swine. Top right panel: Overview of the 
total experimental set-up, including treadmill, amplifier and recording computer. Bottom 
right panel: Typical example of recorded hemodynamic data. From top to bottom; aortic 
pressure (AoP, blue) and left ventricular pressure (LVP, red); left atrial pressure (LAP,blue) 
and left ventricular pressure (red); pulmonary artery pressure (PAP, blue) and right 
ventricular pressure (RVP, red); aortic flow/cardiac output (AoF, blue); coronary blood flow 
(CBF, red). 

10. After the exercise protocol close the stopcocks and check if drift has 

occurred in the 0 mmHg calibration, make a note of this calibration. 

Remove the pressure transducers of the fluid-filled catheters and 

disconnect the flow probes.  

Kelly Stam Dissertatie V5.indd   59 12-8-2019   09:51:50



Chapter 2. 

60 

11. Flush the fluid-filled catheters with saline and heparin (1,000 - 5,000 

IU/ml). Protect the catheters and flow probes by putting them beneath 

the elastic vest between two pieces of artificial sheepskin. The animal can 

now be returned to its cage. 

Representative results 

Exercise up to 5 km/hr resulted in a doubling of cardiac output from 4.3 ± 0.3 to 

8.5 ± 0.7 L/min which was principally accomplished by an increase in heart rate 

from 137 ± 7 to 256 ± 8 beats per min in combination with a small increase in 

stroke volume from 32 ± 2 to 36 ± 3 ml (Figure 3). The increase in stroke volume 

was facilitated by an increase in left ventricular contractility, as evidenced by an 

increase in the maximum of the first derivative of left ventricular pressure 

dP/dtmax together with an increased rate of relaxation of the left ventricle and an 

increase in left atrial pressure, being the filling pressure of the left ventricle 

(Figure 3). The increase in cardiac output together with an increase in hemoglobin 

concentration (from 8.5 ± 0.4 to 9.2 ± 0.4 g/dl) and an increase in body oxygen 

extraction from 45 ± 1 to 71 ± 1% allowed a tripling of body oxygen consumption 

(Figure 3). Systemic vasodilation occurred as evidenced by an increase in systemic 

vascular conductance and a decrease in systemic vascular resistance, which 

accommodated the increase in cardiac output almost completely, so that mean 

aortic pressure increased only slightly (Figure 3). Exercise also resulted in modest 

vasodilation in the pulmonary circulation, as evidenced by a 33 ± 8% increase in 

pulmonary vascular conductance. However, the 101 ± 8% increase in cardiac 

output, together with the increase in left atrial pressure (from 3 ± 1 to 10 ± 1 

mmHg), resulted in an increase in pulmonary artery pressure and thereby in an 

increase in right ventricular afterload (Figure 3). The increase in heart rate, 

together with the slight increase in arterial pressure resulted in an increase in left  
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Figure 3. Typical Hemodynamic Response to Exercise. 
Body oxygen consumption (BVO2) was used as an index for exercise intensity (x-axes of 
panel A-L). Shown are the responses of heart rate (HR, panel A), stroke volume (SV, panel 
B), maximum and minimum of the first derivative of left ventricular pressure (dP/dtmax, 
panel C and dP/dtmin, panel D resp) as indices of contractility and rate of relaxation, 
cardiac output (CO, panel E), mean arterial pressure (MAP, panel F), systemic vascular 
conductance (SVC, panel G), systemic vascular resistance (SVR, panel H), Pulmonary artery 
pressure (PAP, panel J), left atrial pressure (LAP, panel I), pulmonary vascular conductance 
(PVC, panel K). Total pulmonary resistance (TPR index for right ventricular afterload 
increased during exercise, Panel L). The increase in heart rate, together with the slight 
increase in arterial pressure resulted in an increase in left ventricular myocardial oxygen 
consumption (x-axes of panels M-P), which was principally met by an increase in coronary 
blood flow (CBF, panel M), as myocardial oxygen extraction (MEO2, panel N), coronary 
venous oxygen saturation (CVSO2, panel O) and coronary venous oxygen tension (cvPO2, 
panel P) were minimally affected. All data are presented as mean with standard error of 
the mean (SEM). 
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Figure 3. Typical Hemodynamic Response to Exercise. 
Body oxygen consumption (BVO2) was used as an index for exercise intensity (x-axes of 
panel A-L). Shown are the responses of heart rate (HR, panel A), stroke volume (SV, panel 
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panel C and dP/dtmin, panel D resp) as indices of contractility and rate of relaxation, 
cardiac output (CO, panel E), mean arterial pressure (MAP, panel F), systemic vascular 
conductance (SVC, panel G), systemic vascular resistance (SVR, panel H), Pulmonary artery 
pressure (PAP, panel J), left atrial pressure (LAP, panel I), pulmonary vascular conductance 
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ventricular myocardial oxygen consumption, which was principally met by an 

increase in coronary blood flow which, in combination with the increase in 

hemoglobin concentration resulted in an increase in myocardial oxygen delivery 

(from 310 ± 37 to 738 ± 68 µmol/min). The increase in myocardial oxygen demand 

was commensurate with the increase in myocardial oxygen supply, as myocardial 

oxygen extraction (79.8 ± 1.9% at rest 81.6 ± 1.9% during maximal exercise) was 

essentially maintained constant, resulting in an unchanged coronary venous 

oxygen saturation and coronary venous oxygen tension (Figure 3). 

Discussion 

The present study describes the surgery for chronical instrumentation of swine as 

well as the protocol for exercising the instrumented swine on a motor-driven 

treadmill while measuring hemodynamics and taking blood samples for 

measurement of oxygen content in arterial, mixed venous and coronary venous 

blood.  

Critical Steps within the Protocol  

There are several critical steps within the protocol that start already during the 

intubation procedure. Thiopental (2.1.5) is a respiratory depressive agent, 

therefore requiring swift intubation upon administration. Also, it is important to 

carefully monitor ventilator settings during the procedure. Thus, when the 

thoracic cavity is opened (step 3.1.4), this results in a loss of the negative 

intrathoracic pressure. To compensate for this loss and to prevent alveolar 

collapse, ventilation requires positive end expiratory pressure (PEEP). Moreover, 

ventilator settings (peak inspiratory pressure) should be adjusted to maintain a 

tidal volume of ~10 ml/kg. Also note that when the left lung is pushed away 
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(3.1.6.) tidal volume is likely to be decreased because only part of the left lung is 

ventilated. Ventilator settings should be adjusted based on blood gasses.  

Another important note with respect to hemodynamic measurements 

with fluid filled catheters is that there is a hydrostatic pressure difference 

between the pressure transducer and the insertion site of the fluid-filled catheter 

into the cardiovascular system. The height difference between the level of the 

pressure transducer pressure on the elastic vest (4.2), and the insertion point of 

the catheter should be estimated during surgery and at sacrifice of the animal and 

corrected for by interpolation either pre- or post- processing of the data.  

Another important point to consider when using this technique is that 

blood loss, either during surgery or during repeated blood sampling should be 

minimized, despite the fact that swine are relatively large and consequently have 

a large blood volume (65 ml/kg). During surgery, blood loss during insertion of the 

catheters can be minimized by simply applying compression on the puncture 

wounds. According to animal experimentation guidelines, up to 10% of the 

circulating blood volume can be taken on a single occasion from normal, healthy 

animals with minimal adverse effects, but it will take an animal about 14 days to 

replenish this amount of blood (6). This means that the recovery from surgery is 

prolonged when a significant amount of blood is lost.  

During the repeated blood sampling during the exercise experiments, a 

maximum of 1.0% of an animal's circulating blood volume, or 0.6 ml/ kg can be 

removed every 24 hr 15. This also means that the amount of blood that is 

sampled during treadmill exercise, should be well-planned and that, after removal 

of the initial clots that are invariably present in the lumen of the catheter near the 

tip at the interface with the blood, the remaining blood withdrawn to flush the 

lines should be given back to the animals.  
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Modifications and Troubleshooting  

Implanted fluid-filled catheters should be flushed daily to prevent malfunctioning 

because of blood clot formation. Depending on the amount of blood clots in the 

fluid filled catheters, the amount of heparin in each line can be varied from 1,000 

IU/ml to 5,000 IU/ml. The amount of heparin should be kept to a minimum in the 

first week after surgery to prevent bleeding from surgical incision wounds due to 

the presence of the anticoagulant heparin.  

However, even when flushed daily, some fluid-filled catheters will get 

clogged. When this happens, try withdrawing blood with a smaller 2 ml syringe by 

applying minimal and/or pulsatile suction. It can take several minutes before the 

catheter will be unclogged. When this does not work, carefully flush a small 

amount of saline into the catheter and immediately try to withdraw blood. Be 

aware that infusion can result in a release of thrombus into the circulation and 

embolism of distal organs, depending on the site of the catheter. When careful 

flushing does not work, connect the clogged line to a pressure-transducer to 

check if there is still a hemodynamic signal. If there is no signal, the fluid filled line 

should be sealed by several knots and cut off.  

Interpretation and Limitations  

When all points as mentioned above are taken into account, the combination of 

hemodynamic measurements and blood samples allows for interpretation of the 

exercise response in terms of whole body and myocardial oxygen consumption, 

which are better measures for exercise intensity than treadmill speed alone (5, 17, 

22, 23).  

In order to meet the increased metabolic requirements of the body, 

exercise requires changes in cardiac function as well as changes in local perfusion. 
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Tissue perfusion is regulated by changes in diameter of the small arteries and 

arterioles of the vascular bed supplying the tissue. Myriad vasoactive factors, 

derived from neurohumoral systems, the endothelium and local metabolites 

interact to determine vascular tone and ensure adequate tissue perfusion (5, 9, 

12, 18). Changes in systemic and pulmonary vascular resistance or the inverse, 

vascular conductance, can be calculated from the blood pressure and flow signals 

and interpreted in terms of changes in vasomotor tone in the systemic and 

pulmonary vasculature. Intuitively, vascular resistance is often used to assess 

changes in vascular tone. However, in our research group, we advocate the use of 

conductance although conductance and resistance are mathematically related, 

with conductance being flow normalized for pressure, and resistance equaling 

pressure divided by flow. Although conductance and resistance are 

interchangeable if one investigates the effect of only a single stimulus (i.e., 

exercise) (3, 23), interpretation of the two parameters can differ when combining 

exercise with pharmacological interventions, to investigate the contributions of 

various vasoactive systems to regulation of vascular tone (4, 10, 18, 22, 23).  

During exercise, the systemic circulation transforms from a system at rest 

that is characterized by a low flow and a high resistance (i.e., low conductance) 

into a system with high flow and low resistance, (high conductance). As such, 

pharmacological vasodilation has different consequences for conductance and 

resistance during rest versus exercise. The decrease in resistance that is produced 

by a pharmacological vasodilator at rest is large while the increase in conductance 

is only small. In contrast, during exercise the same degree of vasodilation 

translates into a large increase in conductance, but only a small decrease in 

resistance. Thus, when conductance is used, a greater vasodilation seems to occur 

during exercise, while when looking at resistance vasodilation appears to be larger 

at rest. Interpretation of the data thus differs when using resistance or 
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conductance. Although the choice between resistance and conductance may 

seem rather arbitrary, in physics the variable that undergoes the primary change 

is designated as the numerator of the index for a response (3, 10, 23). Since 

during exercise aortic blood pressure remains fairly constant whereas cardiac 

output increases markedly, the most appropriate parameter to describe the 

systemic vascular response to exercise would appear to be systemic vascular 

conductance (cardiac output / aortic blood pressure), rather than resistance. 

Moreover, the systemic circulation consists of a multitude of vascular beds from a 

variety of organs that are principally perfused in a parallel manner. Since parallel 

resistors add up reciprocally, while parallel conductors add up in a linear manner, 

any change in conductance of a particular regional vascular bed translates into an 

identical (absolute) change of the total systemic vascular conductance. This 

consideration lends further support to the use of vascular conductance to 

describe the systemic vascular responses to exercise and pharmacological 

interventions.  

The choice for either resistance or conductance to describe the vascular 

responses to exercise in the pulmonary bed appears to be less obvious, because 

exercise produced increases in cardiac output as well as pulmonary artery 

pressure (3, 23). A choice for either resistance or conductance is also less critical, 

in view of the relatively minor exercise-induced changes in PVR and PVC as 

compared to the degree of vasodilation produced by, for example, ET-receptor 

blockade (23). As a result, the use of either resistance or conductance to 

characterize the vascular effects of a pharmacological vasodilator in the 

pulmonary circulation will yield similar conclusions.  

In the coronary circulation, interpretation of the data is even more 

complex as systemic administration of pharmacological antagonists of 
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endogenous vasoactive substances results not only in alterations in coronary 

resistance vessel tone, but often also produce pronounced changes in systemic 

hemodynamic variables (3, 14, 22, 23). These altered hemodynamics influence 

cardiac work, and thereby cause changes in coronary blood flow resulting from 

changes in metabolic requirements of the heart or from autoregulation, rather 

than as a direct effect of the intervention on coronary vascular tone. For example, 

blockade of an endogenous vasoconstrictor system decreases mean aortic 

pressure, as a consequence of systemic vasodilation, and elicits autoregulatory 

adjustments in coronary microvascular tone. Moreover, baroreceptor reflex 

activation acts to increase heart rate and myocardial contractility. Such changes in 

heart rate and/or blood pressure subsequently will result in alterations in 

myocardial metabolism, requiring an adjustment in myocardial oxygen supply and 

hence in coronary blood flow.  

To take into account the effects of such drug-induced alterations in 

myocardial oxygen consumption, investigators examine the relation between 

coronary venous oxygen levels and myocardial oxygen consumption (MVO2) (4, 

18), as this approach allows assessment of regulation of coronary resistance 

vessel tone independently of changes in myocardial oxygen demand. 

Administration of a vasodilator will increase myocardial oxygen delivery at a given 

level of MVO2. As this increase in oxygen delivery occurs without a change in 

oxygen consumption, myocardial oxygen extraction will decrease, thereby leading 

to increases in coronary venous oxygen content and hence in an upward shift of 

the relation between MVO2 and coronary venous oxygen levels. It is therefore 

imperative to measure both myocardial oxygen demand as well as myocardial 

oxygen supply in order to correctly study the regulation coronary resistance vessel 

tone (4, 18).  
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Notwithstanding its elegance and usefulness, some investigators have 

pointed out the limitations of this approach (8). Thus, plotting MVO2 versus 

coronary venous PO2 or coronary venous SO2 could be considered to be 

inappropriate because these variables are actually part of the equation to 

compute MVO2. Consequently, MVO2 is not a variable that is independent of 

coronary venous PO2 or SO2. Alternatively, investigators should consider using 

another index of myocardial work, the rate-pressure product (RPP), which is the 

product of heart rate and left ventricular systolic pressure. However, as RPP and 

MVO2 are almost linearly related, substituting RPP for MVO2 yields virtually 

identical results (22), and the relation between MVO2 and coronary venous 

oxygen levels is considered a sensitive way of studying alterations in coronary 

vasomotor tone.  

Significance with Respect to Existing Methods  

Another method commonly used to assess changes in regulation of vascular tone 

is the use of isolated coronary and pulmonary small arteries or arterioles in a 

pressure or wire myograph (13, 19, 22). The advantage of myograph studies is 

that vessels can be studied independent of surrounding tissue and without 

potentially confounding effect from circulating factors. These in vitro techniques 

are therefore complementary to the in vivo measurements. However, in vivo and 

in vitro techniques sometimes give opposing results. For example, the response to 

the potent vasoconstrictor endothelin was reduced in the intact coronary 

circulation after myocardial infarction, but was augmented in isolated coronary 

small arteries from swine with myocardial infarction as compared to healthy 

control swine (13). This difference between the in vivo and in vitro data was due 

to an increased suppression of the vasoconstrictor influence of endothelin by 

prostanoids in vivo (13).  
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Future Applications  

Given the proposed role of changes in coronary microvascular function in both left 

and right ventricular dysfunction, assessment of these changes in relevant models 

of cardiovascular disease is required. The use of chronically instrumented animals 

allows correlations of the severity of the disease with microvascular (dys)function. 

Moreover, both coronary and pulmonary microvascular function may appear 

normal under basal resting conditions, while microvascular dysfunction may be 

revealed under cardiovascular stress, such as during exercise.  

Several swine models of cardiopulmonary disease, such as diabetes (19), 

myocardial infarction (7), pulmonary hypertension (11, 15) and pacing induced 

heart failure (16) are available and could be combined with chronic 

instrumentation. A potential drawback is that, when commercially available swine 

breeds such as Yorkshire, Landrace, Large White etc, are used, adult swine are 

very large and may therefore be difficult to handle. Therefore, juvenile swine are 

often used. However, as juvenile swine grow rapidly, positioning and function of 

flow probes and pressure catheters and patency of fluid-filled catheters may 

become compromised, limiting the duration of serial measurements within 

individual animals to approximately 10 weeks. An alternative is the use of adult 

miniature swine, such as Yucatan or Gottingen swine, of which the adult weight is 

40 - 60 kg (1).  

In conclusion, the use of chronically instrumented animals allows serial 

assessment of cardiopulmonary function either during development of disease or 

evaluation of treatment, thereby increasing statistical power and limiting the 

number of animals required for a study.  
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Abstract 

Chronic thrombo-embolic pulmonary hypertension (CTEPH) develops in 4% of 

patients after pulmonary embolism and is accompanied by an impaired exercise 

tolerance, which is ascribed to the increased right ventricular (RV) afterload and a 

ventilation/perfusion (V/Q) mismatch in the lungs. This study investigated 

changes in arterial PO2 and hemodynamics in response to graded treadmill 

exercise during development and progression of CTEPH in a swine model.  

Swine were chronically instrumented and received multiple pulmonary embolisms 

by (i) microsphere infusion (Spheres) over five weeks, (ii) endothelial dysfunction 

by administration of eNOS inhibitor L-Nω-Nitroarginine methyl ester (LNAME) 

during seven weeks, (iii) combined pulmonary embolisms and endothelial 

dysfunction (LNAME+Spheres), or (iv) served as sham-operated controls (Sham). 

After nine weeks follow-up, embolization combined with endothelial dysfunction 

resulted in CTEPH as evidenced by a mean pulmonary artery pressure of 

39.5±5.1mmHg versus 19.1±1.5mmHg (Spheres, p<0.001), 22.7±2.0mmHg 

(LNAME, p<0.001) and 20.1±1.5mmHg (Sham, p<0.001), and a decrease in arterial 

PO2 that was exacerbated during exercise, indicating a V/Q-mismatch. RV 

dysfunction was present after five weeks of embolization, both at rest (trend 

towards increased RV end systolic lumen area, p=0.085 and decreased SVi 

p=0.042) and during exercise (decreased SVi vs Control p=0.040). With sustained 

PH, RV hypertrophy (Fulton index p=0.022) improved RV function at rest and 

during exercise, but this improvement was insufficient in the CTEPH swine to 

result in an exercise-induced increase in cardiac index. 
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In conclusion, embolization in combination with endothelial dysfunction results in 

CTEPH in swine. Exercise increased RV afterload, exacerbated the V/Q mismatch 

and unmasked RV dysfunction.  
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79 

Introduction 

Pulmonary hypertension (PH) is a chronic pathophysiological disorder of the 

pulmonary vasculature and is defined as a chronic pulmonary artery pressure 

(PAP) ≥ 25mmHg at rest for a consecutive period of at least 6 weeks, although 

pulmonary artery pressures ≥ 19mmHg at rest are associated with increased 

mortality at long term (27). Treatment modalities for PH are very limited and, 

even when treated, the disease often progresses to right heart failure and death. 

The World Health Organization differentiates 5 groups of PH based on their 

etiology. Chronic thromboembolic PH (CTEPH), categorized as group 4, develops 

in about 4% of patients after acute pulmonary embolism and up to 10% of 

patients with recurrent pulmonary embolism (9, 59) and is defined as persistent 

PAP above 25mmHg for over 6 months (11). The obstructions in the pulmonary 

arteries increase pulmonary vascular resistance (PVR) and result in ventilation-

perfusion (V/Q) mismatch in the lungs. The main treatment options for CTEPH are 

interventions to remove proximal obstructions in eligible patients such as 

pulmonary endarterectomy or balloon angioplasty (57, 58, 65). Moreover, it is 

increasingly being recognized that distal pulmonary vasculopathy, which is left 

untreated when only removing the proximal obstruction(s) contributes 

significantly to the increase in pulmonary vascular resistance (32, 40, 53, 62). It is 

currently unknown when these distal vascular lesions develop, and whether 

endothelial dysfunction promotes such development. 

Dating back to 1984, many investigators have attempted to establish a 

solid large animal model to study the pathophysiology of CTEPH using different 

embolization frequencies and embolization materials including air, autologous 

blood cloths, sephadex beads and glue (Table 1). Although PAP increases acutely 

upon embolization in these models, most studies were unsuccessful in 
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establishing a sustained level of elevated PAP during prolonged follow-up (10, 12, 

15, 27, 34, 54, 57, 64, 65). Those studies that did report CTEPH during prolonged 

follow-up (11, 28, 57, 64) have in common that they used repeated (between 4 

and 40 times) embolization procedures, thereby obstructing a significant fraction 

of the pulmonary vasculature. In these studies, PAP also decreased in between 

embolization procedures, but gradual increase in PAP occurred over time. 

However, most studies did not determine whether this gradual increase in PAP 

was solely due to the progressive embolization of pulmonary vessels or that distal 

pulmonary microvasculopathy also developed. Recent findings by Boulate et al. 

suggest that distal vasculopathy was present in their model of left pulmonary 

artery ligation in combination with glue-embolizations (65). However, in the latter 

study, as in most of the aforementioned studies, hemodynamic measurements 

were performed under anesthesia, which may have influenced cardiac function 

and pulmonary hemodynamics (10, 28, 65). Moreover, and in most cases due to 

the use of anesthetic agents, pulmonary hemodynamics were not assessed during 

exercise.  

The increased PVR imposes an increased afterload on the right ventricle 

(RV). As contractile reserve of the RV is limited (10), PH results in subacute RV 

dilation and dysfunction (65). With sustained PH, the right ventricle undergoes 

structural remodeling and hypertrophy (65). Although RV remodeling is initially 

beneficial and helps the RV to cope with the increased afterload, it poses a risk 

factor for the later development of RV failure. Evaluation of RV function during 

stress has been shown to be of prognostic value in patients (10, 36, 64). RV 

dysfunction is exacerbated during exercise, when cardiac demand increases and 

the RV is required to pump more blood against an increased afterload. Therefore, 

RV functional measurements during stress enable the evaluation of the capacity 

of the RV to cope with an increased afterload and facilitate early detection of RV 

Exercise to predict cardiac and vascular remodeling in CTEPH 

81 

dysfunction (65). In addition to RV dysfunction, V/Q mismatch is thought to 

contribute to the exercise intolerance observed in patients with CTEPH (11, 57). 

To date, however studies describing animal models of CTEPH have not evaluated 

the occurrence of V/Q mismatch at rest and during exercise.  

In light of these considerations, we developed and characterized a 

clinically relevant swine model of PH type 4, using a double hit (endothelial 

dysfunction in conjunction with repeated embolizations) approach, in which we 

applied treadmill exercise as a physiological stressor to evaluate the function of 

the right ventricle in the development and progression of CTEPH. 
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Methods 

Studies were performed in accordance with the “Guiding Principles in the Care 

and Use of Laboratory Animals” as approved by the Council of the American 

Physiological Society, and with approval of the Animal Care Committee of the 

Erasmus Medical Center Rotterdam (3158, 109-13-09). Twenty-four Yorkshire x 

Landrace swine (2-3 months old, 21.5 ± 0.9kg at the time of surgery) of either sex 

entered the study. Eighteen animals completed the protocol as six animals were 

excluded due to complications; 2 due to infections, 2 due to catheter failure and 2 

animals due to acute cardiopulmonary failure after CTEPH induction. An overview 

of the experimental protocol is depicted in Figure 1. 

Surgery 

Surgical details have been extensively described previously (57). In short, swine 

were sedated with an intramuscular (i.m.) injection of tiletamine/zolazepam 

(5mg/kg, Virbac BV, Barneveld, The Netherlands), xylazine (2.25 mg/kg, AstFarma 

BV, Oudewater, The Netherlands) and atropine (1mg, Teva Nederland BV, 

Haarlem, The Netherlands), intubated and ventilated with a mixture of O2 and N2 

(1:2v/v) to which 2% (v/v) isoflurane was added to maintain anesthesia. Under 

sterile conditions, the chest was opened via a left thoracotomy in the fourth 

intercostal space and fluid-filled polyvinylchloride catheters (B Braun Medical Inc., 

Bethlehem, PA, USA) were placed in the right ventricle, pulmonary artery, aorta 

and left atrium for blood sampling and measurement of pressures. A flow probe 

(Transonic Systems Inc., Ithaca, NY, USA) was positioned around the ascending 

aorta for measurement of cardiac output. The catheters were tunneled to the 

back and animals were allowed to recover for one week, receiving analgesia 

(0.015mg/kg buprenorphine i.m. and a slow-release transdermal fentanyl patch 

12μg/h for 48 hours, Indivior, Slough, United Kingdom) on the day of the surgery 

Exercise to predict cardiac and vascular remodeling in CTEPH 

85 

and daily antibiotic prophylaxis (25mg/kg amoxicillin intravenous (i.v.), 

Centrafarm B.V. Etten-Leur, The Netherlands) for 7 days. 

Figure 1. Experimental protocol. 
Catheters were placed in the Aorta, Right Ventricle (RV), Pulmonary Artery (PA) and left 
atrium (LA) for blood sampling and measurement of pressures and a flow probe was 
positioned around the ascending aorta for measurement of cardiac output. The eNOS-
inhibitor LNAME was administered intravenously in both the LNAME and LNAME+Spheres 
groups until 2 weeks before sacrifice. Embolization procedures were performed in awake 
state in the Spheres and LNAME+Spheres group from week 2 until week 5. All animals 
performed the treadmill exercise protocol and RV function was echocardiographically 
determined weekly in awake state. At the end of the follow-up (week 9-10) all the animals 
were sacrificed and in-vitro experiments were performed. AoP, aorta pressure; CO, cardiac 
output; RVP, right ventricular pressure; PAP, pulmonary artery pressure; LAP, left atrial 
pressure. 
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sterile conditions, the chest was opened via a left thoracotomy in the fourth 

intercostal space and fluid-filled polyvinylchloride catheters (B Braun Medical Inc., 

Bethlehem, PA, USA) were placed in the right ventricle, pulmonary artery, aorta 

and left atrium for blood sampling and measurement of pressures. A flow probe 

(Transonic Systems Inc., Ithaca, NY, USA) was positioned around the ascending 

aorta for measurement of cardiac output. The catheters were tunneled to the 

back and animals were allowed to recover for one week, receiving analgesia 

(0.015mg/kg buprenorphine i.m. and a slow-release transdermal fentanyl patch 

12μg/h for 48 hours, Indivior, Slough, United Kingdom) on the day of the surgery 
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and daily antibiotic prophylaxis (25mg/kg amoxicillin intravenous (i.v.), 

Centrafarm B.V. Etten-Leur, The Netherlands) for 7 days.

Figure 1. Experimental protocol.
Catheters were placed in the Aorta, Right Ventricle (RV), Pulmonary Artery (PA) and left 
atrium (LA) for blood sampling and measurement of pressures and a flow probe was 
positioned around the ascending aorta for measurement of cardiac output. The eNOS-
inhibitor LNAME was administered intravenously in both the LNAME and LNAME+Spheres 
groups until 2 weeks before sacrifice. Embolization procedures were performed in awake 
state in the Spheres and LNAME+Spheres group from week 2 until week 5. All animals 
performed the treadmill exercise protocol and RV function was echocardiographically 
determined weekly in awake state. At the end of the follow-up (week 9-10) all the animals 
were sacrificed and in-vitro experiments were performed. AoP, aorta pressure; CO, cardiac 
output; RVP, right ventricular pressure; PAP, pulmonary artery pressure; LAP, left atrial 
pressure.
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CTEPH induction 

Four groups of animals were studied. In the first group (Spheres, N=3), multiple 

injections of fluorescent blue polyethylene microspheres (diameter 600-710μm 

(maximal microsphere size that did not cause clogging of the catheter); density 

1.134g/mL, UVPMS-BB-1.13, Cospheric LLC, Santa Barbara, CA, USA) were given. 

Microspheres (500mg, being equal to ∼2500 microspheres) were suspended in 

50mL autologous blood with 0.5mL 5000 I.U. heparin added and slowly infused 

into the right ventricle while monitoring PAP. Microsphere infusions were 

repeated until the PAP reached ~60mmHg, or when arterial PO2 (PO2art) dropped 

below ~40mmHg, measured 30 min after infusion in resting condition or a 

maximum of 3 gram (∼15000) microspheres were infused. In the subsequent four 

weeks, microsphere infusions were repeated. In the first animal, embolization 

procedures were performed multiple times per week, whereas in the subsequent 

two animals, embolization procedures were performed once per week. As no 

sustained PH was induced with this protocol, in the second group (N=6), multiple 

injections of microspheres were combined with a daily bolus infusion of the eNOS-

inhibitor L-Nω-Nitroarginine methyl ester (LNAME, Enzo Life Sciences International 

Inc, NY, USA) to mimic endothelial dysfunction often present in CTEPH patients. 

LNAME is converted to its active metabolite LNNA within 19 minutes, with the 

half-life of LNNA amounting to approximately 20 hours (22). On the first day, 

animals were given LNAME (10mg/kg i.v.) as a bolus infusion. On subsequent 

days, the dose of LNAME was increased by 10mg/kg per day up to 30mg/kg i.v., 

which was maintained until 2 weeks before the end of the study (35, 64). Four 

days after the first LNAME administration, hemodynamic measurements were 

performed as described above, then microspheres were infused into the right 

ventricle as described for group 1. In the subsequent four weeks, microsphere 

infusion was performed at weekly intervals if the PAP was <25mmHg and/or 
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PO2art>70mmHg, as described above. During the final four weeks of follow-up, no 

microsphere infusions were performed.  

The third group of sham animals did not receive LNAME or microspheres 

(Sham, N=4) and the fourth group was given chronic LNAME, but no microspheres 

were infused (LNAME, N=5). 

Exercise protocol 

Studies were performed 1-9 weeks after surgery. Catheters were connected to 

fluid-filled pressure transducers (Combitrans, B. Braun Medical, Oss, The 

Netherlands) positioned on the back of the animals and calibrated at mid-chest 

level. With swine standing quietly, resting hemodynamic measurements, 

consisting of cardiac output (CO), aorta pressure (MAP), pulmonary artery 

pressure (PAP), left atrial pressure (LAP) and right ventricular pressure (RVP), were 

obtained, and arterial and mixed venous blood samples were taken. 

Hemodynamic measurements and blood gas sampling were repeated during a 

graded exercise protocol, with swine running on a motor-driven treadmill (58, 64). 

During the embolization period, exercise was performed just prior to the weekly 

injection of microspheres and/or LNAME. Swine were subjected to a four-stage 

exercise protocol (1-4km/h). Hemodynamic variables were continuously recorded 

and blood samples were collected during the last 60sec of each 3min exercise 

stage, when hemodynamic steady-state was reached. Measurements of arterial 

and mixed venous PO2 (mmHg), pCO2 (mmHg), O2 saturation (%), hemoglobin 

concentration (g/dL) and lactate (mmol/L) were immediately performed with a 

blood gas analyzer (ABL 800, Radiometer Medical ApS, Brønshøj, Denmark) (35). 
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Echocardiography 

During the entire follow-up period, RV dimensions and tricuspid annular plane 

systolic excursion (TAPSE) were weekly assessed using echocardiography (ALOKA 

ProSound SSD-4000, Hitachi Aloka Medical, Ltd., Japan) in awake resting 

conditions. An apical four chamber view was obtained for the determination of RV 

end-diastolic cross-sectional lumen area (EDA) and end-systolic cross-sectional 

lumen area (ESA), whereas TAPSE was determined using M-mode in the four-

chamber view. 

Sacrifice 

After completing the experimental protocols, the animals were sedated and 

intubated as described before. With the animals ventilated under deep anesthesia 

(pentobarbital sodium (6-12mg kg/h)), a sternotomy was performed. The heart 

was arrested and immediately excised together with the lungs. To assess relative 

RV hypertrophy, the heart was sectioned into RV and left ventricle including 

septum (LV), weighed, and RV hypertrophy was assessed using the Fulton index 

(RV/LV). Myograph experiments were performed on isolated pulmonary small 

arteries (diameter ~300μm) (18, 58). Pulmonary small arteries were dissected and 

stored overnight in cold, oxygenated (95% O2/5% CO2) Krebs bicarbonate solution 

(in mM: 118 NaCl, 4.7 KCl, 2.5 CaCl2, 1.2 MgSO4, 1.2 KH2PO4, 25 NaHCO3, and 

glucose 8.3; pH 7.4). The next day, the dissected vessels were cut into segments of 

~2mm length, mounted in microvascular myograph baths (Danish 

MyoTechnology, Aarhus, Denmark) containing 6mL Krebs bicarbonate solution 

aerated with 95% O2-5% CO2, maintained at 37°C and the internal diameter was 

set to a tension equivalent of 0.9 times the estimated diameter at 20mmHg 

effective transmural pressure. Changes in contractile force were recorded with a 

Harvard isometric transducer. The vessels were subsequently exposed to 30mM 
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KCl twice. Endothelial function was measured by observing dilation to 10nM 

substance P after preconstriction with 100nM of the stable thromboxane-A2 

analog 9,11-dideoxy-11α,9α epoxymethanoprostaglandin F2α (U46619). 

Histology 

The accessory lobe of the right lung was first flushed with physiologic saline (0.9% 

NaCl) through the main bronchus to flush the airways from sputum and surfactant 

at constant physiological pressure of 25cmH2O. Subsequently, the lobe was fixed 

by tracheal installation of 3.5-4% buffered formaldehyde at constant physiological 

pressure of 25cmH2O for a minimum of 24 hours with the lobe submerged in 

fixative (32). Transverse sections were obtained from the tip, middle and base of 

the fixed accessory lobe for histology. All sections were processed and embedded 

in paraffin wax. Paraffin sections of 4.5µm were cut and stained with Resorcin 

Fuchsin von Gieson (RF). These sections were evaluated by light microscopy using 

the Hamamatsu NDP slide scanner (Hamamatsu Nanozoomer 2.0HT, Hamamatsu 

Photonics K.K., Hamamatsu City, Japan). Morphometric measurements of 

pulmonary arteries were performed using NanoZoomer Digital Pathology (NDP) 

viewer (Hamamatsu Photonics K.K., Japan). To ensure that pulmonary veins were 

excluded for analysis, vessels in close proximity to the septae were excluded from 

analysis. Only transversely cut vessels of predetermined diameters (<50µm) were 

analysed. Assuming circularity of the vessels, inner and outer radius were 

calculated as r = perimeter/2*π. Wall thickness was calculated as outer radius – 

inner radius. 

A section of the RV was processed and embedded in paraffin wax. Paraffin 

sections of 4.5µm were cut and stained with a Gomori staining. Only transversely 

cut cardiomyocytes were analyzed for cross sectional area (CSA) using NDP 

viewer.  
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Quantitative PCR 

For detection of IL-6, TNF-α, TGF-β1, Ang-1, Ang-2, TIE-2, VEGF-A, FLT-1 and KDR 

mRNA, lung tissue was snap frozen in liquid nitrogen after excision. Small pieces 

of tissue (<30mg) were homogenized by adding RLT lysisbuffer (Qiagen, Venlo, 

The Netherlands) and 2-mercaptoethanol (Sigma-Aldrich, Zwijndrecht, The 

Netherlands) using a homogenizer. After a proteinase K (Invitrogen, Breda, The 

Netherlands) treatment at 55°C for 10 min, total RNA was isolated using the 

RNeasy Fibrous Tissue Mini Kit (Qiagen, Venlo, The Netherlands). RNA was eluted 

in RNase-free water and the concentration was determined using a NanoDrop 

(NanoDrop1000, Thermo Fisher Scientific, Bleiswijk, The Netherlands). RNA 

integrity was confirmed with a Bioanalyzer (2100 Bioanalyzer, Agilent, Santa Clara, 

California, USA). cDNA was synthesized from 500ng of total RNA with SensiFAST 

cDNA Synthesis Kit (Bioline, London, UK). Quantitative PCR (qPCR) (CFX-96, Bio-

Rad, Hercules, California, USA) was performed with SensiFAST SYBR & Fluorescein 

Kit (Bioline, London, UK). Target gene mRNA levels were normalized against β-

actin, glyceraldehyde-3-phosphate dehydrogenase (GADPH), and Cyclophilin using 

the CFX manager software (Bio-Rad, Hercules, California, USA). Relative gene 

expression data were calculated using the ΔΔCt method. All primer sequences are 

presented in Table 2. 
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Table 2. Primer sequences used for the quantitative PCR. 

IL-6, interleukin 6; TNF-α, tumor necrosis factor α; TGF-β1, transforming growth factor β1; 
Ang-1, angiopoietin 1; Ang-2, angiopoietin 2; TIE-2, angiopoietin 1 receptor; VEGF-A, 
vascular endothelial growth factor A; FLT-1, vascular endothelial growth factor receptor 1; 
KDR, kinase insert domain receptor (vascular endothelial growth factor receptor 2).  

Data analysis and statistics 

Echocardiography data were analyzed using DICOM viewer (Rubo Medical Imaging 

BV, Aerdenhout, The Netherlands) and SigmaScan Pro (Systat Software Inc, San 

Jose, CA, USA). Three images of end-diastole, three images of end-systole and 

three TAPSE recordings per echo were selected in DICOM viewer. RV lumen area 

and TAPSE length were manually drawn per image, automatically calculated in 

SigmaScan and then averaged per animal per time point.  

Digital recording and offline analysis of hemodynamic data were 

performed with MatLab (MathWorks, Natick, MA, USA) and have been described 

in detail elsewhere (4, 40).To accommodate for growth, cardiac output was 

corrected for bodyweight, resulting in cardiac index (CI). Total pulmonary vascular 

resistance index (tPVRi) and systemic vascular resistance (SVRi) were calculated as 

PAP divided by CI and mean aortic pressure divided by CI, respectively. Body 

 Sequence 
Genes Forward Reverse 
IL-6 CTCCAGAAAGAGTATGAGAGC AGCAGGCCGGCATTTGTGGTG 
TNF-α TGCACTTCGAGGTTATCGGCC CCACTCTGCCATTGGAGCTG 
TGF-β1 GTGGAAAGCGGCAACCAAAT CACTGAGGCGAAAACCCTCT 
Ang-1 AATGGACTGGGAAGGAAACCG TCTGTTTTCCTGCTGTCCCAC 
Ang-2 AGGCAACGAGGCTTACTCAC TCGTTGTCTGCGTCCTTTGT 
TIE-2 GTCCCGAGGTCAAGAAGTGT AAGGGGTGCCACCTAAGCTA 
VEGF-A ACTGAGGAGTTCAACATCGCC CATTTACACGTCTGCGGATCTT 
FLT-1 AAGGAGGGCGTGAGGATGAGG GGCTTGCAGCAGGTCGCCTAG 
KDR TTCTCCGAGCTGGTGGAGCAC AGGTAGGCAGAGAGAGTCCGG 
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oxygen consumption index (BVO2i) was calculated as the product of CI and the 

difference between arterial and mixed venous oxygen content of the blood.  

Statistical analysis was performed using SPSS version 21.0 (IBM, Armonk, 

NY, USA). Differences between Spheres, LNAME+Spheres, LNAME and Sham over 

time at rest were analyzed with a two-way MANOVA with PAP, tPVRi, CI and 

stroke volume index (SVi) as dependent variables and time and group as fixed 

factors. As no differences were observed in hemodynamics, oxygenation, 

histology, inflammation and angiogenesis between Sham, LNAME and the Spheres 

groups, these groups were pooled into a single Control group (Control) for the 

subsequent analyses. Echocardiography data and Fulton index were analyzed by a 

one-way MANOVA with the RVESA, RVEDA, right ventricular fractional area 

change (RVFAC), TAPSE, CSA, RVW/LVW and RVW/BW as dependent variables and 

group as fixed factor. The difference in effect of exercise on the hemodynamic 

parameters between LNAME+Spheres and Control at the same time point were 

assessed by two-way repeated measures (RM)-ANOVA with exercise as within-

subject factor and group as between-subject factor. The difference in effect of 

exercise on hemodynamic parameters compared to baseline within the individual 

groups, a two-way RM-ANOVA with exercise as within-subject factor and time as 

between-subject factor. Statistical significance was accepted when p ≤ 0.05. Data 

are presented as mean ± SEM. 
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Results 

Induction and progression of CTEPH 

To induce CTEPH, microspheres (600-710μm) were infused slowly into the right 

ventricle. In the Spheres group, one animal received twenty-five embolizations 

with an average of 2700 microspheres per embolization procedure. The two other 

animals underwent five embolization procedures with an average of 9200 

microspheres per embolization procedure. Each microsphere has a cross-sectional 

area of 2.5-4.7 ⋅ 10-14m2, a volume 1.1-1.8 ⋅ 10-10m3 and a total surface area of 1.0-

1.9 ⋅ 10-13m2. With an average of 36000 spheres per animal. This results in a total 

cross-sectional area of 9.1-17.0 ⋅ 10-10m2, a total volume of 4.1-6.5 ⋅ 10-6m3 and a 

total surface area of 3.7-6.8 ⋅ 10-9m2. Although immediately following injection a 

substantial increase in PAP was observed, this increase waned over the course of 

the next few days, such that with weekly measurements, resting PAP and tPVRi 

did not increase significantly over time in these animals (PAP being 

21.0±1.8mmHg and tPVRi being 100±4mmHg⋅min/L/kg at baseline and 

19.1±1.5mmHg and 147±22mmHg⋅min/L/kg respectively at week 9).  

In the second group (LNAME+Spheres), an average of four embolization 

procedures (range between two and five), were required to induce chronic PH. 

The number of microspheres infused per embolization procedure did not change 

over time, being 9000±400. 

In these animals, resting PAP increased gradually over time (from 

21.8±1.1mmHg at baseline before LNAME to 32.2±3.1at week 5 and 

39.5±5.1mmHg at week 9) as a result of a progressive increase in pulmonary 

vascular resistance (Figure 2). The increase in tPVRi in the LNAME+Spheres 

animals was due to a combination of vascular obstruction by the injected spheres 
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Results 

Induction and progression of CTEPH 

To induce CTEPH, microspheres (600-710μm) were infused slowly into the right 

ventricle. In the Spheres group, one animal received twenty-five embolizations 

with an average of 2700 microspheres per embolization procedure. The two other 

animals underwent five embolization procedures with an average of 9200 

microspheres per embolization procedure. Each microsphere has a cross-sectional 

area of 2.5-4.7 ⋅ 10-14m2, a volume 1.1-1.8 ⋅ 10-10m3 and a total surface area of 1.0-

1.9 ⋅ 10-13m2. With an average of 36000 spheres per animal. This results in a total 

cross-sectional area of 9.1-17.0 ⋅ 10-10m2, a total volume of 4.1-6.5 ⋅ 10-6m3 and a 

total surface area of 3.7-6.8 ⋅ 10-9m2. Although immediately following injection a 

substantial increase in PAP was observed, this increase waned over the course of 

the next few days, such that with weekly measurements, resting PAP and tPVRi 

did not increase significantly over time in these animals (PAP being 

21.0±1.8mmHg and tPVRi being 100±4mmHg⋅min/L/kg at baseline and 

19.1±1.5mmHg and 147±22mmHg⋅min/L/kg respectively at week 9).  

In the second group (LNAME+Spheres), an average of four embolization 

procedures (range between two and five), were required to induce chronic PH. 

The number of microspheres infused per embolization procedure did not change 

over time, being 9000±400. 

In these animals, resting PAP increased gradually over time (from 

21.8±1.1mmHg at baseline before LNAME to 32.2±3.1at week 5 and 

39.5±5.1mmHg at week 9) as a result of a progressive increase in pulmonary 

vascular resistance (Figure 2). The increase in tPVRi in the LNAME+Spheres 

animals was due to a combination of vascular obstruction by the injected spheres 

Kelly Stam Dissertatie V5.indd   93 12-8-2019   09:51:54



Chapter 3. 

94 

in combination with remodeling and dysfunction of the pulmonary microvessels. 

The latter was reflected by an increased wall-thickness (Figure 4) and impaired 

vasorelaxation in response to Substance P in isolated pulmonary small arteries 

(86±3%, 82±3%, 90% and 62±8% in Sham, LNAME, Spheres and LNAME+Spheres 

respectively). Histologically, microspheres in the lungs were surrounded by fibrous 

tissue, however, qPCR analysis revealed no changes in the inflammatory markers 

IL-6, TNF-α and TGF-β1 (Figure 5). Moreover, expression of the angiogenic factors 

VEGF-A, Flt-1, KDR as well as Ang-1, Ang-2 and Tie-2 were also not different 

between groups (Figure 5). 

Although acute LNAME administration did result in a small increase in PAP 

and tPVRi within the first 30 minutes, both at baseline (BL) (17.3±0.9 to 

21.0±2.1mmHg and 101±14 to 137±17mmHg⋅min/L/kg) and after 5 weeks of 

LNAME administration (17.6±1.8 to 21.9±2.2 mmHg and 120±6 to 

150±18mmHg⋅min/L/kg), PAP and tPVRi normalized before the next injection. 

Thus, in the LNAME group, PAP did not significantly increase over time being 

18.0±1.4mmHg at week 1 and 22.7±2.0mmHg at week 9, which was not 

significantly different from PAP in the Sham group (17.5±1.2mmHg at BL and 

20.1±1.5mmHg at week 9) (Figure 2). As there were no sustained differences in 

hemodynamics, oxygenation, histology, inflammation and angiogenic markers 

between the Spheres, LNAME and Sham groups (Figure 2-5), these groups were 

pooled into one Control group (Control) for the remainder of the analyses. 
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Figure 2. Changes in pulmonary hemodynamics over time. 
Dotted bar indicates period of weekly embolizations with microspheres and white bar 
indicates administration time of LNAME. Please note that all baseline measurements were 
taken prior to administration of LNAME and/or Spheres. A) Mean pulmonary artery 
pressure (PAP); B) total pulmonary vascular resistance index (tPVRi); C) cardiac index (CI) 
and D) stroke volume index (SVi). Data are means ± SEM. Sham N=4; LNAME N=5; Spheres 
N=3; LNAME+Spheres N=6, N=5 from week 7 due to death of one animal caused by acute 
cardiopulmonary failure. * P < 0.05 vs baseline (prior to start of LNAME and/or Spheres; † 
P < 0.05 LNAME+Spheres vs Sham; ‡ P < 0.05 LNAME+Spheres vs LNAME; § P < 0.05 
LNAME+Spheres vs Spheres; Sham vs LNAME vs Spheres NS. 
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Dotted bar indicates period of weekly embolizations with microspheres and white bar 
indicates administration time of LNAME. Please note that all baseline measurements were 
taken prior to administration of LNAME and/or Spheres. A) Mean pulmonary artery 
pressure (PAP); B) total pulmonary vascular resistance index (tPVRi); C) cardiac index (CI) 
and D) stroke volume index (SVi). Data are means ± SEM. Sham N=4; LNAME N=5; Spheres 
N=3; LNAME+Spheres N=6, N=5 from week 7 due to death of one animal caused by acute 
cardiopulmonary failure. * P < 0.05 vs baseline (prior to start of LNAME and/or Spheres; † 
P < 0.05 LNAME+Spheres vs Sham; ‡ P < 0.05 LNAME+Spheres vs LNAME; § P < 0.05 
LNAME+Spheres vs Spheres; Sham vs LNAME vs Spheres NS.
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Figure 3. Changes in pulmonary and cardiac hemodynamics with incremental levels of 
exercise at the end of follow-up of different control groups.
Presented is the effect of exercise on A) mean pulmonary artery pressure (PAP); B) total 
pulmonary vascular resistance index (tPVRi); C) cardiac index (CI) and D) arterial oxygen 
pressure (PO2art). Data are means ± SEM. Sham N=4; LNAME N=5; Spheres N=3. No 
significant differences were observed.
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Figure 4. Histological overview of lung tissue stained with Resorcin Fuchsin von Gieson.
Typical examples of bronchi with arteries of animals with A) Spheres; B) LNAME+Spheres; 
C) LNAME and D) sham at 20x magnification. Panels E-H are pulmonary microvessels 
adjacent to alveoli at 20x magnification in swine from different groups E) Spheres; F) 
LNAME+Spheres; G) LNAME and H) Sham. In the LNAME+Spheres lung tissue, microvessels 
presented with a thickened/muscularized wall (black arrows). Panel I shows an example of 
the occluded vessels due to the microspheres (blue arrows) surrounded by remodeled small 
unobstructed vessels in swine that received LNAME+Spheres. Panel J is a quantitative 
presentation of the microvascular remodeling. The wall of microvessels (diameter <50μm) 
of the LNAME+Spheres were thickened compared to all other groups.Data are means ± 
SEM.Sham N=4; Spheres N=3; LNAME N=5; LNAME+Spheres N=6. † P < 0.05 vs 
LNAME+Spheres.

Figure 5. Quantitative PCR.
Inflammatory (panel A-C) and angiogenic (panel D-I) gene expression in lung tissue of all 
experimental groups at the end time-point of A) Interleukin 6 (IL-6); B) tumor necrosis 
factor α (TNF-α); C) transforming growth factor β1 (TGF-β1); D) Angiopoietin 1 (Ang-1); E) 
Angiopoietin 2 (Ang-2); F) Angiopoietin 1 receptor (TIE-2); G) vascular endothelial growth 
factor A (VEGF-A); H) vascular endothelial growth factor receptor 1 (FLT-1) and I) vascular 
endothelial growth factor receptor 2 (KDR). Data are means ± SEM. Sham N=4; Spheres 
N=3; LNAME N=5; LNAME+Spheres N=6. No significant differences between groups were 
observed.
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RV function and hypertrophy 

Echocardiography showed that RV diastolic and systolic lumen area increased 

over time, while TAPSE tended to increase and RVFAC remained constant in the 

Control group, reflecting growth of the RV over time (Figure 6). Repeated 

microsphere injections over 5 weeks in the LNAME+Spheres group resulted in a 

trend towards higher end-systolic (P=0.085) but not end-diastolic right ventricular 

lumen area (P=0.15), indicating mild RV contractile dysfunction. This was 

associated with a slight decrease in SVi as compared to BL, while RVFAC and 

TAPSE did not change. With sustained PH, SVi was reduced as compared to BL, but 

neither SVi, nor RV diastolic and systolic lumen area and RVFAC were significantly 

different from Control, although TAPSE showed a trend towards a reduction, 

indicating that resting RV function recovered. The Fulton index (RVW/LVW) and 

RVW/bodyweight (BW), measured at sacrifice after sustained PH, were 

significantly higher in LNAME+Spheres compared to Control swine, implying right 

ventricular hypertrophy due to chronic PH (Figure 6). 

Exercise response 

As CTEPH is accompanied by exercise intolerance due to both the increase in RV 

afterload and V/Q mismatch in the lungs, the response to exercise was examined 

in the initial phase after embolization (at 5 weeks, referred to as ‘after 

microspheres’ (AM) in the figures and at the end of follow-up (8-9 weeks after the 

first microsphere injection), referred to as ‘End’ in the figures, and compared to 

the pooled Control group at the corresponding time-points. Graded treadmill 

exercise resulted in an increase in PAP at all time-points in both LNAME+Spheres 

and Control animals (Figure 7). 
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and Control animals (Figure 7). 
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 In the LNAME+Spheres animals, PAP was increased compared to its BL 

measurement as well as to the Control at the corresponding time-point in the 

initial phase after embolization (week 5), and the exercise-induced increase in PAP 

was exacerbated due to the significant elevation in tPVRi (Figure 7). This increase 

in tPVRi was also reflected in the significantly higher slope of the relation between 

CI and PAP (Figure 8). The exercise-induced increase in CI was attenuated in the 

LNAME+Spheres group, which was due to a significant decrease in SVi during 

exercise (Figure 7), as the exercise-induced increase in heart rate was not 

different between LNAME+Spheres and Control (Table 3). These observations 

indicate that the right ventricle could not cope with the increased afterload during 

exercise in the initial phase after embolizations.  

At the end of the follow-up period, PAP was still elevated compared to 

both BL and Control. Moreover, the exercise-induced increase in CI was 

attenuated while the exercise-induced increase in PAP was exacerbated at the 

end of the follow-up period in the Spheres+LNAME group compared to Control 

(Figure 7). This translated into a persistent elevation of the slope of the relation 

between CI and PAP compared with Control (Figure 8), reflecting the sustained 

increase in tPVRi (Figure 7). Interestingly, although SVi was still depressed at the 

End of follow-up, the exercise-induced decrease in SVi that was observed at AM, 

was no longer present at the End of follow-up. The significant RV hypertrophy and 

recovery of RV-function as assessed with echo, in conjunction with the blunted 

exercise-induced decrease of SVi as compared to the initial phase after 

embolization, could be interpreted to suggest that RV-hypertrophy served to 

restore RV function in the face of an increase in afterload. 
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Figure 6. Right ventricular remodeling. 
A) End-diastolic and end-systolic lumen area changes over time as measured with 
echocardiography compared to baseline (week 0, prior to injection of LNAME and Spheres). 
End-systolic RV lumen area tended to be increased in LNAME+Spheres compared to Control 
at the end of the embolization period (AM), but not at the time-point prior to sacrifice 
(End). B) RVFAC was decreased at all time-points in LNAME+Spheres compared to Control. 
C) TAPSE tended to be increased in LNAME+Spheres at the end time-point compared to 
Control. D) Right ventricular weight (RVW) over bodyweight (BW) was increased at 
sacrifice. E) Fulton index (RVW over left ventricular weight (LVW)) was increased in 
LNAME+Spheres vs Control. F) RV cardiomyocyte CSA tended to be increased in 
LNAME+Spheres compared to Control at sacrifice. AM, after microspheres; end, end of 
follow-up; RVFAC, right ventricular fractional area change; TAPSE, tricuspid annular plane 
systolic excursion; CSA, cross sectional area. Data are means ± SEM. A) Control AM N=6, 
End N=9; LNAME+Spheres AM N=5, End N=7. B-C) Control N=9; LNAME+Spheres N=5. D-F) 
Control N=9; LNAME+Spheres N=6. ‡ P < 0.1 End-Systole LNAME+Spheres vs Control; † P < 
0.05 LNAME+Spheres vs Control. 
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Figure 6. Right ventricular remodeling.
A) End-diastolic and end-systolic lumen area changes over time as measured with 
echocardiography compared to baseline (week 0, prior to injection of LNAME and Spheres). 
End-systolic RV lumen area tended to be increased in LNAME+Spheres compared to Control 
at the end of the embolization period (AM), but not at the time-point prior to sacrifice 
(End). B) RVFAC was decreased at all time-points in LNAME+Spheres compared to Control. 
C) TAPSE tended to be increased in LNAME+Spheres at the end time-point compared to 
Control. D) Right ventricular weight (RVW) over bodyweight (BW) was increased at 
sacrifice. E) Fulton index (RVW over left ventricular weight (LVW)) was increased in 
LNAME+Spheres vs Control. F) RV cardiomyocyte CSA tended to be increased in 
LNAME+Spheres compared to Control at sacrifice. AM, after microspheres; end, end of 
follow-up; RVFAC, right ventricular fractional area change; TAPSE, tricuspid annular plane 
systolic excursion; CSA, cross sectional area. Data are means ± SEM. A) Control AM N=6, 
End N=9; LNAME+Spheres AM N=5, End N=7. B-C) Control N=9; LNAME+Spheres N=5. D-F) 
Control N=9; LNAME+Spheres N=6. ‡ P < 0.1 End-Systole LNAME+Spheres vs Control; † P < 
0.05 LNAME+Spheres vs Control.
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Figure 7. Changes in pulmonary and cardiac hemodynamics during incremental levels of 
exercise at baseline (BL), after completion of embolization (AM) and at the end of 
follow-up (End).
Presented is the effect of exercise on: mean pulmonary artery pressure (PAP), panels A&B; 
total pulmonary vascular resistance index (tPVRi), panels C&D; cardiac index (CI), panels 
E&F; and stroke volume index (SVi) in panels G&H. Data are means ± SEM. Control N=12; 
LNAME+Spheres N=6. * P < 0.05 vs BL; † P < 0.05 vs corresponding Control; § P < 0.05 vs 
effect of exercise in Control.
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PO2art was lower in the LNAME+Spheres swine compared to Control after 

the embolization phase and at the end of follow-up. Moreover, PO2art decreased 

more during exercise in LNAME+Spheres compared to Control at both time-

points. After the embolization phase, body O2 extraction at rest was increased in 

the LNAME+Spheres group compared to both BL and Control group. The increased 

O2 extraction compensated for the decreases in CI and arterial oxygenation, so 

that body O2 consumption was unaltered. At the end of follow-up, the increase in 

body O2 extraction was insufficient to compensate for the decrease in PO2art and 

the O2 consumption was lower at rest (Figure 9). Although there was no 

difference in the exercise-induced increase in O2 extraction, the exercise-induced 

increase in O2 consumption was significantly attenuated both after the initial 

embolization phase (AM) and at the end of follow-up (End) in LNAME+Spheres 

compared to Control animals, reflecting the attenuated increase in CI. 

Figure 8. Pulmonary vascular reserve.
Presented is the relationship between pulmonary artery pressure (PAP) and cardiac index 
(CI) during incremental exercise at A) baseline (BL); B) after completion of embolization 
(AM) and C) at the end of follow-up (End). Data are means ± SEM. Control N=12; 
LNAME+Spheres N=6. § P < 0.05 Effect of exercise in LNAME+Spheres vs Control (slope).
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Figure 9. Systemic oxygenation and body oxygen consumption during incremental levels 
of exercise at baseline (BL), after microspheres (AM) and at the end of follow-up (End).
Presented is the effect of exercise on: Arterial oxygen pressure (PO2art), panels A&B; Body 
oxygen consumption index (BVO2i), panels C&D; and body oxygen extraction (BVO2ex), 
panels E&F. Data are means ± SEM. Control N=12; LNAME+Spheres N=6. * P < 0.05 vs BL; † 
P < 0.05 vs corresponding Control; § P < 0.05 vs effect of exercise in Control.
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Discussion 

The main findings of this present study are that i) induction of CTEPH with a 

sustained increase in PAP and tPVRi over time required a combination of 

endothelial dysfunction (LNAME) and repeated embolization procedures, as either 

stimulus alone did not result in a sustained increase in PAP or tPVRi; ii) PAP and 

tPVRi were still increased up to 5 weeks after the last embolization and 2 weeks 

after the last LNAME injection, consistent with sustained pulmonary 

hypertension; iii) development of CTEPH is accompanied by a decrease in arterial 

oxygen tension during exercise both in the early phase following embolizations as 

well as at the end of follow-up; iv) impaired oxygenation of the arterial blood was 

compensated by a small increase in systemic oxygen extraction; v) repeated 

embolizations initially resulted in RV dysfunction at rest, as assessed with 

echocardiography, and by a decrease in SVi during exercise. However, at the end 

of follow-up, the presence of RV hypertrophy was associated with a maintained 

SVi during exercise. 

Induction of CTEPH requires both repeated embolizations and endothelial 

dysfunction 

As summarized in Table 1, over the past decades several research groups have 

attempted to develop a large animal model of CTEPH, using different embolization 

materials, particle sizes and embolization frequencies. Many of these attempts 

have failed to show a sustained (>2 weeks after the last embolization) increase in 

PAP (1, 17, 26, 33, 38, 41, 42, 48, 55, 60). The studies that did show a sustained 

increase in PAP (5, 16, 47, 49, 63), have in common that they embolized a large 

part of the pulmonary vasculature, with multiple embolization procedures. It has 

been suggested that 40-60% of the lung vasculature needs to be obstructed for 
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Figure 9. Systemic oxygenation and body oxygen consumption during incremental levels 
of exercise at baseline (BL), after microspheres (AM) and at the end of follow-up (End).
Presented is the effect of exercise on: Arterial oxygen pressure (PO2art), panels A&B; Body 
oxygen consumption index (BVO2i), panels C&D; and body oxygen extraction (BVO2ex), 
panels E&F. Data are means ± SEM. Control N=12; LNAME+Spheres N=6. * P < 0.05 vs BL; † 
P < 0.05 vs corresponding Control; § P < 0.05 vs effect of exercise in Control.
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the left pulmonary artery in combination with progressive embolization of the 

segmental arteries of the right lower lobe (5), leaving the right upper and possibly 

right middle lobe unaffected. 

Estimation of the relative magnitude of the obstructed part of the 

pulmonary vasculature requires comparison of the number of microspheres 

infused with the number of vascular branches of corresponding size present in the 

pulmonary vascular bed. The pulmonary vasculature can be morphometrically 

described with diameter defined Strahler orders, starting at the capillaries and 

ending at the main pulmonary artery (24). The pulmonary vascular tree of swine is 

less well described than that of humans, in which a total of 15 orders was 

observed (24). In swine, pulmonary vascular morphometry of pulmonary arteries 

larger than 160μm in diameter was analyzed using multidetector-row computed 

tomography, resulting in 10 branching orders (29). This number of branching 

orders corresponds well with the human study, in which vessels of the 5th order 

had an average diameter of 150μm. In the present study, CTEPH was induced with 

embolizations using microspheres of 600-710μm in diameter. This size of 

microspheres corresponds with order 3 (diameter 430μm, range 380-570μm) and 

order 4 (diameter 760μm, range 660-990μm), of which approximately 2100 and 

590 are present in the porcine pulmonary vasculature (29). It has to be taken into 

account that supernumerary vessels were not measured because of the 

computational model used. These supernumerary vessels are estimated to be 

present in a ratio of 1.6 (45) or 2.8 (6) to conventional arteries. Adding these 

vessels to the number of vessels results in an estimated total of 5460-7980 

arteries of order 3, and 1530-2240 arteries of order 4. Assuming that the 

pulmonary vascular tree of a 20kg pig is 3-fold smaller than that of a 70kg human, 

these numbers correspond well with the estimated 22000 (order 8, diameter 

510±40μm) and 6225 (order 9, diameter 770±70μm) pulmonary small arteries 
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present per lung in humans (24). To ensure full coverage of the pulmonary 

vasculature, microspheres were slowly injected into the RV, assuming that 

microspheres flow to perfused, non-embolized vessels. The presence of 

microspheres in all lung lobes was visually confirmed upon sacrifice, and no 

microspheres were observed in systemic organs. Histologically, microspheres in 

the lungs were surrounded by fibrous tissue, however, qPCR analyses revealed no 

changes in the expression of inflammatory markers IL-6, TNF-α and TGF-β1. 

Although some microspheres clustered, with an approximate total of 36000 

microspheres per animal, it is likely that 60% of these pulmonary small arteries 

were obstructed. Nevertheless, with microspheres alone, no sustained CTEPH 

developed. 

Since CTEPH patients present with dysfunctional endothelium as 

evidenced by alterations in coagulation, inflammation, angiogenesis and 

vasoregulation (2, 30, 43, 51, 52), endothelial dysfunction was used as a second 

hit to induce CTEPH. Nitric oxide is an important endothelium-derived anti-

coagulatory, anti-inflammatory, pro-angiogenic, vasodilator. Therefore, 

endothelial dysfunction was induced by inhibiting eNOS by chronic LNAME 

administration, which in combination with multiple microsphere infusions 

resulted in a sustained increase in PAP and tPVRi. This increase in PAP above 

25mmHg for a prolonged period of time after embolizations and in the awake 

state is evidence for successful induction of chronic PH (1, 17, 26, 33, 38, 41, 42, 

48, 49, 60, 63). Our findings are in accordance with a recent study in rats, that 

show that sustained CTEPH developed when combining embolizations with 

endothelial dysfunction produced by VEGF-inhibition (39). Importantly, in the 

present study CTEPH persisted when eNOS inhibition was discontinued, which 

together with the reduced endothelium-dependent vasodilator response to 

Substance P in isolated pulmonary small arteries, indicates that CTEPH in itself 
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was sufficient to maintain a state of endothelial dysfunction. It is well established 

that secondary to pulmonary embolisms, worsening of PH results from 

progressive microvascular remodeling of the non-obstructed pulmonary small 

arteries (23, 37). Indeed, we also observed microvascular remodeling as 

evidenced by an increased wall thickness of the non-obstructed pulmonary small 

arteries and exaggerated vasoconstriction to both KCl and the thromboxane 

analogue U46619. Contrary to results in lungs of patients with CTEPH, in which a 

reduction in VEGF-expression and an elevation of the anti-angiogenic factor 

angiopoietin-1 were observed (51), microvascular remodeling in our model was 

not accompanied by changes in expression of angiogenic factors as measured with 

qPCR in tissues obtained at sacrifice. The exact time-course of microvascular 

remodeling cannot be determined from our data, as the increase in resistance due 

to embolization cannot be distinguished from the increase in resistance due to 

microvascular remodeling during the embolization period. However, tPVRi 

continued to increase after cessation of the embolization procedures, which is 

consistent with remodeling of the distal vasculature, although an increase in 

microvascular tone secondary to endothelial dysfunction may also have 

contributed.  

Cardiopulmonary stress testing and RV function 

Exercise testing after pulmonary embolism is predictive of development of PH 

and/or patient outcome in established CTEPH (19-21, 46). Swine were exercised 

on a motor driven treadmill up to 4km/h prior to induction of CTEPH and on a 

weekly basis during and after the embolization period to investigate the influence 

of cardiopulmonary stress on hemodynamic variables and blood oxygenation. 

Swine reached heart rates of approximately 255bpm at the beginning of the study 

and 210bpm at the final exercise trial (Table 3), whereas maximal heart rates of 
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272 bpm have been reported in literature in swine of similar size (61). 

Nevertheless, the significant lactate production during exercise at the beginning 

of the study as well as at the final exercise trial in the CTEPH swine suggests that 

near maximal levels were reached at those time points. 

In accordance with Claessen et al. 2015 (7, 8), we observed that the right 

ventricle was not able to cope with the increased afterload during exercise 

evidenced by a decreased SVi, particularly early after embolization. Furthermore, 

whereas RV EDA was unchanged but RV ESA tended to be increased, suggestive of 

systolic contractile dysfunction, although TAPSE was not different. The decreased 

SVi was not compensated by an increase in heart rate, and hence cardiac index 

was lower in swine with CTEPH. Despite the blunted exercise-induced increase in 

cardiac index, the increase in PAP and tPVRi were exacerbated during exercise. 

Moreover, the ventilation-perfusion mismatch was exacerbated during exercise, 

resulting in a further decrease in PO2art during exercise.  

At the end of follow-up, the time-point which resembles the time where 

most patients present in the hospital with symptoms, PAP and tPVRi were still 

elevated at rest and, similar to patients with CTEPH the increase in PAP was 

exacerbated during exercise (7, 8). However, as a result of the chronically elevated 

RV afterload, the RV underwent hypertrophy reflected by increases in RVW/BW, 

Fulton index and cardiomyocyte cross-sectional area. Although TAPSE showed a 

trend towards a decrease in LNAME+Spheres, RV hypertrophy blunted the systolic 

dysfunction of the heart as observed using echocardiography at rest, as well as 

the decrease in SVi during exercise. Nevertheless, CI was persistently decreased at 

rest and did not increase significantly during exercise. In addition, patients 

presenting with a V/Q mismatch in the lungs suffer a further decrease in 

ventilatory efficiency during exercise. Although this V/Q mismatch correlates to 
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RV function in other types of PH, there is no correlation in either CTEPH patients 

or in the LNAME+Spheres animals in the present study (data not shown) (14, 44, 

56). The reduction in O2 uptake was exacerbated during exercise as evidenced by 

a decrease in PO2art, which in combination with the decreased CI resulted in a 

reduced VO2max (25, 31, 46). Similarly, in our swine model, the V/Q mismatch 

increased in severity with incremental exercise intensity, as evidenced by a 

further decrease in arterial PO2. This V/Q mismatch remained present during the 

entire follow-up period. However, given the relatively mild reduction in PO2art, the 

capability of the body to increase O2 extraction, and the more severe reduction in 

SVi during exercise, it is likely that the main cause of the exercise limitations in 

CTEPH is cardiac insufficiency. These data in our porcine model are consistent 

with the observations by Claessen et al. (7, 8) that exercise intolerance in CTEPH 

patients is principally determined by a disproportional increase in RV afterload. 

Conclusions 

A combination of repeated embolization procedures and endothelial dysfunction 

was required to successfully develop a large animal model for chronic embolic 

pulmonary hypertension. To the best of our  knowledge the present study is the 

first to investigate the role of both cardiac dysfunction and V/Q mismatch in 

exercise intolerance in an animal model of CTEPH. This model emulates critical 

features of patients with CTEPH, including V/Q mismatch and early RV 

dysfunction. The latter likely contributed to the reduced SVi that was present at 

rest. Both the V/Q mismatch and the cardiac dysfunction were aggravated by 

exercise. Prolonged increases in RV afterload were associated with adaptive RV 

hypertrophy, while the V/Q mismatch remained present. This animal model can 

be further utilized to investigate disease development, early diagnostic markers 

and interventions that interfere with microvascular remodeling in the field of 
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CTEPH research. Finally, this model may also be used to delineate sex-differences 

that are known to exist in development and progression of CTEPH (50). 
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Abstract 

Purpose 

The purpose of this study was to compare invasively measured aorta flow with 2D 

phase contrast flow and 4D flow measurements by cardiovascular magnetic 

resonance (CMR) imaging in a large animal model. 

Methods 

Nine swine (mean weight 63±4 kilograms) were included in the study. 4D flow 

CMR exams were performed on a 1.5T MRI scanner. Flow measurements were 

performed on 4D flow images at the aortic valve level, in the ascending aorta, and 

main pulmonary artery. Simultaneously, flow was measured using an invasive flow 

probe, placed around the ascending aorta. Additionally, standard 2D phase 

contrast flow and 2D left ventricular (LV) volumetric data were used for 

comparison. 

Results 

The correlations of cardiac output (CO) between the invasive flow probe, and 

CMR modalities were strong to very strong. CO measured by 4D flow CMR 

correlated better with the CO measured by the invasive flow probe than 2D flow 

CMR flow and volumetric LV data (4D flow CMR: Spearman’s rho 0.86 at the aortic 

valve level and 0.90 at the ascending aorta level; 2D flow CMR: 0.67 at aortic valve 

level; LV measurements: 0.77). In addition, there tended to be a correlation 

between mean pulmonary artery flow and aorta flow with 4D flow (Spearman’s 

rho=0.65, P=0.07), which was absent in measurements obtained with 2D flow 

CMR (Spearman’s rho=0.40, P=0.33). 
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Conclusion 

This study shows that aorta flow can be accurately measured by 4D flow CMR 

compared to simultaneously measured invasive flow. This helps to further 

validate the quantitative reliability of this technique. 
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Introduction 

Cardiovascular magnetic resonance (CMR) imaging has been used for flow 

visualization and quantification in daily clinical practice for several decades. (15, 

21) CMR is the gold standard for non-invasive quantification of left and especially 

right heart function and shunt fraction. (20, 22) Nowadays, standard imaging 

protocols consists of the acquisition of cine imaging and 2D phase contrast flow 

measurements in multiple planes using numerous breath-holds. Especially, in 

complex congenital heart disease patients this can be challenging and time 

consuming.  

A promising and rapidly evolving CMR technique is 4D flow imaging: a 

volumetric, free-breathing acquisition technique of flow velocity data with 

simultaneous assessment of anatomic structures. (24) 4D flow CMR allows flow 

quantification at any level within the acquired field of view and calculation of 

cardiac volumes and biventricular function. (10, 13) Until now, several studies 

have evaluated the use of 4D flow CMR for visualization and quantification of 

cardiac shunts. (4, 11, 14, 23) 4D flow CMR was previously validated against 

echocardiography (5) and standard 2D flow CMR in humans (6, 12). In addition, 

the 4D flow determined pulmonary vascular resistance was validated against in 

vivo measurements in a canine study. (16) 

In this study, we sought to validate this promising 4D flow CMR technique 

by direct, simultaneous comparison with 2D flow CMR and invasive flow 

measurements using a validated flow probe positioned around the ascending 

aorta in a large animal model.  
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Methods 

Study design 

Studies were performed in accordance with the “Guiding Principles in the Care 

and Use of Laboratory Animals” as approved by the Council of the American 

Physiological Society, and with approval of the Animal Care Committee of the 

Erasmus Medical Center Rotterdam (3158, 109-13-09). Nine Yorkshire x Landrace 

swine (5-6 months old, 21 ± 1 kg at the time of surgery, 63 ± 4 kg at the time of 

the CMR scan) of either sex were included in the study. The swine included in this 

study were part of previously published studies. (17, 18) 

Chronic instrumentation of the swine 

The swine were chronically catheterized for hemodynamic monitoring 

approximately two to three months prior to the scanning procedure. Surgical 

details have been extensively described previously. (7) In short, swine were 

sedated with an intramuscular injection of tiletamine/zolazepam (5 mg/kg), 

xylazine (2.25 mg/kg) and atropine (1 mg), intubated and ventilated with a 

mixture of O2 and N2 (1:2 v/v) to which 2% (v/v) isoflurane was added to maintain 

anesthesia. Under sterile conditions, the chest was opened via a left thoracotomy 

in the fourth intercostal space and fluid-filled polyvinylchloride catheters (B Braun 

Medical Inc., Bethlehem, PA, USA) were placed in the right ventricle, pulmonary 

artery, aorta and left atrium. A flow probe (Transonic Systems Inc., Ithaca, NY, 

USA) was positioned around the ascending aorta for measurement of aorta flow. 

The catheters were tunneled to the back and animals received analgesia (0.015 

mg/kg buprenorphine i.m. and a slow-release fentanyl patch 12 μg/h for 48 hours) 

on the day of the surgery and daily antibiotic prophylaxis (25 mg/kg amoxicillin 

i.v.) for 7 days.  
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CTEPH induction 

CTEPH was induced in awake state as describe previously (17). In short, following 

the recovery week, on the first day, the CTEPH animals (n=6), were given the 

eNOS-inhibitor L-Nω-Nitroarginine methyl ester (LNAME) (10 mg/kg i.v., Enzo Life 

Sciences International Inc, NY, USA) as a bolus infusion which was increased by 10 

mg/kg per day up to 30 mg/kg i.v., which was maintained until 2 weeks before the 

end of the study. Four days after the start of LNAME administration, microsphere 

infusions were started. Polyethylene microspheres (diameter 600-710 μm, density 

1.13 g/cm3, 500 mg, corresponding to ∼2500 microspheres, Cospheric LLC, Santa 

Barbara, California, US) were suspended in 50 mL autologous blood with 2500 I.U. 

heparin and slowly infused into the right ventricle over 10 minutes while 

monitoring mean pulmonary artery pressure (PAP). Microsphere infusions were 

repeated until the PAP reached ~60 mmHg, or the arterial PaO2 dropped below 

~40 mmHg, as measured 30 min after infusion at rest, or when a maximum of 3 

gram (∼15000) microspheres was infused on one day. In the subsequent four 

weeks, hemodynamics were weekly assessed, and microsphere infusions were 

repeated when PAP was <25 mmHg and PaO2 >70 mmHg, as described above. 

During the final 5 weeks of follow-up, no microsphere infusions were performed.  

The control animals (n=4) were healthy chronically instrumented swine.  

CMR protocol 

CMR examination was performed on a 1.5T clinical scanner with a dedicated 

receive-only 32-channel phased-array cardiac surface coil (Discovery MR450, GE 

Healthcare, Milwaukee, WI, USA). The animals were sedated, and intubated as 

described above. Anesthesia during imaging was maintained with pentobarbital 

sodium (6-12 mg/kg/h). Mechanical ventilation and breath-holds were performed 
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using a mobile ventilator (Carina™, Dräger Medical, Best, The Netherlands). Heart 

rate and blood pressures were monitored throughout the scan. When necessary, 

and always in absence of pain reflexes, muscle relaxation was achieved using 

pancuronium bromide (2–4 mg bolus). The image protocol consisted of 2D 

balanced Steady-State Free Precession (SSFP) cine imaging, 4D flow, and 2D phase 

contrast flow measurements. Standard long-axis and short-axis images with full 

left ventricular (LV) coverage were acquired using retrospectively ECG-gated SSFP 

cine imaging with breath-holding (FIESTA, GE Healthcare acronym). Typical scan 

parameters were slice thickness 6.0 mm, slice gap 0 mm, TR/TE 3.4/1.4 ms, flip 

angle (FA) 75°, field of view (FOV) 320×240 mm, acquired matrix 128×180, and 

reconstructed to a pixel size of 1.3x1.3 mm. The free-breathing, retrospectively 

ECG-gated 4D flow acquisition was performed directly after administration of a 

gadolinium-based contrast agent (Gadovist 1,0 mmol/mL, Bayer, Mijdrecht, The 

Netherlands, single dose of up to 15 mL). The 4D flow sequence has been 

described before (4-6), in short the sequence was prescribed in axial plane, 

including the entire thorax in the field of view. The k-space was filled with 

variable-density Poisson-disc undersampling with acceleration factors of 1.8×1.8 

(phase x slice) and the parallel imaging algorithm used was ESPIRiT. The following 

imaging parameters were used: matrix 192x160x78, acquired resolution 

2.1x1.7x2.8 mm, reconstructed resolution 2.1x1.7x1.4 mm, TR/TE 3.8/1.5 ms, FA 

15°, views per segment 4, bandwidth 63kHz, number of reconstructed phases 20 

per cardiac cycle, and a velocity encoded value set at 250 cm/s. Scan time ranged 

between 5.57 and 8.51 minutes. Finally, one-directional through plane 2D phase 

contrast flow measurements of the aorta (at the level of the aortic valve or just 

above) and pulmonary artery were performed during an end-expiratory breath-

hold. The imaging planes were planned perpendicular to the great vessels. Typical 

scan parameters were slice thickness 6.0 mm, matrix 256x166, TR/TE 4.0/2.2 ms, 
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FA 18°, FOV 340x220, velocity encoding value set at 180 cm/s. The invasive flow 

probe was attached to the amplifier and a flow signal was obtained immediately 

before and after the 4D flow CMR sequence. 

Post-processing and data analysis 

To assess left ventricular volumes, endocardial contours were drawn manually on 

end-diastolic and end-systolic 2D short axis SSFP cine images, and stroke volume 

and ejection fraction were calculated. No substantial mitral regurgitation was 

visually noted on CMR in any of the animals, therefore stroke volume (mL/beat) 

and cardiac output (CO, L/min) of the left ventricle were also compared to 

invasive measurements. To analyze the 2D phase contrast images a region of 

interest was manually traced around the aorta and pulmonary valve. Both 2D flow 

CMR and left ventricular function were analyzed with Medis software (QMass and 

QFlow analytical software version 8.1, Medis, Leiden, The Netherlands).  

The 4D flow data were analyzed using a dedicated cloud-based post-

processing software (ArterysInc, San Francisco, CA, USA). Semi-automatic eddy-

current correction was applied. (6) Data were visualized, and flow quantification 

was performed at the level of aortic valve and at the level of the sinotubular 

junction/proximal part of the ascending aorta below the flow probe. Also the 

pulmonary flow was determined by measuring in the main pulmonary artery 

(MPA). For both 2D and 4D flow shunt fractions (Qp/Qs) were calculated. 

Digital recording and offline analysis of heart rate (HR) and aorta flow 

were performed with MatLab (MathWorks, Natick, MA, USA) and have been 

described in detail elsewhere. (8, 19)Briefly, HR and aorta flow were analyzed 

offline using a proprietary program written in MatLab. Over at least 10 

consecutive seconds, both before and after the 4D flow CMR sequence, CO and SV 
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were determined from each individual beat and averaged. HR was calculated as 

the ratio of the number of beats and time. The end-diastolic time point was used 

to align the (average) phasic flow signals obtained with the different methods.  

All measurements were performed independently from each other (2D 

flow and left ventricular function measurements by NvdV and AH, 4D flow CMR by 

RC, and invasive flow probe measurements by KS).  

Statistics 

Statistical analysis was performed with SPSS software version 21 (IBM, New York, 

US) and Graphpad Prism 4 Project (San Diego, CA, US). Correlation between 

measurements was evaluated using Spearman’s (rho) coefficient for 

nonparametric data, and agreement was analyzed with Bland-Altman plots. The 

Spearman rho coefficient was classified as “very weak” for values of 0.00–0.19, 

“weak” for 0.20–0.39, “moderate” for 0.40–0.59, “strong” for 0.60–0.79 and “very 

strong” for 0.80–1.0. (1, 4) 

Results 

A total of nine animals were scanned, but not all animals were included in every 
method of CO determination: two animals had a malfunctioning invasive flow 
probe, in all nine animals CO could be determined with 4D flow CMR at the level 
of the aortic valve, while susceptibility artefacts from the invasive flow probe 
precluded measurement of CO at the ascending aorta level in two animals. Finally, 
one animal was excluded due to technical problems for measurement of CO with 
2D flow CMR as well as LV functional measurements. Typical examples of the 4D 
flow CMR images and measurements are shown in Figure 1 and supplemental 
video’s. 
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Figure 1. Example of 4D flow CMR images and measurement. 
Example of 4D flow CMR with a flow measurement in the ascending aorta. The magnitude 
images are shown with a color velocity overlay (red: velocity >150 cm/s). (A) 3 chamber 
view (online supplementary file 1 for movie), (B) coronal view, (C) corresponding short-axis 
view of the aorta with tracing for flow measurement, and (D) overview of both aortic and 
pulmonary flow (online supplementary file 2 for movie). (*) susceptibility artefacts from 
the invasive flow probe around the ascending aorta. 
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Figure 2. Individual aorta flow curves per heartbeat.   
Individual aorta flow curves per heartbeat of the invasive flow probe, 4D flow CMR 
(measured at level of the aortic valve), and 2D flow CMR superimposed per animal. 2D 
flow CMR measurements of Control 3 and invasive flow probe measurements of CTEPH 1 
and Control 1 are missing due to technical problems. CTEPH animals are ordered on 
disease severity, CTEPH 1 presented with the most severe PH and CTEPH 6 with the 
mildest.  

Validation of 4D flow CMR 

137 

The shape of the individual aorta flow patterns measured by all three 

methods showed good agreement and individual flow curves per animal are 

depicted in Figure 2. Indeed, the correlation between the CO measured by the 

invasive flow probe and 4D flow CMR was very strong (Spearman’s rho=0.86 at 

the aortic valve level and 0.90 at the ascending aorta level) (Table 1 and Figure 3). 

Relative to the invasive flow probe measurements, the flow measured by 4D flow 

CMR was overestimated by 0.8 L/min at the aortic valve level and by 0.6 L/min at 

the ascending aorta level (Bland-Altman, Table 1 and Figure 3). The correlation 

between the invasive flow probe and 2D flow CMR and volumetric LV 

measurements were strong (2D flow CMR: Spearman’s rho=0.67 and volumetric 

LV measurements: Spearman’s rho=0.77). Relative to the invasive flow probe 

measurements, the flow measured by 2D flow CMR was overestimated by 1.1 

L/min and by 1.3 L/min with the LV parameters (Bland-Altman, Table 1 and Figure 

2). 

The shape of the individual pulmonary flow patterns measured by 4D flow 

CMR and 2D flow CMR showed good agreement and individual flow curves per 

animal are depicted in Figure 4. The correlation between the 4D flow CMR and 2D 

flow CMR MPA CO measurement was very strong (Spearman’s rho=0.81) (Table 

1). Relative to the 4D flow CMR measurements, the MPA CO measured by 2D flow 

CMR was underestimated by 0.4 L/min. Although the correlation between MPA 

and aorta flow at the aortic valve level as measured with 4D flow CMR only 

tended to be significant (Spearman’s rho=0.65, P=0.07), no correlation was found 

between MPA and aorta flow measured with 2D flow CMR (Spearman’s rho=0.40, 

P=0.33) (Figure 5). 
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the aortic valve level and 0.90 at the ascending aorta level) (Table 1 and Figure 3). 

Relative to the invasive flow probe measurements, the flow measured by 4D flow 

CMR was overestimated by 0.8 L/min at the aortic valve level and by 0.6 L/min at 

the ascending aorta level (Bland-Altman, Table 1 and Figure 3). The correlation 

between the invasive flow probe and 2D flow CMR and volumetric LV 

measurements were strong (2D flow CMR: Spearman’s rho=0.67 and volumetric 

LV measurements: Spearman’s rho=0.77). Relative to the invasive flow probe 

measurements, the flow measured by 2D flow CMR was overestimated by 1.1 

L/min and by 1.3 L/min with the LV parameters (Bland-Altman, Table 1 and Figure 

2). 

The shape of the individual pulmonary flow patterns measured by 4D flow 

CMR and 2D flow CMR showed good agreement and individual flow curves per 

animal are depicted in Figure 4. The correlation between the 4D flow CMR and 2D 

flow CMR MPA CO measurement was very strong (Spearman’s rho=0.81) (Table 

1). Relative to the 4D flow CMR measurements, the MPA CO measured by 2D flow 

CMR was underestimated by 0.4 L/min. Although the correlation between MPA 

and aorta flow at the aortic valve level as measured with 4D flow CMR only 

tended to be significant (Spearman’s rho=0.65, P=0.07), no correlation was found 

between MPA and aorta flow measured with 2D flow CMR (Spearman’s rho=0.40, 

P=0.33) (Figure 5). 
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Figure 3. Comparison of cardiac output in the aorta measured by the invasive flow 
probe, 4D flow and 2D flow CMR. 
Correlation between the invasive flow probe, 4D flow CMR (A, n=7), and 2D flow CMR (C, 
n=6) measurements of the aortic flow. Line of identity is indicated as the dotted line and 
Spearman’s rho (ρ) and P-value are indicated in the legends (A&C). Bland-Altman plots of 
the cardiac output (CO), with the mean, 1.96 standard deviation (SD) and -1.96 SD lines 
indicated as the dotted lines. (B) invasive flow probe and 4D flow CMR measurements 
(n=7), and (D) invasive flow probe and 2D flow CMR measurements (n=6). 

To investigate any differences in flow between the CTEPH and Control animals, 

and investigate any differences in flow through the aorta and pulmonary artery, 

we superimposed the MPA and aorta flow pattern measured by 4D flow CMR of 

each animal (Figure 6). In this figure, the CTEPH animals were ordered by disease 
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severity, in which CTEPH 1 was most affected and CTEPH 6 presented with the 

mildest PH. Although the MPA and aorta flow were almost perfectly aligned in the 

control animals while the peak MPA flow appears to be decreased compared to 

the peak aorta flow in the CTEPH animals, this is not significantly different. In 

addition, the flow pattern appears to be more elongated in the control animals 

when compared to the more steep, sharp flow pattern of the CTEPH animals, but 

this is also not significantly different. 

Figure 4. Individual pulmonary artery flow curves per heartbeat. 
Individual Pulmonary Flow (PuF) curves per heartbeat of 4D flow and 2D flow CMR 
superimposed per animal. 2D flow CMR measurements of Control 3 are missing due to 
technical problems.  CTEPH animals are ordered on disease severity, CTEPH 1 presented 
with the most severe PH and CTEPH 6 with the mildest. 
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To investigate any differences in flow between the CTEPH and Control animals, 

and investigate any differences in flow through the aorta and pulmonary artery, 

we superimposed the MPA and aorta flow pattern measured by 4D flow CMR of 

each animal (Figure 6). In this figure, the CTEPH animals were ordered by disease 
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severity, in which CTEPH 1 was most affected and CTEPH 6 presented with the 

mildest PH. Although the MPA and aorta flow were almost perfectly aligned in the 

control animals while the peak MPA flow appears to be decreased compared to 

the peak aorta flow in the CTEPH animals, this is not significantly different. In 

addition, the flow pattern appears to be more elongated in the control animals 

when compared to the more steep, sharp flow pattern of the CTEPH animals, but 

this is also not significantly different. 

Figure 4. Individual pulmonary artery flow curves per heartbeat. 
Individual Pulmonary Flow (PuF) curves per heartbeat of 4D flow and 2D flow CMR 
superimposed per animal. 2D flow CMR measurements of Control 3 are missing due to 
technical problems.  CTEPH animals are ordered on disease severity, CTEPH 1 presented 
with the most severe PH and CTEPH 6 with the mildest. 
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Figure 5. Comparison of pulmonary and aorta flow measured by 4D flow CMR and 2D 
flow CMR. 
Correlation between the aorta and pulmonary measured by 4D flow CMR (A, n=9) and 2D 
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Discussion 

The main findings of this study were that (1) CO measured by 4D flow CMR 

showed a very strong correlation with invasively measured aortic flow, although 

there was an overestimation of the CO by 4D flow CMR of ~15%, (2) the 

correlation between 2D flow CMR and volumetric LV measurements in relation to 

invasively measured flow was less strong with a larger overestimation of the flow, 

and (3) the difference between MPA and aorta flow was much smaller with 4D 

flow compared to 2D flow CMR. 

4D flow CMR is a relatively new technique but increasingly used in clinical 

practice due to its simplicity. The application of 4D flow CMR in the clinical setting 

provides many benefits as the technique is patient and operator friendly, less 

operator dependent and any flow in any plane can be selected retrospectively 

since the whole field of interest is acquired. (5, 9, 11) The latter is not the case for 

2D flow CMR, in which flow measurements are limited to preselected planes. (3, 

5, 9) Importantly, 4D flow CMR is in most cases more patient friendly than 2D flow 

CMR. One important benefit for the patients is that the sequence can be 

performed without breath holds (free breathing), which is not only more 

comfortable but will be an advantage in children, decompensated and importantly 

pulmonary hypertension patients in which breath holds are mostly impossible. (4, 

5, 9) In addition, data on flow and anatomic structures can be obtained 

simultaneously which can shorten the scan time for the patients, especially in 

patients with a difficult anatomy. (2, 4, 6, 9) However, it is important to note that 

there are some existing challenges with the 4D flow CMR technique such as long 

scan time, reliability of respiratory gating and lower resolution. Given the benefits 

and existing challenges, it is important to assess accuracy of 4D flow CMR 

measurements. Our data show that indeed, 4D flow CMR measurements correlate 
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strongly with flow measured with an invasive flow probe, and overestimation of 

flow with this technique is less than measurements obtained using 2D flow CMR 

as well as compared to CO determined from volumetric LV measurements. 

This is the first study to validate 4D flow CMR against both 2D flow CMR 

and invasively measured flow within the same animal, at the same time. Thus far, 

4D flow CMR has only been validated against 2D flow CMR (6, 12) and ultrasound 

(5) measurements in humans. Although data are obtained in a relatively small 

group of animals, and magnetic interference of the metal in the flow probe could 

not be completely ruled out (two animals were excluded due to artifacts and in 

the other animals there were no noticeable imaging artifacts), both flow pattern 

and average flow showed a very strong correlation between invasively measured 

flow and 4D flow CMR. Although the invasively measured flow is considered the 

gold standard in validation studies, according to the manufacturer’s specifications, 

this technique has an absolute accuracy of 10%. Both 2D flow CMR and 4D flow 

CMR overestimated CO as compared to the invasively measured flow by 25% and 

16% respectively. When comparing the individual flow patterns between the 

different techniques (Figure 2) we do not see a consistent difference between the 

CMR and invasively measured flow, suggesting that there is no systematic bias. 

Consistent with data obtained in a canine model of acute thromboembolic 

pulmonary hypertension, 4D flow CMR resulted in slightly lower values of CO as 

compared to 2D flow CMR measurements (16), suggesting that determination of 

flow using 4D CMR is slightly more accurate than 2D CMR. The higher accuracy of 

4D flow CMR vs 2D flow CMR can also be inferred from the comparison between 

aorta flow and MPA flow. Also here, there tended to be a correlation of the 

measurements with 4D flow CMR while no correlation was found with 2D flow 

CMR. 

Validation of 4D flow CMR 

143 

In conclusion, this study shows that aorta flow and pulmonary flow can be 

accurately and simultaneously measured by 4D flow CMR. This helps to further 

validate the quantitative reliability of this technique for implementation of 4D 

flow CMR in routine clinical practice. Unfortunately, we did not observe any 

significant distinctions in flow patterns in the CTEPH swine. 
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Abstract 

Rationale: Pulmonary vascular remodeling in pulmonary arterial hypertension 

involves perturbations in the nitric oxide (NO) and endothelin-1 (ET-1) pathways. 

However, the implications of pulmonary vascular remodeling and these pathways 

remain unclear in chronic thrombo-embolic pulmonary hypertension (CTEPH). 

Objectives: The objective of the present study was to characterize changes in 

microvascular morphology and function, focussing on the ET-1 and NO pathways, 

in a CTEPH swine model. 

Methods: Swine were chronically instrumented and received up to 5 pulmonary 

embolizations by microsphere infusion, while endothelial dysfunction was induced 

by daily administration of the eNOS inhibitor L-Nω-Nitroarginine methyl ester, 

until two weeks prior to the end of study. Swine were subjected to exercise and 

the pulmonary vasculature was investigated by hemodynamic, histological, qPCR 

and myograph experiments. 

Results: In swine with CTEPH, the increased RV-afterload, decreased cardiac index 

and mild ventilation-perfusion mismatch were exacerbated during exercise. These 

findings suggest that pulmonary microvascular remodeling was evidenced by 

increased muscularization which was accompanied by an increased maximal 

vasoconstriction. Although ET-1-induced vasoconstriction was increased in CTEPH 

pulmonary small arteries, the ET-1-sensitivity was decreased. Moreover, the 

contribution of the ETA receptor to ET-1 vasoconstriction was increased, while the 

contribution of the ETB receptor was decreased and the contribution of Rho-

Kinase was lost. A reduction in endogenous NO-production was compensated in 

part by a decreased PDE5-activity resulting in an apparent increased NO-

sensitivity in CTEPH pulmonary small arteries.  
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microvascular morphology and function, focussing on the ET-1 and NO pathways, 

in a CTEPH swine model. 

Methods: Swine were chronically instrumented and received up to 5 pulmonary 

embolizations by microsphere infusion, while endothelial dysfunction was induced 

by daily administration of the eNOS inhibitor L-Nω-Nitroarginine methyl ester, 

until two weeks prior to the end of study. Swine were subjected to exercise and 

the pulmonary vasculature was investigated by hemodynamic, histological, qPCR 

and myograph experiments. 

Results: In swine with CTEPH, the increased RV-afterload, decreased cardiac index 

and mild ventilation-perfusion mismatch were exacerbated during exercise. These 

findings suggest that pulmonary microvascular remodeling was evidenced by 

increased muscularization which was accompanied by an increased maximal 

vasoconstriction. Although ET-1-induced vasoconstriction was increased in CTEPH 

pulmonary small arteries, the ET-1-sensitivity was decreased. Moreover, the 

contribution of the ETA receptor to ET-1 vasoconstriction was increased, while the 

contribution of the ETB receptor was decreased and the contribution of Rho-

Kinase was lost. A reduction in endogenous NO-production was compensated in 

part by a decreased PDE5-activity resulting in an apparent increased NO-

sensitivity in CTEPH pulmonary small arteries.  
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Conclusions: Pulmonary microvascular remodeling with a reduced activity of PDE5 

and Rho-kinase may contribute to the lack of therapeutic efficacy of PDE5-

inhibitors and Rho-kinase inhibitors in CTEPH.  
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Introduction 

Chronic thrombo-embolic pulmonary hypertension (CTEPH) is a form of 

pulmonary hypertension (PH) initiated by thrombo-emboli in the pulmonary 

vasculature (9). The obstructions in the pulmonary vascular bed cause a direct 

increase in pulmonary vascular resistance, which results in an increase in 

pulmonary artery pressure (PAP). CTEPH is defined as a PAP ≥ 25 mmHg at rest 

persisting for at least six weeks (26). Both the increase in pressure and a 

redistribution of flow through the unobstructed parts of the pulmonary 

vasculature have been proposed to contribute to pathological processes including 

endothelial dysfunction, thrombophilia, inflammation, vasoconstriction and 

impaired vasodilation (36), eventually resulting in structural pulmonary vascular 

remodeling of both the obstructed and unobstructed pulmonary vasculature (17, 

42). This remodeling encompasses both the pulmonary small arteries as well as 

the microvasculature.  

It is well known that perturbations in the endothelin-1 (ET-1) and the 

nitric oxide (NO) pathways play an important role in the dysregulation of 

pulmonary vascular tone as well as in microvascular remodeling in pulmonary 

arterial hypertension (PAH) (14, 52). Plasma markers of oxidative stress and the 

endogenous endothelial NO synthase (eNOS) inhibitor asymmetric dimethyl 

arginine (ADMA) are increased in patients with CTEPH (59). Moreover, circulating 

ET-1 levels are elevated in patients with CTEPH and correlate with clinical severity 

of the disease as well as with hemodynamic outcome after pulmonary 

endarterectomy (47). Nevertheless, therapeutic agents that modulate the NO and 

the ET-1 pathways, including phosphodiesterase 5 (PDE5)-inhibitors and ET-

receptor antagonists, which are the cornerstones of PAH therapy, are not as 

effective in CTEPH (13, 22, 45). The only approved therapy for CTEPH is the 
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soluble guanylate cyclase (sGC) stimulator Riociguat (13, 22, 45), suggesting that 

indeed the NO-pathway is compromised in CTEPH. However, the contribution of 

alterations in the NO and ET-1 pathways to pulmonary microvascular 

(dys)function have not been investigated to date in CTEPH. 

We recently developed and hemodynamically characterized a swine 

model of CTEPH, using a combination of repeated micro-embolizations and eNOS-

inhibition to mimic endothelial dysfunction (54). In this study, micro-

embolizations alone resulted in transient elevations in pulmonary artery pressure 

but did not induce sustained PH. In contrast, in animals in which repeated micro-

embolizations were combined with eNOS-inhibition, PH persisted for several 

weeks, even after discontinuation of micro-embolization and eNOS-inhibition. In 

the present study, we characterized changes in pulmonary microvascular 

morphology and hypothesized that microvascular remodeling is associated with 

altered regulation of pulmonary microvascular function through the ET-1- and NO-

pathways in this CTEPH model. 

Methods 

Animal studies were performed following the “Guide for the Care and Use of 

Laboratory Animals” as approved by the Council of the American Physiological 

Society, and with approval of the Animal Care Committee of the Erasmus 

University Medical Center (EMC3158, 109-13-09). Twenty-four swine (2-3 months 

old, 21±1 kg) entered the study. Lungs from seven additional swine were obtained 

at a local slaughterhouse for in vitro control experiments.  

CTEPH induction 

Animals were chronically instrumented as previously described (8, 54). In short, 

swine were sedated with an intramuscular injection (i.m.) of 
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tiletamine/zolazepam (5 mg/kg), xylazine (2.25 mg/kg) and atropine (1 mg), 

intubated and ventilated with a mixture of O2 and N2 (1:2 v/v) to which 2% (v/v) 

isoflurane was added to maintain anesthesia (8, 54). Under sterile conditions, the 

chest was opened via a left thoracotomy in the fourth intercostal space and fluid-

filled polyvinylchloride catheters (Braun Medical Inc., Bethlehem, PA, USA) were 

placed in the right ventricle, pulmonary artery, aorta and left atrium for blood 

sampling and measurement of pressures. A flow probe (Transonic Systems Inc., 

Ithaca, NY, USA) was positioned around the ascending aorta for measurement of 

cardiac output. The catheters were tunneled to the back and animals were 

allowed to recover for one week, receiving analgesia (0.015 mg/kg buprenorphine 

i.m. and a slow-release fentanyl patch 12 μg/h for 48 hours) on the day of the 

surgery and daily intravenous (i.v.) antibiotic prophylaxis (25 mg/kg amoxicillin) 

for 7 days (8).  

Following the recovery week, on the first day, the CTEPH animals (n=11), 

were given the eNOS-inhibitor L-Nω-Nitroarginine methyl ester (LNAME) (10 

mg/kg i.v., Enzo Life Sciences International Inc, NY, USA) as a bolus infusion. On 

subsequent days, the dose of LNAME was increased by 10 mg/kg per day up to 30 

mg/kg i.v., which was maintained until 2 weeks before the end of the study (35, 

46, 54). Four days after the start of LNAME administration, microsphere infusions 

were started. Polyethylene microspheres (diameter 600-710 μm, density 1.13 

g/cm3, 500 mg, corresponding to ∼2500 microspheres, Cospheric LLC, Santa 

Barbara, California, US) were suspended in 50 mL autologous blood with 2500 I.U. 

heparin and slowly infused into the right ventricle over 10 minutes while 

monitoring mean pulmonary artery pressure (PAP). Microsphere infusions were 

repeated until the PAP reached ~60 mmHg, or the arterial PaO2 dropped below 

~40 mmHg, as measured 30 min after infusion at rest, or when a maximum of 3 

gram (∼15000) microspheres was infused on one day (54). In the subsequent four 
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weeks, hemodynamics were weekly assessed, and microsphere infusions were 

repeated when PAP was <25 mmHg and PaO2 >70 mmHg, as described above. 

During the final 5 weeks of follow-up, no microsphere infusions were performed.  

Seven sham-operated animals which did not receive LNAME or 

microspheres served as controls. A third group of six swine did receive LNAME but 

no microspheres and also served as controls (54). Similar to the CTEPH group, 

LNAME was discontinued two weeks before the end of the study. 

Mortality due to acute cardiopulmonary failure after CTEPH induction 

occurred in 2 out of 11 animals. In addition, 2 animals were excluded due to 

catheter failure (1 CTEPH and 1 Control) and 2 animals had to be euthanized 

following infections (1 CTEPH and 1 Control). 

In vivo experiments 

Hemodynamic studies were performed nine weeks after surgery. With swine 

standing quietly on a motor-driven treadmill and during exercise at 4 km/h, 

cardiac output, PAP, aorta pressure, left atrial pressure and right ventricular 

pressure, were continuously recorded, and blood samples were taken when 

hemodynamics had reached a steady-state. Measurements of arterial and mixed 

venous pO2, pCO2, O2 saturation, pH and lactate were performed immediately 

with a blood gas analyzer (ABL 800, Radiometer, Denmark) (8, 12). Furthermore, 

EDTA plasma was stored for measurement of endothelin-1 (ET-1) levels with an 

enzyme-linked immunoassay (ELISA; Enzo Life Sciences International Inc, NY, USA) 

and D-Dimer levels with a particle-enhanced, immunoturbidimetric assay 

(INNOVANCE®, Siemens Healtineers, Erlangen, Duitsland) following the standard 

protocols.  
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Euthanasia 

After completion of the experiments (week 9), the animals were re-anaesthetized 

with pentobarbital sodium (6-12 mg/kg/h iv), intubated and ventilated as 

described before (8, 54). Following sternotomy, the heart was arrested and 

immediately excised together with the lungs. Parts of one lung were snap frozen 

in liquid nitrogen for molecular analyses, and one lung lobe was placed in cold 

Krebs buffer for dissection of pulmonary small arteries for wire-myograph 

experiments to delineate changes in microvascular function (2, 18, 41, 43). The 

accessory lobe was obtained for histological analyses.  

Quantitative PCR of lung tissue 

Lung tissue was excised and immediately snap frozen in liquid nitrogen for the 

measurement of mRNA levels of prepro-endothelin 1 (PPET-1), endothelin 

converting enzyme 1 (ECE-1), endothelin receptor A (ETA), endothelin receptor B 

(ETB), endothelial nitric oxide synthase (eNOS), Ras homolog gene family, member 

A (RhoA), rho-associated, coiled-coil-containing protein kinase 1 (ROCK1), Rho 

associated coiled-coil containing protein kinase 2 (ROCK2),Platelet endothelial cell 

adhesion molecule (CD31), vascular cell adhesion molecule 1 (VCAM-1), vascular 

endothelial cadherin (VE-cadherin, CD144), interleukin-6 (Il-6), interferon-γ, tumor 

necrosis factor α (TNF-α) and transforming growth factor β1 (TGF-β). Small pieces 

of lung tissue (<30 mg) were homogenized by adding RLT lysisbuffer (Qiagen, 

Venlo, The Netherlands) and 2-mercaptoethanol (Sigma-Aldrich, Zwijndrecht, The 

Netherlands) using a homogenizer (PRO Scientific Inc., Oxford, Connecticut, USA). 

After a proteinase K (Invitrogen, Breda, The Netherlands) treatment at 55 °C for 

10 min, total RNA was isolated using RNeasy Fibrous Tissue Mini Kit (Qiagen, 

Venlo, The Netherlands). RNA was eluted in RNase-free water and the 

concentration was determined by using a NanoDrop (NanoDrop1000, Thermo 
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Fisher Scientific, Bleiswijk, The Netherlands). RNA integrity was confirmed using a 

Bioanalyzer (2100 Bioanalyzer, Agilent, Santa Clara, California, USA). cDNA was 

synthesized from 500 ng of total RNA with the SensiFAST cDNA Synthesis Kit 

(Bioline, London, UK). qPCR (CFX-96, Bio-Rad, Hercules, California, USA) was 

performed with SensiFAST SYBR & Fluorescein Kit (Bioline, London, UK). Target 

gene mRNA levels were normalized against β-actin, glyceraldehyde-3-phosphate 

dehydrogenase (GADPH), and Cyclophilin using the CFX manager software (Bio-

Rad, Hercules, California, USA). Relative gene expression data were calculated 

using the ΔΔCt method. All primer sequences are presented in Table 1. 

Myograph studies of isolated pulmonary small arteries 

Myograph studies have been extensively described before (43, 54, 60). Unless 

otherwise mentioned, all chemicals were obtained from Sigma Aldrich, 

Zwijndrecht, The Netherlands. Pulmonary small arteries (diameter ~300μm) were 

dissected from the lung and stored overnight in cold, oxygenated (95% O2/5% 

CO2) Krebs bicarbonate solution (composition in mM: 118 NaCl, 4.7 KCl, 2.5 CaCl2, 

1.2 MgSO4, 1.2 KH2PO4, 25 NaHCO3, and glucose 8.3; pH 7.4). The next day, 

pulmonary small arteries were cut into segments of ~2 mm length and mounted 

in microvascular myographs (Danish MyoTechnology) with separated 6-ml organ 

baths containing Krebs bicarbonate solution aerated with 95% O2-5% CO2 and 

maintained at 37°C. Changes in contractile force were recorded with a Harvard 

isometric transducer. Following a 30-min stabilization period, the internal 

diameter was set to a tension equivalent to 0.9 times the estimated diameter at 

20 mmHg effective transmural pressure (18, 60). The vessels were subsequently 

exposed to 30 mM KCl twice. Endothelial integrity was ascertained by measuring 

the dilation response to 10 nM substance P after preconstriction with 100 nM of 

the stable thromboxane-A2 analog 9,11-dideoxy-11α,9α 
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epoxymethanoprostaglandin F2α (U46619). Then, after washout, vessels were 

subjected to 100 mM KCl to determine maximal vascular contraction. Thereafter, 

vessels were allowed to equilibrate in fresh Krebs solution for 30 min before 

different experimental protocols were started. Only one protocol was performed 

per vessel segment, and each vessel segment within an experimental protocol was 

obtained from a different animal with a minimum of five per experiment per 

group.  

Following preconstriction with 100 nM U46619, vessel segments were 

exposed to incremental concentrations of the Rho-kinase inhibitor Y-27632 (10-8-

3⋅10-5M), the cGMP analogue 8Br-cGMP (10-7-3⋅10-4M), the PDE5-inhibitor 

Sildenafil (10-10-3⋅10-5M), the NO-donor sodium nitroprusside (SNP) (10-9-3⋅10-5M), 

or the endothelium dependent-vasodilator Bradykinin (10-10-3⋅10-7M), in the 

absence and presence of 30 minutes pre-incubation with LNAME(10-4M). 

In pulmonary small artery segments from a subgroup of seven CTEPH 

animals and eleven Control animals, concentration-response curves to Endothelin-

1 (ET-1) were constructed, by subjecting these segments to incremental 

concentrations of ET-1 (10-10-3⋅10-7M) in the absence and presence of the ETA 

receptor antagonist BQ123 (10−6M), the ETB receptor antagonist BQ788 (10−8M), a 

combination of both BQ123 and BQ788, or the Rho-kinase inhibitor Y-27632 (10-

5M) (2, 18, 41). 

Histology of the lung tissue 

The accessory lobe was flushed with saline, and fixed by bronchial installation of 

3.5-4% buffered formaldehyde at a physiological pressure of 18 mmHg (34). 

Tissues were processed and embedded in paraffin. Sections (4.5 µm) were cut, 

stained with Resorcin Fuchsin von Gieson (RF) and evaluated by light microscopy 
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(NDP slide scanner, Hamamatsu Nanozoomer 2.0HT, Hamamatsu Photonics K.K., 

Japan). 

Data analysis and statistics 

Digital recording and offline analysis of hemodynamic data were performed as 

described previously (12, 56). To account for differences in growth between 

animals, cardiac output was corrected for bodyweight, yielding cardiac index (CI). 

Total pulmonary vascular resistance index (tPVRi) was calculated as PAP/CI and 

body oxygen consumption index (BVO2i) as CI⋅(arterial-mixed venous oxygen 

content) i.e. CI·(CaO2-CmvO2). Alveolar-arterial oxygen gradient (AaDO2) was 

calculated as: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2 = �𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴2 ∙ (𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2𝐴𝐴𝐴𝐴)−
𝑃𝑃𝑃𝑃𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴2
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

� − 𝑃𝑃𝑃𝑃𝑎𝑎𝑎𝑎𝐴𝐴𝐴𝐴2 

With FIO2=0.21; PATM=760 mmHg; pH20=47 mmHg; RER=0.9 at rest (based on the 

assumption that pig chow contains predominantly protein and carbohydrates) and 

1.15 at 4km/h (27) and PaCO2 and PaO2 were measured in the blood gases 

obtained from the animals. 

Vascular responses to ET-1 in the myograph experiments were normalized 

to 100 mM KCl. Vasorelaxation was expressed as the percentage of contraction to 

U46619.  

Morphometric measurements of pulmonary small arteries and 

microvasculature were performed using NanoZoomer Digital Pathology (NDP) 

viewer (Hamamatsu Photonics K.K., Japan). To ensure that pulmonary veins were 

excluded for analysis, vessels within, or in close proximity to the lung septae were 

not included in the analysis. Only transversely cut vessels (ratio largest/ smallest 

diameter <1.5) of predetermined diameters (<50, 50-100, 100-300 µm) were 
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analyzed. All vessels complying with these conditions were analyzed resulting in 

an average of 68 vessels per animal. Assuming circularity of the vessels, inner and 

outer radius were calculated as r = perimeter/2*π. Wall-to-lumen ratio was 

calculated as (outer – inner radius)/inner radius. 

Data analysis of the concentration-response curves in the isolated 

pulmonary small arteries was performed using Prism (version 5.0, Graphpad 

Software, Inc., La Jolla, CA, USA)and StatView (version 5.0, SAS Institute, Cary, 

North Carolina, USA). SPSS (version 21.0 IBM, Armonk, NY, USA)was used for 

statistical analysis of exercise responses and qPCR data.Statistical analysis was 

performed using a two-way ANOVA for repeated measures or one-way ANOVA 

when applicable. Statistical significance was accepted when P≤0.05. Data are 

presented in box and whisker plots with the whiskers reflecting min to max, 

median presented as line and means are presented as +. 

Results 

CTEPH and exercise response in vivo 

As the hemodynamic responses over time were not different between the sham-

operated animals with and without LNAME, these were pooled into one single 

Control group. Repeated embolizations combined with LNAME resulted in CTEPH 

as evidenced by a PAP > 25 mmHg (43±6 mmHg vs 20±1 mmHg in Control, 

p<0.001) as a result of an increased tPVRi (266±56 mmHg L-1minkg vs 119±10 

mmHg L-1 minkg in Control, p=0.007) (Figure 1) (54).  
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analyzed. All vessels complying with these conditions were analyzed resulting in 

an average of 68 vessels per animal. Assuming circularity of the vessels, inner and 

outer radius were calculated as r = perimeter/2*π. Wall-to-lumen ratio was 

calculated as (outer – inner radius)/inner radius. 

Data analysis of the concentration-response curves in the isolated 

pulmonary small arteries was performed using Prism (version 5.0, Graphpad 

Software, Inc., La Jolla, CA, USA)and StatView (version 5.0, SAS Institute, Cary, 

North Carolina, USA). SPSS (version 21.0 IBM, Armonk, NY, USA)was used for 

statistical analysis of exercise responses and qPCR data.Statistical analysis was 

performed using a two-way ANOVA for repeated measures or one-way ANOVA 

when applicable. Statistical significance was accepted when P≤0.05. Data are 

presented in box and whisker plots with the whiskers reflecting min to max, 

median presented as line and means are presented as +. 

Results 

CTEPH and exercise response in vivo 

As the hemodynamic responses over time were not different between the sham-

operated animals with and without LNAME, these were pooled into one single 

Control group. Repeated embolizations combined with LNAME resulted in CTEPH 

as evidenced by a PAP > 25 mmHg (43±6 mmHg vs 20±1 mmHg in Control, 

p<0.001) as a result of an increased tPVRi (266±56 mmHg L-1minkg vs 119±10 

mmHg L-1 minkg in Control, p=0.007) (Figure 1) (54).  
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Table 1. Primer sequences used for the qPCR. 

IL-6, interleukin-6; IFN-γ, interferon-γ; TNF-α, tumor necrosis factor α; TGF-β, transforming 
growth factor β1; PPET-1, prepro endothelin 1; ECE-1, endothelin converting enzyme 1; 
ETA, endothelin receptor A; ETB, endothelin receptor B; eNOS, endothelial nitric oxide 
synthase; CD31,Platelet endothelial cell adhesion molecule; VCAM-1, vascular cell 
adhesion molecule 1; CD144, vascular endothelial cadherin (VE-cadherin); RhoA, Ras 
homolog gene family member A; ROCK1, rho-associated, coiled-coil-containing protein 
kinase 1; ROCK2, Rho associated coiled-coil containing protein kinase 2. 

 Sequence 
Genes Forward Reverse 
IL-6 CTCCAGAAAGAGTATGAGAGC AGCAGGCCGGCATTTGTGGTG 
IFN-γ GAAGAATTGGAAAGAGGAGAGTGAC TGCTCCTTTGAATGGCCTGG 
TNF-α TGCACTTCGAGGTTATCGGCC CCCACTCTGCCATTGGAGCTG 
TGF-β GTGGAAAGCGGCAACCAAAT CACTGAGGCGAAAACCCTCT 
PPET-1 TCATCGGCAGCTGGTGATGGG GGCTTTCAGCTTGGCGATGTG 
ECE-1 TGGGGGACCTTCAGCAACCT GGGTGTCCTGGAAGTTGTCCTTG 
ETA ACAGGTACAGAGCAGTTGCC TCTCGACGCTGTTTCAGGTG 
ETB CCCCTTCATCTCAGCAGGATT GCACCAGCAGCATAAGCATG 
eNOS GGACACACGGCTAGAAGAGC TCCGTTTGGGGCTGAAGATG 
CD31 AGTGTACAGTGAAATCCGGAAA TCTCAGAATGCGGTGTCTCC 
VCAM-1 TGTGAAGGGATTAACCAGGCT CAGTGTCCCCTTCCTTGACG 
CD144 AGGGAGAAGAACACTTCCGC GGGCATCTTGTGTTTCCACC 
RhoA AGGACCAATTCCCGGAGGTA AGCCAACTCTACCTGCTTTCC 
ROCK1 ATCAAACGATATGGCTGGAAG CCATAGACGGATTGGATTGTTCC 
ROCK2 TTCGACCAGTTACACAGACAG TAAATTCATGTCCCTTGTGGC 
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Figure 1. Pulmonary hemodynamics and oxygenation during exercise.  
Effect of exercise after 9 weeks of CTEPH. Shown are data obtained at rest and during 
maximal exercise at 4 km h-1 in Control swine (white boxes, n=10) and CTEPH swine (grey 
boxes, n=6) A) Mean pulmonary artery pressure (PAP), B) Cardiac Index (CI), C) total 
pulmonary vascular resistance index (tPVRi), D) arterial oxygen pressure (PaO2), E) arterial 
carbon dioxide pressure (PaCO2), F) arterial oxygen content (CaO2), G) mixed venous oxygen 
pressure (PmvO2), H) mixed venous carbon dioxide pressure (PmvCO2), I) mixed venous 
oxygen content (CmvO2), J) arterial lactate concentration (CaLac), K) body oxygen 
consumption index (BVO2i), L) alveolar-arterial oxygen gradient (AaDO2). Whiskers denote 
min to max and means are presented as +. * P < 0.05 CTEPH vs Control; $ P ≤ 0.10 CTEPH 
vs Control; § P ≤ 0.05 Effect of exercise vs Control; ‡ ≤ 0.1 Effect of exercise vs Control. 
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Effect of exercise after 9 weeks of CTEPH. Shown are data obtained at rest and during 
maximal exercise at 4 km h-1 in Control swine (white boxes, n=10) and CTEPH swine (grey 
boxes, n=6) A) Mean pulmonary artery pressure (PAP), B) Cardiac Index (CI), C) total 
pulmonary vascular resistance index (tPVRi), D) arterial oxygen pressure (PaO2), E) arterial 
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pressure (PmvO2), H) mixed venous carbon dioxide pressure (PmvCO2), I) mixed venous 
oxygen content (CmvO2), J) arterial lactate concentration (CaLac), K) body oxygen 
consumption index (BVO2i), L) alveolar-arterial oxygen gradient (AaDO2). Whiskers denote 
min to max and means are presented as +. * P < 0.05 CTEPH vs Control; $ P ≤ 0.10 CTEPH 
vs Control; § P ≤ 0.05 Effect of exercise vs Control; ‡ ≤ 0.1 Effect of exercise vs Control. 
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Although the exercise-induced increase in CI was reduced in CTEPH, the 

higher tPVRi resulted in an exaggerated exercise-induced increase in PAP in CTEPH 

as compared to Control swine. Ventilation-perfusion (V/Q)-mismatch was 

suggested by a lower PaO2 in CTEPH compared to Control at rest, and the 

reduction in PaO2 was exacerbated during exercise. The lower PaO2 and arterial O2 

content (CaO2) during exercise were partially due to a reduction in PmvO2 and 

CmvO2 as a consequence of the diminished exercise-induced increase in CI, and in 

part due to widening of the AaDO2, but were not accompanied by significant 

changes in arterial or mixed venous CO2 (Figure 1). The impaired oxygen uptake in 

the lungs resulted in an attenuation of the exercise-induced increase in BVO2i in 

CTEPH compared to Control, which was accompanied by a trend towards an 

increase in lactate, particularly during exercise (Figure 1), reflecting a lower 

anaerobic threshold. Furthermore, CTEPH was not accompanied by increased D-

Dimer concentrations, indicating that contribution of endogenous clot formation 

to CTEPH induction is minimal in this swine model (Figure 3 C).  

Figure 3. Maximal vasoconstriction of pulmonary small arteries and plasma Endothelin-1 
and D-Dimer. 
Maximal vasoconstriction response of CTEPH and Control isolated pulmonary small 
arteries to KCl (100mM) and U46619 (100nM) (A). Plasma endothelin-1 (B) and plasma D-
Dimer levels (C). Whiskers denote min to max and means are presented as +. Control n=12, 
CTEPH n=6 (A); Control n=11, CTEPH n=5 (B); Control n=11, CTEPH n=6 (C). * P < 0.05 
CTEPH vs Control. 
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Although the exercise-induced increase in CI was reduced in CTEPH, the 

higher tPVRi resulted in an exaggerated exercise-induced increase in PAP in CTEPH 

as compared to Control swine. Ventilation-perfusion (V/Q)-mismatch was 

suggested by a lower PaO2 in CTEPH compared to Control at rest, and the 

reduction in PaO2 was exacerbated during exercise. The lower PaO2 and arterial O2 

content (CaO2) during exercise were partially due to a reduction in PmvO2 and 

CmvO2 as a consequence of the diminished exercise-induced increase in CI, and in 

part due to widening of the AaDO2, but were not accompanied by significant 

changes in arterial or mixed venous CO2 (Figure 1). The impaired oxygen uptake in 

the lungs resulted in an attenuation of the exercise-induced increase in BVO2i in 

CTEPH compared to Control, which was accompanied by a trend towards an 

increase in lactate, particularly during exercise (Figure 1), reflecting a lower 

anaerobic threshold. Furthermore, CTEPH was not accompanied by increased D-

Dimer concentrations, indicating that contribution of endogenous clot formation 

to CTEPH induction is minimal in this swine model (Figure 3 C).  

Figure 3. Maximal vasoconstriction of pulmonary small arteries and plasma Endothelin-1 
and D-Dimer. 
Maximal vasoconstriction response of CTEPH and Control isolated pulmonary small 
arteries to KCl (100mM) and U46619 (100nM) (A). Plasma endothelin-1 (B) and plasma D-
Dimer levels (C). Whiskers denote min to max and means are presented as +. Control n=12, 
CTEPH n=6 (A); Control n=11, CTEPH n=5 (B); Control n=11, CTEPH n=6 (C). * P < 0.05 
CTEPH vs Control. 
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Pulmonary microvascular morphometry 

The increase in PAP in CTEPH resulted in pulmonary microvascular remodeling. 

The pulmonary small arteries of both 50-100 µm and 100-300 µm in lumen 

diameter showed a higher wall thickness, wall to lumen ratio and lower relative 

lumen area in CTEPH compared to Control animals (Figure 2). The remodeling of 

the pulmonary small arteries encompassed predominantly an increased 

muscularization in the tunica media. In the pulmonary microvasculature (vessel 

diameter <50 µm), remodeling was also predominantly present in the tunica 

media. The wall thickness (6.2±0.4 µm vs 5.2±0.3 µm, p=0.08) as well as the wall 

to lumen ratio (0.32±0.03 vs 0.25±0.02, p<0.06) tended to be higher in CTEPH 

compared to Control, while the relative lumen area tended to be smaller in the 

CTEPH compared to the Control microvasculature (0.63±0.02 vs 0.68±0.01, 

p=0.07) (Figure 2). 

The changes in microvascular morphology were not accompanied by an 

overt inflammatory response, as IFN-γ, TNF-α and TGF-β were unaltered and IL-6 

showed only a trend towards an increase in the CTEPH lung tissue (Figure 4 A). 

Consistent with the unaltered inflammatory state, neither CD31, VCAM-1 or 

CD144 were altered in the CTEPH swine lung tissue, indicating that vascular 

integrity was preserved (Figure 4 B).  

Pulmonary small artery vasoreactivity in vitro: endothelin pathway 

The increased muscularization of the pulmonary small arteries in CTEPH animals 

as observed histologically, was associated with an increase in pulmonary small 

artery vasoconstriction to both potassium chloride and the thromboxane 

analogue U46619 in CTEPH compared to Control vessels (Figure 3 A). The absolute 

vasoconstriction in response to ET-1 was also augmented (17.7±2.4 mN in CTEPH 

Pulmonary vascular remodeling in CTEPH swine 
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vs 12.8±1.4 mN in Control, p<0.05). However, when normalized to KCl, the 

concentration-response curve to ET-1 was shifted to the right, reflecting a 

reduced sensitivity in CTEPH compared to Control vessels. The reduced sensitivity 

inversely correlated (R2=0.49) with the elevated plasma levels of ET-1 in CTEPH 

animals. 

Figure 4. Gene expression in lung tissue. 
Gene expression measured by a quantitativepolymerase chain reaction (qPCR) of 
interleukin-6 (Il-6), interferon-γ (IFN- γ), tumor necrosis factor α (TNF-α) and transforming 
growth factor β1 (TGF-β) (A), endothelial nitric oxide synthase (eNOS), Platelet endothelial 
cell adhesion molecule (CD31), vascular cell adhesion molecule 1 (VCAM-1) and vascular 
endothelial cadherin (VE-cadherin, CD144)(B), prepro endothelin (PPET-1), endothelin 
converting enzyme (ECE-1), endothelin receptor A (ETA) and endothelin receptor B (ETB) (C), 
Ras homolog gene family, member A (RhoA), rho-associated, coiled-coil-containing protein 
kinase 1 (ROCK1), Rho associated coiled-coil containing protein kinase 2 (ROCK2) (D) in 
Control and CTEPH lung tissue. Whiskers denote min to max and means are presented as +. 
Control n=13, CTEPH n=5. * P < 0.05 CTEPH vs Control; $ P < 0.10 CTEPH vs Control. 
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CTEPH compared to the Control microvasculature (0.63±0.02 vs 0.68±0.01, 

p=0.07) (Figure 2). 

The changes in microvascular morphology were not accompanied by an 

overt inflammatory response, as IFN-γ, TNF-α and TGF-β were unaltered and IL-6 

showed only a trend towards an increase in the CTEPH lung tissue (Figure 4 A). 

Consistent with the unaltered inflammatory state, neither CD31, VCAM-1 or 

CD144 were altered in the CTEPH swine lung tissue, indicating that vascular 

integrity was preserved (Figure 4 B).  

Pulmonary small artery vasoreactivity in vitro: endothelin pathway 

The increased muscularization of the pulmonary small arteries in CTEPH animals 

as observed histologically, was associated with an increase in pulmonary small 

artery vasoconstriction to both potassium chloride and the thromboxane 

analogue U46619 in CTEPH compared to Control vessels (Figure 3 A). The absolute 

vasoconstriction in response to ET-1 was also augmented (17.7±2.4 mN in CTEPH 
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vs 12.8±1.4 mN in Control, p<0.05). However, when normalized to KCl, the 

concentration-response curve to ET-1 was shifted to the right, reflecting a 

reduced sensitivity in CTEPH compared to Control vessels. The reduced sensitivity 

inversely correlated (R2=0.49) with the elevated plasma levels of ET-1 in CTEPH 

animals. 

Figure 4. Gene expression in lung tissue. 
Gene expression measured by a quantitativepolymerase chain reaction (qPCR) of 
interleukin-6 (Il-6), interferon-γ (IFN- γ), tumor necrosis factor α (TNF-α) and transforming 
growth factor β1 (TGF-β) (A), endothelial nitric oxide synthase (eNOS), Platelet endothelial 
cell adhesion molecule (CD31), vascular cell adhesion molecule 1 (VCAM-1) and vascular 
endothelial cadherin (VE-cadherin, CD144)(B), prepro endothelin (PPET-1), endothelin 
converting enzyme (ECE-1), endothelin receptor A (ETA) and endothelin receptor B (ETB) (C), 
Ras homolog gene family, member A (RhoA), rho-associated, coiled-coil-containing protein 
kinase 1 (ROCK1), Rho associated coiled-coil containing protein kinase 2 (ROCK2) (D) in 
Control and CTEPH lung tissue. Whiskers denote min to max and means are presented as +. 
Control n=13, CTEPH n=5. * P < 0.05 CTEPH vs Control; $ P < 0.10 CTEPH vs Control. 
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Consistent with the higher plasma ET-1 levels (Figure 3 B), expression of the ETB 

receptor, which is the clearance receptor for ET-1, was reduced, while neither 

expression of PPET-1 nor that of ECE-1 in lung tissue was different in CTEPH as 

compared to Control animals (Figure 4 C), suggesting that ET-1 clearance rather 

than ET-1 production was altered in CTEPH. To investigate the contributions of the 

ETA and ETB receptors to the ET-induced vasoconstriction, concentration response 

curves to ET-1 were also performed in pulmonary small arteries in the presence of 

ETA and ETB receptor blockers alone as well as their combination. ETA blockade by 

BQ123 resulted in an attenuation of ET-1-induced vasoconstriction that appeared 

relatively more pronounced in CTEPH compared to Control vessels. In contrast, 

ETB blockade with BQ788 did not affect the vasoconstrictor response to ET-1 in 

either Control or CTEPH pulmonary small arteries. The effect of ETA blockade was 

maintained in the presence of ETB blockade (ETA/ETB vs ETB) in both CTEPH and 

Control vessels, but only in Control vessels combined ETA/ETB blockade further 

attenuated the ET-1-induced vasoconstriction compared to ETA blockade. In the 

CTEPH vessels there was no difference between ETA/ETB and ETA blockade, 

suggesting a reduced contribution of the ETB receptor and increased contribution 

of the ETA receptor to the ET-vasoconstrictor response in the CTEPH pulmonary 

small arteries (Figure 5 A-C). These observations are consistent with the lower ETB 

gene expression in CTEPH lung tissues (Figure 4 C) and higher ETA/ETB ratio 

(2.9±0.1 in CTEPH vs 1.7±0.4 in Control, p<0.05). 

To further investigate the lower ET-sensitivity in CTEPH pulmonary small 

arteries, the contribution of Rho-kinase was examined. After pre-constriction to 

U46619, CTEPH-vessels showed a reduced vasodilator response to Rho-kinase 

inhibition with Y-27632 compared to Control (Figure 5 D). 
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Consistent with the higher plasma ET-1 levels (Figure 3 B), expression of the ETB 

receptor, which is the clearance receptor for ET-1, was reduced, while neither 

expression of PPET-1 nor that of ECE-1 in lung tissue was different in CTEPH as 

compared to Control animals (Figure 4 C), suggesting that ET-1 clearance rather 

than ET-1 production was altered in CTEPH. To investigate the contributions of the 

ETA and ETB receptors to the ET-induced vasoconstriction, concentration response 

curves to ET-1 were also performed in pulmonary small arteries in the presence of 

ETA and ETB receptor blockers alone as well as their combination. ETA blockade by 

BQ123 resulted in an attenuation of ET-1-induced vasoconstriction that appeared 

relatively more pronounced in CTEPH compared to Control vessels. In contrast, 

ETB blockade with BQ788 did not affect the vasoconstrictor response to ET-1 in 

either Control or CTEPH pulmonary small arteries. The effect of ETA blockade was 

maintained in the presence of ETB blockade (ETA/ETB vs ETB) in both CTEPH and 

Control vessels, but only in Control vessels combined ETA/ETB blockade further 

attenuated the ET-1-induced vasoconstriction compared to ETA blockade. In the 

CTEPH vessels there was no difference between ETA/ETB and ETA blockade, 

suggesting a reduced contribution of the ETB receptor and increased contribution 

of the ETA receptor to the ET-vasoconstrictor response in the CTEPH pulmonary 

small arteries (Figure 5 A-C). These observations are consistent with the lower ETB 

gene expression in CTEPH lung tissues (Figure 4 C) and higher ETA/ETB ratio 

(2.9±0.1 in CTEPH vs 1.7±0.4 in Control, p<0.05). 

To further investigate the lower ET-sensitivity in CTEPH pulmonary small 

arteries, the contribution of Rho-kinase was examined. After pre-constriction to 

U46619, CTEPH-vessels showed a reduced vasodilator response to Rho-kinase 

inhibition with Y-27632 compared to Control (Figure 5 D). 
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Furthermore, pre-incubation with Y-27632 attenuated ET-1-induced 

vasoconstriction in the Control arteries while it did not affect the response in 

arteries from CTEPH animals, so that Rho-kinase inhibition abrogated the 

difference in ET-1-response between Control and CTEPH. However, Rho-kinase 

gene expression level was unaltered in CTEPH (Figure 4 D). These findings suggest 

that reduced Rho-kinase activity, but not gene expression, in CTEPH pulmonary 

small arteries underlies the decreased ET-1 vasoconstriction in CTEPH compared 

to Control (Figure 5 E&F). 

 
Figure 6. Pulmonary vasoreactivity: NO pathway. 
Effect of Bradykinin with or without eNOS-inhibition (LNAME) (A), the NO-donor sodium 
nitroprusside (SNP) (B), 8-bromo-cyclic guanosine monophosphate (8Br-cGMP) (C) and 
phosphodiesterase 5 (PDE5) inhibition (Sildenafil) (D). Control n=12, CTEPH n=5 (A); Control 
n=11, CTEPH n=6 (B); Control n=9, CTEPH n=6 (C); Control n=12, CTEPH n=6 (D). * P < 0.05 
CTEPH vs Control; § Effect blocker CTEPH vs effect blocker Control. 
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Pulmonary small artery vasoreactivity in vitro: nitric oxide pathway 

The vasodilator response to bradykinin (BK) was reduced in CTEPH as compared to 

Control pulmonary small arteries (Figure 6), consistent with endothelial 

dysfunction. Surprisingly however, eNOS gene expression was increased (Figure 4 

B), while NOS-inhibition attenuated BK-induced vasodilation to a similar extent in 

pulmonary small arteries from CTEPH and Control. The NO-donor SNP resulted in 

vasodilation that was more pronounced in CTEPH compared to Control, indicating 

that sensitivity to NO was increased. To further assess NO signaling, the responses 

to the stable cGMP analogue 8Br-cGMP and PDE5-inhibition were investigated. 

The unaltered response to 8Br-cGMP indicates that protein kinase G (PKG) 

responsiveness to cGMP was maintained. However, the response to PDE5-

inhibition was reduced, suggestive of a reduced PDE5-activity (Figure 6). 

Altogether, the reduced response to PDE5-inhibition, increased SNP-induced 

vasodilation and the maintained contribution of NO to BK-induced vasodilation, 

suggest that loss of endogenous NO production is compensated in part by a 

decreased PDE5 activity resulting in an increased NO-responsiveness. 

Discussion 

The main findings of the present study in swine with CTEPH are that (i) the 

exercise-induced increase in PAP was exaggerated while the exercise-induced 

increase in CI was reduced in CTEPH as compared to Control swine, (ii) the mild 

drop in arterial oxygen content that was already present at rest was exacerbated 

during exercise, (iii) inward microvascular remodeling with increased 

muscularization was present in the pulmonary microvessels of all sizes, (iv) the 

increased muscularization was accompanied by an increase in maximal 

vasoconstriction to KCl, ET-1 and U46619, (v) although absolute vasoconstriction 

to ET-1 was increased in CTEPH pulmonary small vessels, the sensitivity to ET-1 
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Pulmonary small artery vasoreactivity in vitro: nitric oxide pathway 

The vasodilator response to bradykinin (BK) was reduced in CTEPH as compared to 
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inhibition was reduced, suggestive of a reduced PDE5-activity (Figure 6). 
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increase in CI was reduced in CTEPH as compared to Control swine, (ii) the mild 
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was reduced with an increased contribution of the ETA receptor but decreased 

contribution of the ETB receptor and complete loss of the contribution of Rho-

kinase to ET-1 vasoconstriction, (vi) an apparant reduction in endogenous NO 

production was compensated in part by a decreased PDE5 activity resulting in an 

increased NO-sensitivity in CTEPH pulmonary small arteries. These findings will be 

discussed in detail below. 

Exercise intolerance in CTEPH 

CTEPH is characterized by exercise intolerance which is principally caused by an 

exacerbated increase in PAP and thereby in RV afterload during exercise, in 

combination with a significant V/Q-mismatch in the lungs (4, 6, 7). Our CTEPH 

swine model recapitulates these characteristics of CTEPH. Thus, PAP was 

disproportionally increased in CTEPH as compared to Control animals in response 

to exercise. The increased afterload of the right ventricle limited the exercise-

induced increase in CI. In humans with CTEPH, physiological dead space is 

increased in proportion to the increase in PVR, resulting in a lower PaO2, which is 

accompanied by a reduction in PaCO2, as a result of compensatory 

hyperventilation (38). Similarly, the slightly lower PaO2 and higher AaDO2 in 

CTEPH-swine compared to Control are consistent with a mild V/Q-mismatch and 

dead space ventilation at rest. Contrary to humans with CTEPH, PaCO2 was not 

significantly affected in our porcine CTEPH-model neither at rest, nor during 

exercise. This discrepancy in CO2 response between humans and swine is not 

readily explained, but may in part be because swine lack collateral ventilation and 

therefore are less capable of ameliorating intraregional V/Q differences between 

alveoli as compared to humans (27). Furthermore, as healthy quadrupeds already 

ventilate and perfuse a major part of their lungs at rest (40), an increase in 

ventilation with CTEPH cannot further recruit hypoventilated lung areas and 
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improve V/Q mismatch, and hence their hyperventilatory response may not be 

capable of reducing PaCO2 levels below normal as occurs in humans.  

The AaDO2 in CTEPH animals was exacerbated during exercise, which is 

partially attributable to a lower PmvO2 (31.7±0.7 mmHg in Controls and 26.2±2.2 

mmHg in CTEPH) as a consequence of the lower CI, and in part reflects a further 

worsening of the V/Q mismatch due to the faster passage of blood through the 

pulmonary capillaries upon the exercise-induced increase in CI (27).  

Maximal body oxygen consumption was reduced and arterial lactate 

concentration was increased by more than 2 mmol/L, indicating that, consistent 

with patient data (19, 23, 29, 48), the anaerobic threshold was reached in CTEPH 

but not sham-operated swine during exercise at 4km/h. Particularly the decreased 

CI (27% lower in CTEPH as compared to Control) and to a lesser extent the 

decreased CaO2 (10% lower as compared to Control), limited the increase in body 

oxygen delivery during exercise. These findings suggest that exercise intolerance 

in CTEPH is principally caused by the increased pulmonary vascular resistance, and 

thereby the afterload of the RV, that limits the exercise induced increase in CI. The 

V/Q-mismatch that hampers arterial oxygenation also contributes to exercise 

intolerance, but to a lesser extent. However, the relative contributions of cardiac 

and pulmonary dysfunction to the exercise intolerance in patients with more 

severe RV dysfunction remains to be established. Cardiopulmonary exercise 

testing in CTEPH patients will therefore yield valuable data to help determine the 

cause(s) of their exercise intolerance (37). 

Pulmonary microvascular remodeling 

CTEPH occurs in a minority of patients after acute pulmonary embolism. However, 

also patients that did not experience (or did not notice to) an acute pulmonary 
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mmHg in CTEPH) as a consequence of the lower CI, and in part reflects a further 

worsening of the V/Q mismatch due to the faster passage of blood through the 
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concentration was increased by more than 2 mmol/L, indicating that, consistent 
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oxygen delivery during exercise. These findings suggest that exercise intolerance 

in CTEPH is principally caused by the increased pulmonary vascular resistance, and 
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cause(s) of their exercise intolerance (37). 

Pulmonary microvascular remodeling 

CTEPH occurs in a minority of patients after acute pulmonary embolism. However, 

also patients that did not experience (or did not notice to) an acute pulmonary 
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embolism have been reported to develop CTEPH (51). In these patients, it is 

proposed that CTEPH is the consequence of multiple micro-embolisms (17, 55). 

Our swine model with repeated micro-embolization procedures is similar to the 

second group of patients. It is increasingly recognized that, not only proximal 

obstructions, but also distal remodeling of the unobstructed pulmonary 

microvasculature contributes to the pathogenesis of CTEPH (17, 42). In 

accordance with previous studies in humans and animals (5, 11, 42), we observed 

inward remodeling of both pulmonary small arteries and the pulmonary 

microvasculature. This remodeling encompassed muscularization and thickening 

of the vascular wall and resulted in a relative reduction of the vascular lumen 

(Figure 2 & Figure 8-10). The changes in microvascular morphology were not 

accompanied by an overt pulmonary inflammatory response at this stage, as only 

IL-6 showed a trend towards an increase, consistent with the increase in IL-6 in 

CTEPH patients (49, 57, 58), while IFN- γ, TNF-α and TGF-β were unaltered. 

Although the existence of pulmonary microvascular remodeling is known since 

1993 (42), the consequences of this remodeling for pulmonary microvascular 

function have not been investigated to date. The present study shows that, 

consistent with the increased vascular muscularization in CTEPH, the maximal 

contraction of these vessels was also increased. In addition, microvascular 

remodeling was accompanied by alterations in two major endothelial signaling 

pathways, i.e. ET and NO, that are also implicated in development and 

progression of pulmonary hypertension (3), as will be further discussed below.  

Endothelial dysfunction in CTEPH 

Endothelial dysfunction was characterized by an imbalance between endothelial 

production of the vasodilator NO and the vasoconstrictor ET-1 while vascular 

integrity was intact at this stage. Perturbations in the NO-pathway have been 
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implicated in the pathogenesis of PH (3, 31, 59). Indeed, we have previously 

shown that chronic eNOS-inhibition is required to successfully produce stable 

CTEPH in swine, as microsphere embolizations alone do not result in sustained PH 

(54). To preclude a direct effect of eNOS-inhibition on both the in vivo and the in 

vitro measurements, eNOS inhibition was discontinued two weeks before the end 

of study. Moreover, control animals with and without chronic eNOS-inhibition 

were included. In accordance with our previous study, which showed no effect of 

chronic eNOS-inhibition on hemodynamics in control animals (54), in the present 

study, chronic eNOS-inhibition in control animals had no effect on vasoreactivity, 

plasma ET-levels and pulmonary gene expression (Figure 7). 

In pulmonary small arteries from CTEPH the vasodilator response to BK 

was reduced as compared to Control. Surprisingly however, eNOS-inhibition 

attenuated the BK-induced vasodilation to a similar degree in CTEPH and Control, 

indicating that either NO production was maintained or a decreased NO 

production was compensated by an increased sensitivity to NO. The increased 

vasodilation in response to the NO-donor SNP in CTEPH compared to Control is 

consistent with an increased sensitivity to NO. This increased vasodilator response 

to NO is in line with vasodilation observed during treatment with inhaled NO in 

CTEPH patients (1). The response to the stable cGMP analogue 8Br-cGMP was 

similar in CTEPH compared to Control vessels, indicating that PKG responsiveness 

to cGMP was preserved in CTEPH. 
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Figure 7. Pulmonary vasoreactivity: Comparison of Control with or without LNAME. 
Effect of endothelin (ET-1) (A), Rho-kinase inhibition (Y-27632) (B), Bradykinin (C), 8-
bromo-cyclic guanosine monophosphate (8Br-cGMP) (D), phosphodiesterase 5 (PDE5) 
inhibition (Sildenafil) (E) and the NO-donor sodium nitroprusside (SNP) (F) on the 
vasoconstriction or vasodilation of pulmonary small arteries, plasma ET-1 levels (G) and 
gene expression in lung tissue (H) of Control animals with (LNAME Control) and without 
(Control) LNAME. Whiskers denote min to max and means are presented as +. Control n=8, 
LNAME Control n=3 (A); Control n=7, LNAME Control n=4 (B&F); Control n=8, LNAME 
Control n=4 (C&E); Control n=5, LNAME Control n=4 (D); Control n=6, LNAME Control n=5 
(G); Control n=9, LNAME Control n=5 (H). No significant differences were observed. 
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Finally, the response to PDE5-inhibition was reduced in the CTEPH arteries, 

suggesting that reduced PDE5-activity acted to compensate, in part, for a blunted 

endogenous NO production, resulting in an increase in NO-sensitivity. The 

reduced response to Sildenafil provides a potential explanation for the failure of 

single treatment with Sildenafil as a therapeutic strategy for CTEPH and 

underscores the importance of intervening more upstream in the NO-pathway 

either by administering NO (1) or stimulating sGC. Indeed, beneficial therapeutic 

effects have been reported for Riociguat, a sGC stimulator, which was recently 

approved for therapeutic use in CTEPH (22, 30, 33, 50).  

Endothelin receptor antagonists (ERAs) are an established therapy for PAH 

(16, 32), but conflicting results of ERA therapy have been reported in CTEPH 

patients (24, 25, 44). The 40% higher plasma ET-1 in our porcine model is slightly 

less than the doubling observed in patient studies. However, clinically, our 

animals represent New York Heart Association (NYHA) class II or III, in which the 

elevation in ET-1 is less than in patients with NYHA class IV (21, 47). Although 

plasma ET-1 levels correlate well with clinical severity (21, 47), the contribution of 

changes in ET signaling to structural and functional changes in the pulmonary 

microvasculature has not been established. The present study shows that the 

increase in circulating ET-1 is accompanied by a decreased sensitivity of the 

pulmonary microvasculature to ET-1, as evidenced by a rightward shift in the ET-1 

response in pulmonary small arteries of animals with CTEPH as compared to 

Control. The relative contribution of the ETA receptor to the ET-1-induced 

vasoconstriction was slightly enhanced in pulmonary small arteries from animals 

with CTEPH as compared to Control. Moreover, ETB receptor blockade attenuated 

the contraction to ET-1 in the presence of ETA receptor blockade but it had no 

effect in pulmonary small arteries from animals with CTEPH. These data are in 

accordance with the increased ETA receptor expression in pulmonary 
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endarterectomy tissues (53) and in the lungs of swine with CTEPH (39), as well as 

with the increased ETA/ETB ratio observed in the present study. The latter was, 

however, primarily due to a decrease in ETB mRNA, which contrasts with another 

study in a different CTEPH- swine model that shows an increased ETB mRNA 

expression in the unobstructed areas of the lungs (39). However as both ETA and 

ETB receptors have also been shown to be present on bronchial smooth muscle 

(20), a change in mRNA expression may not solely reflect a change in expression in 

the pulmonary vasculature. These data suggest that CTEPH is accompanied by 

changes in ET-1 signaling in the pulmonary microvasculature and that the 

interaction between the ETA and the ETB receptor is altered in CTEPH. The loss of 

ETB mediated vasoactive effects observed in the present study suggests that dual 

ERA therapy may not be more effective as compared to ETA blockade alone. 

Moreover, in CTEPH the effect of ET-1 is already suppressed by a decreased 

sensitivity which would explain the observed inefficacy of ERA’s. 

ET-1 signaling occurs via two pathways, i.e. a calcium-dependent pathway 

involving phospholipase C (PLC)-mediated activation of myosin-light chain kinase 

and a calcium-independent pathway involving RhoA-Rho-kinase mediated 

inactivation of myosin phosphatase (28). Rho-kinase inhibition with Fasudil has 

been shown to be an effective therapy in some patients with PAH (15), but little is 

known about this pathway in the pathology of CTEPH. In the present study, Rho-

kinase inhibition caused vasodilation of pulmonary small arteries of Control 

animals, which was blunted in CTEPH as compared to Control. Moreover, ET-1-

induced contraction was attenuated by Rho-kinase inhibition in pulmonary small 

arteries from Control but not CTEPH swine. Although a reduction in Rho-kinase 

was not present at mRNA level in the CTEPH swine, mRNA levels of lung tissue 

may not reflect protein levels and/or enzyme activity in the vasculature. The data 

obtained from the isolated pulmonary small arteries indicate a complete loss of 
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the Rho-kinase contribution to ET-1-induced vasoconstriction in the CTEPH small 

arteries, and imply that, ET-1-induced vasoconstriction in CTEPH must therefore 

be mediated through the PLC-pathway. These results are very different from 

those obtained in PAH, where the contribution of Rho-kinase was found to be 

increased (10). Together, these data suggest that microvascular constriction and 

remodeling occur via different pathways in CTEPH as compared to PAH, and could 

be interpreted to suggest that the use of Rho-kinase inhibitors to alleviate 

pulmonary vasoconstriction may be useless in CTEPH patients.  

It is however, important to note that the present study investigated the 

contribution of endothelial dysfunction to the acute regulation of vascular tone, 

and that these results may not directly apply to the role of endothelial dysfunction 

in pulmonary microvascular remodeling and long-term effects of therapy. Future 

studies are thus required to investigate the pulmonary effects of chronic Rho-

kinase inhibition in CTEPH. 

Altogether, our study shows that alterations in microvascular structure 

contribute to the increase in pulmonary vascular resistance. These changes in 

microvascular structure are accompanied by  changes in microvascular function 

that may have therapeutic consequences in that the efficacy of therapeutic agents 

that are commonly applied in PAH, may not be as effective in CTEPH. 
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Abstract 

Right ventricular (RV) function is the most important determinant of survival and 

quality of life in patients with chronic thrombo-embolic pulmonary hypertension 

(CTEPH). This study investigated whether the increased cardiac afterload is 

associated with 1) cardiac remodeling and hypertrophic signalling, 2) changes in 

angiogenic factors and capillary density and 3) inflammatory changes associated 

with oxidative stress and interstitial fibrosis. 

CTEPH was induced in eight chronically instrumented swine by chronic 

NOS inhibition and up to 5-weekly pulmonary embolizations. Nine healthy swine 

served as control. After nine weeks, RV function was assessed by single beat 

analysis of RV-pulmonary artery (PA) coupling at rest and during exercise, and by 

cardiac magnetic resonance imaging. Subsequently, the heart was excised and RV 

and LV tissues were processed for molecular and histological analyses. 

Swine with CTEPH exhibited significant RV hypertrophy in response to the 

elevated PA pressure. RV-PA coupling was significantly reduced, correlated 

inversely with pulmonary vascular resistance and did not increase during exercise 

in CTEPH swine. Expression of genes associated with hypertrophy (BNP), 

inflammation (TGFβ), oxidative stress (ROCK2, NOX1 and NOX4), apoptosis (BCL2 

and Caspase-3) and angiogenesis (VEGFA), were increased in the RV of CTEPH 

swine and correlated inversely with RV-PA coupling during exercise. In the LV, 

only significant changes in ROCK2 gene-expression occurred.  

In conclusion, RV-remodeling in our CTEPH swine model is associated with 

increased expression of genes involved in inflammation and oxidative stress, 

suggesting that these processes contribute to RV remodeling and dysfunction in 

CTEPH and hence represent potential therapeutic targets.
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Introduction 

Chronic thrombo-embolic pulmonary hypertension (CTEPH) develops in a subset 

of patients after acute pulmonary embolism (31, 45). In CTEPH, pulmonary 

vascular resistance, which is initially elevated due to the obstructions in the larger 

pulmonary arteries, is further increased by pulmonary microvascular remodeling 

(31, 45). This increased pulmonary vascular resistance augments afterload of the 

right ventricle (RV), thereby resulting in RV dilation and RV hypertrophy. RV 

structural and functional adaptability are important determinants of functional 

capacity and survival in patients with CTEPH (9, 25, 55). Thus, RV-pulmonary 

arterial uncoupling is associated with reduced exercise-capacity (9), and patients 

with RV dilation have a worse prognosis compared to patients with preserved RV 

function and geometry (2, 20). Furthermore, it has become increasingly 

recognized that RV dysfunction may also influence the left ventricle (LV), both 

mechanically, through direct mechanical interaction and changes in LV filling, by 

inducing interventricular asynchrony (35, 58) as well as through activation of 

inflammatory pathways, that may be the result of low grade systemic 

inflammation in combination with neurohumoral activation due to reduced 

cardiac output (13, 25, 39).  

In CTEPH, pulmonary obstructive lesions can be located both proximally 

and distally. Distal pulmonary lesions have recently been shown to be associated 

with worse prognosis, in part because distal pulmonary lesions are currently 

deemed inoperable, and in part because distal pulmonary emboli are associated 

with worse RV function (20). Furthermore, also in patients with chronic 

thromboembolic disease, even without overt pulmonary hypertension (PH), RV 

dysfunction has been observed (38), which is associated with an impaired exercise 

capacity (9).  
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It is currently unknown which factor(s) predispose(s) to RV failure. Unlike 

pulmonary arterial hypertension, which is usually only detected in a very 

advanced stage of the disease, CTEPH occurs mostly after acute pulmonary 

embolism, which despite the fact that this first pulmonary embolism may also go 

unnoticed (Ende-Verhaar et al, 2017), may allow earlier intervention in the 

process of RV remodeling and adaptation,. Mild RV dysfunction is characterized by 

a deterioration of RV diastolic function (i.e. relaxation), while RV contraction is still 

preserved (38). The main determinant of cardiac diastolic function is cardiac 

stiffness, which is negatively influenced by interstitial fibrosis as well as by 

changes in isoform- expression of the ‘cardiac spring protein’ titin (41). 

Furthermore, it has been proposed that the failure of angiogenesis to keep up 

with RV hypertrophy, resulting in reduced capillary densities and concommittant 

RV perfusion abnormalities, is a key determinant that discriminates between 

adaptive RV hypertrophy and RV failure (17).  

We have recently developed a swine model, in which a combination of 

endothelial dysfunction by NOS inhibition with pulmonary embolizations with 

microspheres of  ̴700 μm in diameter resulted in the development of CTEPH with 

distal pulmonary microvascular remodeling (47, 48). In CTEPH animals, the 

increased afterload was accompanied by RV hypertrophy, that resulted in 

preservation of RV function at rest, but stroke volume (SV) decreased with 

increasing exercise intensity, suggesting mild RV dysfunction (47).  

In the present study, we investigated the changes in RV and LV geometry 

and morphology in CTEPH as well as concomittant changes in gene expression 

that may contribute to these changes. Specifically, we studied whether the 

increased RV afterload is associated with 1) cardiac remodeling and hypertrophic 
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signalling, 2) changes in angiogenic factors and capillary density and 3) 

inflammatory changes associated with oxidative stress and interstitial fibrosis. 

Methods 

Ethical approval 

Animal studies were performed following the “Guiding Principles for the Care and 

Use of Laboratory Animals” as approved by the Council of the American 

Physiological Society, and with approval of the Animal Care Committee of the 

Erasmus University Medical Center (EMC3158, 109-13-09). The authors 

understand the ethical principles under which the Journal of Physiology operates 

and hereby declare that this work complies with the animal ethics checklist 

outlined by Grundy (21). Twenty-three crossbred Landrace x Yorkshire swine of 

either sex obtained from a commercial breeder (3 months old, 22±1 kg) entered 

the study. Swine were individually housed in the animal facility of the Erasmus 

University Medical Center, fed twice a day and had free access to drinking water. 

Our experimental protocol consists of a chronic instrumentation, followed by 

induction of CTEPH in twelve animals through a combination of NOS-inhibition 

with L-Nω-Nitroarginine methyl ester (LNAME) and up to five weekly repeated 

embolizations with microspheres (see below for details). Mortality due to acute 

cardio-pulmonary failure upon CTEPH induction occurred in two animals. Two 

animals were excluded due to catheter failure (1 control, 1 CTEPH) whereas 2 

animals (1 control, 1 CTEPH) had to be euthanized following repeated infections 

due to the catheters and were not included. Only animals that completed the 

protocol are included in the N-numbers as described in the remainder of the 

manuscript. 
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Chronic instrumentation 

Animals were chronically instrumented as previously described (11, 47). In short, 

after an overnight fast, swine were sedated with an intramuscular injection (i.m.) 

of tiletamine/zolazepam (5 mg kg-1), xylazine (2.25 mg kg-1) and atropine (1 mg), 

intubated and ventilated with a mixture of O2 and N2 (1:2 v/v) to which 2% (v/v) 

isoflurane was added to maintain anesthesia. Under sterile conditions, a left 

thoracotomy in the fourth intercostal space was performed, the pericardium was 

opened and fluid-filled polyvinylchloride catheters (Braun Medical Inc., 

Bethlehem, PA, USA) were placed in the RV, pulmonary artery and aorta for blood 

pressure measurement. A flow probe (Transonic Systems Inc., Ithaca, NY, USA) 

was positioned around the ascending aorta for measurement of cardiac output 

(CO). The catheters were tunneled to the back, the chest was closed, and animals 

were allowed to recover for one week, receiving analgesia (0.015 mg kg-1 

buprenorphine i.m. and a slow-release fentanyl patch 12 μg h-1 for 48 hours) on 

the day of the surgery and daily intravenous (i.v.) antibiotic prophylaxis (25 mg kg-

1 amoxicillin) for 7 days (11).  

CTEPH induction 

Following the recovery week, CTEPH was successfully induced in eight animals (4 

male, 4 female) as described previously (47, 48). In short, on the first day, the 

animals were given the NOS-inhibitor LNAME (10 mg kg-1 i.v., Enzo Life Sciences 

International Inc, NY, USA) as a bolus infusion. On subsequent days, the dose of 

LNAME was increased by 10 mg kg-1 per day up to 30 mg kg-1 i.v., which was 

maintained until 1 week before the end of the study (36, 42). LNAME exhibits Ki 

values of 15 nM, 39 nM, and 4.4 µM for nNOS (bovine), eNOS (human), and iNOS 

(mouse) (4, 18, 19). Four days after the start of LNAME administration, 

microsphere infusions were started. Polyethylene microspheres (diameter 600-
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710 μm, density 1.13 g cm-3, 500 mg, corresponding to ∼2500 microspheres, 

Cospheric LLC, Santa Barbara, California, US) were suspended in 50 mL autologous 

blood with 2500 I.U. heparin and slowly infused into the RV while monitoring 

mean pulmonary artery pressure (mPAP). Microsphere infusions were repeated 

until the mPAP reached ~60 mmHg, or the arterial PaO2 dropped below ~40 

mmHg, as measured at rest 30 min after infusion, or when a maximum of 3 g 

(∼15000) microspheres was infused on one day based on the assumption that the 

porcine lungs contain approximately 25000 small arteries of this diameter. In the 

subsequent four weeks, hemodynamics were assessed weekly, and microsphere 

infusions were repeated when mPAP was <25 mmHg and PaO2 >70 mmHg, as 

described above. During the final 5 weeks of follow-up, no microsphere infusions 

were performed while LNAME administration was discontinued one week before 

sacrifice (47, 48).  

Seven sham-operated animals (3 male, 4 female), which did not receive 

LNAME or microspheres, and two additional healthy animals (2 female), that were 

not operated, served as controls. 

In vivo experiments 

Hemodynamic studies. Hemodynamic studies were performed ten weeks 

after surgery. With swine standing quietly on a motor-driven treadmill and during 

exercise at 4 km/h, CO, PAP, aorta pressure (AoP), and right ventricular pressure 

(RVP) were continuously recorded (11, 15). 

Digital recording and offline analysis of hemodynamic data were 

performed as described previously (15, 49). To account for differences in growth 

between animals, CO was corrected for body weight, yielding cardiac index (CI). 

Stroke volume index (SVi) was calculated as CI/heart rate. Total pulmonary 

vascular resistance index (tPVRi) and systemic vascular resistance index (SVRi) 
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were calculated as mPAP/CI and mAoP/CI respectively. RV function was measured 

by single beat analysis of RV-pulmonary artery (PA) coupling as described 

previously (3), using the median value of at least 10 consecutive beats, assuming 

that end-systolic PAP equals mPAP (3, 5). For calculation of Ees, a sine wave was 

fitted to the isovolumetric contraction and relaxation phases of RV contraction. 

The top of the sine wave has previously been shown to be a good approximation 

of Pmax, derived from isovolumetric contraction. Ees was subsequently calculated 

as (Pmax-mPAP)/SVi. Ea was calculated as mPAP/SVi. RV-PA coupling was 

assessed as the ratio of Ees and Ea (Figure 1). 
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Typical example of RV-PA coupling analysis showing hemodynamic signals (three beats) 
and their derivatives. Pmax was determined as the maximal value from a sine-fit of Right 
ventricular pressure (RVP), Pes was estimated to equal mean pulmonary artery pressure 
(mPAP), whereas stroke volume (SV) was calculated as the time-integral of aorta flow 
(AoF). 

Cardiovascular magnetic resonance imaging. After completion of the 

hemodynamic experiments, a cardiovascular magnetic resonance (CMR) 
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examination was performed on a 1.5T clinical scanner with a dedicated 32-

channel phased-array cardiac surface coil (Discovery MR450, GE Healthcare, 

Milwaukee, WI, US) in 5 Control (2 male, 3 female) and 6 CTEPH (4 male, 2 female) 

animals. For this purpose, animals were sedated and intubated as described 

above. During imaging, anesthesia was maintained with pentobarbital sodium (6-

12 mg kg-1 h-1 i.v.).Mechanical ventilation and breath-holds were performed using 

a mobile ventilator (Carina™, Dräger Medical, Best, The Netherlands). When 

necessary, and always in absence of pain reflexes, muscle relaxation was 

temporarily achieved using pancuronium bromide (2–4 mg i.v. bolus). The imaging 

protocol consisted of retrospectively ECG-gated balanced Steady-State Free 

Precession cine imaging with breath-holding (FIESTA, GE Medical System). 

Standard long-axis and short axis images with full LV and RV coverage were 

obtained. Typical scan parameters were slice thickness 6.0 mm, slice gap 0 mm, 

TR/TE 3.4/1.4 msec, flip angle 75°, field of view 320×240 mm, acquired matrix 

180×128, and reconstructed matrix 256×256. To assess dimensions, function and 

mass of both ventricles, LV and RV epi- and endocardial contours were drawn 

manually on end-diastolic and end-systolic short axis cine images. Volumes and 

masses were measured, and stroke volumes and ejection fractions (EF) calculated. 

All volumes were indexed for bodyweight. QMassMR analytical software (version 

8.1, Medis BV, Leiden) was used for analysis. 

Euthanasia 

After completion of the in vivo experiments, with animals intubated and under 

deep anesthesia (pentobarbital sodium, 6-12 mg kg-1 h-1 i.v.), a sternotomy was 

performed, ventricular fibrillation was induced using a 9 V battery, and the heart 

was immediately excised. To assess relative RV hypertrophy, the heart was 

sectioned into RV free wall and LV (including septum), and weighed. RV 
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hypertrophy was assessed using the Fulton index (RV/LV). Parts of the LV anterior 

wall and RV were snap frozen in liquid nitrogen within 10 minutes after excision 

for molecular analyses and fixated in formaldehyde for histological analysis.  

Histology 

LV and RV tissues were fixated in 3.5-4% buffered formaldehyde for a minimum of 

24 hours, and embedded in paraffin wax. Subsequently, 5µm sections were cut, 

and stained with 1) Gomori to assess cardiomyocyte cross-section area (CSA), 2) 

Lectin to assess capillary density, and 3) Picrosirius red (PSR) to assess collagen 

content (46). The stained sections were scanned using a Hamamatsu NDP scanner 

(Hamamatsu Nanozoomer 2.0 HT, Hamamatsu Photonics K.K., Hamamatsu City, 

Japan). Morphometric measurements of CSA and capillary density (expressed as 

number of capillaries per mm2 and per cardiomyocyte) were performed using 

Clemex Vision Professional Edition (Clemex Technologies inc. Corporate 

Headquarters, Quebec, Canada), while collagen content was analyzed using 

BioPixiQ (Gothenburg, Sweden) as previously described (46). 

Real time quantitative PCR 

Total RNA was extracted from snap frozen LV and RV tissues with the RNeasy 

Fibrous Tissue Mini Kit (Qiagen, Venlo, The Netherlands) as previously described 

(47). RNA integrity was confirmed by Bioanalyzer (2100 Bioanalyzer, Agilent, Santa 

Clara, California, USA). cDNA was synthesized from 500 ng of total RNA with 

SensiFAST cDNA Synthesis Kit (Bioline, London, UK). RT-qPCR (CFX-96, Bio-Rad, 

Hercules, California, USA) was performed with SensiFAST SYBR & Fluorescein Kit 

(Bioline, London, UK). Target genes mRNA expression levels were normalized 

against β-actin, glyceraldehyde-3-phosphate dehydrogenase (GADPH) and 

cyclophilin using the ΔΔCt method with the gene study function in CFX manager 
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software (Bio-Rad, Hercules, California, USA). All primer sequences are presented 

in Table 1. 

Titin isoform composition 

Titin isoform protein composition (i.e. presence of the stiff  N2B and compliant 

N2BA isoforms) was analyzed as previously described (46). In short, snap frozen 

LV and RV tissues were weighed and pulverized in liquid nitrogen using a mortar 

and pestle. Cardiac tissue powder was solubilized in 8 mol L-1 urea buffer with 

dithiothreitol and 50% glycerol solution with protease inhibitors (4× Leupeptin, E-

64, and phenylmethanesulfonyl fluoride). Equal dilutions were calculated based 

on myosin heavy chain (MHC) content and homogenate samples were loaded on 

custom-made 1% agarose gels. Gels were stained with SYPRO Ruby. Samples were 

measured in triplicate. Only samples with ≦20% degradation were used. Titin 

isoforms N2B and N2BA were normalized to total titin amount, and the N2B/N2BA 

ratio was calculated. 

Statistical analysis 

SPSS (version 21.0 IBM, Armonk, NY, USA) was used for the statistical analysis. 

Statistical analysis was performed with a mixed-model ANOVA with exercise as a 

repeated measure and CTEPH as a between group comparison, and 

exercise*CTEPH as interaction term for the analysis of heamodynamics. ANOVA 

with CTEPH as a factor was performed for the MRI data, histology and gene-

expression. Bonferroni post-hoc testing was performed when appropriate. The 

correlation coefficient r2was calculated for the relations between two continuous 

variables. Statistical significance was accepted when P<0.05. Data are presented 

in box and whisker plots with the whiskers reflecting min to max and median 

presented as line. 
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Results 

Cardiac hypertrophy and function 

CTEPH resulted in an increased RV afterload, as evidenced by an increase in 

mPAP, tPVRi and Ea (Figure 2). This sustained increase in afterload resulted an 

increase in RV-BNP expression (Table 3), suggestive of increased RV wall stress. 

Indeed, trends towards RV dilation (P=0.15) and decreased EF (P=0.08) as 

measured with CMR were observed (Figure 3). However, end-systolic elastance 

(Ees), an index of RV contractility, was higher in CTEPH while RV dP/dtmax and RV 

dP/dtmin were unchanged (Figure 2). Although RV-PA coupling was reduced, CI was 

maintained in CTEPH (Figure 2). Furthermore, neither heart rate, mAoP (Table 2), 

LV volume, LVEF (Figure 3) nor LV-BNP expression (Table 3) were altered. 

Exercise resulted in increases in mPAP and Ea that were larger in CTEPH as 

compared to Control while the exercise induced increase in CI was blunted. 

Moreover, although Ees increased in both CTEPH and Control animals, Ees was no 

longer different between groups. Hence, RV-PA coupling, which increased with 

exercise in the Control swine did not change significantly during exercise in CTEPH 

animals (Figure 2). In fact, RV-PA coupling worsened with exercise in 4 out of 6 

CTEPH animals, and correlated inversely with tPVRi (Figure 4). Moreover, the 

CTEPH animal with the worst RV function was uncapable of performing exercise at 

4 km/h due to RV failure, evidenced by a significant reduction in mAoP during 

exercise (animal not included in figure). Altogether, these data are consistent with 

RV dysfunction that is still compensated at rest but that is excacerbated during 

exercise. 
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Figure 3. Hemodynamics at rest and during exercise after 9 weeks of CTEPH. 
Shown are data obtained at rest and during maximal exercise at 4 km h-1 in Control swine 
(n=7) and CTEPH swine (n=7). A) Mean pulmonary artery pressure (mPAP), B) Cardiac index 
(CI), C) total pulmonary vascular resistance index (tPVRi), D) Arterial elastance (Ea), E) End-
systolic elastance (Ees), F) RV-PA coupling (Ees/Ea), G) maximum rate of fall of RV pressure 
(RV dP/dtmin), H) maximum rate of rise of RV pressure (RV dP/dtmax), I) Stroke work at 
rest and during exercise. Whiskers denote min to max and median is presented by the line. 
* P < 0.05, (*) P <0.1 CTEPH vs corresponding Control; † P< 0.05, (†) P<0.1 Exercise vs 
corresponding rest; ‡ P<0.05, (‡) P < 0.1 Exercise*CTEPH, i.e. effect of exercise on variable 
is different in CTEPH from Control.  
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Table 2. Systemic hemodynamics at rest and during exercise. 

  
Control 

 
CTEPH 

 BW Instrumentation 20 ± 1 
 

23 ± 1 
 

 
End of Study 61 ± 2 

 
62 ± 3 

           HR Rest 136 ± 21 
 

131 ± 4 
  Exercise 235 ± 15 † 211 ± 8 †‡ 

          Svi Rest 1.28 ± 0.09 
 

1.17 ± 0.17 
  Exercise 1.07 ± 0.09 † 0.99 ± 0.13 
           mAoP Rest 91 ± 4 

 
100 ± 4 

  Exercise 96 ± 4 (†) 116 ± 4 *†(‡) 
          SVRi Rest 561 ± 24 

 
839 ± 205 

  Exercise 384 ± 25 † 752 ± 252 
 Bodyweight (BW) and systemic hemodynamic data at rest and during exercise. Heart 

rate (HR); stroke volume index (SVi); mean aorta pressure (mAoP); systemic vascular 
resistance index (SVRi). Data are mean ± SEM. Control N=7, CTEPH N=7. * P < 0.05 
CTEPH vs corresponding Control; † P< 0.05, (†) P<0.1 Exercise vs corresponding rest; ‡ 
P<0.05, (‡) P < 0.1 Exercise*CTEPH i.e. effect of exercise on variable is different in CTEPH 
from Control. 

As previously reported (47), the increased RV afterload resulted in RV 

hypertrophy, as evidenced by an increased RV/BW and Fulton index (Figure 5), 

as well as an increased RV cardiomyocyte CSA in CTEPH (Figure 6). RV 

cardiomyocte CSA of CTEPH animals resembled those of LV cardiomyocytes. LV 

cardiomyocytes were similar in size in LV of CTEPH as compared to Control 

animals (Figure 6), consistent with the maintained LVW/BW in CTEPH compared 

to Control swine (Figure 5). Expression of SERCA2a, its inhibitor phospholamban 

(PLN), and their ratio did not change in the RV (Table 3). However, there was a 

shift in RV titin isoform expression from the stiff N2B, to the more compliant 

N2BA isoform (Figure 6). The pro-apoptotic gene Caspase-3 was upregulated in 

the RV, while the anti-apoptotic gene BCL2 was also upregulated in the RV of 

CTEPH animals (Table 3). Expression of BCL2 correlated modestly and inversely 

with RV-PA coupling during exercise (Figure 7), but not with resting RV-PA 
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coupling (r2= 0.08, not shown). In the LV, none of the genes involved in cardiac 

hypertrophy and apoptosis were significantly affected in the CTEPH animals. 

 
Figure 3. 
Right (RV) and left (LV) ventricular dimensions and function measured by cardiovascular 
magnetic resonance (CMR) imaging. A) end-diastolic volume index (EDVi), B) end-systolic 
volume index (ESVi), C) stroke volume index (SVi), and D) ejection fraction (EF). Whiskers 
denote min to max and median is presented by the line. Control N=5, CTEPH N=6. (*) P < 
0.1 CTEPH vs Control. 

Angiogenesis  

We observed an increase in capillary density in the RV of swine with CTEPH as 

compared to Control (Figure 6), that correlated with the increased stroke work 

(Figure 6) and was consistent with the trend towards the increased VEGFA 

expression (Table 3). Moreover, VEGFA expression correlated inversely with RV-

PA coupling during exercise (Figure 7) but not with resting RV-PA coupling 

(r2=0.34, not shown). In contrast, no changes in capillary density or VEGFA 

expression were observed in the LV. 
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Figure 4.  
Correlation between total pulmonary vascular resistance (tPVRi) and RV-PA coupling 
during maximal exercise at 4 km h-1 in Control swine (n=7) and CTEPH swine (n=6). P-value 
denotes significance of slope from zero. 

Figure 5.  
Cardiac hypertrophy. A) The Fulton index calculated as the ratio of Right ventricular weight 
(RVW) and left ventricular weight (LVW) and B) RVW over bodyweight (BW) were 
increased at sacrifice in CTEPH swine while C) LVW over BW was similar in CTEPH and 
Control swine. Whiskers denote min to max and median is presented by the line. Control 
N=9, CTEPH N=8. * P < 0.05 CTEPH vs Control. 
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Figure 6.  
Histological analyses in Control and CTEPH animals of both the left ventricle (LV) and right 
ventricle (RV). A) Capillary density per mm2 (lectin staining), B) capillary-fibre ratio, C) 
correlation between stroke work during maximal exercise at 4 km h-1 and RV capillary-fibre 
ratio, D) Interstitial fibrosis (picrosirius red (PSR) staining), E) cardiomyocyte size, F) 
cardiomyocyte size normalized for bodyweight (Gomori staining, cross sectional area 
(CSA)).Myofilament composition in terms of the two different titin isoforms G) N2BA 
(N2BA/Titin) and H) N2B (N2B/Titin) and I) their ratio. Whiskers denote min to max and 
median is presented by the line. Control N=8, CTEPH N=6. * P < 0.05 CTEPH vs Control (*)P < 
0.1 CTEPH vs Control. 

Inflammation, oxidative stress, and interstitial fibrosis 

Although expression of the immune-modulatory genes TNF-α, IL-6, IFN-γ was not 

altered in the RV, TGF-β1 gene expression tended to be higher in the RV of CTEPH  

Kelly Stam Dissertatie V5.indd   212 12-8-2019   09:52:14



6

Chapter 6. 

212 

 
Figure 4.  
Correlation between total pulmonary vascular resistance (tPVRi) and RV-PA coupling 
during maximal exercise at 4 km h-1 in Control swine (n=7) and CTEPH swine (n=6). P-value 
denotes significance of slope from zero. 

Figure 5.  
Cardiac hypertrophy. A) The Fulton index calculated as the ratio of Right ventricular weight 
(RVW) and left ventricular weight (LVW) and B) RVW over bodyweight (BW) were 
increased at sacrifice in CTEPH swine while C) LVW over BW was similar in CTEPH and 
Control swine. Whiskers denote min to max and median is presented by the line. Control 
N=9, CTEPH N=8. * P < 0.05 CTEPH vs Control. 

Cardiac remodeling in CTEPH 
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Figure 6.  
Histological analyses in Control and CTEPH animals of both the left ventricle (LV) and right 
ventricle (RV). A) Capillary density per mm2 (lectin staining), B) capillary-fibre ratio, C) 
correlation between stroke work during maximal exercise at 4 km h-1 and RV capillary-fibre 
ratio, D) Interstitial fibrosis (picrosirius red (PSR) staining), E) cardiomyocyte size, F) 
cardiomyocyte size normalized for bodyweight (Gomori staining, cross sectional area 
(CSA)).Myofilament composition in terms of the two different titin isoforms G) N2BA 
(N2BA/Titin) and H) N2B (N2B/Titin) and I) their ratio. Whiskers denote min to max and 
median is presented by the line. Control N=8, CTEPH N=6. * P < 0.05 CTEPH vs Control (*)P < 
0.1 CTEPH vs Control. 

Inflammation, oxidative stress, and interstitial fibrosis 

Although expression of the immune-modulatory genes TNF-α, IL-6, IFN-γ was not 

altered in the RV, TGF-β1 gene expression tended to be higher in the RV of CTEPH  
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swine, while BMPRII was not altered (Table 3). Consistent with a perturbation in 

the TGF-β – BMP balance, PAI also tended to be increased, while Id-1 did not 

change (Table 3). This shift in the TGF-β – BMP balance was accompanied by 

increased expression of ROCK2, NOX-1 and NOX-4 in the RV (Table 3), indicative of 

an increase in oxidative stress. Expression of ROCK2, NOX-1 and NOX-4 correlated 

inversely with RV-PA coupling during exercise (Figure 7), but not with resting RV-

PA coupling (r2= 0.29, 0.01 and 0.16 for ROCK2, NOX1 and NOX4, respectively). 

Figure 7.  
Correlation of the RV-PA coupling during exercise with expression of A) vascular 
endothelial growth factor A (VEGFA) , B) NADPH oxidase 1 (NOX1), C) NADPH oxidase 4 
(NOX4), D) Rho-associated protein kinase 2 (ROCK2), E) B-cell lymphoma 2 (BCL2), F) ratio 
of tissue inhibitor of metalloproteinases 2 (TIMP2) over matrix metalloproteinase-2 
(MMP2) in the RV. Control N=7, CTEPH N=4. P-value denotes significance of slope from 
zero. 

These changes in gene expression of pro-inflammatory genes and genes 

promoting oxidative stress did not result in overt changes in interstitial fibrosis, as 

collagen content was similar in the RV of CTEPH versus Control swine (Figure 6). 

Yet, although no change in interstitial fibrosis was observed, there was a trend 
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towards a shift in expression of Col3 to the stiffer Col1 isoform, that was 

accompanied by an increase in the ratio of TIMP2/MMP2 (Table 3) that correlated 

inversely with RV-PA coupling (Figure 7), suggesting reduced ECM turnover in the 

diseased RV. 

With the exception of an increase in ROCK2 and a trend towards an 

increase in NOX2 expression, no changes in genes involved in inflammation, 

oxidative stress and fibrosis were observed in the LV (Table 3), which is consistent 

with the absence of changes in LV myocardial interstitial collagen content. 

Discussion 

The present study investigated functional, histological and molecular 

changes in the RV and LV in swine with CTEPH. The main findings were that CTEPH 

resulted in 1) RV hypertrophy, both at the global and the myocyte level, 2) mild 

RV dysfunction as evidenced by decreased RV-PA coupling and elevated BNP 

expression, with trends towards an increased RV EDVi and a lower EF, 3) further 

decrease in RV-PA coupling during exercise that correlated with an increase in 

ROCK2, NOX1, NOX4 expression, 4) increased VEGFA expression that was 

accompanied by an increased capillary density in the RV. Finally, CTEPH did not 

result in changes in LV structure or function, and was associated with minor 

changes in LV gene expression in our swine model. 

Animal model 

CTEPH was induced in juvenile swine by first inducing endothelial 

dysfunction through chronic NOS-inhibition, followed by up to 5 repeated 

embolizations with microspheres. We previously showed that this combination 

was required as neither NOS-inhibition nor embolization alone were sufficient to 

induce chronically elevated pulmonary artery pressures, while the combination of 
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NOS-inhibition and embolization resulted in a progressive increase in tPVRi that 

continued to increase after the last embolization and was accompanied by 

pulmonary microvascular remodeling (47, 48). The required induction of 

endothelial dysfunction may be the result of the younger age of our animals, as 

endothelial NO-production decreases with age (32, 40). Also in humans, 

endothelial dysfunction is often present both in patients with acute pulmonary 

embolism as well as with CTEPH and correlates with disease severity (8, 29, 43). In 

humans, CTEPH prevalence is higher in females (30), but male patients typically 

have a worse prognosis (7). In the present study, male and female swine were 

used as we have previously shown that there are subtle differences in regulation 

of pulmonary vascular tone (10, 12), and hence it is possible that sex also affects 

development of CTEPH and subsequent RV remodeling in our animals. 

Unfortunately, the small group size precludes statistical assessment of the effect 

of sex. However, in supplemental figure 1-4 individual data are shown and 

different symbols are used for male and female swine. 

RV-function and remodeling 

RV afterload increases during development and progression of pulmonary 

hypertension. To cope with the increased afterload, the RV undergoes structural 

and functional changes to augment contractility, and there is evidence that this 

RV structural and functional adaptability are important determinants of functional 

capacity and survival in patients with CTEPH (9, 25, 55). The effects of CTEPH on 

cardiac structure, function and gene expression were therefore examined in our 

porcine model. CTEPH resulted in an increase in RV cardiomyocyte size and global 

RV hypertrophy, that was accompanied by activation of both pro- and anti-

apoptotic gene expression (increases in Caspase-3 and BCL2 respectively). 

Although these data suggest that apoptosis is likely altered in the remodeled RV, 
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apoptosis is determined by enzyme activity rather than expression. Future 

experiments examining activity of enzymes involved in apoptosis and TUNEL 

staining should be performed to elucidate whether the increased mRNA 

expression is indeed translated to alterations in apoptosis.  

Consistent with our previous study in which RV dimensions were assessed 

using echocardiography in awake swine (47), CTEPH resulted in trends towards RV 

dilation and a reduced RVEF. In the present study, RV resting function was still 

preserved, as evidenced by a maintained CI, but BNP expression was increased, 

suggestive of an increased wall stress (52). These findings are consistent with 

observations in another porcine CTEPH model, in which CTEPH is induced by 

ligation of the left pulmonary artery, in combination with embolization of the 

proximal segmental arteries with glue (22-24). In that model, RV dilation (24) and 

RV myocyte hypertrophy (22) were also accompanied by an increased BNP 

expression (22, 24), that correlated inversely with stroke volume and positively 

with global RV hypertrophy (22). Furthermore, RV-PA coupling, an index of how 

well the RV can cope with the increased afterload, was reduced in that study and 

a correlation was found between reduced coupling and a reduced SV reserve with 

dobutamine (24). Similarly, in the present study, severity of CTEPH reflected in the 

tPVRi, correlated inversely with RV-PA coupling during exercise. Importantly, 

recent studies in patients with CTEPH show that RV-PA coupling correlates with 

exercise capacity (9), which in turn is a strong prognosticator (2).  

It is increasingly recognized that not only RV systolic function, but also RV 

diastolic function correlates with prognosis in patients with pulmonary arterial 

hypertension (PAH) (53). Indeed, in pigs with type II PH, abnormalities in RV-PA 

coupling were accompanied by diastolic dysfunction (1). Diastolic RV chamber 

stiffness is determined by myocyte stiffness as well as interstitial collagen. In a rat 
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model of pulmonary artery banding, mild RV dysfunction was accompanied by an 

increase in myocyte stiffness, whereas interstitial fibrosis was only observed in the 

presence of severe RV dysfunction (41). In these rats, the increased myocyte 

stiffness was accompanied by a paradoxical increase in the more compliant titin 

N2BA isoform, possibly to blunt a further increase in myocyte stiffness. Consistent 

with these findings the mild RV dysfunction in our swine with CTEPH was 

accompanied by an increase in titin N2BA, while no changes in myocardial 

collagen content were observed histologically. Furthermore, no changes in Col1 

and Col3 expression were observed, although there was a change in the ratio 

between Col1 and Col3 indicating a relatively higher expression of the stiff Col1 

isoform. These data are also consistent with the isoform shift observed by Rain et 

al (41), and may have contributed to a stiffer RV.  

The transition from RV dysfunction to overt RV failure is associated with 

inflammation and activation of the immune response (14, 16, 50). Although 

expression of genes involved in immune modulation (TNF-α, IL-6, IFN-γ) was not 

altered, expression of TGF-β1 tended to be increased. Activation of the TGF-β 

pathway was further confirmed by the increase in expression of its downstream 

target PAI-1. Both activation of the TGF-β pathway and increased circulating levels 

of endothelin, as we previously showed to be present in our porcine CTEPH model 

(48), can result in activation of the Rho-kinase pathway (44, 54, 59). Indeed, 

ROCK2 expression was upregulated in CTEPH swine and showed a strong inverse 

correlation with RV-PA coupling. ROCK2 activation is involved in cardiac 

hypertrophy and oxidative stress, and plays a deleterious role in RV-remodeling 

(28, 51). ROCK2 phosphorylates protein phosphatase 1 (PP1), which regulates 

both myofilament sensitivity to Ca2+ as well as Ca2+-handling (26). Hence, although 

neither SERCA2a nor phospholamban gene expression were changed in the 

present study, it is possible that post-translational modifications in their 
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phosphorylation status contributed to altered Ca2+ handling. Indeed, it has been 

suggested that changes in Ca2+-handling may play a role in the development of RV 

dysfunction as diastolic dysfunction in swine with type II PH was associated with 

reduced SERCA2a-expression (1). Future studies in our CTEPH model are required 

to further investigate the post-translational modifications in contractile and Ca2+-

handling proteins. 

Another key factor that distinguishes adaptive RV remodeling from RV 

failure is myocardial angiogenesis (17). Angiogenesis allows RV perfusion to be 

enhanced commensurate with the increase in RV mass. Indeed, many studies 

have shown that RV failure is accompanied by a reduction in capillary density, 

whereas capillary density is preserved or even increased in adaptive RV 

remodeling (for an overview of angiogenesis in the RV in a variety of animal 

models with PH see (17)). Although chronic administration of LNAME could 

significantly reduce myocardial angiogenesis (37) and limit myocardial perfusion, 

capillary density was actually increased in the RV of CTEPH swine and correlated 

with stroke work during exercise. These data are in accordance with recent data in 

another porcine CTEPH model (33), and suggests a state of adaptive RV 

remodeling with sufficient myocardial perfusion and oxygenation under resting 

conditions. Nevertheless, VEGFA-expression was higher in swine with CTEPH 

(Loisel et al., 2019, present study) and correlated with RV-PA coupling during 

exercise, suggesting that, even though expression of HIF-1α and HIF-2α was 

unchanged, there was still a need for additional perfusion during stress. Indeed, 

myocardial perfusion reserve has been shown to be reduced in humans with 

CTEPH and PAH (56, 57). Furthermore, myocardial perfusion reserve correlated 

inversely with mPAP and RV work in these studies, suggesting that flow reserve is 

recruited as a result of the increased work (57) and maximal flow may be limited 

due to increased extravascular compression (56).  
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ROCK2 is not only expressed in the myocardium but also in the 

vasculature, where its expression correlates with oxidative stress and NOX-

expression (6). NOX1, NOX2 and NOX4 were upregulated in the right coronary 

artery of swine with pulmonary artery banding, which was accompanied by 

oxidative stress and endothelial dysfunction, despite maintained eNOS expression 

(34). The upregulation of NOX1 and NOX4, and the unaltered eNOS expression in 

the RV of CTEPH swine, as observed in the present study, are consistent with 

these data, although we did not determine the exact intramyocardial location of 

their expression. Furthermore, the upregulation of NOX4 is also consistent with 

recent data from patients with PAH, in which circulating NOX4 was increased (27). 

Finally, the correlation of NOX1 and NOX4 with RV-PA coupling suggest that 

oxidative stress in the myocardium may contribute to worsening of RV-function.  

Conclusion and clinical implications 

In swine with CTEPH, the increased afterload resulted in RV hypertrophy, that 

contributed to a maintained resting RV function, although a trend towards RV 

dilation and reduced RVEF was observed with CMR. Consistent with data obtained 

in CTEPH-patients without overt RV failure (25), neither LV function nor LV gene 

expression (perhaps with exception of ROCK2, NOX2 and BCL2) were altered. 

CTEPH is different from PAH in that patients often experience an acute 

thrombo-embolic event prior to development of the disease. This form of PH 

therefore has the potential for follow-up and earlier therapeutic interventions. 

Exercise unmasked mild RV dysfunction as evidenced by reduced RV-PA coupling, 

which may facilitate early diagnosis of patients at risk for developing persistent RV 

failure. The present study shows that this mild RV dysfunction correlates with 

changes in expression of genes involved in oxidative stress, apoptosis and 

angiogenesis. These changes in gene expression suggest activation of an 
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inflammatory response in the RV, promoting oxidative stress. Given that ROCK2 

shows a strong correlation with RV dysfunction and has been shown to play a 

detrimental role in inflammation, oxidative stress, interstitial fibrosis, cardiac 

hypertrophy and impaired myocardial perfusion, ROCK2 inhibition may provide a 

viable target for early therapeutic intervention. 
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shows a strong correlation with RV dysfunction and has been shown to play a 

detrimental role in inflammation, oxidative stress, interstitial fibrosis, cardiac 

hypertrophy and impaired myocardial perfusion, ROCK2 inhibition may provide a 

viable target for early therapeutic intervention. 
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Chronic thromboembolic pulmonary hypertension (CTEPH) develops in about 3-

4% of patients after acute pulmonary embolism (PE), although the disease is 

probably highly underdiagnosed. CTEPH is associated with a poor quality life, high 

mortality and although pulmonary endarterectomy and balloon angioplasty may 

initially provide symptom relief by removing the proximal obstructions, there is no 

curative treatment for the pulmonary microvasculopathy. Furthermore, it is 

unclear why only a subpopulation of patients develops chronic pulmonary 

hypertension after an acute PE, and what the underlying mechanism(s) are for this 

transition from acute to chronic pulmonary disease. There are some risk factors 

such as genetics, ineffective endogenous fibrinolysis, hypercoagulability, deficient 

angiogenesis, inflammation and platelet endothelial cell adhesion molecule-1 

deficiency linked and hypothesized to play a role in the development of CTEPH 

(53, 82).  

In this thesis, we proposed that (pulmonary) endothelial dysfunction is a 

key mechanism in the transition from acute PE to development of CTEPH. With a 

dysfunctional endothelium, emboli cannot be properly resolved and the 

remodeling of the pulmonary vasculature, both functional as structural, cannot be 

prevented. A healthy pulmonary endothelium is characterized by production of 

nitric oxide (NO) and prostacyclin, while production of endothelin (ET) is kept low 

and circulating ET is largely cleared in the lungs. Pulmonary endothelial 

dysfunction and/or high pulmonary pressure are associated with perturbations in 

the prostacyclin, nitric oxide (NO) and endothelin (ET) pathways. These 

perturbations lead to pulmonary vascular vasoconstriction and, together with the 

high blood pressure, contribute to muscularization of the pulmonary vessels. Both 

vasoconstriction and muscularization of the pulmonary vessels cause an increase 

in vascular resistance, increasing the right ventricular afterload. The RV responds 

to this chronic increase in afterload by an initially adaptive response, 
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encompassing cardiomyocyte hypertrophy to increase contractile capacity, 

fibrosis to prevent cardiomyocyte overstretch and maintain RV shape for optimal 

function and angiogenesis to maintain blood supply to the thickened ventricular 

wall. However, eventually there is an inflammatory response and maladaptive 

(increased diastolic stiffness) fibrosis. However, although these adaptations are 

initially enabling the RV to cope with the increased afterload, they are eventually 

not sufficient, and can even be contributing to RV dysfunction/failure (5, 77, 82).  

The aim of the current thesis was to develop a CTEPH swine model in which both 

the emboli and the endothelial dysfunction are simulated in order to establish the 

role of pulmonary endothelial (dys)function in the development and progression 

of CTEPH and characterize (molecular) pathways involved in cardiac remodeling 

with the emphasis on hypertrophy, contractility, inflammation, oxidative stress, 

apoptosis and angiogenesis. In addition, we investigated the effects of acute 

exercise and the possibilities of exercise as a stress test for early detection in this 

CTEPH model.  
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Figure 1. Pathophysiology of CTEPH. 
The key pathways involved in the pathophysiology of CTEPH. CTEPH is a pulmonary and 
cardiac disease. The pulmonary changes are characterized by vascular obstructions due to 
emboli, vascular muscularization, vasoconstriction and endothelial dysfunction and 
inflammation which all interfere with each other. The cardiac changes are caused by the 
increased afterload and characterized by hypertrophy, inflammation, angiogenesis and 
fibrosis and lead to RV dysfunction and failure. NO, nitric oxide; ET, endothelin; RV, right 
ventricle (adapted from(94)).  
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Characterization of a new CTEPH swine model 

Applicability, interpretation and limitations of chronically instrumenting swine 

The use of chronically instrumented animals allows serial assessment of 

cardiopulmonary function either during development of disease or evaluation of 

treatment, thereby increasing statistical power and limiting the number of 

animals required for a study. In addition, chronic instrumentation of swine allow 

for awake monitoring of changes in regulation of the cardiopulmonary system 

during exercise testing. Therefore, we presented this chronic instrumentation of 

swine in Chapter 2, and explained its implications in cardiopulmonary monitoring 

and stress testing. 

A potential drawback is that, when commercially available swine breeds 

such as Yorkshire, Landrace, Large White etc, are used for chronic 

instrumentation, adult swine are very large and may therefore be difficult to 

handle. Therefore, juvenile swine are often used. The heart and pulmonary 

endothelium of juvenile swine are still very adaptable to stress and damage. An 

alternative is the use of adult miniature swine, such as Yucatan or Göttingen 

swine, of which the adult weight is 40 - 60 kg (8). Several swine models of 

cardiopulmonary disease, such as and pulmonary hypertension are available (56, 

66) or being developed and could be combined, and thereby significantly 

improved, with chronic instrumentation. 

Induction of CTEPH requires both repeated embolizations and endothelial 

dysfunction 

In order to combine the strengths and circumvent the shortcomings of the 

previous large animal models (2, 10, 24, 27, 29, 46, 57, 60, 61, 67, 68, 74, 75, 78, 

88, 95, 100) (see Table 1 of Chapter 3) we developed and characterized a new 
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CTEPH swine model in Chapter 3. CTEPH induction required both repeated 

embolizations by means of microsphere infusion via the inserted RV catheter, and 

endothelial dysfunction by means of eNOS inhibition, as either intervention alone 

did not result in sustained CTEPH. In this model we could monitor hemodynamics 

and perform echocardiography and exercise testing, all in the awake state.  

During the embolization procedures, microspheres were slowly injected 

into the RV, assuming that microspheres flow to perfused, non-embolized vessels 

to ensure full coverage of the pulmonary vasculature. A total of approximately 

36000 microspheres with a diameter of ~700 μm were infused per animal. When 

compared to the number of branches of the corresponding size present in the 

pulmonary vascular bed, it is likely that 60% of the pulmonary small arteries were 

obstructed. Since it has been suggested that 40-60% of the lung vasculature needs 

to be obstructed for CTEPH to develop (7, 18), the infused microspheres should be 

sufficient to induce CTEPH in the swine. Nevertheless, as we show in Chapter 3, 

with microspheres alone, no sustained CTEPH developed. 

In addition however, CTEPH occurs only in a minority of patients after 

acute pulmonary embolism while also patients that did not (notice to) experience 

an acute pulmonary embolism have been reported to develop CTEPH (82). In 

these patients, it is proposed that CTEPH is the consequence of multiple micro-

embolisms (23, 85). Since CTEPH patients present with dysfunctional endothelium 

as evidenced by alterations in coagulation, inflammation, angiogenesis and 

vasoregulation (4, 54, 69, 82, 83), this could be the second hit present in the 

group of patients that develop CTEPH. We therefore induced endothelial 

dysfunction as a second hit by inhibiting eNOS by chronic LNAME administration 

in our swine model to produce sustained CTEPH in Chapter 3, 4, 5 and 6. Nitric 

oxide is an important endothelium-derived anti-coagulatory, anti-inflammatory, 
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pro-angiogenic, vasodilator which are all factors leading to progression of CTEPH. 

We observed in our animal model that endothelial dysfunction in combination 

with multiple microsphere infusions resulted in a sustained increase in PAP and 

tPVRi. This increase in PAP above 25mmHg for a prolonged period of time after 

embolizations and in the awake state is evidence for successful induction of 

chronic PH (2, 29, 46, 57, 60, 67, 68, 75, 78, 95, 100). Our findings are in 

accordance with a recent study in rats, that show that sustained CTEPH developed 

when combining embolizations with endothelial dysfunction produced by VEGF-

inhibition (63) which also signals through the NO pathway. Importantly, in the 

studies presented in this thesis, CTEPH persisted when eNOS inhibition was 

discontinued, which implies that vascular remodeling and endothelial dysfunction 

developed as a consequence of high blood pressure and increased vascular shear 

stress in our swine. 

Characterization of pulmonary remodeling in CTEPH swine 

It is well established that secondary to pulmonary embolism, worsening of PH 

results from progressive microvascular remodeling of the non-obstructed distal 

pulmonary small arteries (23, 41, 59). Indeed, we also observed microvascular 

remodeling as evidenced by an increased wall thickness of the non-obstructed 

pulmonary small arteries and exaggerated vasoconstriction to both KCl and the 

thromboxane analogue U46619. Although the exact time-course of microvascular 

remodeling may not be exactly  determined from our data, as the increase in 

resistance due to embolizations cannot be distinguished from the increase in 

resistance due to microvascular remodeling during the embolization period, 

pulmonary vascular resistance continued to increase after cessation of the 

embolization procedures, which is consistent with remodeling of the distal 

vasculature. Even after cessation of the eNOS inhibitor, which may also have 
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contributed by increasing microvascular tone, the high pulmonary pressure and 

resistance persisted.  

Pulmonary microvascular remodeling 

In accordance with previous studies in humans and animals (10, 17, 59), we 

observed in Chapter 5 inward remodeling of both pulmonary small arteries and 

the pulmonary microvasculature. This remodeling encompassed muscularization 

and thickening of the vascular wall and resulted in a relative reduction of the 

vascular lumen which would be contributing to a worsening of PH by further 

increasing the PAP. The changes in microvascular morphology in our CTEPH swine 

were not accompanied by an overt pulmonary inflammatory response at the 

disease stage, as only IL-6 showed a trend towards an increase, while this increase 

in IL-6 was consistent with the increase in CTEPH patients (76, 96, 97). However, 

since we measured inflammation on gene expression level, further investigations 

such as on the protein level could reveal even more specifics. Although the 

existence of pulmonary microvascular remodeling in CTEPH is known since 1993 

(59), the consequences of this remodeling for pulmonary microvascular function 

had not been investigated. In contrast to the lack of evidence of overt 

inflammation in our model of CTEPH, microvascular remodeling was accompanied 

by alterations in two major endothelial signaling pathways, i.e. ET and NO, that 

are also implicated in development and progression of pulmonary hypertension 

(6), and will be further discussed below.  

Pulmonary vascular endothelium 

Perturbations in the NO-pathway have been implicated in the pathogenesis of PH 

(6, 48, 99). Indeed, we observed that chronic eNOS-inhibition is required as a 

second hit, in addition to embolizations, to successfully produce stable CTEPH in 
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swine, as repeated microsphere embolization alone does not result in sustained 

PH (Chapter 3). We investigated the endothelial dysfunction in our CTEPH animals 

in Chapter 5, which was characterized by an imbalance between endothelial 

production of the vasodilator NO and the vasoconstrictor ET-1, while vascular 

integrity was intact.  

We observed in Chapter 5 that, in accordance with inhaled NO treatment 

in patients (1), NO sensitivity was increased in pulmonary small arteries from 

CTEPH animals. This increase in NO sensitivity was evidenced by an enhanced 

vasodilatory response to the NO-donor SNP, reduced vasodilator response to 

bradykinin although there was a similar attenuation of BK-induced vasodilation by 

eNOS-inhibition. The increased NO sensitivity was therefore most likely caused by 

a decrease in NO production, although we did not directly measure NO plasma 

levels. In addition, the response to PDE5-inhibition with Sildenafil was reduced in 

the CTEPH arteries, suggesting that reduced PDE5-activity acted to compensate, in 

part, for a blunted endogenous NO production, resulting in an apparently 

increased NO-sensitivity. Such reduced response to PDE5-inhibition provides a 

potential explanation for the failure of single treatment with PDE5-inhibition as a 

therapeutic strategy for CTEPH and underscores the importance of intervening 

more upstream in the NO-pathway either by administering NO (1) or 

stimulating/activating sGC. Indeed, beneficial therapeutic effects have been 

reported for Riociguat, a sGC stimulator, which was recently approved for 

therapeutic use in CTEPH (31, 47, 50, 81).  

Consistent with endothelial dysfunction, we observed a 40% higher 

plasma ET-1 in our porcine model in Chapter 5. Clinically, it has been shown that 

plasma ET-1 levels correlate well with clinical severity (30, 71), and that patients 

with NYHA class IV show a doubling of circulating ET (30, 71). Hence the 40% 
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elevation in circulating ET-levels are consistent with the clinical phenotype of our 

animals representing NYHA class II or III. As ET can induce vasoconstriction and 

vascular remodeling, we investigated the contribution of changes in ET signaling 

to functional changes in the pulmonary microvasculature. In Chapter 5 we show 

that the increase in circulating ET-1 is accompanied by a decreased sensitivity of 

the pulmonary microvasculature to ET-1. Endothelin receptor antagonists (ERAs) 

are an established therapy in PAH (22, 49), but conflicting results of ERA therapy 

have been reported in CTEPH patients (39, 40, 64). For example, the randomized, 

double-blind, placebo-controlled BENEFIT study, which investigated dual ERA 

therapy with Bosentan, showed no statistically significant effects of Bosentan in 

CTEPH patients (45). In Chapter 5 we observed an increased ETA, decreased ETB 

contribution to ET-1 vasoconstriction and increased ETA/ETB gene expression ratio 

which are in accordance with the increased ETA receptor expression in human 

pulmonary endarterectomy tissues (84) and in the lungs of swine with CTEPH (57). 

These data suggest that CTEPH is accompanied by changes in ET-1 signaling in the 

pulmonary microvasculature and that the interaction between the ETA and the ETB 

receptor is altered in CTEPH. The loss of ETB mediated vasoactive effects observed 

in Chapter 5 suggests that specific ETA blockade alone would be more 

therapeutically efficacious. Moreover, in CTEPH the effect of ET-1 is already 

suppressed by a decreased sensitivity which could explain inefficacy of ERA 

therapy. Although the AMBER studies, which investigated the ETA specific ERA 

Ambrisentan was terminated early (ClinicalTrials.gov NCT02021292, 

NCT02060721), there are ongoing studies to ETA specific ERA’s such as Macitentan 

(MERIT) which is an ERA with high specificity for ETA(25), which is consistent with 

our data that ETA blockade alone would be more therapeutically efficient than 

dual ERA therapy.  
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PH (Chapter 3). We investigated the endothelial dysfunction in our CTEPH animals 

in Chapter 5, which was characterized by an imbalance between endothelial 

production of the vasodilator NO and the vasoconstrictor ET-1, while vascular 

integrity was intact.  

We observed in Chapter 5 that, in accordance with inhaled NO treatment 

in patients (1), NO sensitivity was increased in pulmonary small arteries from 

CTEPH animals. This increase in NO sensitivity was evidenced by an enhanced 

vasodilatory response to the NO-donor SNP, reduced vasodilator response to 

bradykinin although there was a similar attenuation of BK-induced vasodilation by 

eNOS-inhibition. The increased NO sensitivity was therefore most likely caused by 

a decrease in NO production, although we did not directly measure NO plasma 

levels. In addition, the response to PDE5-inhibition with Sildenafil was reduced in 

the CTEPH arteries, suggesting that reduced PDE5-activity acted to compensate, in 

part, for a blunted endogenous NO production, resulting in an apparently 

increased NO-sensitivity. Such reduced response to PDE5-inhibition provides a 

potential explanation for the failure of single treatment with PDE5-inhibition as a 

therapeutic strategy for CTEPH and underscores the importance of intervening 

more upstream in the NO-pathway either by administering NO (1) or 

stimulating/activating sGC. Indeed, beneficial therapeutic effects have been 

reported for Riociguat, a sGC stimulator, which was recently approved for 

therapeutic use in CTEPH (31, 47, 50, 81).  

Consistent with endothelial dysfunction, we observed a 40% higher 

plasma ET-1 in our porcine model in Chapter 5. Clinically, it has been shown that 

plasma ET-1 levels correlate well with clinical severity (30, 71), and that patients 

with NYHA class IV show a doubling of circulating ET (30, 71). Hence the 40% 
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elevation in circulating ET-levels are consistent with the clinical phenotype of our 
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the pulmonary microvasculature to ET-1. Endothelin receptor antagonists (ERAs) 

are an established therapy in PAH (22, 49), but conflicting results of ERA therapy 

have been reported in CTEPH patients (39, 40, 64). For example, the randomized, 
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therapy. Although the AMBER studies, which investigated the ETA specific ERA 

Ambrisentan was terminated early (ClinicalTrials.gov NCT02021292, 

NCT02060721), there are ongoing studies to ETA specific ERA’s such as Macitentan 

(MERIT) which is an ERA with high specificity for ETA(25), which is consistent with 

our data that ETA blockade alone would be more therapeutically efficient than 

dual ERA therapy.  
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ET-1 signaling occurs via two pathways, i.e. a calcium-dependent pathway 

involving phospholipase C (PLC)-mediated activation of myosin-light chain kinase 

and a calcium-independent pathway involving RhoA-Rho-kinase mediated 

inactivation of myosin phosphatase (42). Rho-kinase inhibition with Fasudil has 

been shown to be an effective therapy in some patients with PAH (21), but little is 

known about this pathway in the pathology of CTEPH. As we show in Chapter 5, 

the data obtained from the isolated pulmonary small arteries indicate a complete 

loss of the Rho-kinase contribution to ET-1-induced vasoconstriction in the CTEPH 

small arteries, and imply that, ET-1-induced vasoconstriction in CTEPH must 

therefore be mediated through the PLC-pathway. Although a reduction in Rho-

kinase was not present at mRNA level in the CTEPH swine, mRNA levels of lung 

tissue may not reflect protein levels and/or enzyme activity in the vasculature. 

These results are very different from those obtained in PAH, where the 

contribution of Rho-kinase was found to be increased (16). Together, these data 

suggest that microvascular constriction and remodeling occur via different 

pathways in CTEPH as compared to PAH, and suggest that the use of Rho-kinase 

inhibitors to alleviate pulmonary vasoconstriction and remodeling may not be 

efficacious in CTEPH patients. 
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Figure 2. Cardiac remodeling in CTEPH at rest and during exercise. 
Cardiac remodeling in CTEPH, and the effects of exercise on the heart. CTED, chronic 
thrombo-embolic disease; CTEPH, chronic thrombo-embolic pulmonary hypertension; 
RVESV, right ventricular end-systolic volume; RVEF, right ventricular ejection fraction. 
Reprinted and adapted from (14), with permission from Elsevier. 
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Reprinted and adapted from (14), with permission from Elsevier.
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Characterization of cardiac remodeling in CTEPH swine 

Cardiac dimensions and function 

It has been shown that RV structural and functional adaptability are 

important determinants of functional capacity and survival in patients with CTEPH 

(14, 32, 91). The RV afterload increases during development and progression of 

PH. To cope with this increased afterload, the RV exhibits structural and functional 

changes to augment contractility (Figure 2). The effects of CTEPH on cardiac 

structure, function and gene expression were therefore examined in our porcine 

model in Chapter 3 and 6. We observed a trend towards RV dilation and a 

reduced RV ejection fraction both by echocardiography (Chapter 3) and by cardiac 

magnetic resonance imaging (Chapter 6). In addition, the CTEPH animals 

presented with an increase in RV cardiomyocyte size and global RV hypertrophy, 

that was accompanied by activation of both pro- and antiapoptotic gene 

expression (increases in Caspase-3 and BCL2 respectively). RV resting function was 

preserved in our animals, but BNP expression was increased, suggestive of an 

increased wall stress. Our findings are consistent with observations in another 

porcine CTEPH model, in which CTEPH is induced by ligation of the left pulmonary 

artery, in combination with embolization of the proximal segmental arteries with 

glue (27-29). In that model, RV dilation (29) and RV myocyte hypertrophy (27) 

were also accompanied by an increased BNP expression (27, 29), that correlated 

inversely with stroke volume and positively with global RV hypertrophy (27). In 

addition, we aimed to identify differences and/or correlations between CTEPH 

severity and PA flow patterns with the promosing new 4D flow CMR technique in 

Chapter 4. It appeared from the 4D CMR flow measurements that the pulmonary 

acceleration time was prolonged in the animals with the most severe CTEPH, 

although this was not statistically significant (Figure 3).  
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Figure 3. Pulmonary and aorta flow measured with 4D CMR 
Pulmonary and aorta flow patterns of swine with severe, mild or no CTEPH in which the 
acceleration time appears to be prolonged in the most severe CTEPH animal.  

It is increasingly recognized that not only RV systolic function, but also RV 

diastolic function correlates with prognosis in patients with PAH (89). Indeed, in 

pigs with type II pulmonary hypertension, changes in RV-PA coupling were 

accompanied by diastolic dysfunction (3). Diastolic stiffness is determined by 

passive myocyte stiffness as well as interstitial fibrosis. Consistent with the 

findings in a rat model of pulmonary artery banding (70), the mild RV dysfunction 

in our CTEPH swine was accompanied by an increase in the stiff titin isoform N2BA 

but not with changes in myocardial fibrosis as measured histologically. 

Furthermore, there was a change in the ratio between Col1 and Col3 in the RV, 

suggesting relatively more expression of the stiff Col1 isoform. These data, 

investigated in Chapter 6, are also consistent with the isoform shift observed by 

Rain et al (70), and may have contributed to a stiffer RV. Although neither SERCA 

nor phospholamban gene expression were changed in our CTEPH swine, it is 

possible that changes in their phosphorylation may play a role in altered Ca2+ 

handling, which is in turn implied to play a role in the development of RV 

dysfunction (3). Hence, future studies should investigate contractile function of 

individual cardiomyocytes as well as expression and phosphorylation of the 

contractile and calcium handling proteins SERCA, phospholamban, smooth muscle 

actin, titin, troponin kinase-A and -C and troponins. 
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Cardiac inflammation, oxidative stress, apoptosis and angiogenesis  

A key factor that distinguishes compensated RV remodeling from RV 

failure is adequate myocardial perfusion (20). Angiogenesis allows the RV 

perfusion to be enhanced commensurate with the increase in RV mass. Indeed, 

many studies show that RV failure is accompanied by a reduction in capillary 

density, whereas capillary density is preserved or even increased in adaptive RV 

remodeling (20). Furthermore, myocardial perfusion reserve has been shown to 

be reduced in humans with both CTEPH and PAH (92, 93). As presented in Chapter 

6, capillary density was increased in our CTEPH swine, in accordance with another 

porcine CTEPH model (51), which is beneficial for myocardial perfusion and 

oxygenation, and suggests a state of adaptive RV remodeling. Nevertheless, 

VEGFA-expression was higher in swine with CTEPH, suggesting that there was still 

a need for additional perfusion, although we did not actually measure myocardial 

perfusion in these animals. Hence, future studies should address the myocardial 

perfusion and coronary flow reserve in different stages of RV (mal) adaptation. 

The transition from compensated RV remodeling to RV failure is also 

associated with inflammation and activation of the immune response (15, 19, 86). 

Although the RV expression of genes involved in immune modulation (TNF-α, IL-6, 

IFN-γ) was not altered, expression of TGF-β was increased in our CTEPH swine 

(Chapter 6). Activation of the TGF-β pathway is increasingly recognized to play a 

pivotal role in de development in PH (65, 73)and was further confirmed in our 

animals by the increase in expression of its downstream target PAI-1. Both 

activation of the TGF-β pathway and increased circulating levels of endothelin can 

result in activation of the Rho-kinase pathway (80, 90, 98). Indeed, ROCK2 

expression was upregulated in the RV of CTEPH swine. Importantly, ROCK2 

activation is involved in cardiac hypertrophy, oxidative stress, angiogenesis, 
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apoptosis and fibrosis and therefore may present a major deleterious factor in RV-

remodeling (33, 43, 87) (Figure 3), particularly given the observation that ROCK2 

phosphorylates protein phosphatase 1 (PP1), which regulates both myofilament 

sensitivity to Ca2+ as well as Ca2+ handling (33).  

ROCK2 is not only expressed in the myocardium but also in the 

vasculature, where its expression correlates with oxidative stress and NOX-

expression (11). NOX1, NOX2 and NOX4 were upregulated in the right coronary 

artery of swine with pulmonary artery banding, which was accompanied by 

oxidative stress and endothelial dysfunction, despite unaltered eNOS expression 

(52). The upregulation of NOX1 and NOX4, and the unaltered eNOS expression in 

the RV of our CTEPH swine are consistent with these data, although we did not 

determine the exact location of their expression (Chapter 6). Furthermore, the 

upregulation of NOX4 is consistent with recent data from patients with PAH, in 

which circulating NOX4 was increased (35). Finally, the negative correlation of 

NOX1 and NOX4 with RV-PA coupling, as observed in Chapter 6, suggests that 

oxidative stress in the myocardium contributes to worsening of RV-function.  

Hence, although therapeutic Rho-kinase inhibition may not be beneficial 

for the pulmonary vascular tone and remodeling, it may prevent adverse cardiac 

remodeling.  
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Figure 4. ROCK2 involvement in RV remodeling.
ROCK2 is associated with the mentioned factors and plays a major deleterious role in RV-
remodeling. Between parentheses are the genes that are altered in our CTEPH swine.

Cardiopulmonary stress testing 

Exercise testing after pulmonary embolism is predictive of development 

of PH and/or patient outcome in established CTEPH (34, 36, 37, 72). We presented 

in Chapter 3, 5 and 6 that CTEPH is characterized by exercise intolerance (Figure 

4). This impaired exercise capacity is principally caused by an exacerbated 

increase in PAP and pulmonary vascular resistance during exercise, that further 

increases RV afterload and the V/Q-mismatch in the lungs (9, 12, 13). 

In humans with CTEPH, physiological dead space is increased in 

proportion to the increase in PVR, resulting in a lower PaO2, which is accompanied 
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by a reduction in PaCO2, as a result of compensatory hyperventilation (55). 

Similarly, the slightly lower PaO2 in our CTEPH swine is consistent with a mild V/Q-

mismatch and dead space ventilation at rest. However, contrary to humans with 

CTEPH, PaCO2 was not significantly affected in our porcine CTEPH-model neither at 

rest, nor during exercise. This discrepancy in CO2 response may in part be due to 

the observation that swine lack collateral ventilation and therefore are less 

capable of ameliorating intraregional V/Q differences between alveoli as 

compared to humans. Furthermore, as healthy quadrupeds already ventilate and 

perfuse their entire lungs at rest (58), an increase in ventilation with CTEPH 

cannot further recruit hypoventilated lung areas and improve V/Q mismatch, and 

hence their hyperventilatory response may not be capable of reducing PaCO2 

levels below normal as occurs in humans. The lower PmvO2 observed in CTEPH is 

partly a consequence of the lower PaO2 due to the V/Q mismatch, and in part 

reflects the decreased blood flow due to a lower CI, forcing the body to extract 

more oxygen. 

 In accordance with the studies of Claessen et al. 2015 in CTEPH patients 

(12, 13), we observed in our CTEPH swine that the right ventricle was not able to 

cope with this increased afterload evidenced by the limited exercise-induced 

increase in stroke volume and CI (Figure 2). Furthermore, RV-PA coupling, an 

index of how well the RV can cope with the increased afterload, is reduced in 

CTEPH and a correlation was found between reduced coupling and a reduced SV 

reserve with dobutamine in swine (29). Similarly, in Chapter 6, severity of CTEPH 

indicated by the PVR, correlated inversely with RV-PA coupling. Importantly, 

recent studies in patients with CTEPH show that RV-PA coupling correlates with 

exercise capacity (14), which in turn is a strong predictor of outcome (9).  
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Figure 5. Effects of exercise in CTEPH.
The pathway after exercise that eventually leads to a decrease in exercise capacity in 
CTEPH. PAP, pulmonary artery pressure; PVR, pulmonary vascular resistance; RV, right 
ventricle; V/Q-mismatch, ventilation/perfusion-mismatch; PmvO2, mixed venous oxygen 
pressure; PaO2, arterial oxygen pressure; PaCO2, arterial carbon dioxide pressure.

Summary and General discussion 

253 

During exercise, maximal body oxygen consumption was reduced and 

arterial lactate concentration was increased by more than 2 mmol/L, indicating 

that, consistent with patient data (26, 38, 44, 72), the anaerobic threshold was 

reached in CTEPH swine during exercise at 4 km/h. Particularly the decreased CI 

(27%) and to a lesser extent the decreased CaO2 (10%), limited the increase in 

body oxygen delivery during exercise. These findings in Chapter 5 suggest that 

exercise intolerance in CTEPH is principally caused by the increased pulmonary 

vascular resistance, and thereby the afterload of the RV, that limits the exercise 

induced increase in CI. The V/Q-mismatch that hampers arterial oxygenation also 

contributes to exercise intolerance, but to a lesser extent. However, the relative 

contributions of cardiac and pulmonary dysfunction to the exercise intolerance in 

patients with more severe RV dysfunction remains to be established.  

Methodological limitations 

In the clinic, CTEPH occurs as a result of thrombo-emboli with different 

sizes which are not adequately resolved in the pulmonary vasculature. In the 

swine model described and characterized in this thesis, CTEPH is induced by 

artificial non-degradable microspheres with a diameter of ~700 μm. The absence 

of endogenous emboli in our studies could have altered the inflammatory 

response and vascular remodeling. In addition, the hypercoagulable state and/or 

inadequate endogenous fibrinolysis, often observed in CTEPH patients, are not 

present in our animal model. 

Future perspectives 

Although we show in Chapter 3 that the double-hit model is necessary to 

induce CTEPH in the relatively young Yorkshire x Landrace swine, recent studies 

suggest that microsphere infusion only is enough to induce PH in Göttinger 
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Future perspectives 

Although we show in Chapter 3 that the double-hit model is necessary to 

induce CTEPH in the relatively young Yorkshire x Landrace swine, recent studies 

suggest that microsphere infusion only is enough to induce PH in Göttinger 
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Minipigs (unpublished work from our laboratory) and beagles (61). These findings 

suggest an influence of age on pulmonary vascular function, resulting in a 

biological “second hit” to induce CTEPH (62). Chronic instrumentation of these 

minipigs according to the methods as described in Chapter 2, will allow for 

prolonged serial assessment of cardiopulmonary function in more adult CTEPH 

swine. 

Our CTEPH animal model can be further utilized to investigate disease 

development for possible discovery of potential early diagnostic markers to 

facilitate early detection of disease in patients, and interventions that interfere 

with microvascular remodeling to get more insight in the pathways involved in 

this remodeling and get more specific targeted therapy for inoperable CTEPH 

patients or patients with residual PH after surgery. In addition, this swine model 

may also be used to delineate sex-differences that are known to exist in 

development, progression and possibly interventions of CTEPH (79) and shed 

more light on the importance and implications of cardiopulmonary exercise 

testing in CTEPH patients. Secondary to diagnostic cardiopulmonary exercise 

testing, therapeutic long term exercise training can be performed in the CTEPH 

swine model presented in this thesis. 

Finally, it is important to note that we investigated the contribution of 

endothelial dysfunction to the acute regulation of vascular tone, and that, 

although vasoconstriction likely contributes to the elevated pulmonary vascular 

resistance in CTEPH, microvascular remodeling is also an important contributor. 

Although vasoconstriction and vascular remodeling in part share the same 

signaling pathways, and endothelial dysfunction plays a key role in both, the acute 

response to blockade of vasoactive pathways may not be identical to chronic 

blockade of such pathways, which may also impact vascular remodeling. Hence, 
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long-term effects of therapy, with future studies investigating chronic 

administration of therapeutic agents, for example the effects of chronic Rho-

kinase inhibition, activation of the prostacyclin pathway, ETA antagonists and sGC 

stimulation in CTEPH, are required to study the impact of these agents on 

(pulmonary) vascular as well as cardiac remodeling in CTEPH. Some of these 

agents are indeed currently being investigated in clinical trials (ClinicalTrials.gov 

NCT03689244, NCT01416636, NCT03809650, NCT03273257, NCT02634203, 

NCT00910429). Importantly, both acute and chronic administration of these 

agents could be studied in our CTEPH animal model since real time monitoring 

during administration or after long term administration is possible in awake 

animals. In addition, the effects of acute or chronic therapy such as ERA’s, 

phosphodiesterase inhibitors, NO donors, sGC stimulators or Rho-kinase inhibitors 

on acute exercise can be obtained in our CTEPH swine.  
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Het hart en de longen behoren tot de meest belangrijke organen van het 

menselijk lichaam. Ze zijn essentieel in de toevoer van zuurstof en 

voedingsstoffen en afvoer van koolstofdioxide en andere afvalstoffen van en naar 

organen. Aandoeningen aan het hart en de longen zorgen dan ook voor zowel een 

sterk verminderde kwaliteit van leven als een verkorte levensverwachting. 

Het hart en bloedvatenstelsel is verdeeld in twee circulaties. De systeem 

circulatie welke aangestuurd wordt door de linker harthelft, deze pompt 

zuurstofrijk bloed met voedingsstoffen naar de organen en zorgt ervoor dat 

zuurstofarm bloed met afvalstoffen van de organen afgevoerd wordt. De 

pulmonaal circulatie wordt juist aangestuurd door de rechter harthelft en deze 

pompt het teruggekomen zuurstof arme bloed door de longvaten waar 

koolstofdioxide wordt afgegeven aan, en zuurstof wordt opgenomen uit de 

longblaasjes, zodat dit zuurstofrijke bloed vervolgens weer via de systemische 

circulatie naar de organen getransporteerd kan worden. 

Wanneer er een te hoge bloeddruk in pulmonaal circulatie optreedt, 

>25mmHg in de longslagader (PAP, pulmonary artery pressure), spreekt men van 

pulmonale hypertensie (PH). Patiënten met PH hebben erg vervelende maar 

algemene symptomen zoals kortademigheid, ernstige ongewone moeheid, 

flauwvallen, hartkloppingen en een verminderde inspanningscapaciteit. Doordat 

de symptomen zo algemeen zijn wordt de ziekte vaak pas in een laat stadium 

gediagnosticeerd, wat een negatieve invloed heeft op de prognose. 

PH is een verzamelnaam van chronische aandoeningen met verschillende 

oorzaken waarbij de bloeddruk in de pulmonaal circulatie te hoog is. Een van deze 

oorzaken zijn longemboliën. Deze vorm van pulmonale hypertensie wordt dan ook 

wel chronische thrombo-embolische pulmonale hypertensie (CTEPH) genoemd.  
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Omdat de ziekte nog incompleet begrepen wordt, therapeutische 

interventies gelimiteerd zijn en er nog geen genezende medicaties zijn 

goedgekeurd voor CTEPH, ontrafelen we enkele mechanismen achter deze ziekte 

in dit proefschrift. Om dit te kunnen doen hebben we een groot CTEPH 

proefdiermodel ontwikkeld waarbij we chronische katheters in en rondom het 

hart hebben geplaatst waardoor we de bloeddrukken, hartminuutvolume en 

zuurstofopname in de dieren serieel, wakker en zelf tijdens inspanning kunnen 

meten (Hoofdstuk 2). CTEPH wordt geïnduceerd in deze varkens middels een 

double-hit, namelijk door 1) pulmonale vaatdysfunctie te induceren middels 

chronische administratie van de endotheliaal stikstofoxide-synthase remmer L-

NAME en 2) herhaaldelijke embolisaties van de longvaten met microsferen, 

aangezien beide als enkele toediening niet resulteerde in PH (Hoofdstuk 3). 

Alhoewel CTEPH in eerste instantie veroorzaakt wordt door obstructies in 

het longvaatbed door embolieën, is algemeen bekend dat secundair verergering 

van PH het gevolg is van progressieve microvasculaire remodellering van de niet-

geblokkeerde distale pulmonale kleine slagaders. Wij zien dan ook in Hoofstuk 5 

dat, in onze CTEPH varkens, de wand van deze distale pulmonale kleine slagaders 

en microvasculatuur verdikt en sterk gemusculariseerd is wat leidt tot een 

vernauwing van het lumen waar het bloed door stroomt. Deze muscularisatie in 

combinatie met lumen vernauwing zorgt voor een nog hogere vaatweerstand wat 

op zijn beurt de PAP nog verder verhoogt. Daarnaast zijn twee grote spelers in de 

endotheel regulatie van pulmonale vaattonus, namelijk vasodilator stikstofoxide 

(NO) en de vasoconstrictor endotheline (ET), ook uit balans waardoor de 

pulmonale vaten nog meer samentrekken en de PAP nog verder verhoogd 

(Hoofdstuk 5). Dit bij elkaar zorgt ervoor dat de longen in een vicieuze cirkel 

terechtkomen waarbij een hoge bloeddruk zorgt voor remodellering van de vaten 

en verdere endotheel dysfunctie wat op zijn beurt weer een hogere bloeddruk 
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veroorzaakt. In Hoofdstuk 5 hebben laten zien wat er precies mis gaat in het 

signaleringspad van NO en ET in het CTEPH longvaatbed, waardoor we een stap 

dichter zijn bij het ontrafelen van de mechanismen en wordt het duidelijker welke 

nieuwe therapieën effectief zullen zijn in de behandeling van CTEPH. 

Naast veranderingen in het pulmonale vaatbed zijn er ook verandering in 

het hart, voornamelijk het rechter ventrikel (RV), ten gevolge van de hoge 

weerstand (afterload) waar het rechter ventrikel tegen moet pompen. Het is 

bewezen dat het aanpassingsvermogen van het RV een belangrijke determinant is 

voor de functionele capaciteit en levensverwachting van de patiënt met CTEPH. In 

Hoofdstuk 3 en 6 laten we zien dat er een trend is dat het RV dilateert in 

combinatie met een verminderde ejectie fractie (fractie uitgepompt bloed) ten 

gevolge van CTEPH. Daarnaast laten we zien dat het CTEPH RV, om te 

compenseren voor de verhoogde afterload, is verdikt op zowel macroscopisch als 

microscopisch niveau. De snelheid waarmee de bloedstroom in de longslagader 

vanuit het RV stroomt, gemeten met de nieuwe 4D flow CMR techniek, Hoofdstuk 

4, leek ook lager in de dieren met de meest ernstige CTEPH, alhoewel dit niet 

statistisch significant was. Dit kan veroorzaakt zijn door een stijver RV, omdat we 

in Hoofdstuk 6 hebben laten zien dat er een verandering was in het RV weefsel 

richting de stijvere collageen isoform. 

In Hoofdstuk 6 hebben we ook laten zien dat er een aantal genexpressies 

veranderd zijn in het RV weefsel van de CTEPH dieren. Een van de belangrijkste 

hierin is ROCK2, dat een rol speelt in hypertrofie, apoptose, fibrose, inflammatie 

en oxidatieve stress. Dit zijn allemaal factoren waardoor het RV op negatieve 

wijze remodelleert en uiteindelijk niet meer naar behoren zal functioneren. Deze 

bevindingen suggereren dat therapie gericht op ROCK2 inhibitie de nadelige RV 

remodellering tegen kan gaan. 
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Ondanks dat de patiënten met CTEPH in het dagelijks leven last hebben 

van een verminderde inspanningscapaciteit, zijn inspanningstesten een goede 

voorspeller voor zowel de kans op CTEPH na een acute longembolie als de 

prognose van de CTEPH patiënt. In Hoofdstuk 3, 5 en 6 hebben we laten zien dat 

ook in ons varkensmodel, CTEPH gekarakteriseerd wordt door 

inspanningsintolerantie. Deze verminderde inspanningscapaciteit wordt 

voornamelijk veroorzaakt door een sterk verhoogde toename in PAP en 

pulmonale vasculaire weerstand tijdens inspanning, wat ervoor zorgt dat de RV 

afterload nog meer toeneemt en de ventilatie/perfusie mismatch in de longen ook 

alleen maar groter wordt. De bevindingen in Hoofdstuk 5 laten zien dat de 

inspanningsintolerantie in CTEPH voornamelijk veroorzaakt wordt door een 

toename in RV afterload, en daarbij een gelimiteerde toename in RV functie 

tijdens inspanning, en in een kleinere mate wordt veroorzaakt door de 

ventilatie/perfusie mismatch in de longen waardoor de arteriële oxygenatie 

belemmert wordt.  

Concluderend, het onderzoek in dit proefschrift schijnt meer licht op de 

onderliggende mechanismen welke zorgen voor de aanpassingen van het 

pulmonale vaatbed en het hart. De bevindingen laten zien dat specifiek onderzoek 

binnen globale signaleringspaden zoals NO, ET en Rho-kinase erg belangrijk zijn 

voor de ontwikkeling van effectievere behandelingen voor CTEPH. Daarnaast laten 

we het belang van inspanningstesten, voornamelijk in een vroeg stadium voor 

snellere diagnose, bij PH zien. Alles tezamen is er in dit proefschrift veel kennis 

vergaard over de pathofysiologie van CTEPH dankzij een nieuw ontwikkeld 

diermodel, alhoewel er nog veel vervolg onderzoek uitgevoerd moet worden 

voordat uiteindelijk de ideale genezende therapie bij de patiënt zal belanden. 
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toename in RV afterload, en daarbij een gelimiteerde toename in RV functie 

tijdens inspanning, en in een kleinere mate wordt veroorzaakt door de 

ventilatie/perfusie mismatch in de longen waardoor de arteriële oxygenatie 

belemmert wordt.  

Concluderend, het onderzoek in dit proefschrift schijnt meer licht op de 

onderliggende mechanismen welke zorgen voor de aanpassingen van het 

pulmonale vaatbed en het hart. De bevindingen laten zien dat specifiek onderzoek 

binnen globale signaleringspaden zoals NO, ET en Rho-kinase erg belangrijk zijn 

voor de ontwikkeling van effectievere behandelingen voor CTEPH. Daarnaast laten 

we het belang van inspanningstesten, voornamelijk in een vroeg stadium voor 

snellere diagnose, bij PH zien. Alles tezamen is er in dit proefschrift veel kennis 

vergaard over de pathofysiologie van CTEPH dankzij een nieuw ontwikkeld 

diermodel, alhoewel er nog veel vervolg onderzoek uitgevoerd moet worden 

voordat uiteindelijk de ideale genezende therapie bij de patiënt zal belanden. 
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