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FROM ACTIONS TO PATHS TO PATTERNING: 
TOWARDS A DYNAMIC THEORY OF PATTERNING IN ROUTINES

ABSTRACT
   This paper demonstrates a new way of seeing and theorizing about the dynamics of 

organizational routines through the concept of paths – time-ordered sequences of actions or 
events in performing work.  Empirically and conceptually, paths provide the missing link 
between specific actions and patterns of action.  When routines are represented as a narrative 
network, tracing the formation and dissolution of action paths can generate new insights about 
the dynamic patterning of actions in routine performances. We traced action paths using 
longitudinal field data from a videogame development project and found that action patterns 
change dramatically over time based on the needs of the project. We explain these changes in 
terms of generic mechanisms that lead to the enactment of more (or fewer) paths in the narrative 
network. We propose that patterning can be seen as a new motor of routine dynamics and discuss 
generic mechanisms through which patterning can influence narrative network structure. 

Keywords:  Routine dynamics, narrative network, network paths, task complexity, process 
research

INTRODUCTION

When we look at an organization, it is easy to see the people, places, departments, and 

other material and symbolic manifestations.  Conceptually, however, we know that organizations 

are constituted by the continual unfolding and patterning of actions and interactions between 

these parts over time (Feldman, 2016a; Tsoukas & Chia, 2002; Weick, 1979).  There is a gap 

between a processual view, which emphasizes patterns of action, and conventional ways of 

seeing and talking about organizations as collections of objects (Mesle & Dibben, 2016).  

Current theory tells us that processual phenomena are everywhere (Hernes, 2014; Langley & 

Tsoukas, 2016a), but they are harder to see (Feldman, 2016b). 

 In this paper, we introduce the concept of paths as a way for seeing and theorizing about 

the dynamics of organizational routines (Feldman, Pentland, D’Adderio, & Lazaric, 2016). By 

path, we mean a coherent, time-ordered sequence of actions or interactions in the workflow – 

steps in a process of accomplishing an organizational task (Pentland, Feldman, Becker, & Liu, 

2012) – or events within a project or routine (Obstfeld, 2012; Pentland, Recker, & Wyner, 2017). 
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We apply this lens in the context of a new product development project, specifically video game 

development. When paths are repetitive and recognizable, they represent performances of a 

routine (Feldman & Pentland, 2003; Obstfeld, 2012).  In the project we studied, some paths were 

repetitive and recognizable, but there was also constant change, making it a good context to 

study routine dynamics. We use evidence from this project to theorize about a central problem in 

routine dynamics: what drives a pattern of action to become more or less varied? 

We build on the concept of patterning (Danner-Schröder & Geiger, 2016; Feldman, 

2016a; Turner & Rindova, 2018) as a way to describe routine dynamics.  We conceptualize 

patterning as the formation of new paths and the dissolution of old paths in the narrative network 

that describes the routine (Pentland & Feldman, 2007).  The general approach is analogous to 

established models of social network dynamics (Snijders, 2001; Snijders, van de Bunt, & 

Steglich, 2010), but instead of examining ties between a fixed set of actors, we trace paths 

between a constantly changing set of actions. We found that action patterns change dramatically 

over time depending on project needs and explain generic mechanisms that lead to more (or 

fewer) paths being enacted in the narrative network. While these mechanisms relate to Van de 

Ven and Poole’s (1995) classic typology of change motors, we propose that patterning can be 

seen as a novel motor of change for routine dynamics.  

A path-based focus is not a minor methodological twist.  It goes hand in glove with a 

theoretical perspective called “strong” process theory (Hernes, 2014; Langley & Tsoukas, 2016a; 

Tsoukas & Chia, 2002).  Strong process theory offers a radical, process-centric ontology of the 

social world.  Tracing the formation and dissolution of paths over time provides a concrete way 

to operationalize strong process theory in empirical research on routine dynamics.  Our path-

based approach offers a new way of seeing and measuring how the patterns of action in a routine 
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have changed.  This allows us to describe and theorize about the mechanisms that drive routine 

dynamics.    

THEORY

The philosophical roots of strong process theory can be traced to Whitehead, James, 

Mead, and Dewey and more recently the work of Chia (2016), Hernes (2014), Rescher (1996), 

Shotter (2006) and others (see Langley & Tsoukas, 2016b).  The basic insight is simple.  As 

Weick (1979: 95) observed, “organizations are grounded in interlocked behaviors rather than 

interlocked people.” Putting actions in the foreground, rather than actors, aligns with the view 

that the social world is a continually unfolding process (Strauss, 1993; Tsoukas & Chia, 2002).  

Thus, the “dynamic, unfolding process becomes the primary unit of analysis rather than the 

constituent elements themselves” (Emirbayer & Mische, 1998: 287). This strong process view is 

widely adopted in research on routine dynamics (Howard-Grenville & Rerup, 2017). In the 

following sections, we review the routine dynamics literature and explain how paths can provide 

a new way of seeing and characterizing the dynamics of organizational routines.

Routine dynamics 

Routine dynamics focuses on the stability and change of organizational routines from a 

processual perspective (Feldman et al., 2016). Routines are repetitive, but because each 

performance of a routine unfolds over time, it can always unfold in a new direction (Feldman & 

Pentland, 2003). While there are many factors that help routines “stay on track” (Schulz, 2008), 

routines are not constrained to follow pre-defined paths (Feldman, 2000; Feldman & Pentland, 

2003; Feldman et al., 2016).  Future paths are influenced by past paths, but not determined by 

them. Furthermore, as Feldman et al. (2016) point out, some routines are not very routine: they 

embody an enormous number of possible paths (Hærem, Pentland, & Miller, 2015; Pentland, 
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Hærem, & Hillison, 2010).  All routines exhibit what (Cohen, 2007) called “pattern-in-variety,” 

but some are more varied than others and at the same time, the patterns may be changing.  

This points to a central puzzle in routine dynamics: what makes a pattern of action more 

or less varied? In routine dynamics, variety enables change (Feldman, 2016a; Pentland, Liu, 

Kremser, & Hærem, In press). A pattern of action that is more varied encompasses more paths, 

with more possibilities for divergence/change. A pattern of action that is less varied encompasses 

fewer paths, with fewer possibilities for divergence/change. However, the theoretical problem of 

what drives patterning is not explained: Why do patterns of action stay the same or change over 

time?  There is also the methodological problem of seeing and quantifying pattern-in-variety 

(Cohen, 2007).  We cannot research this phenomenon if we cannot see it. 

The growing body of field research on routine dynamics has focused on explanations of 

stability and change.  It elaborates on the concept of endogenous change as theorized by Feldman 

and Pentland (2003) and points to the importance of exogenous factors as well.  For example, in 

their study of compliance routines in oil exploration, Bertels and colleagues (2016) show how 

routines can be shielded from and shored up against external interventions.  The routines remain 

stable, although this stability requires effort and continual maintenance.  In contrast, in their 

study of NASA’s implementation of an enterprise information system, Berente and colleagues 

(2016) show that routines can change through unanticipated local adaptation.  As Barley (1986) 

observed when CT scanners were introduced into radiology departments, Berente et al. (2016) 

found that new technology can lead to new patterns of interaction in a workplace. At the 

organizational level, Rerup and Feldman (2011) demonstrate how organizational routines 

coevolve with organizational schema through different types of “trials” and “errors.”   

Page 5 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



The formation of new routines has also been a topic of considerable interest.  For 

example, in the context of video game development, Cohendet and Simon (2016) describe a 

process of forming new routines through deliberately breaking, partitioning, and recombining 

aspects from different routines in response to an organizational disruption that required them to 

shift from efficiency to make room for creativity. Deken et al (2016) showed how flexing, 

stretching, and inventing generated novel actions and outcomes in an automotive supplier that 

was developing a new line of information-based services. Meetings (Aroles & McLean, 2016) 

and spaces (Bucher & Langley, 2016) provide opportunities for questioning, reflection, and 

thought experiments as participants work out new routines (Dittrich, Guérard, & Seidl, 2016).  

This fieldwork provides evidence that routines do, in fact, change over time in systematic 

ways and has led to a refined understanding of factors driving stability and change in routines.  

Feldman et al. (2016) note that these field studies have generally employed situated actions as 

the unit of observation and patterns of action as the unit of analysis. Ironically, the unit of 

analysis (the pattern of interdependent action that makes up the routine) has been less visible.  

The literature on routine dynamics theorizes about patterns of action, often without measuring or 

visualizing those patterns (Feldman, 2016b). 

Feldman (2016a) suggests that one way forward is to focus on the “inseparability or 

mutual constitution of actions and patterning” (p. 38).  Patterning exemplifies the process of 

dynamic unfolding described by Emirbayer and Mische (1998), because routines are performed 

one step at a time.  Step by step, situated actions enact recognizable paths.  Paths represent a 

missing link between situated actions and repetitive patterns. By tracing paths, we can begin to 

connect actions and patterns.   

Page 6 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Routine Dynamics as Network Dynamics 

In this paper, we use narrative networks to represent organizational routines and trace 

paths within routines (Pentland & Feldman, 2007; Pentland et al., In press).  A narrative network 

is unlike a social network because the nodes represent events or activities, not people. The ties 

(edges) in a narrative network represent sequential relations between the actions and can be 

interpreted as handoffs (Pentland, Recker and Wyner, 2017).  They could also be interpreted as 

organizing moves (Pentland, 1992) because they enact division of labor, hierarchy, and other 

organizational structures.  For example, in the video game development project, there were 

constant handoffs between work activities and departments (e.g., art work and programming). 

Technically, a narrative network is a directed graph where the weights on the edges can 

be used to quantify the frequency of handoffs between activities. Pentland and Liu (2017) 

describe methods for constructing narrative networks from data collected in field research.  

These networks can be automatically constructed from computerized event logs or observations 

using software provided by Pentland and colleagues (2015, 2016). In the context of 

organizational routines, the narrative network thus represents the patterning of actions in 

performing the routine. The differences between social networks and narrative networks are 

summarized in Table 1.  

---------------------------------
INSERT TABLE 1 HERE
---------------------------------

Network Dynamics. In models of social network dynamics, changes to the network are 

modeled by adding and removing ties between the individuals in the network. Tie formation is 

driven by reciprocity (Wasserman & Faust, 1994 Chapter 13), preferential attachment (Barabási, 

& Albert, 1999), homophily (McPherson, Smith-Lovin, & Cook, 2001), transitivity (Davis, 

1970; Holland & Leinhardt, 1977), and other features of the network. There are established 
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models for predicting dynamics (Snijders et al., 2010) and for visualizing dynamics (Handcock, 

Hunter, Butts, Goodreau, & Morris, 2008; Moody, McFarland, & Bender-deMoll, 2005). 

Relational event models (Butts, 2008; Leenders, Contractor, & DeChurch, 2016) that predict the 

likelihood of a relational event (i.e., interpersonal action) between two parties provide a way to 

model social network dynamics in continuous time. 

We conceptualize narrative network dynamics in an analogous manner to social network 

dynamics: as the formation and dissolution of network edges. However, narrative networks and 

social networks are fundamentally different ways to see the social world. While social networks 

represent the ties between actors, narrative networks represent sequential relations between 

actions or events. In narrative networks, nodes are not individuals with cognition, motivation, 

and other personal characteristics. Consequently, the mechanisms that drive the dynamics of 

social networks do not apply.  For example, it does not make sense for actions to be attracted to 

each other and become sequentially related on the basis of that attraction. Thus, to theorize about 

the dynamics of narrative networks, we need to start from scratch. For this purpose, we turn to 

the concept of network paths.  

Network Paths. In any kind of network, a path is defined as a sequence of connected 

nodes (West, 2001). However, the interpretation of paths is different in different kinds of 

networks.  In a social network, a path counts the number of “hops” or degrees of separation 

between individuals in the network.  The shortest path provides a measure of distance between 

nodes. It is an indication of connectivity between pairs of nodes and can be used to identify 

nodes or ties that are critical for connectivity (Freeman, 1977; Wasserman & Faust, 1994: 105). 

In a narrative network, a path represents a sequence of actions that might be used to carry 

out part of an overall routine or process. Paths can also be considered as recipes for action or 
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stories: they describe how a process has been or could be performed.  Like any recipe or story, it 

is carried out one step at a time. The nodes in the network are the actions and the edges represent 

the movement from one action to the next, connecting those actions into paths. 

Thus, we see a path as a sequence of steps enacted over time. Building on Strauss (1993), 

Obstfeld (2012) used the term trajectory to refer to the same basic idea. Obstfeld (2012: 1574) 

defined a trajectory as “a sequence of interdependent actions involving multiple actors.” In 

business process management, paths are often referred to as “traces” (Song, Günther, & Van der 

Aalst, 2008).  While we are referring to the same concept, we prefer the term path because it 

emphasizes the graph theoretic interpretation (West, 2001). 

Steps to Paths to Patterns.  The narrative network provides a theoretical explanation of 

how enacting different steps influences the possible paths in a routine. When we add or remove 

steps (edges) from a narrative network, it changes the set of possible paths. It creates (or 

removes) possible ways of getting things done. For example, if a new bus route or subway line 

opens (or closes), it may create (or remove) a possible path for getting to work. As a result of 

these changes, new paths become available and old paths become unavailable. Each possible 

path contributes to the overall pattern. 

In general, adding actions (nodes) and/or handoffs (edges) will tend to increase the 

number of paths. Removing actions (nodes) and/or handoffs (edges) will tend to decrease the 

number of paths. These relationships are not hypotheses; they are based on mathematical 

properties of directed graphs. The question for organizational research is: What mechanisms 

drive these dynamics? 

METHODS

We conducted a field study of a video game development project team that involved 

being “in the flow” to capture longitudinal data through observations, interviews, and archival 
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materials. In-depth field work provided the fine-grained detail necessary to bring the phenomena 

to life (Feldman et al., 2016; Jarzabkowski, Lê, & Spee, 2016).

Research Setting

The setting for our study is a project team, ProjectBQ, at a video game development 

studio, GameSG (both pseudonyms), based in a mid-Atlantic city in the United States. During 

the period of data collection, GameSG was a 10-year old studio that employed approximately 60 

employees, mostly under 30 years of age, with expertise in software engineering, game design, 

and technical art. Prior development projects at GameSG included games on various platforms 

(e.g., mobile phones, stand-alone entertainment systems, TV plug-in games, internet browser 

games) for a wide spectrum of clients that included video game publishers, media 

conglomerates, theme parks, and a startup toy company.

Project teams in GameSG were usually composed of members with expertise in one of 

the following skill sets - game design, software engineering, technical art, script writing, 

animation, sound composition, and project management.  The composition of team members in 

ProjectBQ was typical in this regard. The team was led by a core group of functional “leads” 

consisting of the producer, a lead designer, a technical lead, and an art lead. Each lead was 

responsible for coordinating work in that functional domain and acting as a gatekeeper for the 

quality of work produced. Project leads were also directly involved on high level decisions about 

the design and functionality of the game. The producer managed deadlines, the pace of work, and 

access to resources for the team. They played a boundary-spanning role between the team and 

other stakeholders such as GameSG management, other project teams, and the client. The team 

size for ProjectBQ ranged from 8 to 15 developers over a 14-month period.

ProjectBQ was funded by a non-profit with the goal of promoting anti-drug messages 

through unstructured learning methods. The project was a “serious” game intended to teach 
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teenagers about resisting peer pressure in high-risk situations (e.g., substance abuse, risky 

behavior).  The game was themed as a fantasy game where the hero protagonist is a mouse that is 

attempting to protect his tribe from the corrupting influence of the villain antagonist. Players 

progressed in the game by visiting new worlds to battle enemies. Battles were turn-based and 

were won by whether the player picked the right move that would best counter the one chosen by 

the computer. Although the game had “fantasy characters”, players had to make decisions based 

on real world situations. Describes Producer1,

“It is not direct messages saying, “Don’t do drugs.” What it’s saying is, “Here are some 

situations that you’re not going to be comfortable with in real life. Here are responses and 

ways in which you can handle those situations without feeling like a nerd or an outcast, 

or like you’re going to lose your friends or things like that.” (Producer1)

ProjectBQ was typical of the game development projects at GameSG in that the stages of 

development followed a standard sequence of a pre-production, production, and refinement. The 

pre-production stage involved testing out ideas for the game with the goal of finalizing game 

design. The production stage involved building the actual game. Finally, the refinement stage 

involved fixing software bugs and improving on the playability of the game. Despite following 

this standard sequence of development, ProjectBQ team members were more frustrated than 

usual about the frequent design changes. The project was over scoped and behind schedule. 

These issues manifested in a few notable incidents during the project: the project lead (who was 

also one of the tech leads) was replaced with a co-designer, the lead designer was fired from the 

studio, and the studio head had to become personally involved in redesigning the game halfway 

through. As the project developed, team members reported losing interest in the project and were 

unhappy at having to work overtime on a game they did not find fun at all. The game was 

Page 11 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



eventually built and delivered to the client, albeit behind schedule. Despite the negativity in the 

development process, the game was found to have moderate success in improving adolescent 

players’ ability to identify pressuring situations as well as recognize and practice healthy 

responses. The game was also a finalist for several gaming awards and was rated 4.2 stars on 

Google Play and 4 stars on iTunes, out of a possible 5 stars. 

 We picked video game development as an exemplary setting for studying routine 

dynamics because it is a collective task that is ambiguous and emergent: there are an endless 

number of possibilities for combining elements to create a game. Video games are an interactive 

virtual experience produced by a computer program onto a display device that people engage in 

for entertainment. Although games are also used in more “serious” settings such as education 

and training simulations, there is always an element of interactivity and engagement with the 

player. However, how this interactivity and engagement manifests in the context of the game is 

rarely obvious at the outset of game development (Cohendet & Simon, 2016).  

These characteristics of video game development can be considered a type of creative 

project (Obstfeld, 2012). Creative projects consist of an emergent trajectory of interdependent 

action initiated and orchestrated by multiple actors to introduce change into a social context. The 

nature of these departures could be in the form of new elements, or new linkages between 

familiar elements. The ambiguous means and ends of creative projects imply that “repetition is 

not a guide on what to do next” (Obstfeld, 2012: 1571) as the trajectory of action required to 

create the video game does not follow a set plan. On a continuum of routine and non-routine 

actions, ProjectBQ is clearly at the non-routine end of the continuum (Adler & Obstfeld, 2007; 

Obstfeld, 2012). 
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Data Collection

Our research design incorporated data from archival materials, non-participant 

observation, and interviews.  Data was collected over 15 months as part of a longer two-year 

study on the routines in video game development. The ProjectBQ team used a software project 

management approach called ‘scrum’ (Cohendet & Simon, 2016; Sutherland & Sutherland, 

2014). Scrum involved breaking down the project into three-week ‘sprints’. Before each sprint, 

the team would decide on their collective goals and individual tasks for the next sprint. The 

sprint consisted of short daily meetings, lasting no more than 15 minutes, where members 

updated the team on the progress of their individual tasks. At the end of the sprint, the team 

would meet to review the progress on the team’s goals and set their goals for the next sprint. This 

cycle continued for the entire duration of the project. 

The primary document we relied on to construct networks of action patterns were ‘scrum 

sheets’ - archives of task schedules that contained logs of tasks assigned to each individual. 

These documents were updated daily by the team and daily versions of these documents were 

downloaded between May 2011 and February 2012 (n = 122). As an archival source, the scrum 

sheets are particularly suitable for capturing chronologies of actions over long periods of time 

(Langley, Smallman, Tsoukas, & Van de Ven, 2013). 

The scrum sheets were used to create a database of tasks, the “story” or goal that it meant 

to accomplish, the actors associated with the tasks, and when the task started and ended. A 

“difference report” was created for each day by comparing scrum sheets with the most recent 

version to identify which tasks were added or removed, and the progress made on the task. From 

these daily difference reports, a list of actions was created (n = 2,803). Starting and ending dates 

for each task were also extracted from the difference reports. Tasks without a start and end date 

were removed as these tasks were not acted upon, resulting in final list of 2,428 tasks. These 
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actions were then grouped by stories and sequenced according to the following order: 1) when 

the task ended, 2) when it was started, 3) the order in which the action was added to the database. 

The last criterion was necessary to determine the ordering of actions that shared similar start 

dates and end dates. 

Between May 2011 to August 2012, the first author was a non-participant observer on 

ProjectBQ. These observations included team meetings (n = 39), client meetings (n = 7), and 

play test sessions (n = 4). Team meetings included daily fifteen-minute “scrum” meetings (n = 

29) where team members met to schedule and coordinate their tasks for the day, retrospective 

meetings where they reviewed work processes (n = 2), and general discussions about the project 

(n = 8). During these meetings, notes were taken about the purpose of the meeting, what was said 

and by whom, and the author’s impressions of what transpired during the meeting.  

In addition to data from observations, both ad hoc informal (n = 11) and formal semi-

structured interviews (n = 4) were conducted with team members. The informal interviews 

focused on getting status updates on the project while formal semi-structured interviews were 

about 60 minutes long and focused on gaining an in-depth understanding of specific episodes 

during the project. Interviews were conducted with the producer, the two tech leads, the art lead, 

a designer, and a software engineer. Archival materials such as project schedules, planning 

documents, meeting notes, and budgets were also accessed and referenced to establish rich 

insights into the events surrounding the actions taken by the team. 

Data Analysis

In keeping with our goal of seeing and theorizing about patterning as it was enacted over 

the course of the project, we analyzed data chronologically as a narrative.  The data analysis 

consisted of three main steps: (1) constructing a series of narrative networks that represent 
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patterns of action throughout the project; (2) computing the properties of each network; and (3) 

constructing a project narrative to interpret and theorize about the dynamics of those patterns. 

Constructing narrative networks. Narrative networks were constructed in the following 

steps: 1) code the data into sequences that can be used to construct narrative networks; 2) bracket 

the data into windows of analysis that correspond to project sprints; and 3) construct and 

visualize the networks through a software application called ThreadNet (Pentland et al., 2015, 

2016).  

The first step, coding the data into sequences, required coding the final list of 2,428 

activities from the scrum sheets according to the actions and roles involved in each activity. We 

used a constant comparative process (Glaser & Strauss, 1967) to develop task categories with the 

help of two research assistants. Categories were developed by iterating between the first author’s 

familiarity with the context, field notes, and other archival documents to understand the intent of 

the task. This process involved forming initial clusters of tasks to minimize differences within 

clusters while maximizing differences between clusters. An initial set of categories were then 

developed from these clusters. New tasks were then compared with earlier tasks in the same 

category. If a newly categorized task appeared to be different from other tasks in the same 

category, this would be reconciled by attempting to refine the definitions and properties of these 

categories to accommodate the new data. This process of constantly comparing new data with 

existing codes was continued until a level of stability was reached. From twelve initial 

categories, the list was ultimately reduced to the following six categories: Administration, 

Experimenting, Building, Revision, Refinement, and Testing (Table 2). Figure 1 shows the 

distribution of these categories over time. 
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-------------------------------------------
INSERT FIGURE 1 ABOUT HERE
-------------------------------------------

Roles were coded in a similar approach to coding actions. The primary actor responsible 

for each task in the database was categorized into an organizational role by the first author based 

on the researcher’s familiarity with the research setting. These roles were Design, Art, Tech, and 

Analytics (Figure 2).  Together with the actions, these roles define the possible actions in the 

narrative network.  The six roles and six task categories meant that there were potentially 36 

unique role-task categories. The 36 unique role-task categories were applied to the 2,428 time-

ordered events gathered from the scrum sheets to create a set of 159 coded sequences. These 

coded sequences become the input for creating a series of narrative networks for the project as it 

progressed.  

-------------------------------------------
INSERT FIGURE 2 ABOUT HERE
-------------------------------------------

The second step involved bracketing narrative networks into windows of analysis. 

ProjectBQ was implemented using an agile software development methodology (Moe, Dingsøyr, 

& Dybå, 2010; Sutherland & Sutherland, 2014), which meant that the project was divided into 

three-week long phases called “Sprints.”  For our analysis, we bracketed the data (Langley, 

1999) into three-week windows that corresponded with the dates for each Sprint. 

The third step involved constructing and visualizing the networks through a software 

application, Threadnet (Pentland et al., 2015, 2016). ThreadNet was used to convert the coded 

sequences into a narrative network for each sprint. The application traces the coded sequences of 

action to create networks. Each kind of coded action becomes a node in the network. Adjacent 
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pairs of coded actions become edges in the network. Although this procedure can be performed 

manually, the software is faster and less error-prone. 

Computing properties of narrative networks. Once the networks for each sprint were 

constructed, we computed their properties.  The two basic properties that define any network are 

(a) the list of nodes and (b) the list of edges (West, 2001).  For our purposes, we simply needed 

to count the number of nodes and edges in each graph.  These counts are provided automatically 

ThreadNet (and other network analysis tools) and are shown in Table 3 (see below).  

To estimate the number of paths in the network, we used a simple formula based on 

McCabe’s (1976) concept of cyclomatic complexity: 

(1)                            𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 𝒑𝒂𝒕𝒉𝒔 =   10 0.08 ∗ (𝐸𝑑𝑔𝑒𝑠 ― 𝑁𝑜𝑑𝑒𝑠 + 1) 

Stated in English, the estimated number of paths in a network is an exponential function 

of the difference between the number of edges and the number of nodes.  For a given number of 

nodes, increasing the number of edges will increase the estimated number of paths.  The constant 

(0.08) is derived empirically by fitting this equation to thousands of simulated networks with a 

known number of paths. The derivation, validation, and limitations of this formula are provided 

in Appendices A and B. The complexity index (Hærem et al., 2015) is computed as a logarithmic 

function of the number of estimated paths.  

Constructing the overall project narrative.  We constructed a timeline of events from 

interviews with informants. These interviews were professionally transcribed and analyzed using 

nVivo software to identify periods, major events, and the critical actors associated with the 

temporal unfolding of the project (Langley, 1999; Pentland, 1999). We drew on the first author’s 

observations of the project team to validate our timeline of the project. Each observational event 
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was dated and summarized. We then compared the events provided by informants with these 

observations to validate the timeline.

To create a more detailed narrative, we augmented the basic project timeline by iterating 

between the interviews and the observations with an emphasis on the contextual circumstances 

surrounding interpretations of why events occurred, individual thoughts and feelings in response 

to actors and incidents, and histories. This narrative provided a depth of insight into the 

unfolding project that extended temporally across the past and into the future, and across actors 

that included individuals, the team, and external stakeholders.  

FINDINGS

We report our findings in two parts. In the first part, we describe four phases of 

patterning in ProjectBQ.  During each phase, the number of paths in the narrative network 

increased or decreased dramatically.  In the second part, we combine our qualitative data about 

the project with quantitative metrics about the narrative network to theorize about the 

mechanisms that drive routine dynamics.

Four phases of patterning in ProjectBQ

 As a creative project, ProjectBQ involved a lot of change. Figure 3 shows how the 

complexity of the project (indexed by the number of paths) changed over time. Table 3 shows 

the narrative network for each sprint, plus the number of distinct nodes/edges and the number of 

paths added/removed from one sprint to the next. Table 3 also mentions the mechanisms that 

drive dynamics, which are explained in the next section. Here, we discuss the project in four 

phases of patterning that correspond to distinct changes within the project.   

--------------------------------------------------
INSERT FIGURE 3 ABOUT HERE

--------------------------------------------------
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---------------------------------------------
INSERT TABLE 3 ABOUT HERE

---------------------------------------------

Phase one: Sprints 1 to 4 (Increasing Complexity). In phase one, complexity increased 

between Sprints 1 to 4 (adding over 43,000 paths to the network). This increase was driven by 

both an increase in the number of distinct actions (from 9 to 17) as well as the number of distinct 

handoffs (from 19 to 87). 

This increase can be explained by the fact that the first phase of the project consisted of 

concepting, prototyping, and developing the core mechanics of the game. Sprint 1 was 

designated as the phase to develop “Initial Concepts”. Sprint 2 was initially designated as a “Pre-

Production” phase, the goal of which was for developers to rehearse the steps for producing 

game assets and incorporating these assets into the game to get a sense of the production 

schedule. Going through this process helps them to “make sure a lot of these later milestones 

were laid out and could be accomplished” (Art1). However, Sprint 2 was later renamed as a 

“Production” phase. Sprint 3 was assigned to be the phase for developing “Battle prototype” 

which was a core mechanic of the game. This was to be followed by a phase for developing the 

combat system and the game environment in Sprint 4, which was labelled the “Combat, Burrow” 

phase. To develop the “combat” feature of the game, the Designer needed to account for 

technical and aesthetic concerns which required closer collaboration, coordination, and iteration 

with Tech and Art. This interdependence between developers from different functions is evident 

from the doubling in distinct handoffs from Sprint 2 to Sprint 4. 

Phase two: Sprint 5 (Decreasing Complexity). In Sprint 5, complexity decreased to 

1.52. Interestingly, the number of distinct actions remain the same at 17. The decrease in 

complexity is driven by the decrease in handoffs (n = 47), which resulted in a decrease of over 

43,000 possible paths. Complexity declined in Sprint 5 because a prototype was to be delivered 
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to the client at the end of the sprint. As a result, most of the actions were building-related as 

evident from the increase in frequency of Building tasks in Sprint 5 (Figure 2). 

Phase three: Sprints 6 to 8 (Surge in Complexity). In phase three, complexity 

increased between Sprints 6 to 8 (from 3.92 to 5.76).  The number of distinct actions increased 

slightly from Sprint 5 but remained constant throughout this phase (n = 21). However, the 

number of distinct handoffs more than doubled from Sprint 5 (from 83 to 106).  This seemingly 

minor increase in handoffs led to a dramatic addition of over 500,000 possible paths. This 

change is especially striking because the number of distinct actions was constant during this 

phase.   

This enormous increase in possible paths resulted from the ProjectBQ developers 

working towards a “gamma build” deliverable that was due in Sprint 11. As the “feature lock” 

deadline was in Sprint 9, there was a flurry of activity that included both Experimentation- and 

Building-related actions to confirm the final features of the game in Sprint 8. We found that the 

increase in handoffs was due to team members iterating between downstream roles (e.g., 

“Sound”) and tasks (e.g., “Refinement”) and upstream roles (e.g., “Design”) and tasks (e.g., 

“Experimenting”).

Phase four: Sprints 9 to 11 (Decline in complexity). In phase four, complexity 

decreased between Sprints 9 to 11 (from 3.12 to 1.74). This decrease in complexity was caused 

by both a decrease in distinct actions (from 18 to 10) and distinct handoffs (from 66 to 38).  The 

number of possible paths dropped off by over 500,000, mostly in sprint 9. 

In phase four, there was a decline in both distinct actions and handoffs because the 

feature lock deadline in Sprint 9 meant that no more changes to the design could be made. 

Hence, the remaining actions were mostly Building-related. There were no longer major design 
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changes that required developers to iterate between experimenting and building, or between 

functions. 

Mechanisms that drive routine dynamics

In the second part of our findings, we draw on our findings to identify mechanisms that 

drive the complexity of routine dynamics through the addition (or removal) of actions and 

handoffs from the network.  These mechanisms operate to varying degrees throughout the 

performance of the project.  To identify these mechanisms, we draw on causal loops 

diagramming methods that are commonly used in system dynamics research to articulate process 

theories (e.g., Rudolph et al., 2009; Strike & Rerup, 2016) to unpack how events unfolded in 

ProjectBQ.  We identify a total of six mechanisms that directly affect the complexity of routine 

dynamics: reinforcement loop, performance loop, revision loop, delay loop, cut-back loop, and 

motivation loop.  

Reinforcement loop.  Reinforcement through repetition is one of the basic mechanisms 

of stability in routines (Cohen & Bacdayan, 1994; Schulz, 2008). In ProjectBQ, we found that 

the frequency of a handoff in one sprint was positively related to the tendency for that handoff to 

occur in the next sprint. If a handoff appeared more than once in a given sprint, there was a 55% 

chance it appeared in the next sprint. If a handoff appeared more than five times in a given sprint, 

the chance of it appearing in the next sprint increased to 95%. These findings thus provide 

evidence of stable, repetitive patterns of action even within the context of a creative project. By 

itself, repetition tends to reduce complexity because, in a routine with many thousands of 

possible paths, stronger paths get reinforced and weaker paths are forgotten (Pentland et al, in 

press). Conversely, greater complexity (more paths) reduces the chances that a particular path 

will be repeated. We label this relationship between repetitive patterns of action and complexity 

as the reinforcement loop (Figure 4a).    
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---------------------------------------------
INSERT FIGURE 4a ABOUT HERE
---------------------------------------------

Performance loop. Figure 4b shows the set of relationships in the performance loop that 

drive actions and handoffs. Output quality gap – the gap between the client’s requirements and 

the overall quality of the project team’s output – instigates the developers to act to narrow this 

gap. This mechanism was evident throughout the project but manifested in different ways at 

different sprints. 

At the beginning of the project, particularly in Sprints 1 and 2, actions were taken to help 

designers to understand the game mechanics and make decisions about the features and 

functionalities that the game will have. Producer1 explained the process at this stage as follows:

“[The designer] felt that we should have a pre-production phase. Your designer needs a 

pre-production process because they need to figure out what the game is and then they 

need to start designing it before the tech people come in and start building it. You can’t 

build something that hasn’t been figured out yet.” (Producer1)

The goal of the pre-production phase was for developers to rehearse the steps for 

producing game assets and incorporating these assets into the game to get a sense of the 

production schedule. Going through this process helps them to “make sure a lot of these later 

milestones were laid out and could be accomplished” (Art1). A large proportion of actions in 

Sprints 1 and 2 thus consisted largely of Experimentation actions performed by the core group of 

eight developers.

In Sprint 3, the team’s headcount increased because the Tech lead lobbied senior 

management to bring on more developers to the team sooner. This decision was made due to 

concerns that the project had been over scoped, which would hurt their ability to meet project 

deadlines. With the increase in headcount, there was also a corresponding increase in the total 
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frequency of actions from 65 in Sprint 2 to 98 in Sprint 3 as developers “ramp up” and move into 

the Production phase to build the game, even while continuing to experiment with different 

ideas. The increase in actions and handoffs enabled the team to work towards their first major 

project milestone - to deliver a playable prototype to the client at the end of Sprint 5.

We have thus far explained how the performance loop increases actions and handoffs. 

However, this mechanism could also reduce actions and handoffs when expectations for output 

quality were low, such as in Sprint 5. In Sprint 5, the complexity index decreased from 4.64 in 

Sprint 4 to 1.56. This decrease in complexity index was due to fewer handoffs since the 

frequency of actions were approximately similar in both Sprints 4 (n = 221) and 5 (n = 224). The 

reason there were fewer handoffs in Sprint 5 is because the developers were focused on 

completing the prototype at the end of Sprint 5. After they had iterated on a design that they 

thought was good enough to meet the client’s expectations for this milestone, the team then 

focused on Building and Refining actions to build the prototype. Thus, the proportion of 

Building actions increased from 36.7% in Sprint 4 to 67.4% in Sprint 5. Of note were the 

decreases in Testing actions from 19.0% in Sprint 4 to 4.9% in Sprint 5, and decreases in 

Experimenting actions from 26.7% in Sprint 4 to 14.3% in Sprint 5. Furthermore, since quality 

expectations for prototypes were lower, developers did not need to iterate between functions and 

revise their work as frequently, which explains the fewer handoffs and paths. This relationship 

between output quality gap, actions and pathways, and output quality partially explains the 

dynamics of complexity, which increased between Sprints 1 to 4 then plunged in Sprint 5.

In the second half of the project, from Sprint 6 onwards, the ProjectBQ team has a new 

milestone to deliver a “gamma build” of the game in Sprint 11. New actions and handoffs were 
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undertaken to develop the game to meet this milestone, which led to the increase in complexity 

index between Sprints 6 to 8. 

After the feature lock deadline in Sprint 9, the game could no longer be improved by 

adding or modifying game features. Consequently, this narrowed the output quality gap by 

reducing quality expectations to refining or “polishing” the features that were already in place. 

The narrowing of the output gap due to the feature lock deadline instigated a corresponding shift 

towards Building and Refining actions, with fewer pathways across roles which led to the 

decline in complexity from Sprints 9 to 11.

---------------------------------------------
INSERT FIGURE 4b ABOUT HERE
---------------------------------------------

Revision loop. The Performance loop also intersected with other mechanisms, one of 

which is the Revision loop. As more components of the game become completed, developers 

could playtest the game and learn about which features of the game to change, add, or remove. 

This feedback triggers revisions to the design which led to more actions and handoffs between 

roles to accomplish, creating a positive feedback cycle that we label the “Revision loop” (Figure 

4c). 

The Revision loop was evident in Sprints 3 and 4 of ProjectBQ where complexity 

increased from 2.68 to 4.70. By Sprint 3, the team had completed an early prototype (the “Gold 

Spike”) and had gone through the process of incorporating some graphical assets into the game. 

Going through this production process made them aware of constraints they could not predict 

before. As Artist1 explained, 

“As we got more work done, we realized that this design wasn’t working or this spec 

needed to change, which forced a rewrite of tech.  It happened a lot with UI (user 
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interface) and it happened a lot with some of the other core mechanics, like the burrow 

and combat.” (Artist1)

For example, they discovered that animated movements were too “jerky”. The team 

narrowed down their options to either reducing the size of art assets or redesigning the combat 

system. While reducing the size of graphics was much quicker than redesigning the game, it 

would also reduce its quality. To figure this out, the team first experimented with reducing 

graphical quality but later realized that they would have to change the combat system from “3 vs. 

3” to “1 vs 1”. Thus, exploring these options involved several iterations between Art, Tech, and 

Design, which was reflected in the high number of cross-functional handoffs in the “Combat” 

story in Sprints 3 and 4. The iterative process also led to handoffs between actions at different 

stages of development. In Sprints 3 and 4, some parts of the “Combat” story were in the early 

stages of experimenting, while others were in the later stages of testing and revision. An example 

of an experimenting task that Design was assigned to in the Combat story was “Influences for 

Combat” (Sprint 4, Thread 22, ID 56); while an example of a later stage testing task for Tech 

was “2nd pass on enemy AI” (Sprint 4, Thread 22, ID 59).

---------------------------------------------
INSERT FIGURE 4c ABOUT HERE
---------------------------------------------

Delay loop. The Delay loop is a positive feedback loop that indirectly affects actions and 

handoffs through revisions. In ProjectBQ, the frequent revisions to game design and features 

slowed down the project team’s progress. Developers thus had less time to implement features 

that they had originally planned for, resulting in further revisions that increase actions and 

handoffs.  

In revising the combat system in Sprint 3 for example, “changes to [the] core mechanic 

mess[ed] up productivity” as the requirements for many related features “changed drastically” 
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resulting in “rework[ing] some stuff [they] had done before” or “rewrit[ing] code from scratch” 

(Artist1).  Revisions thus throw the production schedule for the entire project off track – not only 

do they have less time to accomplish their remaining tasks, but there is also more work due to the 

revisions. 

Another example of revisions causing delays was evident between Sprints 6 to 8. 

ProjectBQ was characterized by frequent revisions where “there was a new idea or new situation 

that will then change” (Artist 1) roughly every two weeks. Consistent with this claim, we found 

evidence of an iterative process in these sprints from the presence of upstream roles (e.g., 

Design) and actions (e.g., Experimenting) performed together with further downstream roles 

(e.g. Sound) and actions (e.g., Refinement) during these sprints. By then, the team was already 

behind schedule. Sprint 6 was intended to be the phase where they developed the social elements 

of the game and was labeled “Global quest, friends list, bring friends on missions, analytics, 

tutorials”. However, the list of tasks was still dominated by those for “Combat”, “Missions”, and 

“Burrow”, which were goals for Sprints 4 and 5.

Not only did frequent revisions cause delays by slowing down the completion of goals, 

but they also caused delays because the frequent revisions led developers to intentionally leave 

their tasks uncompleted in anticipation of further revisions. As described by Artist1, 

“The guys get to a point where Art wouldn't actually be making any final art for anything 

because we weren’t sure [about] spending that time. Let’s say that it's going to take you 

ten hours to make a final piece of art today. Well guess what? No one's ever going to get 

more than five hours at any task, because we don't know what's going to get cut. If you 

have twenty things you need to do, instead of spending ten hours on each of those tasks, 
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we're going to go through all of that for five hours. Hopefully, we'll have something to 

show for you.” (Artist1)

The frequent revisions created the expectation that more changes were forthcoming. This 

expectation, coupled with having “twenty things you need to do”, led to a more cautious 

approach where tasks would only be partially completed to minimize any loss in time. While this 

approach might have saved time for each individual, it slowed down the team’s progress further 

because instead of completing a task on schedule, tasks were completed only when they became 

a high priority which was usually when it was behind schedule and was urgently needed to be 

completed. As a result of these delays, the main production phase was extended by four sprints in 

Sprint 6, and the overall schedule was extended by two sprints which Producer1 reported to be 

the first of multiple extensions over the course of the project.

Just as revisions caused delays, we found that delays also instigated more revisions.  In 

ProjectBQ, the team adapted to having less time by “chopping” certain features that cannot be 

completed in the time remaining (Tech1). At the same time however, when a feature is 

simplified (i.e., such as switching from 3 vs. 3 to 1 vs. 1 combat) the game becomes “not as 

exciting” and the developers feel compelled to “respond by making other things more exciting, 

more engaging” (Artist JD). Thus, even as the project scope was reduced, new features had to be 

redesigned which increases actions and handoffs. Revisions and delays were therefore engaged 

in a positive feedback cycle which we label the “Delay loop” (Figure 4d).

---------------------------------------------
INSERT FIGURE 4d ABOUT HERE
---------------------------------------------

Cut back loop. The cut back loop is a balancing feedback loop between revisions and 

delays that indirectly reduces actions and handoffs through the output quality gap. Because of the 

high degree of interdependence between components, revisions to one component led to delays 
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that spilled over to other components and eventually slowed the progress of the entire project. 

For example, the Nov 10 meeting in Sprint 9 shows how Design1 is blocked by Tech on the 

“power scripting” tasks. The Tech team cannot proceed because they are themselves blocked on 

a number of their tasks. One of the reasons for their being blocked is that Tech3 is unable to start 

work until Design decides how players will “level up”. However, since Design1 is faced with 

higher priority tasks, he is not able to decide on the “level up” features yet. Overall, we see that 

developers are entangled in an intricate web of interdependence such that delays in one 

component has a domino effect on the overall rate of progress. These delays cumulate until a 

critical point where the team runs out of time. By then, developers no longer have time to iterate 

and refine their work and are just trying to complete their tasks “in a crappy way” or “chopping” 

features and reducing the scope of the project (Tech1). In both cases, there is a reduction in 

actions and handoffs through a reduction of the output quality gap. 

These dynamics were manifested in Sprints 9 to 11. A deadline for a major milestone, 

delivering “gamma version”, was due at the end of Sprint 11. To meet this deadline, an internal 

“feature lock” deadline was set at the end of the second week of Sprint 9. The feature lock 

deadline “froze” the build because no new features were allowed to be added after the deadline. 

This deadline gave assurance to developers that there were no more major changes to the game 

design, which allowed them to focus on building and refining their work. However, it also 

reduced their scope for making a better game - they could not improve on core design features 

like game mechanics but could only improve the quality of the game by refining features such as 

fixing bugs, tidying up code, improving on lighting and textures of graphics. Thus, the negative 

relationship between delays and actions created a balancing feedback loop between revisions, 

delays, and the output quality gap which we call the “cut-back loop” (Figure 4e).    
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---------------------------------------------
INSERT FIGURE 4e ABOUT HERE
---------------------------------------------

Motivation loop. The final mechanism we identified from our data is the “motivation 

loop”, which is a balancing feedback loop between revisions and individual motivations that 

reduces actions and handoffs. We found that by Sprint 6, the frequent revisions were taking a toll 

on developers’ morale. Tech2 describes “a huge penalty in both morale and productivity”. This 

sentiment was reaffirmed by Tech1 in the following quote:

“It hurts to hear when you work on something, and then you are told that, “This is going 

away.  Just don’t worry about it anymore, like this is no longer part of the game.”  That 

happens to some extent in game development, but it can happen more here…. It was just 

like a double kick in the pants where all this work you did right is just getting thrown out 

of the window, and now we’re going to ask you to do it [again].” (Tech1)

These changes left them feeling frustrated and led to a noticeable shift in individual 

motivations from wanting to make the “best game possible”, to just “get it done”. This meant 

iterating less frequently to refine the game and holding back ideas that could improve the user’s 

experience. As Tech2 mentioned, “you lose some quality and ideas that people could have 

brought up” when they became focused on “just cranking away”. Revisions thus escalated until a 

critical point where developers became frustrated and pulled back their efforts. This created a 

balancing reinforcing loop between revisions, frustration, and actions which we label as the 

“motivation loop” (Figure 4f).  

Adding to this frustration amongst the developers, the delays also meant that they had to 

work over time for several weeks to complete the game. Even then, the project was completed 

two months behind schedule and without many of the initial features that had been initially 

planned for. 

Page 29 of 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



---------------------------------------------
INSERT FIGURE 4f ABOUT HERE
---------------------------------------------

DISCUSSION

We began by asking a deceptively simple question: what makes a pattern of action more 

or less varied over time? Implicitly, this question points to a fundamental issue in organization 

theory:  how do we explain stability and change?  One of the central insights of routine dynamics 

is that stability and change are both dynamic and both require explanation (Feldman et al., 2016). 

Routines do not just automatically stay the same; reproducing a recognizable pattern takes effort 

and so does changing the pattern.  The tension between stability and change is implicit in every 

step on every path.   

To help make this tension visible, we have introduced conceptual and methodological 

innovations that provide a new way of seeing the link between situated actions and organized 

patterns of action.  At its core, our approach is built around a narrative network that is 

continually (re)enacted by the situated actions of particular participants at particular times and 

places.  These actions perform the paths in the network. In practical terms, people are just 

working, and the paths are simply ways of performing the work. In theoretical terms, they enact 

the continual unfolding (Emirbayer & Mische, 1998), becoming (Tsoukas & Chia, 2002) and 

patterning Danner-Schröder & Geiger, 2016; Feldman, 2016a; Turner & Rindova, 2018) that 

constitute ProjectBQ.  To understand how paths influence routine dynamics, we need to zoom 

out from actions to patterns (Gaskin, Berente, Lyytinen, & Yoo, 2014; Nicolini, 2009). 

Zooming out from actions to paths to patterns

Field research enables a fine-grained focus on actions as a unit of observation, as we have 

seen in empirical studies of routine dynamics (Feldman et al., 2016). However, because 

participants and observers tend to see parts of routines, rather than whole routines, it has always 
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been difficult to trace overall patterns of action involving multiple actors over time. This gap was 

one of the original motivations for narrative networks: to enable field researchers to piece 

together larger patterns from fragmented observations (Pentland & Feldman, 2007). 

Routines start with situated actions (Suchman, 1987).  In Project BQ, these are basic 

steps required to carry out the work: creating, writing, testing, revising, etc. Some research 

traditions zoom in to analyze the details of how particular actions inhabit and animate particular 

situations.  For example, research on affordances often zooms in on the detailed relations 

between actors, actions and artifacts (Chemero, 2003; Volkoff & Strong, 2017). 

In contrast, getting from actions to patterns involves zooming out in two distinct ways.    

First, we zoom out from actions to paths by paying attention to the sequence of actions along the 

path.  In addition to asking “what happened?”, we explicitly ask “What happened next?” In doing 

so, we locate each action in the context of an enacted path.  The sequential relations between 

actions provide the forward motion that gets work done, but it is important to realize that neither 

participants nor observers are always able to see for themselves what happens next along a path.  

In contemporary organizations, the next step may happen in another part of the world. 

Next, when we zoom out from paths to patterns, we locate each action in the context of a 

network of paths. The network summarizes enacted paths within a particular window of time. In 

doing so, it reveals the possible paths forward from each action, which may be many or few.  

The network of possible paths represents the emergent accomplishments (Feldman, 2000) and 

the pattern of interdependent actions that define organizational routines (Feldman & Pentland, 

2003).  By zooming out from actions to paths to networks, the pattern of action becomes visible.   

When we zoom out from individual actions to consider patterns, we see that the individual 
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actions are not independent.  This is a defining characteristic of organizational routines (Feldman 

and Pentland, 2003). 

Placing actions in networks has important theoretical and methodological implications, 

such as the relationship between actual paths and possible paths. At any moment along a given 

path, there are possibilities for branching onto a different path. Possible paths are inferred based 

on actual, observed edges in the graph. Since narrative networks are usually quite sparse, the 

inferred possibilities constitute a tiny fraction of the paths that could be formed if the network 

was fully connected. 

In ProjectBQ, thousands of possible paths could be inferred from the enacted paths. To 

express these possibilities, we aggregate actual paths into a narrative network (Pentland & 

Feldman, 2007). Because it aggregates alternative paths, the network includes possibilities that 

may never be actualized. These possibilities may be considered part of the latent structure of the 

routine.  Since many of these paths would be considered unusual or exceptional by the 

participants, it would be inappropriate to equate the narrative network with the ostensive aspects 

of the routine.  The ostensive aspects of a routine embody normative, typical understandings that 

tend to guide action (Feldman & Pentland, 2003).  In contrast, the narrative network embodies 

possibilities of paths that could be taken, as inferred from actual paths enacted.  

In a simple routine, there may be only a few ways to do the work. Sparse networks with a 

handful of paths are easy to comprehend, but it is difficult to appreciate how quickly the number 

of paths can change and how large it can get. Our intuition is that more required actions adds 

complexity. This intuition is captured in the concept of component complexity (Wood, 1986). 

However, a larger number of actions is not the primary driver of complexity.  For any given 

number of actions, adding more edges (more paths) will increase complexity exponentially 
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(Hærem et al., 2015).  This increase can only be estimated by counting the edges (pairs of 

actions) that occur along the enacted paths.  The methodological move from actions to paths to 

networks enables an entirely new way of seeing task complexity. In ProjectBQ, we observed 

orders-of-magnitude changes in the number of paths from one sprint to the next, even though the 

number of actions was the same. This descriptive finding adds urgency to our research question: 

what drives these dramatic changes?   

Patterning as a motor of routine dynamics

In our study, we identify six causal loops that influence the number of possible paths in 

the project from sprint to sprint.  Many of these are specific to the world of videogame 

development, so we are hesitant to generalize too broadly. However, if we step back from the 

particulars of ProjectBQ, we can see that generic factors such as cost, quality and deadlines, can 

influence action patterns.  We can interpret these causal loops in terms of Van de Ven and 

Poole’s (1995) classic typology of change motors: life cycle, teleologic, dialectic, and 

evolutionary.  However, patterning provides a novel motor of change that is closer to the 

phenomena we observed and a better theoretical fit for routine dynamics.  To see how this is so, 

first consider the traditional motors of change. 

Life-cycle.  The life-cycle motor depicts change as a progression through a prescribed 

sequence of stages regulated by an underlying logic, program, or code. In ProjectBQ, we can see 

the whole project as a life-cycle, from conception to final deliverable. Within the project, the 

three-week sprints can be interpreted from a life-cycle perspective, as well, since each sprint has 

a repetitive structure.  Life-cycles provide an excellent explanation for routine repetition, but 

they have not featured prominently as drivers of routine dynamics.   

Teleology.  The teleological motor explains change as a goal-directed process undertaken 

by an entity that involves a cycle of setting, implementing, evaluating, and modifying goals. The 
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performance loop in our model is probably the clearest manifestation of a teleologically-driven 

motor because it depends on the perceived gap in output quality. As a result of this loop, more 

paths are enacted to improve output quality and narrow the output quality gap. 

Dialectic.  The dialectic motor explains change as occurring through the synthesis of 

oppositional forces and has been featured in some theories of routine dynamics (e.g., Salvato & 

Rerup, 2018; Turner & Rindova, 2012). In ProjectBQ, we can see a dialectical interaction 

between mechanisms that reinforce complexity (i.e., performance loop, revision loop, delay 

loop) and the mechanisms that assert a balancing pressure on complexity (i.e., reinforcement 

loop, cut-back loop, motivation loop). 

Evolution.  Evolution has been an influential metaphor in routine dynamics (Feldman & 

Pentland, 2003), but it is difficult to operationalize in empirical research.  The problem in 

applying this motor to real situations is the unit of analysis: what entity is being varied, selected 

and retained in the population? In a computer-based simulation, Pentland et al (2012) used whole 

performances of the routine (whole paths) as the phenotypes being selected.  However, the 

participants in ProjectBQ enacted their paths one step at a time.  The evolutionary model breaks 

down because there is no clear-cut phenotype that is being selected based on its fitness. It does 

not make sense to argue that there were multiple, competing patterns of action subject to 

evolutionary pressure.  

Patterning. When the entity undergoing change is an organizational routine (or a group 

of routines), patterning provides a more natural explanation of how change happens. As situated 

actions unfold in the performance of the work, patterns are (re)enacted.  Each step enacts what 

the routine is becoming (Tsoukas & Chia, 2002).  Patterning provides a processual description 

for change that is grounded in the performance of the routine. By performing their work, the 
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participants in Project BQ were patterning their work, as well. The causal loops that we 

identified in Project BQ exemplify the kinds of factors that influence the tendency for the 

network to change or remain the same by adding or dropping paths. 

Future work: Routine dynamics as network dynamics

By locating actions in a network of possible paths, the path-based perspective sets the 

stage for a rich new set of possibilities for organizational research.  One particularly promising 

way forward builds on the idea we introduced above: routines dynamics as network dynamics.  

We suggest two complementary mechanisms that are consistent with patterning: repetitive 

reinforcement (Sutton & Barto, 2018) and morphogenesis (Archer, 2010).   

Repetitive reinforcement. When reinforced, paths in a narrative network become the ruts 

in the road that make the pattern repetitive and recognizable. They are more likely to be followed 

in future repetitions. In ProjectBQ, we have evidence that repetition leads to the reinforcement of 

specific edges in the graph. Repetitive reinforcement is visible, even with a small amount of data 

in a highly variable creative project context.  

Repetitive reinforcement is a well-established mechanism for learning by doing (Levitt & 

March, 1988; March, 1991) and routine formation (Cohen & Bacdayan, 1994).  Repetition of a 

known pathway exemplifies what March (1991) termed “exploitation.” Repetition provides an 

occasion for refinement and learning.  To the extent that repetitive reinforcement is the dominant 

mode of patterning, it should tend to promote lock-in and inertia (Schultz, 2008). 

Morphogenesis.  The morphogenetic perspective of structure and action “unravel[s] the 

dialectical interplay between structure and action” (p. 228) in sequential cycles of structural 

conditioning/social interaction/structural elaboration (Archer, 2010). Morphogenesis provides a 

countervailing mechanism for patterning that can lead to structural elaboration (i.e., change). 

Archer (2010, p. 247) theorized that degrees of freedom and stringency of constraints are 
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preconditions for understanding morphogenesis: “the specification of degrees of freedom and 

stringency of constraints makes it possible to theorize about variations in voluntarism and 

determinism (and their consequences)…”  In Archer’s (2010) theory of morphogenesis, 

conditions with high degrees of freedom and low stringency of constraints are hypothesized to 

favor change.  

The narrative network framework provides a starting point for operationalizing the 

conditions for morphogenesis.  By degrees of freedom, Archer (2010) means the set of choices 

available for actors to do something new or different in a given situation, such as forming a new 

path.  At any point in the narrative network, we can operationalize degrees of freedom as the out-

degree of the current node (the number of outwardly directed edges).  This number will vary 

throughout the network because each node will have a specific out-degree. Transportation 

examples, like getting to the work by walking, bus, bike or train, provide a good way to illustrate 

degrees of freedom. In principle, one could extend the degrees of freedom to include other, as yet 

unformed, paths (e.g., riding a motorcycle or hailing a ride service). 

By stringency of constraints, Archer (2010) is referring to the fact that not all degrees of 

freedom are equally free to every actor at every time and place.  Situational factors naturally 

make some options more expensive, difficult or risky.  For example, bad weather might impose a 

constraint that makes cycling difficult or impossible; the need to carry a lot of equipment might 

require a taxi or even a truck.  In principle, stringency of constraints could be modeled as a cost 

function that could be assigned to each edge in the graph, depending on context. This 

information is over and above what would normally be included in a narrative network. 

We can interpret morphogenesis in terms of more familiar concepts such as exploration 

(March, 1991) and innovation (Garud, Tuertscher, & Ven, 2013). The innovation process has 
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been increasingly conceptualized as an ongoing accomplishment without a well-defined end 

point and not simply a journey with predefined stages (Garud et al., 2016, 2013; Obstfeld, 2012; 

Van de Ven, Polley, Garud, & Venkataraman, 1999). Creating and maintaining possibilities is 

important for these kinds of exploratory, emergent activities. Future work could investigate how 

exploration and innovation are encouraged by conditions or efforts to sustain the variety of 

pathways. 

Practical implications: Managing paths

The practical value of understanding paths is well established in business process 

management (Dumas, La Rosa, Mendling, & Reijers, 2018).  Commercial software products 

such as Celonis (https://www.celonis.com) and Fluxicon Disco (http://fluxicon.com/) have been 

inspired by the idea that you cannot manage what you cannot see.  Processes are difficult to see, 

so these products use digital trace data to make work processes visible, to monitor process 

execution and to provide feedback on process conformance and other aspects of process 

performance. They are primarily intended for use on highly structured, computerized processes 

where digital data are readily available.   

However, business process management tends to emphasize conformance and 

compliance: sticking to prescribed paths.  While avoiding deviant paths is important, one can 

also think of paths in terms of opportunities.  For example, the entrepreneurship literature talks 

about exploiting entrepreneurial opportunities through an effectual approach (Sarasvathy, 2001, 

2009) that leverages contingencies rather than a planned approach based on assumptions that 

reduce uncertainty. Under conditions of uncertainty, it might be more beneficial to encourage 

path creation rather than conformance as the former would provide insights into the potential 

opportunities created (Alvarez & Barney, 2007; Garud, Kumaraswamy, & Karnøe, 2010). 
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The path-based perspective may allow us to consider managerial decision in a way that 

takes morphogenesis into consideration. When we ask, “what conditions will lead to favorable 

outcomes,” we can consider the process that connects the antecedents and the consequences 

(Abbott, 1990).  Rather than reducing the intervening process to one best path or one best 

practice, the path-based perspective encourages us to consider the space of possibilities. Thus, 

instead of studying antecedents and consequences to identify the best path (and trying to follow 

it), we might consider the antecedents and consequences of expanding or contracting the space of 

possibilities. Such an approach might be useful in managing other types of complex emergent 

phenomena such as innovation (Dougherty, 2016; Dougherty & Dunne, 2011; Garud et al., 2016) 

and dynamic team processes (Cronin, Weingart, & Todorova, 2011; Kozlowski & Chao, 2018; 

Srikanth, Harvey, & Peterson, 2016).  

Limitations

A limitation of a path-based perspective is the availability of data to construct the 

narrative network. In this study, the agile software development methodology created a useful 

archival record: the scrum sheets. In other settings, it may be difficult to gather data that provides 

a meaningful trace of actions over time. Nevertheless, recent advances in technologies for 

sensing and capturing fine-grained behaviors offer promise in overcoming this limitation 

(Kozlowski, Chao, Chang, & Fernandez, 2015; Lazer et al., 2009). 

The temporal unit of analysis (the time window) matters. Because ProjectBQ was enacted 

in a series of sprints, our view of the dynamics of the project is based on a compilation of 

snapshots. The flow we see is more like a story board rather than a finished movie.  It is likely 

that changing the timeframe or the “exposure time” of the picture could generate a different 

sense of flow. This is particularly true if a process is changing quickly. In the case presented 
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here, three-week “sprints” made a natural division, but in other settings, the appropriate time 

frame would be a matter of researcher judgment.  

In recreating the task sequences in our data, we had to assume that tasks were performed 

sequentially. However, some tasks were performed concurrently but we were not able to capture 

such relationships with current methods.  To the extent that concurrent activities are 

interdependent, our method is likely to understate complexity. Nevertheless, the general 

trajectory of complexity was consistent with the project narrative, which was based on other data 

sources. Both of these limitations – temporal granularity and concurrency – point to the 

importance of having multiple sources of data to contextualize and interpret processual 

phenomena, as we have done here. 

Our methodology for estimating the number of paths in the narrative network has a 

number of limitations, as well. First, it assumes that the directed graph is a complete, accurate 

representation of the underlying process.  In practice, processes are difficult to observe - they 

change constantly and there is good reason to expect that any particular enactment is ephemeral, 

at best.  Additionally, it may not be clear where a process starts or where it finishes, and 

researchers will have to rely on their judgment for such decisions. However, the estimator used 

to compute the number of paths (see Appendix B) addresses this concern because there is no 

need to specify the start or end for the process.  

Second, our metric for complexity does not account for differences in difficulties in 

performing within-role and cross-role handoffs. In the case of ProjectBQ, for example, moving 

from Experimentation to Building is likely to be more challenging when the handoff is with 

someone from the same function (e.g., from one Artist to another) compared to someone from 

another function (e.g., from an Artist to the Software Engineer). Also, because our method of 
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estimating paths is based on the structure of the narrative network, it could overstate or 

understate the actual number of paths in some situations. These issues can be explored in future 

research.

CONCLUSION

Organizational phenomena are widely acknowledged to be complex and dynamic. Yet 

there are few studies in organizational and management research that explicitly account for the 

dynamics of complexity. Our research demonstrates how the concept of paths allows us to see 

the dynamic patterning (Danner-Schröder & Geiger, 2016; Feldman, 2016a; Turner & Rindova, 

2018) of routine actions. We show how paths change over time and develop a theory about the 

mechanisms driving these dynamics. The concept of paths as a “new way of seeing” can be 

applied to different processual phenomena with emergent characteristics to advance 

organizational and managerial science by developing new theories about the dynamics of these 

phenomena.
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Figure 1. Frequency of task types across Sprints
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Figure 2. Frequency of roles performing a task across Sprints
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Figure 3. Complexity index for sprints 1 to 11
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Figure 4a
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Table 1: Social network versus narrative network 

Social Network Narrative network

Network Represents relations among a 
set of people

Represents sequential relations 
among a set of actions 

Nodes
(Vertices)

Individual people Actions or events 

Ties
(Edges)

Connections between people Handoffs between actions or 
events

Paths Degrees of separation 
(“hops”)

 A possible way to perform part 
of a process; a recipe for action
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Table 2. Definition of task categories
Category: 

Final
Category: 
Round 1 Definition

Administration Administration
Activities that involve planning, organization, coordination, 
communication with internal or external parties.

Experimenting
Activities associated with learning, discovery, building experience or 
knowledge, addressing unanswered questions.

Experimenting

Conceptualization

Activities associated with defining the form of team output.  Includes 
definition of inter-relationships between components of team output, 
how output fits with client's other activities (e.g., marketing). Manifests 
as transitional output or boundary objects.

Building Activities directly associated with producing assets.

Building
Integration

Activities associated with combining different parts of the team output 
(e.g., art assets).

Revision Revision

Activities associated with rebuilding, reimplementation, redesigning or 
rewriting. Adjustments made to core aspects of output (e.g., code, 
model, animation) in terms of the relationship between parts. If the 
relationship between A and B could be specified in an equation, this 
will involve changes to variables in the relationship, rather than the 
absolute value of the variables.

Refinement Activities associated with adjusting parameter values of output.

Refinement
Fix

Activities associated with rectifying errors. Closely related to "Tweak", 
but difference here is that the adjustment is made to some part of output 
that is broken, or not working as it should. Words like "correct", 
"error".  Result/outcome is unintended.

Review Reviewing work before release

Testing
Activities directly associated with enacting playtests. Different from 
QA tests which checks technical integrity of output

Feedback
Activities related to obtaining or aggregating feedback from playtests or 
metrics, by clients or users. Related to the event of obtaining feedback.

Testing

QA
Activities that involve testing for bugs, errors or edge cases. Different 
from playtests.
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Table 3. Summary of mechanisms, complexity index, actions, handoffs, and graph 
diagrams.

Sprint Graph
Complexity 

index
Actions
(nodes)

Handoffs 
(edges)

Paths 
added/

dropped Mechanisms

1 0.16 9 19 n/a Performance

2 1.84 13 43 68 Performance

3 2.56 14 55 294 Performance
Revision

4 4.64 17 87 43289 Performance
Revision
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5 1.52 17 47 -43618 Performance 
(reduction)

6 3.92 21 83 8285

Performance
Revision

Delay
Motivation

7 4.32 21 86 12575

Performance
Revision

Delay
Motivation

8 5.76 21 106 554547

Performance
Revision

Delay
Motivation

9 3.12 18 66 -574122 Cut-back
Performance
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Appendix A:  Counting simple paths in a directed graph
This appendix explains a method for counting simple paths in a directed graph and contains code 
for a MatLab function that implements this method.  

Overview of algorithm.  The algorithm is a breadth-first search that finds all of the simple paths 
(sequences of connected nodes) from start to finish.  The algorithm follows all edges leading out 
from the start node.  Each connected node indicates a partial path.  Then, for each partial path, it 
follows all of the edges leading out from the last node of the path.  Each partial path is stored. 
New paths are added only if they are unique. If a path revisits any node, it is removed from the 
list of stored paths. Thus, the algorithm only counts simple paths (West, 2001):  paths that do not 
include any node more than once.  When a path reaches the finish node, it is added to the list of 
completed paths. The algorithm continues until the graph has been exhaustively searched. It is a 
“brute force” enumeration of all simple paths.

MatLab function for counting paths. This function requires three inputs: (1) an adjacency 
matrix for the directed graph that describes the task or process; (2) the source (starting point) of 
the task; and (3) the sink (stopping point) of the task.   The function produces two outputs: (1) 
the number of simple paths from start to finish; and (2) a list of the simple paths from start to 
finish. 

function [ simple_paths, list_of_unique_paths ] = ...
      task_complexity_index( AM, source, sink)
  
% This code counts the number of simple paths (no cycles) in a
% directed graph. Paths start at the source and end at the sink.
 
% INPUTS:
% AM: adjacency matrix for the directed graph that represent the task
% source:  starting point for task
% sink:  ending point for task

10 2.0 16 51 -1218 Cut-back
Performance

11 1.74 10 38 -45 Cut-back
Performance
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% OUTPUTS:
% simple_paths = number of simple paths
% list_of_unique_paths = cell array of strings that describe the paths
 
 
% Data structures for keep track of unique paths
paths_completed = containers.Map();
paths_in_progress = containers.Map();
 
% Use CAPITAL N for size of adjacency matrix
N = size(AM ,1);
 
% Convert adjMtx to 0/1 only
AM = (AM >0);
 
% Take out the diagonal, since self-connected vertices do not add paths
AM(eye(N)==1) = 0;
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% The main loop traverses the graph until there are no more
% simple paths to find.
% Finished paths are stored in data.completed_paths
    
   % start with the source to initialize the paths_in_progress
   s = add_to_paths(source,next_nodes(AM, source));
     
   % then loop until done
    loop_count =0;
    simple_paths = 0;
    while paths_in_progress.Count >=1
 
     % the function "path_search" loops through all of the paths in
     % progress to see if they can be completed or continued.
     % The status flag is not used
     status_flag  = path_search(AM);
 
     % the loop count is just used to display progress if so desired
     loop_count = loop_count+1;
 
    % Uncomment these statements to view the process     
    % disp(strcat('Depth=', num2str(loop_count), ...
    % ' PathsInProgress:', num2str(paths_in_progress.Count),...
    % ' PathsCompleted:',  num2str(paths_completed.Count)));
    % show_paths(paths_in_progress)
    % show_paths(paths_completed)
 
    % If you want to set a ceiling, you can do it here.
    if paths_completed.Count >= 1000000
    % re-initialize the list of paths in progress to stop the search
    paths_in_progress = containers.Map();
    disp('*** over 1,000,000 paths found.  Limiting count.  ***');
    end
 
    end % paths_in_progress loop
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% assign the total and the list
simple_paths = paths_completed.Count;
list_of_unique_paths = keys(paths_completed);
 
% disp(strcat('Total simple paths = ',num2str(simple_paths)));
 
return;
 
% *************************************************
 
    % loop through paths in progress and extend them until completed
     function ss_status = path_search(adjMtx)
   
     for p_in_prog = keys(paths_in_progress)
         pnp = str2num(p_in_prog{1});
             ss_status = add_to_paths(pnp, next_nodes(adjMtx,pnp));
     end
    
     end
   
    % look at the end of the current path to get the next nodes
     function nlist = next_nodes(adjMtx, current_path)
     
    % use that node to get the list of next nodes
    nlist = find(adjMtx(current_path(end),:) >0);
    
    % check if any are already on the path
    nlist = setdiff(nlist,current_path);
    
     end
   
    % Put paths in paths_completed or paths_in_progress
    % Keep going until all possible paths are found.
     function sstatus = add_to_paths(path_in, next_node_list)
                         
    path_in_key = mat2str(path_in);
    
    % stop if there is nowhere to go
    if numel(next_node_list) == 0
       if isKey(paths_in_progress, path_in_key)
          remove(paths_in_progress, path_in_key);
       end
       sstatus = 0;
       return;
    else
       sstatus = 1;
    end
    
    % loop through all of the potential next nodes
    for next_node = next_node_list
    
        % make sure the node has not been visited on this path
        if ~any(path_in == next_node)
            
            % append the next node and store it
            path_out = [path_in, next_node];
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            path_out_key = mat2str(path_out);
 
            % if the path is done, then save it in completed set
            if path_out(end) == sink
                    paths_completed(path_out_key) = path_out;                    
                sstatus = 1;                     
            else
                if numel(path_out) >= 3*N  % path is too long...
                    if isKey(paths_in_progress, path_out_key)
                            remove(paths_in_progress, path_out_key);
                    end
                    sstatus = 0;
                else
                        paths_in_progress(path_out_key) = 1; % dummy 
                end
            end
            if isKey(paths_in_progress, path_in_key)
               remove(paths_in_progress, path_in_key);
            end
            end
         end
     end    
    
 % this function is only used for debugging
     function show_paths(c)
    for v = keys(c)
        v
    end
     end
 

 end % of main function

Appendix B:  Function for estimating paths in directed graph

The brute-force counting method in Appendix A provides a reference against which we can 
assess methods for estimating task complexity.  However, counting paths in a network is known 
to be a “#P-complete” problem (Bax, 1994): the number of paths cannot be counted in 
polynomial time. As a practical matter, as the size and density of the network increases, no 
amount of computing resources can solve the problem. The number of paths can be enumerated 
for smaller networks (Rubin, 1978; Bax, 1994), but for larger networks, it must be estimated 
(Roberts & Kroese, 2007). 
To develop an alternative that is computationally tractable, we build on the method introduced 
by McCabe (1976) for estimating the complexity of a software module.  This measure, called 
cyclomatic complexity, is still in use as a measure of software complexity (Ebert and Cain, 2016; 
Tiwari and Kumar, 2014).  McCabe (1976) represents the execution paths in a block of code as a 
directed graph, and then uses the number of nodes and edges to estimate the number of execution 
pathways.  McCabe also adjusts for subroutines, which act like nodes and tend to reduce the 
number of execution paths: 

Complexity ~ edges - nodes - subroutines
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The analogy to task complexity is straightforward.  As in Hærem et al (2015), the nodes in the 
graph are the “required acts” in a task and the edges represent the connections between those 
acts. Note that this functional form contradicts the widely held intuition that a greater number of 
required acts increases complexity (Wood, 1986). The interpretation here is subtler: for a given 
number of nodes, it is the number of edges that drives complexity.    

We fit this function to the results of the exact algorithm in Appendix A using a set of simulated 
data (n=73,200).   The simulated data included 100 random repetitions for each size of network 
from 10 ≤ nodes ≤ 100, with varying levels of network density.  The networks were simulated so 
that there was always at least one valid path.  Empirically, we found that the best fit involved a 
logarithmic transformation of the dependent variable, as theorized by Hærem et al (2015). We 
also found that it made no difference if we count the number of paths or the sum of the number 
of edges along all of the paths. The results are shown in Table B-1.  Regression diagnostics are 
shown in Figure B-2.   Over a wide range of conditions, the simple estimate of network paths 
correlates with the exact count quite well (r=0.94).  

Table B-1: Fitting the estimate to the exact model 

Descriptive Statistics
(N=73200)
Min Avg Max

Nodes 10 54 100
Edges 9 67 138
Paths 1 120 25838

DV =  Log10(simple 
paths)

Nodes -0.079*** 
(.000)

Edges 0.080***
(.000)

Const 0.120**
(.003)

R2 0.889
F 291982.5***
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Figure B-1: Diagnostic results 

Finally, we wanted to ensure that our estimate is accurate when a graph has a single path from 
source to sink.  When there is a single path, there is one edge between each pair of nodes, so 
edges = nodes - 1.  Therefore, when there is a single path, log10(1) = 0.  Adjusting the model to 
fit this analytical boundary condition results in this formula for computing task complexity based 
on a directed graph that represents the task:
 

𝑬𝒏𝒂𝒄𝒕𝒆𝒅 𝒕𝒂𝒔𝒌 𝒄𝒐𝒎𝒑𝒍𝒆𝒙𝒊𝒕𝒚 =  𝑙𝑜𝑔10(𝑠𝑖𝑚𝑝𝑙𝑒 𝑝𝑎𝑡ℎ𝑠) =  .08 ∗  (𝑒𝑑𝑔𝑒𝑠 ― 𝑛𝑜𝑑𝑒𝑠 + 1)
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