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Searching Turing Instabilities in the Abrams-Strogatz Model
Bachelor’s thesis

Ingel-Brit Parmas

Abstract. The aim of this thesis is to search for Turing instabilities in
Abrams-Strogatz language competition model. The theoretical part of this
thesis provides an overview of complex systems, explains the nature of Tur-
ing patterns and the conditions for pattern formation, describes the aspects
of language dynamics and Abrams-Strogatz model. In the practical part of
the thesis, the original Abrams-Strogatz model is extended with spatial pa-
rameter and using stability analysis Turing instabilities are investigated in
the spatial model.
CERCS research specialisation: P170 Computer science, numerical anal-
ysis, systems, control
Keywords: complex systems, patterns, endangered languages, statistical
physics, dynamic systems

Turingi ebastabiilsuse otsimine Abrams-Strogatzi mudelis
Bakalaureusetöö

Ingel-Brit Parmas

Lühikokkuvõte. Bakalaureusetöö eesmärk on otsida Turingi ebastabiil-
susi Abrams-Strogatzi keeltevahelise konkurentsi mudeli puhul. Töö teo-
reetiline osa annab ülevaate komplekssüsteemidest, selgitab Turingi mus-
trite olemust ja nende tekkeks vajalikke nõudeid, kirjeldab keeltevahelise
konkurentsi dünaamikat ja Abrams-Strogatzi mudelit. Töö praktilises osas
laiendatakse originaalset Abrams-Strogatzi mudelit ruumilise parameetriga
ning uuritakse stabiilsus analüüsi abiga Turingi ebastabiilsuse eksisteerimist
ruumilises Abrams-Strogatzi mudelis.
CERCS teaduseriala: P170 Arvutiteadus, arvutusmeetodid, süsteemid,
juhtimine (automaatjuhtimisteooria)
Märksõnad: komplekssüsteemid, mustrid, ohustatud keeled, statistiline
füüsika, dünaamilised süsteemid
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1 Introduction

The world consists of extremely complex systems that change in time. The
growth of an organism, global climate, telecommunication infrastructures,
social interactions inside society or the universe itself - these systems consist
of many components that interact with each other and form a unified whole.
Studying these systems classically the approach has been based on reduction:
breaking the otherwise incomprehensible system down to its simplest pieces
and then describing the whole system through the properties of the compo-
nents. The collective behavior can lead to some intrinsically unpredictable
properties that cannot be inferred from the individual properties of compo-
nents. [1] Or importantly, as Aristotle has put it: ”The whole is greater than
the sum of its parts” [2].

The concept of complexity is very vague and various authors have de-
fined it in different ways. However, some typical characteristics are featured
in most of the proposed definitions. One of them concerns the location of
complexity on the borderline between order and disorder. Namely, complex
systems are to some degree predictable and structured, but in the same time
chaotic and uncontrollable. This is caused by the interdependence of the
components. The parts can function almost autonomously, but to some ex-
tent, they still depend on each other; they are separate, but connected via
their interactions [3]. The other unifying principle of complex systems is
the idea of emergence: connections between simple low-level subunits cause
the emergence of higher-level functionalities or structures. While each com-
ponent is goal-oriented, trying to maximize its own individual benefit, they
also follow the cause-and-effect logic. The local actions of one subunit affect
the surrounding environment and therefore trigger further actions of other
neighboring components. Such interactions set in motion a chain of activity
that spreads across the system and finally results in the unanticipated global
properties. [4, 1]

Studying complex systems has helped to understand more about indirect
impacts and the relations between causes and effects. [3] In linear systems the
response is proportional to the cause making the system easily predictable
and resistant to changes. Instead, non-linear systems are very dynamic be-
cause the components interact with each other non-linearly. [5] The system
acts as a loop: the effects or outputs of one action are fed back into the
system as causes or inputs of another action [6]. Non-linear systems are also
very sensitive to parameter values. Even small changes in initial configura-
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tion or some perturbation caused by external factors can lead to significant
or even unpredictable changes in the behavior of the system. [1] The unpre-
dictable final outcome due to the sensitive dependence on initial conditions is
a characteristic feature of chaos. A hint of a smile can change the course of a
billion-dollar negotiation or a wave of a butterfly in Brazil cause a devastating
hurricane in Texas. [6] Thus, chaos and complexity might seem very simi-
lar, but the two theories are actually rather contradictory. Theory of chaos
observes the processes where simple rules and systems result in complicated
and random structures. Complex theory, on the other hand, searches the
underlying rules beneath simplicity and order that emerge from the behavior
of complex structures. [4]

Due to the dependence on initial configurations, a large number of in-
teractions, sensibility to external factors, unpredictable emerging properties
and non-linear characteristics the behavior of a complex system cannot be
revealed by considering a few variables or just applying probability theory.
For these reasons, different modeling techniques followed by computer simula-
tions are used to study the behavior of complex systems. Very often modeling
a complex system is based on nonlinear differential equations, agent-based
networks, and stochastic models. Simulations can rely for example on the
numerical calculus and Monte Carlo methods as well as cellular automata.
Trying different initial conditions and adding random perturbations to the
simulation run gives an overview of the possible behaviors the system can
exhibit. While the selection of configurations has still a huge impact on the
outcome, it has been noted that the results tend to converge into a relatively
small set of distinct pattern types. This trend is an effect of self-organizing
nature that complex systems possess. To cope better with various pertur-
bations and changes in the environment the system tries to organize itself
and reach some kind of order. The recurring patterns are useful for scientists
to develop a statistical overview of the most likely outcomes and also gain
insight into the specific factors that promote a specific result. [1]

Although the study of complex systems is still relatively young it already
stretches the boundaries of traditional science and provides new ways to
think about the universe. It creates bridges across different fields in science
and accelerates the flow of general scientific knowledge. [2] For example,
researchers get closer to explaining many sociological aspects: the decision
making, social interactions, the consequences of policies and human behavior
in general [7]. But complex systems and also pattern formation are applicable
in nearly every field of science. The structure of the universe, stock market
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movements or diagnosis of diseases are just a few examples where the theory
of complex systems has the potential to bring a revolutionary breakthrough.
The present thesis focuses on language competition, i.e complexity theory
applied in the field of linguistics.

The linguists try to answer various questions concerning the complex con-
cept of language, from the process of learning a language to the evolutionary
journey of the whole language. An important component of the evolution
of a language is the language competition. Various language competition
models have been proposed in order to predict the extinction rates of lan-
guages, cultures, and religions as well as the general dynamics leading to
the success of one or other language. In the language competition models,
the speakers form a network of connected agents who are interacting with
each other and switching between languages. The final result in the rivalry
for speakers is determined by a combination of factors affecting the behavior
of the whole society. Mutable parameters such as geography, social trends,
prestige, concentration, etc determine the final outcome.

In the present thesis, language competition and extinction are being an-
alyzed from the perspective of complex systems focusing on the emergent
patterns. The focus of Section 2 is to introduce the theory of Turing pat-
terns and give an overview of the research done in this field. First, the
formation of the theory itself, the importance of reaction-diffusion systems
and diffusion-driven instability are discussed. Then a set of examples and
the history of the theory is briefly reviewed. The next part gives a more
detailed overview of the structure and the dynamics of Turing systems. The
section is concluded with the introduction to stability analysis and finally,
general conditions for diffusion-driven instability are presented. In Section 3
the general aspects of language dynamics and types of models are discussed.
The concept of language competition is introduced and different models are
reviewed. Following the description of Abrams-Strogatz model, its struc-
ture and applications. In Section 4 the original Abrams-Strogatz model is
extended with a spatial parameter. The new model and the effects of the
spatial parameter are discussed. The following part presents the steps for lin-
ear stability analysis and carries out the analysis for the new spatial model.
At the end of the section, the results through numerical simulations and the
conclusion of the analysis are presented. Finally, in Section 5 the main ideas
and results of this thesis are reviewed.
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2 Theory of Turing patterns

2.1 Pattern formation

The growth from one single egg cell into a living and functioning organ-
ism has been investigated for centuries, but some parts of this process have
still remained unexplained. The development of an organism starts with the
activation of genes which all contain blueprints for the structure under con-
struction. Although genes have the major guidelines, they are too small to
contain all of the detailed information — it is identified that an adult human
consists of tens of trillions of cells (1013), whereas DNA itself has only 3 bil-
lion base pairs (3× 109) [8]. So it is logical to ask, what are the mechanisms
that turn these DNA provided guidelines into a detailed structure. [8]

Among others also Alan Mathison Turing (1912-1954) tried to answer this
question. Turing was a famous English mathematician mostly known for his
influential work in computer science, artificial intelligence and cryptology
[9]. With his mathematical background, he looked at the problem from a
different perspective and suggested that a simple mathematical model could
solve the problem of the natural mechanisms of growth. Turing proposed
that the process of morphogenesis is explained with a system of chemical
substances always diffusing and reacting with each other. The action and
production of those substances, which he called morphogens, is first activated
by genes. As a result of the reaction-diffusion behavior, the concentration of
morphogens will vary in different places and therefore generate various spatial
patterns. Turing suggested that the concentration patterns are guidelines
for the developing cells (illustrated in Figure 1). The cells respond to the
concentration of morphogens and differentiate accordingly which in the end
leads to the detailed and complex structure of an organism. [8] [10]

Examining the development of a fertilized egg, Turing came to the ques-
tion of how can one symmetrical cell over time evolve into a completely
asymmetrical organism. Something must interfere with the fertilized egg
in a stable, symmetrical state and under those deviations, the system be-
comes unstable resulting in a symmetry-breaking. As an innovative idea,
Turing proposed diffusion driven instability. Diffusion is a process of parti-
cles moving from an area of higher concentration to one of lower concentra-
tion reaching equilibrium. It is commonly thought as a stabilizing process
leading to a homogeneous solution (an ice cube dispersing into a hot tea).
However, Turing proved that when solution consists of two chemicals with
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Figure 1: The morphogens lay down the pattern. [11]

different diffusion rates it could lead to an inhomogeneous state. For exam-
ple activator-inhibitor relationship, where the reaction rate of the inhibitor
chemical is faster than the activator’s, it may result in spatial variations of
concentrations. The diffusion would carry the asymmetry throughout the
solution and therefore generate chemical patterns. To keep the system away
from equilibrium the chemicals causing the deviations must be fed to the
system continuously. Otherwise, the system returns to a homogeneous state
and the patterns will vanish. [8, 12]

The most outstanding feature of Turing’s diffusion driven instability is
that it is governed by the intrinsic parameters whilst the initial conditions
and external factors play only a small role in pattern formation. This is a re-
markable difference compared to other instabilities that are found in systems
out of equilibrium. In Turing systems, the characteristics of the chemicals
involved will determine which type of pattern will occur and the initial condi-
tions just affect the position of the pattern. This idea is illustrated by the fact
that although all tigers have stripes, the exact pattern differs individually.
[8, 12]
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2.2 History and examples

Turing published his ideas in 1952 in his article ”The Chemical Basis of Mor-
phogenesis” [13]. At first, not much attention was paid to his theory because
there were insufficient resources and knowledge for demonstrating the pat-
terns in reality. The chemical reactions often occur very quickly making it
difficult to determine the patterns. During 1980s mathematicians, chemists
and biologists did numerical simulations, mathematical analysis, and exper-
iments to study Turing’s ideas until in the 1990s they were finally able to
show experimentally the patterns. [12] The first evidence of Turing patterns
was presented by De Kepper and group when they stumbled upon them
almost accidentally while working on oscillatory chemical reactions [14]. Al-
though interest in Turing’s theory of diffusion-driven instability has grown
since then, the major part of the research has focused only on the pattern
and model types and their significance in the development of an organism.
The topic of controlling the patterns and their formation is studied less. [12]

Generating patterns in the lab and showing theoretically how the forma-
tion process works don’t necessarily prove that the patterns actually exist
in nature. The definite connection between Turing systems and biology is
still missing. One of the first evidence suggesting that the link exists, was on
the work of Shigeru Kondo and Rihito Asai in 1995 [15]. They studied the
formation of the stripes of the angelfish and were able to show that it can be
perfectly mimicked by Turing models. The angelfish have unusual character-
istics, their stripes continue to grow in time with the development of the fish
rather than being established during embryogenesis. The scientists were able
to match the computer simulations to the pattern changes in the real fish and
imitate the exact branching of the angelfish stripes (Figure 2). The overall
idea behind modeling animal coat patterns is that morphogens lay down the
pathway on which the melanocytes start producing pigment. However, the
morphogens involved in this haven’t been identified yet, making it merely a
theory. [14, 8]

As Luciano Marcon and James Sharpe note that ”One of the most im-
portant questions in the field is the identity of the Turing molecules” [16].
They conclude that for many theories, even when evidence for some of the
key molecules exists, then multiple questions are still left unanswered [16].
The most recent development in the field is the work of Xavier Diego, James
Sharpe and colleagues [17]. The group has expanded Turing’s theory with
a new topological approach which simplifies the process of determining the
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Figure 2: The pattern changes in angelfish (top) are mimicked by the simulation
of Turing system (bottom). [15]

required parameters for a Turing system. The new theory is useful for both
theoreticians and experimental groups working with biological cells and try-
ing to implement Turing networks in them. Even further, if the experimental
groups are successful in making biological cells develop patterns, the long-
awaited answer, to whether biological systems can actually be explained by
Turing’s theory of morphogenesis, will be revealed. [11]

Although Turing models have a very simple and generic nature, they are
able to describe extremely complex mechanisms and explain some fundamen-
tal ideas of natural systems. They are very robust against random noise, as
are most of the systems in nature. In addition to mimicking animal patterns,
Turing systems have been applied to explain a variety of biological aspects
and structures. Multiple organs of the human body show a similarity to
three-dimensional Turing structures, for example, arteries, lungs, cerebral
cortex, etc. Being a universal model for self-organization, Turing’s theory of
pattern formation is definitely not limited to only biology and chemistry but
can be used in social sciences, economics, physics, ecology, material sciences,
etc. The formation of sand dunes or the constellations of galaxies, termites
building their nests, desertification, demographic changes, criminal hotspots
or language dynamics in societies — they all show signs of being Turing
systems. The difficulty is how to differentiate between a real pattern and a
random arrangement that occurs. Before any conclusions about Turing pat-
terns can be made, the model must be studied and analyzed mathematically.
[8]
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2.3 Turing system

The most general Turing system can be defined with two nonlinear partial
differential equations [10]:

∂U

∂t
= DU 52 U + f(U, V ),

∂V

∂t
= DV 52 V + g(U, V )

(2.1)

The reaction-diffusion system consists of two main parts. The diffusion part
of the equation describes the spreading of the chemical while the amount of
the chemical remains the same. The particles which are positioned in a high
concentration area move to a lower concentration area. The reaction part of
the system at the same time equalizes the two concentrations, describing the
production and degeneration of the chemicals. [18] In the above equations
there are four factors: ∂U

∂t
and ∂V

∂t
are the concentration rates, U and V mark

the inhibitor and activator chemicals, DU and DV the diffusion coefficients
and nonlinear functions f and g describe the system dynamics. The activa-
tor chemical is autocatalytic, increasing the production of itself and also the
inhibitor chemical. At the same time, the inhibitor chemical suppresses the
production of both. The Turing instability occurs when the balance in the
fight over domain space breaks due to the difference in diffusion coefficients.
More precisely when the inhibitor chemical has a larger diffusion coefficient
than that of the activator chemical. This can be explained by imagining an
inhibitor-activator pair. Slightly increasing the activator chemical concen-
tration, it also increases the inhibitor chemical at the nearby points. In the
case where inhibitor diffuses faster due to the larger coefficient, it then sup-
presses the activator chemical and its concentration lowers at neighboring
points. Which in turn reduces the production of inhibitor chemical there.
So the diffusion carries the disturbance throughout the domain resulting in
patterns. [18]

The exact forms of functions f and g depend on the particular system and
the function parameters vary accordingly. Whereas the parameters play the
key role in pattern selection it is clear that different Turing models generate
different patterns. Most common patterns are linear and radial structures,
for example, stripes and spots in 2D space (Figure 3). Although the function
parameters govern the pattern selection, the most notable part of the Turing
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system is that the pattern generation itself does not depend on the initial
configuration. The time-independent spatial patterns appear when particular
conditions within the system are satisfied. [8, 10]

Figure 3: Chemical concentration patterns obtained from numerical simulations
[19]

2.4 General conditions for diffusion-driven instability

To predict the pattern formation in systems, linear stability analysis is used.
Linear stability analysis examines how the system in a stationary state re-
sponds to small perturbations over time. As the name implies, the method
ignores the higher order terms and is limited to giving linear information.
Therefore the results of the analysis cannot be used to describe the full
dynamics of the nonlinear system. However, it is effective in detecting in-
stabilities and thus pattern formation in reaction-diffusion systems. Later, a
nonlinear analysis is carried out to study the pattern selection and structure.
[8] In the present thesis in the section 4.2 linear stability analysis is applied
to a spatial language competition model.

The concept of diffusion-driven instability means that the system is sta-
ble to perturbations in its homogeneous steady state, but when diffusion is
introduced through spatial perturbations the system becomes unstable. For
the diffusion-driven instability of a steady state, it is important that the state
is spatially dependent, meaning that in the absence of spatial variations it is
linearly stable. From the linear analysis of the homogeneous steady state, the
initial conditions for the diffusion-driven instability and for the generation of
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spatial patterns have been derived (specific steps can be found for example
in Ref. [20]). Accordingly, the following inequalities must apply [20]

fU + gV < 0

fUgV − fV gU > 0

DV fU +DUgV > 2
√
DUDV

√
(fUgV − fV gU) > 0.

(2.2)

In the above conditions, the subscripts denote the partial derivatives of the
functions f and g, with respect to the marked variable; d is the ratio of the
diffusion coefficients. The functions are evaluated at the stationary state.
From the conditions (2.2) it follows that fU and gV must be with opposite
signs. Other model specific functions and parameter values can be derived
from these initial conditions. [20]
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3 Overview of Language dynamics

3.1 Development of different language
competition models

Just like biological species, over time the new languages are born, they evolve
and eventually some of them become extinct. In the 21st century, the world
has reached a time when this natural process of extinction has greatly accel-
erated and 90% of the around 6000 languages currently spoken are in danger
of dying out. Languages are a big part of the cultural diversity of the world,
they define and affect the characteristics of different cultures and societies. In
turn, the survival of a language is influenced by numerous factors, including
geographical, historical, socioeconomic, demographics, etc. [21]

To preserve the endangered languages and cultures, the first step is finding
the key factors behind language shift. Language shift is a process where
speakers give up the use of one language in favor of another one [22]. Once
knowing the driving factors, one can use the tools of physics, mathematics,
statistics to create accurate models of language competition. On the one
hand, the models should give insight into how the linguistic field is changing,
but on the other hand, it is still difficult to identify the ”goodness” of a
model, in the context of contemporary world where outcomes are yet to
be unknown. Considering that the world is constantly changing, the models
must improve also. For example, as a result of globalization and social media,
the significance of geographical or social factors is no longer the same. It is
important that ”For language dynamic models to stay relevant, they must
be able to handle real-world changing scenarios, and to adapt, when current
modeling frameworks mis-predict” [23].

In the field of language competition, two main types of families of models
are represented by microscopic and macroscopic models. The macroscopic
models describe the population size or density, treating the language as an
object with a specific number of speakers. The population can be assumed
to be homogeneous, evenly dispersed in a fixed area, where all individuals
interact with one another (models usually described by ordinary differential
equations) or distributed in space in some way (described by partial dif-
ferential equations). The focus of language competition dynamics is on the
change of the number of speakers, while the internal structure of the language
(syntax, grammar and their changes) is ignored. On the other hand, the mi-
croscopic models monitor each speaker, their interactions with the others,

13



and the individual transitions. Microscopic models can describe languages
spoken across a network of speakers, letting each person to be connected to
a certain number of other speakers. All these models are generally stud-
ied using computer simulations, employing Monte Carlo algorithms for their
stochastic parts [21, 24].

One of the first macroscopic models was introduced in 2003 by Abrams
and Strogatz [25], who developed a simple model where all speakers are
monolinguals and the language dynamics is defined by the status (later known
as prestige) parameter. The majority of language dynamics models that have
been introduced afterward extend the Abrams-Strogatz model to improve
certain aspects. For example, the Minett and Wang [26] model also includes
bilinguals. Patriarca and Leppänen [27] extended the model with a spatial
parameter and later Patriarca and Heinsalu [28] studied the effects of barriers
and boundaries between the regions of different language groups. Mira and
Paredes [29] added a new parameter describing the similarity of the two
competing languages. Some most influential microscopic models were put
forward by Schulze and Stauffer [30], who studied some versions of their
models embedded in a network structure.

The classical models first predicted that the competition between two
languages always ends in one language dominating over the other. Yet the
idea that the extinction of one language is inevitable, in the context of bilin-
gualism, doesn’t fit today’s reality anymore. Instead, newer models consider
the possibility that bilingualism doesn’t always lead to monolingualism. Co-
existence of languages opened a new direction in the studies of language
competition: investigating under which conditions languages are able to sur-
vive together, which factors govern the coexistence and how the speakers
distribute in a common area.

The coexistence of different languages is often accompanied by patterns,
i.e. languages survive when mainly concentrated in specific geographical
regions. In this respect, Ref. [27] describes two languages which can live in
equilibrium because of a barrier dividing the simulation box into two regions,
each language being favored in one of the two regions. Kandler describes
language segregation as a consequence of inhomogeneity of the dynamical
parameters [31], such as the transition rate. Coexistence of languages in
space in a fragmented landscape is possible – without patterns — due to
other mechanisms, e.g. to volatilities a < 1 [32] or to a resilient behavior
of the individuals in changing their status, as in the generalized two-options
Naming Game model with parameter β [33, 34].
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Recently, much attention has also been given to models predicting lan-
guage coexistence, possibly accompanied by the Turing mechanism. In fact,
in some cases, the spatial distribution of speakers could be interpreted as Tur-
ing patterns. For instance, Turing pattern in groups of speakers connected
through a network was reported in Ref. [35] and spatial patterns were ob-
tained in the study of a variant of the model of Pinasco and Romanelli (see
Ref. [23]). It is therefore natural to check whether such kind of pattern arises
in other language competition models.

3.2 Abrams-Strogatz model

As mentioned, one of the first mathematical models of language competition
was proposed by Abrams and Strogatz. The model describes the struggle for
speakers between two languages. At any time a speaker of language one can
instantly switch to language two and vice versa; there are no transition states
in the switch. The driving force for individuals to change their language is
the attractiveness of a language. It is defined by the number of speakers
together with the status of the language (a combination of socioeconomic
factors, e.g. the language prestige and usefulness). [28]

The scheme for the Abrams-Strogatz model is illustrated in Figure 4 and
the model can be swritten as follows:

∂NU

∂t
= kV UN

α
UNV − kUVNUN

α
V

∂NV

∂t
= −kV UNα

UNV + kUVNUN
α
V

. (3.1)

Here NU and NV are fractions of speakers of the two linguistic groups. The
constant α determines the volatility of a language (choosing the other lan-
guage over the current one) and kUV , kV U ∈ (0, 1) are such that kUV +kV U = 1
and they represent, respectively, the status (or attractiveness) of language V
and U. [36] The status and volatility of a language are determined by fitting
the model to the empirical data of some specific area’s population speaking
the language [24]. The value α = 1.31± 0.25 was suggested in Ref. [37].

The model has three equilibrium states: for a > 1, two states are stable,
in which the entire population speaks one of the two languages and the
other language has become extinct (NU 6= NV ), while in the third stable
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Figure 4: General scheme for the Abrams-Strogatz model with two languages U
and V with statuses kUV and kV U and fractions of speakers NU and NV .

state both languages have a number of speakers larger than zero but it is
unstable. Therefore, for a > 1 the model predicts the absolute dominance of
one language and the extinction of the other language [24], shown in Figure
5. In the high volatility regimes, where α < 1 and language switching is
frequent, the coexistence of languages is possible: the first two equilibrium
states become unstable, while the third unstable point becomes stable [38].
Different states are reached depending on the initial population sizes NU and
NV , volatility parameter α and both language’s statuses kUV and kV U [28].

Like for most models of real-world scenarios, a few assumptions have been
made to gain this simplified model. The model doesn’t consider the evolu-
tion of languages during its timeline and solely describes the evolution of
the population size of the two linguistic groups. It is therefore similar to a
population dynamics model of two biological species [28]. One of the most
important assumptions is the uniform social and spatial structure of the pop-
ulation. The model considers only the competition between two languages
in the same geographical area with similar resources. So the speakers are in-
teracting with each other constantly, creating a highly connected population
[21, 40].

The main application of Abrams-Strogatz model is to predict how the use
of languages will evolve in time. It also acts as an alert system pointing out
when a language starts to be in danger of extinction, so different measures
can be used to prevent it from happening. Playing through different scenar-
ios by tuning the parameters in the equations and simulating the evolution
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Figure 5: The behaviour of Abrams-Strogatz model described by equation (3.1)
with parameters kUV = 0.8, kV U = 0.5, α = 1.3 and initial conditions NU =
0.568, NV = 0.432. The model predicts the dominance of language U and the ex-
tinction of language V. The figure is made using slope and direction fields generator
[39].

process, helps to see the various outcomes. Finally, one can reach the best
solution and find the desired parameter values for that. The tuned model can
then be applied in reality by using the means of education, policy-making,
advertising, technology, laws, etc. [21] In addition, it was later shown that
Equation (3.1) can be applied to model other competitions as well, for ex-
ample, competition between various cultural traits, particularly the decrease
in religious affiliation [36].

In their study, Abrams and Strogatz used historical data to test their
model against declining languages such as Welsh, Scots Gaelic, and Quechua.
Although most of the data was taken from public census figures, Abrams
also visited Peru to collect data and interview the people himself. They
concluded that it is possible to preserve an endangered language. Abrams
gave an example of French language almost disappearing in Quebec 35 years
ago, which was then saved with the help of government passing laws and
adopting policies to favor and in some cases even require the use of French
[41]. Later, there have been many case studies using Abrams-Strogatz model
and also comparing it to the other models. For example Sutantawibul et
al. [24] used three different models (Abrams-Strogatz [25], Castelló [42],
Mira and Paredes [29]) to compare the outcomes of language competition in
Catalonia (Catalan and Spanish), Houston (Spanish and English), Brussels
(Dutch and French), Spain (Euskera and Spanish) and Canada (French and
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English). But the complications of acquiring parameter values from empirical
data still remain, especially in many cases lacking direct competition data.
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4 Results for the spatial model

4.1 Extending the original Abrams-Strogatz model in
space

The original Abrams-Strogatz model (3.1), where volatility α ≥ 1, predicts
that one or the other language prevails. But this is not the case in many
real situations and it is clear that the model neglects various factors that
may affect the final outcome. One of the missing factors from the origi-
nal model (3.1) is the space parameter. Adding the space dimensions to
Abrams-Strogatz model can change the result of the system decidedly. It can
lead to the coexistence of the languages where both are more concentrated
in different parts of the domain. [43] In this section the original Abrams-
Strogatz model (3.1) is extended with the spatial parameter that introduces
the spreading of the language in space. To take the dependence of space into
account a reaction-diffusion system is used for investigation. The stability
analysis is carried out to examine the coexistence of two languages with two
different diffusion coefficients and to determine the necessary conditions for
Turing patterns.

Equations (4.1) are formally equivalent to Equations (3.1) defining the
Turing system:

∂NU

∂t
= DU 52 NU −kUVNUN

α
V + kV UNVN

α
U︸ ︷︷ ︸

f

∂NV

∂t
= DV 52 NV +kUVNUN

α
V − kV UNVN

α
U︸ ︷︷ ︸

g

.

(4.1)

The spatial model divides similarly the fixed population of speakers into
two groups: the speakers of language U and the speakers of language V. In the
Abrams-Strogatz model, there are no bilinguals included nor an intermediate
state in the switch from language U to language V. As described in section
2.3, the Turing system usually consists of two nonlinear partial differential
equations. In the Equations (4.1) the speakers of the two languages are
marked with NU and NV . Scalars DU and DV mark the space-dependent
diffusion coefficients and for the analysis DV 6= DV is chosen. The constants
kUV and kV U describe accordingly the shift from language U to V and V to
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U. Parameter α > 0 is a scalar defining the system dynamics. To determine
whether Turing patterns exist in this reaction-diffusion system and under
what conditions, the system will be studied through the use of linear stability
analysis.

4.2 Linear stability analysis of the spatial Abrams-
Strogatz model

Linear stability analysis reveals the behavior of the system around its station-
ary states. Therefore the first step in the analysis is finding the homogeneous
stationary states (NU0 , NV0) of the system. This can be done by assigning
the reaction kinetics to zero, i.e f(NU , NV ) = g(NU , NV ) = 0. Since the sys-
tem consists of two symmetrical equations it has two symmetrical stationary
states as well:

{
NU0 = 0

NV0 = c

{
NU0 = c

NV0 = 0

Because of the symmetrical behavior, solely the stability of the first sta-
tionary state is analyzed. The idea of the stability analysis is to introduce a
small wave-like spatially non-uniform perturbation to the system at its sta-
tionary state and then study the response of the system. If over time the
perturbation converges to zero and the system moves back to the stationary
state then the state is considered stable. Otherwise, if the perturbation am-
plifies and the system initially close to the stationary state starts to move
farther away, then patterns will occur.

In the context of spatial Abrams-Strogatz model, introducing perturba-
tions to the system one obtains NU = NU0 + dw and NV = NV0 + dw. More
precisely, studying only the first stationary state, NU = dw and NV = c+dw,
where perturbation dw can be written as [8]

dw(x, t) =
∑
j

cje
λjte−ikj ·x (4.2)

The wave modes kj govern the spatial part of the solution and the eigen-
values λj the temporal part [8]. Substituting this into the initial Equations
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(4.1) (more detailed description can be found in [12]) leads to the eigenvalue
problem

|A−Dk2j − λjI| = 0 (4.3)

for each wave mode kj. The matrix A consists of the partial derivatives of
functions f, g with respect to NU and NV

A =

(
fNU

fNV

gNU
gNV

)
(NU0

,NV0
)

. (4.4)

Evaluating partial derivatives

fNU
(NU0 , NV0) = −kUVNα

V0
+ αkV UNV0N

α−1
U0

fNV
(NU0 , NV0) = −αkUVNU0N

α−1
V0

+ kV UN
α
U0

gNU
(NU0 , NV0) = kUVN

α
V0
− αkV UNV0N

α−1
U0

gNV
(NU0 , NV0) = αkUVNU0N

α−1
V0
− kV UNα

U0

at the stationary state (0, c) and substituting to (4.4), the matrix A can be
written as

A =

−kUV cα 0

kUV c
α 0

 . (4.5)

The matrix I in the eigenvalue problem (4.3) is an identity matrix and the
matrix D consists of diffusion coefficients:

I =

(
1 0
0 1

)
D =

(
DU 0
0 DV

)
. (4.6)

After applying everything to (4.3), it leads to the determinant∣∣∣∣∣∣
−kUV cα −DUk

2
j − λj 0

kUV c
α −DV k

2
j − λj

∣∣∣∣∣∣ (4.7)

and thus to the characteristic polynomial of the system (4.1)

21



cαk2jkUVDV + cαkUV λj + k4jDUDV + k2jDUλj + k2jDV λj + λ2j = 0. (4.8)

Solving the characteristic equation for each wave mode kj gives two dis-
persion relations λ1(k) and λ2(k) that satisfy the equation. Since the growing
modes have the form of Weikreλ(k)t, where W marks the amplitude and λ(k)
the growth rate, it can be seen that the solutions with negative growth rate
will converge to zero when t → ∞ and thus remain stable. The solutions
with positive growth rate, however, will grow exponentially resulting in the
formation of patterns. Thus the eigenvalues of (4.8) help to determine the
stability of the system and predict the parameter values that lead to the
Turing instability. [8]

Solving characteristic polynomial (4.8) one obtains two values{
λ1 = −kUV cα −DUk

2
j

λ2 = −k2jDV

(4.9)

The second solution λ2 is negative because the coefficients DU , DV are always
positive. Also the first solution, in which the parameters α, c, and the rate
constant kUV have positive values, cannot lead to an instability to occur.

Checking the stability conditions (2.2), it is revealed that the linear sta-
bility of the stationary state is not spatially dependent. In the case of spatial
Abrams-Strogatz model f = −g and therefore fNU

= −gNU
and fNV

= −gNV
.

Applying these changes to the second condition in (2.2) it can be seen that
fNU

gNV
− fNV

gNU
≡ 0 by writing

fNU
gNV
− fNV

gNU
= −gNU

gNV
+ gNV

gNU
=

= αk2UVNU0N
2α−1
V0

− kUV kV UNU0N
α
U0
Nα
V0
−

−α2kUV kV UN
2α−1
U0

N2α−1
V0

+ αk2V UN
2α−1
U0

NU0−
−αk2UVNU0N

2α−1
V0

+ kUV kV UNU0N
α
U0
Nα
V0

+

+α2kUV kV UN
2α−1
U0

N2α−1
V0

− αk2V UN2α−1
U0

NU0 = 0 .

(4.10)

For Turing instability to occur, one needs that fNU
gNV
− fNV

gNU
> 0.

So it can be concluded that for the spatial Turing model, and for all models
defined by a dynamics where f = −g, the patterns do not occur since the
general conditions for diffusion-driven instability (2.2) are not met. The
numerical simulations illustrated in Fig. 6, show the stability of the model
without patterns.
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Figure 6: The simulation of the Abrams-Strogatz spatial model. The state of the
system is plotted 9 times in 50 x 50 grid based on 90 000 iterations for a time
step 0.001. The following parameters are used for the simulation: α = 0.95, DU =
0.498, DV = 0.502, kUV = 0.009, kV U = 0.007.

5 Conclusion

The studies of Turing patterns and diffusion-driven instability have shown
promising results in explaining the details of morphogenesis and the behavior
of reaction-diffusion systems. Described by simple mathematical models, the
Turing systems are able to explain extremely complex mechanisms. The most
notable part of the Turing system is that, unlike other complex systems, its
behavior and thus the occurrence of patterns is determined intrinsically and
does not depend on the initial configuration. The type and characteristics of
patterns can be adjusted by changing only one parameter value in the model.
Although the evidence of these patterns can be found in almost every field of
science starting from biology and chemistry until social and medical sciences,
the definite link between the theory and examples of patterns is yet to be
found.

Languages, just like species, are competing against one another and pre-
serving the endangered ones plays an important role in our culturally diverse
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world. Studying the driving forces for shifting from one language to another,
helps to predict the future of a language and its speakers. Recently more
attention has been turned to analyzing the specific conditions that result in
the coexistence of languages. While multiple languages coexist in a uniform
area the spatial distribution of the speakers sometimes forms specific patterns
that can be interpreted as Turing patterns.

This thesis presented the background and method for analyzing the occur-
rence of Turing patterns in spatial models. The conditions for diffusion-driven
instabilities were presented and finally, the analysis of Abrams-Strogatz spa-
tial language competition model with two different languages with differ-
ent diffusion rates was carried out. The results showed that in the spatial
Abrams-Strogatz model the Turing patterns do not occur due to the specific
form of model dynamics. The general conditions for diffusion-driven insta-
bility are not met and over time the model stabilizes itself. To illustrate the
findings, numerical simulations of the model were shown.
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6 Appendix A

6.1 Jupyter Notebook code

The Jupyter Notebook code used in this thesis for numerical simulations is
a modified version of Cyrille Rossant’s code from his tutorial of simulating
partial differential equations. The code is taken from the book ”IPython
Interactive Computing and Visualization Cookbook” by the same author.
The Jupyter Notebook code uses Python. [44].

import numpy as np
import matp lo t l i b . pyplot as p l t
%matp lo t l i b i n l i n e

a = 0.95
D u = 0.498
D v = 0.502
k uv = 0.009
k vu = 0.007
g r i d s i z e = 50
dx = 5
T = 90
dt = 0.001
n = i n t (T / dt ) # number o f i t e r a t i o n s
U = np . random . rand ( g r i d s i z e , g r i d s i z e )
V = np . random . rand ( g r i d s i z e , g r i d s i z e )

de f compute lap lac ian (A) :
A top = A[0:−2 , 1:−1]
A center = A[1:−1 , 1:−1]
A bottom = A[ 2 : , 1:−1]
A r ight = A[1:−1 , 2 : ]
A l e f t = A[1:−1 , 0:−2]
r e turn ( A top + A l e f t + A bottom + A right −

4 ∗ A center ) / ( dx∗∗2)

de f show patterns (U, ax = None ) :
ax . imshow (U, cmap = p l t . cm . copper ,

i n t e r p o l a t i o n =’ b i l i n e a r ’ ,
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extent =[−1, 1 , −1, 1 ] )
ax . s e t a x i s o f f ( )

f i g , axes = p l t . subp lo t s (3 , 3 , f i g s i z e = (8 , 8 ) )
s t e p p l o t = n // 9

f o r i in range (n ) :
deltaU = compute lap lac ian (U)
deltaV = compute lap lac ian (V)

Uc = U[1:−1 , 1:−1]
Vc = V[1:−1 , 1:−1]

U[1:−1 , 1:−1] , V[1:−1 , 1:−1] = \
Uc + dt ∗ (D u ∗ deltaU ∗ Uc \

− ( k uv ∗ Uc ∗ Vc∗∗a ) \
+ ( k vu ∗ Vc ∗ Uc∗∗a ) ) , \

Vc + dt ∗ ( D v ∗ deltaV ∗ Vc \
+ ( k vu ∗ Uc ∗ Vc∗∗a ) \
− ( k uv ∗ Vc ∗ Uc∗∗a ) )

f o r A in (U, V) :
A[ 0 , : ] = A[ 1 , : ]
A[−1 , : ] = A[−2 , : ]
A[ : , 0 ] = A[ : , 1 ]
A[ : , −1] = A[ : , −2]

i f i % s t e p p l o t == 0 and i < 9 ∗ s t e p p l o t :
ax = axes . f l a t [ i // s t e p p l o t ]
show patterns (U, ax=ax )
ax . s e t t i t l e ( ’ t=%s ’ %format ( i ∗ dt , ’ . 2 f ’ ) )

26



References

[1] Francis Heylighen. Complexity and Self-organization. Encyclopedia of
Library and Information Sciences, Jan 2008.

[2] What are Complex Systems? Published at Complex Systems Society
website. https://cssociety.org/about-us/what-are-cs (28.03.2019).

[3] Yaneer Bar-Yam. General Features of Complex Systems. Encyclopedia
of Life Support Systems, Jan 2002.
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