
Editorial

Mendelian randomization: the challenge of

unobserved environmental confounds

Philipp D Koellinger1*† and Ronald de Vlaming1,2†

1Department of Economics, School of Business and Economics, Vrije Universiteit Amsterdam,

Amsterdam, The Netherlands and 2Department of Applied Economics, Erasmus School of Economics,

Erasmus University Rotterdam, Rotterdam, The Netherlands

*Corresponding author. Department of Economics, School of Business and Economics, Vrije Universiteit Amsterdam,

De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands. E-mail: p.d.koellinger@vu.nl
†These authors contributed equally to this work

The standard approach for scientists to demonstrate causal

relationships is to conduct experiments in which every-

thing is held constant except for the element that is sus-

pected to induce a change in the outcome of interest.1,2 In

epidemiology, however, there are limits to the types of

experiments we can run. For example, we cannot ran-

domly assign body height, trauma or college degrees to

people to study their causal effects on health outcomes. If

we want to move beyond observing co-occurrences in such

situations and get closer to understanding causal mecha-

nisms, the best we can often do is to search for naturally

occurring experiments that induce random variation in the

exposure of interest and use such exogenous shocks to esti-

mate the causal effects.

One type of such exogenous shocks is the specific ge-

netic variants a person is born with. The specific combina-

tion of genetic variants we inherit are effectively a random

draw from the genotypes of our parents, thanks to the nat-

urally occurring experiment of meiosis.3 Because these ran-

domly assigned genes tend to influence virtually all

dimensions of diversity among people,4 they are a window

that allows us to look at the causal relationships between

many phenomena that we cannot or should not manipulate

experimentally. This is the basic idea behind Mendelian

randomization (MR), a technique that is sometimes also

referred to as using genes as instrumental variables.5

MR has rapidly gained popularity in recent years,

thanks to the growing availability of genetic data and

well-powered genome-wide association studies (GWASs)

on an ever growing number of traits,6,7 as well as continu-

ing improvements in statistical methods.8–14 According to

the Web of Science, there were 492 publications mention-

ing MR in 2018, compared with just 56 a decade earlier in

2008.15 Thus, scientists are increasingly relying on MR as

a way to establish causality and to draw conclusions about

policies, health advice, interventions and treatments.

Key assumptions of Mendelian
Randomization

Several reviews of MR have been published that discuss

the available methods and assumptions in some de-

tail.5,9,10,16–18 In essence, the key assumptions behind clas-

sic MR studies can be paraphrased as follows:

(Assumption 1) genes are randomly assigned among

people;

(Assumption 2) some genes influence the exposure of

interest;

(Assumption 3) the genes that influence the exposure do

not influence the outcome via any other channel than

the exposure.

Large-scale GWASs have uncovered many genetic loci for

many exposures of interest,6,7,19 thus addressing

Assumption 2 and enabling a rising number of MR studies.

However, the growing number of GWASs also reveal that

most genetic loci tend to be associated with different
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outcomes, sometimes even traits that seem unrelated at first

glance—a phenomenon referred to as pleiotropy.12,19 Thus,

GWASs show that Assumption 3 is potentially problematic.

However, not all forms of pleiotropy constitute a viola-

tion of Assumption 3.20 Specifically, if a gene shows pleio-

tropic effects because it influences the outcome via the

exposure, this is not a violation of Assumption 3. Instead,

this type of cascade effect that is often referred to as ‘verti-

cal pleiotropy’ would be observed for any valid genetic in-

strument. In contrast, so-called horizontal pleiotropic

effects that resemble ‘parallel’ processes (e.g. where a gene

affects both exposure and outcome directly or via some

unobserved mechanism that is relevant for both) constitute

a challenge for classic MR studies. Unfortunately, it is dif-

ficult to know for certain whether genetic associations

with both exposure and outcome are due to horizontal or

vertical pleiotropy or a mixture of the two. Nevertheless,

many methodological developments in the MR literature in

the past few years have tried to tackle the potential violation

of Assumption 3 by proposing approaches that are more ro-

bust to potential horizontal pleiotropic effects of genes.

However, little attention has been paid to Assumption 1.

We believe that this deserves more consideration because

genes are anything but randomly assigned within a popula-

tion, and both GWASs and MR analyses are typically con-

ducted in population samples. Specifically, genetic variants

tend to be clustered within families, and—by extension—

groups of people that share common ancestors. Family

members tend to live in geographical proximity to each

other, which induces correlations of genes with geography,

as well as with cultural, economic, social, political and

other environmental factors.21–23 Thus, if we want to use

genes as instrumental variables in a population sample,

Assumption 1 is almost certainly violated and can there-

fore introduce bias. If we would know and observe all the

relevant environmental factors, we could control for them

and circumvent this problem. Unfortunately, the relevant

environmental factors are often unknown or unobserved,

leaving MR analyses that are purely based on population

samples with an Achilles’ heel.

Figure 1 illustrates the basic setup of an MR study.8,17

X is the exposure of interest (e.g. educational attainment)

and Y is the health outcome of interest [e.g. body mass in-

dex (BMI)]. Gj (j¼ 1,.., M) are genetic markers that are

influencing X, and U is any confounder that may influence

both X and Y (e.g. another phenotype such as height or an

environmental factor, such as the parenting style, that

influences children’s attitude towards school and their pro-

pensity to engage in sport). Importantly, U can also be cor-

related with Gj. In this diagram, aj denotes the causal effect

of genetic marker j on the exposure, X. The parameter of

interest is the causal effect of X on Y (i.e. b). In our exam-

ple, by estimating the causal parameter, b, we are trying to

find out by how much BMI (Y) is expected to change on

average if we would change only educational attainment

(X), holding everything else constant, including U.

If the genes that influence educational attainment do

not influence BMI in any other way than via educational

attainment (i.e. dj ¼ 0 and cj ¼ 0), we could use those genes

as a naturally occurring experiment that induces exoge-

nous variation in education. In turn, this variation could be

used to obtain an unbiased estimate of the causal effect,

b.24,25 However if genes, for whatever reason, co-occur

with any unobserved confound, U (i.e. cj 6¼ 0; e.g. as a re-

sult of parenting style or geographical differences in school

quality, or the presence of some unobserved phenotype

that is partly influenced by Gj and that affects both X and

Y) or if genes still influence BMI even when controlling for

educational attainment and U (i.e. dj 6¼ 0; e.g. pleiotropic

effects on the thyroid), classic MR will yield biased results.

In fact, the bias induced by weak instruments in combina-

tion with even just slight violations of cj ¼ 0 and dj ¼ 0

may be much worse than the bias in a naive ordinary re-

gression of Y on X.26,27

Recent developments

Last year, several promising new MR-like methods (MR-

PRESSO, GSMR, LCV and GIV) have been

introduced that leverage GWAS summary statistics for

identification.11–14 Since most exposures of interest to epi-

demiologists are genetically complex, using many or even

all genetic variants in MR analyses can boost statistical

power and reduce the risk of weak instrument bias and

false-positive findings.

All four methods try to address pleiotropy, although us-

ing different strategies. MR-PRESSO, GSMR, and LCV

rely primarily on GWAS summary statistics and do not re-

quire access to individual-level data to examine the rela-

tionship between exposure and outcome. In contrast, GIV

regression requires access to a hold-out sample with

individual-level genetic data that were not included in the

GWAS on the outcome of interest. Furthermore, GIV

regression requires that the GWAS samples can be splitFigure 1. Structural model with confounder.
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to obtain GWAS estimates from two non-overlapping

samples. LCV and GIV regression make use of all single

nucleotide polymorphisms (SNPs) included in a GWAS,

whereas MR-PRESSO and GSMR are restricted to a subset

of SNPs.

MR-PRESSO12 and GSMR11 both try to account for

pleiotropy using a two-step approach. In the first stage,

SNPs that are likely to have direct pleiotropic effects (i.e.

not mediated by the exposure) are detected and removed.

MR-PRESSO and GSMR use different tests that rely on

different assumptions for this first stage. For example,

MR-PRESSO assumes that more than 50% of SNPs are

non-pleiotropic. If this assumption is violated, MR-

PRESSO may yield biased results. In the second stage, the

causal effect b is estimated by comparing the GWAS esti-

mates of the effects of selected SNPs on X and Y.

Intuitively, when X has a causal effect on Y, any SNP that

causes X should also be associated with Y. If X has a very

strong causal effect on Y, SNPs that cause X should have

almost equally strong associations with Y. However, if the

causal relationship of X on Y is weak, SNPs causing varia-

tion in X would have an attenuated association with Y,

allowing estimation of the strength of the causal

relationship.

Both MR-PRESSO and GSMR require the so-called

InSIDE assumption8 to hold. In addition, both methods re-

quire there to be no confounders that are associated with

the SNPs under consideration. These two assumptions

jointly can be considered as a relaxation of Assumption

3—for these two assumptions to hold, the effects of SNPs

on the exposure should be uncorrelated with a specific part

of the effects of those SNPs on the outcome (i.e. the part

that is not mediated by the exposure). That is, in terms of

the coefficients in Figure 1, aj þ cjg should be uncorrelated

with dj þ cje for j¼ 1,.., M.

Thus, both GSMR and MR-PRESSO assume that there

is no additional phenotype that (i) is associated with the

genes that are used for inferring the causal effect of interest

and (ii) has a causal bearing on both exposure and out-

come which has not been fully controlled for. Whether

this assumption is reasonable depends on the variables

being studied and how well population structure has been

controlled for in the GWASs. It is interesting to note that

the presence of this ‘class’ of confounders causes aj þ cjg

to become correlated with dj þ cje, yielding biased

estimates.

A further implication of these assumptions is that meth-

ods like MR-PRESSO and GSMR effectively also require

the absence of unobserved environmental confounds that

are correlated with the SNPs under consideration. This

tacit assumption is easy to overlook, but could induce sub-

stantial bias if it is violated. After all, genetic variants are

not random draws with respect to environmental factors in

population samples: they are correlated across the genome

with the family environment one is born into, which, in

turn, can affect the outcome.23 Again, the presence of

unobserved environmental confounds that are, for what-

ever reason, correlated with the SNPs under consideration

leads to bias because aj þ cjg and dj þ cje become

correlated.

Similar to MR-PRESSO and GSMR, LCV14 only

requires GWAS summary statistics rather than individual-

level data. However, LCV uses a different approach to deal

with pleiotropy. In contrast to MR-PRESSO and GSMR,

LCV does not rely on the InSIDE assumption, yet still

allows some or even all SNPs to have pleiotropic effects.

Thus, it is not necessary for LCV to identify specific SNPs

that influence X without pleiotropic effects on Y. Instead,

LCV assumes that exactly one unobserved, latent variable

mediates the genetic correlation between X and Y, and esti-

mates a so-called genetic causality proportion. This param-

eter ranges between zero (no genetic causality) and one

(full genetic causality, i.e. the entire genetic architecture of

X is causal for Y). LCV is more powerful than traditional

MR methods as well as MR-PRESSO and GSMR, as it

uses the full set of GWAS results rather than just a subset

of supposedly non-pleiotropic, top SNPs. However, viola-

tions of the LCV assumption that just one latent variable

mediates the genetic correlation between X and Y can in-

duce bias, and it is arguable whether this assumption is

strictly weaker than the InSIDE assumption.

GIV regression13 takes yet another approach. In con-

trast to MR-PRESSO, GSMR and traditional MR-

methods, GIV regression does not use genetic variables as

instruments for the exposure. Instead, the method only

attempts to correct for all pleiotropic genes influencing

both X and Y. GIV does so by constructing two polygenic

scores,28,29 based on two non-overlapping GWASs on the

outcome of interest, in a single hold-out sample. The esti-

mated effect in GIV regression can be thought of as the as-

sociation between X and Y when controlling for the

pleiotropic effects of genes on Y, which are not mediated

by X. For example, a GIV regression of BMI on educa-

tional attainment aims to correct for the part of the pheno-

typic correlation that is due to pleiotropic effects of genes

on both traits (e.g. due to genes that regulate cell growth

and cell metabolism). This estimate may still deviate from

the true causal effect of education on BMI because environ-

mental confounds that are unrelated with genetic influen-

ces (e.g. war or economic crises influencing both BMI and

education for non-genetic reasons) are not eliminated by

taking pleiotropic effects into account. Furthermore, GIV

regression does not resolve bias due to potential reverse

causality (e.g. from BMI during childhood on educational
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attainment due to discrimination against children with a

high BMI).

The challenge of unobserved environmental
confounds

Thus, whereas all four methods explicitly try to address

the challenge of pleiotropy, they remain vulnerable to envi-

ronmental confounds that are correlated with genes (cj 6¼
0) to various degrees. Disconcertingly for all MR-like

methods, correlations between genes and environments are

pervasive and come in various forms. To make matters

worse, these gene-associated environments also tend to be

associated with broad ranges of phenotypes.

For example, Abdellaoui et al.21 and Haworth et al.22

find evidence for geographical clustering of polygenic score

values for various traits in the UK Biobank which cannot

be accounted for by the standard practice of adding princi-

pal components of the genetic data as control variables.30

More generally, subgroups of a population that share com-

mon ancestors tend to differ in their allele frequencies. If

these subgroups also differ in their environments, this can

induce spurious genetic associations with outcomes that

are influenced by these environments (e.g. the ‘chopstick

gene effect’).31 This type of confound in genetic association

studies is often referred to as population stratification.

Many statistical methods have been developed to address

this issue in a GWAS and to test for its presence.30,32–37

Although these methods go a long way in addressing popu-

lation stratification, none of them guarantees the complete

absence of the issue from genetic association studies in

population samples, as the results from Abdellaoui et al.21

and Haworth et al.22 demonstrate.

Furthermore, Kong et al.23 show that the non-

transmitted genetic alleles of parents can still influence

their children via environmental channels that are influ-

enced by the parents’ genes (e.g. via parenting style, role

modelling, stability of the family and the socioeconomic

conditions that parents pass on to their children). Thus,

there is evidence that parental genotypes, to which the gen-

otypes of the offspring are correlated, affect relevant envi-

ronmental factors. Therefore, genetic nurture is a major

challenge to MR methods. Arguably, genetic nurture may

play a more important role for behavioural and socioeco-

nomic traits (e.g. smoking, drinking, diet, educational at-

tainment, aggression) than for biologically more proximate

outcomes (e.g. height, bone density, macular degenera-

tion). However, even if that is the case, most physical and

medical outcomes are correlated or even partially caused

by behaviour and socioeconomic status. For example, un-

balanced diet, lack of physical activity, substance use,

stress and lack of access to education and health care are

risk factors for a broad range of medical outcomes includ-

ing cardiovascular, metabolic and infectious diseases, can-

cer, mental health and risk of injury.38–43 Therefore, we

cannot easily dismiss the potential relevance of genetic nur-

ture for medical outcomes. As a corollary, MR methods

that are vulnerable to genetic nurture may yield biased and

misleading results for medical outcomes. To our knowl-

edge, GIV regression is currently the only MR-like method

that seems to be robust to genetic nurture even if both the

GWASs and polygenic prediction are carried out in popu-

lation samples.13

Table 1 summarizes the main assumptions, properties

and sources of biases of the four methods we discussed,

when applied to (results from) population samples.

Importantly, MR-PRESSO, GSMR and LCV are all biased

in the presence of the gene–environment correlations that

may be induced by genetic nurture and population stratifi-

cation. GIV regression, on the other hand, seems to be

more robust when gene–environment correlations induced

by genetic nurture are at play. When it comes to popula-

tion stratification, however, it is currently unclear whether

and, if so, to what extent GIV regression is biased.

Within-family analyses can help to address the chal-

lenge of unobserved environmental confounds in all kinds

of MR analyses, exploiting the truly random genetic differ-

ences between non-identical twins or siblings with the

same parents (as pointed out by Davey Smith and

Ebrahim44). For example, if these random genetic differen-

ces between offspring of the same parents would be used in

a GWAS, the resulting estimates would be completely im-

mune to population structure. Similarly, if samples of trios

(father-mother-child) would be available, it would be pos-

sible to use only the deviations of the child’s genotype from

the average genotype of the parents to obtain GWAS

results that are unaffected by population structure.

However, since most traits of interest are genetically com-

plex and the effect sizes of each genetic variant tend to be

tiny, very large samples of siblings or trios would be re-

quired for well-powered within-family GWAS.

Fortunately, efforts to pool the available genotyped family

samples are already on their way, and first results using

within-family MR suggest differences in the estimated

causal effects for some pairs of traits compared with classic

MR (e.g. BMI and educational attainment).45 Thus, we as-

sert that well-powered GWAS results that are unaffected

by population structure would benefit any type of MR

analysis, but they are particularly important as input for

methods such as MR-PRESSO, GSMR and LCV—these

methods all rely exclusively on GWAS summary statistics

to make causal inferences.

Even if one could obtain GWAS summary statistics

from a population sample which are completely unaffected
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by population structure, this still would not solve the chal-

lenge of genetic nurture—the estimated effects of causal ge-

netic variants could still be conflated by the effect of the

genotypes of close relatives at those loci, via environmental

channels that are affected for example by parental geno-

types. Thus, MR-PRESSO, GSMR and LCV remain vul-

nerable to this issue unless, again, GWAS results from

appropriate within-family analyses are used.

By contrast, traditional MR analyses as well as GIV re-

gression, which both use individual-level data for their

inferences, can be subjected to a within-family design more

readily (e.g. for GIV regression, the underlying GWAS esti-

mates used to construct polygenic scores do not need to be

based on GWASs using family data—one only needs a

hold-out sample that consists of family data).

In such within-family designs, Assumption 1 of MR

would actually be true—within each family, conditional on

parental genotypes, genes are assigned randomly. Indeed, the

authors of GIV regression specifically recommend such

within-family analyses for this very reason. Furthermore, the

recently started consortium that pools genotyped family sam-

ples will enable such analyses for a broad number of traits.45

By using a within-family design, GIV regression is also

able to address the presence of environmental confounders

that are not correlated in any way with genes—any envi-

ronmental shock that is shared between family members is

effectively controlled when using a within-family design.

It is an interesting and open question to what extent the

current MR literature is biased (and potentially misleading)

due to challenges we discussed above. Within-family analy-

ses in large samples will help to answer this question. One

particular issue that cannot be addressed by methods such

as MR-PRESSO and GSMR, even when using a within-

family design, is the presence of one or more phenotypes

that are not controlled for in the GWAS, but do affect both

exposure and outcome and are associated with the relevant

SNPs. LCV faces the issue that it may suffer from bias in the

presence of multiple latent factors, even when applied to

GWAS results based on a within-family design. Finally, un-

der a within-family design, GIV is unable to deal with envi-

ronmental confounders that are neither shared between

family members nor correlated with genes.

Conclusion

We believe that none of the currently available MR-like

methods alone will be able to tackle all the challenges dis-

cussed above convincingly. However, converging evidence

from a combination of various MR methods that rely on

different sets of assumptions, together with data from

large, genotyped family samples, will allow us to make

progress with the important objective of identifying causal

effects in non-experimental data.
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Table 1. Key assumptions, properties and sources of bias that apply to MR-PRESSO, GSMR, LCV and GIV

Method

MR-PRESSO GSMR LCV GIV

Panel A. Assumptions and properties

1. Requires InSIDE for SNPs under consideration Yes Yesa No No

2. Removal of problematic pleiotropic SNPs Yes Yes No No

3. Returns estimate of causal effect of X on Y Yes Yes Nob Noc

Panel B. Inferences when using population samples under presence of:

1. Environmental confounders associated with many SNPs

A. Genetic nurture effects Biasedd Biasedd Likely biased Unbiasede

B. Population stratification not controlled for in GWAS Biasedd Biasedd Biased Unclear

2. Confounders not associated with SNPsf Unbiased Unbiased Unbiased Biased

aThe InSIDE assumption is not explicitly mentioned by Zhu et al. (2018). However, correlation between SNP-exposure associations and SNP-outcome associa-

tions when controlling for exposure leads to a bias in the method.
bEstimates so-called genetic causality proportion, a parameter between zero (no genetic causality) and one (full genetic causality, i.e. the entire genetic architec-

ture of X is causal for Y).
cEstimates association between X and Y, controlling for pleiotropic effects of genes on X and Y that are not mediated by X.
dProvided confounder is associated with most SNPs considered.
eProvided genetic nurture effects are identical across different GWAS samples.
fFor example, purely environmental shocks.
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