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Abstract

Simulation Based Engineering Science (SBES) has brought major improvements in
optimization, control and inverse analysis, all leading to a deeper understanding in
many processes occuring in the real world. These noticeable breakthroughts are
present in a vast variety of sectors such as aeronautic or automotive industries,
mobile telecommunications or healthcare among many other �elds. Nevertheless,
SBES is currently confronting several di�culties to provide accurate results in com-
plex industrial problems. Apart from the high computational costs associated with
industrial applications, the errors introduced by constitutive modeling become more
and more important when dealing with new materials.

Concurrently, an unceasingly growing interest in concepts such as Big-Data,
Machine Learning or Data-Analytics has been experienced. Indeed, this interest is
intrinsically motivated by an exhaustive development in both data-acquisition and
data-storage systems. For instance, an aircraft may produce over 500 GB of data
during a single �ight. This panorama brings a perfect opportunity to the so-called
Dynamic Data Driven Application Systems (DDDAS), whose main objective is to
merge classical simulation algorithms with data coming from experimental measures
in a dynamic way. Within this scenario, data and simulations would no longer be
uncoupled but rather a symbiosis that is to be exploited would achieve milestones
which were inconceivable until these days. Indeed, data will no longer be understood
as a static calibration of a given constitutive model but rather the model will be
corrected dynamicly as soon as experimental data and simulations tend to diverge.
Several numerical algorithms will be presented throughout this manuscript whose
main objective is to strengthen the link between data and computational mechanics.
The �rst part of the thesis is mainly focused on parameter identi�cation, data-
driven and data completion techniques. The second part is focused on Model Order
Reduction (MOR) techniques, since they constitute a fundamental ally to achieve
real time constraints arising from DDDAS framework.
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Résumé

Les sciences de l'ingénieur basées sur la simulation (Simulation Based Engineering

Science, SBES) ont apporté des améliorations majeures dans l'optimisation, le con-
trôle et l'analyse inverse, menant toutes à une meilleure compréhension de nombreux
processus se produisant dans le monde réel. Ces percées notables sont présentes
dans une grande variété de secteurs tels que l'aéronautique ou l'automobile, les
télécommunications mobiles ou la santé, entre autres. Néanmoins, les SBES sont
actuellement confrontées à plusieurs di�cultés pour fournir des résultats précis dans
des problèmes industriels complexes. Outre les coûts de calcul élevés associés aux
applications industrielles, les erreurs introduites par la modélisation constitutive
deviennent de plus en plus importantes lorsqu'il s'agit de nouveaux matériaux.

Parallèlement, un intérêt sans cesse croissant pour des concepts tels que les
données massives (big data), l'apprentissage machine ou l'analyse de données a été
constaté. En e�et, cet intérêt est intrinsèquement motivé par un développement ex-
haustif des systèmes d'acquisition et de stockage de données. Par exemple, un avion
peut produire plus de 500 Go de données au cours d'un seul vol. Ce panorama ap-
porte une opportunité parfaite aux systèmes d'application dynamiques pilotés par
les données (Dynamic Data Driven Application Systems, DDDAS), dont l'objectif
principal est de fusionner de manière dynamique des algorithmes de simulation clas-
siques avec des données provenant de mesures expérimentales. Dans ce scénario, les
données et les simulations ne seraient plus découplées, mais une symbiose à exploiter
permettrait d'envisager des situations jusqu'alors inconcevables. En e�et, les don-
nées ne seront plus comprises comme un étalonnage statique d'un modèle constitutif
donné mais plutôt comme une correction dynamique du modèle dès que les données
expérimentales et les simulations auront tendance à diverger. Plusieurs algorithmes
numériques seront présentés tout au long de ce manuscrit dont l'objectif principal
est de renforcer le lien entre les données et la mécanique computationnelle. La pre-
mière partie de la thèse est principalement axée sur l'identi�cation des paramètres,
les techniques d'analyse des données et les techniques de complétion de données. La
deuxième partie est axée sur les techniques de réduction de modèle (MOR), car elles
constituent un allié fondamental pour satisfaire les contraintes temps réel découlant
du cadre DDDAS.
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Résumé étendu

La modélisation mathématique, les algorithmes de calcul et le calcul haute per-
formance constituent une discipline connue sous le nom de science de l'ingénierie
basée sur la simulation (Simulation Based Engineering Science, SBES). Celle-ci a
amené le domaine de la simulation numérique dans une nouvelle ère où des amélio-
rations majeures ont été réalisées dans l'optimisation, la modélisation multi-échelles,
le contrôle et l'analyse inverse. De nombreuses techniques numériques di�érentes ont
été développées tout au long de l'histoire pour améliorer la �abilité des simulations
numériques. Il convient de mentionner les techniques comme la méthode des élé-
ments �nis, la méthode des di�érences �nies ou la méthode des volumes �nis parmi
de nombreuses autres approches, constituant trois des principales méthodologies qui
sont encore largement utilisées de nos jours. Bien qu'ils di�èrent dans de nombreux
aspects techniques, leur objectif commun est de transformer un ensemble donné
d'équations aux dérivées partielles en un système discret d'équations algébriques
qui est parfaitement compris par un ordinateur.

Si on analyse plus en détail comment un processus physique est modélisé, une
classi�cation entre deux ensembles di�érents d'équations peut être faite. Le premier
ensemble contient les lois d'équilibre ou de conservation qui tentent de préserver ou
d'équilibrer une quantité donnée dans l'ensemble du domaine comme c'est le cas,
par exemple, de l'équilibre linéaire et angulaire ou de la conservation de l'énergie.
Le deuxième ensemble contient les équations dites constitutives reliant ces quantités
équilibrées ou préservées à des variables cinématiques pour rendre la solution unique.
Par exemple, la loi de Hooke en mécanique des solides ou la fonction de rendement
plastique en théorie de la plasticité peuvent être considérées comme des exemples
d'équations constitutives. La dernière série d'équations a été utilisée avant même
l'invention du calcul di�érentiel. Notamment, les observations de Tycho Brahe sur les
mouvements des planètes conduisent Johannes Kepler à formuler ses trois équations
constitutives aujourd'hui connues comme les trois lois de Kepler. Des années plus
tard, Newton généralisera les lois de Kepler avec la formulation de la loi universelle
de la gravité. En e�et, il est juste de penser que les équations constitutives ont joué
un rôle fondamental dans la modélisation de la plupart des processus physiques.

Cependant, à mesure que la compréhension d'un processus physique donné s'ap-
profondit, sa modélisation d'un point de vue mathématique devient plus complexe.
Ce scénario peut être apprécié dans le cadre de la mécanique des solides où la
théorie de l'élasticité linéaire évolue vers des situations plus complexes telles que la
mécanique non linéaire des solides ou les comportements inélastiques. Illustrant ce
panorama, même si la loi de Hooke est largement utilisée en théorie de l'élasticité
linéaire, le catalogue d'équations constitutives s'élargit lorsqu'on considère les ma-
tériaux hyper-élastiques, comme le Neo-Hookean, Saint Venant-Kirchho�, Ogden,
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Résumé étendu

Mooney-Rivling, etc. Le même e�et peut être observé lorsque l'on considère l'inélas-
ticité, où de nombreux modèles de plasticité ou d'endommagement di�érents ont été
formulés pour se rapprocher du comportement réel du matériau. Un autre scénario
dont la modélisation devient assez compliquée est un �uide complexe, comme par
exemple le cas des écoulements de mousses. La modélisation numérique des proces-
sus de formage impliquant l'écoulement des mousses nécessite la prise en compte
des di�érentes échelles de problèmes. Ainsi, dans les applications industrielles, une
approche macroscopique est appropriée, alors que les paramètres macroscopiques
d'écoulement dépendent de la structure cellulaire : taille, forme, orientation des cel-
lules. De plus, la forme et l'orientation des cellules sont induites par le �ux. Une
description entièrement microscopique reste utile pour comprendre le comporte-
ment de la mousse et les changements topologiques induits par l'allongement ou la
déformation des cellules, mais d'un point de vue industriel, les simulations micro-
scopiques restent di�ciles pour des applications pratiques impliquant des �ux dans
des géométries 3D complexes. Dans la pratique, les modèles constitutifs macrosco-
pics viscoélastiques, où la microstructure de la mousse est représentée à partir de
descripteurs de microstructure appropriés, sont régis par la cinématique macrosco-
pique de l'écoulement. La dérivation de ces comportements constitutifs est détaillée
à l'annexe A, ce qui a certainement renforcé les soupçons quant à la complexité liée
à la modélisation de nouveaux matériaux.

Il est donc raisonnable de penser que la nature phénoménologique des équations
constitutives peut introduire des erreurs de modélisation, ce qui entraîne des inadé-
quations entre les simulations et les résultats expérimentaux. De plus, cette erreur
de modélisation tend à augmenter naturellement dès que la complexité du système
augmente. Par conséquent, beaucoup d'e�orts ont été consacrés à réduire toutes les
sources d'erreur dans les simulations numériques, non seulement l'erreur de modé-
lisation, mais aussi les erreurs de discrétisation. En e�et, un scénario idéal où les
expériences et les simulations numériques seraient en parfait accord permettrait d'al-
ler au-delà des limites de conception actuelles. Non seulement parce que l'exploration
de nouveaux prototypes serait quantitativement moins coûteuse, mais aussi parce
que les connaissances à l'intérieur de la simulation numérique sont beaucoup plus
riches que les données recueillies par les capteurs expérimentaux. Malheureusement,
ce monde idyllique n'existe pas de nos jours, donc les outils numériques doivent être
adaptés en conséquence pour faire face à cette problématique. Cette transformation
des simulations numériques standard est revendiquée car, traditionnellement, les si-
mulations sont principalement statiques dans le sens où les équations constitutives
sont calibrées avant de faire la simulation sans pouvoir les modi�er dynamiquement
dès que les données expérimentales ont tendance à di�érer des simulations. Aujour-
d'hui, la situation est radicalement di�érente, les données sont beaucoup plus abon-
dantes (et précises) que les modèles existants, et un nouveau paradigme émerge dans
les sciences de l'ingénieur et la technologie, les systèmes d'application dynamiques
pilotés par les données (Dynamic Data Driven Application Systems, DDDAS). Par
exemple, les expériences de physique des hautes énergies produisent environ 1Pb
de données par jour, alors qu'en 2012, 162 000 articles ont été publiés dans des re-

vi



Résumé étendu

vues de science des matériaux. Ces faits indiquent clairement que les données sont
de plus en plus abondantes alors que le catalogue des matériaux possibles s'élargit
énormément. Ainsi, une fusion cohérente et e�cace entre les données et les outils
de simulation standard constitue la voie d'investigation actuelle pour de nombreux
centres de recherche. Cette possibilité sans précédent de déterminer ou d'enrichir
directement les connaissances à partir de données ou, en d'autres termes, d'extraire
des modèles d'expériences de façon automatisée, est suivie avec grand intérêt dans
de nombreux domaines des sciences et de l' ingénierie. Bien que presque classiques
dans d'autres domaines scienti�ques comme l'économie, la sociologie, de données
massives sont arrivées avec un retard important dans le domaine de la mécanique
computationnelle. Il convient de noter que dans notre domaine la quantité de don-
nées disponibles n'est très souvent pas aussi importante, et nous parlons donc de
techniques axées sur les données plutôt que de techniques axées sur les données
massives.

D'autre part, les outils liés aux techniques avancées de classi�cation deviennent
cruciaux dans de nombreux domaines où les modèles, les bases d'approximation ou
les paramètres sont ajustés en fonction de l'espace latent, qui est un espace réduit
représentant la physique fondamentale du système. Ils permettent de dé�nir une
modélisation hiérarchique, orientée vers un but et, en �n de compte, de dé�nir un
nouvel ensemble de coordonnées réduites portant la plus grande partie de l'informa-
tion. Les techniques d'apprentissage machine sont capables d'extraire la structure
multiple dans laquelle vit la solution de problèmes d'ingénierie complexes et couplés.
Ainsi, des paramètres non corrélés peuvent être e�cacement extraits des données
collectées, provenant soit de simulations numériques, soit d'expériences. Dès que
des paramètres non corrélés sont identi�és (constituant le niveau d'information),
la solution du problème peut être prévue à de nouveaux emplacements de l'espace
paramétrique, en utilisant des schémas d'interpolation adéquats. Dans un cadre dif-
férent, des solutions paramétriques peuvent être obtenues dans un cadre adéquat
capable de contourner la malédiction de la dimensionnalité pour toute valeur des
paramètres non corrélés du modèle. Il est important de noter à ce stade que l'inter-
polation est une question délicate lorsque la solution dé�nit un variété (manifold)
incluse dans l'espace dimensionnel élevé. Dans ce cas, pour dé�nir une interpolation
précise, il faut procéder par interpolation sur la variété. L'apprentissage sur la va-
riété a également été utilisé pour la construction de modèles réduits, pour y dé�nir
des solutions paramétriques, ou simplement pour dé�nir avec succès des applica-
tions de mécanique computationnelle pilotées par les données. Dans ces derniers
cas, les équations constitutives traditionnelles ont été remplacées par un ensemble
de données collectées.

De même, la réduction de modèles (MOR) revêt une importance capitale pour
l'ingénierie basée sur la simulation. Ces techniques permettent de résoudre e�ca-
cement des modèles mathématiques complexes, grâce à l'utilisation de bases d'ap-
proximations adaptées pour décrire leurs solutions. Parmi les nombreuses techniques
MOR existantes, la Proper Orthogonal Decomposition (POD), la Proper Generali-
zed Decomposition (PGD) et Reduced Basis (RB) sont largement considérées dans
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une variété d'applications. En e�et, les techniques MOR pourraient être considérées
comme un allié naturel pour explorer de nouvelles voies où les données, les modèles et
les simulations constituent un cadre solide pour stimuler les percées technologiques.

A la lumière de cette révolution des données, il est facile de comprendre les
raisons pour lesquelles le concept d'Industrie 4.0 suscite beaucoup d'intérêt ces der-
niers temps. La possibilité de créer des processus intelligents où les données jouent
un rôle majeur a�n d'améliorer l'e�cacité est une option plutôt intéressante. Cette
amélioration serait obtenue grâce à la fusion adéquate des données collectées et
du processus à optimiser. Ces données collectées peuvent être, par exemple, des
variables quantitatives telles que l'évolution historique des températures, de la pres-
sion ou des déplacements ou qualitatives comme les fabricants, les matériaux, le
nom de l'opérateur, etc. Cet ensemble de données alimentera le processus lui-même
en déterminant les actions à entreprendre en temps réel. Cependant, comme cette
Industrie 4.0 est encore une idée émergente, plusieurs aspects doivent être traités
et améliorés avant de la transformer en réalité. A première vue, ce concept d'usine
intelligente peut sembler très dépendant du problème, ou en d'autres termes, chaque
problème peut dépendre en grande partie du processus à optimiser. Cependant, les
principaux inconvénients associés au travail avec les données pourraient être classés
comme suit :

• Rationalisation des données. La raison d'être des données massives favorise la
collecte d'un ensemble de données aussi vaste que possible. Cependant, cet
excès de données peut être contre-productif lorsqu'on essaie de dévoiler des
relations cachées, car l'extraction de ces relations sous-jacentes sera beaucoup
plus coûteuse. Par conséquent, il est important de toujours garder à l'esprit que
les données massives devraient évoluer vers des données intelligentes, où des
questions telles que pourquoi - quand - où les données seront-elles recueillies
sont traitées avant d'être réellement recueillies. La formulation de ce type
de questions peut déboucher sur une simpli�cation considérable du problème
en sélectionnant les variables d'entrée et de sortie les plus importantes qui
contrôlent le processus.

• Données réduites. Malgré le fait que les grandes données impliquent intrinsè-
quement de travailler avec une énorme quantité de données. La vérité est que
parfois la quantité de données accessibles n'est pas aussi riche que nécessaire.
Cette dégénérescence vers la limite inférieure des données peut être causée par
plusieurs raisons. Par exemple, un phénomène d'espace vide peut apparaitre
lorsqu'on considère des espaces dimensionnels élevés, ce qui se produit lorsque
l'on considère toutes les variables a�ectant le processus. Un autre cas de don-
nées réduites peut apparaître lorsque l'on considère les données fournies par les
capteurs puisqu'elles sont placées à des endroits spéci�ques du processus. Par
conséquent, les variables d'état ne seront pas dé�nies partout dans le domaine
mais seulement à certains emplacements de capteurs.

• Algorithmes numériques rapides. De nouveaux algorithmes destinés à combi-

viii



Résumé étendu

ner les processus de données et de simulations standard sont intégrés dans
les systèmes d'application dynamiques pilotés par les données (DDDAS). En
e�et, le mot dynamique incite à faire ces corrections de données en temps
réel, ou au moins aussi dynamique que possible. Il semble naturel d'utiliser
les méthodologies MOR pour accélérer les algorithmes autant que possible.
Ils peuvent être utilisés comme un outil e�cace pour explorer les espaces à
haute dimension, par exemple, lorsqu'il s'agit d'algorithmes d'identi�cation de
paramètres.

• Fusion de données cohérentes. L'utilisation des données est pratique, malheu-
reusement, il y a des situations dans lesquelles les données disponibles ne
remplissent pas certaines conditions per se. Par exemple, nous devrions être
réticents ou au moins conscients de situations telles qu'une identi�cation de
conductivité non positive à partir d'un pro�l de �ux température-chaleur tout
comme un tenseur d'élasticité dé�ni non positif construit à partir d'un en-
semble de données de force de déplacement. Ces situations dégénérées peuvent
conduire à des perspectives où les données ne sont plus un substitut naturel
des modèles existants, mais plutôt un allié pour enrichir les modèles existants
en préservant la cohérence thermodynamique.

Les contributions présentées dans cette thèse abordent certaines di�cultés pré-
sentées dans la liste ci-dessus, en développant des algorithmes numériques qui ren-
forcent le lien entre les données et les sciences de l'ingénieur basées sur la simulation.
Plus de détails sur chaque contribution sont précisés dans la section suivante.

Structure de la thèse

Cette thèse est organisée en deux parties distinctes, abordant les problèmes pré-
sentés précédemment. En bref, la partie I constitue un premier pas vers une fusion
e�cace et cohérente des domaines de la science des données et de la mécanique com-
putationnelle. La partie II se concentre sur les techniques MOR, car elles constituent
un allié fondamental pour atteindre les contraintes de temps réel découlant du cadre
DDDAS. La structure générale de la thèse est donnée par :

• Partie I : Premiers pas vers une fusion e�cace des données et de la mécanique

computationnelle

� Chapitre 2 : Techniques axées sur les données

� Chapitre 3 : Techniques de complétion des données

• Partie II : Avancées sur les techniques de réduction de modèles

� Chapitre 4 : Multi PGD basé sur la méthode de partitionnement d'unité

� Chapitre 5 : Applications des séparations plan/hors-plan PGD

ix



Résumé étendu

Chapitre 2 : Techniques axées sur les données

Ce chapitre traite de l'utilisation et de l'identi�cation des relations constitutives.
La relation constitutive n'est plus comprise comme une équation dans son format
fermé, mais comme un nuage de points ou un ensemble de données. Une première
tentative de fusionner cette base de données constitutive avec un schéma numérique
a été étudiée dans le cadre d'élasticité. Dans ce cas, le solide est traité comme un
ensemble de barres 1D qui sont calibrées avec des courbes de contrainte/déformation
standard. Ces courbes de contrainte/déformation portent toutes les informations ma-
térielles constitutives. Ensuite, un schéma itératif entre ces courbes expérimentales
et l'équilibre de quantité de mouvement est résolu. Certes, la simulation guidée par
les données consiste à utiliser directement des données pour e�ectuer des simulations
numériques. Ces simulations utiliseront des lois universelles tout en minimisant le
besoin de modèles explicites, souvent phénoménologiques. Cette approche est parti-
culièrement intéressante lorsqu'il s'agit de matériaux d'ingénierie complexes (méta-
matériaux), pour lesquels les relations constitutives deviennent di�ciles à écrire, car
il existe (trop) de possibilités, et la nature intime de la plupart d'entre eux reste
inaccessible et/ou con�dentielle.

Même si, d'un point de vue conceptuel, un ensemble de points représentant le
comportement constitutif ou l'équation réelle sous sa forme fermée portent la même
information, sa transformation en base de données permet d'extraire les éléments les
plus pertinents de la collecte de données. Les techniques d'apprentissage machine,
et plus spéci�quement la réduction de dimensionnalité non linéaire, comme par
exemple le Locally Linear Embedding (LLE), la kernel-PCA (l'équivalent non linéaire
de l'analyse en composantes principales �PCA), appelée k-PCA, la local-PCA,
et d'autres, nous permettent de supprimer les corrélations dans les données. Ces
données, libres de toute corrélation, constituent l'information réelle, souvent très
limitée par rapport aux grandes quantitées de données dont elles ont été extraites.
Dans de nombreux modèles, l'extraction de paramètres non corrélés demeure une
question délicate. C'est le cas des paramètres décrivant des microstructures ou des
formes par exemple, souvent appelés paramètres latents. Dès que les paramètres
non corrélés sont extraits, deux options principales ont été envisagées à ce jour : (i)
lorsqu'un nouveau cas, non inclus dans les données, doit être analysé, sa solution est
simplement interpolée sur la varieté (construit à partir des données de formation) de
ses plus proches voisins a�n que les décisions puissent être prises en temps réel ; et (ii)
une solution paramétrique explicite peut être construite en utilisant les paramètres
non corrélés juste extraits a�n de pouvoir être détaillés en temps réel.

La section 2.1 traite de l'utilisation de l'ensemble des données constitutives du
cadre de l'élasticité. Le solide n'est plus compris comme un ensemble de barres 1D
mais plutôt comme un solide continu où les contraintes et les déformations, deux
tenseurs de deuxième ordre, sont reliées par un tenseur de quatrième ordre appelé
le module élastique. En conséquence, l'ensemble de données constitutives a douze
coordonnées en 3D, six pour dé�nir la contrainte et six autres pour dé�nir les états
de déformation en supposant la symétrie, où de multiples techniques d'apprentissage
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peuvent être appliquées. Ensuite, plusieurs techniques sont présentées pour fusionner
l'ensemble de données constitutives avec la conservation de la quantité de mouve-
ment a�n d'être cohérent avec les algorithmes standard d'éléments �nis. La présente
section n'aborde pas toutes les di�cultés techniques liées à la production de don-
nées ou à l'obtention d'expériences adéquates. Au contraire, nous développons une
méthode dans laquelle ce �ux de données joue le rôle d'une équation constitutive,
sans avoir besoin d'une adaptation phénoménologique à un modèle fermé prescrit.

La section 2.2 traite de l'un des goulets d'étranglement actuels des simulations
pilotées par les données : l'énorme quantité de données requises, dont certaines
sont inaccessibles depuis les installations de test actuelles. En e�et, il est di�cile
d'explorer l'ensemble de l'espace contrainte/déformation au moyen d'expériences
homogènes où seuls des états de contrainte limités sont accessibles, c'est-à-dire des
charges uniaxiales ou biaxiales. Cette di�culté peut être contournée dans de nom-
breux cas, et au moins atténuée dans les autres cas, en considérant des tests com-
plexes (ou hétérogènes), où coexistent à l'intérieur du matériau de nombreux états de
contrainte/déformation di�érents. Ensuite, une approche inverse guidée par les don-
nées permet d'extraire une grande quantité de données des expériences complexes.
Une alliance subtile de machines de test, de dispositifs de collecte de données et
d'ordinateurs puissants pour traiter ces énormes quantités de données de diverses
manières (machine et apprentissage approfondi) permet de dévoiler la multiplicité
constitutive de l'expérience.

La section 2.3 traite d'une autre application dans le cadre de la justi�cation
fondée sur les données. En e�et, la mise à l'échelle des comportements de micro-
structures hétérogènes pour dé�nir des milieux macroscopiques e�caces est d'un
intérêt majeur dans de nombreux domaines de la mécanique computationnelle, en
particulier ceux liés au génie des matériaux et des procédés. Dans ce travail, nous
explorons la possibilité de dé�nir un comportement macroscopique à partir d'un
ensemble de données basé sur des calculs microscopiques, puis de l'utiliser direc-
tement pour e�ectuer e�cacement des simulations à l'échelle macroscopique. Nous
considérons dans ce travail la mise à l'échelle des écoulements non newtoniens en
milieu poreux, et plus particulièrement ceux impliquant des suspensions de �bres
courtes. D'autre part, lorsqu'on considère les écoulements de �uides simples ou com-
plexes en milieu poreux, la situation devient di�cile car la physique rencontrée à
l'échelle micro di�ère de celle que l'on suppose à l'échelle macro. Ainsi, l'écoulement
micro-échelle est régi par un problème de Stokes, qui devient non linéaire dès que la
viscosité du �uide dépend de la vitesse de déformation. Dans le cas de suspensions
de tiges (�bres, micro�bres, nano�bres ou nanotubes), l'écoulement à petite échelle
est régi par un problème de Stokes anisotrope où la viscosité est localement très
anisotrope. Il est toutefois inutile d'homogénéiser les paramètres d'écoulement mi-
croscopiques a�n de dé�nir une viscosité e�cace à l'échelle macroscopique. Ainsi, la
voie la plus valable consiste à considérer autant que possible des modèles visqueux
plus ou moins complexes pour capturer les principales caractéristiques du �uide et
de l'écoulement à l'échelle microscopique, et d'en obtenir une perméabilité de type
Darcy disponible à l'échelle macroscopique pour les fournir en entrée aux logiciels
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de simulation classiques.

Chapitre 3 : Techniques de complétion des données

Comme cela a été détaillé dans la section 2.2, un problème récurrent des applications
pilotées par les données est la génération de données, celles-ci pouvant être inacces-
sibles ou coûteuses à obtenir. Par conséquent, le développement d'algorithmes de
complétion de données où les surfaces de réponse sont créées à partir d'un ensemble
de données existant est d'une importance vitale. Le problème avec les systèmes de
grande dimension est que les données dans ces systèmes sont souvent rares (en rai-
son précisément de la nature de grande dimension de l'espace de phase) alors que le
système a très souvent, au contraire, de faibles caractéristiques dimensionnelles.

Les techniques MOR ont amélioré les stratégies traditionnelles basées sur le DoE
(Design of Experiments), qui ont permis de dé�nir des métamodèles, des modèles
de substitution ou des surfaces de réponse. Dans ces cas, des expériences ou des so-
lutions de calcul coûteuses sont réalisées pour un échantillonnage des états possibles
du système, à partir duquel un modèle simpli�é reliant les entrées aux sorties est éla-
boré. Les principales di�cultés associées à cette procédure concernent la meilleure
stratégie d'échantillonnage et le schéma d'interpolation le plus adéquat pour faire
des prédictions partout dans l'espace de conception à partir de la seule connais-
sance des quelques scénarios analysés. L'hypercube latin et le Krigeage sont deux
réponses habituelles à ces questions. Cependant, d'autres questions restent ouvertes,
telles que la véri�cation des modèles (estimation et délimitation des erreurs) ainsi
que la dé�nition de stratégies adaptatives permettant de réduire ces erreurs locale-
ment ou globalement. Même s'il existe une panoplie de propositions et de stratégies
appliquées, la plupart d'entre elles dépendent des problèmes et ne sont pas robustes
et �ables. Comme nous venons de le mentionner, les méthodes de réduction de mo-
dèle ont établi des voies pour atteindre des objectifs similaires tout en contournant
les principaux problèmes qui viennent d'être mentionnés, pour �nalement dé�nir un
"abaque", construit hors ligne et utilisé e�cacement en ligne pour une conception
robuste.

Même si, comme nous venons de l'indiquer, les technologies MOR rendent pos-
sible de meilleures approches, leur principal inconvénient est qu'elles restent souvent
trop intrusives. Aujourd'hui, les travaux les plus récents concernant les techniques
MOR se concentrent sur les algorithmes non-intrusifs. Cependant, d'un point de
vue pragmatique, toutes ces propositions restent moins directes que les méthodo-
logies habituelles du DoE, la dernière consistant simplement à évaluer le modèle à
di�érents points de l'espace de conception en utilisant des solveurs commerciaux
standard (adaptés au problème en question) et ensuite simplement à interpoler ces
solutions à tout autre point. Malgré les di�cultés conceptuelles qui viennent d'être
évoquées, la procédure est très simple et a attiré la faveur des ingénieurs, concepteurs
et praticiens.

Ainsi, le tableau d'ensemble pourrait être formulé comme suit : l'échantillonnage
direct pourrait-il conduire à une solution paramétrique robuste et �able ?
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La réponse à cette question a traditionnellement été abordée de diverses ma-
nières. Tout d'abord, les méthodologies basées sur la surface de réponse proposent
une sorte de procédure adaptative lorsque le modèle est a�né par zoom lorsque la
solution s'approche de la solution optimale par rapport à un couple modèle donné
/ critère d'optimisation. Toutefois, un tel approvisionnement nécessite un calcul en
ligne car la représentation �ne n'est pas a priori disponible et doit être construite
en ligne pendant le processus d'optimisation.

Cela dit, une technique e�cace de complétion des données dans un cadre axé
sur les données devrait répondre aux exigences suivantes :

• Ensemble de données non structuré : cette caractéristique confère à la méthode
une grande polyvalence. En e�et, lorsque l'évaluation de la surface de réponse
exige beaucoup d'e�orts de calcul, le recyclage des évaluations précédentes de
la surface de réponse, qui ne coïncident pas avec une structure particulière
des données, peut être très utile. De plus, disposer d'algorithmes capables de
travailler avec des ensembles de données non structurés est d'une importance
vitale pour certaines applications où les emplacements paramétriques sont
di�ciles à explorer. Par exemple, il est plus facile d'explorer les états de charge
uniaxiale dans la varieté constitutive que les états biaxiaux, et même plus facile
que les états triaxiaux.

• Robustesse de haute dimensionnalité : la plupart des techniques de complétion
de données, comme celles basées sur la triangularisation, sou�rent lorsqu'il
s'agit de données multidimensionnelles simplement parce qu'un maillage de
grande dimension doit être généré. Néanmoins, la séparation des variables
pourrait être une technique attrayante pour contourner, ou à tout le moins
atténuer, le problème des espaces à haute dimension.

• Quantité limitée de données : la robustesse des techniques de complétion de
données lorsque la quantité de données est limitée est cruciale. En e�et, les
situations dans lesquelles le coût d'agrandissement de l'ensemble de données
est inabordable exigeront une technique numérique capable de fournir une
surface de réponse raisonnable sur la base de l'ensemble de données épars
donné.

La section 3.1 présente une nouvelle technique de complétion de données appelée
sparse Proper Generalized Decomposition (sPGD). Il combine la logique de la Proper
Generalized Decomposition (PGD), où la séparation des variables est utilisée pour
contourner ou atténuer la malédiction de la dimensionnalité avec une procédure
de colocalisation coïncidant avec l'ensemble de données non structuré. Ce faisant,
aucune information n'est requise à part de l'ensemble de données, ce qui permet de
construire une surface de réponse e�cace basée sur les données disponibles.

La section 3.2 décrit trois applications di�érentes d'intérêt industriel dans les-
quelles la technique sPGD expliquée dans la section 3.1 a été appliquée. La première
application en collaboration avec Gestamp concerne l'industrie automobile, où la
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forme géométrique d'un composant à l'intérieur du véhicule est optimisée pour ga-
rantir la sécurité des passagers. La seconde application en collaboration avec ESI

Group vise à corriger les modèles de plasticité existants au moyen de quantités ob-
servables, c'est-à-dire des mesures synthétiques de déformation et de déplacement.
La troisième application relie les paramètres géométriques dé�nissant la surface d'un
matériau composite à sa performance dans le procédé de pose automatisée de rubans
(Automated Tape Placement ATP). En e�et, les paramètres géométriques tels que
la courbure ou la rugosité sont extraits de matériaux composites réels sous la forme
d'un pro�lomètre. Plusieurs techniques de clustering et de complétion de données,
dont le sPGD, sont utilisées pour relier les premiers paramètres à la performance
du matériau composite.

La section 3.3 étend le concept de techniques d'identi�cation sparses, déjà in-
troduit pour identi�er le modèle caché dans un ensemble de données, à d'autres
applications dans le cadre de la mécanique computationnelle. Ce concept a été large-
ment appliqué dans d'autres domaines comme la compression d'images, en évoquant
le concept de caméra à pixel unique. Cette caméra à pixel unique ou à détection
comprimée prétend être capable de reconstruire une image donnée simplement en
connaissant l'information à quelques pixels. Le même raisonnement est appliqué
pour reconstruire une surface de réponse paramétrique tout comme la possibilité
d'appliquer la méthodologie à des problèmes évolutifs dans le temps.

Chapitre 4 : Multi PGD basé sur la méthode de partitionnement

d'unité

Les techniques de réduction de modèles (MOR) deviennent très utiles dans le cadre
d'un système d'application basé sur des données dynamiques où la prise de décision
doit se faire de manière dynamique. Ces dernières années, les techniques MOR ont
montré qu'un nombre minimum de degrés de liberté soigneusement choisis sont suf-
�sants pour une solution précise des EDP, réduisant ainsi le coût des discrétisations
FEM standard. Au lieu de choisir des bases polynomiales génériques, les techniques
MOR construisent des fonctions de base ad hoc suivant di�érentes techniques. Par
exemple, la Proper Orthogonal Decomposition (POD) construit une base plus adé-
quate à partir d'un ensemble de snapshots pré-calculés de la solution PDE du modèle
complet,

u(x, t) =

N∑
i=1

αi(t)φi(x), (1)

où, comme dans le contexte des éléments �nis, αi est un ensemble de coe�cients
dépendants du temps, et φi(x) sont des fonctions de base indépendantes du temps
obtenues par un traitement statistique des snapshots du système. Par exemple, de
nombreuses techniques MOR utilisent les fonctions propres les plus énergiques de la
matrice d'autocorrélation des snapshots pour construire ces φi(x). Celles-ci jouent
un rôle similaire à celui des fonctions de forme des éléments �nis, bien qu'elles soient
globales au lieu d'être locales. D'autres techniques, telles que les méthodes à base
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réduite, utilisent quelques snapshots de la solution d'ordre complet comme base
pour la solution approximative du système. Ces snapshots sont calculés de manière
gourmande, à des instants (ou paramètres) où l'erreur dans l'approximation est
maximale.

Il est important de noter que Eq. 1 constitue en fait une expression séparée ou
a�ne de la solution�notez la séparation espace-temps, qui tient également dans les
approximations par éléments �nis�-. Cette méthodologie s'est avérée très e�cace
pour une grande variété de problèmes de grande dimension allant de la résolution
de l'équation de Fokker-Planck aux réponses hépatiques spéci�ques au patient, en
passant par la dynamique structurelle, la rhéologie computationnelle ou, plus géné-
ralement, tout problème paramétrique qui pourrait être écrit sous une forme separé.
Il y a cependant des situations où la solution est très inséparable. En d'autres termes,
la solution du problème réside dans une varieté non linéaire. Dans cette situation,
la technique MOR consiste à projeter la solution sur l'espace tangent à la varieté en
un point donné (temps ou paramètre). Ceci conduit à de mauvaises propriétés d'ap-
proximation loin du point tangent, à moins que des techniques spéciales ne soient
choisies.

Une façon d'atténuer ce problème est de suivre la même philosophie que les mé-
thodes de réduction de dimensionnalité non linéaire. Par exemple, la Locally Linear
Embedding (LLE) tente de dévoiler les variables latentes en imposant une variation
linéaire locale à la fonction, qui changera de voisinage en voisinage. Une autre tech-
nique qui traite des problèmes non linéaires est la kernel-PCA (k-PCA). Dans ce cas
particulier, la dé�nition d'une fonction noyau e�cace permet de projeter les snap-
shots dans des espaces de grande dimension (potentiellement in�nie) dans lesquels
la varieté de solution est plate. Dans ce cas particulier, les techniques d'interpola-
tion standard fonctionnent bien. Lors de l'étude du cas d'une source en mouvement
dans un problème de transfert thermique transitoire, le problème de l'inséparabilité
de la solution a été contourné par la réalisation d'une partition du domaine tempo-
rel, en dédiant un DPI di�érent pour chaque partition. Cependant, l'imposition des
conditions d'interface deviendra une tâche fastidieuse lorsqu'il s'agit de partitions
impliquant des variables autres que le temps.

La section 4.1 propose une méthodologie où di�érents PGD sont combinés grâce à
l'introduction de fonctions de fonctions de forme FEMmacro satisfaisant la partition
de l'unité. Ces fonctions de forme macro, à savoir les fonctions polynomiales par
morceaux FEM, sont chargées de contrôler le chevauchement entre les di�érents
PGD, sans avoir besoin de spéci�er les conditions d'interface entre eux. De plus, le
fait que la solution devienne localement plus linéaire (aussi plus séparable) facilite
la tâche de chacun des PGD, réduisant drastiquement le nombre de modes pour
obtenir une solution précise.

La section 4.2 étend la méthodologie proposée dans la section 4.1 pour trai-
ter les problèmes multi-échelles e�cacement. De nombreux problèmes en mécanique
computationnelle présentent un comportement multi-échelles où les e�ets à la micro-
échelle in�uencent ceux à la macro-échelle et vice-versa. Par conséquent, le traite-
ment des di�érentes échelles du problème devient très important pour parvenir à
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une solution précise. Un tel comportement multi-échelle apparaît, par exemple, dans
le domaine spatial lorsqu'il s'agit de métamatériaux dont la structure est dé�nie au
niveau micro. Plusieurs techniques ont été appliquées tout au long de l'histoire
comme l' homogénéisation dé�nissant le modèle constitutif à la micro-échelle en
fonction d'un volume représentatif qui satisfait au principe de Hill-Mandel. Cette
méthode s'est avérée très e�cace pour contourner le coût de calcul prohibitif de mé-
thodes comme FEM2. Cependant, une hypothèse forte sous-tend cette technique
d'homogénéisation, qui exige une séparation claire des échelles entre les e�ets macro
et micro.

En e�et, la section 4.2 propose une méthodologie dans laquelle des fonctions de
forme macro qui respectent la partition d'unité ont permis à la méthode de combiner
di�érents PGDs de manière cohérente. De plus, le chevauchement entre les PGDs
résout automatiquement la transition entre les di�érentes échelles.

Chapitre 5 :Applications des séparations plan-hors-plan PGD

De nombreux systèmes mécaniques et structures complexes impliquent des pièces en
plaques et coques dont la principale particularité est d'avoir une dimension carac-
téristique (celle liée à l'épaisseur) beaucoup plus petite que les autres (dimensions
en plan). L'introduction d'hypothèses cinématiques et mécaniques appropriées per-
met de réduire le problème mécanique général 3D à un problème 2D impliquant les
coordonnées en plan. C'était la voie utilisée pour dériver les théories des poutres,
des plaques et des coques en mécanique des solides, qui ont ensuite été étendues
à beaucoup d'autres domaines de la physique, comme les écoulements dans des es-
paces étroits, les problèmes thermiques ou électromagnétiques des strati�és, parmi
tant d'autres. Pourtant, lorsque la physique est appliquée à des domaines dégénérés,
comme les plaques ou les coques, et qu'aucune hypothèse de simpli�cation accep-
table n'est disponible pour réduire leur complexité à la 2D, des solutions entièrement
3D semblent obligatoires. C'est le cas, par exemple, lorsque l'on considère l'endom-
magement dynamique progressif des strati�és composites où une description riche à
travers l'épaisseur pourrait être extrêmement utile.

Lorsque ces modèles 3D deviennent obligatoires, l'approximation des di�érents
champs implique des milliers de n÷uds répartis dans le sens de l'épaisseur, et par
conséquent des millions de n÷uds pour représenter les champs dans la pièce. Aujour-
d'hui, la solution de ces modèles 3D �ns reste insoluble malgré les progrès impres-
sionnants réalisés en modélisation, analyse numérique, techniques de discrétisation
et informatique au cours des dernières décennies. Les techniques de discrétisation
standard basées sur des maillage échouent au vu du nombre excessif de degrés de
liberté impliqués dans la discrétisation. En e�et, des mailles très �nes sont néces-
saires dans le sens de l'épaisseur (malgré sa dimension réduite) et souvent aussi dans
le sens du plan pour éviter soit des mailles trop déformées, soit parce que certains
procédés (par exemple les micro-ondes) nécessitent des représentations �nes dans le
plan.

A�n d'alléger la complexité des calculs associés, les auteurs ont proposé il y
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a quelques années de séparer l'espace physique. Ainsi, une décomposition dans le
plan/hors-plan a été proposée pour résoudre dans les plaques les �ux 3D se produi-
sant dans les procédés RTM (moulage par transfert de résine), puis pour résoudre
les problèmes d'élasticité des plaques et des coques. Dans ces cas, la solution 3D
complète a été obtenue à partir de la solution d'une séquence de problèmes 2D
(ceux impliquant les coordonnées dans le plan) et 1D (ceux impliquant les coordon-
nées relatives à l'épaisseur de la plaque). Il est important de souligner le fait que
ces approches sont radicalement di�érentes des approches standard. Nous proposons
un solveur 3D capable de calculer les di�érents champs 3D inconnus sans qu'il soit
nécessaire d'introduire aucune hypothèse. L'avantage le plus remarquable est que
les solutions 3D peuvent être obtenues avec un coût de calcul caractéristique des
solutions 2D standard.

Ce chapitre a pour but de présenter quelques nouvelles applications de la repré-
sentation séparée dans le plan/hors-plan.

La section 5.1 vise à séparer les dimensions spatiales dans le cadre de l'électroma-
gnétique. La principale motivation de cette étude numérique réside dans l'énergie et
le temps qu'exige un autoclave. De nombreux procédés de fabrication de composites
impliquent l'utilisation de l'autoclave pour assurer, après le formage, l'application
simultanée de la température et de la pression pour obtenir à la fois une consolida-
tion et une faible porosité. Le coût élevé de ces procédés en termes d'énergie et de
temps a récemment conduit à la recherche d'autres technologies pour remplacer les
autoclaves. Parmi celles-ci, le chau�age par micro-ondes est considéré comme un bon
candidat pour accélérer les processus de fabrication. Ici, en fonction des propriétés
électromagnétiques du renforcement, deux sources thermiques peuvent coexister :
les pertes diélectriques et l'induction, cette dernière étant liée aux renforts élec-
triquement conducteurs (par exemple les �bres de carbone). Dans le contexte de
l'électromagnétisme, la situation était similaire à celle que l'on rencontre en méca-
nique structurelle, où l'on a discuté de la section 2D, des solveurs planaires 2,5D et
des solveurs arbitraires 3D. Les simulateurs de guides d'ondes utilisent largement des
formulations 2.5D dont l'une des dimensions a été éliminée en supposant une évolu-
tion particulière du champ électromagnétique dans cette direction. Les formulations
2.5D ont également été largement prises en compte pour l'analyse des circuits impri-
més. Des modèles microscopiques, mésoscopiques et macroscopiques ont été proposés
et largement pris en compte dans les applications d'ingénierie, en particulier dans
celles impliquant des strati�és. De nombreux travaux ont porté sur l'homogénéisa-
tion microscopique des systèmes électromagnétiques, en particulier des matériaux
composites. A l'échelle mésoscopique, les strati�és ont été abordés en vue de dé�nir
des approches macroscopiques. Trois voies principales ont été envisagées : (i) ho-
mogénéisation du strati�é ; (ii) éléments de coque monocouches et multicouches, où
l'impédance de coque a été dérivée analytiquement en supposant un certain nombre
d'hypothèses simpli�catrices, puis couplée à la solution du problème électromagné-
tique dans le domaine externe a�n d'obtenir les champs électromagnétiques sur les
surfaces de coque, et en calculant à partir de celles-ci toute la physique interne (il est
important de noter que les hypothèses supposées pourraient, dans certaines circons-
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tances complexes, se révéler défectueuses) (iii) éléments spéciaux pour le maillage
des strati�és lors de l'adressage explicite de la solution à l'intérieur, cependant, pour
représenter �nement les couches limites à l'intérieur des couches, la complexité de
calcul due à la résolution de maillage requise pourrait devenir excessive. C'est la
raison pour laquelle la séparation des dimensions spatiales semble appropriée dans
ce cas particulier.

La section 5.2 introduit une nouvelle représentation hybride explicite/implicite
dans le plan à partir du plan pour les problèmes dynamiques dé�nis dans des
domaines en forme de plaques qui calculent e�cacement la solution 3D et où les
contraintes de stabilité sont exclusivement déterminées par les discrétisations plus
grossières en plan. Il existe une vaste littérature sur la dynamique structurelle, cou-
vrant di�érentes techniques de discrétisation et procédures d'intégration temporelle.
Lorsqu'on considère une analyse implicite, la solution à chaque pas de temps néces-
site quelques itérations pour faire respecter l'équilibre. Contrairement aux schémas
implicites, les schémas explicites ne nécessitent pas d'itération car les accélérations
nodales sont résolues directement, et à partir desquelles les vitesses et déplacements
sont calculés par simple intégration. Le principal inconvénient des simulations ex-
plicites est que le pas de temps doit véri�er la condition de stabilité, qui diminue
avec la taille de l'élément. Au contraire, les intégrations élastodynamiques implicites
deviennent inconditionnellement stables, c'est-à-dire qu'il n'y a pas de limite dans le
pas de temps à considérer en matière de stabilité. Ainsi, les pas de temps implicites
sont généralement de plusieurs ordres de grandeur plus grands que ceux considérés
dans les intégrations temporelles explicites. Cependant, l'intégration implicite né-
cessite la solution de systèmes linéaires plusieurs fois à chaque étape de chargement
lorsqu'il s'agit de modèles non linéaires. D'autre part, comme les techniques expli-
cites ne nécessitent pas l'inversion d'une matrice, elles s'adressent facilement aux
non-linéarités (non-linéarités de contact ou non-linéarités matérielles) Un schéma
hybride a été proposé qui considère le domaine composé de deux parties dans les-
quelles des intégrations temporelles explicites et implicites sont applicables. Dans
ce travail, nous introduisons une nouvelle représentation hybride explicite/implicite,
explicite et implicite, dans le plan et hors du plan, des problèmes dynamiques dé�nis
dans des domaines en forme de plaques qui calculent e�cacement les solutions 3D et
où les contraintes de stabilité sont exclusivement déterminées par les discrétisations
plus grossières dans le plan.

La section 5.3 se concentre sur les composites thermoplastiques puisqu'ils sont
des matériaux structuraux privilégiés en raison de leurs excellentes propriétés de
tolérance aux dommages, de cycles de fabrication plus courts et de la facilité de sou-
dage. L'un des matériaux précurseurs pour fabriquer des pièces composites thermo-
plastiques est un préimprégné unidirectionnel (UD) qui consiste en �bres continues
alignées préimprégnées de résine thermoplastique. A l'état fondu, le préimprégné UD
peut être considéré comme une �bre inextensible entourée d'une matrice visqueuse
incompressible, et peut donc être modélisé comme un �uide isotrope transversal.
Ces strati�és UD sont généralement empilés dans les orientations souhaitées pour
créer un strati�é composite. En e�et, une application de la représentation sépa-
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Résumé étendu

rée dans le plan hors plan pour comprimer les �ux de strati�és à �bres continues
est présentée. Plus en détail, l'équation constitutive du pli est modélisée comme
un �uide transversalement isotrope, qui doit satisfaire à la fois l'inextensibilité de
la �bre et l'incompressibilité du �uide. Lorsque le strati�é est comprimé, la ciné-
matique d'écoulement présente une dépendance complexe le long de l'épaisseur du
strati�é, ce qui nécessite une description détaillée de la vitesse à travers l'épaisseur.
Dans des travaux précédents, la solution utilisant une représentation séparée dans
le plan hors plan au sein du cadre PGD - Poper Generalized Decomposition - a
été réalisée avec succès lorsque les deux contraintes cinématiques (inextensibilité et
incompressibilité) ont été introduites en utilisant une formulation de pénalité pour
contourner les contraintes LBB. Cependant, une telle formulation rend di�cile le
calcul des tractions des �bres et des forces de compression, une quantité impor-
tante d'intérêt nécessaire pour les caractérisations rhéologiques. Dans ce travail,
l'ancienne formulation de pénalité est remplacée par une formulation mixte qui uti-
lise deux multiplicateurs de Lagrange, tout en traitant les conditions de stabilité de
la LBB dans un cadre séparé, questions jamais abordées jusqu'à présent.
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Chapter 1

Introduction

Abstract Simulation Based Engineering Science (SBES) has brought major improve-
ments in optimization, control and inverse analysis, all leading to a deeper understanding
in many processes occuring in the real world. These noticeable breakthroughts are present
in a vast variety of sectors such as aeronautic or automotive industries, mobile telecommuni-
cations or healthcare among many other �elds. Nevertheless, SBES is currently confronting
several di�culties to provide accurate results in complex industrial problems. Apart from
the high computational costs associated with industrial applications, the errors introduced
by constitutive modeling become more and more important when dealing with new mate-
rials.

Concurrently, an unceasingly growing interest in concepts such as Big-Data, Machine
Learning or Data-Analytics has been experienced. Indeed, this interest is intrinsically mo-
tivated by an exhaustive development in both data-acquisition and data-storaging systems.
For instance, an aircraft may produce over 500 GB of data during a single �ight. This
panorama brings a perfect opportunity to the so called Dynamic Data Driven Application
Systems (DDDAS), whose main objective is to merge classical simulation algorithms with
data coming from experimental measures in a dynamic way. Within this scenario, data and
simulations would no longer be uncoupled but rather a symbiosis that is to be exploited
would achieve milestones which were inconceivable until these days. Indeed, data will no
longer be understood as a static calibration of a given constitutive model but rather the
model will be corrected dynamicly as soon as experimental data and simulations tend to
diverge. Several numerical algorithms will be presented throughout the manuscript whose
main objective is to strengthen the link between data and computational mechanics. The
�rst part of the thesis is mainly focused on parameter identi�cation, data-driven and data
completion techniques. The second part is focused on Model Order Reduction (MOR)
techniques, since they constitute a fundamental ally to achieve real time constraints arising
from DDDAS framework.
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Introduction

1.1 Motivation

Mathematical modeling, computational algorithms, high performance computing consti-
tute a discipline known as Simulation Based Engineering Science (SBES). It has brought
the �eld of computer simulation to a new era where major improvements in optimization,
multiscale modeling, control, inverse analysis have been achieved. Plenty of di�erent nu-
merical techniques have been developed throughout the history to improve the reliability of
numerical simulations. It is worth to mention techniques as the �nite element method, the
�nite di�erence or the �nite volume method among many other approaches, constituting
three of the main methodologies that are still widely employed nowadays. Even though
they di�er in many technical aspects, their common objective is to transform a given set of
partial di�erential equations into a discrete system of algebraic equations which is perfectly
understood by a computer.

Analyzing more is detail how a physical process is modeled, a classi�cation between
two di�erent sets of equations can be done. The �rst set, coined balance or conservative
laws, tries to preserve or equilibrate a given quantity throughout the domain as it is the
case, for instance, of linear and angular momentum balance or conservation of energy.
The second set, dubbed as constitutive equations, connects these balanced or preserved
quantities with kinematic variables to render the solution unique. For instance, Hooke's law
in solid mechanics or the plastic yield function in plasticity theory can be seen as examples
of constitutive equations. The last set of equations have been used even before the invention
of the di�erential calculus. Notably, Tycho Brahe's observations about planet's movements
lead Johannes Kepler to formulate his three constitutive equations today known as the
three Kepler's laws. Years after, Newton will generalize Kepler's laws with the formulation
of the universal gravity law. Indeed, it is fair to reckon that constitutive equations have
played a fundamental role in the modelization of most physical processes.

However, as the understanding of a given physical process goes deeper, its modeliza-
tion from a mathematical point of view becomes more complex. This scenario can be
appreciated in the solid mechanics framework where linear elasticity theory evolves to more
complex situations such as non-linear solid mechanics or inelastic behaviours. Ilustrating
this panorama, even though Hooke's law is widely employed in linear elasticity theory,
the constitutive equation catalogue enlarges when considering hyper-elastic materials, i.e.
Neo-Hookean, Saint Venant-Kirchho�, Ogden, Mooney-Rivling, etc. The same e�ect can
be observed when considering inelasticity, where plenty of di�erent plasticity or damage
models have been formulated to approximate the real behaviour of the material. Another
scenario whose modelization becomes rather complicated is a complex �uid, as for example
the case of foams �ows. The numerical modelling of forming processes involving the �ow of
foams requires taking into account the di�erent problem scales. Thus, in industrial applica-
tions a macroscopic approach is suitable, whereas the macroscopic �ow parameters depend
on the cellular structure: cell size, shape, orientation, etc. Moreover, the shape and orien-
tation of the cells are induced by the �ow. A fully microscopic description remains useful to
understand the foam behaviour and the topological changes induced by the cell elongation
or distortion, however, from an industrial point of view, microscopic simulations remain
challenging to address practical applications involving �ows in complex 3D geometries. In
practice, viscoelastic macro constitutive models, where the foam microstructure is repre-
sented from suitable microstructure descriptors, the macroscopic �ow kinematics govers the
process. The derivation of such constitutive behaviours is detailed in Appendix A, certainly,
it reinforced the suspicions about the complexity related to new material modeling.

Hence, it is reasonable to think that the phenomenological nature of constitutive equa-
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1.1. Motivation

tions may introduce some modeling error, leading to mismatches between simulations and
experimental results. Furthermore, this modeling error tends to increase naturally as soon
as the complexity of the system increases. As a consequence, plenty of e�ort has been ded-
icated to reduce every source of error in the numerical simulations, not only the modeling
error but the discretization errors as well. Indeed, an ideal scenario where experiments
and numerical simulations were in perfect agreement would allow to go beyond the current
design limits. Not only because the exploration of new prototypes would be quantitatively
cheaper but also because the knowledge inside the numerical simulation is by far richer than
the data collected in experimental sensors. Unfortunately, this idyllic world does not exist
these days, thus, numerical tools should be adapted accordingly to face this problematic.
This transformation of standard numerical simulations is claimed in [Chinesta et al. 2018].
Traditionally, simulations are mainly static in the sense that constitutive equations are
calibrated before doing the simulation without being able to modify them dynamically as
soon as experimental data tends to di�er from simulations. Nowadays, the situation is
radically di�erent, data is much more abundant (and accurate) than existing models, and
a new paradigm is emerging in engineering sciences and technology, the so called Dynamic
Data Driven Application Systems (DDDAS) [Darema 2005]. For instance, high-energy
physics experiments produce around 1Pb of data per day, while in 2012, 162000 papers
were published in materials science and engineering journals. These facts point clearly in
the direction that data is becoming more and more abundant whereas the catalogue of
possible materials is enormously enlarging. Thus, a coherent and e�cient merging between
data and standard simulation tools constitutes the current via of investigation for plenty of
research centers.

This unprecedented possibility of directly determine or enrich knowledge from data
or, in other words, to extract models from experiments in a automated way, is being
followed with great interest in many �elds of science and engineering. While almost
classical in other domains of science like economics, sociology, etc., big data has ar-
rived with important delay to the �eld of computational mechanics. It is worth noting
that, in our �eld, the amount of data available is very often no so big, and therefore we
speak of data-driven techniques instead of big-data techniques. For instance, the pos-
sibility of �tting the available data to a particular set of models has been recently ex-
plored in [Brunton et al. 2016, Kaiser et al. 2018]. Willcox and coworkers, on the con-
trary, have established a strategy that allows to construct reduced-order models from
data, by inferring the full-order operators without the need to construct them explic-
itly, nor having a direct knowledge on the governing models [Peherstorfer & Willcox 2016,
Peherstorfer & Willcox 2015]. Closely related, Ortiz has developed a method that works
without constitutive models, by �nding iteratively the experimental datum that best sat-
is�es conservation laws [Kirchdoerfer & Ortiz 2016]. More recently, the issue of compli-
ance with general laws like the ones of thermodynamics has been also achieved, which
is a distinct feature of data-driven mechanics [González et al. 2018b]. Other applications
include the identi�cation of biological systems [Mangan et al. 2016] or �nancial trading
[Mann & Kutz 2016], to name but a few.

On the other hand, tools related to advanced clustering or classi�cation techniques
become crucial in many areas where models, approximation bases, parameters, etc. are
adjusted depending on the latent space, which is a reduced space representing the underly-
ing physics of the system [Liu et al. 2016]. They make possible to de�ne hierarchical, goal-
oriented modeling and ultimately de�ne a new set of reduced coordinates carrying most part
of the information. Machine Learning techniques [Lee & Verleysen 2007] are able to extract
the manifold structure in which the solution of complex and coupled engineering problems is
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living. Thus, uncorrelated parameters can be e�ciently extracted from the collected data,
coming either from numerical simulations or experiments. As soon as uncorrelated param-
eters are identi�ed (constituting the information level), the solution of the problem can be
predicted at new locations of the parametric space, by employing adequate interpolation
schemes [González et al. 2015, Lopez et al. 2016b]. On a di�erent setting, parametric solu-
tions can be obtained within an adequate framework able to circumvent the curse of dimen-
sionality for any value of the uncorrelated model parameters [González et al. 2016]. It is at
this point important to note that interpolation is a tricky issue when the solution de�nes a
slow manifold embedded in the high dimensional space. In that case to de�ne safe interpola-
tion one must proceed by interpolating on the manifold. Farhat was one of the �rst to claim
this necessity [Amsallem & Farhat 2008]. In[Millán & Arroyo 2013, González et al. 2016,
Lopez et al. 2016a, Meng et al. 2018] manifold learning was used (using nonlin-
ear dimensionality reduction strategies [Roweis & Saul 2000, Lee & Verleysen 2007,
Maaten & Hinton 2008]) to extract latent parameters and the structure of the solution
manifold in order to de�ne accurate interpolations. It has also been employed for the con-
struction of reduced models operating on the manifold, to de�ne parametric solutions on
it, or simply to de�ne successfully data-driven computational mechanics applications. In
these last cases, traditional constitutive equations were replaced by a manifold consisting
of collected data.

Similarly, Model Order Reduction (MOR) is acquiring an utmost importance for
simulation-based engineering. These techniques allow to e�ciently solve complex math-
ematical models, thanks to the use of adapted approximation bases to describe their solu-
tions. Among the numerous existing MOR techniques, Proper Orthogonal Decomposition
(POD), Proper Generalized Decomposition (PGD) and Reduced Basis (RB) are largely con-
sidered in a variety of applications [Chinesta et al. 2017]. Indeed, MOR techniques could be
seen as a natural ally to explore new routes where data, models and simulations constitute
a solid framework to drive technological breakthroughts.

Proper Orthogonal Decomposition is a general technique to extract the most signi�cant
characteristics of a system's behavior and to represent them in a set of optimal "POD basis
vectors�. These basis vectors provide an e�cient (typically, low-dimensional) representation
of the essential features of the system behavior, which has proven useful in a variety of ways.
The most common use is to project the solution of the governing equations onto the reduced-
order subspace de�ned by these POD basis vectors. This yields an explicit POD reduced
model that can be solved instead of the original system. The POD basis can also provide
a low-dimensional description on which to perform parametric interpolation, in�ll missing
or "gappy� data, and perform model adaptation. There is an extensive literature and POD
has seen broad application across �elds. Some review of POD and its applications can be
found in [Volkwein 2001, P. Benner 2016].

Reduced Basis techniques employ an approximation basis constructed by combining a
greedy algorithm and a posteriori error indicators. As for the POD, the Reduced Basis
method requires some amount o�ine work, but then the reduced basis model can be used
online for solving di�erent models with control of the solution accuracy, because the avail-
ability of error bounds. When the error is unacceptably high, the reduced basis can be
enriched by invoking a greedy adaption strategy. Useful review works on the subject are
[Patera & Rozza 2007, Rozza et al. 2008, Quarteroni et al. 2011].

Finally, there exist techniques based on the use of separated representations,
at the heart of the so-called Proper Generalized Decomposition (PGD) methods
[Chinesta & Cueto 2014]. Such separated representations are considered when solving at-
hand partial di�erential equations by employing procedures based on the separation of
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variables. They were already considered in quantum chemistry to approximate multidi-
mensional quantum wave-functions, e.g., Hartree-Fock and post-Hartree-Fock methods.
In the 80s, Pierre Ladeveze proposed the use of space-time separated representations of
transient solutions involved in strongly nonlinear models, de�ning a non-incremental inte-
gration procedure [Ladeveze 1989, Ladeveze 1999]. Later, separated representations were
employed for solving multidimensional models su�ering the so-called curse of dimensional-
ity [Ammar et al. 2006, Ammar et al. 2007] as well as in the context of stochastic modeling
[Nouy 010]. Then, they were extended for separating space coordinates making possible the
solution of models de�ned in degenerated domains, e.g. plate and shells [Bognet et al. 2012]
as well as for addressing parametric models where model parameters were considered as
model extra-coordinates, enabling the o�ine calculation of the parametric solution. This
precomputed solution can be viewed as a metamodel or a computational vademecum, to
be used online for real time simulation, optimization, inverse analysis and simulation-based
control (see [Chinesta et al. 2013b] for a recent review). Some recent reviews concerning
the PGD can be found in [Chinesta et al. 2010, Chinesta et al. 2011b].

In the light of this data revolution, it is easy to understand the reasons why the concept
of Industry 4.0 is gathering a lot of interest recently. The possibility of creating smart
processes where data plays a major role in order to enhance e�ciency is a rather appealing
option. This improvement would be achieved thanks to the correct merging of the collected
data and the process to be optimized. This collected data may be, for instance, quantitative
variables such as the historical evolution of temperatures, pressure or displacements or
qualitative ones like manufacturers, materials, name of the operator, etc. This dataset will
feed the process itself determining the actions to be taken in real time. However, as this
Industry 4.0 is still an emerging idea, several aspects must be treated and improved before
transforming it into a reality. At �rst glance, this concept of smart factory may seem very
problem dependent, or in other words, each problem may depend very much on the process
to be optimized. However, the main drawbacks associated to work with data could be
classi�ed as:

• Data Rationalization. Big-Data rationale promotes to collect a data set as big as
possible. However, this data excess may be counter-productive when trying to unveil
hidden relationships as the extraction of those underlying relationships will be much
more expensive. Therefore, it is important to keep always in mind that Big-Data
should evolve to Smart-Data, where questions such as why-when-where is data going
to be collected are treated before actually collecting it. The formulation of this kind
of questions may derive into a considerable problem simpli�cation by selecting the
most important input and output variables which are controlling the process.

• Data Completion. Despite of the fact that Big-Data inherently involves working with
a huge amount of data. The truth is that sometimes the amount of accesible data is
not as rich as required. This degeneration into the low-data limit may be caused by
several reasons. For instance, a given data set may become low or sparse data when
considering high dimensional spaces, arising when considering all variables a�ecting
the process. Another low-data case may appear when considering data provided by
sensors since they are placed at speci�c locations of the process. As a result, the state
variables will not be de�ned everywhere in the domain but only at certain sensors
locations.

• Fast Numerical Algorithms. New algorithms intending to combine data and standard
simulations processes are embedded in the so-called Dynamic Data Driven Applica-
tion Systems (DDDAS). Indeed, the word Dynamic incites such data corrections to
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be done in real time, or at least, as dynamic as possible. It seems natural to make
use of MOR methodologies to speed up the algorithms as much as possible. They can
be used as an e�cient tool to explore high-dimensional spaces, arising, for instance,
when dealing with parameter identi�cation algorithms.

• Consistent Data Merging. Using data is convenient, unfortunately, there are situ-
ations in which the available data does not satisfy certain conditions per se. For
instance, we should be reticent or at least aware of situations such as a non-positive
conductivity identi�cation from a temperature-heat �ux pro�le just like a non-positive
de�nite elasticity tensor constructed from a displacement-force data set. These de-
generate situations may lead to perspectives where data is no longer a natural sub-
stitute of existing models, but rather an ally to enrich existing models preserving the
thermodynamic consistency [Gonzalez et al. 2019].

The contributions presented in this thesis address certain di�culties presented in the
above list, developing numerical algorithms which strengthen the link between data and
simulation based engineering science. More details about each contribution are speci�ed in
section 1.2.

1.2 Structure of the thesis

As mentioned in section 1.1, there is an unceasingly growing interest in merging �elds like
Data-Science and Science Based Simulation Engineering to derive knowledge from informa-
tion and ultimately transform this knowledge into decision making. Most decisions to be
taken into a industrial environment can be made from a new kind of (arti�cial) intelligence
that, more than based on mathematical expressions, are based on data, via data mining and
data analytics. This thesis is organized in two di�erentiated parts, addressing the problems
presented in section 1.1. Brie�y, part I constitutes a �rst step towards an e�cient and
coherent merging of data science and computational mechanics �elds. Part II is focused on
MOR techniques, since they constitute a fundamental ally to achieve real time constraints
arising from DDDAS framework. The overall structure of the thesis is given by:

• Part I: First steps towards an e�cient merging of data sience and computational

mechanics

� Chapter 2: Data-Driven Techniques

� Chapter 3: Data Completion Techniques

• Part II: Advances on Model Order Reduction Techniques

� Chapter 4: Multi PGD based on Partition of Unity Method

� Chapter 5: Applications of PGD In-Plane-Out-Of-Plane Separations

1.2.1 Chapter 2: Data-Driven Techniques

In this chapter, the usage and identi�cation of constitutive relationships is treated. The
constitutive relationship is no longer understood as an equation in its closed format, but
as a cloud of points or data set. A �rst attempt to merge this constitutive data base with
a numerical scheme is done in [Kirchdoerfer & Ortiz 2016, Kirchdoerfer & Ortiz 2017] for
elasticity framework. Therein, the solid is treated as a set of 1D bars which are calibrated
with standard stress/strain curves. These stress/strain curves carry all constitutive material
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information. Afterwards, an iterative scheme between these experimental curves and the
linear momentum balance is solved. Certainly, Data-driven simulation consists of directly
employ data in order to perform numerical simulations. These simulations will employ
universal laws while minimizing the need of explicit, often phenomenological, models. This
approach is especially interesting when considering complex engineered materials (meta-
materials), for which constitutive relations become hard to write, because there are (too)
many possible designs, and the intimate nature of most of them remains inaccessible and/or
con�dential.

Even though conceptually speaking either a set of points representing the constitu-
tive behaviour or the actual equation in its closed form carry the same information,
transforming it into a data base allows to extract the most relevant features inside the
data collection. Machine and manifold learning techniques, and more speci�cally non-
linear dimensionality reduction, as for example locally linear embedding (LLE), kernel-
PCA (the nonlinear counterpart of principal component analysis �PCA), referred as k-
PCA, local-PCA, among many other choices, allows us to remove correlations in data
[Lee & Verleysen 2007, Polito & Perona 2001, Tenenbaum et al. 2000, Wang 2012]. Such
data, free of correlation, constitutes the real information, often very limited when com-
pared with the big data from which it was extracted. In many models, the extraction of
uncorrelated parameters remains a tricky issue. It is the case of parameters describing
microstructures or shapes for example, often referred to as latent parameters. As soon as
the uncorrelated parameters are extracted, two main options have been considered to the
date: (i) when a new case, not included in the data, must be analyzed, its solution is simply
interpolated on the manifold (constructed from the training data) from its closest neighbors
[Lopez et al. 2016a] so that decisions can be taken in real time; and (ii) an explicit para-
metric solution could be constructed by using the just extracted uncorrelated parameters
so that it could be particularized in real-time [González et al. 2016].

Section 2.1 treats the usage of the constitutive data set in the elasticity framework.
The solid is no longer understood as a set of 1D bars but rather as a continuum solid where
stress and strains, both second order tensors, are connected by a fourth order tensor called
the elastic modulus. As a consequence the constitutive data set has twelve coordinates in
3D, six to de�ne the stress and other six to de�ne the strain states assuming it's symmetry,
where manifold learning techniques can be applied. Afterwards, several techniques are
presented to merge the constitutive data set together with the linear momentum balance to
be consistent with standard �nite element algorithms. This section will not address all the
technical di�culties related to data generation or obtention from adequate experiments.
On the contrary, we develop a method in which this stream of data plays the role of a
constitutive equation, without the need of a phenomenological �tting to a prescribed closed
model.

Section 2.2 addresses one of the current bottlenecks of Data-Driven simulations, the
huge amount of required data, some of them inaccessible from the nowadays testing facili-
ties. Indeed, it is hard to explore the entire stress/strain space by means of homogeneous
experiments where only limited stress states are reachable, i.e. uniaxial or biaxial loadings.
Such di�culty can be circumvented in many cases, and in all cases alleviated, by consider-
ing complex (or heterogeneous) tests, where plenty of di�erent stress/strain states coexist
inside the material. Then, a data-driven inverse approach allows to extract a big amount
of data from the complex experiments. A subtle alliance of testing machines, devices for
collecting data and powerful computers for treating these huge amount of data in a variety
of ways (machine and deep learning) allows to unveil the constitutive manifold behind the
experiment.
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Section 2.3 abords another application within the data-driven rationale. Certainly,
upscaling behaviors of heterogeneous microstructures to de�ne macroscopic e�ective media
is of major interest in many areas of computational mechanics, in particular those related
to materials and processes engineering. In this work, we explore the possibility of de�ning
an e�ective macroscopic behavior from a data set based on microscopic calculations, and
then use it directly for e�ciently performing manifold-based simulations at the macroscopic
scale. We consider in this work upscaling of non-Newtonian �ows in porous media, and more
particularly the ones involving short-�bre suspensions. On the other hand, when considering
�ows of simple or complex �uids in porous media, the situation becomes di�cult because
the physics encountered at the micro-scale di�er from those postulated at the macro-scale.
Thus, the micro-scale �ow is governed by a Stokes �ow problem, that becomes non-linear
as soon as the �uid viscosity depends on the rate of strain. In the case of suspensions of
rods (�bres, micro-�bres, nano-�bres or nanotubes), the micro-scale �ow is governed by an
anisotropic Stokes problem wherein viscosity is locally highly anisotropic. It is meaningless,
however, to homogenize the microscopic �ow parameters in order to de�ne an e�ective
viscosity at the macroscopic scale. Thus, the most valuable route consists in considering
as much as possible viscous models that are more or less complex to capture the main
�uid and �ow features at the microscopic scale, and from them obtaining (by upscaling
[Bohm 2009, T. Zohdi 2005]) an e�ective Darcy permeability at the macroscopic scale to
be given as input to conventional simulation software.

1.2.2 Chapter 3: Data Completion Techniques

As it was detailed in section 2.2, a latent problem involving data driven applications is
the data generation, as sometimes it is inaccessible or expensive to obtain it. Therefore,
developping data completion algorithms where response surfaces are created based on an
existing data set is of vital importance. The problem with high dimensional systems is
that data in these systems is often sparse (due precisely to the high dimensional nature of
the phase space) while the system very frequently has, on the contrary, low dimensional
features.

MOR techniques improved traditional strategies based on DoE (Design of Experiments),
that allowed de�ning metamodels, surrogate models or response surfaces. In these cases,
experiments or expensive computational solutions are performed for a sampling of possible
states of the system, from which a simpli�ed model linking inputs to outputs is elaborated.
The main di�culties associated to this procedure concern the best sampling strategy and the
most adequate interpolation scheme for making prediction everywhere in the design space
from the only knowledge of the few analyzed scenarios. Latin hypercube and Kriging are two
usual responses to these questions. However, other questions remain open, such as model
veri�cation (error estimation and bounds) as well as the de�nition of adaptive strategies
able to reduce such error locally or globally. Even if there is a panoply of proposals and
applied strategies, most of them are problem-dependent and fail to be robust and reliable.
As just imentioned, model order reduction established routes to achieve similar goals while
circumventing the main issues just indicated, to �nally de�ne a �numerical or graphical
handbook�, constructed o�ine and e�ciently used online for robust design purposes.

Even if, as just indicated, MOR technologies facilitate better approaches, their main
drawback is that they often remain too intrusive. Nowadays, the most recent works con-
cerning MOR techniques focus on non-intrusive algorithms. However, from a pragmatic
point of view, all these proposals remain less direct than usual DoE methodologies, the last
simply consisting of evaluating the model at di�erent points in the design space by using
standard commercial solvers (adapted to the problem at hand) and then simply interpolat-

8



1.2. Structure of the thesis

ing these solution to any other point. Despite the conceptual di�culties just referred, the
procedure is very simple and attracted the favor of engineers, designers and practicians.

Thus, the big picture could be formulated as follows: could direct sampling lead to a
robust and reliable parametric solution?

The answer to this question has been traditionally addressed in a variety of ways. First,
response surface based methodologies (e.g. [Breitkopf et al. 2005] and references therein)
proposes a sort of adaptive procedure when the model is re�ned by zooming-in when solution
approaches to the optimal solution with respect to a given couple model / optimization
criterion. However, such a procure requires an amount of online computation because the
�ne representation is not a priori available and it must be constructed online during the
optimization process.

Other possibility consists in reconstructing the unknown solution everywhere from
the only knowledge of the calculated scenarios by making use of adequate interpola-
tions: polynomials or POD-based modes (inspired from the gappy-POD formulations
[Everson & Sirovich 1995]). Reduced Basis performs this job o�ine: it extracts a basis
in which the model solution is projected. This projection is then solved online. However,
one could imagine using directly the o�ine computed solution for interpolating it every-
where. The main advantage of this procedure lies in the fact that in the RB framework the
sampling points (as indicated above) are determined from an adequate �a priori��or more
generally �a posteriori��error indicator, de�ning a sort of greedy strategy that samples
the space at (almost) optimal points. The main drawback is that, very often, the de�ni-
tion of those error indicators requires some deep knowledge of the considered model and
it is not evident for many complex engineering problems. It is important to note that the
fact of extracting the basis for projecting the problem solution and solving online the re-
duced problem o�ers higher precision that the option of directly interpolating the sampled
solutions.

Close to the methodology just described, Borzacchiello et al. [Borzacchiello et al. 2017a,
Borzacchiello et al. 2017b] proposed the use of hierarchical approximation bases, enabling
that at each level of representation only the contribution from the previous level to the
present one must be calculated. This strategy allows de�ning simple error indicators and
adaptively re�ne the parametric domain. Similar strategies, all them inspired of sparse-
grids methodologies [Bungartz & Griebel 2004] can be combined with the use of wavelet
representations in order to pro�t their inherent multi-resolution properties, that provides
natural error indicators associated with the weights of the wavelet coe�cients at each repre-
sentation level [Leon et al. 2018]. This techniques allows even addressing multi-parametric
models in a moderate number of dimensions. However, in high dimensional settings, all
of the just mentioned techniques fail to identify the nature of the system due precisely to
the curse of dimensionality. A recent alternative for such a system could be Topological
Data Analysis (TDA), which is based on the employ of algebraic topology and the concept
of persistent homology [Epstein et al. 2011]. A sparse version of this technique also exists
[Brunton et al. 2016].

That being said, an e�cient data completion technique within data-driven framework
should meet the following requirements:

• Non-structured data set : this characteristic provides versatility to the method. In-
deed, when evaluating the response surface requires a lot of computational e�ort,
recycling previous evaluations of the response surface, which do not coincide with a
given structure of the data, may be very useful. Moreover, having algorithms which
are capable of working with non-structured data-sets is of vital importance for cer-
tain applications where parametric space locations are hard to explore. For instance,
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exploring uniaxial loading states in the constitutive manifold is easier than biaxial
states, and even easier than triaxial states.

• High-dimensionality robustness: most data completion techniques, as the ones based
on triangularization, su�er when dealing with multidimensional data just because of
the fact that a high dimensional mesh has to be generated. Nevertheless, separation
of variables could be an appealing technique to circumvent, or at least alleviate, the
problem of addressing high-dimensional spaces.

• Curse of dimensionality : all previous techniques su�er when dealing with high di-
mensional data. For instance, the SSL needs 2D sampling points just to reach the
�rst level of approximation. Thus, when dealing with high dimensional data (D > 10

uncorrelated dimensions) plenty of sampling points would be required to construct a
�rst approximation of a given response surface.

• Low data limit : the robustness of the data completion techniques where the amount
of data is limited is crucial. Indeed, situations in which the cost of enlarging the
data set is una�ordable will require a numerical technique which is able to provide a
reasonable response surface based on the given sparse data set.

Section 3.1 explains a novel data completion technique called sparse Proper General-
ized Decomposition (sPGD). It combines the Proper Generalized Decomposition (PGD)
rationale, where separation of variables is used to circumvent, or alleviate, the curse of
dimensionality together with a collocation procedure coincident with the unstructured data
set. By doing that, no information out of the data set is required, thus, constructing an
e�cient response surface based on the available data.

Section 3.2 portraits three di�erent applications of industrial interest in which the sPGD
technique explained in section 3.1 has been applied. The �rst application in collaboration
with Gestamp concerns the automotive car industry, where the geometrical shape of a
component inside the car is optimized to guarantee the safety of the passengers. The second
application in collaboration with ESI Group aims to correct existing plasticity models by
means of observable quantities i.e. strain, displacement synthetic measures. The third
application links the geometrical parameters de�ning a composite material surface with
its performance in the Automated Place Tapement (ATP) process. Indeed, geometrical
parameters such as curvature or roughness are extracted from real composite materials
usign a pro�lometer. Several clustering and data completion techniques, the sPGD amongst
them, are use to link the former parameters with the performance of the composite material.

Section 3.3 extends the concept of sparse identi�cation techniques, already introduced
by [Brunton et al. 2016] to identify the model hidden in a data set, to other applications
within the computational mechanics framework. This concept has been widely applied in
other �elds like image compression, by evoking the concept of single pixel camera. This
single pixel camera or compressed sensing claims to be able to reconstruct a given image
just by knowing the information at few pixels. The same rationale is applied to reconstruct
a parametric response surfaces just like the possibility of applying the methodology to time
evolving problems.

1.2.3 Chapter 4: Multi PGD based on Partition of Unity Method

Model order reduction techniques (MOR) become very useful within the Dynamic Data
Driven Application System framework where decision making has to be done in a dy-
namic way. In recent years, MOR techniques have shown that a minimum number of
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carefully-chosen degrees of freedom are enough for an accurate solution of PDEs, alle-
viating the cost of standard FEM discretizations. Instead of choosing general-purpose
piecewise polynomials as basis functions, MOR techniques construct ad hoc basis functions
following di�erent techniques. For instance, Proper Orthogonal Decomposition (POD)
[Karhunen 1946, Loève 1963, Park & Cho 1996, Meyer & Matthies 2003] constructs an ef-
�cient basis from a set of precomputed snapshots of the full-order PDE solution,

u(x, t) =

N∑
i=1

αi(t)φi(x), (1.1)

where, very much like in the �nite element context, αi are a set of time-dependent coef-
�cients that evolve in time, and φi(x) are time-independent basis functions obtained by
some statistical treatment of the system snapshots. For instance, many MOR techniques
employ the most energetic eigenfunctions of the snapshot autocorrelation matrix to con-
struct these φi(x). These play a similar role to the �nite element shape functions, albeit
they are global instead of local. Other techniques, such as Reduced Basis methods, for
instance [Patera & Rozza 2007] [Quarteroni et al. 2011] [Rozza 2014], employ some snap-
shots of the full-order solution as basis for the approximate solution of the system. These
snapshots are calculated in a greedy fashion, at time (or parameter) instants at which the
error in the approximation is maximal.

It is important to note that Eq. 1.1 constitutes in fact a separated or a�ne expres-
sion of the solution�note the space-time separation, which also holds in �nite element
approximations�. This methodology has proven to be very e�ective from a wide variety
of high dimensional problems ranging from the resolution of Fokker-Planck equation, to
patient-speci�c liver responses [Mena et al. 2015] [González et al. 2015], structural dynam-
ics [Gonzalez et al. 2014], computational rheology [Chinesta et al. 2011a] or, more gener-
ally, to any parametric problem that could be written in separate form [Pruliere et al. 010].
There are situations, however, when the solution is highly non-separable. In other words,
the solution of the problem lives on a non-linear manifold. In this situation, what MOR
techniques do is to project the solution on the tangent space to the manifold at a given
(time or parameter) point [Amsallem & Farhat 2008]. This leads to poor approxima-
tion properties far from the tangency point, unless special techniques are chosen, as in
[Niroomandi et al. 2010], for instance, where asymptotic expansions were used.

A way to alleviate this problem is to follow the same philosophy than non-
linear-dimensionality reduction methods. For instance, Locally-Linear-Embedding (LLE)
[Roweis & Saul 2000] tries to unveil the latent variables by means of imposing a local linear
variation on the function, which will change from neighborhood to neighborhood. Another
technique which deals with non-linear problems is the so-called kernel Principal Component
Analysis (k-PCA) [Scholkopf et al. 1999]. In this particular case, the de�nition of an e�-
cient kernel function allows to project the snapshots to high dimensional spaces (potentially,
in�nite dimensional) in which the solution manifold is �at. In this particular situation, stan-
dard interpolation techniques work well. A. Badías et al. [Badías et al. 2017] studied the
case of a moving source in a transient heat transfer problem. The problem of the non-
separability of the solution was circumvented by means of making a partition of the time
domain, dedicating a di�erent PGD for each partition. However, the imposition of the
interface conditions will become a cumbersome task when dealing with partitions involving
variables other than time.

Section 4.1 proposes a methodology where di�erent PGDs are combined thanks to
the introduction of FEM macro shape functions satisfying the Partition of Unity property
[Babuska & Melenk 1996, Babuska & Melenk 1997]. These macro shape functions, namely
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FEM piecewise polynomial functions, are responsible of controlling the overlap between the
di�erent PGDs, whitout needing to specify interface conditions between them. Moreover,
the fact that the solution becomes locally more linear (also more separable) facilitates the
task to each one of the PGDs, reducing drasticly the number of modes to achieve an accurate
solution.

Section 4.2 extends the methodology proposed in section 4.1 to treat multi-scales prob-
lems from an e�cient point of view. Many problems in computational mechanics present a
multi-scale behaviour where the micro-scale e�ects in�uence the macro-scale ones and vicev-
ersa. Hence, the treatment of the di�erent scales of the problem becomes very important to
reach an accurate solution. Such a multi-scale behaviour appears, for instance, in the spatial
domain when dealing with metamaterials whose structure is de�ned at the micro level. Sev-
eral techniques have been applied throughout the history like the so-called homogeneization
[Michel et al. 1999], de�ning the micro-scale constitutive model in terms of a representa-
tive volume that satis�es the Hill-Mandel principle [Feyel 1999]. This methology has been
proven to be very e�ective in order to circumvent the prohibitive computational cost of
methods like FEM2. However, there is a strong hypothesis behind such homogeneization
technique, requiring a clear separation of scales between macro and micro e�ects. Another
way to handle these multi-scale e�ects is by using the variational multi-scale framework
introduced by [Hughes et al. 1998], where the e�ect of the micro-scale into the macro-scale
variables is introduced in a consistent way developping di�erent weak forms associated to
the macro and micro scales.

Another appealing multi-scale application is the transient problems. Standard time
marching approaches require a suitable time step that captures the evolution up to the �nest
time scale. A vast variety of solutions have been proposed to circumvent this prohibitive
time step.

D. Neron et al. [David & Ladeveze 2010] proposed a numerical algorithm based on the
LATIN-PGD able to handle temporal and spatial multi-scale behaviours appearing in solid
mechanic problems. However, selecting the temporal macro basis just like the interfacial
degrees of freedom coupling di�erent macro domains is very problem dependent. The scal-
ability of the methodology is restored via an appropiate correction of the temporal basis
based on the residual. F. Fritzen et al. [Fritzen & Leuschner 2013] also partitioned the
time domain into subintervals, where a common reduced basis is applied for all subinter-
vals. Afterwards, extra interface restrictions have to be imposed to ensure continuity of the
primal variable and her time derivative. Hence, variables at both extremes of each macro
interval are set to zero, plus an o�set calculated from the previous macro interval. Several
viscoelastic problems are solved for various cyclic loading with varying frequency. Y. Ma-
day et al. [Maday & Turinici 2002] developped Pararreal algorithm which also attempts to
solve a temporal evolution iterating between macro and micro domain partitions so that
the initial conditions for each micro interval are given by the macro resolution of the prob-
lem. The algorithm is also highly parallelizable, making it very e�cient for either long time
simulations or temporal problems involving many spatial degrees of freedom. A. Ammar et
al. in [Ammar et al. 2011] proposed an e�cient technique based on the separation of vari-
ables, where the time domain was partitioned into discretes subdomains following the stan-
dard PGD rationale [Chinesta et al. 2013a, Niroomandi et al. 2010], [Mena et al. 2015],
[Pruliere et al. 010]. However, special attention had to be paid at the interfaces between
discrete subdomains, where continuity was imposed by means of Lagrange multipliers.

Indeed, section 4.2 proposes a methodology in which macro shape functions that respect
the partition of unity allowed the method to combine di�erent PGDs in a consistent manner.
Moreover, the overlap between PGDs automaticly solves transition between di�erent scales.
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1.2.4 Chapter 5:Applications of PGD In-Plane-Out-Of-Plane Sep-

arations

Many mechanical systems and complex structures involve plate and shell parts whose main
particularity is having a characteristic dimension (the one related to the thickness) much
smaller that the other ones (in-plane dimensions). Introducing appropriate kinematic and
mechanic hypotheses allows the reduction of the general 3D mechanical problem to a 2D
involving the in-plane coordinates. This was the route employed for deriving beam, plate
and shell theories in solid mechanics, that were later extended to many other physics,
like �ows in narrow gaps, thermal or electromagnetic problems in laminates, among many
others. Yet when physics is applied on degenerated domains, like plates or shells, and no
acceptable simplifying hypotheses are available for reducing their complexity to 2D, fully 3D
solutions seem compulsory. This is, for instance, the case when considering the progressive
dynamic damage of composite laminates where a rich through-the-thickness description
could be extremely valuable, among many other scenarios in which a fully 3D formulation
is retained.

When such 3D models become compulsory the approximation of the di�erent �elds
could imply thousands of nodes distributed along the thickness direction, and consequently
millions of nodes to represent the �elds in the part. Today, the solution of such rich 3D
models remains intractable despite the impressive progresses reached in modeling, numerical
analysis, discretization techniques and computer science during the last decades. Standard
mesh-based discretization techniques fail because the excessive number of degrees of freedom
involved in the fully 3D discretization. Indeed, very �ne meshes are required in the thickness
direction (despite its reduced dimension) and many times also in the in-plane directions to
either avoid too distorted meshes or also because some processes (e.g. microwaves) require
�ne in-plane representations.

In order to alleviate the associate computational complexity, authors proposed few years
ago to separate the physical space. Thus, an in-plane-out-of-plane decomposition was pro-
posed for solving in plate 3D �ows occurring in RTM � Resin Transfer Moulding � processes
[Chinesta et al. 2011a], then for solving elasticity problems in plates [Bognet et al. 2012]
and shells [Bognet et al. 2014]. In those cases the full 3D solution was obtained from the
solution of a sequence of 2D problems (the ones involving the in-plane coordinates) and 1D
problems (the ones involving the coordinate related to the plate thickness). It is important
to emphasize the fact that these approaches are radically di�erent from standard ones. We
propose a 3D solver able to compute the di�erent unknown 3D �elds without the necessity
of introducing any hypothesis. The most outstanding advantage is that 3D solutions can
be obtained with a computational cost characteristic of standard 2D solutions.

This chapter is meant to present some novel applications of the In-Plane-Out-Of-Plane
separated representation.

Section 5.1 aims to separate the spatial dimentions within the electromagnetic frame-
work. The main motivation behind this numerical study resides on the highly demanding
energy and time required by an autoclave. Many composite manufacturing processes imply
the use of autocalve to ensure after forming the simultaneous application of temperature
and pressure to achieve both consolidation and low porosity. The high cost of this processes
in terms of energy and time has recently lead the research of other technologies to subsitute
autoclaves. Among them, microwave heating is being considered as a nice candidate for
speeding-up manufacturing processes. Here, depending on the electromagnetic properties
of the reinforcement two thermal sources can coexist: dielectric losses and induction, the
last related to electrically conductive reinforcements (e.g. carbon �bres). In the context of
electromagnetism the situation was similar to the one encountered in structural mechanics
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as discussed in [Swanson & Hoefer 2003], where 2D cross-section, 2.5D planar solvers and
3D arbitrary-solvers were discussed. Waveguides simulators widely employed 2.5D formula-
tions where one of the dimensions was eliminated by assuming a particular evolution of the
electromagnetic �eld in that direction [Chew & Nasir 1989, Pan & Tan 1997]. 2.5D formu-
lations have been also extensively considered for analyzing printed circuits [E.X. Liu 2016].
Microscopic, mesoscopic and macroscopic models have been proposed and widely considered
in engineering applications, in particular in those involving laminates. Many works con-
cerned the microscopic homogenization of electromagnetic systems, in particular composite
materials [Wasselynck et al. 2010]. At the mesoscopic scale laminates were addressed in
view of de�ning macroscopic approches. Three main routes were considered: (i) laminate
homogenization [Niyonzima et al. 2013] [Gyselinck et al. 2016]; (ii) monolayer and multi-
layer shell elements were proposed in [Bensaid et al. 2005] [Bensaid et al. 2006], where the
shell impedance was analytically derived by assuming a number of simplifying hypotheses
and then coupled with the electromagnetic problem solution in the external domain in order
to obtain the electromagnetic �elds on the shell surfaces, and from them calculating all the
physics inside (it is important to note that the assumed hypotheses could, in some complex
circumstances, prove defective); (iii) special elements were proposed in [Bui et al. 2016]
for meshing laminates when addressing explicitly the solution inside, however, for �nely
representing boundary layers inside the plies the computing complexity due the required
mesh resolution could become excessive. That is the reason why the separation of spatial
dimensions seems suitable for this particular case.

Section 5.2 introduces a new hybrid explicit/implicit in-plane-out-of-plane separated
representation for dynamic problems de�ned in plate-like domains that computes e�ciently
3D solution and where the stability constraints are exclusively determined by the coarser
in-plane discretizations. It exists a vast literature on structural dynamics, covering dif-
ferent discretization techniques and time integration procedures [Sun et al. 2000]. When
considering an implicit analysis, solution at each time step needs some iterations to en-
force equilibrium. Contrary to implicit schemes, explicit ones do not require iteration as
the nodal accelerations are solved directly, and from which velocities and displacements are
calculated by simple integration. The main handicap of explicit simulations is that the time
step must verify the stability condition, decreasing with the element size. On the contrary
implicit elastodynamic integrations become unconditionally stable, that is, there is not a
limit in the time step to be considered in what concerns stability. Thus, implicit time steps
are generally several orders of magnitude larger than the ones considered in explicit time
integrations. However, implicit integration requires the solution of linear systems several
times at each loading step when addressing nonlinear models. On the other hand, since ex-
plicit techniques do not require the inversion of a matrix, they easily address non-linearities
(contact or material non-linearities). In [Hughes & Liu 1978] a hybrid schema was proposed
that considers the domain composed of two parts in which explicit and implicit time integra-
tions apply. In this work we introduce a new hybrid explicit/implicit in-plane-out-of-plane
separated representation for dynamic problems de�ned in plate-like domains that computes
e�ciently 3D solution and where the stability constraints are exclusively determined by the
coarser in-plane discretizations.

Section 5.3 focuses on thermoplastic composites since they are preferred structural ma-
terials due to their excellent damage tolerance properties, shorter manufacturing cycles
and ease of weldability. One of the precursor material to fabricate thermoplastic com-
posite parts is an unidirectional (UD) prepreg which consists of aligned continuous �bers
pre-impregnated with thermoplastic resin. In their melt state, UD prepreg can be viewed
as inextensible �bers surrounded by an incompressible viscous matrix, and hence can be
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modeled as a transversally isotropic �uid [Spencer 2000]. These UD laminates are usu-
ally stacked in desired orientations to create a composite laminate. Indeed, an applica-
tion of the in-plane-out-of-plane separated representation to squeeze �ows of continuous
�ber laminates is presented. More in detail, the ply constitutive equation is modeled as
a transversally isotropic �uid, that must satisfy both the �ber inextensibility as well as
the �uid incompressibility. When the laminate is squeezed, the �ow kinematics exhibits a
complex dependency along the laminate thickness requiring a detailed velocity description
through the thickness. In [Ghnatios et al. 2016] the solution making use of an in-plane-out-
of-plane separated representation within the PGD � Poper Generalized Decomposition �
framework was successfully accomplished when both kinematic constraints (inextensibility
and incompressibility) were introduced using a penalty formulation for circumventing the
LBB constraints. However, such a formulation di�cults the calculation on �ber tractions
and compression forces, an important quantity of interest required in rheological character-
izations. In this work the former penalty formulation is substituted by a mixed formulation
that makes use of two Lagrange multipliers, while addressing the LBB stability conditions
in a separated framework, questions never addressed until now.
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Part I

First steps towards an e�cient

merging of data science and

computational mechanics.
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Even though both data science and computational mechanics �elds have gathered a lot
of interest in the recent years, very little has been done to merge both �elds. Plenty of
bene�ts could be extracted when a perfect symbiosis would be ful�lled. Important steps
in many scienti�c areas could be achieved, for instance, modeling of new materials would
become easier as soon as data alleviates the weight of constitutive modeling. Moreover, the
decision making characteristic of most industrial processes could be based on a new kind of
arti�cial intelligence generated from data.

Therefore, the purpose of this part is to strengthen the link between data and standard
simulation based engineering. This part is structured in two di�enent chapters. Chapter
2 is mainly devoted to novel data driven applications, where data circumvents, or at least
alleviates, the need of imposing a closed form constitutive model. Similarly, chapter 3
treats the problem of data completion. A latent problem intrinsically associated to work
with data is data scarcity. The truth is that nowadays testing facilities does not allow to
obtain data points everywhere is the parametric domain but in a very limited region. As
a consequence, numerical techniques able to infer (or complete) data outside the control
points are of crucial interest. We are aware that the proposed methodologies constitute
only a �rst step towards the �nal objective, letting plenty of room for new research lines.
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Chapter 2

Data-Driven Techniques

Abstract Standard simulation in classical mechanics is based on the use of two very
di�erent types of equations. The �rst one, of axiomatic character, is related to balance laws
(momentum, mass, energy, ...), whereas the second one consists of models that scientists
have extracted from collected, natural or synthetic data. Even if one can be con�dent on
the �rst type of equations, the second one contains modeling errors. Moreover, this second
type of equations remains too particular and often fails in describing new experimental
results. Therefore, a new �eld in computer science called Data-Driven is gathering a lot
of interest in the recent years. Its main objective is to strengthen the link between data
and existing models, either by performing accurate parameter identi�cation or by enriching
existing models based on data.
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The purpose of this chapter is to propose di�erent methodologies to strengthen the link
between experiments and simulation within the so-called Data-Driven framework. Section
2.1 presents a methodology that links existing data with numerical simulations in the solid
mechanics framework. These simulations will employ universal balance laws while minimiz-
ing the need of employing explicit constitutive models in its closed form. This technique
takes advantage of the use of manifold learning methodologies, that allow to extract the
relevant information from large experimental datasets. Then, an iterative algorithm that
�nds the best canditate solution is constructed, i.e. the solution point lies inside the data set
and it satis�es the conservation laws. Section 2.2 addresses the problem of data generation.
Indeed, a numerical algorithm that identi�es as much constitutive points as possible from
heterogeneous experiments is proposed. Section 2.3 constitutes a step forward in order to
de�ne e�ective macroscopic constitutive manifolds from microscopic calculations. A non-
Newtonian �uid acting on the micro scale engendrates a data set (or manifold) which allows
to derive an e�ective Darcy's law at the macro scale level. The macroscopic mechanical
problem is solved from the data contained in these constitutive manifolds without having
to determine explicitly an homogenized or upscaled constitutive equation.

These three topics are addressed in three published papers that constitute this chapter:

• R. Ibáñez, E. Abisset-Chavanne, J. V. Aguado, D. Gonzalez, E. Cueto, F. Chinesta,
AManifoldLearningApproachtoData-Driven Computational Elasticity and Inelastic-

ity.Archives of Computational Methods in Engineering, 25, 47-57, 2018.

• R. Ibáñez, D. Borzacchiello, J. V. Aguado, E. Abisset-Chavanne, E. Cueto, P. Lade-
veze, F. Chinesta, Data-Driven non-linear elasticity: constitutive manifold construc-

tion and problem discretization. Computational Mechanics, 60, 813-826, 2017.

• R. Ibáñez, A. Scheuer, E. Lopez, E. Abisset-Chavanne, F. Chinesta, R. Keunings,
From elastic homogeneization to upscaling of non-Newtonian �uid �ows in porous

media. International Journal of Material Forming, 1, 1-11, 2017.

2.1 A Manifold Learning Approach to Data-Driven

Computational Elasticity and Inelasticity

In the present work we will assume that all the needed experimental data is available. We
will not address all the di�culties related to data generation or obtention from adequate
experiments. This is a hot topic that will be addressed in section 2.2, but of course, remains
the current investigation line of many research groups. On the contrary, we develop a
method in which this stream of data plays the role of a constitutive equation, alleviating
the need of a phenomenological �tting to a prescribed model.

To better understand the data-driven rationale, let us consider, for the sake of clarity,
a very simple problem: linear elasticity. In that case the balance of (linear and angular)
momentum leads to the existence of a symmetric second-order tensor σ (the so-called
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Cauchy's stress tensor) verifying equilibrium, expressed in the absence of body forces and
neglecting inertial terms, as

∇ · σ = 0.

The �nite-element solution of this equilibrium equation starts from establishing a weak
form in the domain Ω with boundary Γ ≡ ∂Ω,∫

Ω

u∗ · (∇ · σ) dΩ = 0.

After integration by parts, it results∫
Ω

∇u∗ : σ dΩ =

∫
Γ

u∗ · (σ · n) dΓ,

where n represents the outward unit vector normal to the boundary.
If we consider Γ = ΓD ∪ ΓN , (ΓD ∩ ΓN = ∅), representing portions of the domain

boundary where, respectively, displacements u = ug(x) (Dirichlet boundary conditions)
and tractions σ · n = tg(x) (Neumann boundary conditions) are enforced, the weak form
�nally reads:

Find the displacement �eld u ∈ (H1(Ω))3 satisfying the essential boundary conditions

u(x ∈ ΓD) = ug(x) such that ∫
Ω

ε∗ : σ dΩ =

∫
ΓN

u∗ · t dΓ, (2.1)

∀u∗ regular enough and vanishing on ΓD, i.e. ∀u∗ ∈
(
H1

0(Ω)
)3
.

In the previous weak form, the symmetry of σ implies the equality ∇u : σ = ∇Su : σ,
with ∇Su the symmetric component of the displacement gradient, also known as strain
tensor, generally denoted by ε.

The weak form given by Eq. (2.1) involves kinematic and dynamic variables from
the test displacement �eld u∗ and the stress tensor σ respectively. In order to solve it a
relationship linking kinematic and dynamic variables is required, the so-called constitutive
equation. The simplest one, giving rise to linear elasticity, is known as Hooke's law (even
if, more than a law, it is simply a model), and writes

σ = λTr(ε)I + µε, (2.2)

where Tr(•) denotes the trace operator, and λ and µ are the Lame coe�cients directly
related to the Young modulus E and the Poisson's coe�cient ν.

By introducing the constitutive model, Eq. (2.2), into the weak form of the momentum
balance, Eq. (2.1), a problem is obtained that can be formulated entirely in terms of the
displacement �eld u. By discretizing it, using standard �nite element approximations, for
instance, and performing numerically the integrals involved in Eq. (2.1), we �nally obtain a
linear algebraic system of equations, from which the nodal displacements can be obtained.

In the case of linear elasticity there is no room for discussion: the approach is simple,
e�cient and has been applied successfully to many problems of interest. Today, there are
numerous commercial codes making use of this mechanical behavior and nobody doubts
about its pertinence in engineering practice. However, there are other material behaviors
for whom simple models fail to describe any experimental �nding. These models lack of
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generality (universality) and for this reason a mechanical system is usually associated to
di�erent models that are progressively adapted and/or enriched from the collected data.

The biggest challenge could then be formulated as follows: can simulation proceed
directly from data by circumventing the necessity of establishing a constitutive model? In
the case of linear elasticity it is obvious that such an approach lacks of interest. However, in
other branches of engineering science and technology it should be an appealing alternative
to standard constitutive model-based simulations. In our opinion, we are at the beginning
of a new era, the one of data-based or, more properly, data-driven engineering science and
technology, where as much as possible data should be collected and information extracted
in a systematic way by using adequate machine learning strategies. Then, simulations could
proceed directly from this automatically acquired knowledge.

Thus, the question from a methodological viewpoint could be reformulated as: If Hooke
had never existed, linear elasticity �nite element simulations would have existed?

This section addresses this question, trying to push it beyond linear elastic behaviors.
Subsection 2.1.1 focuses on the construction of the so-called constitutive manifold from the
collected data, subsection 2.1.2 introduces data-driven simulation in the context of elastic
models (linear and nonlinear). Finally, subsection 2.1.3 extends the procedure to inelastic
behaviors.

2.1.1 Constructing the constitutive manifold

Imagine, to begin with (more general scenarios will soon be considered) mechanical tests
conducted on a perfectly linear elastic material, in a specimen exhibiting uniform stresses
and strains. As previously indicated, in this work we do not address issues related to data
generation. Thus, for M randomly applied external loads, we assume ourselves able to
collect M couples (σm, εm), m = 1, . . . ,M . These pairs could be represented as a single
point Xm in a phase space of dimension D = 12 (the six distinct components of the stress
and strain tensors, respectively). In the sequel Voigt notion will be considered, i.e. stress
and strain tensors will be represented as vectors and the fourth-order elastic tensor reduces
to a square matrix.

Each vector Xm thus de�nes a point in a space of dimension D and, therefore, the
whole set of samples represents a set ofM points in RD. We conjecture that all these points
belong to a certain low-dimensional manifold embedded in the high-dimensional space RD.
Imagine for a while that the M points belong to a curve, a surface or a hyper-surface of
dimension d� D. When D = 3 a simple observation su�ces for checking if these points are
located on a curve (one-dimensional manifold) or on a surface (two-dimensional manifold).
However, when dealing with high dimensional spaces, a simple visual observation is, in
general, not possible. Moreover, the extraction of uncorrelated features (often referred to
as latent parameters) seems to be more physically pertinent.

Therefore, appropriate manifold learning (or non-linear dimensionality reduction) tech-
niques are needed to extract the underlying manifold (when it exists) in multidimensional
phase spaces. A panoply of techniques exist to this end. The interested reader can
refer to [Tenenbaum et al. 2000, Roweis & Saul 2000, Polito & Perona 2001, Wang 2012,
Amsallem & Farhat 2008], just to cite a few references. In this work we focus on the par-
ticular choice of Locally Linear Embedding �LLE� techniques [Roweis & Saul 2000]. This
method proceeds in two steps and for the sake of completeness is detailed herein:

1. Each point Xm, m = 1, . . . ,M is linearly interpolated from its K nearest neighbors.
In principle K should be greater that the expected dimension d of the underlying
manifold and the neighbors should be close enough so as to ensure the validity of
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linear approximation. In general, a small but enough number of neighbors K and a
large-enough sampling M ensures a satisfactory reconstruction. For each point Xm

we can write the locally linear data reconstruction as:

Xm =
∑
i∈Sm

WmiXi, (2.3)

where Wmi are the unknown weights and Sm the set of the K-nearest neighbors of
Xm.

If we perform this locally linear interpolation for every data point in the high dimen-
sional phase space, the set of weights that best approximates the manifold structure
of the data will be obtained by minimizing the functional

F(W ) =

M∑
m=1

∥∥∥∥∥Xm −
M∑
i=1

WmiXi

∥∥∥∥∥
2

,

where Wmi is zero if Xi does not belong to the set of K-nearest neighbors of Xm.

2. We assume now that each linear patch around Xm, ∀m, is mapped onto a lower
dimensional embedding space of dimension d � D. To maintain the neighborhood
structure of the set (other methods like isomap [Tenenbaum et al. 2000] conserve dis-
tance in the embedding space instead), weights are assumed to remain unchanged in
the low-dimensional, embedding space. The problem thus becomes the determina-
tion of the coordinates of each point Xm in the low dimensional embedding space,
ξm ∈ Rd.
For this purpose a new functional G is introduced, that depends on the searched
coordinates ξ1, . . . , ξM

G(ξ1, . . . , ξM ) =

M∑
m=1

∥∥∥∥∥ξm −
M∑
i=1

Wmiξi

∥∥∥∥∥
2

,

where now the weights are known and the reduced coordinates ξm are unknown. The
minimization of functional G results in aM ×M eigenvalue problem whose d-bottom
non-zero eigenvalues de�ne the set of orthogonal coordinates in which the manifold
is mapped.

It is important to note that functional G(ξ1, . . . , ξM ), with the di�erent coordinates
ξm already calculated as just described, o�ers an error estimator on the locally linear
embedding capacity, and even a local estimator can be derived by considering

E(ξm) =

∥∥∥∥∥ξm −
M∑
i=1

Wmiξi

∥∥∥∥∥ . (2.4)

Thus, if we consider the introduction of a new point ξ in the embedding space Rd after
identifying its neighbors set S(ξ) and calculating the locally linear approximation weights,
we can come back to RD and reconstruct X from its neighbors Xi, i ∈ S(ξ).

In the linear elastic behavior the application of the just described technique results, as
expected, in a �at manifold of dimension two, i.e. d = 2. This is in perfect agreement to
the fact that Hooke's law is completely characterized by two coe�cients (either Young's
modulus and Poisson coe�cient, or Lame's coe�cients) and is linear. Fig. 2.1 depicts the
location of samples ξm = ξ(Xm) = ξ(σm, εm) into the resulting two-dimensional manifold,
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Figure 2.1 � Reduced coordinates ξm on the resulting two-dimensional manifold.
The color map represents the associated elastic energy.

as well as the associated elastic energy of each sample, showing that LLE preserves the
smoothness of the elastic energy �eld of the sample in the embedding space.

We have abandoned the idea of a phenomenological constitutive equation. Instead, we
have de�ned the concept of (experimentally obtained) constitutive manifold, as the one
with a minimal number of latent parameters (embedding coordinates) in which the state of
the sample will evolve in di�erent stress and strain conditions.

However, for the method to be useful, we need to de�ne a strategy to solve problems
stated in weak form and discretized by �nite elements. Several options can be considered,
which are described next.

1. Identifying the locally linear behavior. If we consider locally linear approxi-
mations, fully justi�ed if E(ξm), given by Eq. (2.4), remains small enough at each
position ξm (if it is not the case the sampling should be improved locally or globally),
we can write

ξm =

M∑
i=1

Wmiξi,

with Wmi = 0 if i /∈ Sm and where ξm is a stress-strain couple. This implies a locally
linear elastic behavior, that allows obtaining the elastic tensor C from Xm and Xi

(related to ξm and ξi respectively), with i ∈ Sm, by minimizing the functional

H(C) =
∑
i∈Sm

(σi − C · εi)2.

This results in the obtention of C(Xm) ≡ Cm.

2. Identifying the locally linear tangent behavior. In order to consider Newton
strategies the locally tangent linear behavior should be computed. Again, it is easy to
obtain by considering ∆mi ≡Xm−Xi = (σm−σi, εm−εi) or ∆mi = (∆σmi ,∆ε

m
i ),

i ∈ Sm. Because of the locally linear behavior around point Xm, we can write

∆σmi = CT ·∆εmi , (2.5)
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that allows de�ning the functional HT (CT )

HT (CT ) =
∑
i∈Sm

(∆σmi − CT ·∆εmi )2, (2.6)

whose minimization results in the tangent elastic tensor CT (Xm) ≡ CT,m.

3. No identi�cation of the local behaviour. The third level of description considers
points Xm without trying to identify local behavior models at all.

It is important to note that even if the just discussed descriptions are based on the
original manifold Xm and not on the reduced one ξm, the consideration of the reduced
manifold allows to obtain a global view of the manifold dimensionality as well as faster
interpolations on the manifold.

2.1.2 Data-driven simulation in the elastic case

We assume that the elastic behavior is accessible from the data contained into the so-called
constitutive manifold but that an explicit expression relating stresses and strains is neither
available nor desired. Immediately, a question arises on how to solve the weak form related
to the equilibrium of the mechanical system given by Eq. (2.1) if no closed-form expression
on σ = σ(ε) is available.

In this case we could consider three di�erent approaches depending on the chosen be-
havior description as just discussed in subsection (2.1.1):

1. From the just identi�ed locally linear behavior C(X) one could apply the simplest
explicit linearization technique operating on the standard weak form∫

Ω

ε∗(x) : σn+1(x) dΩ =

∫
ΓN

u∗(x) · t(x) dΩ, (2.7)

where at each point, from the stress-strain couple at position x, X(x), the locally
linear behavior C(X(x)) can be obtained (in practice at the Gauss points used for
the integration of the weak form) that allows us to write (using Voigt notation)∫

Ω

ε∗(x) ·
(
C(Xn) · εn+1(x)

)
dΩ =

∫
ΓN

u∗(x) · t(x) dΓ.

This allows, in turn, to compute the displacement �eld and from it, to update the
strain and stress �elds, to compute again the locally linear behavior. The process
continues until convergence.

2. From the just identi�ed locally linear tangent behavior CT (X) one could apply a
Newton linearization technique where

σn+1(εn + ∆ε) = σn(εn) +
∂σ

∂ε
∆ε = σn(εn) + CT ·∆ε,

that, once introduced into the weak form, reads∫
Ω

ε∗(x) · (CT (Xn) ·∆ε(x)) dΩ

= −
∫

Ω

ε∗(x) · (C(Xn) · εn(x)) dΩ +

∫
ΓN

u∗(x) · t(x) dΓ.
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Figure 2.2 � A generic nonlinear iteration solver between the constitutive mani-
fold (red) and the equilibrium manifold (blue), representing the locus of the points
satisfying the weak form of the problem in mixed form, Eq. (2.7).

3. If no local behavior has been identi�ed, the only knowledge consists of the exper-
imental data. In these circumstances we propose to consider a mixed formulation
involving the two unknown �elds ε(u) and σ as considered in the LaTIn method
[Ladeveze 1989]. We consider a simple solution strategy consisting on an iteration
between two manifolds, the �rst one related to (ε,σ) couples verifying equilibrium
Eq. (2.1); and the second one related to couples (ε̂, σ̂) verifying the (unknown)
constitutive equation �in other words, belonging to the constitutive manifold. The
iteration solver sketched in Fig. 2.2, depicts the usually non linear constitutive man-
ifold (red curve) and the equilibrium one (in blue). The problem solution is found at
the intersection of both manifolds.

If we assume that, at iteration n, the couple (εn,σn) veri�es the equilibrium, and
that it does not belong to the constitutive manifold, a new couple (ε̂, σ̂) is sought
by considering an appropriate search direction from (εn,σn). In fact the searched
couple is no more that the intersection of the search direction with the constitutive
manifold. The just updated stress-strain couple belongs to the constitutive manifold,
but it does not verify equilibrium. Thus, a new equilibrated solution (εn+1,σn+1) is
searched from the former one, being the intersection of a new search direction and
the equilibrium manifold. The iteration process continues until reaching the problem
solution at the intersection of both manifolds.

The just described procedure requires a local step for the computation of the couple
(ε̂, σ̂) at each integration point considered in the weak form, Eq.(2.1), and a global
step in which the weak form is solved with the behavior known at all the integration
points. In what follows we describe both steps.

• Local step

At each integration point xg, g = 1, . . . , ngp, we consider (εn(xg),σ
n(xg)) and

look for (ε̂(xg), σ̂(xg)). Even if there is an in�nity of possible search directions,
a natural choice consists in projecting it onto the constitutive manifold.

• Global step

From the strain-stress couples satisfying the constitutive law at every integra-
tion point, we come back to the weak form, Eq. (2.1), in order to obtain updated
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strain-stress couples satisfying equilibrium (εn+1(x),σn+1(x)), x ∈ Ω.

The generic search direction can be written as:

σn+1(x)− σ̂(x) = D · (εn+1(x)− ε̂(x)), (2.8)

with D a symmetric positive-de�nite matrix to ensure the problem ellipticity
discussed below. Enforcing now the equilibrium∫

Ω

ε∗(x) · σn+1(x) dx =

∫
ΓN

u∗(x) · t(x) dx,

and using Eq. (2.8), it results∫
Ω

ε∗(x) ·
(
σ̂(x) + D · (εn+1(x)− ε̂(x))

)
dx =

∫
ΓN

u∗(x) · t(x) dx,

that can be rewritten as∫
Ω

ε∗(x) ·
(
D · εn+1(x)

)
dx =

−
∫

Ω

ε∗(x) · (σ̂(x)−D · ε̂(x)) dx+

∫
ΓN

u∗(x) · t(x) dx. (2.9)

MatrixD should provide the fastest convergence rate while ensuring the problem
ellipticity. To ensure its positivity we can consider D = B2 with B symmetric,
i.e. BT = B, and look for B instead of D.

The a priori choice of direction D is not obvious in most of problems. In the case
of the LaTIn method [Ladeveze 1989] this matrix is assumed given when solving
the global problems precisely because it was proposed as a nonlinear solver able
to decouple the local and nonlinear problem from the global but linear one. In
our case, we are considering a mixed formulation for solving a problem without
an explicit knowledge of the constitutive equation. The most general option
consists on considering matrix D unknown. Thus, our strategy is composed of
a sequence of nonlinear-local and nonlinear-global problems, trying to avoid a

priori choices of D. Obviously if the last is �xed, global problems become linear
as it is the case when considering the LaTIn linearization technique. Moreover,
the discrete global matrix does not change during the iterations. However, we
would like to emphasize that our objective is to solve a constitutive model-free
problem, more than addressing nonlinear issues.

Thus, we distinguish two type of iterations, the so-called global-local ones that
involves the determination of stress-strain couples verifying the constitutive
equation and then their updating to ensure equilibrium (as illustrated in Fig.
2.2). Then a second iteration is needed for solving the nonlinear global prob-
lem in order to compute the stress-strain couple verifying equilibrium when the
searching direction D is assumed unknown. This induces an additional nonlin-
earity in the global equilibrium problem.

At this point two possibilities exist:

(a) Considering a single direction D, the same for every Gauss point for which
the behavior was determined. Each of them is represented by a point on
the constitutive manifold. In that case in order to determine the stress-
strain couple satisfying equilibrium as well as the optimal direction D,
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we are enforcing Eq. (2.9) as well as the fact that the searched couple
(εn+1(x),σn+1(x)) must be the closest point to the constitutive manifold.
This optimality condition writes

D = argminD∗

((
σn+1(x;D∗)− σ̂∗

)2
+
(
εn+1(x;D∗)− ε̂∗

)2)
, (2.10)

where (σ̂∗, ε̂∗) is the closest point on the constitutive manifold to the stress-
strain couple related to the direction D∗.
Obviously the solution requires some iterations to reach the minimum dis-
tance that will be in general (except when considering linear behaviors)
non-zero because we consider the same matrix D for all the Gauss points
involved in the integration of the weak form (2.9).

(b) We consider a �eld D(x), that implies the increase of the number of degrees
of freedom. However, by considering for example a di�erent matrix at
each Gauss point, the minimization problem given by Eq. (2.10) leads
to the problem solution in a single iteration. The employ of a coarse
mesh to approximate D is a nice compromise between the two limit cases:
considering a single search direction or one at each Gauss point.

2.1.2.1 A �rst numerical example: A beam subjected to simple traction

In order to illustrate the data-driven procedure, we consider �rst a linear elastic beam
subjected to simple traction and solve the associated 1D equilibrium problem. Di�erent
scenarios are considered and discussed below.

First, the beam is assumed clamped at its left boundary x = 0 with a constant unit
traction force F = 1 applied at its right boundary x = 1. Because of the expected simple
solution only 5 linear �nite elements were considered for discretizing its equilibrium weak
form. Fig. 2.3 depicts the constitutive manifold. In a general setting, this manifold should
come from experiments, but in this case was generated in silico by assuming a linear elastic
behavior with an unit elastic modulus.

The use of strategies based on the identi�cation of the locally linear behavior or its
tangent counterpart allows as expected (due to its linear behavior) solving the problem
in a single iteration. It is important to note that both strategies are weakly intrusive,
making possible its implementation into any commercial simulation code with the only
di�erence that the updated locally linear behavior comes form a data table instead of any
mathematical expression.

In what follows we are discussing the use of the third strategy. The equilibrium manifold
and the di�erent strain-stress couples at the di�erent iterations are depicted in Fig. 2.3 for
D = 10, D = 2 and D = 1. These D-values represent in fact di�erent search directions in
Fig. 2.2. It can be noticed that when D = 1 is chosen, this value coincides with the elastic
modulus associated to the constitutive manifold, and therefore convergence is reached in
a single iteration. All the simulations started by assuming the same stress-strain couple
(σ0, ε0) = (3.0, 3.0) at every Gauss point.

In these �gures, the search direction in the global problem D was �xed �a priori�. When
the strategy described in the previous section is used, implying the determination of the
optimal value of D, the nonlinear problem involving σ, ε and D, with (σ0 = 3, ε0 = 3, D0 =

3), converges in a single iteration of the local-global problem. This is so even if a few
iterations were required for solving the nonlinear global problem, to obtain the reference
values de�ning the problem solution (σ = 1.0, ε = 1.0, D = 1). Because of the linearity of
the constitutive manifold, no di�erence exists between considering a single direction D or
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Figure 2.3 � Beam subjected to traction: (top)D = 10, (center)D = 2 and (bottom)
D = 1.
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Figure 2.4 � Beam subjected to uniformly distributed traction.

a di�erent one at each Gauss point. The solution is again obtained in a single global-local
iteration and a few ones for solving the nonlinear global problem.

In order to make the problem a bit more complex, we consider the previous one but now
we consider an uniformly distributed traction along the beam length. Thus a linear stress
and strain distribution is expected. In other words, each Gauss point will be at a state
located at di�erent points of the constitutive manifold. Fig. 2.4 represents the stress-strain
manifold along the beam length, where the stress-strain couples at the Gauss points are
shown. It can be seen that when starting from the initial guess (σ0(x) = 3, ε0(x) = 3, D0 =

3) and again because of the linearity of the constitutive manifold, the convergence is reached
in a single global-local iteration with few iterations for the solution of the nonlinear global
problem.

Finally, we consider a nonlinear constitutive law de�ned from points with a prescribed
stress-strain relationship σ = Eε2, with E = 1. In the case of a unit traction at the right
boundary and when considering uniform initial strain and stress guesses on the constitutive
manifold, all the Gauss points will have an identical behavior.

When applying the �xed point linearization based on the locally linear manifold C or
the Newton strategy making use of the locally linear tangent manifold CT , the procedure
proposed in the previous section converges very fast. Iterations to convergence are depicted
in Figures 2.5 and 2.6 respectively.

If, on the contrary, we proceed following the third strategy mentioned previously, i.e.,
directly from data, Figure 2.7 depicts the initial guess and the solution after convergence
(σ(x) = 1, ε(x) = 1). Here, D is unique and calculated at each global-local iteration.
Moreover, at each one of these iterations a nonlinear global problem must be solved needing
for few extra-iterations.

If we combine behavior nonlinearities and nonuniform solutions (e.g., a distributed
traction along the bar) we proved that the convergence can be improved by considering a
di�erent D at each Gauss point with respect to the use of a single search direction D for
all them, even if the global problem size increases signi�cantly.

Manifold-based locally linear behaviors resulting in the �xed point and Newton strate-
gies proceed faster that the one based on the solution from the only knowledge of data.
However, it requires the identi�cation of such behaviors with the subsequent errors that
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Figure 2.5 � Beam subjected to a traction for a nonlinear behavior: manifold-based
�xed point linearization

Figure 2.6 � Beam subjected to a traction for a nonlinear behavior: manifold-based
Newton linearization
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Figure 2.7 � Beam subjected to traction for a nonlinear behavior.

they could imply if coarse samplings of the constitutive behavior are employed.

2.1.2.2 A two-dimensional case study

We considered a 2D problem de�ned on a square involving again an elastic behavior de�ned
from a manifold in the space (σ, ε). This constitutive manifold proved to project onto a
just two-dimensional one in its reduced form, as discussed previously.

The square is clamped on its left boundary, free on the top and bottom sides and a unit
traction is applied on its right side. Any of the proposed strategies, the ones making use of
the manifold-based locally linear behaviors or the one proceeding directly from data, allow
reaching the same converged solution depicted in Fig. 2.8. The last one employs a single
search direction D or a di�erent one at each Gauss point D(x). It agrees in minute with
the one obtained by using standard model-based discretization. Again, a Newton technique
remains superior to the other choices.

In what respects the solution accuracy there are di�erent aspects a�ecting it: (i) the con-
stitutive manifold sampling when nonlinear behaviors are addressed; (ii) the �nite element
approximation and �nally (iii) the threshold consider in the nonlinear iteration schemes.
Even if a detailed analysis of the accuracy and rate of convergence is beyond the aim of the
present work, our numerical experiments indicate that convergence is assured by using �ne
enough samplings of the constitutive manifolds as well as by considering �ne enough �nite
element discretizations.

2.1.3 Addressing inelastic behaviors: Linear elastic-perfectly plas-
tic behavior

In this section we start by addressing the case of a linear-elastic-perfectly plastic 2D be-
havior. We assume the linear elastic contribution de�ned locally from C(Xe) (Xe refers to
the stress-elastic strain manifold) whereas the plastic contribution that involves the yield
surface f(σ) is assumed given by its own manifold.

Using again Voigt notation, the elastic behavior expressed from σ = C · εe, where C
represents the manifold-based elastic tensor and εe refers to the elastic component of the
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Figure 2.8 � 2D problem associated to a "hidden" linear elastic behavior: (top)
horizontal component of the displacement and (bottom) vertical component
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Figure 2.9 � Plastic manifold associated to the von Mises plasticity case.

deformation (the reversible one). The total strain can be decomposed in its elastic and
inelastic components,

ε = εe + εp,

where we assume the plastic �ow rate

ε̇p = λ
∂f(σ)

∂σ
= λn,

where the yield surface f(σ) is provided by experimental data. To generate these data
in silico, we assume that it follows a von Mises model f(σ) = σe − Y , with Y the yield
stress (no hardening is considered) and σe the equivalent stress related to the von Mises
criterion. f(σ) results in the surface represented in Fig. 2.9 where, for the sake of clarity,
it is represented in the space of stresses.

The persistency condition ḟ(σ) = 0 when plastic �ow occurs, results in the following
plastic �ow

λ =
nT · C · ε̇
nT · C · n

,

or in its incremental counterpart

λ =
nT · C ·∆ε
nT · C · n

,

with now ∆εp = λn.
Here three �elds must be considered, stress, strain and plastic strain. As soon as the

last one is known, the elastic strain can be locally determined and the stresses obtained
from the elastic manifold using the couple stress-elastic component of the strain.

In these expressions everything is properly de�ned except n, since we assume that the
explicit form of the yield condition, i.e. f(σ) is unknown and the only available data is the
manifold depicted in Fig. 2.9. However, n is easily accessible by considering the normal
vector to the plastic manifold depicted in Fig. 2.9.

Now one could imagine performing a standard linear elastic-perfectly plastic simulation
by using a �nite element explicit code where the plastic deformation is computed from the

36



2.1. A Manifold Learning Approach to Data-Driven Computational Elasticity and
Inelasticity

Figure 2.10 � Stress trajectory in the stress space in the elastic-perfecly plastic
behavior

manifold that allows extracting n instead of the knowledge of function f(σ) and its explicit
derivative with respect to the stresses.

When considering the traction of a square domain along its right side, with appropriate
boundary conditions on its left side (with tension-free conditions on the top and bottom
boundaries) ensuring an homogeneous stress and strain �elds everywhere in the domain,
the stress trajectory in the stress space is depicted in Fig. 2.10. It can be noticed that
the elastic behavior applies when the stress remains inside the plastic surface and then
it remains in the surface during the plastic �ow. Again, for the sake of simplicity, the
results are shown in the stress domain. Finally, Fig. 2.11 depicts the three composites of
the plastic strain for three di�erent levels of the applied load acting on the right side of
the clamped square previously considered. The di�erent strategies allows to compute the
same results.The Newton algorithm results again to be the one involving less computational
e�ort.

Even if this analysis proved that we could proceed as usually when function f(σ) is
not explicitly known, the elastic behavior was assumed given by the locally-linear elastic
manifold. Obviously the extension to implicit formulations or to more complex nonlinear
elastic behaviors again based on a locally-linear tangent description is straightforward.

2.1.4 Conclusions

This work constitutes a �rst attempt to reduce the modeling needs in computational me-
chanics. We proved that by knowing the di�erent stress-strain couples de�ning the elastic
behavior as well as the manifold de�ning the yield condition there is no need to create mod-
els for representing neither the linear or nonlinear elastic behaviors nor the yield condition.
Di�erent linearization strategies have been proposed. Two of them are weakly intrusive
and easily implantable in existing commercial simulation codes, since they are based on a
locally-linear elastic expression. Another linearization strategy proceeding exclusively from
data iterates from a local-nonlinear problem to ensure the veri�cation of the constitutive
behavior and a linear or nonlinear-global problem for ensuring the mechanical equilibrium.

Despite the fact of addressing quite simple problems, a great potential can be noticed,
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Figure 2.11 � Plastic strain at the initial time (top), for the half of the total load
(middle) and for the entire load (bottom), for components εpxx (left), εpyy (center)
and εpxy (right)

that could constitute a new paradigm in computational mechanics, linking experimental
data with discretization techniques while reducing as much as possible the needs of modeling
issues.

2.2 Data-Driven non-linear elasticity: constitutive man-

ifold construction and problem discretization

Even though in section 2.1 we proposed some methods for performing simulation employ-
ing the just developed concept of constitutive manifolds arising from data. One of the
current bottlenecks of Data-Driven based simulation is the large amount of required data,
some of them inaccessible from the nowadays testing facilities. Indeed, a vast majority of
current constitutive calibration procedures rely on relatively simple mechanical tests. The
reader may think of simple traction, compression, shear or biaxial loadings. Moreover, stan-
dard calibration procedures strongly relies on the hypothesis that the stress/strain state
throughout the material is homogeneous, or equivalently, only one point per experiment
in this stress/strain space is activated. Thus, constructing the constitutive manifold by
carrying out a sequence of homogeneous tests with the purpose of activating all the possi-
ble strain states, seems today too expensive, but probably not in the future where data is
expected playing a major role. Such di�culty can be circumvented in many cases, and in
any case alleviated, by considering complex tests, collecting as many data as possible and
then using a data-driven inverse approach in order to infer the whole constitutive manifold
from few but complex experimental tests, as discussed in the present work.

This section is organized as follows: subsection 2.2.1 presents a methodology to per-
form inverse identi�cation, �rst in the linear setting and secondly in the non-linear case.
Subsection 2.2.2 provides numerical results associated to the methodology presented in the
previous subsection.
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2.2.1 Constitutive manifold Identi�cation

The inverse technique is introduced within the linear elasticity framework. Afterwards,
all concept and notations introduced for the linear setting will be useful to extend the
methodology to the non-linear framework. More in detail, the non-linear setting relies on
constructing a polynomial approximation of the elastic energy, whose second derivative
results in the elastic tensor, and whose identi�cation from collected data seems to be more
robust.

2.2.1.1 Linear setting

As mentioned before, our starting point of the inverse identi�cation technique is linear
elasticity. Hence, the elastic constitutive tensor no longer depends on the strain state i.e.
C(ε)→ C. Eq. (2.11) shows the standard weak form, in absence of body forces and inertial
terms: ∫

Ω

ε∗(x) : σ(x) dΩ =

∫
ΓN

u∗(x) · t(x) dΓ, (2.11)

that using Voigt notation and the behavior derived from the constitutive manifold,
becomes ∫

Ω

ε∗(x) ·Cε(x) dΩ =

∫
ΓN

u∗(x) · t(x) dΓ. (2.12)

By using an appropriate linearization, this last expression allows one to compute (at
convergence) every mechanical �eld. However, as previously argued, prior to proceed with
the calculations summarized above and analyzed in detail in 2.1, one must accomplish the
construction of the so-called constitutive manifold.

Using a c-term parametrization of 6×6 matrices (the more general consisting of canon-
ical matrices ful�lling symmetry constraints) we can write

C =
c∑
i=1

αiMi, (2.13)

with coe�cients αi unknown.
By introducing this matrix parameterization into the equilibrium weak form it results∫

Ω

ε∗(x) ·

((
c∑
i=1

αiMi

)
ε(x)

)
dΩ =

∫
ΓN

u∗(x) · t dΓ, (2.14)

whose discrete form reads

U∗ ·

(
c∑
i=1

αiKi

)
U = U∗ ·T, (2.15)

with Ki the sti�ness matrices corresponding to the Mi basis and U the nodal displacement
vector.

We assume that local displacements, are accessible (experimentally measurable) at a
certain region of the domain (in general a portion of its boundary). Their associated
degrees of freedom are hereafter referred to with the superscript •O. Thus, making use of
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a partition of the displacement vector UO and UH referring to the observable and hidden
displacements, respectively, the previous discrete system reads

c∑
i=1

αiK
HH
i

c∑
i=1

αiK
HO
i

c∑
i=1

αiK
OH
i

c∑
i=1

αiK
OO
i

( UH

UO

)
=

(
TH

TO

)
. (2.16)

This system of equations is obviously complemented with appropriate Dirichlet boundary
conditions on ΓD. In the previous algebraic system, vectors TO and TH refer to the
nodal traction contributions at nodes related to the observable and hidden displacements,
respectively.

The algebraic system (2.16) has as unknowns the hidden displacements UH and the
constitutive coe�cients αi, being known the observable displacements UO. If the number
of known displacements that corresponds with the size of vector UO is large enough (in
all cases larger than the number of alpha-coe�cients, c) it is thus possible to solve the
resulting nonlinear algebraic problem to compute both the unknown displacements UH

and the coe�cients de�ning the material behavior αi. In the opposite case it is always
possible to apply some regularization to solve the undetermined resulting problem (e.g.
Tikhonov regularization). In the sequel we focus in the former scenario.

System (2.16) can be rewritten as follows


c∑
i=1

αiK
HH
i KHO1 UO · · · KHOc UO

c∑
i=1

αiK
OH
i KOO1 UO · · · KOOc UO




UH

α1

...
αc

 =

(
TH

TO

)
, (2.17)

or, by de�ning vector α and matrices κHO and κOO as
α = (α1, · · · , αc)

T

κHO = (KHO1 UO, · · · ,KHOc UO)

κOO = (KOO1 UO, · · · ,KOOc UO)

, (2.18)

the previous system can be rewritten as
c∑
i=1

αiK
HH
i κHO

c∑
i=1

αiK
OH
i κOO

( UH

α

)
=

(
TH

TO

)
, (2.19)

that represents an overdetermined nonlinear algebraic system.
By premultiplying by the transpose of the matrix, a square algebraic system is obtained,
c∑
i=1

αiK
HH
i κHO

c∑
i=1

αiK
OH
i κOO


T 

c∑
i=1

αiK
HH
i κHO

c∑
i=1

αiK
OH
i κOO

( UH

α

)
=


c∑
i=1

αiK
HH
i κHO

c∑
i=1

αiK
OH
i κOO


T (

TH

TO

)
,

(2.20)
that allows us to calculate UH and α by using an adequate nonlinear solver (e.g. �xed
point, Newton, etc.).
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When considering a linear behavior the resulting displacements, strains and stresses
can easily be derived from U = (UH,UO)T by considering

u(x) =
nd∑
i=1

UiNi(x)

ε = ∇su

C =
c∑
i=1

αiMi

σ = Cε

, (2.21)

where nd is the number of nodes considered to approximate the displacement �eld u(x),
Ni(x) the associated shape functions and ∇s(•) denotes the symmetric component of the
gradient

2.2.1.2 Nonlinear elastic behavior

In the nonlinear case a major di�culty appears: since the constitutive behavior depends
on strain, and it can be di�erent at each physical point x ∈ Ω, the procedure just pro-
posed and described to address the linear case must be adapted accordingly. As proposed
in [Crespo et al. 2017] a simple and still appealing possibility to describe the constitutive
manifold consists of approximating it in an adequate polynomial basis. The simplest alter-
native consists of approximating the elastic energy (as a function of the strain) whose �rst
derivative results in the stress tensor and the second one leads to the elastic tensor.

Even though proceeding to identify the energy density functional seems to be a better
alternative than identifying the elastic tensor, since it ensures thermomechanical consis-
tency, and thus all symmetries associated to the material behavior. It is hard to �nd a
basis which is always positive de�nite and concave for any possible evaluation of its argu-
ments. Instead, we will parameterize each one of the αi parameters appearing in Eq. 2.13
as a function of the strain state i.e. αi → αi(ε). It is important to highlight that the
required symmetries of the elastic tensor C(ε) are strongly imposed with an appropiate
choice of matrices Mi i.e. symmetric matrices.

The choice of the approximation basis deserves some comments. Imagine for a while
the approximation of a one-dimensional function f(ξ) in I = [ξ−, ξ+]. A natural possibility
consists of using piecewise continuous linear functions Ni(ξ) to de�ne its approximation, as
it is usual within the �nite element framework, by considering a mesh composed of q nodes
uniformly distributed in I, with coordinates ξi, i = 1, . . . , q (ξ1 = ξ− and ξq = ξ+), from
which the approximation reads

f(ξ) =

q∑
i=1

f(ξi)Ni(ξ), (2.22)

where Ni(ξ), for 1 < i < q writes

Ni(ξ) =



ξ−ξi−1

ξi−ξi−1
if ξ ∈ [ξi−1, ξi]

ξi+1−ξ
ξi+1−ξi if ξ ∈ [ξi, ξi+1]

0 elsewhere

, (2.23)

N1(ξ) =


ξ2−ξ
ξ2−ξ1 if ξ ∈ [ξ1, ξ2]

0 elsewhere

, (2.24)
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and

Nq(ξ) =


ξ−ξq−1

ξq−ξq−1
if ξ ∈ [ξq−1, ξq]

0 elsewhere

. (2.25)

If the solution is known at di�erent positions Ξj , j = 1, . . . , j, Eq. (2.22) will read

f(Ξj) =

q∑
i=1

f(ξi)Ni(Ξj), j = 1, . . . , j, (2.26)

that results in the linear system N1(Ξ1) . . . Nq(Ξ1)
...

. . .
...

N1(Ξj) · · · Nq(Ξj)


 f(ξ1)

...
f(ξq)

 =

 f(Ξ1)
...

f(Ξj)

 . (2.27)

At this point, di�erent situations can be found:

• An undetermined system if j < q;

• A determined one, if j = q;

• An overdetermined one, if j > q. However, even when j ≥ q the resulting system can
become undetermined if at least for one node ξi, no point Ξj , ∀j, falls in its support,
[ξi−1, ξi+1].

In these circumstances di�erent algebraic solutions exist (e.g. pseudo-inverse, �matlab
backslash�, L2 or L1 optimization, ...). However, in this work we decided to consider global
approximation functions in [ξ−, ξ+]. To avoid the issues related to high-order Lagrange
approximations, we consider approximations based on the use of orthogonal polynomials,
and more precisely Chebyshev polynomials. Thus, Eq. (2.22) is replaced by

f(ξ) =

q∑
i=1

γiTi(ξ), (2.28)

where Ti(ξ) refer to Chebyshev polynomials and the weights γi are computed from its
associated linear system

f(Ξj) =

q∑
i=1

γiTi(Ξj), j = 1, . . . , j, (2.29)

where singularity issues are circumvented as soon as j ≥ q and there are not repeated
points.

However, problems arise as soon as the approximation becomes multidimensional. This
is the case when approximating a scalar function f (or equivalently each αi) as a function
of the 6 components of the strain tensor ε, using the same degree (q) for each component.
In this case, the approximation

f(ε) ≈
q6∑

ijklmn

γijklmnTi(ε11)Tj(ε12)Tk(ε13)Tl(ε22)Tm(ε23)Tn(ε33), (2.30)

contains too many coe�cients γijklmn (in fact q6), and consequently the accuracy re-
quires the same number of data points (even if sparse sampling could be an appealing
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alternative). Of course the approximation could be limited to a certain degree D by con-
sidering in the previous sum indexes verifying i+ j + k + l +m+ n ≤ D.

An alternative approximation makes use of a separated representation (usually consid-
ered within the proper generalized decomposition (PGD) framework [Chinesta et al. 2010,
Chinesta et al. 2011b]) that reads

f(ε) ≈
M∑
m

E11
m (ε11) E12

m (ε12) E13
m (ε13) E22

m (ε22) E23
m (ε23) E33

m (ε33). (2.31)

where M is the number of modes required to express the scalar function in a sepa-
rated format.This separated representation is specially appropriate when ε is de�ned in the
hyper-hexahedral domain E = [ε−11, ε

+
11] × [ε−12, ε

+
12] × · · · × [ε−33, ε

+
33]. However, admissible

deformations imply non separable domains. The application of separated representation
in non-separable domains was deeply addressed in [Gonzalez et al. 2010] where the use of
R-functions succeeded to represent complex non-separable geometries.

To avoid singularity issues, functions Eklm , are approximated by using global Chebyshev
polynomials, according to

Eklm(εkl) ≈
qkl∑
j=1

γkl,mj Tj(εkl) = γkl,m ·Tkl (2.32)

Starting from the weak form∫
Ω

ε∗ · σ dx =

∫
ΓN

u∗ · t dx, (2.33)

we substitute the constitutive relationship∫
Ω

ε∗ ·C(ε)ε dx =

∫
ΓN

u∗ · t dx, (2.34)

and the non-linear parameterization of the constitutive elastic tensor

c∑
i

∫
Ω

αi(ε)ε
∗ ·Miε dx =

∫
ΓN

u∗ · t dx, (2.35)

Where each αi(ε) coe�cient is given by

αi(ε) ≈ αMi (ε) =

M∑
m

E11
i,m(ε11) E12

i,m(ε12) E13
i,m(ε13) E22

i,m(ε22) E23
i,m(ε23) E33

i,m(ε33). (2.36)

Note that functions Eklim, as well as the unknown nodal displacements, should be com-
puted from the knowledge of the measurable nodal displacements accessible in a part of
the domain Ω, as was the case in the procedures discussed previously. Moreover, since the
constitutive elastic tensor depends on the strain state, an initial guess for the hidden dis-
placement �eld (UH0 ) must be given to compute a consistent initial guess of the initial strain
state ε0. Hence, the Chebychev functions evaluated at ε0, namely Tkl

0 , are computable.
As in the case of the PGD constructor, we consider a greedy algorithm that computes

sequentially these functions [Chinesta et al. 2010]. Thus at PGD iterationM+1, we assume
that the rank-M approximation of the elastic tensor CM was already computed, i.e.,
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C(ε) ≈ CM (ε) =

c∑
i

αMi (ε)Mi. (2.37)

At present iteration we look for the new functional product leading to the updated
enriched rank-M + 1 expression of CM+1(ε) from

CM+1(ε) = CM (ε) +

c∑
i

E11
i,M+1(ε11) . . . E33

i,M+1(ε33)Mi = CM (ε) + ∆C(ε), (2.38)

that introduced into the weak form results∫
Ω

ε∗ ·
(
CM (ε) + ∆C(ε)

)
ε dx =

∫
ΓN

u∗ · t dx. (2.39)

As is the case when applying the PGD solver, the solution procedure consists of using
an alternated direction �xed point strategy, that proceeds as follows [Chinesta et al. 2010]:

1. By considering E12(r−1)
i,M+1 , . . . , E

33(r−1)
i,M+1 from the previous �xed point iteration r− 1 of

the nonlinear solver (initialized at r = 1 from the functions at the previous enrichment
iteration M), we compute E11(r)

i,M+1.

2. The process is repeated but now with E11(r)
i,M+1, E

13(r−1)
i,M+1 , . . . , E

33(r−1)
i,M+1 known. This al-

lows to compute the unknown nodal displacements and functions involved in E12(r)
i,M+1.

The process is repeated for all the other components until computing E33(r)
i,M+1. Then,

the �xed point convergence criterion is checked and if it is not attained we move to
the next �xed point iteration r + 1.

3. When reaching the �xed point convergence, the enrichment convergence is evaluated
and if it is not attained we move to the next elastic tensor approximate CM+2 from
the just competed CM+1. It is important to highlight that when the enrichment of the
elastic tensor has �nished, a new guess of the hidden displacement �eld is available(
UH1 ), and the Chebychev functions are evaluated again Tkl

1 . We assume that at
iteration p the global non-linear enrichment process converges and consequently we
have access to both the hidden displacement �eld and the elastic tensor manifold
from which simulations can be carried out as described in section 2.1.

Remark. It is important to note that data coming from S di�erent snapshoots can be
joined, as soon as S weak balance laws are formulated. The common link between these
di�erent balance laws is that they share the same constitutive relationship i.e. same αi(ε)
for each of the snapshoots.

2.2.2 Numerical results

To illustrate the capabilities of the just described procedure, we consider the simple me-
chanical problem depicted in Fig. 2.12. It consists of a two-dimensional unit squared solid,
x = (x, y) ∈ Ω = (0, 1) × (0, 1), equipped with a nonlinear elastic material, clamped along
its basis y = 0, free of traction on its lateral boundaries x = 0 and x = 1 and with a
uniformly distributed traction t on its upper boundary y = 1. We analyze the performance
of the inverse identi�cation procedure.
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Figure 2.12 � Schema of the considered mechanical problem

2.2.2.1 Synthetic generation of displacement measures

In the present case, we consider an applied traction whose orientation, i.e. t = tp, is
arbitrary: p(θ) = (cos θ, sin θ)T , θ ∈ [0, 2π). As just discussed, di�erent traction magnitudes
and orientations are tested to have a reasonable data-base of snapshoots (S) to explore the
constitutive manifold. From

t =
∑̀
j=1

∆tj , (2.40)

we can de�ne an intermediate traction magnitude at step r, tr, from

tr =

r∑
j=1

∆tj , (2.41)

that leads to di�erent tractions depending on the orientation

tsr =

r∑
j=1

∆tjp(θs), (2.42)

θs =

s∑
m=1

∆θ, (2.43)

with R de�ning the angular discretization, that is the number of discrete angles considered,

R∆θ = 2π. (2.44)

To discretize the mechanical problem, the domain Ω was equipped with a uniform mesh
consisting of P × P square �nite elements, where a bilinear approximation of the displace-
ment �eld was considered. The displacement is therefore assumed to be experimentally
measurable at some nodes, namely UO. It is important to reckon that the more observable
points are introduced in the algorithm, the better is the inverse constitutive identi�ca-
tion. Or similarly, increasing the number of snapshoots also increases the accuracy in the
identi�cation.

In order to generate pseudo-experimental displacement measurements, we consider a
general nonlinear elastic behavior of the type (Voigt notation is employed here)

C =
E

1− ν2

1 ν 0

ν 1 0

0 0 1−ν
2

 , (2.45)
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Figure 2.13 � Identi�ed (left) versus real (right) C11 component in the trace space.

with the elastic coe�cients given by{
E = E0 + E1Tr(ε)

ν = ν0 + ν1Tr(ε)
, (2.46)

with E0, E1, ν0 and ν1 positive constants and where Tr(•) refers to the trace operator
acting on tensor •. Coe�cients ν0, ν1 and E0, E1 where selected such that ν ∈ (0, 0.5) and
E > 0 in the range of deformations considered.

Two synthetic constitutive manifolds have been tested, the linear case i.e. E0 = 10,
ν0 = 0.1 and E1 = ν1 = 0. Whereas the non-linear case parameters were selected as
E0 = 10, ν0 = 0.1, E1 = 10 and ν1 = 0.1. The applied tension was t = 0.1 and it was
applied by considering 10 loading steps, i.e. ` = 10 and 10 orientations, i.e. R = 10. The
mesh consisted of 10 × 10 Q1 �nite elements allowing the calculation of the displacement
at each loading step.

2.2.2.2 Unveiling the constitutive manifold

The fact that the constitutive law employed to generate pseudo-experimental displacements
was known is now forgotten, and the behavior is assumed unknown from now on. The main
objective is therefore to determine the constitutive manifold of the material, that is, its
sampling stress-strain couples, with the only information provided by the mechanical test
illustrated in Fig. 2.12 and the recorded displacements at the 11 locations at each loading
step.

For this purpose we proceed as described in section 2.2.1 to identify the non-linear rela-
tionship. When considering ∀k, l, qkl = q = 5 and only one load applied on the top bound-
ary t = 0.1p, with p = (−1/

√
2,−1/

√
2), and by assuming that our pseudo-experimental

technique is able to provide us with nodal displacement values in the 25% of the nodal loca-
tions in the model, a good agreement was obtained between the identi�ed and the reference
behavior as proved in Fig. 2.13. The identi�ed (left) versus the real (right) of C11 in the
ε11, ε22 space is plotted. As it can be seen, there is a good agreement between the identi�ed
and real constitutive behaviours.

Fig. (2.14) provides a deeper understanding of the inverse identi�cation procedure. The
colormap indicates the relative error of the C11 component in the trace space. The black
points correspond to the strain state for every Gauss points inside the material. As it can be
noticed, bottom-left and top-right corners do not have black point in its vicinity. Therefore,
it is normal to expect a worse identi�cation is these areas. To alleviate this problem, it is
possible to combine several snapshoots in such a way that there are also strain states in the
vicinity of these areas.
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Figure 2.14 � Relative error related to the component C11. Black points indicate
the strains that were available for the identi�cation procedure.

The reduction of the number of measured displacements requires the use of additional
loading test cases. We also proved that the convergence is signi�cantly enhanced with
the number of considered loading cases, the number of measured displacements and the
considered polynomial degree for approximating the behavior. Moreover, the use of a sepa-
rated representation allows to diminish the number of experimental measurements because
it involves optimal polynomial representations of the constitutive manifold.

Figures 2.15, 2.16 and 2.17 compare the di�erent identi�ed components of the stress
tensor, σxx, σyy and σxy and the reference ones obtained from Eq. (2.45). The stress
magnitude in those �gures is represented from the color bar. These �gures reveal an almost
perfect stress-strain couple match with the pseudo-experimental ones, with relative errors
lower than 1%.

It was proved, that as expected, by decreasing the loading step, that is, by increasing `
and R in the loadings expressed from Eqs. (2.40) and (2.44), the error with respect to the
reference one (related to the constitutive equation (2.45)) decreases proving the expected
convergence of the proposed inverse identi�cation strategy as Fig. 2.18 reveals. Errors
fewer than few percent using the norm ‖Cidentified −C‖2, are easily reachable.

To further explore the characteristics of the identi�ed constitutive manifold, we de-
cided to apply a non-linear dimensionality reduction technique to the stress-strain couples
just obtained. By applying on them Locally Linear Embedding nonlinear dimensionality
reduction strategy, see Figure 2.19, we compare the dimensionality of the resulting lin-
ear and nonlinear constitutive manifolds. In the linear case two parameters seemed to be
enough for visualizing and parametrizing the constitutive data (this number corresponds
with the number of lowest eigenvalues before reaching the typical plateau of LLE techniques
[Roweis & Saul 2000], see Fig. 2.19). However, when considering the manifold that results
from the identi�ed stress-strain couples describing the nonlinear case, the dimensionality
seems to increase to three parameters. This is natural since the nonlinear behavior implies
the need for more complex descriptions.

Alternatively, we employed k-PCA nonlinear dimensionality reduction
[González et al. 2016], that allows to visualize low-dimensional manifolds within a
higher dimensional space. When applying k-PCA to the identi�ed data corresponding to
the nonlinear behavior, we obtain the embedding depicted in Fig. 2.20. Here, in order to
prove that the embedded, low-dimensional data is well distributed on the slow manifold,
we assigned a color to each data point corresponding to its elastic energy. In order to prove
that the reduced data de�ned an almost perfect 2D manifold, we represent in di�erent
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Figure 2.15 � σxx = σxx(ε): identi�ed from data (left) and reference values (right).

views in Fig 2.20 of the same reduced manifold.

Data-driven simulation The nonlinear elastic problem is now solved by employing
the constitutive manifold just identi�ed, when a traction t = tp, pT = (cos 3π/2, sin 3π/2)

applies on the top boundary. The reference displacement �eld calculated with the constitu-
tive model (2.45)-(2.46) is depicted in Fig. 2.21 and compared with the one obtained when
solving the same problem but now with the identi�ed constitutive model whose solution is
depicted in Fig. 2.22. Both results are in good agreement despite the coarse descriptions
considered.

2.2.3 Conclusions

We proved in section 2.1 that numerical simulations can be performed from the only knowl-
edge of data de�ning the material behavior. It was claimed that the main drawback of one
such approach is the necessity of unveiling the whole constitutive manifold. However, at
present, testing facilities are not able to explore the whole strain-stress space in a continuous
way. In this work we considered elastic behaviors (linear and nonlinear), proving that the
constitutive manifold can be extracted from a data-driven inverse procedure in an e�ective
manner.

A procedure involving the polynomial approximation of the whole constitutive manifold,
seems to be robust from all points of view, and its immersion in a hierarchical or multi-
resolution strategy seems an appealing choice for future developments. Even if the results
only concerned some simplistic behaviors, the methodology seems to be appropriate to
address more complex scenarios, such as behaviors involving large strains, as well as inelastic
deformations. Other points that should be considered are the ones related to existence and
propagation of noise. This constitutes our current e�ort of research.
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Figure 2.16 � σyy = σyy(ε): identi�ed from data (left) and reference values (right).

Figure 2.17 � σxy = σxy(ε): identi�ed from data (left) and reference values (right).
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Figure 2.18 � Evolution of the error with the loading steps `

Figure 2.19 � Dimensionality of the linear (left) and nonlinear (right) manifolds when
applying the LLE nonlinear dimensionality reduction technique on the stress-strain
data.
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Figure 2.20 � Di�erent views of the constitutive manifold represented in a reduced
3D space.

Figure 2.21 � Data-driven simulation based on the reference constitutive manifold.
Displacement �eld: ux (left) and uy (right)
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Figure 2.22 � Data-driven simulation based on the identi�ed constitutive manifold.
Displacement �eld: ux (left) and uy (right).

2.3 From elastic homogeneization to upscaling of non-

Newtonian �uid �ows in porous media

In section 2.1, we showed that it is possible to perform numerical simulations directly from
data by circumventing, or at least alleviating, the necessity of considering an explicit con-
stitutive model to relate kinematic and dynamics variables. Thus, simulations proceed
directly from the stress-strain data, from which standard discretization techniques proceed.
In this section, we perform a step forward in order to de�ne macroscopic constitutive mani-
folds from the microscopic calculations, and then solve the macroscopic mechanical problem
from the data contained in these constitutive manifolds without having to determine ex-
plicitly an homogenized or upscaled constitutive equation. Particularly, the upscaling of
non-Newtonian �uids in porous media will be analyzed.

When considering elastic models, where the di�erent phases involved in the microstruc-
ture exhibit the same mechanical behaviour, whether linear or non-linear, homogenization is
straightforward. Two main approaches exists, the hierarchical and the concurrent discussed
in [Borst 2008, Fish 006, McVeigh & Liu 2008, Lamari et al. 2010]. In the hierarchical ap-
proach micro and macro calculations are decoupled [qnd D. Dureisseix & Cartraud 2009,
Fish & Yuan. 2005, Strouboulis et al. 2004] whereas in the concurrent one both are
strongly coupled [Kanoute et al. 2009, Feyel 1999, Geers et al. 2010, J.C. Michel 2004,
I. Temizer 2007a, I. Temizer 2007b, Yvonnet et al. 2009, Halabi et al. 2013].

The standard macro-scale theoretical framework for �ows in porous media is the Darcy
model which relates averaged �uid velocities to pressure gradients. Being purely dissipative,
the Darcy model cannot address elastic e�ects present in viscoelastic �uids. The same issue
arises in modelling the �ow of suspensions. While suitable evolution equations can be formu-
lated for the micro-scale conformation, this cannot be achieved for averaged conformational
quantities at the macro-scale. In such circumstances, a possible route consists in de�ning a
macroscopic �ow model able to incorporate elastic e�ects for addressing viscoelastic �uids
or an evolution equation for the upscaled conformation in the case of suspensions. Such a
route, however, has two main handicaps: its intrinsic di�culty and its incompatibility with
essentially all available simulation software used in industrial applications, which make use
of Darcy's model.

Thus, the most valuable route consists in considering as much as possible viscous models
that are more or less complex to capture the main �uid and �ow features at the microscopic
scale, and from them obtaining (by upscaling) an e�ective Darcy permeability at the macro-
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scopic scale to be given as input to conventional simulation software. The main issue then
is the calculation of the e�ective permeability. To do so, in this work as in many others, we
enforce equality of the dissipated powers at both the micro and macro-scales.

In former works such as [Ammar et al. 2016, Lopez et al. 2015, Lopez et al. 2016c], the
upscaling route was successfully applied when considering purely viscous behaviors (Newto-
nian and generalized-Newtonian �uids) or by addressing viscoelastic behaviors from quasi-
Newtonain purely viscous formulations. In general, for non-linear behaviours, however, this
approach quickly becomes very intricate and computationally expensive.

In this section, we follow a similar rationale, but instead of looking for an explicit
expression of the e�ective permeability, we propose to build the so-called dissipation man-
ifold, whose second derivative with respect to the macroscopic velocity directly yields the
manifold of e�ective permeabilities.

This section is organized as follows: subsection 2.3.1 introduces the main features behind
homogenization, upscaling and its associated macroscopic simulations. Subsection 2.3.2
introduces the constitutive modelling of non-linear viscous �uids in porous media together
with the manifold-based homogenization procedure. Subsection 2.3.3.1 provides numerical
results associated to two di�erent kind of microstructures.

2.3.1 Revisiting homogenization, upscaling and macroscopic sim-
ulation

First, we consider the mechanical problem de�ned in a domain Ω occupied by a heteroge-
neous elastic material involving a number of phases evolving very fast spatially, thus allowing
for scale separation. Even if the behaviour of each phase is assumed perfectly de�ned, the
solution of the elastic problem in the whole domain requires a very �ne discretization mesh
for approximating the di�erent �elds (displacement, strain and stress) able to capture the
microscopic details. To circumvent this di�culty, a widely considered approach consists in
calculating the homogenized behaviour of the material by proceeding at the microscopic
scale within the so-called representative volume element � RVE � ω, and then using these
homogenized properties in the macroscopic calculation with a coarse mesh size larger than
the characteristic length of the microstructure.

Assuming a linear elastic behaviour for each phase coexisting in the composite material,
the Cauchy stress σ and strain ε are related at each point x ∈ ω by the constitutive model
σ = c : ε, where c embodies the micro-scale elastic properties. Without loss of generality,
the same microstructure is assumed everywhere in Ω. Thus, we can de�ne the macroscopic
strain E and stress Σ in ω according to the following spatial averages over the RVE:{

E = 〈ε〉 = 1
|ω|
∫
ω
ε(x) dx

Σ = 〈σ〉 = 1
|ω|
∫
ω
σ(x) dx

. (2.47)

Then, assuming the existence of a localization tensor L such that ε(x) = L(x) : E, we
obtain

Σ = 〈σ〉 = 〈c(x) : ε(x)〉 = 〈c(x) : L(x)〉 : E, (2.48)

from which the homogenized elastic behavior C can be identi�ed:

C = 〈c(x) : L(x)〉. (2.49)

The localization tensor can be computed in the linear case by solving three (in the 2D
case) or six (in the 3D case) boundary value problems over ω, with a�ne displacements
(that satisfy the Hill-Mandel principle) speci�ed at the boundary ∂ω [Chinesta et al. 2008].
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Obviously, the above rationale remains valid when the domain Ω contains di�erent
representative volume elements. It su�ces to apply the procedure to each RVE, or in the
limit case, at each evaluation point X ∈ Ω (integration point of the macroscopic discretized
problem) by considering its associated microstructure ω(X).

In the non-linear case, the computational implementation is slightly more complex as
the behaviour depends on the macroscopic strain, and consequently the elastic homogenized
tensor is a function of the considered point X ∈ Ω as soon as the macroscopic strain varies
in Ω even if the microstructure remains the same everywhere in Ω.

From a methodological view point, we can assume the existence of a homogenized elastic
tensor at each location X ∈ Ω. We could solve the non-linear elastic problem in the RVE
attached to each Gauss point considered for discretizing the homogenized elastic problem
at the macroscopic scale, by enforcing the displacement in agreement with the existing
macroscopic strain at that location. Then, the elastic properties at each position x ∈ ω(X)

could be frozen in order to linearize the problem in ω before applying the rationale described
above for homogenizing the linear behaviour.

The main drawback of this approach is the computational cost. It can be signi�-
cantly alleviated by means of an alternative strategy based on the Proper Generalized
decomposition (PGD) [Chinesta et al. 2011a, Chinesta et al. 2013a, Chinesta et al. 2014].
In [Lamari et al. 2010], we proposed the calculation, for a given microstructure, of the
parametric solution of the non-linear elastic problem in the REV for all feasible a�ne
displacement enforced at its boundary.

A similar strategy was also successfully used in [Lopez et al. 2016c] when addressing
the non-linear Stokes �ow problem for a generalized-Newtonian �uid �owing in a porous
medium. The resulting parametric local strain rates were used for determining the local
parametric behaviour, and from it for obtaining the parametric solution of the boundary
value problems, thus yielding a parametric localization tensor and from it the parametric
upscaled Darcy behaviour.

Even though successful in these relatively simple problems, the above PGD procedure
becomes very intricate to apply in more complex cases. In what follows, we develop an
alternative approach that does not require the explicit evaluation of the homogenized or
upscaled behaviours.

2.3.1.1 PGD-based generator of a macroscopic constitutive manifold

We consider a non-linear elastic problem de�ned in ω, and assume without loss of generality
that the microstructure in ω represents the one existing everywhere in Ω. Within the PGD
framework [Chinesta et al. 2011a, Chinesta et al. 2013a, Chinesta et al. 2014], we view the
boundary conditions speci�ed at ∂ω as model parameters and thus extra-coordinates of the
problem.

Within the usual �rst-gradient elasticity framework, prescription of linear displacements
at the boundary ∂ω

u(x ∈ ∂ω) =

 u1

u2

u3

 =

 E11x1 + E12x2 + E13x3

E12x1 + E22x2 + E23x3

E13x1 + E23x2 + E33x3

 , (2.50)

ensures the recovery of any macroscopic strain

E =

 E11 E12 E13

E12 E22 E23

E13 E23 E33

 . (2.51)
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Within the PGD framework [Chinesta et al. 2011a, Chinesta et al. 2013a,
Chinesta et al. 2014, Lamari et al. 2010], the coe�cients Eij in (2.50) are viewed as
extra-coordinates, and we seek the parametric solution

u(x, E11, E12, · · · , E33) ≈

N∑
i=1

Xi(x) ◦ E11
i (E11) ◦ E12

i (E12) ◦ E13
i (E13) ◦ E22

i (E22) ◦ E23
i (E23) ◦ E33

i (E33), (2.52)

where ◦ refers to the Hadamard product.
From the parametric displacement �eld (2.52), it is straightforward to compute the

parametric strain and stress everywhere within ω, namely{
ε(x, E11, E12, E13, E22, E23, E33)

σ(x, E11, E12, E13, E22, E23, E33)
, (2.53)

from which macroscopic strain as stress, E and Σ respectively, can be obtained from Eq.
(2.47). As just indicated E is directly given by Eq. (2.51).

The macroscopic constitutive manifold Σ(E) is then de�ned by

Σ(E) = 〈σ(x, E11, E12, E13, E22, E23, E33)〉. (2.54)

Now, as many macroscopic strain-stress couples (Σm,Em), m = 1, . . . ,M can be gener-
ated in real time by simply particularizing the parametric solution (2.54). Each stress-strain
couple is a single point Pm in a space of dimension D = 12 (the six distinct components
of the stress and strain tensors, respectively). In the sequel, we use Voigt's notation, i.e.
stress and strain tensors will be represented as vectors and consequently the fourth-order
elastic tensor reads as a 6× 6 square matrix.

Each vector Pm thus de�nes a point in a space of dimension D and, therefore, the whole
set of stress-strain couples is a set of M points in RD. We conjecture that all these sample
points belong to a low-dimensional manifold embedded in the high-dimensional space RD,
thus allowing for a non-linear dimensionality reduction as discussed in section 2.1. In what
follows, however, we proceed without such a dimensionality reduction and use the simplest
strategy proposed and discussed in section 2.1. We consider locally-linear approximations,
that allow us to write

Pm =

M∑
i=1

WmiPi, (2.55)

with Wmi = 0 if i /∈ Sm, being Sm the set containing the K-nearest neighbours of Pm. By
minimizing the functional

H(C) =
∑
i∈Sm

(Σi −C ·Ei)
2, (2.56)

we obtain the locally-linear behaviour C(Pm) ≡ Cm.

2.3.1.2 Manifold-based simulation

Once the locally-linear behaviour C(P) is identi�ed, we may apply the simplest linearization
technique operating on the standard weak form∫

Ω

E∗(X) : Σ(X) dX =

∫
ΓN

U∗(X) ·T(X) dX, (2.57)
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where at each point, from the stress-strain couple P(X) at position X, the locally-linear
behaviour C(P(X)) can be obtained (i.e. in practice, at the Gauss points used for the
integration of the weak form). We thus have, using Voigt's notation,∫

Ω

E∗(X) · (C(X)E(X)) dX =

∫
ΓN

U∗(X) ·T(X) dX. (2.58)

where T(X) are the macro tractions acting on the Neuman boundary, ΓN . This allows
us, in turn, to obtain the macro displacement �eld (U(X)) and from it, to update the
strain and stress �elds, to compute again the updated locally-linear behaviour. The process
continues until convergence as mentioned in section 2.1.

2.3.2 Non-linear viscous �uids in porous media: manifold-based
upscaling

Isothermal �ows of non-linear �uids in complex microstructures can be simulated by solving
the momentum and mass balance equations and a suitable rheological constitutive model.
For inertialess incompressible �ows, these balance equations read,

∇ · σ = 0, (2.59)

and

∇ · v = 0. (2.60)

Here, σ is the Cauchy stress tensor and v the velocity �eld, both de�ned at time t at each
point within the �uid domain Ωf . When considering porous media, the domain Ω is assumed
fully saturated, with the �uid phase occupying the region Ωf whereas the remaining part
Ωs = Ω− Ωf is occupied by a solid phase assumed at rest.

An appropriate constitutive equation must be postulated to describe the �uid's rheol-
ogy. There are many possible choices, the most usual ones being related to Newtonian,
generalized-Newtonian and quasi-Newtonian �uids, as well as to suspensions, brie�y sum-
marized below:

• Newtonian �uid. For a Newtonian �uid, the constitutive equation reads

σ = −pI + τ = −pI + 2ηD, (2.61)

where p is the pressure �eld that can be interpreted as the Lagrange multiplier associ-
ated with the incompressibility constraint, I is the identity tensor, τ the extra-stress
tensor, η the constant �uid viscosity and D the rate of strain tensor, i.e. the sym-
metric part of the velocity gradient, 2D = ∇v + (∇v)T .

• Generalized-Newtonian �uid. For a generalized-Newtonian �uid, the constitutive
equation (2.61) remains formally unchanged, but a viscosity η that depends on the
e�ective strain rate γ̇. The latter is usually expressed from the second invariant of
the rate of strain tensor, i.e. γ̇ =

√
2D : D. The simplest of such models is the

power-law viscosity given by

η = κγ̇n−1, (2.62)

where κ and n are the consistency and power-law index, respectively. The value
n = 1 corresponds to a Newtonian �uid.
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• Quasi-Newtonian �uid. In the quasi-Newtonian �uid model, the viscosity function
is not merely a function of the second invariant of the rate of strain tensor but
also depends on the relative rate of rotation of the �uid. Consequently, the quasi-
Newtonian �uid is able to show e.g. shear-thinning in shear �ow and extension-
thickening in elongational �ow. The constitutive equation for the quasi-Newtonian
�uid reads

σ = −pI + 2ηQND, (2.63)

where ηQN is the e�ective viscosity of the �uid that accounts for shear as well as
extension according to the local type of �ow. The latter is quanti�ed by means of a
scalar quantity χ that di�erentiates the type of regime (shear, elongation or rigid mo-
tion) [Ryssel & Brunn 1999, Thompson & Mendes 2005]. In [Ryssel & Brunn 1999]
for example, the following viscosity function is proposed for 2D planar �ows:

ηQN (γ̇, χ) = (ηS(γ̇))
f(χ)

(ηE(ε̇))
1−f(χ)

, (2.64)

with the shear viscosity ηS depending on γ̇ (as in the case of generalized-Newtonian
�uids) and the extensional viscosity ηE depending on ε̇, with 2ε̇ = γ̇, and with the
function f(χ) satisfying

f(χ) =

{
1, if χ = 1

0, if χ = 0
, (2.65)

in order to recover the shear viscosity at locations exhibiting a shear �ow and the
extensional viscosity where planar extension occurs. We consider f(1 < χ ≤ 2) = 1

for approaching the zero shear rate viscosity in the limit case of rigid rotation.

• Suspension of rigid rods in a Newtonian �uid. When considering a population of
rigid rods immersed into a Newtonian �uid, and making use of suitable simplifying
assumptions [Binetruy et al. 2015], the constitutive equation for the suspension reads

σ = −pI + 2ηD + 2ηNp(a : D)a, (2.66)

where a is the so-called orientation tensor and Np is a material parameter. The
evolution of a is governed by the Folgar & Tucker model

ȧ = ∇v · a− a · (∇v)T − 2(a : D)a + β

(
a− I

3

)
. (2.67)

In view of the advective character of this equation, suitable boundary conditions must
be speci�ed for a at the in�ow boundary of the RVE only, whereas velocity boundary
conditions must be speci�ed on the whole boundary.

2.3.2.1 Upscaling non-Newtonian �uids �owing in porous media

The �ow model is solved in the representative volume ω(X), where two phases coexist, i.e.
the �uid phase occupying the domain ωf (X) and the solid phase, assumed rigid and at rest,
occupying the region ωs(X), with ωf (X) ∪ ωs(X) = ω(X) and ωf (X) ∩ ωs(X) = ∅. The
�ow model consists of the mass and momentum balance equations complemented by the
constitutive equation discussed in the previous section, namely

∇ · σ = 0

∇ · v = 0

σ = −pI + τ

. (2.68)
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Here, τ = τ (D) in the case of Newtonian, generalized-Newtonian and quasi-Newtonian
�uids and τ = τ (D,a) in the case of rod suspensions.

The above governing equations are complemented with the boundary condition v(x ∈
∂ω(X)) = V, where V comes from the macroscopic �ow problem.

The solution of the �ow problem (2.68) yields the velocity �eld v(x ∈ ωf (X)), and from
it the strain rate D(x ∈ ωf (X)).

One can thus compute the power DP(V; X) dissipated in the RVE and associated with
the macroscopic velocity V prescribed at the boundary ∂ω:

DP(V; X) =

∫
ωf (X)

σ(x) : D(x)dx. (2.69)

The speci�c microscopic dissipation DPm is then obtained by dividing DP given by (2.69)
by the RVE volume |ω(X)|.

Obviously, the considered �uid models being purely viscous, they only involve dissipated
power, and consequently the e�ective macroscopic model should account for it. In Darcy's
model, the speci�c macroscopic dissipated power DPM reads

DPM (∇P,V) = ∇P ·V. (2.70)

Thus, by equating the micro and macro-scale dissipations, we obtain

DPm = ∇P |X ·V(X), (2.71)

or by assuming the existence of an e�ective permeability Keff (X),

∇P |X = K−1
eff (X)V(X), (2.72)

from which we �nally obtain our main result:

DPm(V; X) = K−1
eff (X) : (V(X)⊗V(X)). (2.73)

This expression constitutes a constructive de�nition of the e�ective permeability. For
calculating the latter, it su�ces to take the second derivative of DPm(V) related to the
microstructure existing at location X:

K−1
eff (X) =

1

2

d2DPm(V; X)

dV2
. (2.74)

We note that for a Newtonian �uid, the velocity, strain-rate and stress �elds scale
linearly with the velocity prescribed at the RVE boundary. Thus, the dissipated power
scales with the square of the velocity, leading to a constant e�ective permeability
[Lopez et al. 2015].

Thus, homogeneized macro simulations can be performed very e�ciently. After solv-
ing at a given iteration the macroscopic �ow problem, from the computed velocity V at
each macroscopic location X, the associated permeability can be updated according to Eq.
(2.74). This calculation is performed in almost real-time since the dissipative manifold has
been precomputed o�ine. From the updated permeability, a new macroscopic calculation
can be carried out.

2.3.3 Numerical examples

We consider two di�erent microstructures, i.e. isotropic and orthotropic, as depicted in Fig.
2.23.
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Figure 2.23 � RVE for two microstructures: isotropic (left) and orthotropic (right)

Figure 2.24 � Speci�c dissipated power for a Newtonian �uid �owing in the isotropic
microstructure depicted in Fig. 2.23 (left)

2.3.3.1 Upscaling Newtonian �uids �owing in porous media

The speci�c dissipated power DPM obtained for a Newtonian �uid is shown in Figs. (2.24)
and (2.25) for the isotropic and anisotropic microstructures, respectively.

In view of (2.74), the components of the e�ective permeability tensor are obtained
by taking the second derivatives of the dissipated power with respect to the velocity V

prescribed at the RVE boundary, and inverting the resulting matrix. As discussed in
[Lopez et al. 2015], the intrinsic permeability obtained for a Newtonian �uid is a purely
geometrical property and can be obtained by multiplying the e�ective permeability by the
viscosity.

Figures 2.26 and 2.27 depict the components of the e�ective permeability for a New-
tonian �uid �owing in the isotropic and anisotropic microstructures shown in Fig. 2.23,
left and right respectively. It can be noticed that the permeability does not depend on
the prescribed velocity in view of the linear behaviour of the �uid. Moreover, for the al-
most isotropic microstructure, as expected, the diagonal components of the permeability
tensor are quite similar, whereas the o�-diagonal component is much smaller. For the or-
thotropic microstructure, a clear di�erence is noticed between the diagonal components,
and the o�-diagonal component vanishes. Indeed, the microstructure perfectly aligns with
the coordinates axes that constitute the principal directions of the permeability tensor.

For the generalized-Newtonian and quasi-Newtonian �uid models, the results obtained
using the proposed procedure based on the dissipated power manifold are, as expected, in
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Figure 2.25 � Speci�c dissipated power for a Newtonian �uid �owing in the or-
thotropic microstructure depicted in Fig. 2.23 (right)

excellent agreement with the ones obtained using the analytical procedure described in our
former works [Ammar et al. 2016, Lopez et al. 2016c].

2.3.3.2 Upscaling suspensions of rods �owing in porous media

As detailed in Section 3, the �ow model for a suspension of rods consists of the momentum
and mass balances complemented with the constitutive equation

σ = −pI + 2ηD + 2ηNp(a : D)a, (2.75)

that involves the conformation tensor a whose evolution is governed by the transport equa-
tion

ȧ = ∇v · a− a · (∇v)T − 2(a : D)a + β

(
a− I

3

)
. (2.76)

The resulting �ow problem is solved in the RVE ω with the macroscopic velocity V

speci�ed at the RVE boundary ∂ω. In order to solve the orientation equation (2.76), one
must specify the orientation tensor at the in�ow boundary ∂−ω ⊂ ∂ω characterized by
V · n(x ∈ ∂ω) < 0, where n is the outward unit vector normal to ∂ω at point x.

The need for these in�ow conditions is a really di�cult issue. Indeed, while we can
naturally de�ne at the macroscopic scale an upscaled orientation tensor A ≡ 〈a〉, we can-
not formulate a proper evolution equation for A at the macroscopic scale in terms of the
averaged velocities V appearing in the Darcy model. The orientation evolution is induced
and driven by the local velocity gradients existing at the microscopic scale. It is assumed
that the characteristic �bers length is lower than the characteristic channels diameter in
order to neglect con�nement e�ects addressed in [Perez et al. 2016, Scheuer et al. 2016].

When solving the micro-scale �ow problem, the orientation to be prescribed at the
in�ow boundary ∂−ω is in fact undetermined. In order to quantify the impact of this
indeterminacy, we decided to specify arbitrary orientation states at ∂−ω. In view of the
intense tortuosity that complex microstructures entail, we found that the orientation �eld
rapidly forgets its entrance condition (fading memory) and is essentially velocity-driven.
Thus, the micro-scale solution depends almost exclusively on the prescribed velocity V

that arises from the macroscopic scale. This empirical observation is of crucial importance.

60



2.3. From elastic homogeneization to upscaling of non-Newtonian �uid �ows in
porous media

Figure 2.26 � Newtonian �uid and isotropic microstructure. Components of the
e�ective permeability tensor: Kxx (top), Kxy (middle) and Kyy (bottom)
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Figure 2.27 � Newtonian �uid and orthotropic microstructure. Components of the
e�ective permeability tensor: Kxx (top), Kxy (middle) and Kyy (bottom)
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In practice, any orientation can thus be prescribed at the in�ow boundary ∂−ω, the
simplest ones being: (i) an isotropic orientation state a(x ∈ ∂−ω) = I/2 or I/3 in the
2D or 3D cases, respectively; (ii) the local alignement of rods with the incoming �ow,
a(x ∈ ∂−ω) = (V ⊗V)/‖V‖2; or the macroscopic orientation existing at that position at
the previous iteration, a(x ∈ ∂−ω) = Â. Thus, with the macroscopic velocity V speci�ed
on the whole boundary ∂ω and the orientation at the in�ow boundary ∂−ω, the micro-
scale �ow problem is solved to obtain v(x), D(x), τ (x) and a(x) at each position x in the
�uid domain ωf , and from those, the dissipated power DP and the averaged orientation
A = 〈a(x)〉.

Since the outputs of the microscopic calculation are almost entirely velocity-driven, we
can assume the existence of the two manifolds DP(V) and A(V). The �rst manifold yields
the e�ective permeability, while the second gives a macroscopic descriptor of the orientation
�eld.

Figure 2.28 compares the components of the macroscopic orientation tensor A as a func-
tion of the prescribed velocity V, obtained for the isotropic and orthotropic microstructures
of Fig. 2.23. The expected symmetries are noticed for the isotropic microstructure, while
a preferential orientation along the y-direction is predicted in the orthotropic case.

Unlike for a Newtonian �uid, the e�ective permeability of the suspension does depend
on the prescribed velocity V, in view of the non-linearity of the micro-scale problem. This
can be seen in the results shown in Fig. 2.29, obtained for the isotropic microstructure.
Comparison with the Newtonian results shows that the presence of rods yields an overall
decrease of the e�ective permeability.

2.3.4 Conclusions

This section explored the possibility of performing manifold-based upscaling of linear and
non-linear models for �ows in porous media. We proposed the construction of the so-called
dissipated power manifold whose second derivative with respect to the macroscopic velocity
(enforced at the boundary of the RVE) yields the inverse of the e�ective permeability tensor.
When solving the micro-scale problem parametrically by means of the PGD, construction of
the dissipated power manifold is straightforward and extremely fast from the computational
point of view.

The second contribution of the present work is the consideration of suspensions of rods
�owing in porous media. Through numerical experiments, we found that the dissipated
power is insensitive to the orientation state that must be speci�ed at the in�ow boundary
of the RVE, and thus mostly depends on the macroscopic velocity prescribed at the RVE
boundary. This crucial observation allowed us to apply the proposed upscaling procedure
to complex �uids endowed with a fading memory.
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Figure 2.28 � Components of the upscaled orientation tensor A (Axx in the left, Axy

in the center and Ayy in the right) for the isotropic (top) and orthotropic (bottom)
microstructures (the colour-bar is di�erent in each graph)
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Figure 2.29 � Isotropic microstructure: comparing the e�ective permeability com-
ponents Kxx (top) and Kyy (bottom) for a Newtonian �uid (left) and a suspension
of rods (right)
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Chapter 3

Data Completion techniques

Abstract Model identi�cation of underlying physical laws by means of data is specially
cumbersome if the sought dynamics live in a high dimensional space. This usually involves
the need for large amount of data, unfeasible in such a high dimensional settings. Robust
data completion methodologies which are able to operate in such circumstances will be of
crucial interest within the Dynamic Data Driven Application Systems framework. These
data completion techniques seems a seamless bridge to exploit the information carried by
each data point, thus, constructing e�cient response surfaces, which will be ultimately used
by data driven algorithms.
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This chapter presents an overview of di�erent methodologies to generate response sur-
face based on scattered data. These methodologies are of crucial importance within the
Data-Driven framework whenever the data has to be interpolated/extrapolated to infer be-
haviours at locations where there are no experimental measurements. Section 3.1 presents a
methology called sparse Proper Generalized Decomposition (sPGD), which combines PGD
[Cueto et al. 2016] rationale together with a collocation procedure. Indeed, this methology
alleviates the so-called curse of dimensionality by means of the separation of variables and
it makes use of the data only at the experimental sample points by virtue of the collocation
method.

Section 3.2 provides three industrial applications where the sPGD methodology has
been succesfully applied. The �rst application involves design and geometrical optimiza-
tion of a vehicle structure to meet safety requirements while a crash test. The second
application consists of identi�ying the plastic behaviour of a given material, whereas the
third application links the geometrical parameters of real surfaces with its performance in
an automated tape placement (ATP) process.

Finally, section 3.3 exports the use a novel methodology called compressed sensing,
which has been widely applied in the image processing �eld. This technique claims to
reproduce an image, up to a certain accuracy, not using every single pixel than constitutes
the image but only few of them. This procedure has been applied within the computational
mechanics framework in [Brunton et al. 2016] to discover the underlying physics behind
a dataset. In our work we extend the methodology to other scenarios such as transient
problems or parametric models, where response surfaces are generated only by knowing the
information at certain locations.

These topics are addressed in �ve papers, three of them already published and two
submitted, that constitute this chapter:

• R. Ibáñez, E. Abisset-Chavanne, A. Ammar, D. Gonzalez, E. Cueto, A. Huerta, J.
L. Duval, F. Chinesta, A Multidimensional Data-Driven Sparse Identi�cation Tech-

nique: The Sparse Proper Generalized Decomposition.Complexity, 12, 1-11, 2018.

• V. Limousin, X. Delgerie, E. Leroy, R. Ibáñez, C. Argerich, F. Daim, J. L. Duval,
F. Chinesta, Model Order Reduction and Machine Learning Techniques in Advanced

Structural Mechanics. Application to Crash Simulation. To be submitted into Me-
chanics & Industry.

• R. Ibáñez, E. Abisset-Chavanne, D. Gonzalez, J.L. Duval, E. Cueto, F. Chinesta,
Hybrid constitutive modeling: data-driven learning of corrections to plasticity mod-

els. International Journal of Material Forming, DOI:10.1007/s12289-018-1448-x, 1-9,
2018.
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Proper Generalized Decomposition

• C. Argerich, A. Leon, R. Ibáñez, A. Barasinski, E. Abisset-Chavanne, F. Chinesta,
Prediction of composites behavior undergoing an ATP process through data-mining.
AIP Conference Proceedings, DOI: 10.1063/1.5034817, 2018.

• R. Ibáñez, E. Abisset-Chavanne, A. Ammar, E. Cueto, J.L. Duval, F. Chinesta,
Some applications of compressed sensing in computational mechanics. Submitted to
Computational Mechanics.

3.1 A Multidimensional Data-Driven Sparse Identi�ca-

tion Technique: The Sparse Proper Generalized De-

composition

In what follows we present a methodology that combines the concept of separate rep-
resentations to overcome the curse of dimensionality together with a collocation pro-
cedure to use data wherever is available. Such separate representation has previously
been employed by the authors to construct a priori reduced-order modeling techniques,
coined as Proper Generalized Decompositions [Chinesta et al. 2010] [Chinesta et al. 2014]
[Chinesta & Ladeveze 2014] [Gonzalez et al. 2010] [Cueto et al. 2016] [Badías et al. 2017]
[Gonzalez et al. 2017]. This will give rise to a sparse Proper Generalized Decomposition
(sPGD in what follows) approach to the problem. Subsection 3.1.1 explains the basics of
the technique. Subsection 3.1.2 shows two ingredients which will enhance the stability of
the method and ultimately its power to predict new query points. We then analyze the
performance of the just developed technique through a series of academic numerical exper-
iments in subsection 3.1.3. Examples in up to ten dimensions are introduces, showing the
robustness of the method for relatively high dimensional spaces.

3.1.1 Basics of the technique

For the ease of the exposition and, above all, representation, but without loss of gener-
ality, let us begin by assuming that the unknown objective function f(x, y) lives in R2

and that is to be recovered from sparse data. As in previous references, see for instance
[Mangan et al. 2016], we have chosen to begin with a Galerkin projection, in the form∫

Ω

w∗(x, y) (u(x, y)− f(x, y)) dxdy = 0, (3.1)

where Ω ⊂ R2 stands for the�here, still two-dimensional�domain in which the identi�-
cation is performed and w∗(x, y) ∈ C0(Ω) is an arbitrary test function. Finally, u(x, y)

will be the obtained approximation to f(x, y), still to be constructed. In previous works
of the authors [González et al. 2018b] as well as in other approaches to the problem (e.g.,
[Mangan et al. 2016]), this projection is subject to additional constraints of thermodynamic
nature. In this work no particular assumption is made in this regard, although additional
constraints could be imposed to the minimization problem.

Following the same rationale behind the Proper Generalized Decomposition (PGD), the
next step is to express the approximated function uM (x, y) ≈ u(x, y) as a set of separate
one-dimensional functions,

uM (x, y) =

M∑
k=1

Xk(x)Y k(y). (3.2)
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The determination of the precise form of functional pairs Xk(x)Y k(y), k = 1, . . . ,M , is
done by �rst projecting them on a �nite element basis and by employing a greedy algorithm
such that, once the approximation up to order M − 1 is known, the new M -th order term

uM (x, y) = uM−1(x, y) +XM (x)YM (y) =

M−1∑
k=1

Xk(x)Y k(y) +XM (x)YM (y)

is found by any non-linear solver (Picard, Newton, ...)
It is well-known that this approach produces optimal results for elliptic operators

(here, note that we have in fact an identity operator acting on u) in two dimensions, see
[Chinesta et al. 2010] and references therein. There is no proof, however, that this separate
representation will produce optimal results (in other words, will obtain parsimonious mod-

els) in dimensions higher than two. In two dimensions and with w∗ = u∗ it provides the
singular value decomposition of f(x, y) [Chinesta et al. 2014]. Our experience, nevertheless,
is that it produces almost optimal results in the vast majority of the problems tested so far.

It is worth noting that the product of the test function w∗(x, y) times the objective
function f(x, y) is only evaluated at few locations (the ones corresponding to the experi-
mental measurements) and that, in a general high dimensional setting, we will be in the
low-data limit necessarily. Several options can be adopted in this scenario. For instance, the
objective function can be �rst interpolated in the high dimensional space (still 2D in this
introductory example) and then integrated together with the test function. Indeed, this
will be the so-called PGD in approximation [Chinesta et al. 2014], commonly used when
either f(x, y) is known everywhere and a separated representation is sought or if f(x, y)

is known in a separated format but a few pairs M are needed for any reason. Under this
rationale the converged solution u(x, y) tries to capture the already interpolated solution in
the high dimensional space but in a more compact format. As a consequence, the error due
to interpolation of experimental measurements on the high dimensional space will persist
in the �nal separate identi�ed function.

In order to overcome such di�culties, we envisage a projection followed by interpolation
method. However since information is just known at P sampling points (xi, yi), i = 1, . . . , P ,
it seems reasonable to express the test function not in a �nite element context, but to express
it as a set of Dirac delta functions collocated at the sampling points,

w∗(x, y) =u∗(x, y)

P∑
i=1

δ(xi, yi)

=
(
X∗(x)YM (y) +XM (x)Y ∗(y)

) P∑
i=1

δ(xi, yi), (3.3)

giving rise to ∫
Ω

w∗(x, y) (u(x, y)− f(x, y)) dxdy

=

∫
Ω

u∗(x, y)

P∑
i=1

δ(xi, yi) (u(x, y)− f(x, y)) dxdy = 0,

The choice of the test function w∗(x, y) in the form dictated by Eq. (3.3) is motivated by
the desire of employing a collocation approach while maintaning the symmetry of standard
Bubnov-Galerkin projection operation.

Let us detail now the �nite element projection of the one-dimensional functions Xk(x),
Y k(y), k = 1, . . . ,M , (often referred to as modes) appearing in Eq. (3.2). Several options
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can be adopted, ranging from standard piecewise linear shape functions, global non-linear
shape functions, maximum entropy interpolants, splines, kriging, etc. Regarding the kind
of interpolant to use, an analysis will be performed in the sequel. Nevertheless, no matter
which precise interpolant is employed, it can be expressed in matrix form as

Xk(x) =

N∑
j=1

Nk
j (x)αkj =

[
Nk

1 (x) . . . Nk
N (x)

]  αk1
...
αkN

 = (Nk
x)Tak, (3.4)

Y k(y) =

N∑
j=1

Nk
j (y)βkj =

[
Nk

1 (y) . . . Nk
N (y)

]  βk1
...
βkN

 = (Nk
y)Tbk, (3.5)

where αkj and βkj , j = 1, . . . , N , represent the degrees of freedom of the chosen approxima-
tion. We employ Nk as the most usual nomenclature for the shape function vector. It is
important to remark that the approximation basis could even change from mode to mode
(i.e., for each i). For the sake of simplicity we take the same number of terms for both
Xk(x) and Y k(y), namely, N .

By combining Eqs. (3.1)-(3.5) a non linear system of equations is derived, due to prod-
ucts of terms in both spatial directions. An alternate direction scheme is here preferred to
linearize the problem, which is also a typical choice in the PGD literature. Note that, when
computing modes XM (x), the variation in the other spatial direction vanishes, Y ∗(y) = 0,
and vice versa.

In order to fully detail the matrix form of the resulting problem, we �rst employ the
notation �⊗� as the standard tensorial product (i.e., b⊗ c = bicj), and de�ne the following
matrices

Ak`
x = Nk

x ⊗N`
x,

Ak`
y = Nk

y ⊗N`
y,

Ck`
xy = Nk

x ⊗N`
y.

For the sake of simplicity but without loss of generality, evaluations of the former operators
at point (xi, yi) are denoted as

Ak`
xi = Nk

x(xi)⊗N`
x(xi),

Ak`
yi = Nk

y(yi)⊗N`
y(yi),

Ck`
xiyi = Nk

x(xi)⊗Nj
y(yi).

Eqs. (3.6)-(3.7) below show the discretized version of the terms appearing in the weak form,
Eq. (
refsec3-1:weakform1), when computing modes in the x direction. Again, M stands for the
number of modes in the solution u(x, y) while P denotes the number of sampling points.

∫
Ω

u∗(x, y)

P∑
i=1

δ(xi, yi)u(x, y)dxdy

=

M∑
k=1

P∑
i=1

(
(bM )TAMk

yi bk
) (

(a∗)TAMk
xi ak

)
, (3.6)
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∫
Ω

u∗(x, y)

P∑
i=1

δ(xi, yi)f(x, y)dxdy =

P∑
i=1

f(xi, yi)
(
(a∗)TCMM

xiyi bM
)
. (3.7)

Hence, by de�ning

Mx =

P∑
i=1

((bM )TAMM
yi bM )AMM

xi ,

mx =

M−1∑
k=1

P∑
i=1

((bM )TAMk
yi bk)AMk

xi ak,

fx =

P∑
i=1

f(xi, yi)C
MM
xiyi bM ,

allows to write a system of algebraic equations

Mxa
M = fx −mx. (3.8)

Exactly the same procedure is followed to obtain an algebraic system of equations for
bM . This allows to perform an alternating directions scheme to extract a new couple of
XM (x) and YM (y) modes.

This formulation has several aspects that deserve to be highlighted:

1. No assumption about f(x, y) has been made other than assuming known its value
at sampling points. Indeed, both problems of either interpolating or making a tri-
angulation in a high dimensional space are circumvented due to the separation of
variables.

2. The operator Mx is composed of P rank-one updates. Meaning that the rank of such
operator is at most P . Furthermore, if a subset of measured points share the same
coordinate xi, the entire subset will increase the rank of the operator in one unity.

3. The position of the sampling points will constraint the rank of the PGD operators.
That is the reason why, even if the possibility of having a random sampling of points
is available, it is always convenient to perform a smart sampling technique such that
the rank in each direction tends to be maximized. Indeed, the higher the rank of
the PGD operator is, the more cardinality of a and b can be demanded without
degenerating into an underdetermined system of equations.

There are plenty of strategies to smartly select the position of the sampling points. They
are based on either knowing an a priori error indicator or having a reasonable estimation of
the sought response surface. Certainly, an adaptive strategy based on the gradient of the
precomputed modes could be envisaged. However, the position of the new sampling points
will depend on the response surface calculated using the previous sampling points, making
parallelization di�cult. That is the reason why latin hypercube is chosen in the present
work. Particularly, latin hypercube tries to collocate P sampling points in such a way that
the projection of those points into x and y axis are as far as possible.

3.1.2 Enhancing stability and prediction

Even though the proposed methodology generates a response surface that minimize the
distance to the sampling points, nothing has been said in the subsection 3.3 with respect
to the inference capabilities outside the sampling points. This subsection discusses the
importance of selecting properly the interpolant function for the 1D basis just like the
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possibility of changing the interpolant basis as the number of modes (or enrichements)
increases. Indeed, both strategies can be seen as smoothers outside the sampling points,
avoiding spurious oscillations out of the sample points.

3.1.2.1 Choice of the 1D basis

Up to now, nothing has been speci�ed about the basis in which each one of the one-
dimensional modes was expressed. Despite of the fact that selecting the best 1D basis is
problem dependent i.e. depends on the topology of the response surface to be captured,
there are some basis which tend to smooth the solution outside the control points. One may
think of smooth global polynomial functions like Chebychev polynomials among others. In
this subsection, we will introduce an interpolant based on Kriging techniques. Simple Krig-
ing has been used throughout history in order to get relatively smooth solutions, avoiding
spurious oscillations characteristic of high order polynomial interpolation. This phenomena
is called Runge's phenomenon. It appears due to the fact that the sampling point locations
are not chosen properly, i.e., they will not be collocated, in general, at the Gauss-Lobato-
Chebychev quadrature points. Kriging interpolants consider each point as a realization of
a Gaussian process, so that high oscillations are considered as unlikely events.

Hence, by de�ning a spatial correlation function based on the relative distance between
two points, D(xi − xj)=Dij , an interpolant is created over the separated 1D domain,

Xk(x) =

N∑
i=1

αki
N

+

N∑
j=1

λ(x− xj)

(
αkj −

N∑
l=1

αkl
N

)
,

where λ(x − xj) is a weighting function which strongly depends on the de�nition of the
correlation function, and the αi coe�cients are the nodal values associated to the xi Kriging
control points. Note that these control points are not the sampling points. We have
chosen this strategy so as to allow us to accomplish an adaptivity strategy that will be
described next. In the present work, these control points are uniformly distributed along
the 1D domain. Although several de�nitions of the correlation function exist, a Gaussian
distribution is chosen as

Dij = D(xi − xj) =
1

σ
√

2π
e−

(xi−xj)
2

2σ2 ,

where σ is the variance of the Gaussian distribution. Several a priori choices can be adopted
to select the value of the variance based on the distance between two consecutive control
points, e.g., σ = h

√
(xi+1 − xi)2. The magnitude of h should be adapted depending on the

desired global character of the support. To ensure the positivity of the variance, h should
be in the interval ]0,+∞[.

Let us de�ne now a set of C control points

xcp = [xcp1 , x
cp
2 , . . . , x

cp
C ],

and the P sampling points
xsp = [xsp1 , x

sp
2 , . . . , x

sp
P ].

Let us de�ne in turn a correlation matrix between all control points and a correlation matrix
between the control points and the sampling points as

Ccp−cpij = D(xcpi − x
cp
j ),

Ccp−spij = D(xcpi − x
sp
j ).
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Figure 3.1 � Kriging shape functions using σ =
√

(xi+1 − xi)2 for 7 control points
uniformly distributed along the 1D domain.

Under these settings, we de�ne a weighting function for each control point and for each
sampling point as

Λ = (Ccp−cp)−1Ccp−sp,
where λ(xcpi − x

sp
j ) = Λij .

If we reorganize the terms in the same way that we did in the previous section to have
a compact and close format of the shape function Nk

x, we arrive to

Xk(xspj ) =

N∑
i=1

Nk
i (xspj )αki = [Nk

1 (xspj ) . . . Nk
N (xspj )]

 αk1
...
αkN

 = (Nk
xspj

)Tak,

where each shape function is given by:

Nk
i (xspj ) =

1−
∑N
j=1 Λij

N
+ Λij .

Figs. 3.1-3.2 depict the appearance of the simple Kriging interpolants using 7 control
points uniformly distributed along the domain, for h = 1 and h = 1

3 , respectively. It can
be highlighted that both the Kronecker delta (i.e., strict interpolation) and partition of
unity properties are satis�ed for any value of h. Moreover, it is worth noting that the
higher the variance the correlation function has, the more global the shape functions are.
Furthermore, it is known that 99 per cent of the probability of a Gaussian distribution is
comprised within a interval of [m−3σ,m+3σ], being m the mean value of the distribution.
This issue explains perfectly well why the support of each Gaussian distribution takes 2
elements for the case where h = 1

3 . Indeed, the shape of the interpolants is quite similar to
standard �nite element shape functions, but with a Gaussian pro�le. The remaining 1 per
cent of probability is comprised in the small ridges happening in the middle of the elements.

In light of these results, a family of interpolants based on Kriging can be easily created
just selecting the value of the variance within the correlation function. Therefore, globality
of the support can be easily adjusted always under the framework of the partition of unity.
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Figure 3.2 � Kriging shape functions using σ = 1
3

√
(xi+1 − xi)2 for 7 control points

uniformly distributed along the 1D domain.

3.1.2.2 Modal adaptivity strategy

In a standard PGD framework, the �nal solution is approximated as a sum of M modes
or functional products, see eq. (3.2). Each one of the separated modes must be projected
onto a chosen basis to render the problem �nite dimensional. A standard choice is to select
the same basis for each one of the modes:

N1 = N2 = . . . = NM .

Despite of the fact that this choice seems reasonable, when dealing with non-structured
sparse data, it may not be such. In the subsection 3.1.1 we proved that the rank of the
separated system strongly depends on the distribution of the data sampling. Therefore,
the cardinality of the interpolation basis must not exceed the maximum rank provided
by the data sampling. Indeed, this constraint, which provides an upper bound to build
the interpolation basis, only guarantees that the minimization is satis�ed at the sampling
points, without saying anything out of the measured points. Hence, if sampling points
are not abundant, in the limit of low-data regime, high oscillations may appear out of
these measured points. These oscillations are not desirable since the resulting prediction
properties could be potentially decimated.

In order to tackle this problem, we take advantage of the residual-based nature of the
PGD. Indeed, the greedy PGD algorithm tries to enrich a solution composed by M modes,

uM (x, y) =

M∑
k=1

Xk(x)Y k(y),

just by looking at the residual that accounts for the contribution of the previous modes, as
shown in Eq. (3.8).

Therefore, an appealing strategy to minimize spurious oscillations out of the sampling
points is to start the PGD algorithm looking for modes with relatively smooth basis (for
instance, Kriging interpolants with a few control points). Therefore, an indicator in order
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to make an on-line modal adaptive strategy is required. In the present work, we use the
norm of the PGD residual,

RMP =
1√
P

√∑
i∈P

(f(xi, yi)− uM (xi, yi))
2
,

where P is the set of P measured points and f(x, y) is the function to be captured.
In essence, when the residual norm stagnates, a interpolant basis is enriched, i.e. in-

troducing one more control point and always uniformly distributed in the case of Kriging
interpolants, following

∆RMP = RMP −RM−1
P < εr.

By doing this, oscillations are reduced, since higher-order basis will try to capture only
what remains in the residual. Here, εr is a tolerance de�ning the resilience of the sPGD to
increase the cardinality of the interpolation basis. The lower εr is, the more resilient the
method is to increase the cardinality.

To better understand the method, we will quantify the error for two set of points: the
�rst set is associated to the sampling points, P,

EP =
1

#P
∑
s∈P

√
(f(xs, ys)− uM (xs, ys))2

f(xs, ys)2
,

where f(xs, ys) is assumed not to vanish and where L also includes points other than the
sampling points. This is done in order to validate the algorithm, by evaluating the reference
solution�which is a priori unknown in a general setting�at points di�erent to the sampling
ones,

EL =
1

#L
∑
s∈L

√
(f(xs, ys)− uM (xs, ys))2

f(xs, ys)2
.

Since the s-PGD algorithm minimizes the error only at the sampling points P it is
reasonable to expect that EP ≤ EL.

To test the convergence of the just presented algorithm, we consider

f1(x, y) = (cos(3πx) + sin(3πy))y2 + 4,

that presents a quite oscillating behavior along the x direction, whereas the y direction is
quadratic. We are interested in capturing such a function in the domain Ωy = Ωx = [−1, 1].

Figs. (3.3)-(3.4) show the errors EP and EL in identifying the function f1(x, y). In
this case, we consider two distinct possibilities: no modal adaptivity at all, and a modal
adaptivity based on the residual, respectively. Several aspects can be highlighted. The
�rst one is that EP (asterisks) decreases much faster when there is no modal adaptivity.
This is expected, since we are minimizing with a richer basis since the very beginning,
instead of starting with smooth functions like in the residual based approach. However,
even if the minimization in the sampling points is well achieved, when no modal adaptivity
is considered, the error out of the sampling points may increase as the solution is enriched
with new modes. Nevertheless, the residual-based modal adaptivity alleviates this problem.
As it can be noticed, starting with relatively smooth functions drives the solution out of the
sampling points to be smooth as well, avoiding the problem of high oscillations appearing
out of the sampling points.
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Figure 3.3 � EL (points) and EP (asterisk) versus the number of modes for f1(x, y),
#P = 100, #L = 1000. No modal adaptivity.

Figure 3.4 � EL (points) and EP (asterisk) versus the number of modes for f1(x, y),
#P = 100, #L = 1000. Modal adaptivity based on the residual, εr=1e-2.
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Figure 3.5 � EL of f1(x, y) varying #P for di�erent identi�cation techniques. #L =

1000.

3.1.3 Numerical results

The aim of this part is to compare the ability of sparse model identi�cation for di�erent
interpolation techniques. On one hand, the performance of standard techniques based on
Delaunay triangulation such as linear, nearest neighbor or cubic interpolation is compared.
Even though these techniques are simple, they allow to have a non-structured sampling point
set since they rely on a Delaunay triangulation. On the other hand, the results are compared
to the Sparse Subspace Learning (SSL) [Borzacchiello et al. 2017a]. The convergence and
robustness of this method is proven to be very e�ective since the points are collocated at
the Gauss-Lobato-Chebychev points. However, two main drawbacks appear considering
this method. The �rst one is that there is a high concentration of points in the boundary
of the domain, so that this quadrature is meant for functions that vary mainly along the
boundary. Indeed, if the variation of the function appears in the middle of the domain,
many sampling points will be required to converge to the exact function. The second one
is that the sampling points have to be located at speci�c points in the domain. The s-PGD
method using simple Kriging interpolants will be compared as well.

The numerical results are structured as follows: �rst two synthetic 2D functions are
analyzed; secondly, two 2D response surfaces coming from a thermal problem and a Plastic
Yield function are reconstructed; �nally, a 10D synthetic function is reconstructed by means
of the s-PGD algorithm.

3.1.3.1 2D synthetic functions

The �rst considered function is f1(x, y), as introduced in the previous section. Fig. 3.5
shows the reconstruction error (EL) of f1(x, y) for di�erent sampling points. As it can be
noticed, the s-PGD algorithm performs well for a wide range of sampling points. Neverthe-
less, the SSL method is the one presenting the lower error level when there are more than
150 sampling points.
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Figure 3.6 � EL of f2(x, y) varying #P for di�erent identi�cation techniques. #L =

1000.

A second synthetic function is de�ned as

f2(x, y) = cos(3xy) + log(x+ y + 2.05) + 5.

This function is intended to be reconstructed in the domain Ωx = Ωy = [−1, 1]. It was
chosen in such a way that it is relatively smooth in the center of the domain, whereas the
main variation is located along the boundary of the domain. Indeed, this function is meant
to show the potential of the SSL technique.

Fig. 3.6 shows the reconstruction error of the f2(x, y) function for di�erent interpolation
techniques. As it can be noticed, both SSL and s-PGDmethods are the ones that present the
best convergence properties. If the number of points is increased even more, the SSL method
is the one that presents the lowest interpolation error. They are followed by linear and
natural neighbor interpolations. Finally, the nearest neighbor method is the one presenting
the worst error for this particular case.

3.1.3.2 2D response surfaces coming from physical problems

Once the convergence of the methods have been unveiled for synthetic functions, it is very
interesting to analyze the power of the former methods by trying to identify functions
that are coming from either simulations or models popular in the computational mechanics
community. Indeed, two functions will be analyzed: the �rst one is an anisotropic Plastic
Yield function, whereas the second one is a solution coming from a quasi-static thermal
problem with varying source term and conductivity.

Fig. 3.7 shows the Yld2004-18p anisotropic plastic yield function, de�ned by Barlat et
al. in [?]. Under plane stress hypothesis, this plastic yield function is a convex and closed
surface de�ned in a three-dimensional space. Therefore, the position vector of an arbitrary
point in the surface can be easily parameterized in cylindrical coordinates as R(θ, σxy).
The R(θ, σxy) function for the Yld2004-18p is shown in Fig. 3.8, where anisotropies can be
easily seen. Otherwise, the radius function will be constant for a given σxy.
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Figure 3.7 � Barlat's Yld2004-18p function under plane stress hypothesis.

Fig. 3.9 shows the error in the identi�cation of the Barlat's plastic yield function
Yld2004-18p. As it can be noticed, the s-PGD technique outperforms the rest of techniques.
Indeed, the s-PGD is exploiting the fact that the response surface is highly separable.

As mentioned above, the second problem is the sparse identi�cation of the solution of
a quasi-static thermal problem modeled by

∇ · (η(x, t)∇(u(x, t))) = f(t), in Ωx × Ωt = [−1, 1]× [−1, 1], (3.9)

where conductivity varies in space-time as

η(x, t) = (1 + 10 abs(x) + 10x2) log(t+ 2.5) u(1, t) = 2 (3.10)

f(x, t) = 10 cos(3πt) u(−1, t) = 2, (3.11)

and the source term varies in time. Homogeneous Dirichlet boundary conditions are imposed
at both spatial boundaries and no initial conditions are required due to quasi-stationarity
assumptions.

Fig. 3.10 shows the evolution of the temperature �eld as a function of space time for the
set of Eqs. (3.9)-(3.11). It can be noticed how the variation of the temperature throughout
time is caused mainly due to the source term. However, conductivity modi�es locally the
curvature of the temperature along the spatial axis. Symmetry with respect the x = 0 axis
is preserved due to the fact that the conductivity presents a symmetry along the same axis.

Fig. 3.11 shows the performance of each one of the techniques when trying to reconstruct
the temperature �eld from certain sampling points. As can be noticed, the s-PGD in
conjunction with Kriging interpolants is the one that presents the fastest convergence rate
to the actual function, which is considered unknown. It is followed by linear and natural
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Figure 3.8 � R(θ, σxy) function for Barlat's Yld2004-18p yield function.

Figure 3.9 � EL of R(θ, σxy) varying #P for di�erent sparse identi�cation techniques.
#L = 1000. εr = 5 · 10−4.
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Figure 3.10 � Quasi-static solution to the thermal problem u(x, t).

interpolations. The SSL method presents a slow convergence rate in this case, due to the
fact that the main variation of the function u(x, t) is happening in the center of the domain
and not in the boundary.

3.1.3.3 A 10D multivariate case

In this part, we would like to show the scalability that s-PGD presents when dealing with
relatively high-dimensional spaces. Since our solution is expressed in a separated format, an
N dimensional problem (ND) is solved as a sequence of N 1D problems, which are solved
using a �xed-point algorithm in order to circumvent the non-linearity of the separation of
variables.

The objective function that we have used to analyze the properties of the s-PGD is
de�ned as

f3(x1, x2, . . . , xN ) = 2 +
1

8

N∑
i=1

xi +

N∏
i=1

xi +

N∏
i=1

x2
i ,

with N = 10 in this case.
Fig. 3.12 shows the error convergence in both sampling points (EP , asterisks) and

points out of the sampling (EL, �lled points). The L data set was composed by 3000 points,
the P data subset for the s-PGD algorithm was composed by 500 points. The number
of points required to properly capture the hyper-surface has increased with respect to the
2D examples due to the high dimensionality of the problem. Special attention has to be
paid when increasing the cardinality of the interpolant basis without many sampling points,
because the problem of high oscillations outside the control points may be accentuated.

3.1.4 Conclusions

In this work we have developed a data-based sparse reduced-order regression technique
under the Proper Generalized Decomposition framework. This algorithm combines the
robustness typical of the separation of variables together with properties of collocation
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3.1. A Multidimensional Data-Driven Sparse Identi�cation Technique: The Sparse
Proper Generalized Decomposition

Figure 3.11 � EL of u(x, t) varying #P for di�erent identi�cation techniques. #L =

1000. εr = 2.5 · 10−3.

Figure 3.12 � EL (points) and EP (asterisk) versus the number of modes for
f3(x1, x2, . . . , xN ), #P = 500, #L = 3000. Modal adaptivity based on the residual,
εr = 1e− 3.
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methods in order to provide with parsimonious models for the data at hand. The perfor-
mance of simple Kriging interpolation has proven to be e�ective when the sought model
presents some regularity. Furthermore, a modal adaptivity technique has been proposed
in order to avoid high oscillations out of the sampling points, characteristic of high order
interpolation methods when data is sparse.

The sPGD method has been compared advantageously versus other existing methods
for di�erent example functions. Finally, the convergence of sPGD method for a high di-
mensional function has been demonstrated as well.

3.2 sPGD Industrial Applications

This section aims to portrait three di�erent applications of industrial interest in which
the sPGD technique explained in section 3.1 has been succesfully applied. These three
applications are listed below:

• Subsection 3.2.1. On the use of MOR techniques applied to crash simulations. The
industrial partner Gestamp is interested in optimal car structural design since it
plays an important role to guarantee safety requirement whenever a crash occurs. In
this work, the sPGD methodology is applied to generate response surfaces of safety
indicators which depend on several geometrical parameters. These response surfaces
allow the industrial partner to modify the geometrical parameters to meet safety
requirements while not exceeding certain mass constraints. The data was provided
by Gestamp, generated with a high �delity simulation using Pam-Crash solver owned
by ESI Group.

• Subsection 3.2.2. Hybrid constitutive modeling: data-driven learning of corrections
to plasticity models. The industrial partner ESI Group is interested in correcting
existing plasticity models based on observable quantities of interest, providing phys-
ical error indicators. Therefore, the role of the sPGD in this scenario is to provide
a surrogate model of the physical error indicator as a function of the parameterized
plastic yield function correction. The best correction to the existent plastic model is
found by locating the minimum of the just created surrogate model.

• Subsection 3.2.3. Prediction of composites behavior undergoing an automated tape
placement (ATP) process through data-mining. In this case, as a part of a collab-
oration between Ecole Centrale de Nantes and Airbus group, there was a common
interested into linking the geometrical parameters de�ning a given surface with the
time needed to consolidate a new composite ply in a ATP process. The sPGD is used
to generate a surrogate model of the consolidation time with respect the geometrical
parameters de�ning the surface. The sPGD regression is compared with standard
data-mining tools as it is the case of regression trees.

3.2.1 On the use of MOR techniques applied to crash simulations

When designing a new car prototype, it is important to ensure certain safety standards
to avoid lethal injuries whenever a crash occurs. Since manufacturing a new car model is
extremely expensive, simulation becomes a very powerful tool when optimizing the structure
of the car. Fig. 3.13 portraits the intrusion towards the car symmetry plane when a lateral
crash occurs. Indeed, minimizing the intrusion of the external car structure inside the
interior cavity while limiting the maximum structure weight is of crucial interest.
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Figure 3.13 � Simulation of a lateral crash test. Contour intrusion towars the car
symmetry plane.

Figure 3.14 � Location of B-Pillar structure inside the car.

Fig. 3.14 shows two di�erent views of a B-Pillar structure. This structure is placed
between the two lateral doors and its main functionality is to reduce the intrusion inside
the car whenever a crash occurs.

Unluckily, the cost of performing a high �delity crash simulation is relatively expensive,
thus, exploring a wide range of possible B-Pillar designs becomes una�ordable in practice.
In this particular case, the in�uence of �ve di�erent geometrical parameters (thickness
and locations of B-Pillar subparts) is analyzed. Instead of following classical optimization
procedures based on parameter sensitivities, a response surface of several Quantities of
Interest (QoI) as a function of the �ve geometrical parameters is seeked.

Regarding the QoI, four di�erent spatial points placed at di�erent heights on this B-
Pillar structure will be our object of study. This four points will be named in decreasing
height order Upper (U), Middle Upper (MU), Middle Lower (ML) and Lower (L). Indeed,
this four points are placed at the same height than the head, thorax, abdomen and pelvis
of the passenger, respectively. Avoiding excessive intrusions of these four spatial points is
compulsory to guarantee that the passengers will not su�er external injuries coming from
the deformation of the vehicle structure. On the other hand, minimizing velocities/ accel-
erations also play a fundamental role to avoid internal injuries. Therefore, the capability
to predict both intrusions and velocities of a new B-Pillar design whenever a crash occurs
is of crucial interest.
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Point z t2 t1 t3 y

1 108 1.3 1.5 1.5 1.10
2 108 1.15 1.7 1.5 1.38
3 107 1.25 1.7 1.1 1.28
4 107 0.9 1.65 1.05 1.23
5 107 1.25 1.55 1.15 0.90
6 107 1.3 1.15 1.55 0.83
7 108 1.2 1.15 1.4 1.33
8 108 1.25 1.7 1 0.85
9 108 1.1 1.75 1.1 1.38
10 108 1 1.1 1.05 0.98
11 108 0.95 1.15 1.55 1.23
12 108 0.9 1.65 1.55 1.14
13 108 1.2 1.2 1.6 0.84
14 107 0.95 1.6 1.1 0.82
15 107 1.1 1.35 1.5 1.30
16 108 1.1 1.4 1.25 0.81
17 108 1.3 1.1 1.1 1.15
18 108 1.1 1.65 1.55 0.91
19 107 1.3 1.1 1.25 1.10
20 107 0.9 1.15 1.2 1.25
21 107 1 1.2 1.35 0.92
22 107 1.3 1.6 1.6 1.24

Table 3.1 � Set of Fixed Parameters for DoE

The parameter space consists of �ve independent geometrical parameters, namely z,
t2, t1, t3 and y. Fig. 3.14 (right) indicates the geometrical interpretation of each one of
the parameters, t1, t2 and t3 are related to the thicknesses of each substructure composing
the B-Pillar, whereas z and y makes reference to the length of a ductile area located at
the bottom part of the outer substructure. The Design of Experiments (DoE) consists on
22 high �delity simulations, done with PAM-Crash solver from ESI Group, where di�erent
values of the independent parameters are set as shown in table 3.1.

Having said that, the �rst response surface involves only the maximal intrusion through-
out the simulation time, thus, time is not a parameter. The second response surface concers
the temporal evolution of the intrusion along the time coordinate, hence, the time is treated
as an extra coordinate. Finally, the temporal velocity evolution at three points inside the
B-Pillar is analyzed as well. These three points are placed at a height corresponding to the
thorax, abdomen and pelvis of the passenger.

3.2.1.1 Maximum Intrusion

Fig. 3.15 shows the temporal evolution at the four positions of the B-Pillar structure for
each one of the DoE appearing in Table 3.1. As it can be seen all of them follow the main
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Figure 3.15 � Temporal evolution of the intrusion at four di�erent locations of the
B-Pillar structure.

trend, from 0 to 0.05 seconds there is a increment on the intrusion value due to the crash,
afterwards there is a relaxation of the intrusion once the main impact has �nished due to
springback e�ects.

Since the maximum intursion of the B-Pillar is going to provide a reliable safety indi-
cator, the �rst surrogate model is based on selecting the maximum intrusion at the U, MU,
ML, L points as a function of the �ve parameters de�ned as shown in eq. 3.13. To shorten
the notation, the whole set of parameters will be de�ned as shown in eq. 3.12.

p = [z, t2, t1, t3, y] (3.12)

IAM (p) = max
∀t

I(t; p,xA) (3.13)

Where point A is valid for U , MU , ML, L points.
To test the performance of the sPGD algorithm, only the maximum intrusion related to

points [1, 4, 13, 15, 17, 21] inside the DoE are taken into account to construct the regression.
The other 16 points are used as an error indicator to show how accurate the regression is.
It is important to remark that the low amount of data to build the sPGD regression forces
the algorithm to work with low order interpolation basis. Indeed, when generating such a
surrogate model, up to linear interpolations in each one of the directions will be used. More
in detail, the Greedy nature of the sPGD algorithm is used to adapt the basis for each one
of the modes i.e. the �rst mode will be constant in each direction, the second mode linear
in the �rst direction and constant in the other ones, the third mode linear in the second
direction and constant in the other ones, etc.

Fig. 3.16 shows the real versus the estimated prediction on the maximum intrusion for
Upper, Middle Upper, Middle Lower and Lower points i.e. IUM , IMU

M , IML
M , ILM , respectively.

The yellow points correspond to the ones used to build the sPGD regression, whereas the
blue points are just used to measure the power of inference of the sPGD regression. If
all points were on the red line, the surrogate model would be perfect. Nevertheless, the
dispersion of these points with respect to the red line gives us a visual indicator of how
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Figure 3.16 � Estimated versus real maximum intrusion for Upper (U), Middle Upper
(MU), Middle Lower (ML) and Lower (L) B-Pillar points. Yellow points, used in
the sPGD. Blue points, used as error indicator of the regression model.

good the surrogate model is. Indeed, the relative error based on the blue points is shown
in Table 3.2. As it can be seen, the highest error is the one present in the Lower point,
reaching a value of 4.8%.

3.2.1.2 Temporal Evolution of the Intrusion

The previous section analyzed the surrogate models based on the maximum intrusion.
However, it is also important to understand how the intrusion involves in time. Indeed,
this temporal evolution gathers the information of the maximum intrusion just like the
cumulated energy stored in the B-Pillar structure, which may be interesting to predict
possible failures of the structure. Nevertheless, the generation of the surrogate model
involving the time coordinate becomes more complex.

- Upper Middle Upper Middle Lower Lower

Rel. Error [%] 1.35 1.73 1.38 4.87

Table 3.2 � Relative Error in maximum intrusion for s-PGD when considering 6 DoE
out of 22.
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Hence, the four QoI treated in this subsection reads as shown in eq. 3.14, where the
point xA stands for either Upper, Middle Upper, Middle Lower or Lower. To be consistent
with the former subsection, in order to build the sPGD model only the time snapshoots
coming from points [1, 4, 13, 15, 17, 21] are taken into consideration. It is important to
reckon that the time coordinate experiments a rather complex behaviour compared to the
evolution along the other coordinates. However, due to the fact that more points are placed
along the time coordinate (i.e. the entire time snapshoot of the i-th DOE point is taken),
it is possible to increase the interpolation order along this time coordinate while keeping
low order in the other coordinates. For this reason, Chebychev polynomials of degree 40
are used in the time direction, while keeping either constant or linear interpolation in the
p space.

IA(p, t; xA) (3.14)

Fig. (3.17) portraits the both the error considering only the points inside the sPGD
regression and the one considering both sPGD regression points plus the ones outside the
trainning dataset. As it can be seen, the error decreases as a function of the number of
modes introduced in our sPGD approximation. The most important decay in the error is
seen in the fourth sPGD which involves a linear interpolation along p3, hence it can be
assumed that this parameter plays an important role in order to explain the variation of
the QoI inside the parameter space.

Fig. (3.18) shows the predicted temporal evolution (red) against the real temporal
evolution (blue) for a point inside the trainning set (i.e. DOE 1 left) and outside the
trainning set (i.e. DOE 22 right). As it can be seen, there is almost no di�erence between
predicted and real values for the point in the data set, i.e. blue and red curves overlap,
whereas for the point outside the data set there is a very slight di�erence between red and
blue curves. Nevertheless, points outside the trainning set present acceptable errors in this
particular case.

Analogously, �gs. 3.19-3.21 contains the same information than Fig. 3.18 but in the case
of Middle Upper, Middle Lower and Lower points, respectively. The predicted behaviour is
in good agreement with respect to the real behaviour.

3.2.1.3 Temporal Evolution of the Velocity

Another quantity of interest that is important from a safety point of view is the velocity
magnitude su�ered at certain points belonging to the body of the passenger throughout the
impact. Indeed, the velocity magnitude at three points placed at the thorax, abdomen and
pelvis heights are our subject of study, namely VT (p, t), VA(p, t) and VP (p, t), respectively.

Fig. (3.22) depicts the temporal evolution of the velocity magnitude throughout the
crash for di�erent set of parameters p. As it can be seen, there is a notable change of
this curves within the parameter space. Initially, the velocity magnitude is zero since the
car is at rest, then it starts to grow due to the impact. Hence, the main task is to be
able to predict such temporal evolution for di�erent values of the parameter space, higher
interpolation degree time against the other parameter directions is used since the variation
along the time direction is expected to be harder to capture.

Fig. (3.23) shows the convergence of the estimated solution for di�erent number of
sPGD modes. The error is measured using a L2 relative error norm. The points used in the
sPGD regression are [1, 4, 13, 15, 17, 21], the other points are left to measure the performance
of the regression. As it can be seen, the magnitude of all error indicators are acceptable
(around 1%-2%) being the highest error at the pelvis velocity. Indeed, the pelvis velocity
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Figure 3.17 � Convergence with respect number of sPGD modes for Upper (Top-
Left), Middle Upper (Top-Right), Middle Lower (Bottom-Left) and Lower (Bottom-
Right)

Figure 3.18 � Predicted temporal evolution (red) versus real temporal evolution
(blue) for a Upper point inside the trainning set (left) and outside the trainning set
(right).
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Figure 3.19 � Predicted temporal evolution (red) versus real temporal evolution
(blue) for a Middle Upper point inside the trainning set (left) and outside the train-
ning set (right).

Figure 3.20 � Predicted temporal evolution (red) versus real temporal evolution
(blue) for a Middle Lower point inside the trainning set (left) and outside the train-
ning set (right).

Figure 3.21 � Predicted temporal evolution (red) versus real temporal evolution
(blue) for a Lower point inside the trainning set (left) and outside the trainning set
(right).
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Figure 3.22 � Temporal evolution of the thorax, abdomen and pelvis velocity mag-
nitude throughtout the crash simulation for di�erent values of the parametric space.
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Figure 3.23 � Convergence with respect number of sPGD modes for thorax velocity
(Top-Left), abdomen velocity (Top-Right) and pelvis velocity (Bottom)

is the one presenting the highest error since the variation of the curve along the parameter
space is the highest one as well.

Figs. (3.24)-(3.26) shows the predicted temporal evolution (red) versus the real tempo-
ral evolution (blue) for velocity magnitudes inside the trainning set (left) and outside the
trainning set (right). It can be notice how the predicted curve is closer to the real curve
when the point is inside the trainning data set. Nevertheless, the prediction outside the
trainning point also captures the main characteristics of the real curve.

3.2.1.4 Conclusions

In the light of the results, the sPGD methodology could be seen as an alternative route
to create a response surface related to crash simulations. These response surfaces are
ultimately used by the engineers in order to decide whenever a variation of a given parameter
is important to satisfy the problem constraints. In this particular case, 22 high �delity
simulations are performed, whereas only 6 high �delity simulations are used to construct
the sPGD regression model. Considering the low error committed at the DoE points left
outside the regression model con�rms that only few high-�delity simulations are required
to build a reasonable response surface.
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Figure 3.24 � Predicted temporal evolution (red) versus real temporal evolution
(blue) for a thorax velocity magnitude inside the trainning set (left) and outside the
trainning set (right).

Figure 3.25 � Predicted temporal evolution (red) versus real temporal evolution
(blue) for a abdomen velocity magnitude inside the trainning set (left) and outside
the trainning set (right).

Figure 3.26 � Predicted temporal evolution (red) versus real temporal evolution
(blue) for a pelvis velocity magnitude inside the trainning set (left) and outside the
trainning set (right).
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3.2.2 Hybrid constitutive modeling: data-driven learning of cor-
rections to plasticity models

Plenty of e�ort has been dedicated throughout history to create very accurate models, as
an example the reader may think about all di�erent models formulated, for instance, in
hyperelasticity like Neo-Hookean, Ogden, Saint-Venant. Another framework in which there
are plenty of constitutive models is the one related to plasticity where we can highlight
Tresca, Von Misses or Hill criterions among others. However, we also know that no model
is perfect, it is always subjected to certain hypothesis. Indeed, even if you can calibrate a
model perfectly well, no garantee is given that for another set of experiences di�erent from
the calibration ones, the model is going to provide you a perfect result.

The main aim of this work is to provide an alternative route to enhance existing models
including information coming from data, the so called data-driven correction. Particularly,
special e�ort is placed into the calibration of plastic yield functions.

The data driven correction is quite simple, imagine that our departure point is a given
modelM(p). It is important to keep in mind that we are looking for a enhancement of the
previous model, therefore a divergence model D(c), which applies to the �rst model, has to
be de�ned. Therefore, reality (R) is tried to be approximated as shown in eq. (3.15).

R ≈M(p) +D(c)
∣∣
p

(3.15)

If we want to be truly objective, since our measurement capabilities will be constraint to
some observable quantities, everything will depend from the set of experiences or observable
quantities S, as shown in eq. (3.16).

R
∣∣
S ≈M(p) +D(c)

∣∣
p,S (3.16)

It is worth to mention also that the way we de�ne the observables S could have an im-
portant impact over the calibration of the set of parameters, c. Ideally, a set of experiences
such that the entire parametric space c is not singular has to be de�ned. Otherwise, it may
lead to spurious modes in such parametric space.

3.2.2.1 Problem Statement

In the present work, we will try to capture the plastic yield function behind a given exper-
iment. Just as a recall, a plastic yield function is a hypersurface living in the stress (σ)
space. Typically , this surface is parameterized using a �nite set of parameters (p) given
by the �rst order model (M(p)). Moreover, it will depend also on the correction model
(D(c)), therefore, a general plastic yield function can be written as shown in eq. (3.17).

FY (σ; p, c) = 0 (3.17)

For the sake of simplicity, but without loosing generality, we will constraint our set of
experiences to plane stress hypothesis. Therefore, our plastic yield function is de�ned in a
three dimensional space corresponding to the three active stress components (σxx, σyy, τxy).
Moreover, it is relatively easy to express it in spherical coordinates as shown in eqs. (3.18),
since the plastic yield function is normally a convex closed surface.

σxx =Rcos(α)sin(β)

σyy =Rsin(α)sin(β)

τyy =Rcos(β) (3.18)
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Figure 3.27 � Di�erent views of Barlat Yld2004-18p plastic yield function. Colours
are τxy.

Where R(α, β) function de�nes the radius in spherical coordinates for any possible
angle. Therefore, a parameterization of R(α, β; p) directly determines the shape of FY
whenever a model without corrections is considered.

In this very �rst work, we will work with synthetic data, since the main objective is to
show the potential of the algorithm. Thus, reality (R) is modeled using a Barlat Yld2004-
18p plastic yield function as shown in �g. (3.27).

The �rst model (M) involves a quadratic Hill plastic yield function as shown in eq.
(3.28). As it can be seen, this yield criterion presents a parameterization based on four
coe�cients, i.e. (#p = 4).

FHY (σxx, σyy, τxy;F,G,H,N) = Fσ2
yy +Gσ2

xx +H(σxx − σyy)2 +Nτ2
xy − σ2

0 (3.19)

Fig. (3.28) depicts the shape of a quadratic Hill yield criterion when F = 2.1, G = 1.8,
H = 0.7 N = 1.9. As it can be seen, convexity is ful�lled and it de�nes a smooth closed
surface in the stress space.

The divergence model (D(c)) involves a correction of the �rst model. In this particular
case, this correction is done involving a set of 8 control points distributed along the plane
τxy = 0, plus another degree of freedom which relates to the movement of the maximum
shear points de�ned in the line (σxx = 0, σyy = 0), hence (#c = 9). The connexion between
all degrees of freedom is done by means of a C1 continuous shape functions, also known
as natural interpolation. Fig. (3.29) portraits the impact of moving one degree of freedom
in D(c) on the quadratic Hill yield function depicted in �g. (3.28). As it can be seen,
the maximum of the perturbation is achieved where the degree of freedom is placed and
the magnitude is smoothly decreasing being minimum when the neighbouring degrees of
freedom are reached.

Eq. 3.20 provides an error indicator which is able to quantify the discrepancies between
the results simulating the set of experiences S and the results provided by the real exper-
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Figure 3.28 � Di�erent views of quadratic Hill plastic yield function. Colours are
τxy. F = 2.1, G = 1.8, H = 0.7 N = 1.9.

Figure 3.29 � Perturbed quadratic Hill plastic yield function moving only one dof of
D(c). Colours are the magnitude of the perturbation. F = 2.1, G = 1.8, H = 0.7

N = 1.9.
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iment. In this particular case, we select to measure the error using the strain �eld, but
we could have done with the displacement �eld as well. If the �rst order model is already
calibrated, the only parametric space that could vary is the one related to the divergence
model.

ES(c) =

#S∑
s=1

∫
ts

∫
xs

||εssim(x, t, c)− εsref (x, t)||dxdt (3.20)

The main idea is to build a response surfaces (ES(c)) to characterize the parametric
spaces based on a existing set of experiences. Once the response surface is built, the global
minimum of the response surface is going to provide the best candidate in the parametric
space which is able to reproduce the set of experiences. Moreover, it is important to recall
that our reality (R) comes from a simulation using a Barlat Yld2004-18p, therefore, even if
this quantity is not used in practice, we can always measure the error in the reconstructed
plastic yield surface as shown in eq. (3.21). Indeed, this last error indicator is used to check
if our identi�ed correction presents less deviation than the �rst order model.

EFY (c) =

∫
α

∫
β

||Rref (α, β)−Rsim(α, β; c)||dαdβ (3.21)

Indeed, a perfect set of experiences will be the one providing a monotonic ratio between
EFY (c) and ES(c), ensuring that the minimum in the strain error measure corresponds
with the minimum in the plastic yield error measure. Otherwise, it will mean that our set
of experiences may not be sensitive to certain variations in the parametric space.

3.2.2.2 Numerical Results

Two di�erent set of quadratic Hill criterions have been used as a starting point in our
perturbation model, H1 andH2. The �rst one is already quite close to the Barlat's criterion,
since it has a error EH1

FY = 1.57, whereas the second one presents an error of EH2

FY = 24.9.
The parameter space to create both functions are F1 = 2.1, G1 = 1.8, H1 = 0.7 N1 = 1.9

and F2 = 2.3, G2 = 2.0, H2 = 0.8 N2 = 1.7, respectively. Fig. 3.30 portraits the error
between the H1 criterion and the Barlat Yld2004-18p projected in the H1 criterion plastic
surface.

Regarding the set of experiences (S) to calibrate the models, we have chosen to use a
set of relatively simple tests in a squared domain, Ω = [0, 1] × [0, 1]. The set of boundary
conditions is speci�ed in eqs. 3.22. Hence, varying the both tractions t1 and t2, di�er-
ent regions of the stress space inside the piece of solid are explored. Indeed, 40 di�erent
experiments have been included in order to create ES(c).

u(0, y) = 0

v(x, 0) = 0

t(1, y) = t1

t(x, 1) = t2 (3.22)

In order to build the response surfaces EH1

S (c) and EH2

S (c), 1000 simulations, randomly
selecting the parametric space, have been done for each case. Each realization of the para-
metric space follows a uniform distribution from [−0.1, 0.1] in the H1 case and [−0.15, 0.15]

in the H2 case since we expect a major correction.

98



3.2. sPGD Industrial Applications

Figure 3.30 � Di�erent views of H1 plastic yield function. Colours are missmatch
between the H1 criterion and the Barlat Yld2004-18p. EH1

FY = 1.57.

Figure 3.31 � Di�erent views of H2 plastic yield function. Colours are missmatch
between the H2 criterion and the Barlat Yld2004-18p. EH2

FY = 24.9.

99



Chapter 3. Data Completion techniques

Figure 3.32 � Error in the reconstruction EH2+DD
S (c) using half of the points in the

data base for trainning.

Several options could be adopted to reconstruct the entire response surface. Though
non-structured interpolation techniques based on Delaunay triangularization can be used,
they will su�er when the dimensionality of the parametric space increases. In this particular
case, a non-linear regression technique called Sparse Proper Generalized Decomposition is
used. It strongly relies on the separation of variables to circumvent the problem of high
dimensional spaces, just like in a collocation method to build relatively smooth solutions
from the available dataset. Indeed the main objective is to try to capture the whole response
surface using as less points as possible. By doing that, instead of performing an standard
minimization procedure, we will infer the minimum once the sPGD response surface is built.
Therefore, the sPGD algorithm is applied to half of the points previously precomputed in
EH2+DD
S (c). The other half of the points are used to quantify the error in the prediction

of the surface.
As it can be seen in �g. (3.32) the response surface presents 7 percent of mean relative

error. This error could be decreased easily if more sample points are added to the sPGD
algorithm.

Once the response surface has a continuous and separated representation, the minimum
is searched by employing a line search sequentially in each one of the separated directions.
Several initialization points at which the line search algorithm is started are selected ran-
domly to almost ensure the globality of the minimum.

Fig. (3.33) shows the error when the yield surface H1 is corrected with the data driven
correction. As it can be seen, the �nal reconstructed error EH1+DD

FY , has been reduced with

respect to the EH1

FY error, passing from 1.57 to 1.27. Indeed, a 19 per cent of improvement
has been achieved with the data driven correction for this particular case.

Fig. (3.34) shows the error when the yield surface H2 is corrected with the data driven
correction. In this particular case, the �nal reconstructed error EH2+DD

FY has been reduced
as well from 24.9 to 4.63. Therefore, a 81 per cent of improvement has been produced in
this particular case.
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Figure 3.33 � Di�erent views of H1 +DD plastic yield function. Colours are miss-
match between theH1+DD criterion and the Barlat Yld2004-18p. EH1+DD

FY = 1.27.

Figure 3.34 � Di�erent views of H2 +DD plastic yield function. Colours are miss-
match between theH2+DD criterion and the Barlat Yld2004-18p. EH2+DD

FY = 4.63.
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Figure 3.35 � Cumulated strain error between Barlat's and Hill in top and between
Barlat's and Hill plus data correction in bottom.

Finally, a �nal simulation of a bar with the two right and left extremes campled in
which a uniform vertical negative distributed load in both bottom and top sides of the bar
is acting. Fig. (3.35) shows the cumulated strain error between Barlat's and Hill's yield
functions in the top. Bottom �gure shows the error between Barlat's and Hill's plus data
driven correction yield functions. As it can be seen, the error in the strain �eld is reduced
when considering the correction. However, this error does not go to zero since the correction
does not reproduce perfectly well Barlat's criterion.

3.2.2.3 Conclusions

In the light of the results, data driven correction importance is higher when the model is less
accurate since the very beginning. An alternative route based on data completion techniques
in order to circumvent the problem of minimizing a function in the high dimensional space
is proposed in this work. The sPGD algorithm seems to be a suitable candidate to generate
response surfaces within this model correction framework, where both non-structured data-
set and high dimensional spaces arise as soon as a rich correction spaces are considered.
Once the discrepancy error response surface is built, its minimum provides a good candidate
to enrich the existing model, the same way it will be provided by the minimum of a standard
optimization algorithm.
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Figure 3.36 � Sketch of the automated tape placement (ATP).

3.2.3 Prediction of composites behavior undergoing an ATP pro-
cess through data-mining

Consolidation of preimpregnated preforms, e.g. sheets, tapes, constitutes one of the main
composite forming processes for manufacturing structural parts. Among the vast variety of
technological solutions available, the automated tape placement �ATP� is gathering a lot
of interest due to its versatility and its capacity to avoid the use of autoclave.

Fig. 3.36 ilustrates how a tape is placed and progressively welded on the substrate
consisting of the tapes previously laid-up. The welding of two thermoplastic layers is ful�lled
whenever speci�c physical conditions are achieved: an almost perfect contact between layers
(intimate contact) and a su�cient temperature enabling molecular di�usion within the
process time window, while avoiding thermal degradation. Because the characteristic low
thermal conductivity of usual resins, an intense local heating is usually considered (laser,
gas torches, ...) in conjunction with a local pressure applied by the consolidation roller
moving with the heating head. In this process particularly, heat plays a double role, �rst it
enhances molecular mobility and secondly, the decrease of the material viscosity with the
temperature increase, facilitates the squeeze �ow of the heated asperities located on the ply
surfaces under the compression applied by the consolidation roller.

Subsubsection 3.2.3.1 proposes a set of surface descriptors able to characterize the
evolution of the degree of intimate contact during processing. That knowledge is crucial for
the online process control in order to maximize both productivity and part quality. Ideally,
a response surface linking the geometrical descriptors together with the consolidation degree
would be interesting from an industrial point of view. For that purpose we discuss di�erent
surface descriptors and di�erent meta-modeling strategies based on either regression trees
or sPGD algorithm presented in section 3.1. Details on the consolidation simulation will
be skipped since the main aim of this section is to focus on sPGD applications. Therefore,
the time required to consolidate a given material surface will be given as an input to the
meta-modeling algorithms.

Once a simulation of the ATP process is performed on a set of real surfaces, the output
of interest, the consolidation time, time require to ful�ll total contact between two adyacent
layer, is intended to be expressed from few geometrical parameters describing the surface
with respect to the physics considered (here the heating and squeeze �ow). Then, both
surrogate modeling approaches, based on either regression trees or sPGD, are then compared
and validated is subsections, 3.2.3.2 and 3.2.3.3, respectively.
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3.2.3.1 Surface descriptors

Roughness parameters were considered in many works [Dagnall 2014, Bhushan 2001,
Torquato 2002]. ISO 16610-21 provides an insight about the way of addressing surface
analysis by di�erentiating waviness (associated to the macro-scale) and roughness (related
to the micro-scale). A gaussian �lter (as ISO 16610-21 recommends) is considered for that
purpose. Thus, if Z represents the surface height, the ones related to the waviness and
roughness are denoted respectively by Zw and Zr, according to

Z = Zw + Zr. (3.23)

Figure 3.37 depicts for six pro�les extracted from a real prepreg by using a pro�lometer,
their macro-scale waviness and micro-scale roughness.

Inspired by the fact that most of di�usive transport phenomena are induced by curva-
ture, we consider in the present work the curvature of the surface as a potential descriptor
of the surface with respect to the crushing time where the squeezing �ow occurs. Intuitively,
we can associate low curvature as large plateau of the surface topography. Squeezing such
a large plateau under the e�ect of the applied pressure is di�cult since all the the material
must �ow. On the contrary, a surface exhibiting high curvature can be visualized as having
many thin pics, that easily �ows to �ll the neighbor valleys when compressed, as sketched
in Fig. 3.38.

For better quantifying the size e�ect we consider at time t the rectangular domain
representing an asperity Ωt = [−Lt/2, Lt/2]× [−Ht/2, Ht/2] occupied by a Newtonian �uid
characterized by a viscosity η, with, Lt � Ht. This element results from the compression
of the initial rectangular element Ω0 = [−L0/2, L0/2]× [−H0/2, H0/2], with HtLt = H0L0

ensuring the �uid incompressibility. We assume that on the upper boundary z = Ht/2

a normal force applies F . The associated compression rate will be noted by W (see Fig.
3.39). Assuming lubrication theory hypothesis, the applied force and the compression rate
verify the relation,

F =
WηL3

t

H3
t

, (3.24)

where F is the force per unit depth. This proves that for the same compression rate and
thickness evolution, the higher is the asperity length Lt the more intense force F must be
applied, or equivalently, the same force squeezes faster thin asperities.

Thus, curvature seems to be a key parameter describing the surface and with a clear
physical content in what concerns the squeezing �ow leading to intimate contact. However,
that curvature can be de�ned, in real surfaces, and more particularly in pre-impregnated
composites, at di�erent scales. Thus, in what follows and inspired by ISO 16610-21, we will
consider the curvature associated with both the macroscopic waviness and the microscopic
roughness, and it is expected the former, associated with larger space scales, controlling
the slow squeezing dynamics of the process. Intuitively, optimal consolidation is expected
to be associated with negligible macro-curvature and very high micro-curvature.

Appart from the curvature, other potential geometrical parameters are also considered:
the volume of �uid as well as the slope (�rst derivative of the surface pro�le) at both the
macro and micro scales. Those parameters are expressed from:

• Macro-slope: Z ′w, with •′ the �rst derivative.

• Macro-curvature de�ned from the standard deviation of the Z
′′

w according to

κw =

∣∣∣∣σ(Z ′′w)

σ(Zw)

∣∣∣∣ , (3.25)
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Figure 3.37 � Di�erentiating waviness and roughness of six real surfaces
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Figure 3.38 � Squeezing rectangular �uid volumes representing asperities of di�erent
length.

Figure 3.39 � Squeezing a rectangular �uid volume representing an asperity.
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where σ refers to the standard deviation, and •′′ the second derivative.

• Micro-slope: Z ′r.

• Micro-curvature

κr =

∣∣∣∣σ(Z ′′r )

σ(Zr)

∣∣∣∣ . (3.26)

• The normalized volume of �uid

A =

∫
Zdy

Amax
, (3.27)

with Amax the maximum value of A for the di�erent considered surfaces.

In what follows, and from these tentative set of parameters, we are trying to express the
dependency of the crushing time with respect to the surface geometry, the last described
from the above parameters. For that purpose, �rst we consider data-mining techniques, in
particular "decision trees" (freely available in several softwares), due to its ability to classify
and to generate regressions. Thus, on one hand we expect to understand the relevance of
these parameters, their relative signi�cance, and on the other hand, after validating its
relevance and completeness, estimate the crushing time for any other surface described
from another value of the set of geometrical parameters.

An alternative route to generate such a response surface relating the crushing time
and a set of geometrical parameters easily accessible and allowing a non ambiguous de-
termination of the output of interest (i.e. the same parameters cannot be associated with
di�erent values of the output), consists of de�ning a multidimensional polynomial relat-
ing both, inputs (geometry) and output (consolidation indicator, here the crushing time).
However multidimensional interpolation or approximation can su�er of the so-called curse
of dimensionality.

In the sequel, two di�erent tools are used to generate the response surface of the crushing
time as a function of the geometrical parameters, namely, decision trees and sparse Proper
Generalized Decomposition.

3.2.3.2 Consolidation modeling by decision trees based regression

We consider a set of M = 1359 surface pro�les extracted from 16 real di�erent pre-
impregnated composite parts, and run an ATP simulation on each pro�le to obtain the
time evolution of the intimate contact. The analyzed pro�les and the time evolution of the
intimate contact are depicted in Fig. 3.40.

The data-set consisting of the crushing time (the one at which an almost perfect con-
tact is attained) and the 5 geometrical parameters previously introduced (micro and macro
curvatures, micro and macro slopes and volume of material) was used to create the searched
regression relating the crushing time with the surface geometrical parameters. Figure 3.41
depicts the obtained results where it can be noticed that as expected the macro-curvature
appears as the most relevant parameter for explaining processability. The obtained regres-
sion has a reliability of 91, 43%, that correspond to the expected success when predicting
the target.

To validate the procedure, a tree-based regression was performed by using a part of the
available data ( training data), and then comparing the predictions with the data for the
remaining surfaces. In order to quantify the predictability capabilities we de�ne the error ε

ε =

√√√√√√∑
i∈S

(
trefi − testi

)2

(
trefi

)2 , (3.28)
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Figure 3.40 � Analyzed surfaces and their crushing time evolution.

Figure 3.41 � Parameter weights explaining the degree of intimate contact based on
decision tree
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Figure 3.42 � Error versus number of surfaces considered for de�ning the tree-based
regression

where S is the set of surfaces that were not involved in the regression model construction,
and trefi and testi are respectively the reference crushing time (obtained by simulating nu-
merically the squeezing process) and the one estimated by using the repression model, both
related to each surface i ∈ S.

Figure 3.42 shows the evolution of error ε for estimating the crushing time depending on
the number of surfaces used to build the regression tree. As expected, this error decreases
by increasing the number of surfaces used for the model training. It can be noticed that the
error stagnates (of about 4%) when considering more than 40% of the available surfaces in
the regression construction.

3.2.3.3 Consolidation modeling by sPGD based regression

This part aims at comparing the tree-based regression with the one obtained by using the
sparse Proper Generalized Decomposition �sPGD� previously introduced in 3.1. The main
advantage of the last is its versatility and moreover, it becomes fully combinatorial with
respect to tree-based regression in which the curse of dimensionality was circumvented by
de�ning a sequence of the di�erent branches constituting the tree.

Manifold learning allows clustering surfaces with respect to the output of interest, here
the crushing time, as Fig. 3.43 reveals, where color is related to the magnitude of the
crushing time. For the sake of visualization we considered just three of the �ve involved
parameters for the representation.

Now, the sPGD looks for approximating the crushing time Ct depending on the �ve
selected parameters: κw, κr, Z ′w, Z

′
r & A; in the separated form

Ct(κw, κr, Z ′w, Z ′r, A) ≈
C∑
i=1

F 1
i (κw) · F 2

i (κr) · F 3
i (Z ′w) · F 4

i (Z ′r) · F 5
i (A), (3.29)

where the so-called modes F ki , depending on the di�erent parameters, are approximated by
using 1D-Kriging interpolants.

The solution obtained by using the sPGD is then compared to the one resulting from
tree-based regression, using the same error indicator ε previously introduced in Eq. (3.28)
when considering 50% of the surfaces for constructing the model.
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Figure 3.43 � Surface clustering and multidimensional visualization in a 3D space.

Fig. 3.44 depicts the evolution in the predictions obtained from the sPGD depending on
the number of modes considered in the PGD separated representation. Stars represent the
error for the surfaces that served to construct the approximation, that is not zero because
the considered approximation (using 12 kriging control point in each direction) is unable to
ful�ll a perfect interpolation of all the training points. Circles are used when considering all
the surfaces, and as expected it is a bit higher than the previous one (that only considered
the surfaces used for constructing the nonlinear sPGD-based regression). However, the
error gap is quite small, and as in the case of the tree-based regression, the error related to
the sPGD approach stagnates around 5% error.

Now, taking into account that surfaces exhibit a noticeable clustering, as previously
discussed and seen in �gure 3.43, we could de�ne a sPGD operating at each cluster level.
First using the k-means technique based on the macro-curvature that is expected having
the more important e�ect on the intimate contact evolution, surfaces were grouped in the
three clusters depicted in Fig. 3.45.

When applying local sPGD approximation at the level of each cluster the error reduces
signi�cantly as Fig. 3.46 proves. Indeed, each cluster presents a weaker non-linearity
compared to the global problem, thus, the task entrusted to sPGD algorithm for each
cluster is easier than the global one.

3.2.3.4 Conclusions

The main aim of the present work was to e�ciently predict composite processability by
evaluating the intimate contact from few geometrical parameters easily accessible. From a
data-base consisting of thousands surface pro�les, consolidation was simulated by solving
numerically, by using the PGD, the heating and squeeze �ow coupled problem. Curvature
was expected being of major relevance in the process. Data-assimilation techniques allowed
to con�rm this hypothesis and also to create a regression model relating the output of
interest (the crushing time at which the contact becomes almost perfect) with a set of �ve
geometrical parameters. Tree-based regression was considered for that purpose, and the
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Figure 3.44 � Error when using sPGD-based approximation with 50% of the surfaces
for de�ning the regression model.

Figure 3.45 � Surface clusters in which the local sPGD applies. Di�erent clusters
are based on the yellow points.

Figure 3.46 � Error evolution in each cluster for estimating the data that served
to construct the model (Mean PGD Error) and the total set of data (Mean Total
Error)
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evaluated error between the estimated crushing time and the one simulated di�er of about
5% proving the potential of the proposed approach.

Another route with greater physical signi�cance was implemented, the one consisting of
a nonlinear regression based on a multidimensional polynomial approximation. In order to
address the two main issues encountered, �rst the sparse available data in the parametric
space and second its multidimensional nature, we used a sparse variant of the PGD-based
approximation that combined with an adaptive kriging approximation in the di�erent para-
metric dimensions allowed to achieve accuracies of the same order of magnitude than the
ones obtained by using tree-based regression. Moreover, the accuracy was enhanced when
considering local sPGD-based nonlinear regression at the level of surface clusters, the last
constructed by making use of a classi�cation strategy (e.g. k-means) with respect to the
output of interest (here the crushing time).

3.3 Applications of Compressed Sensing in Computa-

tional Mechanics

Compressed sensing is a signal compression technique with very remarkable properties.
Among them, maybe the most remarkable one is its ability of overcoming the Shannon-
Nyquist sampling theorem. In other words, it is able to reconstruct a signal at less than
2Q samplings per second, where Q stands for the highest frequency content of the signal.

This property has, however, important applications in the �eld of computational me-
chanics, as we analyze in this section. We consider a wide variety of applications, such as
model order reduction, manifold learning, data-driven applications and nonlinear dimen-
sionality reduction. Examples are provided for all of them that show the potentialities of
compressed sensing in terms of data completion techniques in the �eld of computational
mechanics.

In this work, we address the problem of the reconstruction of a parametric so-
lution from a coarse sampling, but from a di�erent perspective. Compressive sens-
ing provides a solid framework for performing random samplings. There is a vast
literature on compressive sensing, extensively used in data and image analysis (see
[Kutz 2013, Mangan et al. 2016, Kaiser et al. 2018] and the references therein). It has re-
cently attracted the interest of the modeling and simulation scienti�c communities to works
like [Brunton et al. 2016]. In subsection 3.3.1, we �rst revisit the main concepts related to
compressive sensing. Subsection 3.3.2 applies this methodology to generate response sur-
faces of parametric models. Subsections 3.3.3 and 3.3.4 presents and discusses some other
applications related to model order reduction and transient problems, respectively.

3.3.1 Overview of compressed sensing

Most of nonlinear dimensionality reduction techniques consider least-squares �tting of the
data. However, compressed sensing is based in the use of the L1 norm instead. As described
in [Kutz 2013], there is a subtle link between sparsity and the use of the L1 norm. When
considering curve �tting, the use of standard L2 norms magni�es the importance of outlying
points because of the squared norm. The impact of these outlying points in the �tted curve
can be signi�cant.

In the same spirit, the solution of underdetermined algebraic systems is a tricky issue
because they represent an in�nite number of solutions. As illustrated in [Kutz 2013], the use
of the pseudo-inverse produces a fully populated solution vector whereas when considering
the �Matlab� backslash, the obtained solution contains many zero entries, so that it results

112



3.3. Applications of Compressed Sensing in Computational Mechanics

to be sparse. When solving the problem with L2 and L1 optimizations (trying to obtain
the minimum norm solution), the former becomes much less sparse than the last. In the
case of overdetermined systems the same tendencies can be observed.

Thus, from a purely engineering viewpoint, L1-norm can be associated to sparsity. For
this reason the L1 norm was considered as an appealing candidate for addressing signal
reconstruction. It is able to overcome the Nyquist-Shannon sampling theory that states
that for recovering a signal, one must sample at twice the rate of the highest frequency
involved in the signal.

Let us consider a vector f , in the usual space or time domains, and its counterpart in
a domain in which it should accept a sparse representation, i.e., its vector counterpart c

contains many zeros. These spaces are in general the ones related to frequency (Fourier
or discrete cosines transforms) or the ones related to multi-resolution wavelets, among
many other possible choices. We denote by T the matrix making possible this discrete
transformation, i.e.,

Tc = f . (3.30)

Since vector c is expected to have many zero entries (as soon as it corresponds, by
assumption, to a space in which the signal becomes sparse), one could expect that its
expression could be determined by employing only some rows of matrix T and vector f .
This implies solving the resulting underdetermined system making use of a L1-norm based
optimization.

The choice of such rows can be made in di�erent ways. However, the most usual one
consists of a random selection. From a matrix perspective, such extraction simply consists
of de�ning a diagonal matrix, with unit entries at the rows we want to extract. If the set
of rows to be extracted is denoted by S, the extraction matrix E is de�ned from{

Eii = 1 if i ∈ S,
Eij = 0 otherwise.

Rows containing only zeros are then eliminated from the matrix, thus generating a rectan-
gular one, here denoted as E.

The solution of problem (3.30) can thus be approximated by that of the underdeter-
mined system

ETc = Ef , (3.31)

by using a L1-norm based optimization.
In sum, the two main ingredients to succeed whenver using a compresive sensing tech-

nique are: (i) the use of an adequate space in which the solution of the problem at hand is
expected to exhibit sparsity, and (ii) the solution of the underdetermined problem by using
a L1 norm.

Compressed sensing is at the origin os the so-called �single pixel camera�. In it, instead
of acquiring the global image information, i.e., a pixel vector f , to be then compressed, only
a few of its entries are acquired, namely Ef . As soon as vector c is calculated by solving
Eq. (3.31), the whole solution can be reconstructed from Eq. (3.30).

In the sequel, to solve the system of equations (3.31) we have preferred to employ the
least absolute shrinkage and selection operator, LASSO, method [Tibshirani 1996]. Just as
a recall, LASSO solves a minimization problem that involves an L2- minimization of the
system of equations plus a penalty term involving a L1-norm of the unknown �eld,

min
c

(||ETc−Ef ||2L2 + λ||c||L1).
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This simple modi�cation of the original compressed sensing procedure has revealed to avoid
some of the numerical problems associated with the solution of an under-constrained sys-
tem, providing a new coordinate system such that the solution is sparse. Its numerical
performance is analyzed in subsubsection 3.3.1.1 below.

3.3.1.1 Numerical Performance of the LASSO scheme

The functional that the LASSO algorithm seeks to minimize does not have a closed-form
solution. Hence, an iterative algorithm has to be used in order to �nd the minimum of
the functional, i.e. a steepest descent method. When using LASSO, there is a numerical
parameter called the relative tolerance, which controls the maximum admisible di�erence
between two iterations of the steepest descent method. If the di�erence between two it-
erations is smaller than the relative tolerance, the iterative algorithm stops. Generally
speaking, the smaller the relative tolerance, the higher number of iterations are required,
but the solution will be more accurate. Fig. 3.47 shows the relative tolerance of LASSO
method versus solution error in logarithmic scale. The colors of the points represent the
time, in seconds, required to solve the underdetermined system by means of LASSO. As it
can be noticed, the lower the relative tolerance, the lower error in the solution is obtained.
Yet, the time to solve the system increases. In this particular case, a reconstruction of the
temporal evolution of a vector u(t) that evolves with time is intended to be reconstructed
from few snapshots. The number of spatial snapshots ui to build the LASSO system was
10 out of 75 total time steps. The solution error is measured by

εU =
1

N
||û− ûR||L2,

where ûR is the reference solution, which is assumed to be the one of the usual time
marching approach. N represents the number of total unknowns.

At the end of the day, a compromise between the solution error and computational
cost should be accomplished. The quality of the reconstructed solution depends also on the
number of snapshots. Fig. 3.48 shows the number of snapshots versus solution error in log-
arithmic scale. The legend represents the time required to solve the LASSO minimization.
The relative tolerance is set to 0.8e− 5. Obviously, the more snapshots ui we consider, the
more accurate is the solution and less time is required to solve the system of equations.

In our cases, a relative tolerance of 1e−5 provides good results. If the relative tolerance
is set to 1e − 6, it will provide even better results in terms of error, but it will take more
time to minimize the functional. In this particular case, the Discrete Cosinus Transform
(DCT) provided good results as plenty of coe�cients in the new basis are equal to zero.
Fig. 3.49 shows the DCT coe�cients solving the entire system of equations (red) and the
ones obtained after minimizing LASSO (blue) with a relative tolerance of 1e − 4. As it
can be noticed, there are some di�erences between the red and blue curves, meaning that
the iterative algorithm has �nished before reaching the proper minimum of the functional.
Fig. 3.50 shows how imposing a smaller tolerance will provide better results. Of course,
the price to pay is that the LASSO minimization takes more time.

3.3.2 Response surface generation by means of compressed sensing

As discussed in the introduction, parametric solutions of the type u(x, t,µ)�where µ rep-
resents the set of parameters in the problem�obtained by the (o�-line) application of PGD
techniques are extremely valuable for conducting (on-line) real-time simulations as well as
optimization, inverse analysis, simulation-based control and uncertainty propagation under
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Figure 3.47 � Relative Tolerance of LASSO method versus solution error in logarith-
mic scale. The legend represent the time, in seconds, required to solve the LASSO
minimization. 10 out 75 time steps are sampled.

Figure 3.48 � Number of snapshots versus solution error in logarithmic scale. The
legend represents time, in seconds, required to solve the LASSO minimization. Rel-
ative tolerance set to 1e− 5.
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Figure 3.49 � DCT coe�cients at a given spatial node with a bad tolerance in
LASSO. (Relative tolerance 1e-4).

Figure 3.50 � DCT coe�cients at a given spatial node equation with a good tolerance
in LASSO. (Relative tolerance 0.8e-5).
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Figure 3.51 � Parametric solution u(x, κ) of Eq. (3.32).

real-time constraints [Chinesta & Cueto 2014, Cueto et al. 2016]. However, the standard
PGD constructor is strongly invasive with respect to the use of commercial simulation
codes. To circumvent or, at least, alleviate such a constraint, sampling of the paramet-
ric space and a subsequent interpolation of these samples could be an alternative route.
However, by making it in the original space the sampling becomes sometimes too dense to
capture the richness or as consequence of the Nyquist theorem. As just discussed in the
previous section, compressed sensing by-passes such di�culties in many cases.

In order to illustrate the proposed procedure, we consider the parametric heat equation

κ
∂2u

∂x2
= s, in Ωx = (0, L = 1), (3.32)

with κ the thermal conductivity, s = 1 the source term (assumed constant in the space
domain), and with boundary conditions u(x = 0) = 0 and u(x = L) = 1.

We are interested in solving this thermal model for any thermal conductivity κ ∈ Ωκ =

[0.1, 1.5]. Solving it using the standard PGD approach (for an in-deep discussion of this
problem the interested reader should consult [Chinesta & Cueto 2014, Cueto et al. 2016])
we obtain the solution depicted in Fig. 3.51. It reveals that, by increasing the conductivity,
the solution becomes �atter, since the generated heat can easily reach the domain bound-
aries x = 0 and x = L leaving the domain. Lower conductivities imply higher temperatures
because of the di�culty of evacuating the produced heat.

In order to show the potential of compressed sensing, we consider K = 100 coordinates
along Ωκ. From them, we randomly select Kr = 10 samples, de�ning the sampling set S =

{κ1, . . . , κKr}. At these particular locations, Eq. (3.32) is solved by using standard �nite
di�erences or �nite elements. These discrete solutions, consisting of vectors containing nodal
temperatures for each choice of the thermal conductivity are denoted by uk, k = 1, . . . ,Kr.

Considering now di�erent nodes in the spatial mesh associated to Ωx, xi, we de�ne
vectors fi whose j-th entry reads

fij = uκj (xi).

Vector fi contains K −Kr unknown entries, those related to thermal conductivities not in
the sampling set S. However this does not constitute a problem, since the corresponding
rows are not a�ected by the extraction matrix E. Only the rows with known entries will
be extracted.
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Figure 3.52 � Reference versus compressed sensing based reconstruction of the nodal
solution evolution with the model parameter. Left: Solution at a given nodal po-
sition. Black nodes represent the sampling points. These are also indicated on the
right.

At this point, by using a wavelet representation to de�ne the transformation matrix
T�in particular, a biorthogonal 3.1 one�, the parametric model at node xi will read

Tci = fi, (3.33)

or, by extracting the selected entries,

ETci = Efi. (3.34)

Solving the underdetermined problem using a L1-norm, we obtain ci, from which the
nodal parametric equation can be reconstructed everywhere from

fi = Tci. (3.35)

Figure 3.52 compares the reference and reconstructed solutions at a particular node.
We deliberately chose one located in the center of the domain in order to involve large
gradients. In this �gure the sampling nodes are also depicted.

We thus see how by sampling only the ten percent of all parametric nodal positions
we obtain a remarkable accuracy in the reconstruction of the thermal �eld. Notably, this
strategy allows the use of commercial software to obtain response surface-like solutions to
parametric models and constitutes an alternative and valuable constructor of meta-models.
It avoids the typical oscillations that polynomial approximations provoke when the sampling
points are chosen randomly and do not correspond with the Gauss-Lobatto points. In that
sense, compressed sensing produces solutions closer to the ones associated with the use of
Kriging, that avoids large oscillations thanks to its statistical nature.

3.3.2.1 Constitutive Manifold Learning

Compressed sensing could also play a fundamental role in data-driven simulations. In
section 2.1, we proved that elastic data-driven simulations can be performed as soon as
stress/strain couples are given. However, as previously argued in section 2.2, prior to pro-
ceed with the calculations summarized above, one must accomplish the construction of the
so-called constitutive manifold. Therein, we considered an inverse approach that assumed
a tentative constitutive manifold. We proved in the capability of such a method to identify
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the constitutive manifold associated to nonlinear elasticity. However, its generalization to
more complex behaviors�like those involving internal variables�seems technically complex
[Ibañez et al. 2018] [Gonzalez et al. 2018a].

One possible route to explore consists in making use of well-experienced experimental
methodologies. These were often developed for calibrating constitutive equations by testing
coupons subjected to simple stress states. These tests are very well understood and o�er
valuable information for calibrating complex constitutive equations. However, by restricting
to them, the constitutive manifold remains mostly unexplored, since too sparse information
is accessible.

It is at this point that compressed sensing seems to o�er a valuable opportunity. Indeed,
if the constitutive manifold is viewed as a sort of image of the phase space of the material,
a small quantity of data points could be enough to determine the whole manifold. A par-
allelism could be established with the so-called single pixel camera, following the rationale
described in [Kutz 2013].

To evaluate the performance of such a procedure, we consider a hypothetical nonlinear
plane-stress elastic behavior, that in Voigt notation reads

C =
E

1− ν2

1 ν 0

ν 1 0

0 0 1−ν
2

 , (3.36)

with the elastic coe�cients given by{
E = E0 + E1Tr(ε)

ν = ν0 + ν1Tr(ε)
,

with E0, E1, ν0 and ν1 positive constants, and where Tr(•) refers to the trace operator
acting on tensor •. In the numerical example discussed below the material coe�cients were
selected as E0 = 10, ν0 = 0.1, E1 = 10 and ν1 = 0.1.

We considered di�erent strain couples (εxx, εyy) and determine from the constitutive
Eq. (3.36) the associated stress couples (σxx, σyy). Fig. 3.53 depicts the reference solutions
and the considered points (in red) that served to reconstruct the approximated manifold
from the compressed sensing rationale. We do not considered the o�-diagonal components
because they de�ne a one-dimensional manifold that is quite simple to approximate, as
proved in the previous section.

It can be noticed that, despite the small number of sampling points, the reconstructed
constitutive manifold reproduces accurately the reference solution, thus constituting an
alternative route to perform data completion whenever the experimental data set is reduced.
Obviously, an advantage of the methodology here described is the possibility to update the
reconstructed solution as soon as new data-points are available from testing facilities able
to explore new regions of the constitutive manifold. In any case, sparse sampling within the
compressed sensing framework appears as a valuable option in data-driven computational
mechanics applications.

3.3.3 Model order reduction

We consider a last possible application of compressed sensing. It concerns the application
to model order reduction, particularly in its hyper-reduction variant, revisited below.

Standard discretization of a given model in the form of a PDE equipped with suitable
initial and boundary conditions leads to a linearized system

KU = G, (3.37)
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Figure 3.53 � Reference (left column) versus compressed sensing based reconstructed
behavior manifold (right column). Red points indicate sampling locations.

where, as usual, K represents the tangent sti�ness matrix, U a vector containing the nodal
degrees of freedom, and G the nodal force vector.

When considering a reduced basis�based on the application of POD or RB method-
ologies, for instance�, the unknown vector U can be projected onto the reduced basis
according to U = Bu. The size of vector u is in general much smaller than the size of
the original unknown vector U. Here, B represents the basis transformation matrix, whose
columns are the nodal description of the approximation functions involved in the reduced
basis. Thus, the original algebraic system can be rewritten as

KBu = G,

that premultiplying by the transpose of B leads to the reduced system

BTKBu = BTG = g,

that can be viewed as a Galerkin discretization operating with the reduced basis instead of
the one related to the usual �nite element approximation.

Within this scenario and assuming sparsity in a target space (e.g. discrete cosines,
Fourier, wavelet, ...) for the unknown vectors, G and U respectively, allows writing, after
assuming the transformation of the unknown vector, expressed from the matrix T,{

TTG = Ĝ

U = TÛ
,

and consequently
TTKTÛ = Ĝ,
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Figure 3.54 � Reference versus compressed sensing-based model order reduction.

on which the extraction applies.
To show the potential of this proposal we consider again the discrete system that results

from the discretization of a plane-stress elastic problem. Figure 3.54 depicts the reference
solution and the one resulting from the reduced formulation just described when extracting
randomly 75% of the involved equations, proving the potential of the proposed methodology.

3.3.4 Time-dependent Problems

In this part we will develop a space-time approach for the solution of transient problems with
the help of compressed sensing techniques. We will study three di�erent partial di�erential
equations. Namely, steady, transient Poisson and wave equations will be considered, Eqs.
(3.38), (3.39) and (3.40), respectively:

α∆u(x, t) = b(x, t) ∀x ∈ Ω, (3.38)

∂u

∂t
− α∆u(x, t) = b(x, t) ∀x ∈ Ω, (3.39)

and
∂2u

∂2t
− α∆u(x, t) = b(x, t) ∀x ∈ Ω. (3.40)

These equations must be equipped with suitable Dirichlet boundary conditions at some
part of the boundary ∂ΩD in order to make the solution unique. For the sake of simplicity,
but without loosing generality, we will impose homogeneous Dirichlet boundary conditions
at the Dirichlet portion of the Domain Ω = [0, 1]× [0, 1], ΩD,

u(x = 0, y) = 0.

When dealing with time derivatives, initial conditions have to be imposed,

u(x, 0) = 0,

and, possibly, in the case of the wave equation also,

u̇(x, 0) = 0.
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We will consider a source term that varies in time as,

b(x, t) = A cosωt.

To approximately solve Eqs. (3.38), (3.39) and (3.40), �nite elements in space and �nite
di�erences in time have been used. Therefore, equilibrium for steady/transient Poisson and
wave equations at the i-th time step read

Kui = f i,

1

∆t
M(ui − ui−1) + Kui = f i,

and
1

∆t2
M(ui+1 − 2ui + ui−1) + Kui = f i,

respectively.
Assume now that we prefer to solve every time step together. We should write a single

system of equations of the form
Aû = f̂ . (3.41)

Here, matrix A is a block-diagonal matrix containing a matrix K at each block for the
steady Poisson case. The �rst and second time derivatives appearing in transient Poisson
and wave equations will generate coupling terms between consecutive time steps by means
of the M matrices. û and f̂ are the concatenation of spatial nodal unknowns and forces for
every time step.

Solving directly the system (3.41) is a legit approach. Indeed, the usual time-marching
approach is recovered. However, we would like to explore the advantages of compressed sens-
ing. If the unknown �eld û is projected onto a new basis enabling a sparse representation,
a hyper-reduction results, as seen in the previous section. Therefore, an underdetermined
system needs to be solved by performing a L1-norm minimization. Thus, we will seek to
solve the following system:

EATĉ = Ef̂ ,

where T is again the projection matrix, and E is the extraction operator that de�nes
randomly which rows are going to be selected to perform the L1 minimization. Finally, ĉ

are the unknown coe�cients in the new basis. When a time step is chosen, every spatial
node related to this time step is automatically selected to keep spatial global equilibrium.

Since we know that the dependance in time of the source term was caused by a cosine
function, a smart choice for the projection base in our case is the discrete cosines transform
(DCT). It is worth to say that the choice of the projection basis is problem dependent. For
instance, if our excitation force evolves as a Heaviside step function, it may be convenient
to use a Haar-wavelet-based projection.

3.3.4.1 Numerical results

In this section, several numerical examples involving the three equations considered in the
previous section will be analyzed. Sparsity of the new basis will play an important role to
make the LASSO algorithm e�cient. Parameters employed in the solution of Eqs. (3.38)-
(3.40) are compiled in Table 3.3.

The �rst equation to be tested is Eq. (3.38). The global system of equations is uncoupled
from time step to time step due to the fact that it does not involve a time derivative. Fig.
3.55 depicts the value of u(x = (0.5, 0.5), t) for both an usual time-marching approach and
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Parameter Value

Tf , sim. time 0.1
ω 125.6

Number of time steps 200
α 1
A -100
Ω [0, 1]× [0, 1]

Spatial dofs 16× 16

Table 3.3 � Parameters employed in the analysis of Eqs. (3.38)-(3.40).

for a compressed sensing-based procedure. In this case only 5 time instants out of 200 are
considered in the LASSO minimization. As it can be noticed, the blue curve tends to capture
the overall behavior of the red curve (reference solution). However, there are still some noisy
peaks appearing in the blue curve due to the small number of time instants involved in the
computation. Fig. 3.56 shows the coe�cients of the discrete cosines transform, which is
indeed what the LASSO algorithm computes. It can be noticed how some high frequency
peaks are appearing causing the small oscillations in the u �eld.

The results are better if we increase the number of sampled time instants up to ten.
Figs. 3.57-3.58 show u and c �elds, respectively. It should be highlighted that the high-
frequency peaks are no longer appearing. Furthermore, the leakage pollution close to the
main peak is �ltered thanks to the LASSO algorithm.

The case of the wave equation (3.40), with a second derivative in time, is less problematic
than the one involving �rst derivatives only, see Eq. (3.39), since it forces the response to
follow the loading, whereas the transient Poisson equation involves di�usion. Therefore, we
will expect a sparser solution than in problem (3.39).

Fig. 3.59 shows the u �eld for the wave equation case. Since the source term is a cosine
function, the response of the system is also a cosine. Furthermore, the system must be
initialized with a non-homogeneous initial condition. Otherwise, compatibility conditions
of the time marching approach will no longer be satis�ed. Fig. 3.60 shows the DCT
coe�cients c for the wave equation case. As it can be noticed, the �rst coe�cient accounts
for a solid rigid-like translation (i.e., the cosine is not centered in 0) and the other peak
coincides with the frequency of the source term.

Figs. 3.61, 3.62, 3.63, and 3.64 show the expected behavior: imposing a cosine in the
source term with a �rst time derivative will cause a sinusoidal response, which is not sparse
in the projected base, due to the di�usion e�ects. Hence, more time instants need to be
taken into account in order to achieve an accurate result.

3.3.5 Conclusions

In this work we explored di�erent applications of compressed sensing in computational
mechanics. First, we proved that it could be a valuable strategy for performing random
samplings to evaluate solutions of parametric models. Then, inspired from the so-called
�single pixel camera�, we analyzed the use of the compressed sensing methodology to re-
construct constitutive manifolds from the only knowledge of a quite reduced number of
data-points. Finally, , we proved that the same methodology can be employed for reducing
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Figure 3.55 � u(x = (0.5, 0.50), t) for steady Poisson's case. Five time instants are
sampled out of two hundred possible time steps.

Figure 3.56 � c(x = (0.5, 0.50), ω) for steady Poisson's case. Five time instants are
sampled out of two hundred possible time steps.
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Figure 3.57 � u(x = (0.5, 0.50), t) for steady Poisson's case. Five time instants are
sampled out of two hundred possible time steps.

Figure 3.58 � c(x = (0.5, 0.50), ω) for steady Poisson's case. Five time instants are
sampled out of two hundred possible time steps..
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Figure 3.59 � u(x = (0.5, 0.50), t) for the wave equation. 30 time instants are
sampled out of two hundred possible time steps.

Figure 3.60 � c(x = (0.5, 0.50), t) for the wave equation. 30 time instants are sampled
out of two hundred possible time steps.
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Figure 3.61 � u(x = (0.5, 0.50), t) for transient Poisson's case. 100 time instants are
sampled out of two hundred possible time steps.

Figure 3.62 � c(x = (0.5, 0.50), t) for transient Poisson's case. 100 time instants are
sampled out of two hundred possible time steps.
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Figure 3.63 � u(x = (0.5, 0.50), t) for transient Poisson's case. 150 time instants are
sampled out of two hundred possible time steps.

Figure 3.64 � c(x = (0.5, 0.50), t) for transient Poisson's case. 150 time instants are
sampled out of two hundred possible time steps.
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signi�cantly the size of the discrete system of equations that results from the application of
standard discretization techniques de�ning a new kind of model order reduction techniques.

All these di�erent application rely on a single technique and we strongly believe that it
will play a very relevant role in computational mechanics for the years to come.
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Advances on Model Order
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Even though Dynamic Data Driven Application opens a new paradigm in the compu-
tational mechanic framework, big steps has to be considered before transforming it into a
tangible reality. Appart from all di�culties and advantages arising when working with data,
it is equally important to keep in mind that these data corrections have to be performed in
a dynamic way, or in other words, as fast as possible. Model Order Reduction Techniques is
the perfect ingredient to accomplish such constraints. Plenty of di�erent MOR techniques
have been proposed in the recent years to alleviate computational costs. The purpose of this
chapter is to present some advances on the �eld of Model Order Reduction Techniques since
we strongly believe that those advances will play a fundamental role within the DDDAS
framework.

This part is divided into two di�erent chapters. Chapter 4 proposes a methodology
that uses multiple PGDs to describe a given solution. A standard macro FEM partition
of the domain is in charge of controlling the overlap between di�erent PGDs. A greater
separability of the solution is achieved, due to the fact that each PGD will be devoted to a
local portion of the domain, being the solution more linear compared to the global one.

Chapter 5 explores new applications of the so-called PGD in-plane-out-of-plane sepa-
rated representation. This kind of representation becomes particularly useful when dealing
with degenerated domains in which the out-of-plane dimension is much smaller than the
other two dimensions contained in the plane coordinates.
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Chapter 4

Enhancing PGD Separability

based on Partition of Unity

Method

Abstract Model order reduction techniques become very useful within the Dynamic
Data Driven Application System framework where decision making has to be done in a
dynamic way. Indeed, strategies where parametric solutions are precomputed o�-line will
allow to make faster such decision making. However, it is well known that model order re-
duction techniques that project the solution of the problem at hand onto a low-dimensional
subspace present di�culties when this solution lies on a non-linear manifold. To overcome
these di�culties�notably, an undesirable augment in the number of required modes in
the solution�several solutions have been suggested. Among them we can cite the use of
non-linear dimensionality reduction techniques or, alternatively, the employ of local linear
reduced order approaches. These last approaches usually present the di�culty of ensuring
continuity between these local models. In this chapter, a new method is presented that
ensures this continuity by resorting to the paradigm of the partition of unity (PU), while
employing Proper Generalized Decompositions at each local patch.
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Despite of the fact that PGD has been proven to be very e�ective generating paramet-
ric solutions in many situations [Mena et al. 2015, Chinesta et al. 2013a], its performance
is decimated when dealing with highly non-separable solutions i.e. plenty of modes are
required to obtain an accurate solution. This chapter explores the possibility of enhancing
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the perfomance of standard PGD algorithm by means of merging the Partiton of Unity
(PU) ideology [Babuska & Melenk 1996] [Babuska & Melenk 1997] together with the PGD
rationale. Basicly, a coarse partition of the domain guarantees a smooth transition between
the di�erent PGDs coexisting in the domain. Section 4.1 presents the main ideas behind the
PU-PGD rationale, the algorithm is tested in several partial di�erential equations ranging
from pure di�usion to transient equations. Section 4.2 extends the PU-PGD in order to
handle multiscale problems. A continuous transition between scales is automaticly inherited
by virtue of the consistent PU method.

These topics are addressed in two submitted papers:

• R. Ibáñez, E. Abisset-Chavanne, F. Chinesta, A. Huerta, E. Cueto, A local, multiple

Proper Generalized Decomposition based on the Partition of Unity. Submitted to
International Journal Numerical Methods for engineering, 2018.

• R. Ibáñez, A. Ammar, E. Cueto, A. Huerta, J.-L. Duval, F. Chinesta, Multi Scale

Proper Generalized Decomposition based on the Partition of Unity. Submitted to
International Journal Numerical Methods for engineering, 2018.

4.1 A local, multiple Proper Generalized Decomposition

based on the Partition of Unity

The main objective of this section is to develop a generalized multi PGD formulation in
which continuity between subdomains is guaranteed. This will be achieved by resorting to
the Partition of Unity (PU) paradigm [Babuska & Melenk 1996] [Babuska & Melenk 1997].
By employing the partition of unity, continuity of the solution is guaranteed if the chosen
PU is continuous. This will allow us to glue di�erent PGD approximations de�ned at
particular regions of the space, time or parameter spaces, thus ensuring a global solution
with a minimum of degrees of freedom.

4.1.1 Methodology

A method based on combining PU/PGD approaches is proposed in this section. On one
hand FE shape functions are widely used in the computational mechanics �eld since they
exhibit excellent properties as local behaviour or partition of unity. On the other hand,
the PGD or low rank approximation approaches are very useful when dealing with do-
mains where separation of variables is possible. Therefore, we would like to combine both
approaches to achieve both geometrical adaptivity and high resolution constraints.

For the sake of simplicity but without loosing generality, the method is ilustrated with
a weak form related to a general 2D PDE constraint to the domain Ω as shown in eq.
(4.1). Where the right hand side F(·, ·) takes into account both the external forces and the
appropiate set of boundary conditions to ensure the well-posedness of the problem.

L(u∗(x, y), u(x, y)) = F(u∗(x, y), f(x, y)) ∈ Ω (4.1)

Normally, solving the weak form (4.1) requires an approximation space for the primal
variable u(x, y) and its associated variation u∗(x, y). Eq. (4.2) depicts classical �nite ele-
ment approximation, where I is the entire set of shape functions de�ned over the integration
domain, Ω.

u(x, y) =
∑
i∈I

Ni(x, y)ui (4.2)
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Furthermore, standard FE shape functions satisfy the partition of unity and both linear
compatibility properties as shown in (4.3), respectively.

∑
i∈I

Ni(x, y) = 1 ∀ x, y ∈ Ω∑
i∈I

Ni(x, y)xi = x ∀ x, y ∈ Ω∑
i∈I

Ni(x, y)yi = y ∀ x, y ∈ Ω (4.3)

As mention before, we would like to combine both shape functions coming from FE
(Ni(x, y)) and low rank approximation methods (PGD). Therefore, each degree of freedom
ui associated to the FEM shape function Ni(x, y) will be replaced with a PGD functional
approximation, aiming to capture the details of the solution which are not captured by the
standard FEM coarse meshes. Therefore, the approximation of the solution will read as
shown in Eq. (4.4).

u(x, y) =
∑
i∈I

Ni(x, y)

M∑
k=1

Xi
k(x)Y ik (y) (4.4)

Where Xi
k(x) and Y ik (x) functions are the k-th unidimensional modes related to the

i-th PGD.
Several approaches can be adopted to de�ne the trial function. In this particular case, a

Galerkin projection is selected. Hence, the same approximating space is choosen for u(x, y)

and u∗(x, y) as shown in eq. (4.5).

u∗(x, y) =
∑
i∈I

Ni(x, y)(Xi∗
M (x)Y iM (y) +Xi

M (x)Y i∗M (y)) (4.5)

It can be highlighted the Greedy nature of the algorithm since the variation only takes
into account the last M -th PGD mode taking the previous modes as known. Furthermore,
a non-linear system, which has been created due to the separation of variables, is solved
using an alternate direction scheme. Indeed, Y i∗M (y) is set to zero when looking for modes in
the x direction and analogously Xi∗

M (x) vanishes when looking for modes in the y direction.
The properties of the method will change depending on the way �nite element shape

functions are de�ned. Fig. (4.1) exempli�es the partition when piecewise constant shape
functions are used. As it can be seen, no overlapping between di�erent PGDs exists.
Therefore, extra e�ort has to be done to set proper interface conditions along the red lines
appearing in the same �gure.

Fig. (4.2) depicts a piecewise linear partition of the domain. As it can be seen, an ele-
ment has contributions coming from four di�erent PGDs. The coupling conditions between
di�erent PGDs are automaticly taken into account in the elemental contributions. Indeed,
this kind of partition imposes a smooth transition between PGDs which varies continuously
along the domain in accordance with the global partition of the domain.

It is important to mention that the full potential of PGD approximation resides in the
capability of writing the integral form in a separated manner. By doing that, all integrals
in a high dimensional space will be splitted into a product of integrals related to each one of
the subspaces. For the sake of simplicity, we will assume that the shape functions Ni(x, y)

are separable in one mode as shown in eq. (4.6). It is important to notice that it will be
the case for instance of 2D quadrilateral elements with straight and paralel sides.
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Figure 4.1 � Left, constant piecewise partition. Center, domain of in�uence of i-th
PGD. Right, domain of in�uence of k-th PGD.

Figure 4.2 � Left, linear piecewise partition. Center, domain of in�uence of i-th
PGD. Right, domain of in�uence of k-th PGD.

Ni(x, y) = Nx
i (x)Ny

i (y) (4.6)

Even though this assumption may be seen as a limitation, it is important to reckon
that there are some variables such as the time or parametres that normally admits cartesian
decompositions since they vary in a closed interval. Therefore, when dealing with a complex
spatial geometry that evolves in time, a smart partition would be to keep the space variable
as it is, but making a high order partition in time, generating a prism like FE shape function.
Nevertheless, this very �rst work is meant to provide an insight of the method, thus, all
results presented in the sequel will be related to piecewise linear FE shape functions based
on squared elements.

4.1.2 m-PGD in approximation

In this section, we proposed to analyze the capability of the proposed methodology in eq.
(4.7). As it can be seen, there are no partial derivatives involved, thus, just a compact
expression of the function f(x, y) is seeked.∫

Ω

u∗(x, y)u(x, y)dxdy =

∫
Ω

u∗(x, y)f(x, y)dxdy (4.7)

Following the spirit of standard �nite element approximation the integral over the entire
domain Ω is splitted into a sum of integrals for each one of the �nite elements Ωe appearing
in the domain. Just as a recall, piecewise linear shape functions present contributions from
four di�erent PGDs per element (one for each corner), as shown in Fig. (4.3).

It is important to notice that the i-th PGD is de�ned in four di�erent elements (except
from boundary PGDs), thus, special attention has to be paid when doing the assembly of
the global matrix. Taking into account the numbering appearing in �g. (4.3), second and
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Figure 4.3 � PGDs distribution for piecewise linear quad elements.

third local PGDs are assembled in the lower half part of the x modes, whereas �rst and
fourth local PGDs are assembled in the higher half part of the y modes. Analogously, third
and fourth PGDs are assembled in the lower half part of the y mode, whereas �rst and
second local PGDs are assembled in the higher half part of the y mode.

Omitting the dependance with respect to space variables x, y and introducing the sepa-
rability of the FE shape function 4.6, the left hand side integral form of (4.7) particularized
for a element Ωe reads as shown in eq. (4.8).

∫
Ωe

u∗udxdy =

4∑
i=1

4∑
j=1

∫
Ωe

Nx
i N

y
i (Xi

MY
i
M )∗(Nx

j N
y
i

M∑
k=1

Xj
kY

j
k )dxdy (4.8)

The next step is to split the 2D integral form into a product of 1D integrals as shown in
eqs. (4.9-4.10). Where variations for x and y systems are presented, respectively. As it can
be seen, the variation of the x direction shares all the operators with the variation of the y
direction, it is just a matter of where the variation is placed. Indeed, this properties comes
naturally from the alternate direction scheme that is used to solve the non-linear system of
the PGD.

∫
Ωe

u∗udxdy =

4∑
i=1

4∑
j=1

M∑
k=1

∫
x

Xi∗

MN
x
i N

x
j X

j
kdx

∫
y

Y iMN
y
i N

y
j Y

j
k dy (4.9)

∫
Ωe

u∗udxdy =

4∑
i=1

4∑
j=1

M∑
k=1

∫
x

Xi
MN

x
i N

x
j X

j
kdx

∫
y

Y i∗MNy
i N

y
j Y

j
k dy (4.10)

Indeed, the e�ciency of the m-PGD algorithm is maximized when all operators related
to eqs. (4.9-4.10) are precomputed in an o�-line phase as shown in eqs. (4.11-4.12).

αijkx =

∫
x

Xi
MN

x
i N

x
j X

j
kdx (4.11)

αijky =

∫
y

Y iMN
y
i N

y
j Y

j
k dx (4.12)

Analogously, the right hand side term appearing in eq. (4.7) reads as shown in eqs.
(4.13-4.14), for x and y systems respectively.

∫
Ωe

u∗fdxdy =

4∑
i=1

Z∑
z=1

∫
x

Xi∗

MN
x
i f

x
z dx

∫
y

Y iMN
y
i f

y
z dy (4.13)
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Figure 4.4 � Left, 3D view of f1(x, y). Right, planar view of f1(x, y).

∫
Ωe

u∗fdxdy =

4∑
i=1

Z∑
z=1

∫
x

Xi
MN

x
i f

x
z dx

∫
y

Y i∗MNy
i f

y
z dy (4.14)

Where the source term f(x,y) is expressed in a separated format as shown in eq. (4.15).

f(x, y) =

Z∑
z=1

fxz (x)fyz (y) (4.15)

Once again, all operators related to the integration of the source term can be precom-
puted o�-line as shown in eqs. (4.16-4.17).

εizx =

∫
x

Xi
MN

x
i f

x
z dx (4.16)

εizy =

∫
y

Y iMN
y
i f

y
z dy (4.17)

Let's ilustrate the methodology using a highly non separable function given in eq. (4.18).
Where σ = 0.05, v = 0.5 and x0 = 0.2.

f1(x, y) =
10

σ
√

2π
e−

(x−(vy+x0))2

2σ2 (4.18)

Fig. (4.4) depicts the resulting u(x, y) = f1(x, y) scalar �eld from di�erent perspec-
tives. As it can be seen, the source term is going through the antidiagonal of the domain,
generating a highly non-separable function. Indeed, a normal PGD algorithm su�ers to
capture such kind of solution.

Two di�erent partitions of the domain has been tested as shown in �g. (4.5). PGDs
acting on left and right sides are set to zero since the solution is equal to zero in these two
regions. Nevertheless, PGDs acting on bottom and top parts are active since the solution is
di�erent from zero there. The red points indicate the centroid location for all PGDs in the
domain. The elements are coloured in accordance with the number of active PGDs acting
in each element.

Fig. (4.6) shows the reconstructed solution using 4 modes per local PGD, when the
domain has 8 active PGDs (left) and 24 PGDs (right). As it can be seen, even though both
approximations capture the main features of the solution, the solution using 24 PGDs is
slightly better than the one with 8 PGDs.

140



4.1. A local, multiple Proper Generalized Decomposition based on the Partition
of Unity

Figure 4.5 � Left, domain partioned into 8 PGDs. Right, domain partitioned into
24 PGDs. Red points, centroid of each PGD. Element colour, number of PGDs per
element.

Figure 4.6 � Left, solution with 8 PGDs. Right, solution with 24 PGDs. Both
solutions have four modes.
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Figure 4.7 � Convergence error for approximation problem in logarithmic scale for
di�erent number of modes. Comparison between SVD and two di�erent partitions
of the domain.

Fig. (4.7) shows the convergence error for the approximation of f1(x, y). The relative
error is measured as shown in eq. (4.19), where um is the reconstructed solution using
m modes. As it can be seen, singular value decomposition (SVD) method su�ers from
separating this kind of solutions, having a slow decay of the relative error with respect to
the number of modes. On the other hand, using the multi PGD algorithm the relative error
decays much faster than the one related to the SVD.

Em =
||uref − um||
||uref ||

(4.19)

It is important to keep in mind that the more a domain is partitioned the faster the
relative error decays with the number of modes per element. This behaviour is expected
since the smaller the elements are, the easier is to capture a local behaviour. However, the
price to pay is that the cost of computing one mode per PGD will increase just like the
storaging cost as well.

4.1.3 m-PGD for di�erent PDEs

The aim of this section is to show the potential of the proposed methodology when it is
applied to di�erent PDEs. The complexity of the PDEs is going to increase from test case
to test case. Therefore, the �rst test case is a fully di�usive equation. Then, the second case
is a convection-reaction-di�usion equation. Finally, the last example relates to a transient
heat thermal problem with a moving source term. Even though the construction of the
operators for each PDE follows the same trend than the ones presented in the m-PGD in
approximation, further details are given in the annex.

4.1.3.1 Di�usion PDE

The �rst PDE to be tested is the one shown in eq. (4.20). Null Dirichlet boundary conditions
are imposed in the entire boundary. The source term is equal to f1(x, y) and the viscosity
parameter (η) is set to 1.
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Figure 4.8 � Left, 3D view of u(x, y). Right, planar view of u(x, y) for di�usive
equation.

∫
Ω

η∇u∗ · ∇udxdy =

∫
Ω

u∗f1dxdy (4.20)

Eq. 4.21 shows the derivation of a di�usive operator in a separated format. For the
sake of simplicity but without loosing generality, we will also assume that a new mode in
the x direction is desired. Therefore, all variations related to the y direction are set to zero.
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Fig. (4.8) depicts the resulting u(x, y) scalar �eld for the di�usion equation from dif-
ferent perspectives. As it can be seen, the solution di�uses the source term which is going
through the antidiagonal of the domain. As it can be seen, the scalar �eld u(x, y) is set to
zero in the entire boundary.

Two di�erent partitions of the domain has been tested as shown in �g. (4.9). PGDs
acting on the boundaries are set to zero since null Dirichlet boundary conditions are imposed
in the boundary. The red points indicate the centroid location for all PGDs in the domain.
The elements are coloured in accordance with the number of active PGDs acting in each
element. As it can be seen, elements in the corner have only one active PGD, whereas
elements in the sides have two active PGDs and interior elements have four active PGDs.
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Figure 4.9 � Left, domain partioned into 4 PGDs. Right, domain partitioned into
16 PGDs. Red points, centroid of each PGD. Element colour, number of PGDs per
element.

Figure 4.10 � Left, 4 PGDs. Right, 16 PGDs. Both solutions have four modes.
Solution of the di�usion equation.

Fig. (4.10) shows the reconstructed solution using 4 modes per local PGD, when the do-
main has 4 active PGDs (left) and 16 PGDs (right). As it can be seen, both approximations
are in perfect accordance with the reference solution.

Fig. (4.11) shows the convergence error for the di�usive equation. As it can be seen, all
methods converge monotonicly, being the SVD the one that presents the slower convergence
with respect the number of modes. Indeed, using the multi PGD algorithm presents a faster
decay in the relative error.

4.1.3.2 Convection-Reaction-Di�usion (CRD) PDE

In this subsection a PDE consisting of a combination of a di�usive, plus a reaction term,
plus a convective term is studied. The two �rst contributions were already studied in the
previous examples. Indeed, the major novelty is the introduction of the convective term
since it will involve a non-symmetric operator. The weak form related to the CRD PDE is
shown in eq. (4.22).

∫
Ω

u∗v · ∇u+ η∇u∗ · ∇u+ σu∗u dxdy =

∫
Ω

u∗f2dxdy (4.22)
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Figure 4.11 � Convergence error for di�usion problem in logarithmic scale for dif-
ferent number of modes. Comparison between SVD and two di�erent partitions of
the domain.

Where null Dirichlet boundary conditions are acting on the entire boundary, the inte-
gration domain is Ω = [0, 1] × [0, 1], the velocity �eld is v = 500(y − 0.5, 0.5 − x)T , the
reaction term is set to σ = 10 and the di�usive term to η = 1. Regarding the source term,
a Gaussian placed in [x0, y0] = [0.75, 0.75] as shown in eq. (4.23) is imposed.

f2(x, y) =
800√

2π
e−

(x−x0)2+(y−y0)2

0.005 (4.23)

Eq. 4.24 details how to derive a pure convection of a scalar �eld u(x, y) along the x
direction in a separated format. The derivation for the convection along the y direction is
analogous. It is imporant to notice that this case is a particular case where the velocity
�eld is given by v = (1, 0)T . If a more complex convective �eld is considered, a separated
representation of the velocity �eld would be required. For the sake of simplicity but without
loosing generality, we will also assume that a new mode in the x direction is desired.
Therefore, all variations related to the y direction are set to zero.
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Fig. (4.12) depicts the resulting u(x, y) scalar �eld for the CRD equation from di�erent
perspectives. As it can be seen, the gaussian source term is convected circularly according
to the velocity convection �eld. Moreover, the di�usion term makes that the Gaussian is
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Figure 4.12 � Left, 3D view of u(x, y). Right, planar view of u(x, y) for convection-
reaction-di�usion equation.

Figure 4.13 � Left, domain partioned into 4 PGDs. Right, domain partitioned into
16 PGDs. Red points, centroid of each PGD. Element colour, number of PGDs per
element.

smoothed throughout its convection. It can be also noticed that the scalar �eld u(x, y) is
set to zero in the entire boundary of the domain.

The same partitions than in the di�usive case have been tested as shown in �g. (4.13).
PGDs acting on the boundaries are set to zero since null Dirichlet boundary conditions are
imposed in the boundary.

Fig. (4.14) shows the reconstructed solution using 4 modes per local PGD, when the
domain has 4 active PGDs (left) and 16 PGDs (right). As it can be seen, the approximation
related to 4 active PGD with 4 PGD modes does not capture the right solution. Indeed, a
higher number of modes will be needed to converge to the reference solution. On the other
hand, the partition involving 16 PGDs is in perfect accordance with the reference solution,
capturing all the features of the scalar �eld without presenting any oscillation.

Fig. (4.15) shows the convergence of the relative error in logarithmic scale for the SVD
and the two di�erent partitions proposed for the CDR equation. It can be clearly seen that
the convergence related to the 4 PGD partition is slowest one. Indeed, this problematic
is derived from the fact that the �rst PGD modes have to capture a highly non-linear
behaviour, meaning that this partition will require a high amount of modes to converge
to the real solution. On the other hand, the 16 PGD partition convergence is quite fast
compared with the other two methods.
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Figure 4.14 � Left, 4 PGDs. Right, 16 PGDs. Both solutions have four modes.
Solution of the CRD equation.

Figure 4.15 � Convergence error for CRD problem in logarithmic scale for di�erent
number of modes. Comparison between SVD and two di�erent partitions of the
domain.
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Figure 4.16 � Left, 3D view of u(x, t). Right, planar view of u(x, t) for transient
heat transfer equation.

4.1.3.3 Transient Heat Transfer PDE

This very last example is devoted to the analysis of a transient 1D bar heat transfer problem.
The weak form associated to the problem is shown in eq. (4.25). Where the di�usive term
is set to η = 0.01.

∫
Ω

u∗
∂u

∂t
+ η

∂u∗

∂x

∂u∗

∂x
dxdy =

∫
Ω

u∗f3dxdy (4.25)

The domain of study is Ω = Ωx × Ωt = [0, 1] × [0, 1]. The appropiate set of boundary
conditions imposed for the �eld u(x, t) are u(x, 0) = 0, u(0, t) = 0 and u(1, t) = 0. The
source term f3(x, y) is depicted in eq.(4.26) where σ = 0.05, v = 0.5 and x0 = 0.1.

f3(x, y) =
10

σ
√

2π
e−

(x−(vy+x0))2

2σ2 (4.26)

Fig. (4.16) depicts the resulting u(x, y) scalar �eld for the transient heat equation from
di�erent perspectives. As it can be seen, source term di�used in the x direction and it is
purely convected along the t direction. This kind of PDE creates a boundary layer along the
antidiagonal of the space-time domain which is very hard to capture when using standard
low rank approximations i.e. POD and classical PGD.

Two di�erent partitions have been tested as shown in �g. (4.17). It is important to
highlight that PGDs acting on x = 0, x = 1 and t = 0 are set to zero to satisfy the null
Dirichlet boundary conditions in this region of the boundary. However, the PGD acting on
the interior nodes of the line t = 1 are not set to zero. This fact comes directly from the
pure convective behaviour that present the time variable. Indeed, the line t = 1 acts like
a out�ow boundary, thus, no boundary condition should be imposed there to ensure the
well-posedness of the problem.

Fig. (4.18) shows the reconstructed solution using 4 modes per local PGD, when the
domain has 6 active PGDs (left) and 20 PGDs (right). As it can be seen, both approxima-
tions capture the main features of the reference solution. However, the approximation with
6 active PGD presents small oscillations due to the lack of PGD modes to converge to the
reference solution.

Fig. (4.19) shows the convergence of the relative error in logarithmic scale for the SVD
and the two di�erent partitions proposed for the transient heat equation. It can be stated
that both partitions present a faster convergence than the SVD convergence. However, the
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Figure 4.17 � Left, domain partioned into 6 PGDs. Right, domain partitioned into
20 PGDs. Red points, centroid of each PGD. Element colour, number of PGDs per
element.

Figure 4.18 � Left, 6 PGDs. Right, 20 PGDs. Both solutions have four modes.
Solution of the transient heat equation.

149



Chapter 4. Enhancing PGD Separability based on Partition of Unity Method

Figure 4.19 � Convergence error for transient heat problem in logarithmic scale for
di�erent number of modes. Comparison between SVD and two di�erent partitions
of the domain.

convergence slope of the PGD partitions tend to be �atter than the SVD one in the last
part of the convergence plot.

4.2 A Multi Scale Proper Generalized Decomposition

based on the Partition of Unity

Solutions of partial di�erential equations could exhibit a multiscale behaviour. Standard
discretization techniques are constraint to mesh up to the �nest scale in order to predict
accurately the response of the system. The multi-PGD methodology presented in section
4.1 is extended to deal with multiscale problems. Indeed, the methodology is based on
two main pillars: a generalization of the idea of time domain partition, together with the
overlapped multi-PGD framework. By doing that, the proposed methodology naturally in-
herits continuity between macro subdomains and clear extrapolation to higher dimensional
spaces.

4.2.1 Methodology

This section explains the main characteristics of the multi-scale PGD based on the partition
of unity. The formulation is introduced for a one-dimensional variable �rst. Then, the
formulation is extended to 2D problems.

Let us assume that a given function, u(x), is the solution of a given partial di�erential
equation. In terms of standard approximation basis, such as �nite elements, it could be
expressed as

u(x) =

N∑
i=1

Ni(x)ui, (4.27)

where N stands for the number of degrees of freedom used in the approximation of u(x)

or, in other words, the number of nodes in the mesh. Needless to say, Ni(x) represent the

150



4.2. A Multi Scale Proper Generalized Decomposition based on the Partition of
Unity

standard �nite element shape functions and ui the nodal value of the sought function, if
the employed approximation is interpolant.

However, if the solution presents a multi-scale approach, the mesh has to capture the
details of the solution at the �nest scale, thus deriving into a prohibitive simulation cost
(N � 1). A possible way to circumvent this issue, within the PU paradigm, is to introduce
a dependent variable that captures the solution details associated to the �nest scale,

u(x) =

N∑
i=1

Ni(x)ui

J∑
j=1

Gj(τ(x− xi))gj , (4.28)

where xi is the centroid of the shape function Ni(x), τ(x − xi) is a dependent variable
which presents an o�set based on xi, Gj(τ) is the j-th micro-scale shape function and gj its
associated micro-scale degree of freedom. Indeed, the micro scale e�ects occurring in the
compact support of the macro shape function Ni(x) are going to be mapped into a micro
scale parent space, τ .

It is worth noting that in Eq. (4.28) macro degrees of freedom (ui) and micro degrees
of freedom (de�ning the local micro enrichment, gj) are both unknown, in opposition to
usual applications of PU where the enrichment functions are known and given a priori.

Fig. 4.20 shows the shape functions associated to both the macro (top) and the micro
scale (bottom). Notice how a two-scale approach presents two meshes related to micro and
macro scales, respectively. Indeed, each macro partition of the domain contributes to the
parent micro scale and the parent micro space a�ects equally the macro partition.

Figure 4.20 � Shape functions of a multi-scale approach. Top, macro shape functions.
Bottom, micro shape functions.

Moreover, it is worth mentioning the possibility of rewriting our solution function as
u(x, τ), making it suitable for a PGD-like algorithm[Ryckelynck et al. 2006, ?] but in this
case we proceed with a separation of variables as shown in Fig. (4.21). Therefore, the initial
one dimensional problem is transformed into a two dimensional problem. It is important
to highlight that the macro mesh does not have to capture the solution of the �nest scale,
since it is handled by the micro scale mesh.

Thus, following a standard PGD rationale[?, ?], the solution is sought in a Greedy
manner through of a �nite sum of M modal enrichments,

u(x, τ) =

M∑
m=1

N∑
i=1

Ni(x)umi

J∑
j=1

Gj(τ(x− xi))gmj =

M∑
m=1

N∑
i=1

Ni(x)umi GT (τ(x− xi))gm,

(4.29)
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Figure 4.21 � A separation of dependent variables, u(x, τ(x)).

where the super-index m indicates the m-th PGD mode.
The discretization of a variational formulation by means of FEM, for instance, also

needs an approximating space for the admissible variation of the �eld. In this particular
case, when computing the M -th mode, we used a standard Galerkin projection

w∗(x, τ) =

N∑
i=1

Ni(x)u∗iG
T (τ(x− xi))gM +

N∑
i=1

Ni(x)uMi GT (τ(x− xi))g∗. (4.30)

Nevertheless, SUPG or GLS stabilization can be also implemented in this formulation when
dealing with highly convective (parabolic, in general) problems, see also [?].

Even if any linearization technique is possible, an alternated direction scheme is chosen
in this work to solve the non-linear system associated to the separation of variables. Hence,
when solving micro-scale modes, macro-scale admissible variations are set to zero (i.e.,
u∗i = 0) and, conversely, when solving macro-scale modes, g∗ = 0.

Special attention needs to be paid when dealing with the derivatives of the approxima-
tion space, viz.

Du(x, τ)

Dx
=
∂u(x, τ)

∂x
+
∂u(x, τ)

∂τ

∂τ

∂x
=

M∑
m=1

N∑
i=1

(
∂Ni(x)

∂x
umi GT (τ)gm+Ni(x)umi

∂GT (τ)

∂τ

∂τ

∂x
gm
)

(4.31)
shows the application of the chain rule in order to account for the dependance of τ(x−xi).
For the sake of simplicity, the dependance of τ with respect to (x− xi) coordinate will be
omitted if there is no risk of confusion.

The same rationale can be easily applied to higher dimensional spaces. Imagine that
a 2D case (i.e., x = (x, y)) is approximated by means of a 2D macro mesh and the details
of the micro scale are given by one-dimensional modes acting along each spatial direction.
Hence, the approximation space will read

u(x, τx, τy) =

M∑
m=1

N∑
i=1

Ni(x)umi GT (τx)gmHT (τy)hm, (4.32)

where gm and hm are the degrees of freedom of the m-th PGD mode acting on x and y
subscales, respectively. Indeed, ui adopts the same role than in the 1D case, since it will
be responsible of weighting the subgrid behavior throughout the domain.

152



4.2. A Multi Scale Proper Generalized Decomposition based on the Partition of
Unity

Figure 4.22 � A separation of dependent variables in a 2D space, u(x, τx, τy).

The separated representation by means of partition of unity-based PGD in higher di-
mensions is depicted in Fig. 4.22. As it can be noticed, an initial 2D problem is transformed
into a 3D problem, where one dimension takes into account the macro variations of the so-
lution, whereas the other two dimensions take into account the subgrid scales taking place
along x and y directions, respectively. It is very important to notice that subgrid scales are
going to propagate throughout the entire domain, being the macro mesh the responsible of
controlling the propagation of the subgrid behavior.

It is also important to highlight that the proposed approach reduces the amount of
degrees of freedom required to handle subgrid scales in comparison with standard multigrid
methods[?]. Imagine that a 2D domain is partitioned using a coarse regular mesh composed
of Dx×Dy linear elements. Let us assume that each element is re�ned even more to handle
subgrid scales using a mesh of dx×dy linear elements. The typical size of the entire system
will beDx×Dy×dmx ×dmy . Nevertheless, the proposed methodology is able to handle subgrid
scales at a computer cost proportional to M((Dx ×Dy) + dx + dy). Indeed, if the number
of modes required to represent the solution does not grow too much (i.e., M = O(10)),
computing subgrid scales becomes a�ordable.

4.2.2 Numerical examples

In this section, several numerical examples based on the multi-scale PGD formulation
are tested. The �rst part shows the convergence of the method for three di�erent one-
dimensional cases. The second part shows several examples of the proposed methodology
for di�erent two-dimensional cases.

4.2.2.1 One-dimensional numerical examples

In this �rst section we analyze three di�erent toy problems in one dimension. These include
approximation, di�usion and convection problems.

Multiscale approximation of a given function This �rst example concerns the
approximation of a function that shows multiscale features. Since we deal with an approx-
imation case, there is no governing partial di�erential equation in this problem. In other
words, a given function f(x) is to be approximated by means of a multi-scale approximation
u(x, τ). The weighted residual form associated to this problem reads∫

Ω

w∗(x, τ)u(x, τ)dx =

∫
Ω

w∗(x, τ)f(x)dx ∀ x ∈ Ω = [0, 1]. (4.33)

153



Chapter 4. Enhancing PGD Separability based on Partition of Unity Method

In this case the function to approximate is de�ned as

f(x) =
x cos(8πx)

8π
. (4.34)

Fig. 4.23 shows the reconstructed solution (red line) versus the reference solution (blue
line) when the macro domain is partitioned using 5 degrees of freedom (black dots), i.e.,
N = 5. The micro domain is partitioned using 80 linear �nite elements, i.e., J = 81. As it
can be noticed, the macro partition coincides exactly with the period of the signal, which
is precisely the reason why only 1 mode (M = 1) is required to accurately represent the
solution. Indeed, the micro scale mode is giving us the cosine signal whereas the macro
scale is taking care of the linear growth.

Figure 4.23 � Approximation problem. The reconstructed solution with one single
mode is represented by the red line. The reference solution is the blue line. In
this case, the macro-domain partition employed 5 degrees of freedom, represented
as black dots.

However, the exact period of our signal is not known a priori in most cases. Therefore,
convergence of the method when the macro partition does not coincide with the signal
period is checked as well. Fig. 4.24 shows the reconstructed solution (red line) against
the reference one (blue line) when the macro domain partition does not coincide with the
signal period. The top �gure, involves a reconstructed solution with one mode, whereas
the bottom one involves �ve modes. It is important to notice that the one-mode solution
captures the main trend of the signal. However, there are some regions where the signal is
not properly captured. Indeed, the solution involving �ve modes reproduces the reference
signal very accurately.

Fig. 4.25 shows the relative error in logarithmic scale between the reconstructed solution
and the reference solution for di�erent number of PGD modes. As it can be noticed, the
multiscale PGD converges monotonically.

Di�usion Case The second test problem is a pure di�usion equation. The weak form
associated to this problem is∫

Ω

Dw∗(x, τ)

Dx

Du(x, τ)

Dx
dx =

∫
Ω

w∗(x, τ(x))f(x)dx, ∀ x ∈ Ω = [0, 10]. (4.35)

The chain rule is required, as in Eq. (4.31), due to the dependence of τ with respect to x.
The source term and the two boundary conditions ensuring that the problem is well posed
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Figure 4.24 � Approximation problem. Top: solution with one single mode. Bottom:
6 modes. The reconstructed solution appears as a red line. The reference solution
is represented by a blue line. Macro-domain partition with 6 degrees of freedom,
appearing as black dots.

are

f(x) = cos(2πx) +
x

100
, (4.36)

u(0) = 0, (4.37)

u(10) = 0. (4.38)

Under these conditions, the analytical solution of the problem reads

u(x) =
cos(2πx)− 1

4π2
+
x

6
− x3

600
. (4.39)

Fig. 4.26 compares the reconstructed solution using the �rst PGD mode against the
reference solution. The macro domain has been partitioned using 8 degrees of freedom.
As it can be noticed, the �rst mode already captures the macro behavior, however, extra
modes are required to identify the oscillatory behavior of the micro scale. Indeed, the
reconstructed solution with 3 modes already captures the oscillations of the micro scale.

Fig. 4.27 shows the convergence the reconstructed solution with respect to the number
of PGD modes. Again, results show good convergence properties towards the reference,
exact solution.

Convection Case The third example is a convection problem, whose weak form reads∫
Ω

w∗(x, τ(x))
Du(x, τ(x))

Dx
dx =

∫
Ω

w∗(x, τ(x))f(x)dx ∀ x ∈ Ω = [0, 10]. (4.40)
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Figure 4.25 � Relative error of the reconstructed solution with respect to the ref-
erence solution as a function of the number of PGD modes for the approximation
problem.

Figure 4.26 � Di�usion problem. Top, 1 mode. Botoom, 3 modes. Reconstructed
solution, red line. Reference solution, blue line. Macro domain partition with 8
degrees of freedom, black dots.
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Figure 4.27 � Relative error of the reconstructed solution with respect to the refer-
ence solution as a number of PGD modes for the di�usion case.

It is well-known that special attention has to be paid when dealing with convection-
dominated equations to ensure convergence. A standard streamline-upwind Petrov-Galerkin
(SUPG) is implemented in this particular case[S. Fernandez 2004]. Therefore, the test func-
tion is de�ned as

w∗(x, τ(x)) = u∗(x, τ(x)) + β
Du∗(x, τ(x))

Dx
, (4.41)

where β is a numerical coe�cient controlling the stabilization of the numerical scheme. It
is important to notice that the numerical scheme remains consistent since the test function
a�ects both sides of Eq. (4.40).

The source term of the problem is

f(x) = x sin(12πx) +
x

30
, (4.42)

while the initial condition 8left boundary) is taken as

u(0) = 0. (4.43)

In that case, the analytical solution associated to this initial value problem is

u(x) =
sin(12πx)

144π2
− x cos(12πx)

12π
+
x2

60
. (4.44)

Fig. 4.28 shows the reconstructed solution involving one (top) and seven (bottom)
modes versus the reference one. The macro domain has been partitioned using 9 degrees of
freedom. As it can be noticed, the reconstructed solution is far from the reference one, when
only one mode is involved. However, the PGD algorithm converges towards the reference
solution when more modes are added into the approximation.

In turn, Fig. 4.29 shows the convergence of the multi-scale PGD algorithm for the 1D
convection case. The method converges well, reaching a relative error of 10−4 when using
7 modes. It is important to notice that the error seems to stagnate after 5 PGD modes.
This stagnation is linked with the discretization of the macro-micro domains. Indeed, an
approximation is already done when macro-micro domains are discretized, being a possible
source of di�erence between reference and reconstructed solutions.

4.2.2.2 Two dimensional numerical examples

This section extends the analysis of the developed methodology to three di�erent two-
dimensional cases: approximation, di�usion and convection-reaction-di�usion problems.
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Figure 4.28 � Convection case. Top, 1 mode. Botoom, 7 modes. The reconstructed
solution is represented as a red line, while the reference solution appears in blue
line. Macro domain partition with 10 degrees of freedom, represented as black dots.

Figure 4.29 � Relative error of the reconstructed solution with respect to the refer-
ence solution as a number of PGD modes for the convection case.
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Figure 4.30 � 2D Approximation case. Top: reference solution. Bottom: recon-
structed solution. Macro domain partitioned with 5 × 5 = 25 degrees of freedom.

2D approximation problem Again, we consider the multiscale approximation of a
given function f(x) by a sought function u(x). The weighted residual (Bubnov-Galerkin)
form of this problem is∫

Ω

w∗(x, τx, τy)u(x, τx, τy)dx =

∫
Ω

w∗(x, τx, τy)f(x)dx ∀ x ∈ Ω = [0, 1]2 (4.45)

In this case we consider a function

f(x) = x cos(8πx)y cos(8πy). (4.46)

Note that no boundary conditions need to be imposed for this problem.
Fig. 4.30 shows the analytical solution (right) versus the reconstructed solution using

the multi-scale PGD algorithm with 9 modes. The macro domain has been partitioned using
a mesh of 25 degrees of freedom, since each spatial direction has been partitioned using 5
nodes. As it can be clearly seen, the reconstructed solution captures the main features of
the reference solution. The small di�erences are due to the fact that the partition of the
macro domain does not coincide with the period of the signal. Therefore, extra modes will
be required to alleviate these small oscillations.

Fig. 4.31 shows the convergence plot associated to the 2D approximation case as a
function of the modal enrichments of the solution. Note the monotone convergence of the
solution.

2D di�usion case The weak form associated to this di�usion problem is∫
Ω

Dw∗(x, τx, τy)

Dx
· Du(x, τx, τy)

Dx
dx =

∫
Ω

w∗(x, τx, τy)f(x)dx ∀ x ∈ Ω = [0, 1]2. (4.47)
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Figure 4.31 � Relative error of the reconstructed solution with respect to the refer-
ence solution as a number of PGD modes for the 2D approximation case.

with boundary conditions

u(0, y) = u(1, y) = u(x, 0) = u(x, 1) = 0. (4.48)

The chain rule is required, as shown in Eq. (4.31), due to the dependence of τx and τy
with respect to x and y, respectively. The source term f considered in this case was

f(x) = 2w2xy sin(wx) sin(wy)− 2wx sin(wx) cos(wy)− 2wy cos(wx) sin(wy). (4.49)

In this particular case, the angular velocity is set to w = 20π. In that situation, the
analytical solution is given by

u(x, y) = x sin(wx)y sin(wy). (4.50)

It is important to highlight the treatment of the boundary conditions in order to solve
the di�usion problem. Vanishing Dirichlet boundary conditions need to be imposed on
the boundary, so that all macro degrees of freedom placed at the boundary are �xed to
zero. To enforce non-vanishing Dirichlet boundary conditions, the �rst modes will satisfy
the Dirichlet boundary conditions whereas the subsequent modes will be computed with
vanishing boundary conditions, following the standard rationale of the PGD[?].

Fig. 4.32 shows the reference solution for the di�usion case (top) versus the recon-
structed solution using 5 modes of the PGD. The macro domain has been partitioned using
a mesh of 4 nodes per direction but since the nodes at the boundary are set to zero, the
�nal degrees of freedom are 2× 2 = 4. Note that there is no perceivable di�erence between
the reference solution and the reconstructed one.

2D convection-di�usion problem The weak form associated to this di�usion prob-
lem is∫

Ω

w∗(x, τx, τy)
Du(x, τx, τy)

Dy
dx+

∫
x

Dw∗(x, τx, τy)

Dx

Du(x, τx, τy)

Dx
dx =

∫
Ω

w∗(x, τx, τy)f(x)dx, ∀ x ∈ Ω = [0, 1]2

(4.51)
Note that along the y direction there is a pure convection phenomenon, whereas the x
direction presents pure di�usion. Hence, the nature of the PDE forces to impose boundary
conditions at both ends of the x interval, whereas only initial boundary conditions must be
imposed in the y direction. The source term reads in this case

f(x) = (16w2y2 + 2y) sin(4wx) + (64w2 − w) sin(8wx) sin(wy) (4.52)
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Figure 4.32 � 2D Di�usion case. Top: reference solution. Bottom: reconstructed
solution with 5 modes. Macro domain partitioned with 2×2 = 4 degrees of freedom.

Figure 4.33 � Relative error of the reconstructed solution with respect to the refer-
ence solution as a number of PGD modes for the 2D di�usion case.
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Figure 4.34 � 2D Convection-Di�usion case. Top: reference solution. Bottom:
reconstructed solution with 5 modes. Macro domain partitioned with 3 × 4 = 12

degrees of freedom.

while the set of boundary conditions ensuring the well-posedness of the problem reads

u(0, y) = u(1, y) = u(x, 0) = 0. (4.53)

In this case the angular velocity is set to w = π.
Under this set of conditions, the partial di�erential equation (4.51) admits a unique

solution given by

u(x) = sin(4wx)y2 + sin(8wx) sin(wy). (4.54)

Fig. (4.34) shows the reference solution (top) versus the reconstructed solution involving
5 modes (bottom). The macro domain has been partitioned using 3 × 4 = 12 degrees of
freedom. As it can be noticed, the reconstructed solution already captures the main features
of the reference solution. It is important to notice how the reconstructed solution is able
to reproduce the set of homogeneous boundary conditions imposed in the 3 sides of the
squared domain.

Fig. 4.35 shows the relative error versus the number of modes involved in the recon-
structed solution. As it can be seen, the error decreases with respect to the number of
modes, showing good convergence properties even for convection di�usion problems.

Time Multi-Scale applied to a discrete system of equations The main aim
of this example is to show the capabilities of the algorithm to predict the response of a
transient system of equations arising from a standard FEM discretization in space. The
strong form of the problem reads as shown in eq. (4.55).

∂u(x, t)

∂t
− ∂2u(x, t)

∂x2
= f(x, t) (4.55)
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Figure 4.35 � Relative error of the reconstructed solution with respect to the ref-
erence solution as a number of PGD modes for the 2D convection di�usion case.

Indeed, the problem analyzed in this section makes reference to a 1D transient thermal
problem subjected to the boundary conditions and external source term shown in eq. (4.56).

f(x, t) = (4π2(sin(t) + sin(50t)) + cos(t) + 50cos(50t))sin(2πx)

u(x, 0) = 0

u(0, t) = u(1, t) = 0 (4.56)

This partial di�erential equation under this set of boundary conditions admits an ana-
lytical solution given in eq. (4.57). It is clear to see that this solution presents a two scale
behaviour in the time domain.

u(x, t) = (sin(t) + sin(50t))sin(2πx) (4.57)

If the spatial 1D bar is discretized using 80 linear elements equally spaced, it gives the
discrete system of equations (4.58), where multi-scale is applied only in time.

Mu̇(t) + Ku(t) = f(t) ∈ t = [0, T ] (4.58)

Fig. 4.36 shows the reference solution (left) and the reconstructed solution (right)
using 1 mode for the discretized transient thermal problem. As it can be noticed, the
obtained solution is in good agreement even when involving only one mode. This fact is not
surprinsing since the analytical solution is composed only by one separated mode. Indeed,
Fig. (4.37) shows that only one mode involves 1e − 5 of relative error with respect to the
analytical solution.

4.2.3 Conclusions

A novel algorithm able to solve multi-scale problems in an e�cient way is proposed in
this work. The algorithm combines a macro partition of the domain which is enriched with
unidimensional modes following standard PGD rationale. The convergence of the algorithm
is proven to be very e�ective for 1D and 2D problems, involving algebraic, di�usion and
convection phenomena.
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Figure 4.36 � Transient thermal problem. Reference solution, left. Reconstructed
solution with 1 mode, right. Temporal domain partitioned with 4 degrees of freedom.

Figure 4.37 � Convergence of the transient thermal problem for di�erent number of
modes.
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The methodology renders good results even when the macro domain partition does not
involve a pure periodical signal in the micro scale. The extension of the algorithm to higher
dimensional spaces is our current line of research just like the extension of the methodology
to non-rectangular domains.
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Chapter 5

Applications of PGD

In-Plane-Out-Of-Plane

Separations

Abstract Many electrical and structural components are constituted of a stacking of
multiple thin layers with di�erent electromagnetic, mechanical and thermal properties. The
introduction of appropriate kinematic and mechanic hypotheses allow to simplify the general
3D problem into a 2D involving just the in-plane coordinates. This was the route, for
instance, employed for deriving beam, plate and shell theories in solid mechanics, that were
extended later to many other physics, like �ows in narrow gaps or thermal, among many
others. However, in many cases, when addressing complex coupled physics the validity of
hypotheses able to reduce models from 3D to 2D becomes doubtful and consequently in
order to ensure accurate results 3D discretizations seem compulsory. To circumvent the
numerical di�culties that such a rich description imply, an in-plane-out-of-plane separated
representation with the aim of computing fully 3D solutions as a sequence of 2D problems
de�ned in the plane coordinates and others (1D) in the thickness coordinate was proposed
in [Bognet et al. 2012, Bognet et al. 2014].
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This chapter portraits novel applications of the so-called PGD In-Plane-Out-Of-Plane
separated representations. Section 5.1 proposes of an e�cient in-plane-out-of-plane sepa-
rated representation of the double-curl formulation of Maxwell equations able to address
thin-layer laminates while ensuring the continuity and discontinuity of the tangential and
normal electric �eld components respectively at the plies interface. For the sake of com-
pleteness, the main ingredients behind such a electromagnetic formulation are detailed as
well.

Section 5.2 extends the in-plane-out-of-plane separated representations successfully used
for addressing fully 3D model solutions de�ned in plate-like domain, to dynamics. Herein,
we introduce a new e�cient hybrid explicit in-plane implicit out-of-plane time integration
scheme for dynamic problems de�ned in plate-like domains that allows to compute 3D
solutions with the stability constraint exclusively determined by the coarser in-plane dis-
cretization. Particularly, the mesh employed for discretizing the out-of-plane dimension
(thickness) determines the maximum time-step ensuring stability when using an explicit
time integration scheme.

Finally, section 5.3 derives another application for unidirectional composite prepegs.
In this particular case, the thin composite ply is modeled by using an anisotropic incom-
pressible viscous �ow which becomes inextensible along the �ber direction. An extensive
analysis on the numerical stability of the separated representation is performed since the
�ow is subjected to two kinematic constraints, incompressibility and inextensibility, which
may lead to inf-sup (LBB) conditions.

These topics are addressed in three published papers:

• H. Tertrais, R. Ibáñez, A. Barasinski, C. Ghnatios, F. Chinesta, On the Proper Gen-

eralized Decomposition applied to microwave processes involving multilayered compo-

nents. Mathematics and Computers in Simulation, 156, 347-363, 2019.

• G. Quaranta, B. Bognet, R. Ibáñez, A. Tramecon, E. Haug, F. Chinesta, A new

hybrid explicit/implicit in-plane-out-of-plane separated representation for the solution

of dynamic problems de�ned in plate-like domains. Computers and Structures, 210,
135-144, 2018.
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• R. Ibáñez, E. Abisset-Chavanne, F. Chinesta, A. Huerta Simulating squeeze �ows in
multiaxial laminates: towards fully 3D mixed formulations. International Journal of
Material Forming, 210, 653-669, 2017.

5.1 On the Proper Generalized Decomposition applied

to microwave processes involving multilayered com-

ponents

The main objective of this section is to provide a numerical algorithm able to address
a high �delity resolution of the Maxwell's equations in its double rotational formulation
for thin geometries. Subsection 5.1.1 gives an overview of the electromagnetic formulation.
Subsection 5.1.2 shows how the in-plane-out-of-plane separated representation applies to the
electromagnetic �eld together with particular interface conditions which must be satis�ed
at the interface between plies. Numerical results based on both a 3-ply and 29-ply laminate
are shown in subsection 5.1.4.

5.1.1 Electromagnetic formulation

The usual approach when solving a general electromagnetic problem with the �nite ele-
ment method is considering edge elements [Nedelec 1980] with the double-curl formula-
tion of Maxwell equations. The use of edge elements allow e�ciently circumventing the
main problems of FEM applied to electromagnetic models [Jin 2002], in particular they
produce spurious-free solutions and ensure the normal discontinuity and tangential con-
tinuity between di�erent media, however some disadvantages have been also pointed out
[Mur 1994, Mur 1998], concerning the ill-conditioning of discrete systems when the number
of degrees of freedom � dof � increases. Some solutions were proposed for circumventing
such issue, as for example the introduction of Lagrange multipliers, with the associate dof
increase.

Many authors preferred the use of nodal-regularized formulations to avoid spurious so-
lutions [Hazard & Lenoir 996], while proposing ad-hoc solutions for accounting the transfer
conditions at the material interfaces, as implemented in the ERMES software [Otin 2013],
consisting of duplicating the nodes located at the interfaces, for approximating the discon-
tinuous �eld while enforcing the jump condition. Moreover, in these formulations a second
regularization is required for addressing �eld singularities.

Because in the case of multilayered laminates the interfaces coincide with constant
values of the out-of-plane coordinate (the thickness), implementing a discontinuous ap-
proximation within the in-plane-out-of-plane separated representation involved in the PGD
seems quite simple. Thus, the modeling framework that we are considering consists of stan-
dard approximations (the use of advanced discretizations based on edge elements into the
PGD framework constitutes a work in progress) combined with a regularized formulation,
with an ad-hoc treatment of interface transfer conditions.

The double-curl formulation is derived from the Maxwell's equations in the frequency
space, that in absence of current density in the laminate, reads

∇×
(

1

µ
∇×E

)
− ω2εE = 0, in Ω ⊂ R3 (5.1)

with the complex permittivity ε given by

ε = εr − i
σ

ω
, (5.2)
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and where µ, εr and σ represent the usual magnetic permeability, the electric permittivity
and the conductivity respectively.

The previous equation is complemented with adequate boundary conditions. Without
loss of generality we are assuming in what follows Dirichlet boundary conditions in the
whole domain boundary ∂Ω

n×E = Et
g, in ∂Ω (5.3)

where n refers to the unit outwards vector de�ned on the domain boundary. In the previous
expressions Et

g is the prescribed electric �eld (assumed known) on the domain boundary,
tangent to the boundary as Eq. (5.3) expresses.

The weighted residual weak form is obtained by multiplying (5.1) by the test function
E∗ (in fact by its conjugate, E

∗
, to de�ne properly scalar products being the electric �eld

a complex �eld, i.e. E = Er + iEi ), and then integrating by parts, to obtain∫
Ω

1

µ
(∇×E) · (∇×E

∗
) dx− ω2

∫
Ω

εE ·E∗ dx−∫
∂Ω

1

µ
(∇×E) · (n×E

∗
) dx = 0, (5.4)

for all test function E
∗
regular enough.

In the previous expression the boundary integral can be removed if the test function
is assumed verifying n × E

∗
= 0 on ∂Ω where Dirichet boundary conditions are enforced,

i.e. n×E on ∂Ω. As previously indicated, in what follows for the sake of simplicity we are
assuming Dirichlet boundary conditions on the whole domain boundary and then the weak
form reduces to ∫

Ω

1

µ
(∇×E) · (∇×E

∗
) dx− ω2

∫
Ω

εE ·E∗ dx = 0 (5.5)

However, it is well known that the weak form (5.5) produces spurious solutions because
even if Eq. (5.1) ensures the veri�cation of the Gauss equation ∇ · (εE) = 0, its discrete
counterpart after approximating the di�erent �elds implied in the weak form (5.5) does
not ensure the ful�llment of the Gauss equation. Thus, a regularization is compulsory
for avoiding these spurious solutions. In what follows we consider the regularized form
[Otin 2013]

∇×
(

1

µ
∇×E

)
− ε∇

(
1

εεµ
∇ · (εE)

)
− ω2εE = 0, (5.6)

whose (regularized) weak form when Dirichlet boundary conditions apply on the wall do-
main boundary, reads∫

Ω

1

µ
(∇×E) · (∇×E

∗
) dx− ω2

∫
Ω

εE ·E∗ dx +∫
Ω

τ

εεµ
(∇ · (εE)) (∇ · (εE∗)) dx −

∫
∂Ω

τ

εεµ
(∇ · (εE) (n · (εE∗))) dx = 0, (5.7)

where τ is the regularization coe�cient proposed in [Otin 2010] and that according to that
reference is taken with a unit value everywhere except at the interfaces where it vanishes.

5.1.2 In-plane-out-of-plane separated representation

To ensure a high enough resolution of the electric �eld along the component thickness to
represent the multilayered structure, we consider an in-plane-out-of-plane separated repre-
sentation in Ω = Ωp × Ωt, with Ωp ⊂ R2 and Ωt ∈ R. Each point x ∈ Ω is decomposed in
its plane component (x, y) ∈ Ωp and its out-of-plane z ∈ Ωt.
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5.1.2.1 Separated representation

The electric �eld is expressed as

E(x, y, z) ≈
N∑
i=1

Pi(x, y) ◦Ti(z) =



N∑
i=1

P xi (x, y) · T xi (z)

N∑
i=1

P yi (x, y) · T yi (z)

N∑
i=1

P zi (x, y) · T zi (z)

 , (5.8)

where "◦" refers to the Hadamard product. The di�erent in-plane and out-of-plane func-
tions, Pi and Ti respectively, are complex and then they involve a real and imaginary parts.

The previous separated representation leads to a separated representation of its deriva-
tives according to

∂Ex
∂x

∂Ex
∂y

∂Ex
∂z

∂Ey
∂x

∂Ey
∂y

∂Ey
∂z

∂Ez
∂x

∂Ez
∂y

∂Ee
∂z

 ≈ N∑
i=1


∂Pxi
∂x

∂Pxi
∂y P xi

∂Pyi
∂x

∂Pyi
∂y P yi

∂P zi
∂x

∂P zi
∂y P zi

 ◦
 T xi T xi

∂Txi
∂z

T yi T yi
∂Tyi
∂z

T zi T zi
∂T zi
∂z

 =

N∑
i=1

Pi(x, y) ◦ Ti(z), (5.9)

allowing the separated representation of all the di�erential operators appearing within the
regularized weak form (5.7).

However, the separated representation just proposed requires that all the model param-
eters accept a similar separated representation.

Consider the laminate composed of P layers, each one having uniform properties inside.
If H is the total laminate thickness, and assuming for the sake of simplicity and without
loss of generality that all the plies have the same thickness h, it results h = H

P . Now, we
introduce the characteristic function of each ply χi(z), i = 1, · · · ,P:

χi(z) =

{
1 if (i− 1)h ≤ z < ih

0 elsewehere
, (5.10)

that allows expressing the di�erent properties in the separated form
µ(x, y, z) =

P∑
i=1

µi · χi(z)

ε(x, y, z) =
P∑
i=1

εi · χi(z)
, (5.11)

being µi and εi the permeability and complex permittivity (the one that involves the per-
mittivity and conductivity) in the i-layer.

5.1.2.2 Functional approximation

Now, before calculating the di�erent functions involved in the approximation of the electric
�eld, we must approximate them. Because it is assumed that the only heterogeneity applies
along the thickness direction when moving from one ply to its neighbor, we can assume a
standard continuous nodal approximation of �elds Ex and Ey that moreover are continuous
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at the ply interfaces. For Ez the situation is a bit di�erent, because it is continuous in the
plane but discontinuous across the ply interfaces, where the �eld jump reads

εjEz(z
−
j ) = εj+1Ez(z

+
j ), (5.12)

where j ≥ 1 denotes the common interface between plies j and j + 1, zj its out-of-plane
coordinate, zj = jh, and Ez(z

−
j ) and Ez(z

+
j ) denote the electric �eld at both sides of the

interface, i.e. z−j = zj − ν and z+
j = zj + ν, with ν a small enough coe�cient ensuring

ν � h. Discontinuities within the PGD framework were addressed in [Giner et al. 2013,
Bur et al. 2016] in mechanical and thermal problems.

Here we consider continuous bilinear quadrilaterals, Q1 for approximating functions
depending on the in-plane coordinates, i.e. P xi (x, y), P yi (x, y) and P zi (x, y). In what respect
the functions depending on the out-of-plane coordinates we consider linear continuous 1D
�nite elements for approximating functions T xi (z) and T yi (z), ensuring the continuity of
Ex(x, y, z) and Ey(x, y, z), however in order to enforce the discontinuity of Ez(x, y, z) across
the ply interfaces, the nodes of the one-dimensional mesh attached to Ωz located at the ply
interfaces and used for approximating T zi , are duplicated as proposed in [Paulsen et al. 1987,
Paulsen et al. 1988, Boyse et al. 1992, Otin 2013]. This simple choice ensures the continuity
of Ez in the plane and its discontinuity across the ply interfaces.

5.1.3 PGD-based discretization

The separated representation construction proceeds by computing a term of the sum at
each iteration. Assuming that the �rst n−1 modes (terms of the �nite sum) of the solution
were already computed, En−1(x, y, z) with n ≥ 1, the solution enrichment reads:

En(x, y, z) = En−1(x, y, z) + Pn(x, y) ◦Tn(z), (5.13)

where both vectors Pn and Tn containing functions Pni and Tni (i = 1, 2, 3) depending on
(x, y) and z respectively, are unknown at the present iteration. The test function E

∗
reads

E
∗

= P∗ ◦T
n

+ P
n ◦T∗.

The introduction of Eq. (5.13) into (5.7) results in a non-linear problem. We pro-
ceed by considering the simplest linearization strategy, an alternated directions �xed point
algorithm, that proceeds by calculating Pn,k from Tn,k−1 and then by updating Tn,k

from the just calculated Pn,k where k refers to the step of the non-linear solver. The
iteration procedure continues until convergence, that is, until reaching the �xed point
‖Pn,k ◦ Tn,k − Pn,k−1 ◦ Tn,k−1‖ < ν (ν being a small enough coe�cient), that results
in the searched functions Pn,k → Pn and Tn,k → Tn. Then, the enrichment step continues
by looking for the next mode Pn+1 ◦Tn+1. The enrichment stops when the model residual
becomes small enough.

When Tn is assumed known, we consider the test function E
?
given by P? ◦ T

n
. By

introducing the trial and test functions into the weak form and then integrating in Ωt
because all the functions depending on the thickness coordinate are known, we obtain a
2D weak formulation de�ned in Ωp whose discretization (by using a standard discretization
strategy, e.g. �nite elements) allows computing Pn.

Analogously, when Pn is assumed known, the test function E
?
is given by P

n ◦ T?.
By introducing the trial and test functions into the weak form and then integrating in Ωp
because all the functions depending on the in-plane coordinates (x, y) are at present known,
we obtain a 1D weak formulation de�ned in Ωt whose discretization (using any technique
for solving standard ODE equations) allows computing Tn.
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As discussed in [Bognet et al. 2012] this separated representation allows computing 3D
solutions while keeping a computational complexity characteristic of 2D solution procedures.
If we consider a hexahedral domain discretized using a regular structured grid with Nx, Ny
and Nz nodes in the x, y and z directions respectively, usual mesh-based discretization
strategies imply a challenging issue because the number of nodes involved in the model
scales with Nx · Ny · Nz, however, by using the separated representation and assuming
that the solution involves N modes, one must solve about N 2D problems related to the
functions involving the in-plane coordinates (x, y) and the same number of 1D problems
related to the functions involving the thickness coordinate z. The computing time related
to the solution of the one-dimensional problems can be neglected with respect to the one
required for solving the two-dimensional ones. Thus, the resulting complexity scales as
N ·Nx ·Ny. By comparing both complexities we can notice that as soon as Nz � N the use
of separated representations leads to impressive computing time savings, making possible
the solution of models never until now solved, and even using light computing platforms.

5.1.4 Numerical results

In this section we consider two laminates with di�erent number of plies, 3 and 29 layers
respectively.

5.1.4.1 3-layer laminate

The �rst laminate of 0.5m× 0.5m× 3mm is composed of three plies of similar thicknesses
(1mm each), depicted in Fig. 5.1. The in-plane-out-of-plane representation of the electrical
�eld components is expressed from a uniform mesh of the plane domain composed of 50×
50 = 2500 Q1 bilinear �nite elements while the thickness is equipped with 1D uniform mesh
consisting of 3000 linear elements (1000 elements per layer).

The layers located at the top and bottom are characterized by the electromagnetic
properties ε = 10ε0, µ = µ0 and σ = 10−2S/m, with ε0 and µ0 the vacuum electrical
permittivity and the magnetic permeability respectively. The ply located at the center
exhibits a larger electrical conductivity in order to attenuate the electrical �eld, being its
associated electromagnetic properties given by ε = ε0, µ = µ0 and σ = 104S/m.

We considered such a laminate in order to enforce both kind of electromagnetic losses,
the one related to dielectric losses here mostly occurring in the top and bottom layers,
whereas in the central layer the losses are motivated by the larger electrical conductivity.
The fact of placing the lowest electrical conductivity layers at top and bottom is to ensure
the penetration of electromagnetic waves into the laminate to reach the central layer where
they will be attenuated due to the larger electrical conductivity. By locating high conduc-
tivity layers at the top and bottom the electromagnetic waves cannot reach the central layer
because they will be mostly suppressed in the neighborhood of the laminate boundaries.

Dirichlet boundary conditions are enforced on the whole domain boundary, i.e. E× n.
The tangential components of the electrical �eld on each face of the layers located on the
domain boundary are selected from vector V

V =

 cos kx+ cos ky

cos ky

τ cos kx

 , (5.14)

with k = 20π, τ = 1 in the top and bottom layers and with the appropriate value in the
central one for ensuring the �eld jump according to the Gauss law.
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Figure 5.1 � Three-(thin)-plies laminate
.

Figure 5.2 � Vx on ∂Ω

.

The components of the electrical �eld prescribed on the laminate boundary are depicted
in Figs. 5.2-5.4 for Ex, Ey and Ez respectively. It is important to remember that only
tangential components of the electrical �eld are enforced on each domain face.

Figs. 5.5-5.7 depict the evolution along the thickness of the real and imaginary parts of
the three components of the electric �eld. In these �gures the continuity of Ex and Ey, and
the discontinuity of Ez across the ply interfaces can be noticed, with a jump magnitude in
agreement with the expected value.

In order to check the e�ects of unresolved scales related to the penetration depth, we
consider a coarser mesh along the thickness composed of 30 elements (10 per layer). It can
be noticed that the solution is signi�cantly degraded with respect to solution obtained with
the �ner mesh as the comparison of Figs. 5.5-5.7 and Figs. 5.8-5.10 reveals, in particular
the out-of-plane component of the electric �eld Ez.

Figure 5.3 � Vy on ∂Ω

.
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Figure 5.4 � Vz on ∂Ω

.
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Figure 5.5 � Electrical �eld along the plate thickness, Ex(0.25, 0.25, z)
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Figure 5.6 � Electrical �eld along the plate thickness, Ey(0.25, 0.25, z)
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Figure 5.7 � Electrical �eld along the plate thickness, Ez(0.25, 0.25, z)
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Figure 5.8 � Electrical �eld along the plate thickness, Ex(0.25, 0.25, z) when consid-
ering a coarser mesh in the thickness
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Figure 5.9 � Electrical �eld along the plate thickness, Ey(0.25, 0.25, z) when consid-
ering a coarser mesh in the thickness
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Figure 5.10 � Electrical �eld along the plate thickness, Ez(0.25, 0.25, z) when con-
sidering a coarser mesh in the thickness
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Figure 5.11 � Electrical �eld along the central layer thickness when considering a
mesh in the thickness consisting of 30 elements

.

To better appreciate the unresolved boundary layer (the penetration depth being δ =√
2/ωµ0σ ≈ 0.1mm), Figs. 5.11-5.13 depict the real part of Ez(0.25, 0.25, z) in the central

layer.
It can be noticed that for resolving all the scales extremely �ne meshes are required

along the thickness direction, involving about thousand elements that with the thousands
involved in the in-plane resolution imply meshes involving millions of elements (extremely
distorted) when proceeding with standard �nite elements. When using the in-plane-out-
of-plane separated representation, in-plane and out-of-plane meshes become independent
avoiding issues related to mesh distortion. On the other hand the problems de�ned in the
thickness are one-dimensional and consequently their computational cost is almost negli-
gible with respect to the solution of in-plane problems. Thus, �nally the high-resolution
3D solution is obtained while keeping the computational complexity similar to the one
characteristic of the solution of 2D problems (the one de�ned in the plane).

In order to emphasize the location of both kind of losses, the dielectric one and the one
related to eddy currents, Fig. 5.14 represents the density of both losses, where as expected,
the dielectric ones locate at the external layers, whereas the one related to eddy current
e�ects locates in the central layer and close to the interfaces where the electric �eld is
attenuated (the penetration deept).

5.1.4.2 29-layer laminate

The second laminate of 0.5m× 0.5m× 2.9mm is composed of 29 plies of similar thicknesses
(0.1mm each) where two di�erent materials are alternatively placed as illustrated in Fig.
5.15. The in-plane-out-of-plane representation of the electrical �eld components is expressed
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Figure 5.12 � Electrical �eld along the central layer thickness when considering a
mesh in the thickness consisting of 300 elements
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Figure 5.13 � Electrical �eld along the central layer thickness when considering a
mesh in the thickness consisting of 3000 elements
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Figure 5.14 � Electromagnetic losses: (left) dielectric and (right) eddy current
.

from a uniform mesh of the plane domain composed of 50 × 50 = 2500 Q1 bilinear �nite
elements while the thickness is equipped with 1D uniform mesh consisting of 1450 linear
elements (50 elements per layer).

The layers in red in Fig. 5.15 are characterized by the electromagnetic properties
ε = 5ε0, µ = µ0 and σ = 0S/m, with ε0 and µ0 the vacuum electrical permittivity and
the magnetic permeability respectively. The remaining plies exhibit a larger electrical con-
ductivity in order to attenuate the electrical �eld, being its associated electromagnetic
properties given by ε = ε0, µ = µ0 and σ = 1S/m. The boundary conditions are the same
that were enforced when addressing the solution of the three-layer laminate.

Figs. 5.16-5.18 depict the evolution along the thickness of the real and imaginary parts
of the three components of the electric �eld. In these �gures the continuity of Ex and
Ey, and the discontinuity of Ez across the ply interfaces can be noticed, with a jump
magnitude in agreement with the expected value. It is important to note that such a
high-resolution remains out-of-reach when using standard 3D mesh-based discretization
techniques, whereas the separated representation allows a very accurate solution, cheap
and fast from the computational view point (the solution was obtained in 20 seconds using
a standard laptop).

5.1.5 Discussion and conclusions

The Proper Generalized Decomposition within the In-Plane-Out-Of-Plane separation has
been succesfully applied to address the propagation of electromagnetic waves in compos-
ite laminates. Because its inherent throughout-its-thickness high-resolution, direct conse-
quence of the in-plane-out-of-plane separated representation, the reached resolution falls
beyond the capabilities of standard and well experienced mesh-based discretization tech-
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Figure 5.15 � 29-plies laminate
.
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Figure 5.16 � Electrical �eld along the plate thickness, Ex(0.25, 0.25, z)
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Figure 5.17 � Electrical �eld along the plate thickness, Ey(0.25, 0.25, z)
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Figure 5.18 � Electrical �eld along the plate thickness, Ez(0.25, 0.25, z)
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niques. By using it, micrometric resolutions can be easily reached when addressing usual
composite structural parts. It allows zooming at regions exhibiting high variations of the
solution, as for example the wave attenuation when reaching a conductive layer, that local-
izes the solution in an extremely narrow layer, whose accurate representation remains out
of reach for standard discretization techniques.

The second advantage in uncoupling plane coordinates from the thickness coordinate
is related to the facility to enforce the jump of the normal component of the electrical �eld
across two layers exhibiting di�erent electromagnetic properties. For that purpose the �eld
approximation is able to produce jumps at the laminate interfaces.

When using a high-resolution discretization based on the in-plane-out-of-plane sep-
arated representation, the double-curl electromagnetic formulation worked quite well as
soon as boundary conditions were regular enough. However as soon as complex Dirichlet
boundary conditions were enforced a lack of convergence was noticed and the computed
solutions were almost wrong. In fact the Gauss law was not ful�lled at the discrete level
and for that reason a regularized formulation was considered, that allowed ensuring the
solution convergence.

These three issues are subtly entangled. It is important to note that when solving the
electromagnetic problem in the laminate, the z-component of the electrical �eld Ez is not
enforced on the top and bottom surfaces. Moreover, at the ply interfaces Ez jumps according
to the Gauss law, and then, if the �eld attenuation when the wave reaches the central
(conductive) layer is not accurately described (approximated), the solution Ez becomes
wrong almost everywhere.

The consideration of perfect conductors as well as the domain decomposition for cou-
pling standard discretization techniques and PGD separated representation, outside and
inside the composite laminate respectively, are the main works in progress.

5.2 Explicit-Implicit Hybrid Time Marching Scheme for

Thin Geometries

This work presents a novel explicit-implicit time marching scheme suitable for thin geome-
tries. The proposed methology alleviates una�ordable time steps arising from the thinnest
dimension while keeping the advantages of explicit time integration schemes. This section
is structed as follows: Subsection 5.2.1 de�nes the elastodynamics framework and the pro-
posed in-plane-out-of-plane separated representation. Subsection 5.2.2 revisits classical time
integration within the separated representation framework, and proposes an e�cient hybrid
explicit/implicite formulation. Finally, Subsection 5.2.3 validates the proposed methodol-
ogy from some case studies.

5.2.1 Elastodynamics: Problem de�nition

We consider a physical domain Ω for which a linear elastic behavior is assumed, according
to

σ = C : ε, (5.15)

where C is the fourth order sti�ness tensor, and the strain tensor ε derives from the sym-
metric component of the gradient of displacements i.e. ε = ∇su, where ∇s refers to the
symmetric component.

From now on we consider Voigt notation, and for the sake of notational simplicity we
consider the same notation, σ, ε and C for expressing the stress and strain vectors and the
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sti�ness matrix respectively.
The dynamic problem, in absence of damping and external forces, with the displacement

�eld u(x, t) for x ∈ Ω and t ∈ I = [0, T ], reads

ρü(x, t) = ∇ · σ, (5.16)

with ρ the material density, u̇ and ü the �rst and second time derivative of the displacement
�eld respectively, i.e. the velocity and acceleration.

The domain boundary Γ = ∂Ω is partitioned in the so-called Dirichlet and Neumann
regions, ΓD and ΓN , where respectively displacements and tractions are enforced, with
ΓD∪ΓN = Γ and ΓD∩ΓN = ∅. Dynamic problems require specifying the initial displacement
and velocity that without loss of generality in what follows are assumed null, i.e. u̇(x, t =

0) = 0 and u(x, t = 0) = 0.
Assuming again the trial and test displacements belonging to appropriate functional

spaces, and considering an elastic constitutive equation, the weak form associated with
(5.16) reads

ρ

∫
Ω

u∗ · ü dx +

∫
Ω

ε(u∗) · (Cε(u)) dx =

∫
ΓN

u∗ · F dx, (5.17)

where the applied traction depends on time, i.e. F = F(t).

5.2.1.1 In-plane-out-of-plane separated representation

As discussed in the previous section, with Ω having one dimension (the one related to the
thickness) much smaller than the others involving the in-plane coordinates, an in-plane-
out-of-plane separated representation seems again the most appealing route for addressing
3D discretizations while keeping the computational complexity the one characteristic of 2D
discretizations. The domain is expressed from Ω = Ωxy × Ωz.

Even if as also indicated space-time separated discretizations were considered many
times in the past [Ladeveze 1985, Ammar et al. 2007], in the present work time derivatives
are discretized using standard schemes.

By considering the notation u(x, y, z, t = k∆t) = uk(x, y, z), with ∆t the time step, the
in-plane-out-of-plane separated representation of the displacement �eld at time tk = k∆t,
uk(x, y, z), reads

uk(x, y, z) =

uk(x, y, z)

vk(x, y, z)

wk(x, y, z)

 ≈ ukN (x, y, z) =

N∑
i=1

ui,kxy (x, y) · ui,kz (z)

vi,kxy (x, y) · vi,kz (z)

wi,kxy (x, y) · wi,kz (z)

 =

N∑
i=1

Ui,k
xy (x, y) ◦Ui,k

z (z) (5.18)

where “ ◦ ” refers to the Hadamard product, and with

Ui,k
xy (x, y) =

ui,kxy (x, y)

vi,kxy (x, y)

wi,kxy (x, y)

 =

ui,kxyvi,kxy
wi,kxy

 , (5.19)

Ui,k
z (z) =

ui,kz (z)

vi,kz (z)

wi,kz (z)

 =

ui,kzvi,kz
wi,kz

 , (5.20)

where for alleviating the notation the coordinate dependences will be omitted.
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From all them we can obtain the separated vector form of the strain tensor at time tk,
εk ≡ ε(uk):

ε(uk) ≈
N∑
i=1



∂ui,kxy
∂x · u

i,k
z

∂vi,kxy
∂y · v

i,k
z

wi,kxy ·
∂wi,kz
∂z

∂ui,kxy
∂y · u

i,k
z +

∂vi,kxy
∂x · v

i,k
z

∂wi,kxy
∂x · w

i,k
z + ui,kxy ·

∂ui,kz
∂z

∂wi,kxy
∂y · w

i,k
z + vi,kxy ·

∂vi,kz
∂z


. (5.21)

The separated representation constructor proceeds by computing a term of the sum at
each iteration. Assuming that the �rst n−1 modes (terms of the �nite sum) of the solution
were already computed, ukn−1(x, y, z) with n ≥ 1, the solution enrichment reads:

ukn(x, y, z) = ukn−1(x, y, z) + Un,k
xy (x, y) ◦Un,k

z (z) (5.22)

where both vectors Un,k
xy and Un,k

z are unknown at the present iteration de�ning a nonlinear
problem. The test function u∗ reads u∗ = U∗xy ◦Un,k

z + Un,k
xy ◦U∗z.

With both Un,k
xy and Un,k

z unknown the resulting problem becomes non-linear. We
proceed by considering the simplest linearization strategy, an alternated directions �xed
point algorithm widely considered and described in our former works.

When Un,k
z is assumed known, we consider the test function u? given by U?

xy ◦Un,k
z .

By introducing the trial and test functions into the weak form and then integrating in Ωz
because all the functions depending on the thickness coordinate are known, we obtain a 2D
weak formulation de�ned in Ωxy whose discretization (by using a standard discretization
strategy, e.g. �nite elements) allows computing Un,k

xy .
Analogously, when Un,k

xy is assumed known, the test function u? is given by Un,k
xy ◦U?

z.
By introducing the trial and test functions into the weak form and then integrating in Ωxy
because all the functions depending on the in-plane coordinates (x, y) are at present known,
we obtain a 1D weak formulation de�ned in Ωz whose discretization (using any technique
for solving standard ODE equations) allows computing Un,k

z .
Thus, the 3D computational cost is transformed into a sequence of 2D and 1D solutions,

with the associated computing time savings [Bognet et al. 2012].

5.2.2 Time discretization

Before introducing the hybrid strategy we consider at time tk+1 the standard implicit and
explicit formulations (two commun time integration schemas among other possibilities),
given respectively by

ρ

∫
Ω

u∗ · u
k+1 − 2uk + uk−1

∆t2
dx +

∫
Ω

ε(u∗) ·
(

Cε

(
uk+1 + uk−1

2

))
dx =

∫
ΓN

u∗ · F
k+1 + Fk−1

2
dx, (5.23)

that as previously indicated is unconditionally stable, and the explicit one

ρ

∫
Ω

u∗ · u
k+1 − 2uk + uk−1

∆t2
dx +

∫
Ω

ε(u∗) ·
(
Cε(uk)

)
dx =

∫
ΓN

u∗ · Fkdx, (5.24)
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that is conditionally stable, with the stability limit ∆tmax, de�ning the stability domain
∆t < ∆tmax, given by

∆tmax =
L

c
, (5.25)

where L is the characteristic length of the spatial discretization and the dilatational wave
speed c is given by

c =

√
E
(
1− ν

)(
1 + ν

)(
1− 2ν

)
ρ
. (5.26)

As previously commented explicit strategies are employed in many commercial codes.
However, when applied to discretize 3D problems de�ned in degenerated domains, like
plates or shells, the extremely �ne meshes considered along the thickness direction have an
unfavorable impact on the time step that becomes extremely small to ensure stability. The
in-plane-out-of-plane separated representation cannot scape to this important issue, being
the mesh size along the out-of-plane coordinate (much �ner that the one used in the plane)
the one that determines the time step.

It is important emphasizing the main aim of the present work and the proposed method-
ology for performing it. First, it is important to note that we are interested in performing
fully 3D simulations in degenerated geometries (e.g. plate domains) while retaining as many
explicit time integration features as possible.

In this context the following remarks can be addressed:

• When using 2D discrete models (considering for example plate elements), the stability
criterion related to explicit time integrations involves the size of the elements, but
as the mesh is the one related to the middle plane, the critical time step remains
reasonable in most of cases;

• However, as soon as 3D discretizations are considered, the characteristic size of the
�nite elements along the plate thickness becomes much smaller than the in-plane
characteristic length, and then when considering explicit time integrations the time
step needed for ensuring stability decreases with the through-of-thickness character-
istic element length;

• Increasing the resolution in the thickness direction implies the increase of the number
of elements involved in the discretization as well as the decrease of the time step for
ensuring stability, both having unfavorable consequences on the computational cost;

• In former works [Bognet et al. 2012, Bognet et al. 2014] we proposed in the frame-
work of elastostatics considering in-plane-out-of-plane separated representations that
allowed reducing the computational complexity of solving a fully 3D problem to the
one characteristic of 2D solutions;

• However, as just indicated, such a decomposition when combined with explicit time
integrations fails, because again the stability is associated to the smallest discretiza-
tion characteristic length, the one related to the through-of-thickness discretization;

• It is in that impasse that one is tempted of using, in the case of explicit time inte-
gration, the in-plane-out-of-plane separated representation (that reduces the compu-
tational complexity to the one characteristic of 2D models) combined with an hybrid
time integration, explicit in the plane (conditionally stable but with the critical time-
step scaling with the characteristic in-plane discretization length) and implicit along
the thickness (unconditionally stable), that allows both reducing the computational
complexity while keeping as stability constraint the one associated to the in-plane
explicit time integration;
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• Obviously fully implicit in-plane-out-of-plane decompositions are possible, where the
implicit time integration ensures unconditional stability while the space separated
representation reduces the computational complexity. Despite of its intrinsic interest
it is not considered in the present paper, and in all cases, the associated solutions
are the same as the ones obtained by using a fully 3D �nite element discretization
but reducing the solution computational complexity. As previously commented fully
explicit integrations fail because the too stringent stability conditions induced by the
too �ne through-of-thickness discretization;

Thus, in this work we analyze an intermediate procedure, the one in which the �ne
through-of-thickness representation is alleviated thanks to the use of the in-plane-out-of-
plane space separated representation together with an implicit time integration in all oper-
ators involving derivatives throughout the thickness coordinate. Thus, the stability of the
resulting discretization is expected being induced by the in-plane mesh in which an explicit
time integration is retained. The present work is intended analyzing this hybrid methodol-
ogy, and proving that in the case of fully explicit separated representations (as in the case of
fully explicit 3D �nite elements) the stability is dictated by the smallest characteristic dis-
cretization length (the one along the domain thickness). On the contrary when considering
the hybrid scheme described herein, we expect the stability being dictated by the character-
istic in-plane discretization length (being the through-of-thinness discretization implicit).
In summary, the main goal is enriching explicit 2D plate and shell formulations widely
employed in industry and commercial codes, with a �ne through-of-thickness description
(3D) without a�ecting unfavorably the integration stability.

5.2.2.1 Explicit-in-plane / implicit-out-of-plane hybrid scheme

As just indicated, in order to circumvent the just referred stability issues, we propose an
out-of-plane implicit discretization (unconditionally stable) while the in-plane discretization
(implying coarser meshes) makes use of an explicit schema. Thus, the stability is precribed
by the in-plane size mesh, several order of magnitude higher than the one associated to the
thickness.

For that purpose we propose considering at time tk the strain de�ned by

εh(uk) =



uk,x
vk,y

wk+1
,z +wk−1

,z

2
vk+1
,z +vk−1

,z

2 + wk,y
uk+1
,z +uk−1

,z

2 + wk,x
uk,y + vk,x


≈



∑Nk
i=1 u

i,k
xy,x · ui,kz∑Nk

i=1 v
i,k
xy,y · vi,kz∑Nk+1

i=1 wi,k+1
xy ·wi,k+1

z,z +
∑Nk−1
i=1 wi,k−1

xy ·wi,k−1
z,z

2∑Nk+1
i=1 vi,k+1

xy ·vi,k+1
z,z +

∑Nk−1
i=1 vi,k−1

xy ·vi,k−1
z,z

2 +
∑Nk
i=1 w

i,k
xy,y · wi,kz∑Nk+1

i=1 ui,k+1
xy ·ui,k+1

z,z +
∑Nk−1
i=1 ui,k−1

xy ·ui,k−1
z,z

2 +
∑Nk
i=1 w

i,k
xy,x · wi,kz∑Nk

i=1 u
i,k
xy,y · ui,kz +

∑Nk
i=1 v

i,k
xy,x · vi,kz


(5.27)

where for the sake of notational simplicity the derivatives of function u• with respect the
coordinate x is noted by u•,x (and similarly for the other functions involved in the displace-
ment components with respect to any coordinate). Moreover, the superscript •h refers to
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its hybrid nature and Nk+1, Nk, Nk−1 are the number of products involved in the separated
representation of the displacement at times steps k + 1, k and k − 1 respectively.

It can be noticed that the derivatives involving the out-of-plane (thickness) coordinate
are treated using an implicit schema whereas an explicit one is retained for the in-plane
derivatives. Thus, the hybrid schema is some place in between standard implicit and explicit
techniques, taking pro�t of the advantages of both them.

When using the hybrid schema the weak form at time tk+1, consists of �nding uk+1,
verifying∫

Ω

ρu∗ · u
k+1 − 2uk + uk−1

∆t2
dx +

∫
Ω

ε(u∗) ·
(
Cεh(u)

)
dx =

∫
ΓN

u∗ · Fk dx. (5.28)

To construct the separated representation of the solution at time tk+1 we consider the
standard procedure, assuming that n − 1 terms have been already computed and that at
the present iteration looks for the term n, according to

uk+1
n−1(x, y, z) =

uk+1
n−1(x, y, z)

vk+1
n−1(x, y, z)

wk+1
n−1(x, y, z)

 =

n−1∑
i=1

Ui,k+1
xy (x, y) ◦Ui,k+1

z (z), (5.29)

with
uk+1
n (x, y, z) = uk+1

n−1(x, y, z) + Pk+1(x, y) ◦Tk+1(z). (5.30)

where for the sake of notational simplicity the unknown �elds Un,k+1
xy and Un,k+1

z are
referred by Pk+1(x, y) and Tk+1(z), with components

Pk+1(x, y) =

pk+1
u (x, y)

pk+1
v (x, y)

pk+1
w (x, y)

 , (5.31)

and

Tk+1(z) =

tk+1
u (z)

tk+1
v (z)

tk+1
w (z)

 . (5.32)

The linearity allows writing

εhn(x, y, z) = εhn−1(x, y, z) + εhPT (x, y, z) (5.33)

where

εhn−1(x, y, z) =



uk,x
vk,y

wk+1
n−1,z+wk−1

,z

2
vk+1
n−1,z+vk−1

,z

2 + wk,y
uk+1
n−1,z+uk−1

,z

2 + wk,x
uk,y + vk,x


=



∑Nk
i=1 u

i,k
xy,x · ui,kz∑Nk

i=1 v
i,k
xy,y · vi,kz∑n−1

i=1 wi,k+1
xy ·wi,k+1

z,z +
∑Nk−1
i=1 wi,k−1

xy ·wi,k−1
z,z

2∑n−1
i=1 vi,k+1

xy ·vi,k+1
z,z +

∑Nk−1
i=1 vi,k−1

xy ·vi,k−1
z,z

2 +
∑Nk
i=1 w

i,k
xy,y · wi,kz∑n−1

i=1 ui,k+1
xy ·ui,k+1

z,z +
∑Nk−1
i=1 ui,k−1

xy ·ui,k−1
z,z

2 +
∑Nk
i=1 w

i,k
xy,x · wi,kz∑Nk

i=1 u
i,k
xy,y · ui,kz +

∑Nk
i=1 v

i,k
xy,x · vi,kz


, (5.34)
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and

εhPT (x, y, z) =



0

0
pk+1
w ·tk+1

w,z

2
pk+1
v ·tk+1

v,z

2
pk+1
u ·tk+1

u,z

2

0


.

The test displacement reads

u∗(x, y, z) =

p∗u(x, y) · tk+1
u (z) + pk+1

u (x, y) · t∗u(z)

p∗v(x, y) · tk+1
v (z) + pk+1

v (x, y) · t∗v(z)
p∗w(x, y) · tk+1

w (z) + pk+1
w (x, y) · t∗w(z)

 =

P∗ ◦Tk+1 + Pk+1 ◦T∗, (5.35)

and the associated strain

ε(u∗(x, y, z)) =



p∗u,x · tk+1
u + pk+1

u,x · t∗u
p∗v,y · tk+1

v + pk+1
v,y · t∗v

p∗w · tk+1
w,z + pk+1

w · t∗w,z
p∗w,y · tk+1

w + pk+1
w,y · t∗w + p∗v · tk+1

v,z + pk+1
v · t∗v,z

p∗w,x · tk+1
w + pk+1

w,x · t∗w + p∗u · tk+1
u,z + pk+1

u · t∗u,z
p∗v,x · tk+1

v + pk+1
v,x · t∗v + p∗u,y · tk+1

u + pk+1
u,y · t∗u

 . (5.36)

For the sake of simplicity, and without loss of generality, we assume that the applied
traction F on ΓN , can be expressed from the single term separated representation, i.e.

Fk(x, y, z) = Fkx,y(x, y) ◦ Fkz(z). (5.37)

Using the previous expressions, Eq. (5.28) reads∫
Ω

ρu∗ · P
k+1 ◦Tk+1

∆t2
dx +

∫
Ω

ε(u∗) ·
(
CεhPT

)
dx =

−
∫

Ω

ρu∗ ·
uk+1
n−1 − 2uk + uk−1

∆t2
dx−

∫
Ω

ε(u∗) ·
(
Cεhn−1

)
dx +

∫
ΓN

u∗ · Fk dx. (5.38)

As both Pk+1 and Tk+1 are unknown, problem (5.38) becomes nonlinear and conse-
quently requires an appropriate linearization strategy. As as usual in our previous works
an alternated directions �xed point strategy is considered that by assuming Tk+1 known
calculates Pk+1 and from the last updates Tk+1. The process continues until reaching
convergence (the �xed point).

When assuming Tk+1 known the test displacement reads

u∗(x, y, z) =

p∗u(x, y) · tk+1
u (z)

p∗v(x, y) · tk+1
v (z)

p∗w(x, y) · tk+1
w (z)

 = P∗ ◦Tk+1, (5.39)

that introduced into the weak form (5.38) results in a 2D problem involving the in-plane
coordinates that allows calculating Pk+1. Now, assuming that last known, the test dis-
placement becomes

u∗(x, y, z) =

pk+1
u (x, y) · t∗u(z)

pk+1
v (x, y) · t∗v(z)
pk+1
w (x, y) · t∗w(z)

 = Pk+1 ◦T∗, (5.40)
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Figure 5.19 � Problem geometry

that introduced at its turn into the weak form (5.38) results in a 1D problem involving the
thickness, whose solution results in Tk+1. As preciously indicated the alternate direction
procedure continues until reaching the convergence or stagnation criteria characterized by∫

Ω

(
Pk+1
p ◦Tk+1

p −Pk+1
p−1 ◦Tk+1

p−1

)2
dx∫

Ω

(
Pk+1
p−1 ◦Tk+1

p−1

)2
dx

< ε, (5.41)

where p refers to the �xed point iteration and ε is a small enough threshold value.
Similarly the enrichment procedure stops when the L2 norm of the new enrichment∫

Ω

(
Pk+1 ◦Tk+1

)2
dx∫

Ω

(
U1,k+1
xy ◦U1,k+1

z

)2

dx
< ε̃, (5.42)

is ful�lled, with ε̃ another small enough threshold value.

5.2.3 Numerical validation

5.2.3.1 Dynamics of an homogeneous plate

We consider the problem de�ned in the domain Ω depicted in Fig. 5.19, withHx = Hy = 3m

and Hz = 0.1m. In the �rst case study, the material occupying Ω is assumed isotropic.
Boundary conditions are given by: u =

(
0, 0, 0

)
on the face ADHE; u =

(
free, 0, free

)
on the faces ABFE and DCGH; F(t) =

(
0, 0, A sin(ωt)

)
on face BCGF, with A = 108,

ω = 20π as depicted in Fig. 5.20.
The material properties are de�ned in Table 5.1, where E is the Young modulus, ν the

Poisson coe�cient and ρ the material density.
Figures 5.21 and 5.22 compare the stability of standard explicit Q8-3D �nite elements

(fully explicit separated representations with equivalent discretizations lead to the same
results) and the hybrid scheme just proposed, for di�erent values of the in-plane and out-
of-plane mesh sizes, Lxy and Lz respectively. As it can noticed computed results re�ect
the stability conditions given by Eqs. (5.25) and (5.26). It is important to note that when
considering fully explicit schemes, the stability is found being prescribed by the mesh size
related to the thickness direction, however, when considering the hybrid schema the stability
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Table 5.1 � Material properties

E (N/m2): 2 1011

ν: 0.25

ρ (kg/m3): 8000
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Figure 5.20 � Loading

becomes given by the in-plane characteristic mesh size, that being much larger that the one
related to the thickness, integration becomes more more e�cient.

To validate the hybrid approach (only in what concerns accuracy and stability, because
issues related to computing time savings were addressed in [Bognet et al. 2012]), the com-
puted solution is compared with both explicit and implicit 3D �nite elements integration
with a time step (in the explicit case) guaranteeing the integration stability. The simulation
parameters are the ones introduced previously concerning the material properties, and the
ones concerning the remaining simulation parameters are indicated in Table 5.2, where Nx,
Ny and Nz refer to the number of elements involved in the discretization of directions x, y
and z.

Figure 5.23 depicts the time evolution of the vertical displacement w at the central
point on segment FG when using di�erent integration schemes. The solution obtained by
using the hybrid strategy agrees in minute with the one obtained by using the �nite element

Table 5.2 � Simulation parameters

Hx: 3m

Hy: 3m

Hz: 0.1m

Nx: 10

Ny: 2

Nz: 10

∆t: 10−6 s

191



Chapter 5. Applications of PGD In-Plane-Out-Of-Plane Separations

Figure 5.21 � Stability analysis for a given in-plane characteristic mesh size Lxy.

Figure 5.22 � Stability analysis for a given out-of-plane characteristic mesh size Lz.
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(s)

(m
)

Figure 5.23 � Vertical displacement at the central point of segment FG

method and considered as reference for comparison purposes.

5.2.3.2 Considering richer out-of-plane approximations

In order to check the ability of the proposed technique for addressing richer out-of-plane
representations, we consider that the domain depicted in Fig. 5.19 consists now in a
laminated composed of 8 anisotropic plies [0, 45,−45, 90]S . The applied force now writes
again F(t) =

(
0, 0, A sin(ωt)

)
and applies on the face BCGF, with A = 108 but now with

ω = 200π, as depicted in Fig. 5.24.
The mechanical properties of the 0 degree-ply are given in Table 5.3, where E is the

Young modulus, ν the Poisson coe�cient, G the shear modulus and ρ the density. The
subscripts indicate respectively the proprieties along the longitudinal direction of the �bers
(1), the in-plane transverse direction (2) and the out-of-plane direction (3).

In the present case the elastic constitutive equation becomes orthotropic and using
again Voigt notation it reads



εxx
εyy
εzz
γyz
γxz
γxy

 =



1

E1

−
ν12

E1

−
ν13

E1

0 0 0

−
ν12

E1

1

E2

−
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−
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1

G13

0
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1
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



σxx
σyy
σzz
σyz
σxz
σxy

 . (5.43)

We compared the solution obtained using the hybrid strategy with the one obtained
using implicit �nite elements. An explicit �nite element solution was not envisaged in this
particular case because the too small time step induced by the extremely �ne through-the-
thickness mesh. The simulation parameters are reported in Tables 5.3 and 5.4.

Figure 5.25 compares the time evolution of the vertical displacement at the middle of
segment FG. It can be noticed again that the hybrid strategy provides an excellent solution
compared with the implicit �nite element considered as reference.
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Figure 5.24 � Loading applying in the composite laminate

Table 5.3 � Mechanical properties of the 0 degree-ply

E1 (N/mm2): 120 · 103

E2 (N/mm2): 8.9 · 103

E3 (N/mm2): 8.9 · 103

ν12: 0.35

ν13: 0.35

ν23: 0.32

ν21: ν12
ν31: ν13
ν32: ν23
G12 (N/mm2): 4.5 · 103

G13 (N/mm2): 4.5 · 103

G23 (N/mm2): 5.3 · 103

ρ (kg/m3): 1750

Table 5.4 � Simulation parameters

Hx: 250mm

Hy: 100mm

Hz: 4mm

Nx: 10

Ny: 2

Nz: 48 (6 elements per ply)
∆t: 10−6 s
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(s)

(m
)

Figure 5.25 � Vertical displacement at the middle of segment FG

Finally Fig. 5.26 compares the time evolution of the stress component σzz at the
same location calculated (middle of segment FG) using the �nite element method and the
implicit/explicit hybrid in-plane-out-of-plane decomposition. Again both solutions match
perfectly.

5.2.3.3 Analysis of computational performances

In order to investigate the performances of the proposed technique we perform in this part
di�erent analyses. Before, we would like advertising on two facts. First, all computing times
are referred to a Matlab implementation on a standard laptop. Thus, computed results allow
comparing approaches but not to conclude on absolute performances. Second, for the sake
of generality the problem linearity is not taken into account in the sense that at each time
step a linear system is solved without taking advantage of the numerous computational
pro�ts that linearity o�ers in the �nite element framework. This conservative approach
allows extending the main conclusions to the nonlinear case.

We consider again the problem de�ned in the domain Ω depicted in Fig. 5.19, with
Hx = Hy = 3m, Hz = 0.1m and with the material properties de�ned in Table 5.1,
considering the same boundary conditions than in Section 5.2.3.1 and the same loading,
the last illustrated in Fig. 5.20. In the analyses here addressed, the PGD constructor
stoping criterion is set to ε = ε̃ = 10−6.

First, we compare the hybrid PGD method with its fully implicit counterpart. The
three di�erent meshes de�ned in Table 5.5 are considered, where again Nx, Ny and Nz refer
to the number of elements involved in the discretization of directions x, y and z respectively.
For each mesh we compare the computing time employed by both the hybrid and the fully
implicit PGD discretizations to solve the problem in the time interval [0, 400∆t], with the
time-step ∆t = 10−5

3 s for all the simulations.
Results presented in Fig. 5.27 prove that, as expected, when using the same time-

step the hybrid method proceeds faster than the implicit one. Later, in order to take
advantage of the superior stability of fully implicit discretizations, time-steps will be selected
di�erently for ensuring an equivalent accuracy, in order to compare computing costs in a

195



Chapter 5. Applications of PGD In-Plane-Out-Of-Plane Separations

0 0.005 0.01 0.015

time (s)

-1.5

-1

-0.5

0

0.5

1
z
z
 (

P
a
)

10
7

implicit FEM

hybrid PGD

Figure 5.26 � Stress component σzz(t) at the central point of segment FG. Implicit
and hybrid-based solutions are almost superimposed.

Table 5.5 � Meshes considered in the analysis of computational performances de-
picted in Fig. 5.27.

Mesh 1 Mesh 2 Mesh 3
Nx: 10 20 30

Ny: 10 20 30

Nz: 100 100 100

more appropriate manner.
Now, we perform a comparison between the three PGD formulations (explicit, hybrid

and implicit) in the time interval [0, 400∆t], whith ∆t = 10−7 s to ensure the stability of
the explicit time integration. Results for the three meshes in Table 5.6 are presented in
Figure 5.28. As expected the computational cost of the hybrid formulation is in between
the one of explicit and implicit time integrations.

We have already proved in Figs. 5.21 and 5.22 that the stability domain of the hybrid
formulation does not depend on the mesh size associated with the thickness direction, so
that the hybrid simulation proceeds faster than the one performed using a fully explicit
formulation by using a larger time-step in the hybrid integration.

In order to prove it, we perform a simulation using `Mesh 2" in Table 5.5, in the time
interval [0, 4]ms. We use as time steps for the explicit and the hybrid methods respectively
∆tex = 10−7 s and ∆thy = 10−5 s, ensuring the stability of both schemes. Results shown in
Fig. 5.29 reveal as expected that the higher time-step considered in the hybrid integration
induces signi�cant computing time savings.
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Figure 5.27 � Hybrid versus implicit PGD formulations.

Table 5.6 � Meshes considered in the analysis of computational performances de-
picted in 5.28.

Mesh 4 Mesh 5 Mesh 6
Nx: 10 20 30

Ny: 10 20 30

Nz: 50 50 50

Mesh 4 Mesh 5 Mesh 6
0
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Figure 5.28 � Comparing explicit, hybrid and implicit PGD formulations.
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Figure 5.29 � Hybrid versus explicit PGD formulations.

Table 5.7 � Mesh used in the results described in Figure 5.30 and Table 5.8.

Mesh 7
Nx: 10

Ny: 10

Nz: 90

The last analysis aims at taking advantage of the superior stability performances of the
implicit formulation, that a priori can use larger time-steps that the ones of explicit and
hybrid formulations that are only conditionally stables. However, here not only stability
issues are addressed but also the accuracy of the computed solutions.

Thus, in the present numerical analysis we consider the mesh de�ned Table 5.7 and the
time interval [0, T ] with T = 6ms, and consider as reference solution the one computed
using an explicit FEM scheme with a very �ne time-step ∆t = 10−7 s, ensuring both
stability and accuracy, both performances having been checked. Figure 5.30 compares the
computational cost related to FEM and PGD explicit time integrations. As expected the
separated representation involved in the PGD formulation allows better performances.

Then the problem is solved using �rst the hybrid scheme with a time-step ∆t = 2·10−5 s

that ensures its stability and implicit (PGD and FEM) time integrations using higher time-
steps. For each solution we consider the computational cost as well as the error E with
respect to the reference solution, computed from the relative L2 norm:

E =

(∫ T
0

∫
Ω

(u− uref )
2
dxd t

) 1
2(∫ T

0

∫
Ω

u2
refdxd t

) 1
2

. (5.44)

Table 5.8 compares the di�erent solutions, proving that: (i) implicit PGD and FEM
integrations lead to almost the same solutions, being the ones related to PGD less compu-
tationally expensive; and (ii) implicit simulations related to the same computational cost
than hybrid simulation produce larger errors, for the analyzed case.
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Figure 5.30 � Explicit PGD versus explicit FEM.

Table 5.8 � Hybrid and implicit PGD integrations versus a standard implicit �nite
element formulation (using di�erent time-steps).

Time Error
∆t = 2 · 10−5 s Hybrid PGD: 65 s 8.3 · 10−3

Implicit PGD: 203 s 8.4 · 10−3

Implicit FEM: 746 s 8.4 · 10−3

∆t = 4 · 10−5 s Implicit PGD: 185 s 1.66 · 10−2

Implicit FEM: 363 s 1.66 · 10−2

∆t = 6 · 10−5 s Implicit PGD: 145 s 2.47 · 10−2

Implicit FEM: 236 s 2.47 · 10−2

∆t = 8 · 10−5 s Implicit PGD: 88 s 3.27 · 10−2

Implicit FEM: 174 s 3.27 · 10−2

∆t = 10−4 s Implicit PGD: 63 s 4.05 · 10−2

Implicit FEM: 146 s 4.05 · 10−2
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5.2.4 Conclusion

A hybrid time discretization scheme for solving 3D dynamical problems de�ned in degen-
erated domains is proposed, that is, domains in which one of its characteristic dimensions
is much smaller that the other ones, as it is the case when considering plates or shells.

A �rst complexity reduction is attained by considering the in-plane-out-of-plane sep-
arated representation that allows reducing the original 3D complexity to the one charac-
teristic of 2D plate or shells models, even if the computed solution is fully 3D and any
hypothesis is introduced. Such separated representation allows the use of extremely �ne
descriptions along the thickness direction.

However, such decomposition when combined with explicit time integrations has a ma-
jor handicap, the too small element length involved in the thickness direction implies an
extremely small time step for ensuring stability. Such a drawback is circumvented by using
an implicit (unconditionally stable) through-the-thickness operators whereas a standard ex-
plicit scheme is considered for treating the in-plane operators. By doing that, the stability
is dictated by the in-plane mesh size, much coarser than the one employed in the thickness
direction, alleviating the stability constraints. It is important to note, that even if a part
of the whole scheme remains implicit, it only a�ects one dimension and then its solution is
extremely fast and cheap.

The inclusion of progressive damage models combined with dynamical e�ects constitutes
a work in progress, where the separated representations seems an appealing option to better
represent damage e�ects along the laminate thickness, and where explicit time integrations
are usually employed in industrial applications.

5.3 Simulating Squeeze Flows in Multiaxial Laminates:

Towards Fully 3D Mixed Formulations

In what follows we �rst address the penalty and mixed formulations of the Stokes �ow in a
narrow gap, that can be easily generalized to strati�ed �ows. Then the �ow of multi axial
laminates making use of the Ericksen �uid �ow model at the ply level is considered. In
this last case the penalty formulation related to both the �ber inextensibility and the �ow
incompressibility is substituted in favor of a mixed formulation making use of two Lagrange
multipliers, the �rst related to the inextensibility constraint and the second one to the
�ow incompressibility. Such a richer description is needed to evaluate the �ber tension,
crucial to predict defects related to its compression. On the other hand the rheological
characterization of multiaxial laminates is performed by calculating the compression force
to be applied for obtaining a given squeeze rate. For that purpose, it is important calculating
the stress tensor in the �uid, and when using a penalty formulation the calculation of the
pressure �eld remains a tricky issue. These facts justify the use of a mixed formulation
instead of the penalized one previously considered in our former works, formulation that was
retained in [Ghnatios et al. 2016] for circumventing the issues related to the LBB stability
condition.

5.3.1 3D modeling of Stokes �ow in narrow gaps

5.3.1.1 In-plane-out-of-plane separated representation

The in-plane-out-of-plane separated representation allows the solution of full 3D models
de�ned in plate geometries with a computational complexity characteristic of 2D simula-
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tions. This separated representation allows independent representations of the in-plane and
the thickness �elds dependencies. The main idea lies in the separated representation of the
velocity �eld by using functions depending on the in-plane coordinates x = (x, y), Pj

i (x),
and others depending on the thickness direction z, Tj

i (z), according to:

 v(x, z)

p(x, z)

τ(x, z)

 =


u(x, z)

v(x, z)

w(x, z)

p(x, z)

τ(x, z)

 ≈



N∑
i=1

P 1
i (x) · T 1

i (z)

N∑
i=1

P 2
i (x) · T 2

i (z)

N∑
i=1

P 3
i (x) · T 3

i (z)

N∑
i=1

P pi (x) · T pi (z)

N∑
i=1

P τi (x) · T τi (z)


=

N∑
i=1

Pi(x) ◦Ti(z), (5.45)

which leads to a separated representation of the strain rate. When introduced into the �ow
problem weak form it allows the calculation of functions Pi(x) by solving the corresponding
2D equations and functions Ti(z) by solving the associated 1D equations, as described later.

Eq. (5.45) can be rewritten in the compact form

v(x, z) ≈
N∑
i=1

Pv
i (x) ◦Tv

i (z) =



N∑
i=1

P 1
i (x) · T 1

i (z)

N∑
i=1

P 2
i (x) · T 2

i (z)

N∑
i=1

P 3
i (x) · T 3

i (z)

 , (5.46)

where "◦" denotes the entry-wise or Hadamard's product.

Remark 1. If a and b are vectors of the same dimension, vector c, de�ned from c = a ◦ b,
has as components ci = ai · bi. If a and b are second order tensors with the same size,
tensor c, de�ned from c = a ◦b, has components cij = aij · bij (no sum with respect to the
repeated indexes). In this case it results a : b = c, with the scalar c given by c = aij · bij
considering sum with respect to the repeated indexes (Einstein's summation convention).

Using this notation in (5.45), the velocity gradient ∇v(x, z) can be written as:

∇v =


∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
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∂w
∂y

∂w
∂z

 ≈ N∑
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
∂P 1

i

∂x
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i

∂y P 1
i

∂P 2
i

∂x
∂P 2

i

∂y P 2
i

∂P 3
i

∂x
∂P 3

i

∂y P 3
i

 ◦
 T 1

i T 1
i

∂T 1
i

∂z

T 2
i T 2

i
∂T 2

i

∂z

T 3
i T 3

i
∂T 3

i

∂z

 =

N∑
i=1

Pi(x) ◦ Ti(z). (5.47)

The solution of full 3D Stokes problem within the in-plane-out-of-plane separated rep-
resentation is revisited in the next sections.
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5.3.1.2 Flow model

The Stokes �ow model is de�ned in Ξ = Ω×I, Ω ⊂ R2 and I ⊂ R, and for an incompressible
�uid, in absence of inertia and mass terms reduces to:

∇ · σ = 0

σ = −pI + 2ηD

∇ · v = 0

, (5.48)

where σ is the Cauchy's stress tensor, I the unit tensor, η the �uid viscosity, p the pressure
(Lagrange multiplier associated with the incompressibility constraint) and the rate of strain
tensor D de�ned as

D =
∇v + (∇v)T

2
. (5.49)

The pressure in-plane-out-of-plane separated representation writes

p =

N∑
i=1

P pi (x) · T pi (z). (5.50)

In what follows for the sake of simplicity the dependency of in-plane functions on x an
the one of out-of-plane functions on z will be omitted.

The weak form of the coupled velocity-pressure Stokes problem, for both a test velocity
v∗ and a test pressure p∗, the �rst vanishing on the boundary in which the velocity is
prescribed, and assuming null tractions in the remaining part of the domain boundary, can
be written as ∫

Ω×I

(−pTr(D∗) + 2ηD∗ : D) dx dz = 0, (5.51)

∫
Ω×I

−p∗Tr(D) dx dz = 0, (5.52)

where Eqs. (5.51) and (5.52) make reference to the linear momentum and mass balances
respectively.

Following the developments reported in the Appendix B, previous balances can be
rewritten as

2ηD∗ : D ≈ η

2

N∑
j=1

4∑
k=1

(
A∗jk(x) : Bjk(z) + Ajk(x) : B∗jk(z)

)
, (5.53)

pTr(D∗) ≈
N∑
i=1

P pi · T
p
i

(
∂P 1

∂x
T 1 +

∂P 2

∂y
T 2 + P 3 ∂T

3

∂z

)∗
, (5.54)

and

p∗Tr(D) ≈
N∑
i=1

(P p · T p)∗
(
∂P 1

i

∂x
T 1
i +

∂P 2
i

∂y
T 2
i + P 3

i

∂T 3
i

∂z

)
. (5.55)

5.3.1.3 Separated representation constructor

The construction of the solution separated representation is performed incrementally, a
term of the sum at each iteration. Thus, supposing that at iteration n− 1, n ≥ 1, the �rst
n− 1 terms of both velocity and pressure separated representations were already computed

vn−1(x, z) =

n−1∑
i=1

Pv
i (x) ◦Tv

i (z), (5.56)
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pn−1(x, z) =

n−1∑
i=1

P pi (x) · T pi (z), (5.57)

the terms involved in the weak form (5.51) and (5.52) are:

D∗ : Dn−1 =
1

4

n−1∑
j=1

4∑
k=1

(
A∗jk(x) : Bjk(z) + Ajk(x) : B∗jk(z)

)
, (5.58)

pn−1Tr(D∗) ≈
n−1∑
i=1

P pi · T
p
i

(
∂P 1

∂x
T 1 +

∂P 2

∂y
T 2 + P 3 ∂T

3

∂z

)∗
, (5.59)

and

p∗Tr(Dn−1) ≈
n−1∑
i=1

(P p · T p)∗
(
∂P 1

i

∂x
T 1
i +

∂P 2
i

∂y
T 2
i + P 3

i

∂T 3
i

∂z

)
, (5.60)

respectively. The indexes a�ecting test functions will be detailed below.
When looking for the improved velocity �eld vn(x, z) at iteration n

vn(x, z) =

n∑
i=1

Pv
i (x) ◦Tv

i (z) = vn−1(x, z) + Pv
n(x) ◦Tv

n(z), (5.61)

we consider the test function v∗(x, z)

v∗ = Pv∗ ◦Tv
n + Pv

n ◦Tv∗, (5.62)

that implies
∇v∗ = P∗ ◦ Tn + Pn ◦ T∗. (5.63)

When looking for the improved pressure �eld pn(x, z) at iteration n

pn(x, z) =

n∑
i=1

P pi (x) · T pi (z) = pn−1(x, z) + P pn(x) · T pn(z), (5.64)

we consider the test function

p∗ = P p∗ · T pn + P pn · T p∗. (5.65)

In that case it results

4D∗ : Dn =

n−1∑
j=1

4∑
k=1

(
A∗jk(x) : Bjk(z) + Ajk(x) : B∗jk(z)

)
+

4∑
k=1

(A∗nk(x) : Bnk(z) + Ank(x) : B∗nk(z)) , (5.66)

pnTr(D∗) ≈
n−1∑
i=1

P pi · T
p
i

(
∂P 1

∂x
T 1 +

∂P 2

∂y
T 2 + P 3 ∂T

3

∂z

)∗
+

P pn · T pn
(
∂P 1

∂x
T 1 +

∂P 2

∂y
T 2 + P 3 ∂T

3

∂z

)∗
, (5.67)

and

p∗Tr(Dn) ≈
n−1∑
i=1

(P p · T p)∗
(
∂P 1

i

∂x
T 1
i +

∂P 2
i

∂y
T 2
i + P 3

i

∂T 3
i

∂z

)
+
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(P p · T p)∗
(
∂P 1

n

∂x
T 1
n +

∂P 2
n

∂y
T 2
n + P 3

n

∂T 3
n

∂z

)
, (5.68)

where (
∂P 1

∂x
T 1 +

∂P 2

∂y
T 2 + P 3 ∂T

3

∂z

)∗
=

(
∂P 1∗

∂x
T 1
n +

∂P 2∗

∂y
T 2
n + P 3∗ ∂T

3
n

∂z

)
+

(
∂P 1

n

∂x
T 1∗ +

∂P 2
n

∂y
T 2∗ + P 3

n

∂T 3∗

∂z

)
, (5.69)

and
(P p · T p)∗ = P p∗ · T pn + P pn · T p∗. (5.70)

Thus the problem weak form (5.51) and (5.52)writes at iteration n:∫
Ω×I

−P pn · T pn
(
∂P 1

∂x
T 1 +

∂P 2

∂y
T 2 + P 3 ∂T

3

∂z

)∗
dx dz+

∫
Ω×I

η

2

(
4∑
k=1

A∗nk(x) : Bnk(z) + Ank(x) : B∗nk(z)

)
dx dz =

∫
Ω×I

n−1∑
j=1

P 4
i · T 4

i

(
∂P 1

∂x
T 1 +

∂P 2

∂y
T 2 + P 3 ∂T

3

∂z

)∗
dx dz−

∫
Ω×I

η

2

n−1∑
j=1

4∑
k=1

(
A∗jk(x) : Bjk(z) + Ajk(x) : B∗jk(z)

) dx dz, (5.71)

and ∫
Ω×I

−(P p · T p)∗
(
∂P 1

n

∂x
T 1
n +

∂P 2
n

∂y
T 2
n + P 3

n

∂T 3
n

∂z

)
dx dz =

∫
Ω×I

n−1∑
i=1

(P p · T p)∗
(
∂P 1

i

∂x
T 1
i +

∂P 2
i

∂y
T 2
i + P 3

i

∂T 3
i

∂z

)
dx dz. (5.72)

The extended weak forms (5.71) and (5.72) become nonlinear because it involves the
product of unknown functions Pn and Tn. Thus a linearization strategy becomes necessary,
the simplest one being an alternating �xed point algorithm that proceeds as follows:

1. Assuming functions Pn(x) are known (arbitrarily chosen at the �rst itera-
tion of the nonlinear iteration) matrices A∗jk and F∗j , as well as functions(
∂P 1∗

∂x T 1
n + ∂P 2∗

∂y T 2
n + P 3∗ ∂T 3

n

∂z

)
and P p∗ vanish. Being all functions depending on

x known, integrals in Ω in (5.71) and (5.72) can be calculated. Thus, it �nally results
in a one dimensional linear problem that involves the four scalar functions involved
in Tn(z), T 1

n(z), T 2
n(z), T 3

n(z) and T pn(z).

2. Then, with the just computed function Tn(z), and with B∗jk, G∗j , T p∗ and(
∂P 1

n

∂x T
1∗ +

∂P 2
n

∂y T
2∗ + P 3

n
∂T 3∗

∂z

)
vanishing, one can proceed to integrate Eqs. (5.71)

and (5.72) in I. It �nally results in a two-dimensional linear problem for the un-
known function Pn(x) that involves the four scalar functions P 1

n(x), P 2
n(x), P 3

n(x)

and P pn(x).
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3. The convergence is checked by comparing functions Pn and Tn between two consec-
utive iterations of the nonlinear solver. If both functions are small enough they are
used to update both velocity and pressure �elds(

v(x, z)

p(x, z)

)
=

n∑
i=1

Pi(x) ◦Ti(z). (5.73)

If the convergence is not attained, one returns to step 1 with the calculated functions
Pn to re-compute Tn

Because of the one-dimensional large scale variation present in the laminate thickness
direction one can employ extremely detailed descriptions along the thickness direction with-
out sacri�cing the computational e�ciency of the 3D solution procedure.

5.3.1.4 Flow in a laminate

Consider a laminate composed of P layers in which each layer involves a linear and isotropic
viscous �uid of viscosity ηi, thus the extended Stokes �ow problem in its weak form involves
the dependence of the viscosity along the thickness direction.

If H is the total laminate thickness, and assuming for the sake of simplicity and without
loss of generality that all the plies have the same thickness h, it results h = H

P . Now, from
the characteristic function of each ply χi(z), i = 1, · · · ,P:

χi(z) =

{
1 if (i− 1)h ≤ z < ih

0 elsewehere
, (5.74)

the viscosity reads

η(x, z) =

P∑
i=1

ηi · χi(z), (5.75)

where it is assumed, again without loss of generality, that the viscosity does not evolve in
the plane, i.e. ηi(x) = ηi.

This decomposition is fully compatible with the velocity-pressure separated represen-
tation (5.45) and with the in-plane-out-of-plane decomposition considered for solving Eqs.
(5.71) and (5.72).

5.3.2 Ericksen �uid �ow model in a laminate

The case of a prepreg ply reinforced by continuous �bres oriented along direction pT =

(px, py, 0), ‖p‖ = 1, is analyzed here. It is assumed that the thermoplastic resin exhibits
Newtonian behaviour. Thus the velocity v(x, z) of the equivalent anisotropic �uid must
satisfy the incompressibility and inextensibility constraints

∇ · v = 0, (5.76)

and

pT · ∇v · p = 0, (5.77)

respectively. Expression (5.77) can be rewritten using tensor notation as ∇v : a = 0, where
the second order orientation tensor a is de�ned from a = p · pT = p⊗ p.
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The orientation tensor a has only planar components (the out-of-plane �ber orientation
can be neglected in the case of laminates), it is symmetric and of unit trace, i.e.

a =

 axx axy 0

ayx ayy 0

0 0 0

 =

(
A 0

0T 0

)
, (5.78)

where A represents the plane component of the orientation tensor a, axy = ayx (i.e. A =

AT ) and ayy = 1− axx.
The simplest expression of the Ericksen's constitutive equation [Ericksen 1959] can be

written in the compact form as follows

σ = −pI + τa + 2ηTD + 2(ηL − ηT )(D · a + a ·D), (5.79)

that is then introduced into the linear momentum balance

∇ · σ = 0. (5.80)

In Eq. (5.79) p and τ represents respectively the Lagrange multipliers related to the
incompressibility and inextensibility constraints, and ηL and ηT the longitudinal and trans-
verse shear viscosities respectively.

By separating both the pressure and the �ber tension �elds using an in-plane-out-of-
plane-separated representation

p(x, z) =

N∑
i=1

P pi (x) · T pi (z), (5.81)

and

τ(x, z) =

N∑
i=1

P τi (x) · T τi (z), (5.82)

it allows accurate calculations of both the �ber tension and the pressure �eld. This in-
formation can be used to predict either �bers buckling or forces acting on the squeezed
boundary.

The weak form for a test velocity v∗(x, z) vanishing at the boundary in which velocity is
prescribed, a test pressure p∗(x, z) and a test �ber tension τ∗(x, z), assuming null tractions
in the remaining part of the domain boundary can be expressed as∫

Ω×I

D∗ : σ dx dz = 0, (5.83)

∫
Ω×I

p∗D : I dx dz = 0, (5.84)

and ∫
Ω×I

τ∗D : a dx dz = 0. (5.85)

By introducing the Ericksen constitutive equation (5.79), Eq. (5.83) can be written as∫
Ω×I

D∗ : σ dx dz =

206



5.3. Simulating Squeeze Flows in Multiaxial Laminates: Towards Fully 3D Mixed
Formulations∫

Ω×I

D∗ : (−pI + τa + ηTD + η̃ (D · a + a ·D)) dx dz = 0, (5.86)

with η̃ = ηL − ηT .
At this stage the in-plane-out-of-plane separated representation constructor of v(x, z),

p(x, z) and τ(x, z) proceeds as described in the previous section.

Remark 2. If a = 0 this formulation reduced to one related to the Stokes �ow problem.

Remark 3. Laminates can be addressed by associating with each ply the planar �ber
orientation pi(x), with its out-of-plane component vanishing, from which the associated
orientation tensor ai(x) results in ai(x) = pi(x) ⊗ pi(x). Using again the characteristic
function of the i-ply, χi(z), i = 1, · · · ,P, the orientation tensor in the laminate, a(x, z),
can be expressed as

a(x, z) =

P∑
i=1

ai(x)χi(z). (5.87)

Remark 4. If the �ber orientation is constant in each plane, then the laminate orientation
tensor can be expressed as

a(z) =

P∑
i=1

aiχi(z). (5.88)

5.3.3 Revisiting fully penalized formulations.

Both Stokes and Ericksen �ows have been successfully implemented by means of penalized
formulations involving both, the pressure, p, and the �ber tension, τ . Such a penalized
formulation leads to a problem that only involves the velocity �eld. Therefore, the aim is to
clarify how the constitutive equation is modi�ed when introducing two penalty parameters.
For that purpose we consider:

∇ · v + λp = D : I + λp = 0, (5.89)

and
D : a− ετ = 0. (5.90)

Where the coe�cients λ and ε are chosen to ensure numerically incompressibility and
�ber inextensibility. Both constraints are ensured as long as both penalty coe�cients are
small enough. Isolating p and τ from Eqs. (5.89) and (5.90), it results

p = − 1

λ
D : I, (5.91)

and

τ =
1

ε
D : a. (5.92)

If both pressure and �ber tension are penalized the constitutive equation reduces to,

σ =
1

λ
(I⊗ I) : D +

1

ε
(a⊗ a) : D + 2ηD, (5.93)

where a very high e�ective viscosity acts along the �ber direction. This formulation was
intensively considered in [Ghnatios et al. 2016] where a variety of results were presented
and discussed, proving the potentiality of the approach. However neither �ber tension nor
the pressure �eld were calculated because the penalty formulation does not allow an easy
and accurate post-calculation from the calculated velocity �eld.
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H

L

W

Imposed velocity

Figure 5.31 � Laminate geometry during compression molding of the laminate under
prescribed velocity.

5.3.4 Numerical results

The numerical results discussed hereafter consider several cases starting from Stokes prob-
lem, then a single ply occupying the whole gap, then considering laminates composed of
two plies with di�erent relative orientations.

The main aim of this section is to show that there exists an in-plane-out-of-plane sep-
arated representation when both the pressure and the �ber tension have been introduced
as Lagrange multipliers. Therefore, 3D �nite element solvers for Stokes and Ericksen prob-
lems have been developed in order to check the accuracy of the separated representation
solutions. The 3D-FEM solution will be taken as reference for validating the one involving
a separated representation 3D-SR calculated within the PGD framework.

The domain occupied by the laminate has length L, width W and thickness H, i.e.
Ξ = Ω× I, with Ω = [0, L]× [0,W ] and I = [0, H], with x ∈ Ω and z ∈ I.

It is assumed that during compression, the upper wall moves down with a prescribed
velocity V during the consolidation. Thus, mass conservation leads to signi�cant velocity
variations within Ω, e.g. the central point has a null in-plane velocity because of the symme-
try condition whereas the in-plane velocity is maximal at the laminate lateral boundaries
∂Ω × I. Moreover, when taking into account the through-thickness complex kinematics
in multiaxial laminates, a su�ciently detailed solution is also required along the thickness
direction to capture all its richness. Figure 5.31 depicts the laminate geometry as well as
the squeezing conditions.

Numerical results will be presented sometimes on the middle plane z = H/2, sometimes
along the thickness at the intersection line between planes x = a and y = b, with a ∈ [0, L]

and b ∈ [0,W ].

5.3.4.1 Stokes �ow

First the Stokes problem solution is addressed. Numerical issues as the ones related to
the enforcement of the so-called LBB stability condition in the 3D-SR (in-plane-out-of-
plane separated representation) will be deeply discussed. Viscosity is set to 1000 Pa · s
and the compression velocity to V = −1 m · s−1. Two domains were addressed, the �rst
perfectly cubic of length 1 m. The second �ow problem was de�ned in the narrow gap of
dimensions L ×W × H = 0.5 × 0.5 × 0.001 (all the lengths in meters) with a prescribed
compression velocity of V = −0.1 mm · s−1. In this case the 3D �ow problem solution could
be approximated using the lubrication theory.
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Figure 5.32 � u(x, z = H/2) (top-left), v(x, z = H/2) (top-right), w(x, z = H/2)

(bottom-left), and p(x, z = H/2) (bottom-right), associated with the solution of the
Stokes problem using a stable 3D-FEM discretization.

3D-FEM A standard stable 3D �nite element discretization has been used for solving
the Stokes problem in the cubic domain of unit size (L = W = H = 1). The 3D-FEM
solution will be taken as reference for evaluating the 3D solution making use of an in-plane-
out-of-plane separated representation. A stable Q2/P1 is considered for discretizing the 3D
mixed formulation within the FEM framework.

Figure 5.32 depicts the three velocity components and the pressure �eld on the middle
plane z = H/2. Because the problem symmetry the velocity components u(x, z) and
v(x, z) vanish at x = L/2 and y = W/2 respectively. Moreover the component w remains,
as expected, almost constant on the middle plane z = H/2. The pressure �eld exhibits a
global maximum in the center of the middle plane of about 1669 Pa.

Figure 5.33 shows the di�erent components of the velocity �eld as well as the pressure
along the line de�ned as the intersection between planes x = 0.625 and y = 0.625. It can be
noticed that boundary conditions are satis�ed, with velocities u and v vanishing at z = 0

and z = H, whereas velocity w vanishes at z = 0 and corresponds to the compression
velocity at z = H. Velocities u and v exhibit a parabolic pro�le along the thickness whose
maximum is located at the middle plane z = H/2. Velocity w exhibit an almost cubic
evolution along the thickness. The pressure �eld presents a minimum in the middle plane
being maximum when approaching the upper and bottom walls.

3D-SR Now, the same problem is solved using a separated representation of both the
velocity and pressure functions within the PGD framework. The in-plane functions were
discretized using 2D Q2/P1 approximations for the velocity and pressure �elds respectively,
whereas a 1D Q2/P1 was considered for approximating the velocity and pressure functions
depending on the thickness coordinate respectively.

Figure 5.34 depicts the reconstructed velocity and pressure �elds on the middle plane
z = H/2. In the approximation of functions depending on the in-plane coordinates and
those depending on the one related to the domain thickness, we considered meshes equiv-
alent to the one considered in the 3D-FEM solution. Results are in perfect agreement to
those obtained using the 3D-FEM. Despite the very coarse mesh considered the maximum
gap in the pressure �eld was lower than 0.5%.
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Figure 5.33 � u(x = (0.625, 0.625)T , z) (top-left), v(x = (0.625, 0.625)T , z) (top-
right), w(x = (0.625, 0.625)T , z) (bottom-left), and p(x = (0.625, 0.625)T , z)

(bottom-right), associated with the solution of the Stokes problem using a stable
3D-FEM discretization..

Figure 5.34 � u(x, z = H/2) (top-left), v(x, z = H/2) (top-right), w(x, z = H/2)

(bottom-left), and p(x, z = H/2) (bottom-right), associated with the solution of the
Stokes problem using the in-plane-out-of plane separated representation.
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Figure 5.35 � u(x = (0.625, 0.625)T , z) (top-left), v(x = (0.625, 0.625)T , z) (top-
right), w(x = (0.625, 0.625)T , z) (bottom-left), and p(x = (0.625, 0.625)T , z)

(bottom-right), associated with the solution of the Stokes problem using the in-
plane-out-of plane separated representation.

Figure 5.35 depicts the velocity and pressure pro�les along the domain thickness at
position x = y = 0.625. Again the solution obtained within the PGD framework perfectly
agrees with the reference solution obtained from the stable 3D �nite element discretization
previously presented.

Moreover, in order to check the stability conditions (LBB) di�erent choices were con-
sidered. First we considered Q2/Q2 approximations in the plane (that in 2D does not
ful�ll LBB stability conditions) whereas the one considered for the problem de�ned in the
thickness was assured stable (Q2/P1). It can be noticed in �gure 5.36 that the resulting
in-plane-out-of-plane approximation is not stable, and that the characteristic oscillations
appear in the in-plane solution (in which stability fails).

We also check another approximation expected violating the LBB stability conditions,
the one using a Q2/P1 approximation in the plane for velocities and pressure respectively
and Q2/Q2 for functions depending on the thickness. The last is expected violating the
LBB stability conditions. Fig. 5.37 exhibits oscillations precisely in the pressure �eld along
the thickness direction, that can be attributed to the wrong approximation choice for the
functions depending of the thickness coordinate and involved in the velocity and pressure
representation.

A �rst conclusion stressed from these numerical experiments is that when using in the
separated representation approximations whose tensor product corresponds to 3D stable
approximations (i.e. ful�lling the LBB condition) those separated approximations remain
stable.

3D-SR solution in a narrow gap The �ow problem is now de�ned in a very narrow
gap because is in these circumstances that the use of separated representations could be
extremely advantageous. As previously indicated now the domain L×W ×H = 0.5×0.5×
0.001 (all the units in meters) being again the viscosity η = 1000 Pa · s and the compression
velocity applied at the upper wall V = −0.1 mm · s−1.

Figures 5.38 and 5.39 depict velocities and pressure �elds obtained using the in-plane-
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Figure 5.36 � Velocity a pressure �elds on the middle plane z = 0.5 (left) and
solution along the thickness (x = (0.625, 0.625)T , z) when using the in-plane-out-of-
plane separated representation with in-plane and thickness approximations Q2/Q2
and Q2/P1 respectively, for the functions involved in the velocity and pressure
representation.

Figure 5.37 � Velocity a pressure �elds on the middle plane z = 0.5 (left) and
solution along the thickness (x = (0.625, 0.625)T , z) when using the in-plane-out-of-
plane separated representation with in-plane and thickness approximations Q2/P1
and Q2/Q2 respectively, for the functions involved in the velocity and pressure
representation.

Figure 5.38 � u(x = (0.33, 0.333)T , z) (top-left), v(x = (0.33, 0.33)T , z) (top-right),
w(x = (0.33, 0.33)T , z) (bottom-left), and p(x = (0.33, 0.33)T , z) (bottom-right),
associated with the solution of the Stokes problem in a narrow-gap using the in-
plane-out-of plane separated representation.
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Figure 5.39 � u(x, z = H/2) (top-left), v(x, z = H/2) (top-right), w(x, z = H/2)

(bottom-left), and p(x, z = H/2) (bottom-right), associated with the solution of the
Stokes problem in a narrow-gap using the in-plane-out-of plane separated represen-
tation.

pot-of-plane separated representation in conjunction with stable approximations (Q2/P1 in
the plane and also Q2/P1 in the thickness). It is important to note that as expected from
the lubrication theory pressure becomes constant all along the thickness.

5.3.4.2 Laminate composed of a single Ericksen ply.

The �rst test case consists of a laminate composed of a single ply described by the Ericksen
constitutive equation, with the unidirectional continuous �ber reinforcement oriented along
the x-coordinate axis. Thus, the reinforcement orientation is de�ned by pT = (1, 0, 0),
implying the orientation tensor

a =

 1 0 0

0 0 0

0 0 0

 . (5.94)

The squeeze �ow takes place within the narrow gap L = W = 0.5 and H = 10−3 (units
in meters) being the �uid viscosities ηL = 100 Pa · s and ηT = 100 Pa · s. The squeezing
rate was again V = −0.1 mm · s−1.

3D-FEM First it is solved the �ow problem by using a stable 3D �nite element dis-
cretization (Q2/P1/P1 for the velocity, pressure and tension respectively). The �nite ele-
ment solution will be considered as the reference one for checking the solutions obtained
within the separated representation (PGD) framework.

Figure 5.40 depicts all the unknown �elds, the three velocity components (u, v, w), the
pressure p and the tension τ . As expected and because the symmetry, the velocity in
the �bers direction vanishes (a constant value is not possible because the �ow problem
symmetry and on the other hand non constant velocities will imply extensibility that is not
allowed in the Ericksen �uid model). Component w(x, z = H/2) is as expected constant
and v(x, z = H/2) has a linear variation vanishing at y = W/2 because the �ow problem
symmetry. Both the pressure and the tension exhibit a parabolic pro�le, the �rst expected
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Figure 5.40 � u(x, z = H/2) (top-left), v(x, z = H/2) (top-right), w(x, z = H/2)

(middle-left), p(x, z = H/2) (middle-right) and τ(x, z = H/2) (bottom) associated
with the solution of the Ericksen �uid �ow problem in a narrow-gap using a 3D
stable �nite element discretization.

from the lubrication theory and the second quite intuitive because at y = W/2 the �bers
resists a �ow that in their absence will take place in the x-direction, and decrease until
vanishing at y = 0 and y = W . Figure 5.41 shows the velocity, pressure and tension pro�les
along the gap thickness at position x = (0.312, 0.312)T , that exhibit the expected behavior.

We proved from our numerical experiments that richer tension approximation do not
satisfy the LBB stability conditions. Thus, approximating the tension in the same space
than the pressure seems a safe choice.

3D-SR Again an in-plane-out-of-plane separated representation of velocities, pressure
and �ber tension was considered within the PGD framework. However, in the case of a
single �uid layer, the Lagrange multiplier associated with the �ber tension is not coupled
along the thickness direction, i.e. the tension at di�erent z-coordinates are fully decoupled.
Thus, no equation is found in order to compute the functions T τi (z) and for this reason
we considered the simplest choice of assuming they are the same that the ones used in the
pressure separated representation, i.e.

p(x, z) =

N∑
i=1

P pi (x) · T pi (z), (5.95)

and

τ(x, z) =

N∑
i=1

P τi (x) · T pi (z), (5.96)

Figure 5.42 and 5.43 presents similar results that the ones depicted in Figs. 5.40 and 5.41
when the 3D mixed formulation is solved by using a stable in-plane-out-of-plane separated
representation within the PGD framework, considering Q2/P1/P1 approximations for the
functions depending on the in-plane coordinates and also Q2/P1/P1 for those depending on
the z-coordinate. The obtained results are almost identical the the ones obtained by using
the more experienced 3D �nite element discretization discussed in the previous section.
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Figure 5.41 � u(x = (0.312, 0.312)T , z) (top-left), v(x = (0.312, 0.12)T , z) (top-
right), w(x = (0.312, 0.312)T , z) (middle-left), p(x = (0.312, 0.312)T , z) (middle-
right) and τ(x = (0.312, 0.312)T , z) (bottom), associated with the solution of the
Ericksen �uid �ow problem in a narrow-gap using a 3D stable �nite element dis-
cretization.

Figure 5.42 � u(x, z = H/2) (top-left), v(x, z = H/2) (top-right), w(x, z = H/2)

(middle-left), p(x, z = H/2) (middle-right) and τ(x, z = H/2) (bottom) associated
with the solution of the Ericksen �uid �ow problem in a narrow-gap using a 3D
in-plane-out-of-plane separated representation.
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Figure 5.43 � u(x = (0.312, 0.312)T , z) (top-left), v(x = (0.312, 0.12)T , z) (top-
right), w(x = (0.312, 0.312)T , z) (middle-left), p(x = (0.312, 0.312)T , z) (middle-
right) and τ(x = (0.312, 0.312)T , z) (bottom), associated with the solution of the
Ericksen �uid �ow problem in a narrow-gap using a 3D in-plane-out-of-plane sepa-
rated representation.

5.3.4.3 Laminate composed of two Ericksen plies.

The following test case consists of a laminate composed of 2 plies described by Ericksen
constitutive equation. The ply dimensions are again L×W ×H = 0.5×0.5×10−3 (all units
in meters) with a compression velocity applied at the upper wall V = −0.1 mm · s−1, with
the same viscosities that were employed previously. The �ber orientation in the bottom
ply was given by pB = (1, 0, 0)T whereas in the upper ply they were oriented along the
y-direction, i.e. pU = (0, 1, 0)T .

The discretization was carried out again using a stable 3D �nite element approximation
(Q2/P1/P1). The solution (velocity, pressure and tension) pro�les though the thickness at
position x = (0.33, 0.33)T are depicted in Fig. 5.44. As expected we obtain two parabolic
pro�les for the velocities u and v, the �rst vanishing in the bottom ply (because the �ber
inextensibility and the �ow problem symmetry) and exhibiting a parabolic pro�le in the
upper ply; and the symmetric behavior for the velocity v. As expected the velocity com-
ponent w evolves smoothly, the pressure remains almost constant, however, a peak in the
tension is noticed at the plies interface.

The origin of the tension peak is easy to understand. The parabolic pro�le of u(x, z)

through the ply thickness z in the upper ply implies a shear rate and consequently a shear
stress at the interface. However, at the interface the x-component of the traction T = σ ·ez
(ez being the unit vector de�ning the z-coordinate axis) computed at the bottom ply for
equilibrating the shear stress associated to the parabolic pro�le in the upper-ply implies a
non-null component xz of the rate of strain tensor, i.e. Dxz 6= 0 (note that �ber tension
τ is not involved in the expression of traction T). Thus the u velocity in the bottom
ply cannot be exactly zero, there is a boundary layer located at the interface in which it
activates the �ber tension. Because as just indicated the �bers tension do not communicate
along the thickness, the tension singularity remains located at the interface level and does
not propagate in the bottom ply. The same reasoning applies for the parabolic pro�le of
v(x, z) in the bottom ply that implies a tension singularity in the upper ply at the interface
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Figure 5.44 � u(x = (0.33, 0.33)T , z) (top-left), v(x = (0.33, 0.33)T , z) (top-right),
w(x = (0.33, 0.33)T , z) (middle-left), p(x = (0.33, 0.333)T , z) (middle-right) and
τ(x = (0.33, 0.33)T , z) (bottom), associated with the solution of the two ply Ericksen
�uid �ow problem in a narrow-gap using a stable 3D �nite element discretization.

neighborhood. By diminishing the viscosity the shear stress decreases and then the tension
peaks. This tendency has been veri�ed numerically.

Solving the same problem by using an in-plane-out-of-plane separated representation
seems a tricky issue because the inevitable singularity that the Ericksen model induces at
the plies interface when the orientation of �bers evolves from one ply to its contiguous one.
Obviously we proved that if the di�erent plies are oriented along the same direction no peak
appears in the solution and the the solution. The resulting solution in that case results the
one associated with a single ply having the laminate thickness.

The solution for the considered case of two plies with di�erent orientations is depicted
in Fig. 5.45, that reveals all the expected tendencies, in particular the peak in the tension
that now spreads a little bit more from the interface.

Due to these tension peaks when proceeding within the PGD framework the pressure
solution is slightly polluted, revealing an almost constant value across the gap thickness
a bit lower that the one obtained when using the 3D �nite element discretization. For
this reason we �nally decided to consider a velocity-pressure mixed formulation whereas
the tension is treated from a penalty formulation. In fact accurate pressure solutions are
required in order to characterize the laminate behavior, however tension is only required
for evaluating the defect risks related for example with compressive �ber tensions. Thus
one could imagine that tension could be reconstructed from the velocity-pressure solution,
and even if its accuracy is compromised it su�ces for the purpose of evaluating defect risks.
Figure 5.46 depicts the velocity and pressure solution where higher accuracy is noticed
concerning the pressure �eld.

5.3.4.4 Rheological characterization

In this section we address the rheological characterization of a laminate composed of the
two Ericksen plies considered in the previous section. We consider di�erent squeezing rates
and for each one after calculating the velocity and pressure �elds (from the stabilized and
tension penalized in-plane-out-of-plane separated representation), tension σ·ez is calculated
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Figure 5.45 � u(x = (0.33, 0.33)T , z) (top-left), v(x = (0.33, 0.33)T , z) (top-right),
w(x = (0.33, 0.33)T , z) (middle-left), p(x = (0.33, 0.333)T , z) (middle-right) and
τ(x = (0.33, 0.33)T , z) (bottom), associated with the solution of the Ericksen �uid
�ow problem in a narrow-gap using an in-plane-out-of-plane separated representa-
tion.

Figure 5.46 � u(x = (0.33, 0.33)T , z) (top-left), v(x = (0.33, 0.33)T , z) (top-right),
w(x = (0.33, 0.33)T , z) (bottom-left) and p(x = (0.33, 0.333)T , z) (bottom-right)
associated with the solution of the Ericksen �uid �ow problem in a narrow-gap
using an in-plane-out-of-plane separated representation with a penalized tension.
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Formulations

Figure 5.47 � Applied compression force versus squeeze rate for the two plies Ericksen
laminate discussed in the previous section.

on the upper plate and then the resultant of its normal component obtained. Figure 5.47
depicts the force/squeeze rate behavior, that as expected evolves linearly and from which
one could extract an equivalent newtonian viscosity.

5.3.5 Conclusions

The in-plane-out-of-plane separated representation has been succesfully applied to simulate
the squeeze �ow of multiaxial laminates, able to present resolution levels never envisaged
until now. This particular separated representation allows calculating extremely detailed
3D solutions while keeping the computational complexity characteristic of 2D problems.
Thus, extremely high resolutions can be attained in the thickness direction, able to capture
localized behaviors.

In this work we succeeded to solve mixed velocity-pressure-tension formulations within
an in-plane-out-of-plane separated representation. In order to address multiaxial laminates
involving tension localized behaviors, we proposed a mixed velocity-pressure with a penal-
ized tension, that allowed very accurate velocity and pressure solutions, and a reasonable
reconstructed tension, accurate enough for prediction defect risks.
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Conclusions and Perspectives

This thesis was devoted to the strengthen the link between data and standard simulation
based numerical methods. The applications presented in this manuscript point in the
direction of Data Driven Dynamic Application Systems (DDDAS), where the usage of data
to correct existing models becomes of crucial interest.

The purpose of this thesis was fourfold.

Data-Driven Techniques

In chapter 2, we developed several techniques within the data-driven framework. In sec-
tion 2.1, a numerical technique able to use a data set substituting an explicit constitutive
equation in the solid mechanic framework was presented. By doing that, constitutive error
modeling is circumvented, or in any case alleviated, as soon as the measured data set is
free of error. This numerical technique is merged consistently with �nite elements making
its use possible in any �nite element code.

Section 2.2 explores one of the current drawbacks of data-driven techniques, the data
generation. Even though it seems contradictory, the truth is that data is not so abundant
when considering nowadays testing facilities. For instance, most stress-strain curves can
only be extracted under certain homogeneity hypothesis i.e. uniaxial or biaxial loading.
As a consequence, reaching complex stress-strain states becomes a cumbersome task. This
section presents a novel technique able to extract complex stress-strain states from an
non-homogeneous experiment. Indeed, this inverse procedure is in perfect harmony with
the numerical technique presented in section 2.1 where diverse stress-strain states were
mandatory.

Section 2.3 tackles another data-driven application upscaling microscopic behaviours to
the macro scale. In this case, we proposed a novel upscaling technique where microscopic
e�ects were collected in a data set (or constitutive manifold). This data set can be ultimately
used to solve the macroscopic solution. More in detail, a microscopic short �ber suspension
�uid in porous media is successfully upscaled to engendrate an e�ective Darcy's law.

It is important to emphasize that these promising results are really the early stages
of a new research topic. Important steps, regarding noisy data or data generation, still
need to be overcome. Being able to apply such inverse constitutive identi�cation procedure
within the inelastic framework (i.e. plasticity or damage) constitute an active line of re-
search. Indeed, the identi�cation of internal state variables (i.e. cumulated plastic strain
or damage state) adds complexity to the inverse procedure. Moreover, inverse constitutive
parameter identi�cation requires an extra-e�ort to guarantee certain thermodynamic laws.
For instance, the numerical method should be able to avoid non-physical parameter such
as negative Young's modulus or non-symmetric stress states.

Data Completion Techniques

In chapter 3 we explored di�erent data completion techniques. These techniques play a
major role within the data-driven framework as soon as a low amount of data is available.
Hence, such data completion techniques are very helpful to estimate information at query
points where data was not available.
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Section 3.1 introduces a novel data completion technique, the sparse Proper Generalized
Decomposition. It combines both the separation of variables to circumvent the curse of di-
mensionality together with a collocation procedure to use data only wherever it is available.
This data completion algorithm has been succesfully applied in three di�erent applications
shown in section 3.2.

Section 3.3 applies the concept of sparse identi�cation techniques [Brunton et al. 2016]
to several computational mechanics applications such as parametric response surface recon-
struction, transient problems or constitutive manifold completion.

Even though these data completion methodologies have been successfully applied to
a vast variety of problems. It is important to remark that the choice of the basis plays
a fundamental role to guarantee the e�ciency of the method. For instance, the way the
basis is adapted for di�erent number of modes in the sPGD framework a�ects the inference
properties of the method. Similarly, sparse identi�cation techniques relies on the hypothesis
that few coe�cients are required to represent a given response. Therefore, the basis should
be chosen in a way that this hypothesis is ful�lled as much as possible. Having said that,
developping e�cient error indicators allowing to adapt the basis online could constitute a
line of research.

Multi PGD based on the Partition of Unity Method

As stated in chapter 4, Model Order Reduction (MOR) techniques could be seen as natural
ally to achieve dynamic data-driven corrections. However, MOR methodologies present
several di�culties when facing highly non-linear solutions. Section 4.1 introduces a new
numerical method that combines standard PGD rationale together with a macro partition
of unity allowing to combine di�erent PGDs in the same domain. By doing that, each
individual PGD handles a rather local domain where the solution tends to be more linear,
improving ultimately the separability of each PGD.

Section 4.2 extends the multi-PGD methodology to treat multi-scale problems. The
consistent overlap between di�erent subdomains automaticly solves the transition between
di�erent scales.

In the light of the results, the multi-PGD framework enhances the separability of the
PGD methodology requiring less number of modes to represent the solution up to a certain
accuracy. However, important steps, considering a macro mesh re�nement in areas where
the residual is high just like high order macro partition of unity, have to be considered to
enhance the performance of the method.

Applications of PGD In-Plane-Out-Of-Plane Separations

Several applications of the PGD In-Plane-Out-Of-Plane Separated Representations are
treated in Chapter 5. This kind of separated representation has been successfully applied in
many mechanical systems and complex structures involving plate and shell parts whose main
particularity is having a characteristic dimension (the one related to the thickness) much
lower that the other ones (in-plane dimensions) [Bognet et al. 2012, Bognet et al. 2014].
The electromagnetic response of thin composite plies is studied in section 5.1. A numer-
ical algorithm able to e�ciently compute the electromagnetic �eld is such degenerated
domain is of crucial interest to understand the heating process using microwaves. Section
5.2 introduces a new hybrid explicit/implicit in-plane-out-of-plane separated representation
for dynamic problems de�ned in plate-like domains computing e�ciently 3D solutions and
where the stability constraints are exclusively determined by the coarser in-plane discretiza-
tions. All operators involving the out-of-plane coordinate are treated online compensating
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for the una�ordable time step associated to this dimension.
Section 5.3 explores the kinematic of thermoplastic composite plies. Particularly, the

material is modeled by means of an anisotropic �uid which is incompressible and inex-
tensible. Questions such as the stability of the separated representation when facing a
saddle-point problem are considered.

To sum up, we strongly believe that this manuscript constitutes a early stage towards
the ful�llment of the so-called Dynamic Data Driven Application Systems. As it can be
appreciated in the individual conclusions of each section, the numerical techniques proposed
in this work might open the route to new research lines.
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Appendix A

A simple microstructural

viscoelastic model for �owing

foams

The work presented herein makes reference to a published paper:

• R. Ibáñez, A. Scheuer, E. Abisset-Chavanne, F. Chinesta, A. Huerta, A simple mi-

crostructural viscoelastic model for �owing foams. International Journal of Material
Forming, 1-12, 2018.

A.1 Introduction

Aqueous foams are concentrated dispersions of gas bubbles in a surfactant solution. Their
structures are organized over a large range of length scales and complex �ows take place at
di�erent scales [S. Cohen-Addad 2013].

The proposal of macroscopic constitutive equations allows for the e�cient modelling
and simulation of industrial processes involving the �ow of foams [Cheddadi et al. 2008,
Benito et al. 2008]. Usually, such descriptions remain however too phenomenological, and
even though they predict accurately the �ow kinematics, microstructure information re-
mains often unaccessible. On the opposite side, fully microscopic simulations allow for very
detailed descriptions of the foam microstructural evolution [Bikard et al. 2005]. However
such approaches fail to address scenarios of industrial interest that usually involve the �ow
of foams in very large and complex 3D geometries.

The macroscopic �ow model is expected to depend on the cellular structure: cell size,
shape and orientation, as well as on the �uid rheology and the surface tension. Moreover,
cell shape and orientation are induced by the �ow. This microscopic information could be
introduced into a macroscopic �ow model by using standard upscaling and homogeniza-
tion techniques. Thus inspired by [Feyel 2003], at some locations in the domain in which
an e�ective homogeneous �uid �ows, we could attach a representative volume containing
several cells, whose size, shape and orientation depend on the considered location. Now, a
detailed microscopic calculation could be carried out in order to determine the e�ective �uid
rheology. However, such a route, widely and successfully considered in a variety of �elds,
remains expensive from a computational point of view despite some attempts at combining
it with advanced model reduction techniques [Lamari et al. 2010].

The most appealing description consists of a macroscopic �ow model making use of some
conformational variables describing the main microstructural features, as widely considered
in the �eld of multiscale polymer modelling [Keunings 2004, Binetruy et al. 2015]. Thus,
in [Karimi et al. 2017] the authors study �ows during foaming, considering cell evolutions
but without addressing the shape orientation and then, the induced anisotropy. Richer
microstructure descriptions can be obtained by using a set of con�gurational coordinates,
from which a conformation tensor can be derived and a macroscopic constitutive equation
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established. This route was successfully considered in [Tlili et al. 2015]. In the present
work, we propose an alternative simpler microstructure description and its coupling with
the macroscopic �ow.

Remark. In the sequel, we consider the following tensor products, where Einstein's sum-
mation convention is assumed:

• if a and b are �rst-order tensors, the single contraction · reads (a · b) = aj bj ;

• if a and b are �rst-order tensors, the dyadic product ⊗ reads (a⊗ b)jk = aj bk;

• if a and b are respectively second and �rst-order tensors, the single contraction ·
reads (a · b)j = ajm bm;

• if a and b are second-order tensors, the single contraction · reads (a ·b)jk = ajm bmk;

• if a and b are second-order tensors, the double contraction : reads (a : b) = ajk bkj .

A.2 Cell conformation

A very simple description of a 3D cell consists of a deformable ellipsoid (with constant
volume) ranging from the spherical shape to the in�nite aspect ratio ellipsoid (rod). Such
an ellipsoid could be represented by means of three orthogonal extensible springs, with
reference length 2L0 and sti�ness K. In the sequel, we restrict our analysis to 2D scenarios
(by considering ellipses instead of ellipsoids) but the derived models and their numerical
solution procedures can be straightforwardly extended to 3D.

First, we consider the kinematics of a single linear elastic dumbbell as starting point
for elaborating the cell conformation.

A.2.1 Kinematics of an extensible rod

The extensible rod, of reference length 2L0 and assumed aligned in direction p (p having
a unit norm), is represented by an elastic spring of length 2L (in the deformed state) and
sti�ness K equipped with two beads at its extremities where hydrodynamic forces act. In
the sequel, the word hydrodynamic refers to the viscous drag force and not to the one
considered in other works to describe the e�ects of a bead kinematics on the others from
the use of the Oseen tensor. These forces scale with the �uid - bead relative velocity, the
former given by v0 +∇v ·pL and the latter by vG + ṗL+ pL̇, where v0 is the unperturbed
�uid velocity at the rod center of gravity and vG the velocity of the rod centre of gravity.
A sketch of the rod and the forces acting on it is depicted in Fig. A.1.

The system is assumed inertialess, that implies the equilibrium of forces and torques.
The �rst implies FH(pL) + FH(−pL) = 0, leading to v0 = vG, that is, the rod centre of
gravity moves with the �uid.

Now, to prevent a resultant torque, force FH(pL) must align with p, i.e. FH(pL) = λp,
λ ∈ R. Thus, we have

FH(pL) = ξ(∇v · pL− ṗL− pL̇) = λp, (A.1)

that multiplying by p and taking into account that p · p = 1 and consequently p · ṗ = 0,
yields

ξ(∇v : (p⊗ p)L− L̇) = λ, (A.2)
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Figure A.1 � Extensible rod immersed in a �ow.

expression that introduced into Eq. (A.1) reads

ξ(∇v · pL− ṗL− pL̇) = ξ(∇v : (p⊗ p)L− L̇)p, (A.3)

that leads to the rotary velocity ṗ

ṗ = ∇v · p−∇v : (p⊗ p)p, (A.4)

that is nothing else than the standard Je�ery expression for ellipsoids of in�nite aspect ratio
(rods) [Je�ery 1922].

Now, by equating the force acting on the beads λ with the one within the spring, we
have

2K(L− L0) = ξ(∇v : (p⊗ p)L− L̇), (A.5)

or

L̇ = −2K
ξ

(L− L0) +∇v : (p⊗ p)L). (A.6)

Thus, the kinematics of an elastic dumbbell of reference length 2L0 with conformation
at time t given by its orientation p and length 2L, read{

ṗ = ∇v · p−∇v : (p⊗ p)p

L̇ = − 2K
ξ (L− L0) +∇v : (p⊗ p)L)

. (A.7)

A.2.2 From rigid ellipses to orthogonal elastic bi-dumbells

In [Chinesta 2013] it was proven that in order to represent a rigid ellipse whose kinematics
are given by the Je�ery equation it su�ces to consider a rigid system composed of two
mutually orthogonal rods whose lengths correspond with the length of the ellipse axes.

In this case, if p refers to the direction of the ellipse largest axis, and F = r2−1
r2+1 , with

r the ellipse aspect ratio, we have

ṗ = Ω · p + F (D · p−D : (p⊗ p)p) , (A.8)

where Ω and D are respectively the vorticity and the rate of strain tensors, 2Ω = ∇v −
(∇v)T and 2D = ∇v + (∇v)T .
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Now, we address the more general case in which both rigid rods are replaced by two
extensible and mutually perpendicular springs of reference lengths L0

1 and L
0
2. In the sequel,

the same reference lengths are assumed for both dumbbells, i.e. 2L0
1 = 2L0

2 = 2L0.
In the present con�guration, and considering that as proven in our former works the

centre of gravity moves with the �uid, the hydrodynamic forces applying at beads L1p1

and L2p2, FH1 and FH2 read respectively

FH1 = ξ(∇v · p1L1 − ṗ1L1 − p1L̇1), (A.9)

and
FH2 = ξ(∇v · p2L2 − ṗ2L2 − p2L̇2), (A.10)

with p1 ⊥ p2, and with their orientation rates of change expressed from{
ṗ1 = ω × p1

ṗ2 = ω × p2
. (A.11)

The angular momentum balance implies now

L2
1p1 × (∇v · p1 − ṗ1) + L2

2p2 × (∇v · p2 − ṗ2) = 0, (A.12)

which coincides with the expression obtained in the case of rigid rods [Chinesta 2013],
proving the validity of the Je�ery equation in the case of orthogonal elastic bi-dumbells.

Introducing the Je�ery equation (A.8) with r = L1

L2
that implies F =

L2
1−L

2
2

L2
1+L2

2
, i.e.

ṗ1 = Ω · p1 + F
(
D · p1 −

(
pT1 ·D · p1

)
p1

)
, (A.13)

into the expression of the hydrodynamic force acting on bead p1L1, we have

FH1 = ξ(∇v · p1L1 − ṗ1L1 − p1L̇1) (A.14)

= ξ
(
∇v · p1L1 −Ω · p1L1 −F

(
D · p1L1 −

(
pT1 ·D · p1

)
p1L1

)
− p1L̇1

)
(A.15)

= ξL1

(
(1−F)D · p1 + F

(
pT1 ·D · p1

)
p1

)
− ξp1L̇1. (A.16)

A.2.3 Modelling incompressible ellipses from orthogonal elastic bi-
dumbells

The projection of force FH1 in the direction p1 is the one that causes the spring extension,
i.e.

2K(L1 − L0)− F I1 = ξL1p
T
1 ·D · p1 − ξL̇1, (A.17)

where the force F I1 ensures the incompressibility constraint. Similar calculations lead to

2K(L2 − L0)− F I2 = ξL2p
T
2 ·D · p2 − ξL̇2, (A.18)

where it was assumed that K1 = K2 = K.
Thus, the extension velocities read

L̇1 = −2K
ξ

(L1 − L0) + L1p
T
1 ·D · p1 +

1

ξ
F I1 , (A.19)

and

L̇2 = −2K
ξ

(L2 − L0) + L2p
T
2 ·D · p2 +

1

ξ
F I2 . (A.20)
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Taking into account {
pT1 ·D · p1 = D : (p1 ⊗ p1)

pT2 ·D · p2 = D : (p2 ⊗ p2)
, (A.21)

and the fact that, since p1 and p2 are mutually orthogonal, (p1⊗p1) + (p2⊗p2) = I (with
I the identity tensor), the incompressibility constraint d

dt (L1L2) = 0 reads

L̇1L2 + L1L̇2 = −2K
ξ

(L1 − L0)L2 −
2K
ξ

(L2 − L0)L1 + F I1
L2

ξ
+ F I2

L1

ξ
= 0, (A.22)

which simpli�es to

L̇1L2 + L1L̇2 = −4K
ξ
L1L2 +

2K
ξ
L0(L1 + L2) + F I1

L2

ξ
+ F I2

L1

ξ
= 0. (A.23)

Forces related to the incompressibility constraint are expected to contribute isotropically
to the resulting macroscopic stress, and then taken in the �ow incompressibility constraint.
Thus, if we compute the contribution of F I1 and F I2 to the stress by using the Kramers rule,
we have

σI = F I1 p1 ⊗ L1p1 + F I2 p2 ⊗ L2p2 = F I1L1(p1 ⊗ p1) + F I2L2(p2 ⊗ p2), (A.24)

which suggests considering F I1L1 = F I2L2, since p1 ⊗ p1 + p2 ⊗ p2 = I.
Thus, considering F I2 = F I1

L1

L2
in Eq. (A.23), we have

F I1

(
L2

1 + L2
2

ξL2

)
=

4K
ξ
L1L2 −

2K
ξ
L0(L1 + L2), (A.25)

or

F I1 = 4K L1L
2
2

L2
1 + L2

2

− 2KL
0(L1 + L2)L2

L2
1 + L2

2

, (A.26)

that vanishes for the relaxed case L1 = L2 = L0, i.e. F I1 (L1 = L2 = L0) = 0 and
consequently F I2 (L1 = L2 = L0) = 0.

Thus, �nally the governing equations for the orthogonal elastic bi-dumbbell representing
an incompressible ellipse read:

ṗ1 = Ω · p1 +
L2

1−L
2
2

L2
1+L2

2
D · p1 − L2

1−L
2
2

L2
1+L2

2

(
pT1 ·D · p1

)
p1

L̇1 = − 2K
ξ (L1 − L0)− 1

ξF
I
1 + L1p

T
1 ·D · p1

L̇2 = −L2

L1
L̇1

F I1 = 4K L1L
2
2

L2
1+L2

2
− 2KL

0(L1+L2)L2

L2
1+L2

2

F I2 = F I1
L1

L2

. (A.27)

A.2.4 Conformation descriptor

When considering control volumes (small enough with respect to the �ow but large enough
with respect to the cell size) in a �owing foam, it can be observed that the cells in each
control volume have similar shapes and orientations. In that case, the cell population in
each volume element can be described using p1 and L1 (when L0 is assumed known).

The contribution of a cell to the stress using the Kramers rule can be obtained from
the elastic forces. The contribution due to the incompressibility constraint being isotropic,
it can be aggregated to the pressure term. Thus, the conformation contribution σc results

σc = 2K(L1 − L0)p1 ⊗ L1p1 + 2K(L2 − L0)p2 ⊗ L2p2 (A.28)

= 2K(L1 − L0)L1(p1 ⊗ p1) + 2K(L2 − L0)L2(p2 ⊗ p2) (A.29)

= 2K (∆L1L1(p1 ⊗ p1) + ∆L2L2(p2 ⊗ p2)) , (A.30)
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that vanishes in the relaxed con�guration L1 = L2 = L0, with ∆L1 = 0 and ∆L2 = 0.
In these circumstances, the simplest choice for the conformation tensor consists of the

second-order symmetric tensor c de�ned from

c = ∆L1L1(p1 ⊗ p1) + ∆L2L2(p2 ⊗ p2). (A.31)

It is important to note that the conformation does not involve an averaging process
a�ecting the di�erent cells inside the control volume because we assumed that all of them
share almost the same conformation. However, as it is usual in the modelling of suspensions,
this hypothesis could easily be relaxed and we would thus consider the average of di�erent
cell conformation, as addressed in the micro-macro simulations by Keunings and coworkers
using the Lagrangian Particle Method � LPM � [Halin et al. 1998, Keunings 2004].

Even though many rheological behaviours could be associated to �owing foams, this pa-
per focuses on the consideration of induced anisotropy due to the cell deformation. For this
reason, and without loss of generality, we consider in what follows the simplest rheological
behaviour consisting of a Newtonian behaviour complemented with an elastic contribu-
tion related to the cell deformation. In any case, more complex bulk rheologies could be
considered, as for example the one related to a viscoplastic behaviour.

Thus, the macroscopic viscoelastic constitutive equation reads

σ = −pI + 2ηD + µc, (A.32)

where p is the pressure, that can be viewed as the Lagrange multiplier associated with the
macroscopic �ow incompressibility constraints, η the e�ective homogenized �uid viscosity,
and µ the rheological parameter a�ecting the contribution of the microscopic conformation
that scales with K and the volume concentration of cells.

The origin of the elasticity introduced into the conformation �eld evolution is related to
the surface tension that resists the cell deformation from its spherical reference conforma-
tion. Topological changes can operate at the elemental cell level. However, on average their
net e�ect is to avoid too large cellular distorsions. Thus, the coe�cient µ should describe
both the surface tension as well as the microscopic topological changes. In the proposed
model, it remains purely phenomenological and should be identi�ed from appropriate rhe-
ological tests.

Even though the present model does not address relaxation mechanisms, they could
easily be incorporated by including a viscous component at the spring-beads level.

A.2.5 Rheological behaviour

In order to study the rheological response of the proposed model, we carried out a numerical
study to obtain the loss and storage moduli of a foam. To proceed, consider a periodic shear
strain

γ(t) = γ0 sin(ωt) (A.33)

whose time derivative provides the evolution of the shear rate

γ̇(t) = γ0ω cos(ωt). (A.34)

In simple shear �ow, the velocity gradient thus reads ∇v =

[
0 γ̇(t)

0 0

]
, and we could use

the model equations (??) to obtain the time evolution of the shape and orientation of a
cell subject to such an oscillatory �ow. We can thus obtain the time evolution c(t) of the
conformation tensor introduced in the previous section.
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Figure A.2 � Oscillatory shear - c′12 and c
′′
12 components

We can now decompose the o�-diagonal component of tensor c(t), that is c12(t) in its
in-phase and out-of-phase contributions according to

c12(t) = c′12 sin(ωt) + c′′12 cos(ωt), (A.35)

where c′12 and c
′′
12 are analogous to the so-called storage (G′) and loss (G′′) modulus respec-

tively (they actually correspond to the storage and loss moduli associated with the stress
contribution σc).

Figure A.2 shows the value of c′12 and c′′12 for an oscillation angular frequency ranging
from 0.1 to 100 rad/s. The parameters are ξ = 0.1, K = 1, L0 = 0.005 (metric system of
units). We can recognize a Maxwell-like model, with the classical slopes of 1 (G′′) and 2
(G′) at low frequency.

To obtain properly the storage (G′) and loss (G′′) moduli, we should also consider the
viscous component of the stress tensor. Thus the moduli are given by

G′ =
σ′12

γ0
= µ

c′12

γ0
(A.36)

G′′ =
σ′′12

γ0
= 2ηω + µ

c′′12

γ0
. (A.37)

Finally, we also conducted another rheological test to observe the behaviour of the
conformation tensor when a constant shear �ow is brutally stopped. As expected, we
obtain an exponential relaxation of the tensor components towards zero.

A.3 Macroscopic �ow problem

Neglecting inertia, the macroscopic �ow problem is de�ned as follows:
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
∇ · σ = 0

σ = −pI + 2ηD + µc

∇ · v = 0

, (A.38)

where σ is the Cauchy's stress tensor, I the unit tensor and v the macroscopic �uid velocity
�eld. It can be noticed that the problem reduces to the standard Stokes �ow model as soon
as µ = 0. Incompressibility is justi�ed by the fact that drainage is neglected.

The �ow model must be complemented with the conformation expression

c = ∆L1L1(p1 ⊗ p1) + ∆L2L2(p2 ⊗ p2), (A.39)

whose evolution is governed by the microstructural model

ṗ1 = Ω · p1 +
L2

1−L
2
2

L2
1+L2

2
D · p1 − L2

1−L
2
2

L2
1+L2

2

(
pT1 ·D · p1

)
p1

L̇1 = − 2K
ξ (L1 − L0)− 1

ξF
I + L1p

T
1 ·D · p1

L̇2 = −L2

L1
L̇1

F I1 = 4K L1L
2
2

L2
1+L2

2
− 2KL

0(L1+L2)L2

L2
1+L2

2

F I2 = F I1
L1

L2

. (A.40)

In order to solve the resulting �ow model de�ned in Ω ⊂ R2, appropriate boundary
conditions must be enforced at the domain boundary Γ ≡ ∂Ω{

v = vg in ΓD
t = σ · n = tg in ΓN

, (A.41)

with ΓD ∪ ΓN = Γ and ΓD ∩ ΓN = ∅.

A.4 Numerical solution strategy

Cells are assumed represented at the initial time by a spherical conformation tensor c = 0,
since the cells are initially in the relaxed state, L1 = L2 = L0.

1. The associated Stokes problem is solved at time tn, from the microstructural term
given at the previous time step µc(tn−1). The problem is solved using a standard
mixed velocity-pressure formulation using any �nite element satisfying the stability
conditions, the so-called LBB conditions. In the example reported later, we consid-
ered Q9/Q4 �nite elements;

2. Then, from the just computed velocity �eld v(tn) the orientation and extension �elds,
p1(x, tn) and L1(x, tn) respectively, are updated by using a �rst-order discontinuous
Galerkin formulation;

3. Finally, the conformation tensor is updated c(tn).

These three steps are repeated until reaching the maximum simulation time or the
steady state.

A.4.1 Updating the conformation �eld

In the numerical experiments described below, we consider 2D �ows de�ned in 2D geome-
tries Ω ⊂ R2. In the 2D case, the unit vector p1 can be expressed by p1 = (cos θ, sin θ)T . By
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taking the time derivative, we get ṗ1 = θ̇(− sin θ, cos θ)T . Using θ as orientation descriptor,
the Je�ery equation can be expressed as

θ̇(− sin θ, cos θ)T = G(θ,∇v, L1). (A.42)

Multiplying the previous expression by (− sin θ, cos θ), we obtain the scalar equation

θ̇ = G(θ,∇v, L1), (A.43)

where the material derivative can be expressed in an Eulerian framework by introducing
the orientation �eld θ(x, t) whose evolution is governed by

∂θ

∂t
+ v · ∇θ = G(θ,∇v, L1). (A.44)

The scalar equation governing the evolution of the spring length can also be written as

∂L1

∂t
+ v · ∇L1 = H(θ,∇v, L1). (A.45)

Both equations (A.44) and (A.45) are purely advective, and thus appropriate discretiza-
tion taking into account their hyperbolic character must be used. We make here the simplest
choice, a �rst-order discontinuous Galerkin scheme, that considers the generic variable P
(θ or L1) constant in each element Ωe belonging to the mesh M of Ω. The test function
is assumed also constant in each element, vanishing outside. The balance in element Ωe

reads, taking into account the �ow incompressibility (∇ · v = 0):∫
Ωe

∂P
∂t
dx +

∫
Ωe
∇ · (vP)dx =

∫
Ωe
J dx, (A.46)

where the source term J represents G or H depending on the considered equation.
Using the divergence theorem, the second term of the left-hand side can be written from

the boundary �ux, i.e. ∫
Ωe

∂P
∂t
dx +

∫
∂Ωe
Pv · n dx =

∫
Ωe
J dx, (A.47)

where n is the unit outward vector normal to the element boundary.
As P is not de�ned on ∂Ωe, we consider the element boundary decomposition ∂Ωe =

∂+Ωe∪∂−Ωe, where ∂−Ωe and ∂+Ωe represents the in�ow and out�ow element boundaries,
both de�ned from v ·n < 0 and v ·n > 0 respectively. Then we assume that the property on
the in�ow boundary is given by its value at the upstream element, i.e. P(x ∈ ∂−Ωe) = Pe− ,
whereas on the out�ow element boundary, it is given by the property at element Ωe, i.e.
P(x ∈ ∂+Ωe) = Pe.

A.4.2 Discussion

• In the �ow model just proposed there is no size e�ects, which implies that the charac-
teristic length of cells must be small in relation to the one characterizing the spatial
variation of the macroscopic velocity �eld.

• The mesh considered for integrating the velocity �eld must be small enough to capture
all the macroscopic velocity �eld details.
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Figure A.3 � 2D domain.

• The mesh considered for calculating the conformation �eld must be small enough for
assuming cells in each element of the mesh described by the conformation �eld inside
the element, and it must be large enough for assuming that it represents a population
of cells. However, as soon as the model is described in a continuous way, there is
no contradiction with the fact of considering elements smaller that the characteristic
size of the cell (in the case of polymer �ows one can consider elements smaller that
the size of a molecule).

A.5 Numerical results

A.5.1 Uncoupled microstructure-�ow calculations

In this section, we address some simple �ows in order to evaluate the response of the cells.
The model is uncoupled in the sense that the �ow induces cell deformation, but the cell
conformation does not a�ect the �ow kinematics. Thus, even though some of the �ows
addressed here could exhibit rich kinematics in practice, in what follows the uncoupled
solution does not allow to capture such a rich kinematics, as for example shear banding.
Moreover, the only interest of this section being the evolution of the cell deformation and
its macroscopic description, rheology is not considered in the analyses carried out.

In the numerical examples considered in this section a unit square is considered as
depicted in Fig. A.3. The initial (relaxed) conformation is given by a zero conformation
tensor c(x, t = 0) = 0.

Four di�erent �ows are considered: (i) a simple shear; (ii) a contraction �ow; (iii) the
driven cavity �ow problem and �nally (iv) the �ow around a square obstacle. In all cases,
the microstructure was computed on the basis of the associated Stokes kinematics, i.e.
considering the uncoupled �ow associated with µ = 0.

In order to quantify the way the �ow behaviour (shear, rigid motion or elongation)
a�ects the microstructure evolution we consider a �ow criterion. For that purpose, �rst, we
introduce the relative rate of rotation W from

W = ω −w, (A.48)
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Figure A.4 � Conformation evolution for di�erent spring sti�ness in a simple shear
�ow.

where ω is related to the �ow vorticity Ω according to

Ω = ε · ω, (A.49)

where ε is the third-order permutation tensor (also known as the Levi-Civita tensor). The
vector ω can also be written in terms of the curl of the velocity,

ω = −1

2
∇× v. (A.50)

The vector w in Eq. (A.48) represents the angular velocity of the eigenvectors of the
rate of strain tensor D.

A simple local descriptor of the type of �ow can then be constructed from the second
invariant of D, γ̇ =

√
2D : D, and from the norm of W, ‖W‖, according to

χ =
4‖W‖

γ̇ + 2‖W‖
. (A.51)

We have 0 ≤ χ ≤ 2, and more speci�cally

χ =


0 in planar extension,

1 in pure shear,

2 in rigid motion.

(A.52)

Figure A.4 shows the evolution of the microstructure conformation for di�erent K in a
pure shear with ξ = 0.1 and L0 = 0.005 (metric system of units). The qualitative analysis
performed here does not require a precise determination of these coe�cients. As it can be
noticed, the more sti�ness the spring has, the less deformation the conformation presents.
In order to prove that the conformation is not only accommodating a deformation but also
that it is rotating, we included a small cercle on the ellipsoid surface to appreciate the way
in which that point is evolving in time.

A.5.1.1 Simple shear �ow

We consider V = 2 m · s−1 on the N-boundary, zero velocity on the S-boundary and a linear
velocity evolution on the E-boundary and W-boundaries. The microstructure e�ects were
introduced by using K = 1.

Figure A.5 depicts the velocity �eld, that evolves almost linearly through the domain
thickness, as well as the �ow criterion, that as expected corresponds to a perfect shear
behaviour. The pressure �eld is constant in the whole �ow domain.
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Figure A.5 � Velocity �eld (left) and �ow criterion (right) in a simple shear �ow.

Figure A.6 � Microstructure conformation in a simple shear �ow.
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Figure A.7 � Extrusion-like �ow problem. Velocity �eld: (left) x-component and
(right) y-component.

Figure A.8 � Conformation distribution (left) and �ow criterion (right) in the
extrusion-like �ow.

Figure A.6 shows the steady state conformation. Because of the shear, the conformation
is expected to rotate clockwise. The microstructure shows a signi�cant variation along the
domain as a consequence of the di�erent velocity and constant shear rate.

A.5.1.2 Extrusion-like �ow

In the present case, we consider again K = 1. A Poiseuille velocity pro�le (parabolic) is
enforced on the W-boundary (−2y(y − 1), 0)T , whereas at the E-boundary the �uid leaves
the square domain throughout an exit where tension-free boundary conditions are enforced.

Figure A.7 depicts both components of the velocity �eld whereas Fig. A.8 shows the
steady state conformation and the �ow criterion. As it can be seen, the largest conformation
axis remains aligned with the streamlines. A pure extension is noticed along the symmetry
axis in agreement with the �ow criterion.

A.5.1.3 Driven cavity �ow

The only di�erence with respect to the previously analyzed �ow is that now a unit horizontal
velocity is applied on the top wall (N-boundary) that induces the �uid �ow within the cavity.

Figure A.9 depicts both components of the velocity �eld. Figure A.10 shows the con-
formation at a given time as well te steady state �ow crieria. The conformation evolves
periodically and no steady state is reached.

237



Appendix A. A simple microstructural viscoelastic model for �owing foams

Figure A.9 � Driven cavity �ow problem. Velocity �eld: (left) x-components and
(right) y-component.

Figure A.10 � Conformation (left) and �ow criterion (right) in the driven cavity �ow
problem.
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Figure A.11 � Flow around an obstacle. Velocity �eld: (left) x-component and
(right) y-components.

Figure A.12 � Conformation (left) and �ow criterion (right) in the �ow around an
obstacle.

A.5.1.4 Flow around an obstacle

In the present case, a unit horizontal velocity is enforced on the W-boundary, with non-
slip conditions on the top and bottom walls and a free boundary condition is speci�ed on
the E-boundary. The domain contains in its center an obstacle where non-slip boundary
conditions are enforced.

Figure A.11 depicts both components of the velocity �eld. The velocity �eld presents
two stagnation points located at the intersection between y = 0.5 and the obstacle. These
stagnation points correspond with the maximum and minimum pressures.

Figure A.12 depicts the conformation and �ow criteria. As it can be noticed, elongation
is specially present upstream and downstream, the shear being located in the neighbourhood
of the upper and lower sides of the obstacle, with the expected e�ects on the microstructure
conformation.

A.5.2 Coupled simulations

This section adresses a coupled simulation in which �ow kinematics induces microstructure
evolution and the latter a�ects at its turn the �ow kinematics.

Figure A.13 shows two snapshots taken from �lms of �owing foams where the �ow
and microstructures were assumed almost at steady-state. The microstructure of these
snapshots will be used �rst to identify the model parameters and then to test the agreement
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Figure A.13 � Experimental snapshots (courtesy of F. Graner).

between the computed and observed microstructures. Of course, from the information
of kinematics only, we cannot conclude on rheological aspects but at least this serves to
evaluate the proposed model in terms of conformation evolution.

In order to extract from these images the conformation tensor, both images were seg-
mented (every pixel is transformed into either black or white) and then cell boundaries were
easily identi�ed. From that, the centre of gravity of each cell can easily be obtained as well
as the conformation tensor. If Xe

i , i = 1, . . . , Qe are the points de�ning the wall of cell Ce,
the centre of gravity and the inertia tensor Je are obtained from

Xe
G =

1

Qe

Qe∑
i=1

Xe
i (A.53)

and

Je =
1

Qe

Qe∑
i=1

(Xe
i −Xe

G)⊗ (Xe
i −Xe

G) (A.54)

respectively.
The numerical inertia tensor can be calculated as soon as p1 and L1 are known (p2 and

L2 derive from p1 and L1).

J = L2
1(p1 ⊗ p1) + L2

2(p2 ⊗ p2). (A.55)

In Fig. A.14, the experimental ellipses related to Je are superimposed to the cells,
and also to the solution predicted by using the proposed model. The model parameters
K, ξ, η and µ are, as previously indicated, chosen in order to obtain cell shapes close
to those observed experimentally: (metric system of units) K = 1, ξ = 0.1, η = 1 and
µ = 0.1. L0 = 0.005 was identi�ed from the average cell surface observed experimentally.
In absence of rheological data, we noticed that many choices of those parameters lead to
similar microstructures and that the impact of those on the kinematics was almost negligible.
Thus, a proper rheological characterization seems compulsory to obtain an adequate �ow-
microstructure coupling.

A.6 Conclusions

This work proposes a simple model for �owing foams, where the microstructure is intro-
duced from a conformation tensor that describes the structural elasticity. The numerical
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Figure A.14 � Experimental microstructure with the associated conformation super-
imposed (left) and the associated numerical predictions (right).
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predictions have been compared with some experimental results proving the ability of the
model to describe the e�ective kinematics as well as the �ow induced microstructure evo-
lution.

More applicative analyses, in particular in the study of industrial processes, require
an appropriate rheological characterization and very probably the proposal of appropriate
rheometric devices. All these aspects will be addressed in future works.
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Appendix B

Separated representation of the

Stokes weak form

The e�cient computer implementation of the separated representation constructor dis-
cussed in Section 5.3.1.3 needs a separated form of the �ow problem expressed in a weak
form (5.51). For that purpose we �rst consider the second term D∗ : D, that takes into
account expression (5.49) as follows

4D∗ : D = ∇v∗ : ∇v +∇v∗ : (∇v)T + (∇v∗)T : ∇v + (∇v∗)T : (∇v)T . (B.1)

The simplest choice of the test function v∗(x, z) is

v∗(x, z) = P∗(x) ◦T(z) + P(x) ◦T∗(z), (B.2)

from which the velocity gradient is:

∇v∗ = P∗ ◦ T + P ◦ T∗. (B.3)

The choice of P and T in Eq. (B.3) is discussed in Section 5.3.1.3.
Developing the �rst term in Eq. (B.1) (the other terms follow the same rationale) taking

into account Eq. (5.47) results

∇v∗ : ∇v ≈ (P∗ ◦ T + P ◦ T∗) :

 N∑
j=1

Pj ◦ Tj

 . (B.4)

It is easy to note that if matrices M(x) and N(x) depend on the in-plane coordinates
x, and matrices U(z) and V(z) depend on the out-of-plane coordinate z, we have

(M ◦ U) : (N ◦ V) = (M ◦ N) : (U ◦ V) . (B.5)

Using this equality, Eq. (B.4) can be written as

∇v∗ : ∇v ≈
N∑
j=1

{(P∗ ◦ Pj) : (T ◦ Tj) + (P ◦ Pj) : (T∗ ◦ Tj)} , (B.6)

and the other terms involved in Eq. (B.1) as

∇v∗ : (∇v)
T ≈

N∑
j=1

{(
P∗ ◦ PTj

)
:
(
T ◦ TTj

)
+
(
P ◦ PTj

)
:
(
T∗ ◦ TTj

)}
, (B.7)

(∇v)
∗T

: ∇v ≈
N∑
j=1

{(
P∗T ◦ Pj

)
:
(
TT ◦ Tj

)
+
(
PT ◦ Pj

)
:
(
T∗T ◦ Tj

)}
, (B.8)
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and

(∇v)
∗T

: (∇v)
T ≈

N∑
j=1

{(
P∗T ◦ PTj

)
:
(
TT ◦ TTj

)
+
(
PT ◦ PTj

)
:
(
T∗T ◦ TTj

)}
. (B.9)

Thus, we �nally obtain

4D∗ : D ≈
N∑
j=1

{(P∗ ◦ Pj) : (T ◦ Tj) + (P ◦ Pj) : (T∗ ◦ Tj)}+

N∑
j=1

{(
P∗ ◦ PTj

)
:
(
T ◦ TTj

)
+
(
P ◦ PTj

)
:
(
T∗ ◦ TTj

)}
+

N∑
j=1

{(
P∗T ◦ Pj

)
:
(
TT ◦ Tj

)
+
(
PT ◦ Pj

)
:
(
T∗T ◦ Tj

)}
+

N∑
j=1

{(
P∗T ◦ PTj

)
:
(
TT ◦ TTj

)
+
(
PT ◦ PTj

)
:
(
T∗T ◦ TTj

)}
=

N∑
j=1

4∑
k=1

{
A∗jk(x) : Bjk(z) + Ajk(x) : B∗jk(z)

}
, (B.10)

where ∀j, j = 1, · · · , N

A∗jk =


P∗ ◦ Pj , if k = 1

P∗ ◦ PTj , if k = 2

P∗T ◦ Pj , if k = 3

P∗T ◦ PTj , if k = 4

, (B.11)

Bjk =


T ◦ Tj , if k = 1

T ◦ TTj , if k = 2

TT ◦ Tj , if k = 3

TT ◦ TTj , if k = 4

, (B.12)

Ajk =


P ◦ Pj , if k = 1

P ◦ PTj , if k = 2

PT ◦ Pj , if k = 3

PT ◦ PTj , if k = 4

, (B.13)

and

B∗jk =


T∗ ◦ Tj , if k = 1

T∗ ◦ TTj , if k = 2

T∗T ◦ Tj , if k = 3

T∗T ◦ TTj , if k = 4

, (B.14)

On the other hand, the �rst term in Eq. (5.51) can be expressed as:

Tr(D∗) · Tr(D) = Tr(∇v∗) · Tr(∇v), (B.15)

with

Tr(∇v) ≈

(
N∑
i=1

Pi ◦ Ti

)
: I. (B.16)
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Thus, a generic term in Eq. (B.15) can be written as

((P∗ ◦ T + P ◦ T∗) : I) · ((Pj ◦ Tj) : I) . (B.17)

Now, by de�ning V(J) the vector form of the diagonal matrix J, Eq. (B.17) results

((P∗ ◦ T + P ◦ T∗) : I) · ((Pj ◦ Tj) : I) =

(V(P∗ ◦ I)⊗ V(Pj ◦ I)) : (V(T ◦ I)⊗ V(Tj ◦ I))+

(V(P ◦ I)⊗ V(Pj ◦ I)) : (V(T∗ ◦ I)⊗ V(Tj ◦ I)), (B.18)

that allows �nally casting the �rst term in the weak form (5.51) as

Tr(D∗) · Tr(D) ≈
N∑
j=1

F∗j (x) : Gj(z) + Fj(x) : G∗j (z) (B.19)

with
F∗j = V(P∗ ◦ I)⊗ V(Pj ◦ I), (B.20)

Gj = V(T ◦ I)⊗ V(Tj ◦ I), (B.21)

Fj = V(P ◦ I)⊗ V(Pj ◦ I), (B.22)

and
G∗j = V(T∗ ◦ I)⊗ V(Tj ◦ I). (B.23)
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