
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection Lee Kong Chian School Of
Business Lee Kong Chian School of Business

6-2019

From actions to paths to patterning: Toward a dynamic theory of From actions to paths to patterning: Toward a dynamic theory of

patterning in routines patterning in routines

Kenneth T. GOH
Singapore Management University, kennethgoh@smu.edu.sg

Brian PENTLAND

Follow this and additional works at: https://ink.library.smu.edu.sg/lkcsb_research

 Part of the Management Sciences and Quantitative Methods Commons, and the Strategic

Management Policy Commons

Citation Citation
GOH, Kenneth T. and PENTLAND, Brian. From actions to paths to patterning: Toward a dynamic theory of
patterning in routines. (2019). Academy of Management Journal. Research Collection Lee Kong Chian
School Of Business.
Available at:Available at: https://ink.library.smu.edu.sg/lkcsb_research/6400

This Journal Article is brought to you for free and open access by the Lee Kong Chian School of Business at
Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research
Collection Lee Kong Chian School Of Business by an authorized administrator of Institutional Knowledge at
Singapore Management University. For more information, please email libIR@smu.edu.sg.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/228209433?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/lkcsb_research
https://ink.library.smu.edu.sg/lkcsb_research
https://ink.library.smu.edu.sg/lkcsb
https://ink.library.smu.edu.sg/lkcsb_research?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6400&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/637?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6400&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/642?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6400&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/642?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6400&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

From Actions to Paths to Patterning:
Towards a Dynamic Theory of Patterning in Routines

Kenneth T. Goh
Singapore Management University

50 Stamford Road, #05-01
Singapore 178899

kennethgoh@smu.edu.sg

Brian T. Pentland
Michigan State University
Business College Complex

632 Bogue St. N270
East Lansing, MI 48824
pentland@bus.msu.edu

Acknowledgements. We gratefully acknowledge the thoughtful feedback from Deputy Editor Pratima
Bansal, three exceptional reviewers, and participants in the 2017 Academy of Management Journal New
Ways of Seeing paper development workshop at the Ivey Business School, the 2018 Asian Management
Research Consortium, the 2018 Academy of Management Big Data and Managing in a Digital Economy
Special Conference, the 2018 Interdisciplinary Network for Group Research, and the Singapore
Management University Strategy and Organisation group brown bag seminar series. We thank Hashmat
Habibzadah, Daniela Chang, and Gabriela Dedelli for invaluable research assistance and acknowledge
with deep gratitude the time our informants at GameSG dedicated to this project. We thank Carnegie
Mellon University, Ivey Business School, Singapore Management University, and Michigan State
University for financial support.

Page 1 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

ppyeo
Typewritten Text
Published in Academy of Management Journal, 2019 August, advance online.
https://doi.org/10.5465/amj.2018.0042
Submitted version
Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License

FROM ACTIONS TO PATHS TO PATTERNING:
TOWARDS A DYNAMIC THEORY OF PATTERNING IN ROUTINES

ABSTRACT
 This paper demonstrates a new way of seeing and theorizing about the dynamics of

organizational routines through the concept of paths – time-ordered sequences of actions or
events in performing work. Empirically and conceptually, paths provide the missing link
between specific actions and patterns of action. When routines are represented as a narrative
network, tracing the formation and dissolution of action paths can generate new insights about
the dynamic patterning of actions in routine performances. We traced action paths using
longitudinal field data from a videogame development project and found that action patterns
change dramatically over time based on the needs of the project. We explain these changes in
terms of generic mechanisms that lead to the enactment of more (or fewer) paths in the narrative
network. We propose that patterning can be seen as a new motor of routine dynamics and discuss
generic mechanisms through which patterning can influence narrative network structure.

Keywords: Routine dynamics, narrative network, network paths, task complexity, process
research

INTRODUCTION

When we look at an organization, it is easy to see the people, places, departments, and

other material and symbolic manifestations. Conceptually, however, we know that organizations

are constituted by the continual unfolding and patterning of actions and interactions between

these parts over time (Feldman, 2016a; Tsoukas & Chia, 2002; Weick, 1979). There is a gap

between a processual view, which emphasizes patterns of action, and conventional ways of

seeing and talking about organizations as collections of objects (Mesle & Dibben, 2016).

Current theory tells us that processual phenomena are everywhere (Hernes, 2014; Langley &

Tsoukas, 2016a), but they are harder to see (Feldman, 2016b).

 In this paper, we introduce the concept of paths as a way for seeing and theorizing about

the dynamics of organizational routines (Feldman, Pentland, D’Adderio, & Lazaric, 2016). By

path, we mean a coherent, time-ordered sequence of actions or interactions in the workflow –

steps in a process of accomplishing an organizational task (Pentland, Feldman, Becker, & Liu,

2012) – or events within a project or routine (Obstfeld, 2012; Pentland, Recker, & Wyner, 2017).

Page 2 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

We apply this lens in the context of a new product development project, specifically video game

development. When paths are repetitive and recognizable, they represent performances of a

routine (Feldman & Pentland, 2003; Obstfeld, 2012). In the project we studied, some paths were

repetitive and recognizable, but there was also constant change, making it a good context to

study routine dynamics. We use evidence from this project to theorize about a central problem in

routine dynamics: what drives a pattern of action to become more or less varied?

We build on the concept of patterning (Danner-Schröder & Geiger, 2016; Feldman,

2016a; Turner & Rindova, 2018) as a way to describe routine dynamics. We conceptualize

patterning as the formation of new paths and the dissolution of old paths in the narrative network

that describes the routine (Pentland & Feldman, 2007). The general approach is analogous to

established models of social network dynamics (Snijders, 2001; Snijders, van de Bunt, &

Steglich, 2010), but instead of examining ties between a fixed set of actors, we trace paths

between a constantly changing set of actions. We found that action patterns change dramatically

over time depending on project needs and explain generic mechanisms that lead to more (or

fewer) paths being enacted in the narrative network. While these mechanisms relate to Van de

Ven and Poole’s (1995) classic typology of change motors, we propose that patterning can be

seen as a novel motor of change for routine dynamics.

A path-based focus is not a minor methodological twist. It goes hand in glove with a

theoretical perspective called “strong” process theory (Hernes, 2014; Langley & Tsoukas, 2016a;

Tsoukas & Chia, 2002). Strong process theory offers a radical, process-centric ontology of the

social world. Tracing the formation and dissolution of paths over time provides a concrete way

to operationalize strong process theory in empirical research on routine dynamics. Our path-

based approach offers a new way of seeing and measuring how the patterns of action in a routine

Page 3 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

have changed. This allows us to describe and theorize about the mechanisms that drive routine

dynamics.

THEORY

The philosophical roots of strong process theory can be traced to Whitehead, James,

Mead, and Dewey and more recently the work of Chia (2016), Hernes (2014), Rescher (1996),

Shotter (2006) and others (see Langley & Tsoukas, 2016b). The basic insight is simple. As

Weick (1979: 95) observed, “organizations are grounded in interlocked behaviors rather than

interlocked people.” Putting actions in the foreground, rather than actors, aligns with the view

that the social world is a continually unfolding process (Strauss, 1993; Tsoukas & Chia, 2002).

Thus, the “dynamic, unfolding process becomes the primary unit of analysis rather than the

constituent elements themselves” (Emirbayer & Mische, 1998: 287). This strong process view is

widely adopted in research on routine dynamics (Howard-Grenville & Rerup, 2017). In the

following sections, we review the routine dynamics literature and explain how paths can provide

a new way of seeing and characterizing the dynamics of organizational routines.

Routine dynamics

Routine dynamics focuses on the stability and change of organizational routines from a

processual perspective (Feldman et al., 2016). Routines are repetitive, but because each

performance of a routine unfolds over time, it can always unfold in a new direction (Feldman &

Pentland, 2003). While there are many factors that help routines “stay on track” (Schulz, 2008),

routines are not constrained to follow pre-defined paths (Feldman, 2000; Feldman & Pentland,

2003; Feldman et al., 2016). Future paths are influenced by past paths, but not determined by

them. Furthermore, as Feldman et al. (2016) point out, some routines are not very routine: they

embody an enormous number of possible paths (Hærem, Pentland, & Miller, 2015; Pentland,

Page 4 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Hærem, & Hillison, 2010). All routines exhibit what (Cohen, 2007) called “pattern-in-variety,”

but some are more varied than others and at the same time, the patterns may be changing.

This points to a central puzzle in routine dynamics: what makes a pattern of action more

or less varied? In routine dynamics, variety enables change (Feldman, 2016a; Pentland, Liu,

Kremser, & Hærem, In press). A pattern of action that is more varied encompasses more paths,

with more possibilities for divergence/change. A pattern of action that is less varied encompasses

fewer paths, with fewer possibilities for divergence/change. However, the theoretical problem of

what drives patterning is not explained: Why do patterns of action stay the same or change over

time? There is also the methodological problem of seeing and quantifying pattern-in-variety

(Cohen, 2007). We cannot research this phenomenon if we cannot see it.

The growing body of field research on routine dynamics has focused on explanations of

stability and change. It elaborates on the concept of endogenous change as theorized by Feldman

and Pentland (2003) and points to the importance of exogenous factors as well. For example, in

their study of compliance routines in oil exploration, Bertels and colleagues (2016) show how

routines can be shielded from and shored up against external interventions. The routines remain

stable, although this stability requires effort and continual maintenance. In contrast, in their

study of NASA’s implementation of an enterprise information system, Berente and colleagues

(2016) show that routines can change through unanticipated local adaptation. As Barley (1986)

observed when CT scanners were introduced into radiology departments, Berente et al. (2016)

found that new technology can lead to new patterns of interaction in a workplace. At the

organizational level, Rerup and Feldman (2011) demonstrate how organizational routines

coevolve with organizational schema through different types of “trials” and “errors.”

Page 5 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The formation of new routines has also been a topic of considerable interest. For

example, in the context of video game development, Cohendet and Simon (2016) describe a

process of forming new routines through deliberately breaking, partitioning, and recombining

aspects from different routines in response to an organizational disruption that required them to

shift from efficiency to make room for creativity. Deken et al (2016) showed how flexing,

stretching, and inventing generated novel actions and outcomes in an automotive supplier that

was developing a new line of information-based services. Meetings (Aroles & McLean, 2016)

and spaces (Bucher & Langley, 2016) provide opportunities for questioning, reflection, and

thought experiments as participants work out new routines (Dittrich, Guérard, & Seidl, 2016).

This fieldwork provides evidence that routines do, in fact, change over time in systematic

ways and has led to a refined understanding of factors driving stability and change in routines.

Feldman et al. (2016) note that these field studies have generally employed situated actions as

the unit of observation and patterns of action as the unit of analysis. Ironically, the unit of

analysis (the pattern of interdependent action that makes up the routine) has been less visible.

The literature on routine dynamics theorizes about patterns of action, often without measuring or

visualizing those patterns (Feldman, 2016b).

Feldman (2016a) suggests that one way forward is to focus on the “inseparability or

mutual constitution of actions and patterning” (p. 38). Patterning exemplifies the process of

dynamic unfolding described by Emirbayer and Mische (1998), because routines are performed

one step at a time. Step by step, situated actions enact recognizable paths. Paths represent a

missing link between situated actions and repetitive patterns. By tracing paths, we can begin to

connect actions and patterns.

Page 6 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Routine Dynamics as Network Dynamics

In this paper, we use narrative networks to represent organizational routines and trace

paths within routines (Pentland & Feldman, 2007; Pentland et al., In press). A narrative network

is unlike a social network because the nodes represent events or activities, not people. The ties

(edges) in a narrative network represent sequential relations between the actions and can be

interpreted as handoffs (Pentland, Recker and Wyner, 2017). They could also be interpreted as

organizing moves (Pentland, 1992) because they enact division of labor, hierarchy, and other

organizational structures. For example, in the video game development project, there were

constant handoffs between work activities and departments (e.g., art work and programming).

Technically, a narrative network is a directed graph where the weights on the edges can

be used to quantify the frequency of handoffs between activities. Pentland and Liu (2017)

describe methods for constructing narrative networks from data collected in field research.

These networks can be automatically constructed from computerized event logs or observations

using software provided by Pentland and colleagues (2015, 2016). In the context of

organizational routines, the narrative network thus represents the patterning of actions in

performing the routine. The differences between social networks and narrative networks are

summarized in Table 1.

INSERT TABLE 1 HERE

Network Dynamics. In models of social network dynamics, changes to the network are

modeled by adding and removing ties between the individuals in the network. Tie formation is

driven by reciprocity (Wasserman & Faust, 1994 Chapter 13), preferential attachment (Barabási,

& Albert, 1999), homophily (McPherson, Smith-Lovin, & Cook, 2001), transitivity (Davis,

1970; Holland & Leinhardt, 1977), and other features of the network. There are established

Page 7 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

models for predicting dynamics (Snijders et al., 2010) and for visualizing dynamics (Handcock,

Hunter, Butts, Goodreau, & Morris, 2008; Moody, McFarland, & Bender-deMoll, 2005).

Relational event models (Butts, 2008; Leenders, Contractor, & DeChurch, 2016) that predict the

likelihood of a relational event (i.e., interpersonal action) between two parties provide a way to

model social network dynamics in continuous time.

We conceptualize narrative network dynamics in an analogous manner to social network

dynamics: as the formation and dissolution of network edges. However, narrative networks and

social networks are fundamentally different ways to see the social world. While social networks

represent the ties between actors, narrative networks represent sequential relations between

actions or events. In narrative networks, nodes are not individuals with cognition, motivation,

and other personal characteristics. Consequently, the mechanisms that drive the dynamics of

social networks do not apply. For example, it does not make sense for actions to be attracted to

each other and become sequentially related on the basis of that attraction. Thus, to theorize about

the dynamics of narrative networks, we need to start from scratch. For this purpose, we turn to

the concept of network paths.

Network Paths. In any kind of network, a path is defined as a sequence of connected

nodes (West, 2001). However, the interpretation of paths is different in different kinds of

networks. In a social network, a path counts the number of “hops” or degrees of separation

between individuals in the network. The shortest path provides a measure of distance between

nodes. It is an indication of connectivity between pairs of nodes and can be used to identify

nodes or ties that are critical for connectivity (Freeman, 1977; Wasserman & Faust, 1994: 105).

In a narrative network, a path represents a sequence of actions that might be used to carry

out part of an overall routine or process. Paths can also be considered as recipes for action or

Page 8 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

stories: they describe how a process has been or could be performed. Like any recipe or story, it

is carried out one step at a time. The nodes in the network are the actions and the edges represent

the movement from one action to the next, connecting those actions into paths.

Thus, we see a path as a sequence of steps enacted over time. Building on Strauss (1993),

Obstfeld (2012) used the term trajectory to refer to the same basic idea. Obstfeld (2012: 1574)

defined a trajectory as “a sequence of interdependent actions involving multiple actors.” In

business process management, paths are often referred to as “traces” (Song, Günther, & Van der

Aalst, 2008). While we are referring to the same concept, we prefer the term path because it

emphasizes the graph theoretic interpretation (West, 2001).

Steps to Paths to Patterns. The narrative network provides a theoretical explanation of

how enacting different steps influences the possible paths in a routine. When we add or remove

steps (edges) from a narrative network, it changes the set of possible paths. It creates (or

removes) possible ways of getting things done. For example, if a new bus route or subway line

opens (or closes), it may create (or remove) a possible path for getting to work. As a result of

these changes, new paths become available and old paths become unavailable. Each possible

path contributes to the overall pattern.

In general, adding actions (nodes) and/or handoffs (edges) will tend to increase the

number of paths. Removing actions (nodes) and/or handoffs (edges) will tend to decrease the

number of paths. These relationships are not hypotheses; they are based on mathematical

properties of directed graphs. The question for organizational research is: What mechanisms

drive these dynamics?

METHODS

We conducted a field study of a video game development project team that involved

being “in the flow” to capture longitudinal data through observations, interviews, and archival

Page 9 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

materials. In-depth field work provided the fine-grained detail necessary to bring the phenomena

to life (Feldman et al., 2016; Jarzabkowski, Lê, & Spee, 2016).

Research Setting

The setting for our study is a project team, ProjectBQ, at a video game development

studio, GameSG (both pseudonyms), based in a mid-Atlantic city in the United States. During

the period of data collection, GameSG was a 10-year old studio that employed approximately 60

employees, mostly under 30 years of age, with expertise in software engineering, game design,

and technical art. Prior development projects at GameSG included games on various platforms

(e.g., mobile phones, stand-alone entertainment systems, TV plug-in games, internet browser

games) for a wide spectrum of clients that included video game publishers, media

conglomerates, theme parks, and a startup toy company.

Project teams in GameSG were usually composed of members with expertise in one of

the following skill sets - game design, software engineering, technical art, script writing,

animation, sound composition, and project management. The composition of team members in

ProjectBQ was typical in this regard. The team was led by a core group of functional “leads”

consisting of the producer, a lead designer, a technical lead, and an art lead. Each lead was

responsible for coordinating work in that functional domain and acting as a gatekeeper for the

quality of work produced. Project leads were also directly involved on high level decisions about

the design and functionality of the game. The producer managed deadlines, the pace of work, and

access to resources for the team. They played a boundary-spanning role between the team and

other stakeholders such as GameSG management, other project teams, and the client. The team

size for ProjectBQ ranged from 8 to 15 developers over a 14-month period.

ProjectBQ was funded by a non-profit with the goal of promoting anti-drug messages

through unstructured learning methods. The project was a “serious” game intended to teach

Page 10 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

teenagers about resisting peer pressure in high-risk situations (e.g., substance abuse, risky

behavior). The game was themed as a fantasy game where the hero protagonist is a mouse that is

attempting to protect his tribe from the corrupting influence of the villain antagonist. Players

progressed in the game by visiting new worlds to battle enemies. Battles were turn-based and

were won by whether the player picked the right move that would best counter the one chosen by

the computer. Although the game had “fantasy characters”, players had to make decisions based

on real world situations. Describes Producer1,

“It is not direct messages saying, “Don’t do drugs.” What it’s saying is, “Here are some

situations that you’re not going to be comfortable with in real life. Here are responses and

ways in which you can handle those situations without feeling like a nerd or an outcast,

or like you’re going to lose your friends or things like that.” (Producer1)

ProjectBQ was typical of the game development projects at GameSG in that the stages of

development followed a standard sequence of a pre-production, production, and refinement. The

pre-production stage involved testing out ideas for the game with the goal of finalizing game

design. The production stage involved building the actual game. Finally, the refinement stage

involved fixing software bugs and improving on the playability of the game. Despite following

this standard sequence of development, ProjectBQ team members were more frustrated than

usual about the frequent design changes. The project was over scoped and behind schedule.

These issues manifested in a few notable incidents during the project: the project lead (who was

also one of the tech leads) was replaced with a co-designer, the lead designer was fired from the

studio, and the studio head had to become personally involved in redesigning the game halfway

through. As the project developed, team members reported losing interest in the project and were

unhappy at having to work overtime on a game they did not find fun at all. The game was

Page 11 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

eventually built and delivered to the client, albeit behind schedule. Despite the negativity in the

development process, the game was found to have moderate success in improving adolescent

players’ ability to identify pressuring situations as well as recognize and practice healthy

responses. The game was also a finalist for several gaming awards and was rated 4.2 stars on

Google Play and 4 stars on iTunes, out of a possible 5 stars.

 We picked video game development as an exemplary setting for studying routine

dynamics because it is a collective task that is ambiguous and emergent: there are an endless

number of possibilities for combining elements to create a game. Video games are an interactive

virtual experience produced by a computer program onto a display device that people engage in

for entertainment. Although games are also used in more “serious” settings such as education

and training simulations, there is always an element of interactivity and engagement with the

player. However, how this interactivity and engagement manifests in the context of the game is

rarely obvious at the outset of game development (Cohendet & Simon, 2016).

These characteristics of video game development can be considered a type of creative

project (Obstfeld, 2012). Creative projects consist of an emergent trajectory of interdependent

action initiated and orchestrated by multiple actors to introduce change into a social context. The

nature of these departures could be in the form of new elements, or new linkages between

familiar elements. The ambiguous means and ends of creative projects imply that “repetition is

not a guide on what to do next” (Obstfeld, 2012: 1571) as the trajectory of action required to

create the video game does not follow a set plan. On a continuum of routine and non-routine

actions, ProjectBQ is clearly at the non-routine end of the continuum (Adler & Obstfeld, 2007;

Obstfeld, 2012).

Page 12 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Collection

Our research design incorporated data from archival materials, non-participant

observation, and interviews. Data was collected over 15 months as part of a longer two-year

study on the routines in video game development. The ProjectBQ team used a software project

management approach called ‘scrum’ (Cohendet & Simon, 2016; Sutherland & Sutherland,

2014). Scrum involved breaking down the project into three-week ‘sprints’. Before each sprint,

the team would decide on their collective goals and individual tasks for the next sprint. The

sprint consisted of short daily meetings, lasting no more than 15 minutes, where members

updated the team on the progress of their individual tasks. At the end of the sprint, the team

would meet to review the progress on the team’s goals and set their goals for the next sprint. This

cycle continued for the entire duration of the project.

The primary document we relied on to construct networks of action patterns were ‘scrum

sheets’ - archives of task schedules that contained logs of tasks assigned to each individual.

These documents were updated daily by the team and daily versions of these documents were

downloaded between May 2011 and February 2012 (n = 122). As an archival source, the scrum

sheets are particularly suitable for capturing chronologies of actions over long periods of time

(Langley, Smallman, Tsoukas, & Van de Ven, 2013).

The scrum sheets were used to create a database of tasks, the “story” or goal that it meant

to accomplish, the actors associated with the tasks, and when the task started and ended. A

“difference report” was created for each day by comparing scrum sheets with the most recent

version to identify which tasks were added or removed, and the progress made on the task. From

these daily difference reports, a list of actions was created (n = 2,803). Starting and ending dates

for each task were also extracted from the difference reports. Tasks without a start and end date

were removed as these tasks were not acted upon, resulting in final list of 2,428 tasks. These

Page 13 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

actions were then grouped by stories and sequenced according to the following order: 1) when

the task ended, 2) when it was started, 3) the order in which the action was added to the database.

The last criterion was necessary to determine the ordering of actions that shared similar start

dates and end dates.

Between May 2011 to August 2012, the first author was a non-participant observer on

ProjectBQ. These observations included team meetings (n = 39), client meetings (n = 7), and

play test sessions (n = 4). Team meetings included daily fifteen-minute “scrum” meetings (n =

29) where team members met to schedule and coordinate their tasks for the day, retrospective

meetings where they reviewed work processes (n = 2), and general discussions about the project

(n = 8). During these meetings, notes were taken about the purpose of the meeting, what was said

and by whom, and the author’s impressions of what transpired during the meeting.

In addition to data from observations, both ad hoc informal (n = 11) and formal semi-

structured interviews (n = 4) were conducted with team members. The informal interviews

focused on getting status updates on the project while formal semi-structured interviews were

about 60 minutes long and focused on gaining an in-depth understanding of specific episodes

during the project. Interviews were conducted with the producer, the two tech leads, the art lead,

a designer, and a software engineer. Archival materials such as project schedules, planning

documents, meeting notes, and budgets were also accessed and referenced to establish rich

insights into the events surrounding the actions taken by the team.

Data Analysis

In keeping with our goal of seeing and theorizing about patterning as it was enacted over

the course of the project, we analyzed data chronologically as a narrative. The data analysis

consisted of three main steps: (1) constructing a series of narrative networks that represent

Page 14 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

patterns of action throughout the project; (2) computing the properties of each network; and (3)

constructing a project narrative to interpret and theorize about the dynamics of those patterns.

Constructing narrative networks. Narrative networks were constructed in the following

steps: 1) code the data into sequences that can be used to construct narrative networks; 2) bracket

the data into windows of analysis that correspond to project sprints; and 3) construct and

visualize the networks through a software application called ThreadNet (Pentland et al., 2015,

2016).

The first step, coding the data into sequences, required coding the final list of 2,428

activities from the scrum sheets according to the actions and roles involved in each activity. We

used a constant comparative process (Glaser & Strauss, 1967) to develop task categories with the

help of two research assistants. Categories were developed by iterating between the first author’s

familiarity with the context, field notes, and other archival documents to understand the intent of

the task. This process involved forming initial clusters of tasks to minimize differences within

clusters while maximizing differences between clusters. An initial set of categories were then

developed from these clusters. New tasks were then compared with earlier tasks in the same

category. If a newly categorized task appeared to be different from other tasks in the same

category, this would be reconciled by attempting to refine the definitions and properties of these

categories to accommodate the new data. This process of constantly comparing new data with

existing codes was continued until a level of stability was reached. From twelve initial

categories, the list was ultimately reduced to the following six categories: Administration,

Experimenting, Building, Revision, Refinement, and Testing (Table 2). Figure 1 shows the

distribution of these categories over time.

Page 15 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

INSERT FIGURE 1 ABOUT HERE

Roles were coded in a similar approach to coding actions. The primary actor responsible

for each task in the database was categorized into an organizational role by the first author based

on the researcher’s familiarity with the research setting. These roles were Design, Art, Tech, and

Analytics (Figure 2). Together with the actions, these roles define the possible actions in the

narrative network. The six roles and six task categories meant that there were potentially 36

unique role-task categories. The 36 unique role-task categories were applied to the 2,428 time-

ordered events gathered from the scrum sheets to create a set of 159 coded sequences. These

coded sequences become the input for creating a series of narrative networks for the project as it

progressed.

INSERT FIGURE 2 ABOUT HERE

The second step involved bracketing narrative networks into windows of analysis.

ProjectBQ was implemented using an agile software development methodology (Moe, Dingsøyr,

& Dybå, 2010; Sutherland & Sutherland, 2014), which meant that the project was divided into

three-week long phases called “Sprints.” For our analysis, we bracketed the data (Langley,

1999) into three-week windows that corresponded with the dates for each Sprint.

The third step involved constructing and visualizing the networks through a software

application, Threadnet (Pentland et al., 2015, 2016). ThreadNet was used to convert the coded

sequences into a narrative network for each sprint. The application traces the coded sequences of

action to create networks. Each kind of coded action becomes a node in the network. Adjacent

Page 16 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

pairs of coded actions become edges in the network. Although this procedure can be performed

manually, the software is faster and less error-prone.

Computing properties of narrative networks. Once the networks for each sprint were

constructed, we computed their properties. The two basic properties that define any network are

(a) the list of nodes and (b) the list of edges (West, 2001). For our purposes, we simply needed

to count the number of nodes and edges in each graph. These counts are provided automatically

ThreadNet (and other network analysis tools) and are shown in Table 3 (see below).

To estimate the number of paths in the network, we used a simple formula based on

McCabe’s (1976) concept of cyclomatic complexity:

(1) 𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 𝒑𝒂𝒕𝒉𝒔 = 10 0.08 ∗ (𝐸𝑑𝑔𝑒𝑠 ― 𝑁𝑜𝑑𝑒𝑠 + 1)

Stated in English, the estimated number of paths in a network is an exponential function

of the difference between the number of edges and the number of nodes. For a given number of

nodes, increasing the number of edges will increase the estimated number of paths. The constant

(0.08) is derived empirically by fitting this equation to thousands of simulated networks with a

known number of paths. The derivation, validation, and limitations of this formula are provided

in Appendices A and B. The complexity index (Hærem et al., 2015) is computed as a logarithmic

function of the number of estimated paths.

Constructing the overall project narrative. We constructed a timeline of events from

interviews with informants. These interviews were professionally transcribed and analyzed using

nVivo software to identify periods, major events, and the critical actors associated with the

temporal unfolding of the project (Langley, 1999; Pentland, 1999). We drew on the first author’s

observations of the project team to validate our timeline of the project. Each observational event

Page 17 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

was dated and summarized. We then compared the events provided by informants with these

observations to validate the timeline.

To create a more detailed narrative, we augmented the basic project timeline by iterating

between the interviews and the observations with an emphasis on the contextual circumstances

surrounding interpretations of why events occurred, individual thoughts and feelings in response

to actors and incidents, and histories. This narrative provided a depth of insight into the

unfolding project that extended temporally across the past and into the future, and across actors

that included individuals, the team, and external stakeholders.

FINDINGS

We report our findings in two parts. In the first part, we describe four phases of

patterning in ProjectBQ. During each phase, the number of paths in the narrative network

increased or decreased dramatically. In the second part, we combine our qualitative data about

the project with quantitative metrics about the narrative network to theorize about the

mechanisms that drive routine dynamics.

Four phases of patterning in ProjectBQ

 As a creative project, ProjectBQ involved a lot of change. Figure 3 shows how the

complexity of the project (indexed by the number of paths) changed over time. Table 3 shows

the narrative network for each sprint, plus the number of distinct nodes/edges and the number of

paths added/removed from one sprint to the next. Table 3 also mentions the mechanisms that

drive dynamics, which are explained in the next section. Here, we discuss the project in four

phases of patterning that correspond to distinct changes within the project.

--
INSERT FIGURE 3 ABOUT HERE

--

Page 18 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

INSERT TABLE 3 ABOUT HERE

Phase one: Sprints 1 to 4 (Increasing Complexity). In phase one, complexity increased

between Sprints 1 to 4 (adding over 43,000 paths to the network). This increase was driven by

both an increase in the number of distinct actions (from 9 to 17) as well as the number of distinct

handoffs (from 19 to 87).

This increase can be explained by the fact that the first phase of the project consisted of

concepting, prototyping, and developing the core mechanics of the game. Sprint 1 was

designated as the phase to develop “Initial Concepts”. Sprint 2 was initially designated as a “Pre-

Production” phase, the goal of which was for developers to rehearse the steps for producing

game assets and incorporating these assets into the game to get a sense of the production

schedule. Going through this process helps them to “make sure a lot of these later milestones

were laid out and could be accomplished” (Art1). However, Sprint 2 was later renamed as a

“Production” phase. Sprint 3 was assigned to be the phase for developing “Battle prototype”

which was a core mechanic of the game. This was to be followed by a phase for developing the

combat system and the game environment in Sprint 4, which was labelled the “Combat, Burrow”

phase. To develop the “combat” feature of the game, the Designer needed to account for

technical and aesthetic concerns which required closer collaboration, coordination, and iteration

with Tech and Art. This interdependence between developers from different functions is evident

from the doubling in distinct handoffs from Sprint 2 to Sprint 4.

Phase two: Sprint 5 (Decreasing Complexity). In Sprint 5, complexity decreased to

1.52. Interestingly, the number of distinct actions remain the same at 17. The decrease in

complexity is driven by the decrease in handoffs (n = 47), which resulted in a decrease of over

43,000 possible paths. Complexity declined in Sprint 5 because a prototype was to be delivered

Page 19 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

to the client at the end of the sprint. As a result, most of the actions were building-related as

evident from the increase in frequency of Building tasks in Sprint 5 (Figure 2).

Phase three: Sprints 6 to 8 (Surge in Complexity). In phase three, complexity

increased between Sprints 6 to 8 (from 3.92 to 5.76). The number of distinct actions increased

slightly from Sprint 5 but remained constant throughout this phase (n = 21). However, the

number of distinct handoffs more than doubled from Sprint 5 (from 83 to 106). This seemingly

minor increase in handoffs led to a dramatic addition of over 500,000 possible paths. This

change is especially striking because the number of distinct actions was constant during this

phase.

This enormous increase in possible paths resulted from the ProjectBQ developers

working towards a “gamma build” deliverable that was due in Sprint 11. As the “feature lock”

deadline was in Sprint 9, there was a flurry of activity that included both Experimentation- and

Building-related actions to confirm the final features of the game in Sprint 8. We found that the

increase in handoffs was due to team members iterating between downstream roles (e.g.,

“Sound”) and tasks (e.g., “Refinement”) and upstream roles (e.g., “Design”) and tasks (e.g.,

“Experimenting”).

Phase four: Sprints 9 to 11 (Decline in complexity). In phase four, complexity

decreased between Sprints 9 to 11 (from 3.12 to 1.74). This decrease in complexity was caused

by both a decrease in distinct actions (from 18 to 10) and distinct handoffs (from 66 to 38). The

number of possible paths dropped off by over 500,000, mostly in sprint 9.

In phase four, there was a decline in both distinct actions and handoffs because the

feature lock deadline in Sprint 9 meant that no more changes to the design could be made.

Hence, the remaining actions were mostly Building-related. There were no longer major design

Page 20 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

changes that required developers to iterate between experimenting and building, or between

functions.

Mechanisms that drive routine dynamics

In the second part of our findings, we draw on our findings to identify mechanisms that

drive the complexity of routine dynamics through the addition (or removal) of actions and

handoffs from the network. These mechanisms operate to varying degrees throughout the

performance of the project. To identify these mechanisms, we draw on causal loops

diagramming methods that are commonly used in system dynamics research to articulate process

theories (e.g., Rudolph et al., 2009; Strike & Rerup, 2016) to unpack how events unfolded in

ProjectBQ. We identify a total of six mechanisms that directly affect the complexity of routine

dynamics: reinforcement loop, performance loop, revision loop, delay loop, cut-back loop, and

motivation loop.

Reinforcement loop. Reinforcement through repetition is one of the basic mechanisms

of stability in routines (Cohen & Bacdayan, 1994; Schulz, 2008). In ProjectBQ, we found that

the frequency of a handoff in one sprint was positively related to the tendency for that handoff to

occur in the next sprint. If a handoff appeared more than once in a given sprint, there was a 55%

chance it appeared in the next sprint. If a handoff appeared more than five times in a given sprint,

the chance of it appearing in the next sprint increased to 95%. These findings thus provide

evidence of stable, repetitive patterns of action even within the context of a creative project. By

itself, repetition tends to reduce complexity because, in a routine with many thousands of

possible paths, stronger paths get reinforced and weaker paths are forgotten (Pentland et al, in

press). Conversely, greater complexity (more paths) reduces the chances that a particular path

will be repeated. We label this relationship between repetitive patterns of action and complexity

as the reinforcement loop (Figure 4a).

Page 21 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

INSERT FIGURE 4a ABOUT HERE

Performance loop. Figure 4b shows the set of relationships in the performance loop that

drive actions and handoffs. Output quality gap – the gap between the client’s requirements and

the overall quality of the project team’s output – instigates the developers to act to narrow this

gap. This mechanism was evident throughout the project but manifested in different ways at

different sprints.

At the beginning of the project, particularly in Sprints 1 and 2, actions were taken to help

designers to understand the game mechanics and make decisions about the features and

functionalities that the game will have. Producer1 explained the process at this stage as follows:

“[The designer] felt that we should have a pre-production phase. Your designer needs a

pre-production process because they need to figure out what the game is and then they

need to start designing it before the tech people come in and start building it. You can’t

build something that hasn’t been figured out yet.” (Producer1)

The goal of the pre-production phase was for developers to rehearse the steps for

producing game assets and incorporating these assets into the game to get a sense of the

production schedule. Going through this process helps them to “make sure a lot of these later

milestones were laid out and could be accomplished” (Art1). A large proportion of actions in

Sprints 1 and 2 thus consisted largely of Experimentation actions performed by the core group of

eight developers.

In Sprint 3, the team’s headcount increased because the Tech lead lobbied senior

management to bring on more developers to the team sooner. This decision was made due to

concerns that the project had been over scoped, which would hurt their ability to meet project

deadlines. With the increase in headcount, there was also a corresponding increase in the total

Page 22 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

frequency of actions from 65 in Sprint 2 to 98 in Sprint 3 as developers “ramp up” and move into

the Production phase to build the game, even while continuing to experiment with different

ideas. The increase in actions and handoffs enabled the team to work towards their first major

project milestone - to deliver a playable prototype to the client at the end of Sprint 5.

We have thus far explained how the performance loop increases actions and handoffs.

However, this mechanism could also reduce actions and handoffs when expectations for output

quality were low, such as in Sprint 5. In Sprint 5, the complexity index decreased from 4.64 in

Sprint 4 to 1.56. This decrease in complexity index was due to fewer handoffs since the

frequency of actions were approximately similar in both Sprints 4 (n = 221) and 5 (n = 224). The

reason there were fewer handoffs in Sprint 5 is because the developers were focused on

completing the prototype at the end of Sprint 5. After they had iterated on a design that they

thought was good enough to meet the client’s expectations for this milestone, the team then

focused on Building and Refining actions to build the prototype. Thus, the proportion of

Building actions increased from 36.7% in Sprint 4 to 67.4% in Sprint 5. Of note were the

decreases in Testing actions from 19.0% in Sprint 4 to 4.9% in Sprint 5, and decreases in

Experimenting actions from 26.7% in Sprint 4 to 14.3% in Sprint 5. Furthermore, since quality

expectations for prototypes were lower, developers did not need to iterate between functions and

revise their work as frequently, which explains the fewer handoffs and paths. This relationship

between output quality gap, actions and pathways, and output quality partially explains the

dynamics of complexity, which increased between Sprints 1 to 4 then plunged in Sprint 5.

In the second half of the project, from Sprint 6 onwards, the ProjectBQ team has a new

milestone to deliver a “gamma build” of the game in Sprint 11. New actions and handoffs were

Page 23 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

undertaken to develop the game to meet this milestone, which led to the increase in complexity

index between Sprints 6 to 8.

After the feature lock deadline in Sprint 9, the game could no longer be improved by

adding or modifying game features. Consequently, this narrowed the output quality gap by

reducing quality expectations to refining or “polishing” the features that were already in place.

The narrowing of the output gap due to the feature lock deadline instigated a corresponding shift

towards Building and Refining actions, with fewer pathways across roles which led to the

decline in complexity from Sprints 9 to 11.

INSERT FIGURE 4b ABOUT HERE

Revision loop. The Performance loop also intersected with other mechanisms, one of

which is the Revision loop. As more components of the game become completed, developers

could playtest the game and learn about which features of the game to change, add, or remove.

This feedback triggers revisions to the design which led to more actions and handoffs between

roles to accomplish, creating a positive feedback cycle that we label the “Revision loop” (Figure

4c).

The Revision loop was evident in Sprints 3 and 4 of ProjectBQ where complexity

increased from 2.68 to 4.70. By Sprint 3, the team had completed an early prototype (the “Gold

Spike”) and had gone through the process of incorporating some graphical assets into the game.

Going through this production process made them aware of constraints they could not predict

before. As Artist1 explained,

“As we got more work done, we realized that this design wasn’t working or this spec

needed to change, which forced a rewrite of tech. It happened a lot with UI (user

Page 24 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

interface) and it happened a lot with some of the other core mechanics, like the burrow

and combat.” (Artist1)

For example, they discovered that animated movements were too “jerky”. The team

narrowed down their options to either reducing the size of art assets or redesigning the combat

system. While reducing the size of graphics was much quicker than redesigning the game, it

would also reduce its quality. To figure this out, the team first experimented with reducing

graphical quality but later realized that they would have to change the combat system from “3 vs.

3” to “1 vs 1”. Thus, exploring these options involved several iterations between Art, Tech, and

Design, which was reflected in the high number of cross-functional handoffs in the “Combat”

story in Sprints 3 and 4. The iterative process also led to handoffs between actions at different

stages of development. In Sprints 3 and 4, some parts of the “Combat” story were in the early

stages of experimenting, while others were in the later stages of testing and revision. An example

of an experimenting task that Design was assigned to in the Combat story was “Influences for

Combat” (Sprint 4, Thread 22, ID 56); while an example of a later stage testing task for Tech

was “2nd pass on enemy AI” (Sprint 4, Thread 22, ID 59).

INSERT FIGURE 4c ABOUT HERE

Delay loop. The Delay loop is a positive feedback loop that indirectly affects actions and

handoffs through revisions. In ProjectBQ, the frequent revisions to game design and features

slowed down the project team’s progress. Developers thus had less time to implement features

that they had originally planned for, resulting in further revisions that increase actions and

handoffs.

In revising the combat system in Sprint 3 for example, “changes to [the] core mechanic

mess[ed] up productivity” as the requirements for many related features “changed drastically”

Page 25 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

resulting in “rework[ing] some stuff [they] had done before” or “rewrit[ing] code from scratch”

(Artist1). Revisions thus throw the production schedule for the entire project off track – not only

do they have less time to accomplish their remaining tasks, but there is also more work due to the

revisions.

Another example of revisions causing delays was evident between Sprints 6 to 8.

ProjectBQ was characterized by frequent revisions where “there was a new idea or new situation

that will then change” (Artist 1) roughly every two weeks. Consistent with this claim, we found

evidence of an iterative process in these sprints from the presence of upstream roles (e.g.,

Design) and actions (e.g., Experimenting) performed together with further downstream roles

(e.g. Sound) and actions (e.g., Refinement) during these sprints. By then, the team was already

behind schedule. Sprint 6 was intended to be the phase where they developed the social elements

of the game and was labeled “Global quest, friends list, bring friends on missions, analytics,

tutorials”. However, the list of tasks was still dominated by those for “Combat”, “Missions”, and

“Burrow”, which were goals for Sprints 4 and 5.

Not only did frequent revisions cause delays by slowing down the completion of goals,

but they also caused delays because the frequent revisions led developers to intentionally leave

their tasks uncompleted in anticipation of further revisions. As described by Artist1,

“The guys get to a point where Art wouldn't actually be making any final art for anything

because we weren’t sure [about] spending that time. Let’s say that it's going to take you

ten hours to make a final piece of art today. Well guess what? No one's ever going to get

more than five hours at any task, because we don't know what's going to get cut. If you

have twenty things you need to do, instead of spending ten hours on each of those tasks,

Page 26 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

we're going to go through all of that for five hours. Hopefully, we'll have something to

show for you.” (Artist1)

The frequent revisions created the expectation that more changes were forthcoming. This

expectation, coupled with having “twenty things you need to do”, led to a more cautious

approach where tasks would only be partially completed to minimize any loss in time. While this

approach might have saved time for each individual, it slowed down the team’s progress further

because instead of completing a task on schedule, tasks were completed only when they became

a high priority which was usually when it was behind schedule and was urgently needed to be

completed. As a result of these delays, the main production phase was extended by four sprints in

Sprint 6, and the overall schedule was extended by two sprints which Producer1 reported to be

the first of multiple extensions over the course of the project.

Just as revisions caused delays, we found that delays also instigated more revisions. In

ProjectBQ, the team adapted to having less time by “chopping” certain features that cannot be

completed in the time remaining (Tech1). At the same time however, when a feature is

simplified (i.e., such as switching from 3 vs. 3 to 1 vs. 1 combat) the game becomes “not as

exciting” and the developers feel compelled to “respond by making other things more exciting,

more engaging” (Artist JD). Thus, even as the project scope was reduced, new features had to be

redesigned which increases actions and handoffs. Revisions and delays were therefore engaged

in a positive feedback cycle which we label the “Delay loop” (Figure 4d).

INSERT FIGURE 4d ABOUT HERE

Cut back loop. The cut back loop is a balancing feedback loop between revisions and

delays that indirectly reduces actions and handoffs through the output quality gap. Because of the

high degree of interdependence between components, revisions to one component led to delays

Page 27 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

that spilled over to other components and eventually slowed the progress of the entire project.

For example, the Nov 10 meeting in Sprint 9 shows how Design1 is blocked by Tech on the

“power scripting” tasks. The Tech team cannot proceed because they are themselves blocked on

a number of their tasks. One of the reasons for their being blocked is that Tech3 is unable to start

work until Design decides how players will “level up”. However, since Design1 is faced with

higher priority tasks, he is not able to decide on the “level up” features yet. Overall, we see that

developers are entangled in an intricate web of interdependence such that delays in one

component has a domino effect on the overall rate of progress. These delays cumulate until a

critical point where the team runs out of time. By then, developers no longer have time to iterate

and refine their work and are just trying to complete their tasks “in a crappy way” or “chopping”

features and reducing the scope of the project (Tech1). In both cases, there is a reduction in

actions and handoffs through a reduction of the output quality gap.

These dynamics were manifested in Sprints 9 to 11. A deadline for a major milestone,

delivering “gamma version”, was due at the end of Sprint 11. To meet this deadline, an internal

“feature lock” deadline was set at the end of the second week of Sprint 9. The feature lock

deadline “froze” the build because no new features were allowed to be added after the deadline.

This deadline gave assurance to developers that there were no more major changes to the game

design, which allowed them to focus on building and refining their work. However, it also

reduced their scope for making a better game - they could not improve on core design features

like game mechanics but could only improve the quality of the game by refining features such as

fixing bugs, tidying up code, improving on lighting and textures of graphics. Thus, the negative

relationship between delays and actions created a balancing feedback loop between revisions,

delays, and the output quality gap which we call the “cut-back loop” (Figure 4e).

Page 28 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

INSERT FIGURE 4e ABOUT HERE

Motivation loop. The final mechanism we identified from our data is the “motivation

loop”, which is a balancing feedback loop between revisions and individual motivations that

reduces actions and handoffs. We found that by Sprint 6, the frequent revisions were taking a toll

on developers’ morale. Tech2 describes “a huge penalty in both morale and productivity”. This

sentiment was reaffirmed by Tech1 in the following quote:

“It hurts to hear when you work on something, and then you are told that, “This is going

away. Just don’t worry about it anymore, like this is no longer part of the game.” That

happens to some extent in game development, but it can happen more here…. It was just

like a double kick in the pants where all this work you did right is just getting thrown out

of the window, and now we’re going to ask you to do it [again].” (Tech1)

These changes left them feeling frustrated and led to a noticeable shift in individual

motivations from wanting to make the “best game possible”, to just “get it done”. This meant

iterating less frequently to refine the game and holding back ideas that could improve the user’s

experience. As Tech2 mentioned, “you lose some quality and ideas that people could have

brought up” when they became focused on “just cranking away”. Revisions thus escalated until a

critical point where developers became frustrated and pulled back their efforts. This created a

balancing reinforcing loop between revisions, frustration, and actions which we label as the

“motivation loop” (Figure 4f).

Adding to this frustration amongst the developers, the delays also meant that they had to

work over time for several weeks to complete the game. Even then, the project was completed

two months behind schedule and without many of the initial features that had been initially

planned for.

Page 29 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

INSERT FIGURE 4f ABOUT HERE

DISCUSSION

We began by asking a deceptively simple question: what makes a pattern of action more

or less varied over time? Implicitly, this question points to a fundamental issue in organization

theory: how do we explain stability and change? One of the central insights of routine dynamics

is that stability and change are both dynamic and both require explanation (Feldman et al., 2016).

Routines do not just automatically stay the same; reproducing a recognizable pattern takes effort

and so does changing the pattern. The tension between stability and change is implicit in every

step on every path.

To help make this tension visible, we have introduced conceptual and methodological

innovations that provide a new way of seeing the link between situated actions and organized

patterns of action. At its core, our approach is built around a narrative network that is

continually (re)enacted by the situated actions of particular participants at particular times and

places. These actions perform the paths in the network. In practical terms, people are just

working, and the paths are simply ways of performing the work. In theoretical terms, they enact

the continual unfolding (Emirbayer & Mische, 1998), becoming (Tsoukas & Chia, 2002) and

patterning Danner-Schröder & Geiger, 2016; Feldman, 2016a; Turner & Rindova, 2018) that

constitute ProjectBQ. To understand how paths influence routine dynamics, we need to zoom

out from actions to patterns (Gaskin, Berente, Lyytinen, & Yoo, 2014; Nicolini, 2009).

Zooming out from actions to paths to patterns

Field research enables a fine-grained focus on actions as a unit of observation, as we have

seen in empirical studies of routine dynamics (Feldman et al., 2016). However, because

participants and observers tend to see parts of routines, rather than whole routines, it has always

Page 30 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

been difficult to trace overall patterns of action involving multiple actors over time. This gap was

one of the original motivations for narrative networks: to enable field researchers to piece

together larger patterns from fragmented observations (Pentland & Feldman, 2007).

Routines start with situated actions (Suchman, 1987). In Project BQ, these are basic

steps required to carry out the work: creating, writing, testing, revising, etc. Some research

traditions zoom in to analyze the details of how particular actions inhabit and animate particular

situations. For example, research on affordances often zooms in on the detailed relations

between actors, actions and artifacts (Chemero, 2003; Volkoff & Strong, 2017).

In contrast, getting from actions to patterns involves zooming out in two distinct ways.

First, we zoom out from actions to paths by paying attention to the sequence of actions along the

path. In addition to asking “what happened?”, we explicitly ask “What happened next?” In doing

so, we locate each action in the context of an enacted path. The sequential relations between

actions provide the forward motion that gets work done, but it is important to realize that neither

participants nor observers are always able to see for themselves what happens next along a path.

In contemporary organizations, the next step may happen in another part of the world.

Next, when we zoom out from paths to patterns, we locate each action in the context of a

network of paths. The network summarizes enacted paths within a particular window of time. In

doing so, it reveals the possible paths forward from each action, which may be many or few.

The network of possible paths represents the emergent accomplishments (Feldman, 2000) and

the pattern of interdependent actions that define organizational routines (Feldman & Pentland,

2003). By zooming out from actions to paths to networks, the pattern of action becomes visible.

When we zoom out from individual actions to consider patterns, we see that the individual

Page 31 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

actions are not independent. This is a defining characteristic of organizational routines (Feldman

and Pentland, 2003).

Placing actions in networks has important theoretical and methodological implications,

such as the relationship between actual paths and possible paths. At any moment along a given

path, there are possibilities for branching onto a different path. Possible paths are inferred based

on actual, observed edges in the graph. Since narrative networks are usually quite sparse, the

inferred possibilities constitute a tiny fraction of the paths that could be formed if the network

was fully connected.

In ProjectBQ, thousands of possible paths could be inferred from the enacted paths. To

express these possibilities, we aggregate actual paths into a narrative network (Pentland &

Feldman, 2007). Because it aggregates alternative paths, the network includes possibilities that

may never be actualized. These possibilities may be considered part of the latent structure of the

routine. Since many of these paths would be considered unusual or exceptional by the

participants, it would be inappropriate to equate the narrative network with the ostensive aspects

of the routine. The ostensive aspects of a routine embody normative, typical understandings that

tend to guide action (Feldman & Pentland, 2003). In contrast, the narrative network embodies

possibilities of paths that could be taken, as inferred from actual paths enacted.

In a simple routine, there may be only a few ways to do the work. Sparse networks with a

handful of paths are easy to comprehend, but it is difficult to appreciate how quickly the number

of paths can change and how large it can get. Our intuition is that more required actions adds

complexity. This intuition is captured in the concept of component complexity (Wood, 1986).

However, a larger number of actions is not the primary driver of complexity. For any given

number of actions, adding more edges (more paths) will increase complexity exponentially

Page 32 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

(Hærem et al., 2015). This increase can only be estimated by counting the edges (pairs of

actions) that occur along the enacted paths. The methodological move from actions to paths to

networks enables an entirely new way of seeing task complexity. In ProjectBQ, we observed

orders-of-magnitude changes in the number of paths from one sprint to the next, even though the

number of actions was the same. This descriptive finding adds urgency to our research question:

what drives these dramatic changes?

Patterning as a motor of routine dynamics

In our study, we identify six causal loops that influence the number of possible paths in

the project from sprint to sprint. Many of these are specific to the world of videogame

development, so we are hesitant to generalize too broadly. However, if we step back from the

particulars of ProjectBQ, we can see that generic factors such as cost, quality and deadlines, can

influence action patterns. We can interpret these causal loops in terms of Van de Ven and

Poole’s (1995) classic typology of change motors: life cycle, teleologic, dialectic, and

evolutionary. However, patterning provides a novel motor of change that is closer to the

phenomena we observed and a better theoretical fit for routine dynamics. To see how this is so,

first consider the traditional motors of change.

Life-cycle. The life-cycle motor depicts change as a progression through a prescribed

sequence of stages regulated by an underlying logic, program, or code. In ProjectBQ, we can see

the whole project as a life-cycle, from conception to final deliverable. Within the project, the

three-week sprints can be interpreted from a life-cycle perspective, as well, since each sprint has

a repetitive structure. Life-cycles provide an excellent explanation for routine repetition, but

they have not featured prominently as drivers of routine dynamics.

Teleology. The teleological motor explains change as a goal-directed process undertaken

by an entity that involves a cycle of setting, implementing, evaluating, and modifying goals. The

Page 33 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

performance loop in our model is probably the clearest manifestation of a teleologically-driven

motor because it depends on the perceived gap in output quality. As a result of this loop, more

paths are enacted to improve output quality and narrow the output quality gap.

Dialectic. The dialectic motor explains change as occurring through the synthesis of

oppositional forces and has been featured in some theories of routine dynamics (e.g., Salvato &

Rerup, 2018; Turner & Rindova, 2012). In ProjectBQ, we can see a dialectical interaction

between mechanisms that reinforce complexity (i.e., performance loop, revision loop, delay

loop) and the mechanisms that assert a balancing pressure on complexity (i.e., reinforcement

loop, cut-back loop, motivation loop).

Evolution. Evolution has been an influential metaphor in routine dynamics (Feldman &

Pentland, 2003), but it is difficult to operationalize in empirical research. The problem in

applying this motor to real situations is the unit of analysis: what entity is being varied, selected

and retained in the population? In a computer-based simulation, Pentland et al (2012) used whole

performances of the routine (whole paths) as the phenotypes being selected. However, the

participants in ProjectBQ enacted their paths one step at a time. The evolutionary model breaks

down because there is no clear-cut phenotype that is being selected based on its fitness. It does

not make sense to argue that there were multiple, competing patterns of action subject to

evolutionary pressure.

Patterning. When the entity undergoing change is an organizational routine (or a group

of routines), patterning provides a more natural explanation of how change happens. As situated

actions unfold in the performance of the work, patterns are (re)enacted. Each step enacts what

the routine is becoming (Tsoukas & Chia, 2002). Patterning provides a processual description

for change that is grounded in the performance of the routine. By performing their work, the

Page 34 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

participants in Project BQ were patterning their work, as well. The causal loops that we

identified in Project BQ exemplify the kinds of factors that influence the tendency for the

network to change or remain the same by adding or dropping paths.

Future work: Routine dynamics as network dynamics

By locating actions in a network of possible paths, the path-based perspective sets the

stage for a rich new set of possibilities for organizational research. One particularly promising

way forward builds on the idea we introduced above: routines dynamics as network dynamics.

We suggest two complementary mechanisms that are consistent with patterning: repetitive

reinforcement (Sutton & Barto, 2018) and morphogenesis (Archer, 2010).

Repetitive reinforcement. When reinforced, paths in a narrative network become the ruts

in the road that make the pattern repetitive and recognizable. They are more likely to be followed

in future repetitions. In ProjectBQ, we have evidence that repetition leads to the reinforcement of

specific edges in the graph. Repetitive reinforcement is visible, even with a small amount of data

in a highly variable creative project context.

Repetitive reinforcement is a well-established mechanism for learning by doing (Levitt &

March, 1988; March, 1991) and routine formation (Cohen & Bacdayan, 1994). Repetition of a

known pathway exemplifies what March (1991) termed “exploitation.” Repetition provides an

occasion for refinement and learning. To the extent that repetitive reinforcement is the dominant

mode of patterning, it should tend to promote lock-in and inertia (Schultz, 2008).

Morphogenesis. The morphogenetic perspective of structure and action “unravel[s] the

dialectical interplay between structure and action” (p. 228) in sequential cycles of structural

conditioning/social interaction/structural elaboration (Archer, 2010). Morphogenesis provides a

countervailing mechanism for patterning that can lead to structural elaboration (i.e., change).

Archer (2010, p. 247) theorized that degrees of freedom and stringency of constraints are

Page 35 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

preconditions for understanding morphogenesis: “the specification of degrees of freedom and

stringency of constraints makes it possible to theorize about variations in voluntarism and

determinism (and their consequences)…” In Archer’s (2010) theory of morphogenesis,

conditions with high degrees of freedom and low stringency of constraints are hypothesized to

favor change.

The narrative network framework provides a starting point for operationalizing the

conditions for morphogenesis. By degrees of freedom, Archer (2010) means the set of choices

available for actors to do something new or different in a given situation, such as forming a new

path. At any point in the narrative network, we can operationalize degrees of freedom as the out-

degree of the current node (the number of outwardly directed edges). This number will vary

throughout the network because each node will have a specific out-degree. Transportation

examples, like getting to the work by walking, bus, bike or train, provide a good way to illustrate

degrees of freedom. In principle, one could extend the degrees of freedom to include other, as yet

unformed, paths (e.g., riding a motorcycle or hailing a ride service).

By stringency of constraints, Archer (2010) is referring to the fact that not all degrees of

freedom are equally free to every actor at every time and place. Situational factors naturally

make some options more expensive, difficult or risky. For example, bad weather might impose a

constraint that makes cycling difficult or impossible; the need to carry a lot of equipment might

require a taxi or even a truck. In principle, stringency of constraints could be modeled as a cost

function that could be assigned to each edge in the graph, depending on context. This

information is over and above what would normally be included in a narrative network.

We can interpret morphogenesis in terms of more familiar concepts such as exploration

(March, 1991) and innovation (Garud, Tuertscher, & Ven, 2013). The innovation process has

Page 36 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

been increasingly conceptualized as an ongoing accomplishment without a well-defined end

point and not simply a journey with predefined stages (Garud et al., 2016, 2013; Obstfeld, 2012;

Van de Ven, Polley, Garud, & Venkataraman, 1999). Creating and maintaining possibilities is

important for these kinds of exploratory, emergent activities. Future work could investigate how

exploration and innovation are encouraged by conditions or efforts to sustain the variety of

pathways.

Practical implications: Managing paths

The practical value of understanding paths is well established in business process

management (Dumas, La Rosa, Mendling, & Reijers, 2018). Commercial software products

such as Celonis (https://www.celonis.com) and Fluxicon Disco (http://fluxicon.com/) have been

inspired by the idea that you cannot manage what you cannot see. Processes are difficult to see,

so these products use digital trace data to make work processes visible, to monitor process

execution and to provide feedback on process conformance and other aspects of process

performance. They are primarily intended for use on highly structured, computerized processes

where digital data are readily available.

However, business process management tends to emphasize conformance and

compliance: sticking to prescribed paths. While avoiding deviant paths is important, one can

also think of paths in terms of opportunities. For example, the entrepreneurship literature talks

about exploiting entrepreneurial opportunities through an effectual approach (Sarasvathy, 2001,

2009) that leverages contingencies rather than a planned approach based on assumptions that

reduce uncertainty. Under conditions of uncertainty, it might be more beneficial to encourage

path creation rather than conformance as the former would provide insights into the potential

opportunities created (Alvarez & Barney, 2007; Garud, Kumaraswamy, & Karnøe, 2010).

Page 37 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://fluxicon.com/
http://fluxicon.com/

The path-based perspective may allow us to consider managerial decision in a way that

takes morphogenesis into consideration. When we ask, “what conditions will lead to favorable

outcomes,” we can consider the process that connects the antecedents and the consequences

(Abbott, 1990). Rather than reducing the intervening process to one best path or one best

practice, the path-based perspective encourages us to consider the space of possibilities. Thus,

instead of studying antecedents and consequences to identify the best path (and trying to follow

it), we might consider the antecedents and consequences of expanding or contracting the space of

possibilities. Such an approach might be useful in managing other types of complex emergent

phenomena such as innovation (Dougherty, 2016; Dougherty & Dunne, 2011; Garud et al., 2016)

and dynamic team processes (Cronin, Weingart, & Todorova, 2011; Kozlowski & Chao, 2018;

Srikanth, Harvey, & Peterson, 2016).

Limitations

A limitation of a path-based perspective is the availability of data to construct the

narrative network. In this study, the agile software development methodology created a useful

archival record: the scrum sheets. In other settings, it may be difficult to gather data that provides

a meaningful trace of actions over time. Nevertheless, recent advances in technologies for

sensing and capturing fine-grained behaviors offer promise in overcoming this limitation

(Kozlowski, Chao, Chang, & Fernandez, 2015; Lazer et al., 2009).

The temporal unit of analysis (the time window) matters. Because ProjectBQ was enacted

in a series of sprints, our view of the dynamics of the project is based on a compilation of

snapshots. The flow we see is more like a story board rather than a finished movie. It is likely

that changing the timeframe or the “exposure time” of the picture could generate a different

sense of flow. This is particularly true if a process is changing quickly. In the case presented

Page 38 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

here, three-week “sprints” made a natural division, but in other settings, the appropriate time

frame would be a matter of researcher judgment.

In recreating the task sequences in our data, we had to assume that tasks were performed

sequentially. However, some tasks were performed concurrently but we were not able to capture

such relationships with current methods. To the extent that concurrent activities are

interdependent, our method is likely to understate complexity. Nevertheless, the general

trajectory of complexity was consistent with the project narrative, which was based on other data

sources. Both of these limitations – temporal granularity and concurrency – point to the

importance of having multiple sources of data to contextualize and interpret processual

phenomena, as we have done here.

Our methodology for estimating the number of paths in the narrative network has a

number of limitations, as well. First, it assumes that the directed graph is a complete, accurate

representation of the underlying process. In practice, processes are difficult to observe - they

change constantly and there is good reason to expect that any particular enactment is ephemeral,

at best. Additionally, it may not be clear where a process starts or where it finishes, and

researchers will have to rely on their judgment for such decisions. However, the estimator used

to compute the number of paths (see Appendix B) addresses this concern because there is no

need to specify the start or end for the process.

Second, our metric for complexity does not account for differences in difficulties in

performing within-role and cross-role handoffs. In the case of ProjectBQ, for example, moving

from Experimentation to Building is likely to be more challenging when the handoff is with

someone from the same function (e.g., from one Artist to another) compared to someone from

another function (e.g., from an Artist to the Software Engineer). Also, because our method of

Page 39 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

estimating paths is based on the structure of the narrative network, it could overstate or

understate the actual number of paths in some situations. These issues can be explored in future

research.

CONCLUSION

Organizational phenomena are widely acknowledged to be complex and dynamic. Yet

there are few studies in organizational and management research that explicitly account for the

dynamics of complexity. Our research demonstrates how the concept of paths allows us to see

the dynamic patterning (Danner-Schröder & Geiger, 2016; Feldman, 2016a; Turner & Rindova,

2018) of routine actions. We show how paths change over time and develop a theory about the

mechanisms driving these dynamics. The concept of paths as a “new way of seeing” can be

applied to different processual phenomena with emergent characteristics to advance

organizational and managerial science by developing new theories about the dynamics of these

phenomena.

REFERENCES
Abbott, A. 1990. A Primer on Sequence Methods. Organization Science, 1(4): 375–392.
Adler, P. S., & Obstfeld, D. 2007. The role of affect in creative projects and exploratory search.

Industrial and Corporate Change, 16(1): 19–50.
Alvarez, S. A., & Barney, J. B. 2007. Discovery and creation: Alternative theories of

entrepreneurial action. Strategic Entrepreneurship Journal, 1(1–2): 11–26.
Archer, M. S. 2010. Morphogenesis versus structuration: On combining structure and action.

British Journal of Sociology.
Aroles, J., & McLean, C. 2016. Rethinking stability and change in the study of organizational

routines: Difference and repetition in a newspaper-printing factory. Organization Science,
27(3): 535–550.

Barabási, A., & Albert, R. 1999. Emergence of scaling in random networks. Science, 286(5439):
509–512.

Barley, S. R. 1986. Technology as an occasion for structuring: Evidence from observations of
CT scanners and the social order of radiology departments. Administrative Science
Quarterly, 78–108.

Berente, N., Lyytinen, K., Yoo, Y., & King, J. L. 2016. Routines as shock absorbers during
organizational transformation: Integration, control, and NASA’s enterprise information
system. Organization Science, 27(3): 551–572.

Page 40 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Bertels, S., Howard-Grenville, J., & Pek, S. 2016. Cultural molding, shielding, and shoring at
Oilco: The role of culture in the integration of routines. Organization Science, 27(3): 573–
593.

Bucher, S., & Langley, A. 2016. The interplay of reflective and experimental spaces in
interrupting and reorienting routine dynamics. Organization Science, 27(3): 594–613.

Butts, C. T. 2008. 4. A Relational Event Framework for Social Action. Sociological
Methodology, 38(1): 155–200.

Chemero, A. 2003. An outline of a theory of affordances. Ecological Psychology, 15(2): 181–
195.

Chia, R. 2016. Process, practices, and organizational competitiveness: Understanding dynamic
capabilities through a process philosophical worldview. In A. Langley & H. Tsoukas (Eds.),
The SAGE handbook of process organization studies: 593–600. Beverly Hills, CA: Sage.

Cohen, M. D. 2007. Reading Dewey: Reflections on the study of routine. Organization Studies,
28(5): 773–786.

Cohen, M. D., & Bacdayan, P. 1994. Organizational routines are stored as procedural memory:
Evidence from a laboratory study. Organization Science, 5(4): 554–568.

Cohendet, P. S., & Simon, L. O. 2016. Always playable: Recombining routines for creative
efficiency at Ubisoft Montreal’s video game studio. Organization Science, 27(3): 614–632.

Cronin, M. A., Weingart, L. R., & Todorova, G. 2011. Dynamics in groups: Are we there yet?
The Academy of Management Annals, 5(1): 571–612.

Davis, J. A. 1970. Clustering and Hierarchy in Interpersonal Relations: Testing Two Graph
Theoretical Models on 742 Sociomatrices. American Sociological Review, 35(5): 843–851.

Danner-Schröder, A., & Geiger, D. 2016. Unravelling the Motor of Patterning Work: Toward an
Understanding of the Microlevel Dynamics of Standardization and Flexibility. Organization
Science, 27(3): 633–658

Deken, F., Carlile, P. R., Berends, H., & Lauche, K. 2016. Generating novelty through
interdependent routines: A process model of routine work. Organization Science, 27(3):
659–677.

Dittrich, K., Guérard, S., & Seidl, D. 2016. Talking about routines: The role of reflective talk in
routine change. Organization Science, 27(3): 678–697.

Dougherty, D. 2016. Taking advantage of emergence: Productively innovating in complex
innovation systems. Oxford University Press.

Dougherty, D., & Dunne, D. D. 2011. Organizing ecologies of complex innovation.
Organization Science, 22(5): 1214–1223.

Dumas, M., La Rosa, M., Mendling, J., & Reijers, H. A. 2018. Fundamentals of business
process management (2nd ed.), vol. 1. Berlin: Springer-Verlag.

Emirbayer, M., & Mische, A. 1998. What is agency? American Journal of Sociology, 103(4):
962–1023.

Feldman, M. S. 2000. Organizational routines as a source of continuous change. Organization
Science, 11(6): 611–629.

Feldman, M. S. 2016a. Routines as process: Past, present, and future. In J. Howard-Grenville, C.
Rerup, A. Langley, & H. Tsoukas (Eds.), Organizational Routines: A Process Perspective.:
23–46. Oxford: Oxford University Press.

Feldman, M. S. 2016b. Making process visible: Alternatives to boxes and arrows. In A. Langley
& H. Tsoukas (Eds.), The Sage handbook of process organization studies: 625–635.
London: Sage.

Page 41 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Feldman, M. S., & Pentland, B. T. 2003. Reconceptualizing organizational routines as a source
of flexibility and change. Administrative Science Quarterly, 48(1): 94–118.

Feldman, M. S., Pentland, B. T., D’Adderio, L., & Lazaric, N. 2016. Beyond Routines as Things:
Introduction to the Special Issue on Routine Dynamics. Organization Science, 27(3): 505–
513.

Freeman, L. C. 1977. A set of measures of centrality based on betweenness. Sociometry, 35–41.
Garud, R., Gehman, J., Kumaraswamy, A., Tuertscher, P., Langley, A., et al. 2016. From the

process of innovation to innovation as process. The SAGE handbook of process
organization studies: 451–466.

Garud, R., Kumaraswamy, A., & Karnøe, P. 2010. Path Dependence or Path Creation? Journal
of Management Studies, 47(4): 760–774.

Garud, R., Tuertscher, P., & Ven, A. H. V. de. 2013. Perspectives on Innovation Processes.
Academy of Management Annals, 7(1): 775–819.

Gaskin, J. E., Berente, N., Lyytinen, K., & Yoo, Y. 2014. Toward Generalizable Sociomaterial
Inquiry: A Computational Approach for Zooming In and Out of Sociomaterial Routines. Mis
Quarterly, 38(3): 849–871.

Glaser, B. G., & Strauss, A. L. 1967. The discovery of grounded theory: Strategies for
qualitative research. Chicago, IL: Aldine de Gruyter.

Hærem, T., Pentland, B. T., & Miller, K. D. 2015. Task complexity: Extending a core concept.
Academy of Management Review, 40(3): 446–460.

Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M., & Morris, M. 2008. statnet:
Software tools for the representation, visualization, analysis and simulation of network data.
Journal of Statistical Software, 24(1): 1548.

Hernes, T. 2014. A Process Theory of Organization. Oxford: Oxford University Press.
Holland, P. W., & Leinhardt, S. 1977. A Dynamic Model for Social Networks. Journal of

Mathematical Sociology, 5(1): 5–20.
Howard-Grenville, J. A., & Rerup, C. 2017. A process perspective on organizational routines. In

A. Langley & H. Tsoukas (Eds.), The SAGE Handbook of Process Organization Studies:
323–337. London: Sage.

Jarzabkowski, P., Lê, J., & Spee, P. 2016. Taking a strong process approach to analyzing
qualitative process data. The SAGE Handbook of Process Organization Studies, 237.

Kozlowski, S. W., & Chao, G. T. 2018. Unpacking team process dynamics and emergent
phenomena: Challenges, conceptual advances, and innovative methods. American
Psychologist, 73(4): 576.

Kozlowski, S. W., Chao, G. T., Chang, C. H., & Fernandez, R. 2015. Team dynamics: Using
“Big Data” to advance the science of team effectiveness. In S. Tonidandel, E. King, & J. M.
Cortina (Eds.), Big data at work: The data science revolution and organizational
psychology: 273–309.

Langley, A. 1999. Strategies for theorizing from process data. Academy of Management
Review, 24(4): 691–710.

Langley, A., Smallman, C., Tsoukas, H., & Van de Ven, A. H. 2013. Process studies of change
in organization and management: Unveiling temporality, activity, and flow. Academy of
Management Journal, 56(1): 1–13.

Langley, A., & Tsoukas, H. 2016a. Introduction: Process thinking, process theorizing and
process researching. In A. Langley & H. Tsoukas (Eds.), The SAGE Handbook of Process
Organization Studies. Thousand Oaks, CA: Sage.

Page 42 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Langley, A., & Tsoukas, H. 2016b. The SAGE Handbook of Process Organization Studies.
Thousand Oaks, CA: Sage.

Lazer, D., Pentland, A. S., Adamic, L., Aral, S., Barabasi, A. L., et al. 2009. Life in the network:
the coming age of computational social science. Science (New York, NY), 323(5915): 721.

Leenders, R. T. A., Contractor, N. S., & DeChurch, L. A. 2016. Once upon a time:
Understanding team processes as relational event networks. Organizational Psychology
Review, 6(1): 92–115.

Levitt, B., & March, J. G. 1988. Organizational learning. Annual Review of Sociology, 14(1):
319–338.

March, J. G. 1991. Exploration and exploitation in organizational learning. Organization
Science, 2(1): 71–87.

McCabe, T. J. 1976. A complexity measure. IEEE Transactions on Software Engineering, (4):
308–320.

McPherson, M., Smith-Lovin, L., & Cook, J. M. 2001. Birds of a Feather: Homophily in Social
Networks. Annual Review of Sociology, 27(1): 415–444.

Mesle, C., & Dibben, M. R. 2016. Whitehead’s Process Relational Philosophy. The SAGE
Handbook of Process Organization Studies, 29.

Moe, N. B., Dingsøyr, T., & Dybå, T. 2010. A teamwork model for understanding an agile team:
A case study of a Scrum project. Information and Software Technology, 52(5): 480–491.

Moody, J., McFarland, D., & Bender-deMoll, S. 2005. Dynamic network visualization.
American Journal of Sociology, 110(4): 1206–1241.

Nicolini, D. 2009. Zooming in and out: Studying practices by switching theoretical lenses and
trailing connections. Organization Studies, 30(12): 1391–1418.

Obstfeld, D. 2012. Creative projects: A less routine approach toward getting new things done.
Organization Science, 23(6): 1571–1592.

Pentland, B. T. 1992. Organizing moves in software support hot lines. Administrative Science
Quarterly, 527–548.

Pentland, B. T. 1999. Building process theory with narrative: From description to explanation.
Academy of Management Review, 24(4): 711–724.

Pentland, B. T., & Feldman, M. S. 2007. Narrative networks: Patterns of technology and
organization. Organization Science, 18(5): 781–795.

Pentland, B. T., Feldman, M. S., Becker, M. C., & Liu, P. 2012. Dynamics of Organizational
Routines: A Generative Model. Journal of Management Studies, 49(8): 1484–1508.

Pentland, B. T., Hærem, T., & Hillison, D. 2010. Comparing organizational routines as recurrent
patterns of action. Organization Studies, 31(7): 917–940.

Pentland, B. T., & Liu, P. 2017. Network models of organizational routines: Tracing associations
between actions. In S. Jain & R. Mir (Eds.), Routledge companion to qualitative research
in organization studies.

Pentland, B. T., Liu, P., Kremser, W., & Hærem, T. In press. Dynamics of drift in digitized
processes. MIS Quarterly.

Pentland, B. T., Recker, J., & Wyner, G. 2015. A thermometer for interdependence: Exploring
patterns of interdependence using networks of affordances. Presented at the Thirty Sixth
International Conference on Informaion Systems, Fort Worth, TX, USA.

Pentland, B. T., Recker, J., & Wyner, G. 2016. Conceptualizing and measuring
interdependence between organizational routines. Presented at the Thirty Seventh
International Conference on Information Systems, Dublin, Ireland.

Page 43 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Pentland, B. T., Recker, J., & Wyner, G. 2017. Rediscovering Handoffs. Academy of
Management Discoveries, 3(3): 284–301.

Rerup, C., & Feldman, M. S. 2011. Routines as a source of change in organizational schemata:
The role of trial-and-error learning. Academy of Management Journal, 54(3): 577–610.

Rescher, N. 1996. Process metaphysics: An introduction to process philosophy. Albany: Suny
Press.

Rudolph, J. W., Morrison, J. B., & Carroll, J. S. 2009. The dynamics of action-oriented problem
solving: Linking interpretation and choice. Academy of Management Review, 34(4): 733–
756.

Salvato, C., & Rerup, C. 2018. Routine regulation: Balancing conflicting goals in organizational
routines. Administrative Science Quarterly, 63(1): 170–209.

Sarasvathy, S. D. 2001. Causation and effectuation: Toward a theoretical shift from economic
inevitability to entrepreneurial contingency. Academy of Management Review, 26(2): 243–
263.

Sarasvathy, S. D. 2009. Effectuation: Elements of entrepreneurial expertise. Edward Elgar
Publishing.

Schulz, M. 2008. Staying on track: a voyage to the internal mechanisms of routine reproduction.
Handbook of organizational routines: 228.

Shotter, J. 2006. Understanding process from within: An argument for ‘withness’-thinking.
Organization Studies, 27(4): 585–604.

Snijders, T. A. 2001. The statistical evaluation of social network dynamics. Sociological
Methodology, 31(1): 361–395.

Snijders, T. A. B., van de Bunt, G. G., & Steglich, C. E. G. 2010. Introduction to stochastic
actor-based models for network dynamics. Social Networks, 32(1): 44–60.

Song, M., Günther, C. W., & Van der Aalst, W. M. 2008. Trace clustering in process mining.
International Conference on Business Process Management, 109–120. Springer.

Srikanth, K., Harvey, S., & Peterson, R. 2016. A dynamic perspective on diverse teams: Moving
from the dual-process model to a dynamic coordination-based model of diverse team
performance. The Academy of Management Annals, 10(1): 453–493.

Strauss, A. L. 1993. Continual permutations of action. Aldine de Gruyter.
Strike, V. M., & Rerup, C. 2016. Mediated sensemaking. Academy of Management Journal,

59(3): 880–905.
Suchman, L. A. 1987. Plans and situated actions: The problem of human-machine

communication. Cambridge University Press.
Sutherland, J., & Sutherland, J. J. 2014. Scrum: The Art of Doing Twice the Work in Half the

Time. New York: Crown Business.
Sutton, R. S., & Barto, A. G. 2018. Reinforcement learning: An introduction. MIT press.
Tsoukas, H., & Chia, R. 2002. On organizational becoming: Rethinking organizational change.

Organization Science, 13(5): 567–582.
Turner, S. F., & Rindova, V. 2012. A balancing act: How organizations pursue consistency in

routine functioning in the face of ongoing change. Organization Science, 23(1): 24–46.
Turner, S. F., & Rindova, V. P. 2018. Watching the Clock: Action Timing, Patterning, and

Routine Performance. Academy of Management Journal, 61(4): 1253–1280.
Van de Ven, A. H., Polley, D., Garud, R., & Venkataraman, S. 1999. The innovation journey.

New York, NY: Oxford University Press.

Page 44 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Van de Ven, A. H., & Poole, M. S. 1995. Explaining development and change in organizations.
Academy of Management Review, 20(3): 510–540.

Volkoff, O., & Strong, D. M. 2017. Affordance theory and how to use it in IS research. The
Routledge Companion to Management Information Systems: 232–245. Routledge.

Wasserman, S., & Faust, K. 1994. Social network analysis: Methods and applications.
Cambridge University Press.

Weick, K. E. 1979. Cognitive processes in organizations. Research in Organizational Behavior,
1(1): 41–74.

West, D. B. 2001. Introduction to graph theory, vol. 2. Upper Saddle River: Prentice Hall.
Wood, R. E. 1986. Task complexity: Definition of the construct. Organizational Behavior and

Human Decision Processes, 37(1): 60–82.

Page 45 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure 1. Frequency of task types across Sprints

1 2 3 4 5 6 7 8 9 10 11
0

50

100

150

200

250

300

350

400

450

Administration

Experimenting

Building

Revision

Refinement

Testing

Sprint

N
um

be
r o

f t
as

ks

Figure 2. Frequency of roles performing a task across Sprints

1 2 3 4 5 6 7 8 9 10 11
0

50

100

150

200

250

300

350

400

450

Design

Art

Tech

Analytics

Sound

Producer

Sprint

N
um

be
r o

f r
ol

es

Page 46 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure 3. Complexity index for sprints 1 to 11

Page 47 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure 4a

ComplexityRepetition

-

-

Reinforcement loop

Figure 4b

ComplexityRepetition

-

-

Reinforcement loop

Output quality

Output quality gap

+

-

+

Performance loop

Figure 4c

ComplexityRepetition

-

-

Reinforcement loop

Output quality

Output quality gap

+

-

+

Performance loop

Revision

+

+

Revision loop

Figure 4d

ComplexityRepetition

-

-

Reinforcement loop

Output quality

Output quality gap

+

-

+

Performance loop

Revision

+

+

Revision loop

Delays

+

+

Delay loop

Figure 4e

ComplexityRepetition

-

-

Reinforcement loop

Output quality

Output quality gap

+

-

+

Performance loop

Revision

+

+

Revision loop

Delays

+

+

Delay loop

-

Cut back loop

Figure 4f

ComplexityRepetition

-

-

Reinforcement loop

Output quality

Output quality gap

+

-

+

Performance loop

Revision

+

+

Revision loop

Delays

+

+

Delay loop

-

Cut back loop

Frustration

+

-

Motivation loop

Page 48 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Table 1: Social network versus narrative network

Social Network Narrative network

Network Represents relations among a
set of people

Represents sequential relations
among a set of actions

Nodes
(Vertices)

Individual people Actions or events

Ties
(Edges)

Connections between people Handoffs between actions or
events

Paths Degrees of separation
(“hops”)

 A possible way to perform part
of a process; a recipe for action

Page 49 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Table 2. Definition of task categories
Category:

Final
Category:
Round 1 Definition

Administration Administration
Activities that involve planning, organization, coordination,
communication with internal or external parties.

Experimenting
Activities associated with learning, discovery, building experience or
knowledge, addressing unanswered questions.

Experimenting

Conceptualization

Activities associated with defining the form of team output. Includes
definition of inter-relationships between components of team output,
how output fits with client's other activities (e.g., marketing). Manifests
as transitional output or boundary objects.

Building Activities directly associated with producing assets.

Building
Integration

Activities associated with combining different parts of the team output
(e.g., art assets).

Revision Revision

Activities associated with rebuilding, reimplementation, redesigning or
rewriting. Adjustments made to core aspects of output (e.g., code,
model, animation) in terms of the relationship between parts. If the
relationship between A and B could be specified in an equation, this
will involve changes to variables in the relationship, rather than the
absolute value of the variables.

Refinement Activities associated with adjusting parameter values of output.

Refinement
Fix

Activities associated with rectifying errors. Closely related to "Tweak",
but difference here is that the adjustment is made to some part of output
that is broken, or not working as it should. Words like "correct",
"error". Result/outcome is unintended.

Review Reviewing work before release

Testing
Activities directly associated with enacting playtests. Different from
QA tests which checks technical integrity of output

Feedback
Activities related to obtaining or aggregating feedback from playtests or
metrics, by clients or users. Related to the event of obtaining feedback.

Testing

QA
Activities that involve testing for bugs, errors or edge cases. Different
from playtests.

Page 50 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Table 3. Summary of mechanisms, complexity index, actions, handoffs, and graph
diagrams.

Sprint Graph
Complexity

index
Actions
(nodes)

Handoffs
(edges)

Paths
added/

dropped Mechanisms

1 0.16 9 19 n/a Performance

2 1.84 13 43 68 Performance

3 2.56 14 55 294 Performance
Revision

4 4.64 17 87 43289 Performance
Revision

Page 51 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

5 1.52 17 47 -43618 Performance
(reduction)

6 3.92 21 83 8285

Performance
Revision

Delay
Motivation

7 4.32 21 86 12575

Performance
Revision

Delay
Motivation

8 5.76 21 106 554547

Performance
Revision

Delay
Motivation

9 3.12 18 66 -574122 Cut-back
Performance

Page 52 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Appendix A: Counting simple paths in a directed graph
This appendix explains a method for counting simple paths in a directed graph and contains code
for a MatLab function that implements this method.

Overview of algorithm. The algorithm is a breadth-first search that finds all of the simple paths
(sequences of connected nodes) from start to finish. The algorithm follows all edges leading out
from the start node. Each connected node indicates a partial path. Then, for each partial path, it
follows all of the edges leading out from the last node of the path. Each partial path is stored.
New paths are added only if they are unique. If a path revisits any node, it is removed from the
list of stored paths. Thus, the algorithm only counts simple paths (West, 2001): paths that do not
include any node more than once. When a path reaches the finish node, it is added to the list of
completed paths. The algorithm continues until the graph has been exhaustively searched. It is a
“brute force” enumeration of all simple paths.

MatLab function for counting paths. This function requires three inputs: (1) an adjacency
matrix for the directed graph that describes the task or process; (2) the source (starting point) of
the task; and (3) the sink (stopping point) of the task. The function produces two outputs: (1)
the number of simple paths from start to finish; and (2) a list of the simple paths from start to
finish.

function [simple_paths, list_of_unique_paths] = ...
 task_complexity_index(AM, source, sink)

% This code counts the number of simple paths (no cycles) in a
% directed graph. Paths start at the source and end at the sink.

% INPUTS:
% AM: adjacency matrix for the directed graph that represent the task
% source: starting point for task
% sink: ending point for task

10 2.0 16 51 -1218 Cut-back
Performance

11 1.74 10 38 -45 Cut-back
Performance

Page 53 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

% OUTPUTS:
% simple_paths = number of simple paths
% list_of_unique_paths = cell array of strings that describe the paths

% Data structures for keep track of unique paths
paths_completed = containers.Map();
paths_in_progress = containers.Map();

% Use CAPITAL N for size of adjacency matrix
N = size(AM ,1);

% Convert adjMtx to 0/1 only
AM = (AM >0);

% Take out the diagonal, since self-connected vertices do not add paths
AM(eye(N)==1) = 0;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The main loop traverses the graph until there are no more
% simple paths to find.
% Finished paths are stored in data.completed_paths

 % start with the source to initialize the paths_in_progress
 s = add_to_paths(source,next_nodes(AM, source));

 % then loop until done
 loop_count =0;
 simple_paths = 0;
 while paths_in_progress.Count >=1

 % the function "path_search" loops through all of the paths in
 % progress to see if they can be completed or continued.
 % The status flag is not used
 status_flag = path_search(AM);

 % the loop count is just used to display progress if so desired
 loop_count = loop_count+1;

 % Uncomment these statements to view the process
 % disp(strcat('Depth=', num2str(loop_count), ...
 % ' PathsInProgress:', num2str(paths_in_progress.Count),...
 % ' PathsCompleted:', num2str(paths_completed.Count)));
 % show_paths(paths_in_progress)
 % show_paths(paths_completed)

 % If you want to set a ceiling, you can do it here.
 if paths_completed.Count >= 1000000
 % re-initialize the list of paths in progress to stop the search
 paths_in_progress = containers.Map();
 disp('*** over 1,000,000 paths found. Limiting count. ***');
 end

 end % paths_in_progress loop

Page 54 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

% assign the total and the list
simple_paths = paths_completed.Count;
list_of_unique_paths = keys(paths_completed);

% disp(strcat('Total simple paths = ',num2str(simple_paths)));

return;

% ***

 % loop through paths in progress and extend them until completed
 function ss_status = path_search(adjMtx)

 for p_in_prog = keys(paths_in_progress)
 pnp = str2num(p_in_prog{1});
 ss_status = add_to_paths(pnp, next_nodes(adjMtx,pnp));
 end

 end

 % look at the end of the current path to get the next nodes
 function nlist = next_nodes(adjMtx, current_path)

 % use that node to get the list of next nodes
 nlist = find(adjMtx(current_path(end),:) >0);

 % check if any are already on the path
 nlist = setdiff(nlist,current_path);

 end

 % Put paths in paths_completed or paths_in_progress
 % Keep going until all possible paths are found.
 function sstatus = add_to_paths(path_in, next_node_list)

 path_in_key = mat2str(path_in);

 % stop if there is nowhere to go
 if numel(next_node_list) == 0
 if isKey(paths_in_progress, path_in_key)
 remove(paths_in_progress, path_in_key);
 end
 sstatus = 0;
 return;
 else
 sstatus = 1;
 end

 % loop through all of the potential next nodes
 for next_node = next_node_list

 % make sure the node has not been visited on this path
 if ~any(path_in == next_node)

 % append the next node and store it
 path_out = [path_in, next_node];

Page 55 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

 path_out_key = mat2str(path_out);

 % if the path is done, then save it in completed set
 if path_out(end) == sink
 paths_completed(path_out_key) = path_out;
 sstatus = 1;
 else
 if numel(path_out) >= 3*N % path is too long...
 if isKey(paths_in_progress, path_out_key)
 remove(paths_in_progress, path_out_key);
 end
 sstatus = 0;
 else
 paths_in_progress(path_out_key) = 1; % dummy
 end
 end
 if isKey(paths_in_progress, path_in_key)
 remove(paths_in_progress, path_in_key);
 end
 end
 end
 end

 % this function is only used for debugging
 function show_paths(c)
 for v = keys(c)
 v
 end
 end

 end % of main function

Appendix B: Function for estimating paths in directed graph

The brute-force counting method in Appendix A provides a reference against which we can
assess methods for estimating task complexity. However, counting paths in a network is known
to be a “#P-complete” problem (Bax, 1994): the number of paths cannot be counted in
polynomial time. As a practical matter, as the size and density of the network increases, no
amount of computing resources can solve the problem. The number of paths can be enumerated
for smaller networks (Rubin, 1978; Bax, 1994), but for larger networks, it must be estimated
(Roberts & Kroese, 2007).
To develop an alternative that is computationally tractable, we build on the method introduced
by McCabe (1976) for estimating the complexity of a software module. This measure, called
cyclomatic complexity, is still in use as a measure of software complexity (Ebert and Cain, 2016;
Tiwari and Kumar, 2014). McCabe (1976) represents the execution paths in a block of code as a
directed graph, and then uses the number of nodes and edges to estimate the number of execution
pathways. McCabe also adjusts for subroutines, which act like nodes and tend to reduce the
number of execution paths:

Complexity ~ edges - nodes - subroutines

Page 56 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The analogy to task complexity is straightforward. As in Hærem et al (2015), the nodes in the
graph are the “required acts” in a task and the edges represent the connections between those
acts. Note that this functional form contradicts the widely held intuition that a greater number of
required acts increases complexity (Wood, 1986). The interpretation here is subtler: for a given
number of nodes, it is the number of edges that drives complexity.

We fit this function to the results of the exact algorithm in Appendix A using a set of simulated
data (n=73,200). The simulated data included 100 random repetitions for each size of network
from 10 ≤ nodes ≤ 100, with varying levels of network density. The networks were simulated so
that there was always at least one valid path. Empirically, we found that the best fit involved a
logarithmic transformation of the dependent variable, as theorized by Hærem et al (2015). We
also found that it made no difference if we count the number of paths or the sum of the number
of edges along all of the paths. The results are shown in Table B-1. Regression diagnostics are
shown in Figure B-2. Over a wide range of conditions, the simple estimate of network paths
correlates with the exact count quite well (r=0.94).

Table B-1: Fitting the estimate to the exact model

Descriptive Statistics
(N=73200)
Min Avg Max

Nodes 10 54 100
Edges 9 67 138
Paths 1 120 25838

DV = Log10(simple
paths)

Nodes -0.079***
(.000)

Edges 0.080***
(.000)

Const 0.120**
(.003)

R2 0.889
F 291982.5***

Page 57 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure B-1: Diagnostic results

Finally, we wanted to ensure that our estimate is accurate when a graph has a single path from
source to sink. When there is a single path, there is one edge between each pair of nodes, so
edges = nodes - 1. Therefore, when there is a single path, log10(1) = 0. Adjusting the model to
fit this analytical boundary condition results in this formula for computing task complexity based
on a directed graph that represents the task:

𝑬𝒏𝒂𝒄𝒕𝒆𝒅 𝒕𝒂𝒔𝒌 𝒄𝒐𝒎𝒑𝒍𝒆𝒙𝒊𝒕𝒚 = 𝑙𝑜𝑔10(𝑠𝑖𝑚𝑝𝑙𝑒 𝑝𝑎𝑡ℎ𝑠) = .08 ∗ (𝑒𝑑𝑔𝑒𝑠 ― 𝑛𝑜𝑑𝑒𝑠 + 1)

Bax, E. T. 1994. Algorithms to count paths and cycles. Information Processing Letters, 52(5):
249-252.

Roberts, B., & Kroese, D. P. 2007. Estimating the Number of st Paths in a Graph. Journal of
Graph Algorithms and Applications, 11(1): 195-214.

Rubin, F. 1978. Enumerating all simple paths in a graph. IEEE Transactions on Circuits and
Systems, 25(8): 641-642.

Kenneth T. Goh (kennethgoh@smu.edu.sg) is an Assistant Professor of Strategic Management
at the Lee Kong Chian School of Business, Singapore Management University. He received his
PhD from The Tepper School of Business, Carnegie Mellon University. His research explores
routines and processes in innovation and entrepreneurship.

Brian T. Pentland (pentland@broad.msu.edu) is the Main Street Capital Partners Endowed
Professor in the Broad College of Business at Michigan State University. His work has appeared
in Academy of Management Review, Administrative Science Quarterly, Journal of Management
Studies, Management Science, MIS Quarterly, Organization Science, Organization Studies,
ReverbNation, YouTube and elsewhere.

Page 58 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

	From actions to paths to patterning: Toward a dynamic theory of patterning in routines
	Citation

	tmp.1568267188.pdf.rMLe3

