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Abstract Introduction: Poor gait has recently emerged as a potential prodromal feature of cognitive decline
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and dementia. We assessed to what extent various aspects of poor gait are independently associated
with cognitive decline and incident dementia.
Methods: We leveraged detailed quantitative gait (GAITRite�) and cognitive assessments in 4258
dementia-free participants (median age 67 years, 55% women) of the population-based Rotterdam
Study (baseline 2009–2013). We summarized 30 gait parameters into seven mutually independent
gait domains and a Global Gait score. Participants underwent follow-up cognitive assessments
between 2014 and 2016 and were followed up for incident dementia until 2016 (median 4 years).
Results: Three independent gait domains (Base of Support, Pace, and Rhythm) and Global Gait were
associated with cognitive decline. Two independent gait domains (Pace and Variability) and Global
Gait were associated with incident dementia. Associations of gait with cognitive decline and incident
dementia were only present in individuals who had been cognitively unimpaired at baseline.
Discussion: Poor performance on several independent gait domains precedes cognitive decline and
incident dementia.
� 2019 the Alzheimer’s Association. Published by Elsevier Inc. All rights reserved.
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1. Introduction

Poor gait has recently emerged as a potential prodromal
feature of cognitive decline and dementia [1–3]. However,
it is unclear to what extent various aspects of poor gait
independently associate with cognitive decline and
incident dementia.

Gait encompasses a broad array of quantifiable parame-
ters, such as speed, stride width, or stride time. Although
these parameters are to a varying extent correlated, they
reflect various aspects of gait that can be summarized into
mutually independent gait domains, such as Pace (which
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includes several parameters, including gait speed), Base of
Support (stride width), Rhythm (stride time), or Variability
(variability in stride time and width) [4].

Interestingly, several independent gait domains have been
cross-sectionally associated with cognitive performance [5].
Also, in the Mayo Clinic Study of Aging, several gait param-
eters were associated with decline in global and domain-
specific cognitive performance [6]. However, only one
relatively small (n 5 427) population-based study has pub-
lished data on associations of independent gait domains
with cognitive decline and dementia. In that study, worse
Pace was associated with a decline in Global Cognition
over a median 2-year follow-up period, while worse Vari-
ability and Rhythm were associated with incident dementia
[7]. The findings of that study warrant corroboration in a
larger sample with longer follow-up. They also leave the
important question unanswered whether associations of
ghts reserved.
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poor gait with cognitive decline and incident dementia vary
by baseline cognitive performance. Of particular interest
is whether poor gait may be a determinant of cognitive
decline and incident dementia in cognitively unimpaired
individuals.

We hypothesized that several gait domains are indepen-
dently associated with cognitive decline and incident de-
mentia. We also hypothesized that associations of poor
gait with cognitive decline and incident dementia would
remain present in individuals free of cognitive dysfunction
at baseline. We tested these hypotheses by leveraging
detailed quantitative gait assessments, serial cognitive as-
sessments, and follow-up for incident dementia in a large,
population-based cohort.
2. Methods

The study was embedded in the Rotterdam Study, a large,
prospective, population-based study in the Netherlands
[8,9]. In 1990, inhabitants of the well-defined Ommoord dis-
trict in the city of Rotterdam who were aged 55 years and
older were invited to participate, and 7983 individuals
agreed (first subcohort). In 2000, all inhabitants who had
become 55 years of age and older or who moved into the
study district since the start of the study were invited to be
included in the Rotterdam Study, and 3011 agreed (second
subcohort). The cohort was further extended in 2006 (third
subcohort; age range 45 years and older) to a total of
14,926 participants (overall response 72%). Participants
were subsequently invited for follow-up examinations at
the research center, with a mean interval between visits of
4 years. By 2016, the first subcohort had a total of up to
Fig. 1. Independent gait domains. To summarize gait parameters into independen

dependent gait domains: Base of Support, Pace, Phases, Rhythm, Tandem, Turning

correlation with the domain is illustrated.
six visits, whereas the second subcohort had four visits,
and the third subcohort had two visits.

Gait assessments were implemented into the core proto-
col of the Rotterdam Study in 2009. Between 2009 and
2013, 4258 participants free of dementia across the three
subcohorts underwent detailed gait and cognitive assess-
ments. We will refer to this assessment as “baseline”. Be-
tween 2014 and 2016, 3253 (76%) of these participants
underwent follow-up cognitive assessments. Reasons for
missing data on a follow-up cognitive assessment were death
(n5 208), follow-up cognitive assessment planned after cur-
rent study period (n5 167), or refusal or inability (n5 697).
The follow-up period for dementia was defined as the inter-
val between baseline dementia screening at the research cen-
ter and the first of the following three scenarios: diagnosis of
dementia, death, or January 1, 2016. Follow-up for dementia
included in-person examinations as well as continuous sur-
veillance through electronic linkage of the study database
with medical records and was 99% complete [10].
2.1. Assessment of gait

Gait was evaluated using a 5.79-m long walkway
(GAITRite� Platinum; CIR systems, Sparta, NJ: 4.88-m
active area; 120-Hz sampling rate). The reliability and
validity of this device have been previously established
[5,11–13]. The standardized gait protocol comprises
three walking conditions: normal, turning, and tandem
walk (Fig. 1). In the normal walk, which was repeated
up to eight times, participants walked at their usual pace
across the walkway. We calculated mean values across
these walks, apart from the first walk, which we consid-
ered a practice walk. In turning, participants walked at
t domains, we performed a principal component analysis. This yielded 7 in-

, and Variability. For each gait domain, a single gait parameter that has high



Table 1

Original gait parameters and correlating domains

Parameter Description

Indication of

“worse” gait

Correlating

domain

Single support time The time elapsed between the last contact of the opposite foot and the first contact of the next

footfall of the opposite foot when a foot touches the ground

Higher Rhythm

Swing time The time elapsed between the last contact of the current footfall to the first contact of the next

footfall on the same foot in seconds

Higher Rhythm

Step time The time elapsed between the first contact of one foot and the first contact of the opposite foot Higher Rhythm

Stride time The elapsed time between the first contacts of two consecutive footfalls of the same foot in

seconds

Higher Rhythm

Cadence The number of steps/minute Lower Rhythm

Stance time The time elapsed between the first contact and the last contact of two consecutive footfalls on

the same foot in seconds. It is initiated by heel contact and ends with the toe off of the same

foot

Higher Rhythm

Stride length SD The standard deviation in the stride length in centimeters Higher Variability

Step length SD The standard deviation in the step length in centimeters Higher Variability

Stride velocity SD The standard deviation in the stride velocity (stride length/stride time) in centimeters/second Higher Variability

Stride time SD The standard deviation in the stride time in seconds Higher Variability

Step time SD The standard deviation in the step time in seconds Higher Variability

Stance time SD The standard deviation in the stance time in seconds Higher Variability

Swing time SD The standard deviation in the swing time in seconds Higher Variability

Single support time SD The standard deviation in the single support time in seconds Higher Variability

Double support time SD The standard deviation in the double support time in seconds Higher Variability

Single support (%GC) The single support time as a percentage of the stride time Lower Phases

Swing (%GC) The swing time as a percentage of the stride time Lower Phases

Stance (%GC) The stance time as a percentage of the stride time Higher Phases

Double support (%GC) The double support time as a percentage of the stride time Higher Phases

Double support time The amount of time that two feet are on the ground at the same time within one footfall in

seconds

Higher Phases

Stride length The distance between the heel points of two consecutive footprints of the same foot on the line

of progression in centimeters

Lower Pace

Step length The distance between the heel points of two consecutive opposite footprints on the line of

progression in centimeters

Lower Pace

Velocity The velocity in centimeters/second Lower Pace

Sum of feet surface The sum of the surfaces of the side steps* as a percentage of the surface of a normal step Higher Tandem

Sum of step distance The sum of the distances of the side steps* from the line on the walkway in centimeters Higher Tandem

Double step A double step was a step with one foot, followed by a step with the same foot, where both feet

were on the line of the walkway

Higher Tandem

Turning step count The number of steps used within the turning time Higher Turning

Turning time The turning time was defined as the time between the last contact of the second foot before the

first turn foot and the first contact of the second foot with a normal angle coming out of the

turn. In which the first turn foot is defined as the first foot deviating from the normal angle of

the feet (subject dependent)

Higher Turning

Stride width SD The standard deviation in the stride width in centimeters Higher Base of support

Stride width The distance from heel center of one footprint to the line of progression formed by two

footprints of the opposite foot in centimeters

Lower Base of support

Abbreviations: SD, standard deviation; %GC, as a percentage of the stride time.

*A sidestep was defined as a step next to the line on the walkway, which was followed by a step with the same foot or a step with the other foot.
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their usual pace, turned halfway, and returned to the start-
ing position. In the tandem walk, participants walked heel-
to-toe on a line across the walkway. Based on the recorded
footfalls, the walkway software calculated 30 parameters,
including 25 from the normal walk, 2 from turning, and
3 from the tandem walk. In Table 1, we provide a descrip-
tion of these parameters. All recordings were visually in-
spected.

From a clinical point of view, an individual with “poor”
gait (i.e., z-score 5 2 or �1 double step during tandem
walk) may have a combination of some of the following
gait characteristics: low cadence (,91 steps/min), highly
variable step length (average standard deviation in step
length.5 cm), high double support time (.0.4 s), low gait
speed (,81 cm/s), difficulty maintaining balance while tan-
dem walking (�1 double step), slow turning (.4 s), or wide
base (.18 cm).
2.2. Assessment of cognitive function and manual
dexterity

We previously published a detailed description of our
assessment methods of cognitive performance and manual
dexterity [14]. We used the Stroop color word test [15], Let-
ter Digit Substitution Test [16], Word Fluency Test [17],
15-Word List Learning Test [18], and the Purdue Pegboard



Table 2

Population characteristics

Characteristic

Population

Population for the dementia analysis*

(N 5 4258)

Population for the cognitive decline analysisy

(N 5 3253)

Age, years, mean (SD) 67 (9) 66 (9)

Women, N (%) 2395 (55) 1820 (56)

Higher vocational or university education, N (%) 2358 (54) 1837 (56)

Baseline Global Cognition, mean (SD) 0.0 (1.0) 10.2 (0.9)

Baseline Global Gait, mean (SD) 0.0 (1.0) 10.1 (0.9)

NOTE. For Global Cognition and Global Gait, higher values represent better performance.

Abbreviations: N, number; SD, standard deviation.

*Dementia follow-up comprised both in-person examinations at the research center as well as continuous surveillance for dementia through electronic linkage

of the study database with medical records from general practitioners and the regional institute for outpatient mental health care.
yThe subgroup with serial cognitive assessments at the research center. Reasons for missing data on a follow-up cognitive assessment were death (n5 208),

follow-up cognitive assessment planned after current study period (n 5 167), or refusal or inability (n 5 697).
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Test [19]. In Supplementary Material 1, we provide a
description of each test.

2.3. Assessment of dementia

A detailed description of assessment methods has pre-
viously been published [20]. In short, participants were
screened for dementia at baseline and subsequent center
visits with the Mini-Mental State Examination and the
Geriatric Mental Schedule organic level. Those with a
Mini-Mental State Examination score ,26 or Geriatric
Mental Schedule score .0 underwent further investiga-
tion and informant interview, including the Cambridge
Examination for Mental Disorders of the Elderly. In addi-
tion, the entire cohort was continuously under surveil-
lance for dementia through electronic linkage of the
study database with medical records from general practi-
tioners and the regional institute for outpatient mental
health care. This provided detailed information and
was used for diagnosis of dementia and for accurately
determining time of diagnosis. Available information on
clinical neuroimaging was used if required for diagnosis
of dementia subtype.

A consensus panel led by a consultant neurologist
established the final diagnosis according to standard criteria
for dementia (Diagnostic and Statistical Manual of Mental
Disorders, Third Edition‒Revised) and Alzheimer’s disease
(National Institute of Neurological and Communicative Dis-
orders and Stroke‒Alzheimer’s Disease and Related Disor-
ders Association).

2.4. Statistical analysis

A detailed description is available in Supplementary
Material 2.
3. Results

The average age in the study population at baseline was
67 years, 55% of study participants were women, and just
over half of the study population attained a higher vocational
or university education (Table 2). The average age was
somewhat lower in the subgroup with two cognitive assess-
ments, whereas the proportion with higher vocational or
university education and baseline Global Cognition and
Global Gait scores were somewhat higher than in the total
study population (Table 2). Compared to individuals with
complete data on all walks, individuals who did not com-
plete baseline tandem walk, turning walk, or one or two
cognitive tasks were generally older (mean age 75.7 vs.
66.3 years), more commonly female (60.5% vs. 54.7%),
and less commonly highly educated (44.1% vs. 55.6%).
3.1. Baseline gait and cognitive decline

A total of 3253 participants underwent follow-up cogni-
tive assessments after a median interval (between cognitive
assessments) of 5 years. Of all 30 measured original gait pa-
rameters, 20 were nominally associated with decline in
Global Cognition, including 13 that survived multiple hy-
pothesis testing (Supplementary Material 3).

Of the seven independent gait domains, Pace ([regression
coefficient standardized by baseline gait and cognitive
scores] b 5 0.06; 95% confidence interval [0.04; 0.09];
P ,.001), Base of Support (b 5 0.03 [0.01; 0.05];
P 5 .003), and Rhythm (b 5 0.02 [0.00; 0.04]; P 5 .02)
were associated with decline in Global Cognition (Fig. 2).
Pace was associated with a decline in each cognitive test
except the Word Learning Test recognition task, and Pace
was most distinctly associated with decline in the Word
Fluency Test (b 5 0.09 [0.06; 0.11]; P , .001) and Word
Learning Test immediate recall task (b 5 0.09 [0.06; 0.11];
P , .001). Base of Support was associated with decline in
the Stroop interference (b 5 0.05 [0.02; 0.07]; P , .001)
and naming task (b 5 0.03; [0.00; 0.05]; P 5 .03). Rhythm
was associated with decline in the Stroop interference task
(b 5 0.03; [0.00; 0.05]; P 5 .04) and Word Fluency Test
(b 5 0.03; [0.01; 0.06]; P 5 .01). Variability was
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Fig. 2. Baseline gait domains: associations with subsequent decline in Global Cognition and incident dementia. (A) Association of baseline independent gait

domains with subsequent decline in Global Cognition. For all gait domains, higher scores correspond with worse gait. Dots represent regression coefficients

standardized by baseline gait and cognitive scores, bars indicate 95% confidence intervals. Regression coefficients were standardized by baseline gait and cogni-

tive scores. Analyses were adjusted for age, sex, and education. The illustrated regression coefficients, 95% confidence intervals, and P values for Global Cogni-

tion are Base of Support (b5 0.03 [0.01; 0.05];P5 .003), Pace (b5 0.06; [0.04; 0.09];P, .001), Phases (b5 0.01 [20.01; 0.02];P5 .595), Rhythm (b5 0.02

[0.00; 0.04]; P5 .02), Tandem (b5 0.00 [20.02; 0.01]; P5 .654), Turning (b5 0.00 [20.02; 0.02]; P5 .716), Variability (b5 0.01 [20.01; 0.03]; P5 .415),

Global Gait (b5 0.05 [0.03; 0.08]; P, .001). (B) Association of independent gait domains with incident dementia. For all gait domains, higher scores corre-

spond with worse gait. HR, hazard ratio per standard deviation “worse” gait. Dots represent hazard ratio, bars represent 95% confidence interval. Analyses were

adjusted for age, sex, and education. The illustrated hazard ratios, 95% confidence intervals and P values for dementia are Base of Support (HR5 1.09 [0.88;

1.34]; P 5 .44), Pace (HR 5 1.33 [1.04; 1.71]; P 5 .02), Phases (HR 5 1.21 [0.97; 1.51]; P 5 .09), Rhythm (HR 5 1.14 [0.92; 1.42]; P 5 .22), Tandem

(HR 5 0.95 [0.78; 1.16]; P 5 .60), Turning (HR 5 1.06 [0.89; 1.27]; P 5 .50), Variability (HR 5 1.26 [1.01; 1.56]; P 5 .04), Global Gait (HR 5 1.29

[1.08; 1.54]; P 5 .006).
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associated with decline in the Stroop naming (b 5 0.03;
[0.00; 0.05]; P 5 .02), color (b 5 0.04 [0.02; 0.06];
P , .001), and interference (b 5 0.03; [0.00; 0.05];
P 5 .03) tasks.

Global Gait was also associated with subsequent decline
in Global Cognition (b5 0.06 [0.03; 0.08]; P, .001). Base-
line Global Gait was statistically significantly associated
with decline in each cognitive test apart from the Word
Learning Test delayed recall task, and the most distinct
effect estimate was for the association with decline in Stroop
interference task score (b 5 0.09; [0.06; 0.12]; P , .001,
Table 3). After additional adjustment of the association
between Global Gait and longitudinal change in the
Stroop interference task for Stroop naming and color task
test scores, the association only marginally attenuated
(b 5 0.08 [0.05; 0.10]; P , .001).
3.2. Baseline gait and incident dementia

During follow-up (median 4 years; range 1-6 years), 78
individuals were diagnosed with incident dementia,
including 64 (82%) with Alzheimer’s disease. Twenty-
three original gait parameters were nominally associated
with incident dementia; of these, 4 associations survived
the multiple hypothesis-adjusted statistical significance
threshold (Supplementary Material 3), including gait speed
(hazard ratio [HR] 5 1.49 [1.19; 1.86]; [P 5 .001]). Of the
independent gait domains, Pace (HR 5 1.33 [1.04; 1.71];
P 5 .02) and Variability (HR 5 1.26 [1.01; 1.56]; P 5 .04)
were associated with incident dementia. We also observed
a suggestive, albeit not statistically significant association
of Phases with incident dementia (HR 5 1.21 [0.97; 1.51];
P5 .09) (Fig. 2). One standard deviation decrease in Global



Table 3

Baseline gait domains: associations with subsequent decline in cognitive test score

Baseline gait domain 
Base of 
Support Pace Phases Rhythm Tandem Turning Variability Global Gait

D
ec

lin
e 

in
 c

og
ni

�v
e 

te
st

 sc
or

e 

Le�er-Digit Subs�tu�on Test 
0.02 [0.00; 

0.04] 
0.04 [0.02; 

0.06] 
0.01 [-0.01; 

0.03] 
0.02 [-0.01; 

0.04] 
0.01 [-0.01; 

0.03] 
0.00 [-0.02; 

0.02] 
0.02 [0.00; 

0.03] 
0.05 [0.03; 

0.07] 

Stroop naming task 
0.03 [0.00; 

0.05] 
0.08 [0.05; 

0.11] 
-0.01 [-

0.04; 0.01] 
0.02 [-0.01; 

0.05] 
0.01 [-0.02; 

0.03] 
0.01 [-0.01; 

0.04] 
0.03 [0.00; 

0.05] 
0.07 [0.04; 

0.10] 

Stroop color task 
0.01 [-0.01; 

0.03] 
0.06 [0.03; 

0.08] 
0.00 [-0.02; 

0.02] 
0.01 [-0.02; 

0.03] 
-0.01 [-

0.03; 0.01] 
-0.02 [-

0.04; 0.01] 
0.04 [0.02; 

0.06] 
0.04 [0.01; 

0.06] 

Stroop interference task 
0.05 [0.02; 

0.07] 
0.08 [0.06; 

0.11] 
0.00 [-0.02; 

0.03] 
0.03 [0.00; 

0.05] 
0.01 [-0.02; 

0.03] 
0.02 [0.00; 

0.05] 
0.03 [0.00; 

0.05] 
0.09 [0.06; 

0.12] 

Word Fluency Task 
0.02 [0.00; 

0.05] 
0.09 [0.06; 

0.11] 
0.00 [-0.02; 

0.02] 
0.03 [0.01; 

0.06] 
0.00 [-0.03; 

0.02] 
-0.01 [-

0.03; 0.02] 
0.01 [-0.02; 

0.03] 
0.05 [0.02; 

0.08] 

Word Learning Test -delayed recall task 
0.01 [-0.02; 

0.04] 
0.05 [0.02; 

0.08] 
-0.02 [-

0.04; 0.01] 
0.02 [-0.01; 

0.05] 
0.00 [-0.03; 

0.02] 
-0.01 [-

0.03; 0.02] 
0.01 [-0.02; 

0.04] 
0.03 [-0.01; 

0.06] 
Word Learning Test -immediate recall 
task 

0.03 [0.00; 
0.05] 

0.09 [0.06; 
0.13] 

0.00 [-0.03; 
0.03] 

0.03 [0.00; 
0.06] 

0.00 [-0.03; 
0.03] 

0.01 [-0.02; 
0.04] 

-0.01 [-
0.03; 0.02] 

0.06 [0.03; 
0.09] 

Word Learning Test -recogni�on task 
0.02 [-0.01; 

0.05] 
0.03 [-0.01; 

0.06] 
0.00 [-0.03; 

0.03] 
0.03 [0.00; 

0.06] 
0.00 [-0.03; 

0.03] 
0.00 [-0.03; 

0.03] 
0.02 [-0.01; 

0.05] 
0.04 [0.01; 

0.07] 

Global Cogni�on 
0.02 [0.00; 

0.04] 
0.04 [0.02; 

0.06] 
0.01 [-0.01; 

0.03] 
0.02 [-0.01; 

0.04] 
0.01 [-0.01; 

0.03] 
0.00 [-0.02; 

0.02] 
0.02 [0.00; 

0.03] 
0.05 [0.03; 

0.07] 

NOTE. The presented values are regression coefficients of the association between gait domains and change in cognitive performance, standardized by base-

line gait and cognitive scores. We modeled change by using the follow-up value of the cognitive outcome as dependent variable while adjusting for its baseline

value. Positive correlation coefficients indicate that poor baseline gait correlated with decline in cognitive performance. We inverted Stroop test scores to facil-

itate a consistent interpretation of scores across cognitive tests, that is, that a higher score indicates better cognitive performance. Multiple hypothesis-adjusted

statistical significance threshold was set to P 5 .004.

Color indicates P value of the association:

Mul�ple hypothesis-adjusted Nominal None
<0.001 <0.004 <0.01 <0.05 >0.05 

Sta�s�cal significance of the associa�on
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Gait was associated with a 29% increased hazard of devel-
oping dementia (HR 5 1.29 [1.08; 1.54]; P 5 .006).
3.3. Effect modification by baseline cognitive performance

The association between Global Gait and decline in
Global Cognition varied substantially by baseline cognitive
performance (p for interaction5 0.04). In analyses stratified
by baseline cognitive dysfunction, the association of Global
Gait with decline in Global Cognition was apparent in indi-
viduals without baseline cognitive dysfunction (b 5 0.05
[0.02; 0.07]; P , .001) but not in individuals with baseline
cognitive dysfunction (b 5 0.03 [20.03; 0.09]; P 5 .38).
We observed suggestive, yet not statistically significant
effect modification by sex regarding the association between
Global Gait and decline in Global Cognition (P5 .06), with
a higher effect estimate in men (b 5 0.10 [0.07; 0.13];
P , .001) compared to women (b 5 0.03 [0.01; 0.06];
P 5 .02). We did not observe evidence for effect modifica-
tion of the association between Global Gait and decline in
Global Cognition by age (P 5 .37).

In line with the present effect modification on the associ-
ation between Global Gait and Global Cognition, the associ-
ation between Global Gait and incident dementia also varied
substantially by baseline cognitive performance (p for
interaction 5 0.008). In analyses stratified by baseline
cognitive dysfunction, we only observed an association of
Global Gait with incident dementia in individuals without
baseline cognitive dysfunction (HR 5 1.28 [0.96; 1.69];
P 5 .09), which was not apparent in individuals with base-
line cognitive dysfunction (HR 5 1.03 [0.80; 1.33];
P 5 .82). We observed no statistically significant effect
modification of the association between Global Gait and
incident dementia by age (P 5 .44) or sex (P 5 .46).
3.4. Sensitivity analyses and post hoc analyses

The association between Global Gait and incident de-
mentia remained robust after exclusion of the first year
of follow-up (HR 5 1.28 [1.06; 1.54]; P 5 .01), among in-
dividuals without a history of stroke (HR 5 1.31 [1.10;
1.57]; P 5 .002), in those without prevalent parkinsonism
(HR 5 1.33 [1.10; 1.62]; P 5 .004), or after additional
adjustment for Purdue Pegboard score (HR 5 1.26 [1.05;
1.51]; P 5 .02). The hazard ratio of Global Gait for inci-
dent non–Alzheimer’s disease dementia (HR 5 1.66
[1.13; 2.45]; P 5 .01) was higher than for incident Alz-
heimer’s disease dementia (HR 5 1.22 [0.99; 1.49];
P 5 .06). The association between Global Gait and incident
dementia attenuated and was no longer statistically
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significant after additional adjustment for baseline Global
Cognition (HR 5 1.16 [0.96; 1.40]; P 5 .12). Compared
to individuals who completed all walks, individuals who
did not complete the baseline tandem walk, turning walk,
or one or two cognitive tasks generally had more distinct
cognitive decline at the follow-up assessment (b 5 0.03
[0.01; 0.05]; P 5 .006) and an increased risk of incident de-
mentia (HR 5 2.98 [1.82; 4.85]; P , .001).

We had follow-up gait assessment data on 1701 of 4258
participants (39.9%). In this subgroup, baseline Global
Cognition was associated with longitudinal decline in
Global Gait (b 5 0.09 [0.04; 0.14]; P 5 .001). Baseline
Stroop (each task), Word Fluency Test, and Letter Digit Sub-
stitution Test scores were also associated with longitudinal
decline in Global Gait (Supplementary Material 4).
4. Discussion

In this large, population-based study, worse quantitative
gait was strongly associated with subsequent decline in
cognitive performance and the risk of dementia. After strat-
ifying by baseline cognitive performance, these associations
were only present in cognitively unimpaired individuals. We
identified independent associations of several gait domains
with cognitive decline and the risk of dementia, suggesting
that a detailed assessment of gait can potentially provide
novel insight into the etiology of cognitive decline and de-
mentia. From a clinical perspective, associations of poor
gait with decline in specific cognitive functions may also
have predictive utility.

After adjustment for multiple testing, 13 gait parameters
were associated with cognitive decline and 4 gait parame-
ters with incident dementia. Since some of these parameters
are strongly correlated (e.g., step time and stride time), we
aimed to unravel associations of underlying, independent
gait domains with cognitive decline and incident dementia.
This approach is similar to the approach used in a British
population-based study and the Einstein Ageing Study
[7,21]. In both studies as well the Rotterdam Study, the
following independent domains were identified: Pace,
Rhythm, and Variability. The Base of Support domain in
the Rotterdam Study and the Postural Control domain in
the British study both included step width but had a
different contributing parameter (step width variability vs.
step length asymmetry). Furthermore, we identified
Phases as an independent domain, and our assessment of
gait under tandem and turning conditions facilitated the
identification of additional parameters that contributed to
two more domains (which we named Tandem and
Turning). We note that the British study also
systematically collected data on left-right differences,
which facilitated the identification of the Asymmetry
domain. The Einstein Ageing Study is the only previous
study that we are aware of to have also reported associations
of independent, quantitative gait domains with cognitive
decline as well as incident dementia. That study had a 10-
fold smaller sample size than this study (in the dementia
analysis: 4258 vs. 399 individuals) and only half the
follow-up duration (5 vs. 2 years). These differences likely
contributed to the identification of a larger number of inde-
pendent gait domains in the Rotterdam Study (7 vs. 3 do-
mains), additional associations of gait domains with
decline in global and domain-specific cognitive perfor-
mance as well as incident dementia, and subgroup differ-
ences by baseline cognitive performance. In both the
Einstein Ageing Study and the Rotterdam Study, worse
Pace was associated with decline in Global Cognition, and
the domains Base of Support and Rhythm each were also
independently associated with decline in Global Cognition
in the Rotterdam Study. Furthermore, several of these gait
domains were associated with decline in specific cognitive
functions in the Rotterdam Study, including executive func-
tioning, memory, semantic fluency, and information pro-
cessing on an interference task. These observations may
have predictive utility, for instance, individuals with poor
Pace andBase of Supportmay be at increased risk of impair-
ment in the ability to process interfering information.Worse
Variability was associated with incident dementia in both
the Einstein Ageing Study and the Rotterdam Study. In
the Einstein Ageing Study, the association of Rhythm
with incident dementia was statistically significant,
whereas the association of Pace was not, while the associa-
tion with incident dementia of Pace but not of Rhythm was
statistically significant in the Rotterdam Study.We note that
HRs for both domains were direction-consistent across both
studies.

Importantly, after stratification by baseline cognitive
performance, the associations of poor gait with cognitive
decline and incident dementia in the Rotterdam Study
were only present in individuals who did not have objective
cognitive dysfunction at the time of gait assessment. This
observation suggests that cognitively unimpaired individ-
uals with poor performance on specific gait domains
(Variability and Pace) may constitute a currently underre-
cognized group at higher risk of dementia. It also suggests
that decline in independent aspects of gait may precede
decline in cognitive abilities and functional independence
in some of these individuals. Previous studies have shown
that longitudinal decline of gait speed is associated with
incident dementia, even after accounting for low baseline
gait speed [22,23]. Traditionally, damage to specific brain
regions in specific subtypes of dementia diseases was
believed to be associated with poor performance on
particular gait domains, for instance, basal ganglia
pathology with tendency to shuffle [Phases] in
Parkinson’s disease dementia, or cerebellar pathology for
poor heel-to-toe balance [Tandem] in multiple-system atro-
phy C. However, there is now a growing understanding that
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widespread pathology to the cerebral cortex may contribute
to gait decline among patients with Alzheimer’s disease or
vascular dementia [7,24]. Furthermore, several cross-
sectional studies in individuals (still) free of dementia sug-
gest that the regional distribution of amyloid-b (Ab) depo-
sition is associated with specific gait parameters [25,26].
Furthermore, higher cerebral Ab deposition is associated
with subsequent decline in several gait parameters [27].
Also, the association between cerebral Ab deposition
with slow gait speed may be more distinct in individuals
with mild cognitive impairment than in individuals who
are cognitively unimpaired [28]. Furthermore, widespread
disruption of microstructural white matter integrity may
contribute to poor gait [29,30]. Interestingly,
microstructural integrity and comorbidities may moderate
effects of white matter hyperintensities on gait, as
previous studies showed that white matter
hyperintensities were more distinctly associated with gait
speed in individuals with impaired microstructural
integrity or with other conditions that affect gait (e.g.,
poor vision, low forced vital capacity) [31,32]. In the
coming years, prospective cohort studies will accrue
sufficient follow-up for dementia to robustly quantify
how much damage in each of these (micro-)structures ex-
plains the association between gait and incident dementia.
It is also noteworthy that previous studies have shown that
the relationship between longitudinal decline in gait and
cognition in the ageing population might be bidirectional
[33–36]. In the Mayo Clinic Study of Aging, baseline
gait speed was inversely associated with subsequent
cognitive decline, while baseline cognition was not
associated with subsequent decline in gait speed, yet, we
note that no other aspects of gait were examined [33]. In
this study, we observed in post hoc analyses that perfor-
mance on several cognitive domains was associated with
longitudinal decline in global gait performance. However,
the proportion of participants without follow-up gait as-
sessments was high (60.1%). Future studies specifically de-
signed to examine the association between performance on
several cognitive domains and longitudinal decline in gait
are warranted to rule out that the observations in our
exploratory analyses were affected by selective attrition.
In addition to etiologic research, studies aiming to develop
a population-feasible screening algorithm for individuals at
high risk of dementia may primarily complement this with
gait speed, which can easily be assessed on a wide scale
and is associated with both cognitive decline and dementia
[3]. Gait speed is commonly used to determine current
functional health status and predict a broad spectrum of
health outcomes, such as functional decline, potential for
rehabilitation, and mortality [37]. In the coming years, pro-
spective cohort studies with quantitative gait assessments
may also accrue sufficient follow-up to examine the associ-
ation between gait and other common disorders neurode-
generative syndromes in the elderly population, such as
parkinsonism (including Parkinson’s disease) and normal
pressure hydrocephalus.

Five methodological issues of this study warrant
consideration. First, we only had two cognitive assessment
points, and the second cognitive assessment took place
near the end of dementia follow-up. As a consequence,
we could not investigate nonlinear change over time of
gait and cognitive performance in individuals who were
later diagnosed with dementia. Second, 24% of partici-
pants did not participate in the follow-up cognitive assess-
ment. Participants in the subgroup with two cognitive
assessments were on average slightly younger, more high-
ly educated, and had slightly better baseline gait and
cognitive performance than the total at-risk population.
We cannot rule out that we overestimated some of the haz-
ard ratios due to nonparticipation at the baseline or follow-
up cognitive assessments of individuals with poor gait who
were not at increased risk of cognitive decline or dementia
(e.g., hip osteoarthritis). Conversely, nonparticipation of
individuals with poor gait and an increased risk of cogni-
tive decline or dementia (e.g., individuals with mild cogni-
tive impairment) would have yielded underestimates of
HRs. Third, our study was underpowered to compare ef-
fect estimates of gait domains for subtypes of dementia.
Specific quantitative gait domains may be associated
with different subtypes of dementia [38] and may similarly
have distinct associations with specific subtypes of
dementia. The majority of patients with dementia in the
community have mixed pathology, often including Alz-
heimer’s disease pathology as well as coexisting pathol-
ogies such as cerebrovascular lesions [39–44]. Clinically
distinguishing dementia subtypes has proven challenging
if not impossible in the light of the multitude of
pathologies that co-occur in the elderly population. This
is particularly troubling in a population-based setting as
90% of dementia patients in the population are diagnosed
after the age of 70 years. As a consequence, the outcome
of most population-based longitudinal studies of the pre-
clinical phase of dementia (including this study) is the de-
mentia syndrome. We note that our diagnostic approach of
both dementia and subtypes of dementia is similar to
other large, population-based studies [45]. Fourth, we
only assessed gait under single-task conditions, and the
battery of cognitive tests we used was not comprehensive.
In individuals with mild cognitive impairment, associa-
tions of gait with incident dementia are amplified if gait
is assessed under dual-task conditions [46], and a similar
pattern may apply to cognitively unimpaired individuals.
Fifth, we used multiple imputation to avoid loss of data
on baseline gait performance, as 10% of participants did
not complete the baseline tandem walk, turning walk, or
one or two cognitive tasks. We did not systematically re-
cord the reason for these missing data. The subgroup of in-
dividuals with incomplete data was older, more commonly
female, and less commonly highly educated. We are not
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sure whether these subgroup differences explain any
possible systematic difference between the missing values
and the observed values. Therefore, we are unsure whether
data were missing at random or missing not at random
[47].

In conclusion, our findings suggest that poor performance
on several independent gait domains precedes cognitive
decline and incident dementia.
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RESEARCH IN CONTEXT

1. Systematic review: We searched PubMed, Embase,
and Cochrane library for prospective cohort studies
reporting associations of independent, quantitative
gait domains with cognitive decline or incident de-
mentia. We identified only one relatively small
(n 5 427) study with a 2-year follow-up for inci-
dent dementia that published data on these associa-
tions. We identified no studies that investigated
whether such associations would apply in cognitively
unimpaired individuals.

2. Interpretation: This large, population-based study
with quantitative gait assessments and serial cogni-
tive assessments shows that poor performance on
several independent gait domains is associated with
subsequent cognitive decline and incident dementia.
In stratified analyses by baseline cognitive perfor-
mance, these associations only held in individuals
who had been cognitively unimpaired at baseline.
These findings suggest that poor gait precedes
cognitive decline and incident dementia.

3. Future directions: The findings in this study will
guide future etiologic and prediction studies on the
role of gait in cognitive decline and dementia.
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