1	The role of inequity aversion in microloan defaults
2 3	Matthew R. Jordan ^{1*} , William T. Dickens ² , Oliver P. Hauser ³ , David G. Rand ^{1,4,5}
4 5 6 7 8 9	 ¹ Yale University, Department of Psychology, New Haven, CT, USA ² Northeastern University, Department of Economics, Boston, MA, USA ³ University of Exeter Business School, Department of Economics, Exeter, United Kingdom ⁴ Yale University, Department of Economics, New Haven, CT, USA 13 ⁵ Yale University, School of Management, New Haven, CT, USA
10 11 12 13 14 15 16 17 18	*Correspondence to: Yale University - Psychology 2 Hillhouse Avenue New Haven, CT 06511 United States <u>matthew.jordan@yale.edu</u>
19 20 21	Abstract: Microcredit—joint liability loans to the poorest of the poor—has been touted as a powerful
22	approach for combatting global poverty. But sustainability varies dramatically across banks.
23	Efforts to improve the sustainability of microcredit have assumed defaults are caused by free-
24	riding. Here, we point out that the <i>response</i> of other group members to delinquent groupmates
25	also plays an important role in defaults. Even in the absence of any free-rider problem, some
26	people will be unable to make their payments due to bad luck. It is other group members'
27	unwillingness to pitch in extra – due to, among other things, not wanting to have less than other
28	group members - that leads to default. To support this argument, we utilize the Ultimatum Game
29	(UG), a standard paradigm from behavioral economics for measuring one's aversion to
30	inequitable outcomes. First, we show that country-level variation in microloan default rates is
31	strongly correlated (overall $r = 0.81$) with country-level UG rejection rates, but not free-riding
32	measures. We then introduce a laboratory model "Microloan Game," and present evidence that
33	defaults arise from inequity averse individuals refusing to make up the difference when others
34	fail to pay their fair share. This perspective suggests a suite of new approaches for combatting
35	defaults that leverage findings on reducing UG rejections.
36	

37 Introduction

38

39 Microcredit, the offering of small uncollateralized loans, has become a popular tool for fighting 40 poverty in recent years, particularly in the developing world. In recent years, Microfinance 41 Institutions (MFIs) have loaned over \$100 billion annually to low-income households in at least 42 119 countries (MIX Market 2008). These loans—largely directed at women living on less than 43 \$2 a day—are often offered to solidarity groups (Hermes & Lensink 2007). Solidarity groups are 44 a form of joint liability, in which a group of borrowers agree to mutually insure each other's 45 loans (Besley & Coate 1995; Armendáriz de Aghion 1999; Ghatak & Guinnane 1999). If one 46 member of the group cannot make a payment on her loan, the other members of the solidarity 47 group are responsible for pitching in to help her make that payment. The consequences of the 48 group failing to bail out the delinquent member are severe: if one member defaults, the entire 49 group is considered in default and all group members are excluded from the possibility of future 50 loans. 51

52 The solidarity group model of microlending has been very successful in Bangladesh and other 53 South Asian countries where it originated (Yunus 2007). However, as solidarity group lending 54 became the modal microlending method across the world—nearly 2/3 of microcredit borrowers 55 receive loans structured in this way (Hermes & Lensink 2007)—it became clear that the success 56 of solidarity groups in South Asia was due to more than just the lending model. 57

58 Of course, which outcomes ought to be emphasized as indexing success—e.g., poverty 59 reduction, savings, well-being broadly construed, women's empowerment, education, etc. 60 (Karlan & Zinman 2011; Banerjee, Duflo, et al. 2015)-and how to measure those outcomes, are 61 topics of debate (Awaworyi Churchill & Nuhu 2016; Odell 2010). Further, evidence that 62 microloans have a positive impact on such local outcomes is guite mixed, both within and 63 between studies (Pitt & Khandker 1998; Khandker 2005; Morduch & Haley 2002; Banerjee, 64 Duflo, et al. 2015; Banerjee, Karlan, et al. 2015; Karlan & Zinman 2009; Chemin 2008; 65 Duvendack & Palmer-Jones 2012; Attanasio et al. 2015). Looking beyond local impact, others have examined the effects of microlending on macroeconomic outcomes, like inequality, and 66 67 found favorable effects (Hisako & Shigevuki 2009). One outcome MFIs and policy makers

attend to is default rates, because achieving sufficiently low default rates is important for
financial sustainability. Here, we will examine the psychology that underlies microloan default
and the high variation in default rates across countries that has been observed. An understanding
of such variation in default rates, and their underlying psychology, could aid MFIs and policy
makers as they decide how to structure loans (e.g., joint versus individual liability loans) across
borrower pools.

74

There is significant country-level variation, F(118, 11601) = 12.15, p < 0.001, and region-level variation, F(5, 11601) = 63.11, p < 0.001, in default rates (see Figure 1 below), with banks in many countries facing default rates high enough to keep microlending from being self-sustaining (i.e. functioning without reliance on charitable donations; Hermes & Lensink 2011).

Figure 1. There is clear variation across countries in microloan default rates, and default rates
can be extremely high. Each bar represents the mean default rates of banks in a given country
during 2009, which range from 0% to over 40%. Countries are grouped into five regions,
represented by different colored bars (Middle East includes North Africa).

87

82

88 Repayment theories

- 89
- 90 What causes defaults, and how can lenders and policy makers reduce defaults where they are
- 91 prevalent? Most research on microcredit has tried to explain why individuals make any

92 contributions to repay the microloan at all—since loans to solidarity groups are both

93 uncollateralized and susceptible to free-riding, why do individuals not shirk on their payments,

94 leading to high default rates across the board (Stiglitz 1990; Besley & Coate 1995; Armendáriz

95 de Aghion 1999; Armendáriz de Aghion & Morduch 2000; Morduch 1999; Wydick 2001; Field

96 & Pande 2008)?

97

98 One set of answers propose that the collateralization and free-rider problems can both be 99 addressed by collateralizing the social capital that exists within and outside borrower groups. For 100 example, borrowers who would face external sanctions in the event of a default are incentivized 101 to repay their microloans (Besley & Coate 1995), as are those who face within group peer 102 pressure and sanctioning (Paxton, Graham, & Thraen 2000). Others, however, have emphasized 103 the role of harmonious social relationships, both internal and external to borrower groups, in 104 fostering (rather than coercing) repayment (Griffin & Husted 2015). Another set of repayment 105 theories suggest that peer monitoring and screening (e.g., requiring character references for 106 prospective borrowers) can allow solidarity groups to exclude unreliable borrowers who take on 107 too much risk (Stiglitz 1990) or who are characteristically unlikely to repay their loans 108 (Armendáriz de Aghion & Morduch 2005), and thus achieve better outcomes (Banerjee et al. 109 1994). Similarly, borrowers may learn useful business strategies from peers who are already 110 successful through mentorship programs, thereby reducing defaults that may be caused by 111 inexperienced entrepreneurs who learn by trial and error (Barboza & Barreto 2006). 112

113 Inequity aversion in microloans

114

115 Many of the repayment theories described above provide compelling solutions to the free-rider 116 problem: both social capital and peer monitoring create incentives to cooperate, as does the 117 "shadow of the future" (Bó 2005) cast by the basic repeated interaction structure of microloans 118 and the possibility of peer punishment (Czura 2015).

119

120 Here, we propose that there is another factor that can drive default rates, even in contexts where

121 the free-rider problem has been resolved by social capital, peer monitoring, and repeated game

122 effects: how people respond when *others* are unable to make their payments. That is, what

determines if people are willing or unwilling to pitch in extra when someone else in their
solidarity group cannot afford to pay his or her full installment? Given that borrowers are
typically living under conditions of extreme poverty, they are highly susceptible to income
shocks (Morduch 1994). Thus, even in the absence of free-riding, people will sometimes fail to
make their full payments just due to chance and misfortune, and it is essential for a solidary
group's survival that others are willing to chip in to cover these shortfalls.

129

Put differently, in solidarity group lending, groups don't simply default because a group member can't make her payment; groups default when the rest of the group cannot, or will not, bail out those members who are unable to make their full payments. From this perspective, an important question is therefore: what makes a borrower refuse to pay a small cost to bail out another group member, even when doing so causes her to incur the much larger cost of foregoing all future loans?

136

137 Here, we shed light on microfinance defaults by leveraging the fact that this question, in a 138 slightly different form, has received a great deal of attention in the behavioral economics 139 literature using the Ultimatum Game (UG). In the UG, a "proposer" makes an offer of how to 140 split a sum of money with a "responder". The responder can either accept, or reject in which case 141 neither player receives anything. When a responder rejects a low (but non-zero) offer, she is 142 forgoing the offered amount in order to reduce the proposer's payoff. Although this behavior is 143 inconsistent with rational self-interest, a large body of empirical evidence shows that many 144 people do indeed reject low offers in 1-shot anonymous UGs (Camerer 2003), even when the 145 stakes are quite high (e.g. 1 month's salary; Andersen et al. 2011). This evidence suggests that 146 people derive disutility from receiving less than a normative "fair share" from an exchange (i.e. 147 show "disadvantageous inequity aversion" (Fehr & Schmidt 1999)), and thus are willing to pay 148 costs to obtain a result that is considered more fair – even when doing so reduces everyone's 149 earnings.

150

151 Our key argument is that inequity aversion – the same psychology that causes UG rejections –

152 leads borrowers to refuse to bail out delinquent members of their solidarity group, despite the

153 long-run individual costs of allowing the group to default. To see why, consider the differences

between a money-maximizing and an inequity averse decision-maker in a stylized conceptual

- 155 model of the microloan interaction among the members of a solidarity group.
- 156

157 We consider a stochastically repeated game. In each period of the microloan interaction, each 158 member of the solidarity group receives an endowment, and decides how much to contribute to 159 the group's repayment effort. The group must reach a total level of contribution of at least T in 160 order to avoid default. If the group defaults, all members are excluded from any future loans, and 161 thus earn payoff 0 in all subsequent periods. If the group does not default, they can continue on 162 in the next period, and each group member i earns expected payoff b_i , which is a function of the continuation probability (i.e. the likelihood that the group does not disband for reasons other than 163 164 default), the income distribution across the group members, the default threshold T, and the 165 strategies of the other group members. Our argument will hold regardless of the functional form 166 of b. We will assume that if a group member fails to make the full payment on her loan, falling 167 short by C units, the game enters the "pitching in" stage. In this stage, each of the non-delinquent 168 group members in turn are given the opportunity to pitch in C units to make the group compliant. 169 If the first non-delinquent group member pitches in enough that the threshold is met, the game 170 continues to the next period. If not, the choice passes to the next non-delinquent member. If the 171 non-delinquent group members fail to pitch in enough, the group defaults.

172

173 A player's strategy in this game therefore constitutes their choice of how much to contribute in 174 the contribution stage, and whether to pitch in the required units in the pitching in stage. Given 175 that the game is repeated, conditional strategies are possible in which choices in each stage 176 depend on the outcome of previous rounds. For simplicity, however, we focus on a single 177 decision (unconditional strategy) in the pitching in stage, facing the final non-delinquent group 178 member in the case where all other non-delinquent group members have elected not to pitch in. A money maximizing player will pitch in C as long as $b_i > C$; that is, if the individual benefits 179 180 to that player of the group persisting are greater than the cost of pitching in.

181

182 Those who show disadvantageous inequity aversion, however, incur a psychological cost when 183 others earn more than them – and pitching in necessarily causes one to earn less than the other 184 non-delinquent group members who do not pitch in, as well as the delinquent player in the case

185 that delinquency is due to free-riding rather than an inability to contribute¹. Let α_i be the 186 inequity-aversion-related disutility that pitching in C units causes for group member i. Thus, an 187 inequity averse group member will contribute if $b_i > C + \alpha_i$ holds. As a result, the more 188 inequity averse a player is, the larger the expected monetary benefit from the group avoiding 189 default must be in order for her to prefer pitching in to letting the group fail. Thus, just as 190 inequity averse decision-makers are less likely to accept unfair offers in the UG than money-191 maximizers, inequity averse decision-makers are also less likely to pitch in when their microloan 192 group falls short of its repayment threshold, leading to greater likelihood of default in groups of 193 inequity averse players. 194 195 In this paper, we provide empirical and experimental support for this proposed connection 196 between inequity aversion as indicated by UG rejections and microloan default. In doing so, we 197 aim to shed new light on why solidarity group microloans fail, what explains cross-country 198 variation in such failures, and what approaches might be employed to reduce such failures. 199 200 201 **Empirical data** 202 203 Methods 204 205 To provide initial empirical support for the argument that inequity aversion plays a role in 206 determining solidarity group success, and in explaining cross-country variation in default rates, 207 we used several publicly available data sources to compile our dataset for the microcredit 208 outcomes analyses. These sources include the Microfinance Information Exchange (MIX) (MIX 209 Market 2008), the World Values Survey trust index (World Values Survey Association 2009), 210 the Global Barometer Survey (Global Barometer 2009), economic games data from dozens of 211 countries compiled in two meta-analyses one for Ultimatum Game (UG) (Oosterbeek et al. 2004) 212 and one for Trust Game (TG) (Johnson & Mislin 2008), and the World Bank database for GDP, 213 GDP per capita, GDP growth, Gini index and poverty data (World Bank Group 2012). For any

¹ We note that how borrowers form beliefs about whether others are free-riding is relevant to the decision-making process, but it is beyond the scope of this model.

given analysis, we included all countries for which we had microfinance outcomes during the relevant time span and the corresponding predictor variables.

216

217 All the data regarding the performance and makeup of MFIs were obtained through the MIX 218 (MIX Market 2008). The MIX is an online database founded in 2002, which makes available a 219 variety of data from thousands of MFIs in most of the world's developing nations. Through the 220 MIX, we procured rates of at-risk portfolios, loan portfolio yields, percentage of women 221 borrowers and a number of other indicators relevant to these and other analyses. Most notably, 222 the percentage of women borrowers is of interest as a predicting variable based on fieldwork 223 done by D'Espallier and colleagues (D'espallier et al. 2011), which showed that homogeneity of 224 group gender composition predicted lower default rates².

225

226 Because MFIs have varying accounting practices when dealing with unpaid loans, the MIX 227 reports the value of loans that are at risk, meaning having at least one installment past due for 228 more than 30 days³. This includes the value of unpaid principle, both past and future, but not 229 accrued interest, and is standardized by dividing the at-risk loan value by the MFI's gross 230 portfolio value. This is the standard proxy used for default rates in microlending. The 'real yield 231 on gross portfolio' indicator is the ratio of interest and fees on the loan portfolio to the average 232 gross loan portfolio, controlling for inflation, and so acts as a proxy for interest rates. The 233 percentage of borrowers who are female is calculated by dividing the number of female 234 borrowers by the total number of borrowers.

235

236 Over the last 30 years, there have been six waves of World Values Survey collected in almost

237 100 countries. The full survey captures many attitudes, but our primary interest were those

238 pertaining to trustworthiness and civic cooperation. The trust question of interest is: "Generally

- speaking, would you say that most people can be trusted or that you need to be very careful in
- 240 dealing with people?". Participants then choose between "Most people can be trusted" and "You

² Although none of the MFIs in our sample had less than 50% female borrowers, making it impossible to determine the effect of having male dominated groups, we do find a relationship between the percentage of borrowers who are female and default rates that is consistent with D'Espallier et al.

³ Here we use portfolios at risk at 30 days because this is the most commonly reported measure in the MIX, and therefore has the most reliable and robust data. Unfortunately, complete default data is not available.

241 can never be too careful when dealing with others". The Trust Index is calculated as: Trust Index 242 = 100 + (% Most people can be trusted) - (% Can't be too careful). For the regressions presented 243 in Table S3, we augmented the World Values Survey trust index data with data from the Global 244 Barometer Survey, which asks, among other questions, the exact trust index question asked by 245 the World Values Survey. We added trust index values from a few countries for which we had 246 UG and MIX data, but no World Values Survey trust index data in order to keep our sample at 247 the maximum possible size. Beyond the trust index, we also used three questions from the World 248 Values Survey to determine what other researchers (Herrmann et al. 2008) have called 'civic 249 cooperation'. Civic cooperation measure attitudes towards tax evasion, abuse of social welfare 250 programs, and dodging fares on public transportation (literal free-riding). This composite has 251 been shown to be strongly predictive of cooperation (anti-free-riding) behavior (Herrmann et al. 252 2008).

253

Although surveys yield important information about how people expect themselves and others to behave, they do not always reveal strategies in the way economic games do. In order to distinguish between attitudinal and behavioral trust, trustworthiness, and tendency to punish, we use cross-cultural economic games data. UG and TG data were taken from the meta-analyses mentioned above that were designed to be sensitive to cross-cultural differences in the playing of these games, and so the criteria for inclusion between the meta-analyses were similar.

260

261 We also pulled democracy ranking and corruption ranking data from the World Audit (World

Audit 2016) as well as rule of law data from the World Justice Project (Agrast 2013). Lastly,

263 Gini index, GDP per capita, GDP and GDP growth were gathered from the World Bank database

which collects a number of developmental indicators dating from 1960.

265

We restrict our analyses to 2007 and after, because prior to that year there is little data on which loan structures are most prevalent. The MIX does not collect data on loan structure, but an empirical survey from 2007 (Hermes & Lensink 2007) found that approximately 2/3 of borrowers at that time received solidarity group loans. So, for that reason, we have restricted our analyses to after 2007 in order to be sure that we are looking at microlending outcomes that reflect the relevant loan structure of solidarity groups.

273 Results

299 Figure 2. Microloan default rates are strongly correlated with Ultimatum Game rejection rates

300 across countries. Shown are country-level default rates averaged across an 8-year span (2007-

301 2014). UG rejection rates are highly correlated with default rates, r = 0.812, p < 0.001, $R^2 =$

302 66%. 95% confidence intervals are shown for the regression line.

- 303
- 304

305 The fact that UG rejections predict cross-cultural variation in microcredit default rates, while 306 prosociality does not, supports our emphasis on borrowers' responses to others' behavior above 307 any beyond borrowers' own inclination towards cooperation versus free-riding. Of course, these 308 kinds of cross-sectional analyses must be taken with a grain of salt because they suffer from all 309 the typical limitations inherent in correlational analyses and borrower populations may differ 310 from the populations surveyed on relevant dimensions. However, we do take these results as 311 suggestive of a mechanism—inequity aversion—that is not typically discussed in the 312 microlending context (but see Griffin & Husted 2015 for some hints of this). 313 314 **Experimental Data** 315 316 Methods

317

318 To provide further evidence for this interpretation of microloan defaults, we complement this 319 field data with an individual-level, online laboratory experiment. In this experiment, we place 320 participants into groups and examine the relationship between Ultimatum Game Minimum 321 Acceptable Offers (UG MAOs; the lowest offer someone would be willing to accept) within the 322 group, and the group's behavior in a novel economic game, the Microloan Game, that we 323 developed. In the game theoretic tradition, the Microloan Game is an abstraction that, while it 324 omits many elements of real-world solidarity group-based microcredit, aims to capture the key 325 strategic features of such interactions: that (i) players are engaged in a repeated, potentially 326 lucrative group endeavor that requires regular financial investment (i.e. loan repayment) to 327 continue; (ii) that some group members are either unable or unwilling to make that investment in 328 any given period, leading to shortfalls; and (iii) that when such shortfalls occur, other group 329 members can pitch in more money to make up the shortfall.

330

Specifically, in the Microloan Game, participants played a repeated game in groups of three.
Each round of the Microloan Game consisted of two stages. (Although we herein describe the
game in terms related to microcredit loan payments, the game was presented to participants in
neutral language without any mention of loans, debt, or repayment.)

335

336 Upon entering the study, participants were randomly assigned to a group, and each group was 337 randomly assigned to a condition. In Stage 1, each of the three group members was given a 338 random initial endowment representing their income in a given loan period (between 20 and 500 339 monetary units, MUs, with an average of 340 MUs; the random endowment allocation procedure 340 is described in more detail below). Each group member then decided how much of that 341 endowment to keep for themselves versus contribute to the group, representing their decision 342 regarding repayment of their microloan debt. Participants were informed that each of the three 343 group members was required to contribute 200 MUs per round in order to avoid group default. If 344 fewer than 600 MUs in total (200 MUs per member) were contributed, the contribution threshold 345 was not met and the game entered Stage 2.

346

347 In Stage 2, all players were told the number of additional MUs required to meet the contribution 348 threshold, and they were given the opportunity (in random order) to "pitch in" more units if they chose to do so. Participants could not waste MUs by over-contributing, and were aware of this fact because pitching in was done sequentially and the remaining balance due was displayed, and participants could not use earnings from past rounds to cover the shortfall of the current round.

353 If the 600 MU goal was not reached by the end of Stage 2, the game ended and no further 354 earnings were possible (i.e. the group defaulted on their loan). If at least 600 MUs were 355 contributed (either directly in Stage 1, or by the end of Stage 2), the game had the chance to 356 continue on for another round (in the absence of default, the game lasted 8 rounds for certain, 357 and then transitioned to a stochastically repeated game with 50% continuation probability; as per 358 a randomization scheme presented in (Bó & Fréchette 2011)). The order in which participants 359 pitched in was randomized and participants were not informed of the order in which group 360 members were given the opportunity to pitch in (although they did always know the outstanding 361 amount needed to reach the continuation threshold), and thus the only way of given player could 362 be certain that the group would avoid default would be to pitch in the full amount required 363 themselves. As a result, players had some personal incentive to make sure the group met its 600 364 MU contribution goal, in order to be able to earn more units in future rounds⁴; but also had the 365 opportunity to free-ride by contributing less than 200 MUs with the hope that others would make 366 up the difference. Critically, however, participants did not know whether lack of contribution by 367 other players was due to the inability to contribute (because of a small endowment), or just due 368 to free-riding.

369

Solidarity groups are often faced with the situation in which one or more members are unable to pay, as income for the typical participant is highly variable (Dercon 2002; Morduch 1994). To incorporate this into our lab Microloan Game, we forced incomes to differ between players and across rounds of the game: while each participant received an average of 340 MUs each round, each received a different randomly-sampled amount. In particular, the sampling was designed such that one player each round received fewer than 200 MUs, and thus was unable to repay their share of the 600 MU contribution goal. Players were informed only that in each round they

⁴ The Microloan Game has a similar strategic structure to a multiplayer snowdrift/anti-coordination game, or steplevel public goods game (Croson & Marks 2000). These games include equilibria with non-zero contribution levels, and it is in this sense that we mean that a personal incentive may exist for money-maximizers to contribute.

377 would receive a randomly determined endowment of between 0 and 500 MUs, and were given 378 no information about the endowments of the other players or the manner in which endowments 379 were generated (modeling the real-world ambiguity regarding others' incomes). Thus, even in 380 the absence of any free-riding, avoiding default in the Microloan Game depended on (at least) 381 one of the two higher-endowment players contributing more than 200 MUs each round, despite 382 not knowing how many MUs the other participants received – and thus having uncertainty about 383 whether others' non-contribution was driven by free-riding or bad luck. In keeping with common 384 practice in experimental economics, and in order to have a unidimensional focus on inequity, we 385 shuffled participant IDs between each round. That is, because we shuffled participant IDs 386 between each round, we allowed participants to act on a motivation to avoid disadvantageous 387 inequity without introducing complexities that arise from the presence of reputation. Of course, 388 this reduces the ecological validity of the game, but makes it more straightforward to make 389 inferences about the role of disadvantageous inequity aversion in microlending. See supplement 390 for experimental instructions.

391

392 We hypothesized that, as with real-world solidarity groups, there would be substantial variance 393 in default rates across our experimental groups in the Microloan Game, and that the psychology 394 of inequity aversion would play a major role in explaining this variation. To test this hypothesis, 395 we had participants play a UG prior to the beginning of the Microloan Game. In the UG, 396 participants made decisions in both roles (specifying an offer as Player 1, and a minimal 397 acceptable offer, MAO, below which they would reject as Player 2). Players did not receive 398 feedback on the UG's outcome until the experiment was complete to prevent contamination 399 effects; half of participants were assigned to be Player 1, the other half Player 2, and payment 400 was determined on random pairings after the fact.

401

We predicted that a group's likelihood of defaulting in the Microloan Game would be determined by the UG MAOs of its members. In particular, because the group's shortfall could typically be made up (and default avoided) by just one group member chipping in the extra amount, what matters for preventing defaults is the least inequity averse group member – or, put differently, the failure of a group in the Microloan Game should be predicted by the lowest MAO among its members. The higher the lowest MAO in a group is, the less likely someone will be willing to chip in, and the less likely the group will be to succeed (predicting a positiverelationship between Microloan Game default and minimum MAO in the group).

410

411 Recall that above, when we compared how money-maximizing and inequity averse decision-412 makers treat the solidarity group interaction, we showed that money-maximizers ought to be 413 more likely to both accept low offers in the UG (i.e., have low MAOs) and more likely to pitch 414 in to meet a threshold in a game like the Microloan Game than inequity averse decision-makers. 415 This allows us to predict Microloan Game outcomes at the group level using individual level 416 preferences elicited using the UG.

417

418 Finally, we assessed the robustness of this prediction regarding the importance of inequity 419 aversion for Microloan Game default with a second experimental condition designed to 420 accomplish two goals. First, we wanted to "stack the deck" in favor of the importance of free-421 riding by emphasizing the social dilemma dimension of the Microloan Game. Second, we 422 wanted to show that, because inequity averse decision-makers *already* view the Microloan Game 423 as a social dilemma (and money-maximizers are already prepared to pitch in when the value of 424 the game continuing is greater than the cost of pitching in), framing the game as a social 425 dilemma should not affect the relationship between inequity aversion and game play. In this 426 "Social Dilemma" condition, the game was expressly framed as a *collective* goods problem: 427 players were told that the group as a whole was required to contribute 600 MUs per round (and 428 the group could, one member at a time, pitch in to cover short-falls), in contrast to the baseline 429 condition where players were told they were *individually* responsible for contributing 200 MUs 430 each (and could individually pitch in).

431

To test these predictions, we recruited 360 U.S. participants from Amazon's Mechanical Turk ($M_{age} = 34.99, 71\%$ female; Mechanical Turk offers a subject pool that is much more diverse than just college undergraduates; Horton et al. 2011) to play the UG and the Microloan Game. In line with standard MTurk wages, participants were paid a show-up fee plus a bonus based on their earnings in the game, using an exchange rate of 10 MUs per cent. A randomization check indicated that UG MAOs did not differ significantly between participants randomized into the Baseline versus Social Dilemma condition in the Microloan game (Ranksum, z = 1.303, p = 439 .193). The mean UG MAO was 67 MUs, and the distribution had modes at 100 and 50, and 20%
440 of MAOs were at or below 40.

441

442 All analyses are conducted at the level of the 3-player Microloan Game group, with one 443 observation per group. We consider three different measures of a group's (lack of) success: 444 whether the group defaulted at any point in the game, whether the group defaulted in the very 445 first round, and the fraction of total rounds in which the group was in default which was determined by dividing the number of completed rounds by the number of possible rounds 446 447 determined by the stopping algorithm described above. We then predict these measures using the level of inequity aversion of the least inequity averse group member (i.e. the lowest UG MAO of 448 449 the three group members): as described above, because it only takes one person to pitch in to the 450 save the group from default, what matters is the unwillingness of the least unwilling group 451 member. For the binary Microloan Game failure measures, we use logistic regression, and for the 452 continuous failure measure we use OLS regression with robust standard errors; all coefficients 453 for continuous variables are standardized.

454

455 Results

456

457 As expected, we observed a positive relationship between a group's failure in the Microloan 458 Game and the group's minimum UG MAO (whether the group defaulted at any point in the 459 game, $\beta = 0.64$, SE = 0.24, p = 0.008; whether the group defaulted in the very first round, $\beta =$ 0.61, SE = 0.22, p = 0.006; fraction of total rounds in which the group was in default, $\beta = 0.09$, 460 461 SE = 0.04, p = 0.028). See Table 1 and Figure 3. This suggests that a group defaults when the 462 least inequity averse group member's willingness to incur costly punishment is sufficiently high 463 - that is, when no group members are willing to pitch in because they are all too inequity averse. 464 We also observed a significant effect of the Social Dilemma frame on Microloan Game group 465 failure (whether the group defaulted at any point, $\beta = 1.59$, SE = 0.48, p < 0.001, whether the 466 group defaulted in the first round, $\beta = 1.31$, SE = 0.44, p = 0.003; fraction of total rounds in which the group was in default, $\beta = 0.28$, SE = 0.07, p < 0.001). This serves as a manipulation 467 468 check confirming that our Social Dilemma frame successfully induced greater free-riding. 469 Critically, however, there was no significant interaction between minimum UG MAO and

470 condition (whether the group defaulted at any point, $\beta = 0.03$, SE = 0.54, p = 0.951; whether the 471 group defaulted in the very first round, $\beta = 0.06$, SE = 0.45, p = 0.888; fraction of total rounds in 472 which the group was not in default, $\beta = 0.04$, SE = 0.08, p = 0.639). This shows that the MAO 473 relationship was robust to emphasizing the social dilemma component of the Microloan Game. 474

Table 1. Regression results from the experimental data. Participants were more likely to default
at some point (specifications 1 and 2) and in the first round (specifications 3 and 4) if their
group minimum MAO was higher. Similarly, groups with higher minimum MAOs failed to
complete more rounds. Specifications 1-4 were fit using logistic regression; specifications 5-6
were fit using OLS regression. Coefficients are standardized and group-clustered standard
errors are shown in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

481

	(1)	(2)	(3)	(4)	(5)	(6)
VARIABLES	Defaulted at any point		Defaulted in first round		Fraction of rounds foregone	
Group minimum MAO	0.64***	0.63**	0.61***	0.57*	0.09**	0.10*
	(0.24)	(0.28)	(0.22)	(0.34)	(0.04)	(0.06)
Condition (Social dilemma=1)	1.59***	1.60***	1.31***	1.29***	0.28***	0.27**
	(0.48)	(0.53)	(0.44)	(0.44)	(0.07)	(0.07)
Group minimum MAO x Condition		0.03		0.06		0.04
		(0.54)		(0.45)		(0.08)
Constant	0.39	0.39	1.32***	1.30***	0.54***	0.54***
	(0.28)	(0.28)	(0.33)	(0.35)	(0.06)	(0.06)
Observations	120	120	120	120	120	120
R-squared/Pseudo R-squared	11.8%	11.9%	9.2%	9.2%	12.2%	12.4%

482

483 Thus, our Microloan Game results demonstrate that the positive relationship between UG MAO 484 and microcredit defaults shown in the cross-cultural data extends to the much more controlled 485 environment of a laboratory game using just American participants, and applies at the level of 486 individual psychology (rather than, for example, just tracking some other group-level cultural 487 trait in the cross-cultural dataset). That is, although there are clear identification issues with the 488 model we fit to the cross-cultural data in the previous section, the fact that we observe the same 489 pattern in the lab at the individual level supports our theoretical claim regarding inequity 490 aversion and microloan default.

492 *Figure 3.* Ultimatum Game MAOs are positively related to failure in the laboratory Microloan

493 *Game, both in the baseline and social dilemma conditions. Shown is the MAO of the least*

494 *inequity averse group member (i.e. group member with the lowest MAO) average across all*

495 groups who either never default, did not default in the first round but eventually defaulted in a

496 *later round, or defaulted in the first round; groups from the baseline condition are shown in red,*

497 and from the social dilemma condition in blue. Error bars indicate 95% confidence intervals.

498

499 While the results from this individual-level experiment are what we expected based on our 500 inequity aversion model of the microloan interaction, there are limitations of the experiments that 501 are important to acknowledge. We noted above that we stripped away some important features of 502 solidarity group lending in an effort to isolate the role of inequity aversion in the microloan 503 interaction. In particular, we did not allow participants to track the behavior of specific 504 individuals (which would have made negative reciprocity possible), and we did not allow 505 communication. By removing these features from the interaction, we were able to isolate the role 506 of inequity aversion, but removing such features also has the potential to reduce the external 507 validity of the experiment. Furthermore, our main goal in this experiment (and in the model 508 described above) was to compare the behavior of money-maximizers and those who are inequity

509 averse, but other motivators are likely to also play a role (e.g. altruism). Furthermore, the

510 subjects used in our experiment (Americans on MTurk) are quite different in many ways from

511 typical participants in microloans. Future work should explore how inequity aversion interacts

512 with reciprocity and communication in microloans, the role of other motivations for default, and

513 the generalizability of results beyond our particular subject pool.

514

515 We would also like to note some other limitations of this work raised during the review process. 516 For example, because the MIX does not contain loan methodology, our microfinance outcomes 517 come from banks that use a variety of loan types, some of which do not use joint liability. While 518 this should only make our estimates of the relationship between inequity aversion and default 519 more conservative, it is worth noting nonetheless. It is also the case that many of the variables 520 we pulled from the WVS include responses from demographics that are not the target for 521 microloans; namely the rural and working poor. Similarly, while our measure of default (PAR 522 30) is a useful proxy, having a longer-term at-risk measure would be helpful to test the longevity 523 of inequity aversion (i.e., given sufficient time, do inequity averse individuals cool-off and 524 eventually pitch in?).

525

526 Discussion

527

528 Here we have provided evidence that a key determinant of the success of solidarity group 529 lending—the predominant model of microlending—is people's willingness to overcome inequity 530 aversion and pitch in when other group members fail to make their payments. As such, we find 531 that variation in inequity aversion (as measured by UG rejections) and not variation in 532 cooperativeness (captured by a variety of measures) is strongly predictive of default rates across 533 countries. In addition, this relationship is also evident in the psychology of individuals: in a 534 laboratory model of microcredit, groups with individuals having higher UG MAOs (i.e., more 535 inequity averse) are more likely to default.

536

537 Our observation that the psychology of inequity aversion plays such an important role in driving 538 defaults rates has important policy implications. With this perspective, it becomes possible to

leverage the large body of work in behavioral economics regarding the motivations of UGrejection to design default-reduction interventions.

541

542 For example, there is considerable evidence that "cool-off" periods, in which responders are 543 asked to wait for several minutes or overnight before responding to offers, dramatically reduce 544 rejections in the UG (Oechssler et al. 2013; Grimm & Mengel 2011; Neo et al. 2013; Oechssler 545 et al. 2015; Wang et al. 2011). Instituting an analogous cool-off period for borrowers at risk of 546 defaulting would be easy to do and free to implement: in the event that a borrower cannot make 547 her payment, either during the course of repayment or at the end of the loan period, the loan 548 officer would leave and return the next day once the group has had a chance to cool-off and 549 consider the consequences of not pitching in. If such an intervention were to be successful in 550 reducing avoidable defaults, microfinance institutions would stand a better chance of becoming 551 self-sustaining.

552

553 Secondly, it has been shown that reputation concerns can provide a rationale for rejecting in the 554 UG, in order to induce others to offer more in the future (Fehr & Fischbacher 2003). Thus, it 555 may be advantageous for microfinance institutions to minimize the opportunity for such 556 incentives. For example, to the extent that borrowers who refuse to pitch in do so because they 557 don't want to be seen as the kind of person who can be taken advantage of (Thaler 1988), 558 allowing borrowers to pitch in for others' loans anonymously would allow for those who want to 559 help others to do so without any reputational repercussions. In general, any procedural change 560 that removes cues to reputation for the pitching in phase (but not the initial contribution phase) 561 should retain the feature necessary for avoiding free-riding while reducing the motivation to hold 562 out when pitching in is possible.

563

In the decades since the solidarity group model of microlending came into existence, it has spread to many millions of borrowers in most of the world's developing nations. But this spreading didn't take into account the psychological variation across societies, and the one-sizefits-all approach to microlending has run into sustainability issues (Hermes & Lensink 2011). Microfinance institutions, and therefore their borrowers, stand to benefit from a deeper

- 569 understanding of the psychology that makes microcredit work where it works and fail where it
- 570 fails.
- 571

572 Human subjects approval

- 573 These studies complied with all ethical regulations for the use of human subjects, and approval
- 574 for the study was provided by the Human Subject Committee at Yale University.

575 **References**

- 576
- 577 Agrast, M.D., 2013. The World Justice Project rule of law index, 2012-2013,
- Andersen, S. et al., 2011. Stakes matter in ultimatum games. *The American Economic Review*, 101(7), pp.3427–3439.
- 580 Anon, World Audit. Available at: http://www.worldaudit.org/ [Accessed April 1, 2016].
- 581Armendáriz de Aghion, B., 1999. On the design of a credit agreement with peer monitoring. Journal of Development582Economics, 60(1), pp.79–104. Available at:
- 583 http://www.sciencedirect.com/science/article/pii/S0304387899000371.
- Armendáriz de Aghion, B. & Morduch, J., 2000. Microfinance Beyond Group Lending. *Economics of Transition*,
 8(2), pp.401–420. Available at: http://dx.doi.org/10.1111/1468-0351.00049.
- Armendáriz de Aghion, B. & Morduch, J., 2005. The Economics of Microfinance MIT Press. *Cambridge, Massachusetts*.
- 588 Association, W.V.S., 2009. World Values Survey 1981-2008 official aggregate v. 20090901. *Madrid: ASEP/JDS*.
- 589 Attanasio, O. et al., 2015. The impacts of microfinance: Evidence from joint-liability lending in Mongolia. American
 590 Economic Journal: Applied Economics, 7(1), pp.90–122.
- Awaworyi Churchill, S. & Nuhu, A.S., 2016. What has failed: microfinance or evaluation methods? *Journal of Sustainable Finance & Investment*, 6(2), pp.85–94. Available at: https://doi.org/10.1080/20430795.2016.1176424.
- Banerjee, A., Duflo, E., et al., 2015. The miracle of microfinance? Evidence from a randomized evaluation.
 American Economic Journal: Applied Economics, 7(1), pp.22–53.
- Banerjee, A., Karlan, D. & Zinman, J., 2015. Six randomized evaluations of microcredit: introduction and further
 steps. *American Economic Journal: Applied Economics*, 7(1), pp.1–21.
- Banerjee, A. V, Besley, T. & Guinnane, T.W., 1994. The neighbor's keeper: the design of a credit cooperative with
 theory and a test. *The Quarterly Journal of Economics*, pp.491–515.
- Barboza, G.A. & Barreto, H., 2006. Learning by association: micro credit in Chiapas, Mexico. *Contemporary Economic Policy*, 24(2), pp.316–331.
- 602 Barometer, G., 2009. No Title. Round 1 Official data file.
- Besley, T. & Coate, S., 1995. Group lending, repayment incentives and social collateral. *Journal of Development Economics*, 46(1), pp.1–18. Available at: http://www.sciencedirect.com/science/article/pii/030438789400045E.
- Bó, P.D., 2005. Cooperation under the shadow of the future: experimental evidence from infinitely repeated games.
 American Economic Review, pp.1591–1604.
- 608 Bó, P.D. & Fréchette, G.R., 2011. The evolution of cooperation in infinitely repeated games: Experimental 609 evidence. *The American Economic Review*, 101(1), pp.411–429.
- 610 Camerer, C.F., 2003. Behavioural studies of strategic thinking in games. *Trends in cognitive sciences*, 7(5), pp.225–611 231.
- 612 Chemin, M., 2008. The benefits and costs of microfinance: evidence from Bangladesh. *The journal of development* 613 *studies*, 44(4), pp.463–484.
- 614 Croson, R.T.A. & Marks, M.B., 2000. Step returns in threshold public goods: A meta-and experimental analysis.
 615 *Experimental Economics*, 2(3), pp.239–259.
- 616 Czura, K., 2015. Pay, peek, punish? Repayment, information acquisition and punishment in a microcredit lab-in-the-617 field experiment. *Journal of Development Economics*, 117, pp.119–133.

- 618 D'espallier, B., Guérin, I. & Mersland, R., 2011. Women and repayment in microfinance: A global analysis. *World development*, 39(5), pp.758–772.
- 620 Dercon, S., 2002. Income risk, coping strategies, and safety nets. *The World Bank Research Observer*, 17(2),
 621 pp.141–166.
- Duvendack, M. & Palmer-Jones, R., 2012. High noon for microfinance impact evaluations: re-investigating the
 evidence from Bangladesh. *The Journal of Development Studies*, 48(12), pp.1864–1880.
- 624 Fehr, E. & Fischbacher, U., 2003. The nature of human altruism. *Nature*, 425(6960), pp.785–791.
- Fehr, E. & Schmidt, K.M., 1999. A theory of fairness, competition, and cooperation. *Quarterly journal of Economics*, pp.817–868.
- Field, E. & Pande, R., 2008. Repayment frequency and default in microfinance: evidence from India. *Journal of the European Economic Association*, 6(2–3), pp.501–509. Available at: http://dx.doi.org/10.1162/JEEA.2008.6.2-3.501.
- 630 Ghatak, M. & Guinnane, T.W., 1999. The economics of lending with joint liability: theory and practice1. *Journal of development economics*, 60(1), pp.195–228.
- Griffin, D. & Husted, B.W., 2015. Social sanctions or social relations? Microfinance in Mexico. *Journal of Business Research*, 68(12), pp.2579–2587.
- Grimm, V. & Mengel, F., 2011. Let me sleep on it: Delay reduces rejection rates in ultimatum games. *Economics Letters*, 111(2), pp.113–115.
- 636 Group, W.B., 2012. World Development Indicators 2012, World Bank Publications.
- Hermes, N. & Lensink, R., 2011. Microfinance: its impact, outreach, and sustainability. *World Development*, 39(6), pp.875–881.
- Hermes, N. & Lensink, R., 2007. The empirics of microfinance: what do we know? *The Economic Journal*, 117(517), pp.F1–F10. Available at: http://dx.doi.org/10.1111/j.1468-0297.2007.02013.x.
- Herrmann, B., Thöni, C. & Gächter, S., 2008. Antisocial Punishment Across Societies. *Science*, 319(5868),
 pp.1362–1367. Available at: http://www.sciencemag.org/content/319/5868/1362.abstract.
- 643 Hisako, K.A.I. & Shigeyuki, H., 2009. Microfinance and Inequality.
- Horton, J.J., Rand, D.G. & Zeckhauser, R.J., 2011. The online laboratory: Conducting experiments in a real labor
 market. *Experimental Economics*, 14(3), pp.399–425.
- Johnson, N. & Mislin, A., 2008. Cultures of Kindness: A Meta-Analysis of Trust Game Experiments. Social Science Research Network Working Paper Series. Available at: http://ssrn.com/abstract=1315325.
- Karlan, D. & Zinman, J., 2009. Expanding credit access: Using randomized supply decisions to estimate the impacts. *The Review of Financial Studies*, 23(1), pp.433–464.
- Karlan, D. & Zinman, J., 2011. Microcredit in theory and practice: Using randomized credit scoring for impact evaluation. *Science*, 332(6035), pp.1278–1284.
- Khandker, S.R., 2005. Microfinance and poverty: Evidence using panel data from Bangladesh. *The World Bank Economic Review*, 19(2), pp.263–286.
- 654 Market, M.I.X., 2008. Microfinance Information Exchange. *Comparative Analysis.*" *Retrieved October*.
- 655 Morduch, J., 1994. Poverty and vulnerability. *The American Economic Review*, pp.221–225.
- 656 Morduch, J., 1999. The Microfinance Promise. Journal of Economic Literature, 37(4), p.46.
- Morduch, J. & Haley, B., 2002. Analysis of the effects of microfinance on poverty reduction. *New York: NYU Wagner Working Paper*, 1014.
- Neo, W.S. et al., 2013. The effects of time delay in reciprocity games. Journal of Economic Psychology, 34, pp.20–

- 660 35.
- 661 Odell, K., 2010. Measuring the impact of microfinance. *Grameen Foundation, Washington*, pp.1–38.
- 662 Oechssler, J., Roider, A. & Schmitz, P., 2013. Cooling-off in the ultimatum game.
- 663 Oechssler, J., Roider, A. & Schmitz, P.W., 2015. Cooling Off in Negotiations: Does it Work? *Journal of* 664 *Institutional and Theoretical Economics JITE*, 171(4), pp.565–588.
- 665 Oosterbeek, H., Sloof, R. & van de Kuilen, G., 2004. Cultural Differences in Ultimatum Game Experiments:
 666 Evidence from a Meta-Analysis. *Experimental Economics*, 7(2), pp.171–188. Available at: http://dx.doi.org/10.1023/B:EXEC.0000026978.14316.74.
- Paxton, J., Graham, D. and Thraen, C., 2000. Modeling group loan repayment behavior: New insights from Burkina
 Faso. *Economic Development and cultural change*, 48(3), pp.639-655.
- Peysakhovich, A., Nowak, M.A. & Rand, D.G., 2014. Humans display a 'cooperative phenotype'that is domain
 general and temporally stable. *Nature communications*, 5.
- 672 Pitt, M.M. & Khandker, S.R., 1998. The impact of group-based credit programs on poor households in Bangladesh:
 673 Does the gender of participants matter? *Journal of political economy*, 106(5), pp.958–996.
- 674 Stiglitz, J.E., 1990. Peer Monitoring and Credit Markets. *The World Bank Economic Review*, 4(3), pp.351–366.
 675 Available at: http://wber.oxfordjournals.org/content/4/3/351.abstract.
- 676 Thaler, R.H., 1988. Anomalies: The ultimatum game. *The Journal of Economic Perspectives*, 2(4), pp.195–206.
- Wang, C.S. et al., 2011. Retribution and emotional regulation: The effects of time delay in angry economic
 interactions. Organizational Behavior and Human Decision Processes, 116(1), pp.46–54.
- Wydick, B., 2001. Group Lending under Dynamic Incentives as a Borrower Discipline Device. *Review of Development Economics*, 5(3), pp.406–420. Available at: http://dx.doi.org/10.1111/1467-9361.00132.
- 681 Yunus, M., 2007. Banker to the Poor, Penguin Books India.
- 682
- 683

Supplementary Information

Additional analyses: empirics

Yearly country-level analyses

Table S1. Ultimatum Game rejection rates, not offers, predict defaults

	2007	2008	2009	2010	2011	2012	2013	2014
VARIABLES				Portfolio	s at risk			
Offers	0.112	0.206	0.130	0.114	0.120	0.0684	-0.0668	-0.164
	(0.217)	(0.158)	(0.133)	(0.259)	(0.142)	(0.173)	(0.357)	(0.278)
Rejections	0.282*	0.215*	0.507***	0.432**	0.318***	0.0530	0.683**	0.426**
	(0.137)	(0.100)	(0.0841)	(0.165)	(0.0899)	(0.111)	(0.228)	(0.176)
Constant	-0.00650	-0.0277	-0.000869	-0.00600	-0.000738	0.0331	0.0422	0.106
	(0.0857)	(0.0624)	(0.0524)	(0.103)	(0.0560)	(0.0689)	(0.142)	(0.110)
Observations	12	12	12	13	12	13	13	12
R-squared	34.8%	44.2%	81.4%	42.3%	61.2%	4.1%	47.3%	39.9%

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table S1 above shows that in each year (except 2012), UG rejection rates are highly predictive of default rates while offers are not. When we excluded Papua New Guinea, rejection rates were still predictive, $\beta = 0.238$, SE = 0.092, p = 0.030, R² = 43%, and offers remained unpredictive, $\beta = 0.074$, SE = 0.130, p = 0.605, R² = 5%. Further, there is no World Values Survey trust index data for Papua New Guinea, which means that specifications 2-10 of Table S2 all exclude Papua New Guinea, yet still replicate the relationship between UG rejection rates and default rates. Further, for those concerned that including both offers and rejection rates in the same model is problematic, our results hold when we examine either independent variable on its own. In particular, collapsing across the 8-year period, we find no effect of UG offers on default rates, $\beta = 0.128$, SE = 0.210, p = 0.555, R² = 3%, but a strong effect of UG rejection rates, $\beta = 0.367$, SE = 0.130, p = 0.080, R² = 66%.

Bank-level analyses

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
VARIABLES					Portf	olios at risk				
Offer	0.0962	0.0517	0.0465	0.0801	0.0582	0.0296	0.0756	-0.0343	0.0787	0.0593
	(0.104)	(0.0938)	(0.102)	(0.0941)	(0.0999)	(0.0972)	(0.0886)	(0.0949)	(0.0905)	(0.0365)
Rejections	0.433**	0.232**	0.257***	0.236**	0.252***	0.228***	0.251***	0.321****	0.198**	0.233****
	(0.134)	(0.0870)	(0.0707)	(0.0816)	(0.0655)	(0.0651)	(0.0652)	(0.0759)	(0.0633)	(0.0280)
WVS trust		0.0417	0.0327	0.0265	0.0205	0.0353	0.0317	0.0849***	0.00897	-0.0351
		(0.0217)	(0.0222)	(0.0195)	(0.0236)	(0.0205)	(0.0212)	(0.0229)	(0.0316)	(0.0549)
% female			-0.0902**	-0.0959*	-0.0905**	-0.0900**	-0.0896**	-0.0912**	-0.0971*	-0.0982*
			(0.0311)	(0.0399)	(0.0315)	(0.0308)	(0.0313)	(0.0282)	(0.0399)	(0.0390)
Yield				0.0252					0.0274	0.0352
				(0.0405)					(0.0411)	(0.0565)
GDP (trillions)					0.0163				0.0323	0.206**
					(0.0132)				(0.0231)	(0.0720)
GDP growth (%)						-0.00307*			-0.00295*	-0.00310*
						(0.00124)			(0.00125)	(0.00149)
GDP/cap (millions)							1.369		-0.176	-1.692
							(2.247)		(1.619)	(1.935)
Gini								0.000173		0.000636
								(0.00116)		(0.000996)
Constant	0.00209	0.0212	0.0735	0.0582	0.0710	0.0983*	0.0571	0.0738	0.0797*	0.0529
	(0.0436)	(0.0343)	(0.0440)	(0.0406)	(0.0433)	(0.0427)	(0.0389)	(0.0622)	(0.0392)	(0.0515)
# of MFIs	1,553	1,531	1,247	1,180	1,247	1,247	1,247	913	1,180	883
# of Countries	13	12	12	12	12	12	12	10	12	10
R-squared	8.3%	7.1%	11.9%	14.6%	12.1%	12.5%	12.0%	16.8%	15.8%	21.2%

Table S2. Bank-level analysis predicting defaults using Ultimatum Game play

Country-clustered robust standard errors in parentheses

**** p<0.0001, *** p<0.001, ** p<0.01, * p<0.05

Table S2 above shows that UG rejection rates, at the country level, are robustly predictive of bank-level defaults rates. The fact that the UG rejection rate in each country is importantly predictive of default rates at the bank level suggests that it is the resident psychology of the borrowers, not administrative quirks of MFIs, that is driving defaults. This pattern of results hold if we omit UG offers, as was the case in the last set of regressions.

There are a few main results to note in this regression table. First, UG rejection rates are robustly predictive after controlling for economic development indicators (specifications 9 and 10).

Second, by and large, the developmental indicators are not strong predictors of default, which suggests that there is something other than economic conditions that is driving defaults. Third, loan yield—a proxy for interest rates—is not predictive of default rates over and above the controls in specification 4. (Interestingly, loan yields are not predictive of defaults rates within a given MFI, $\beta = -0.005$, SE = 0.007, p = 0.419.) Fourth, the next best predictor of defaults after Ultimatum Game rejection rates is the percentage of borrowers that are female. This is a nice replication of one of the early studies done trying to understand default rates and how group dynamics promote or avoid defaults.

Cross-cultural surveys, game play, defaults, and economic controls

Using a separate meta-analysis of cross-cultural differences in Trust Game behavior, in addition to Ultimatum Game behavior we were able to look at the relationship between trust, trustworthiness, and default rates. In Table S3 below, we show the relationships between behavior in the Ultimatum Game, Trust Game, WVS trust, WVS civic cooperation, democracy, corruption, and rule of law after controlling for the economic development status of the country. The analysis in Table S3 reflects country-level outcomes and is restricted to 2007 to 2014.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
VARIABLES	Portfolios at risk									
UG rejection rate	0.4610**									
	(0.0958)									
UG offers		0.1660								
		(0.3753)								
TG % sent			0.1189							
			(0.0629)							
TG % returned				0.1195						
				(0.0552)						
WVS trust					-0.0328					
					(0.0442)					
WVS civic cooperation						0.0059				
						(0.0083)				
Democracy rank							-0.0000			
							(0.0003)			
Corruption rank								0.0004		
								(0.0003)		
Rule of law									-0.0192	
									(0.0166)	
GDP growth (%)	0.0058	-0.0021	-0.0048	-0.0125	-0.0019	-0.0013	-0.0084*	-0.0078	-0.0059	
	(0.0061)	(0.0140)	(0.0071)	(0.0057)	(0.0050)	(0.0057)	(0.0042)	(0.0042)	(0.0039)	
GDP (trillions)	0.0282	-0.0132	0.0049	0.0004	-0.0007	-0.0065	-0.0124	-0.0148	-0.0120	
	(0.0495)	(0.1200)	(0.0120)	(0.0116)	(0.0225)	(0.0229)	(0.0244)	(0.0242)	(0.0239)	
GDP per capita (millions)	4.6645	1.5217	-2.5720	-4.2209	4.8308	5.1265	0.1022	2.4505	2.5760	
	(3.2669)	(8.4529)	(2.1887)	(2.0655)	(2.6649)	(2.8815)	(2.9732)	(3.0689)	(2.9128)	
Gini	0.0011	-0.0016	0.0001	0.0008	-0.0010	-0.0009	0.0013	0.0014	0.0013	
	(0.0014)	(0.0030)	(0.0010)	(0.0010)	(0.0011)	(0.0011)	(0.0009)	(0.0009)	(0.0009)	
Constant	-0.0760	0.0981	0.0448	0.0771	0.1063	0.0737	0.0660	0.0182	0.0340	
	(0.0946)	(0.2499)	(0.0748)	(0.0624)	(0.0548)	(0.0489)	(0.0548)	(0.0566)	(0.0431)	
	` '	. /	· /	× /	. /	· /	. /	· /	· /	
Observations	11	11	15	15	45	42	71	71	76	
R-squared	83.4%	10.0%	49.0%	53.2%	14.6%	14.9%	9.5%	11.7%	8.6%	

Table S3. Game play and survey variables predicting default rates with economic controls

Standard errors in parentheses

*** p<0.001, ** p<0.01, * p<0.05

The only variable that is robustly predictive of defaults rates after controlling for economic development status are Ultimatum Game rejection rates, which is positively related to defaults. On the social capital account of repayment, trustworthiness should be negatively related to default rates. Note that GDP is in trillions for ease of interpreting coefficients, but using the raw GDP does not change the result.

Experiment

Recruiting and Ultimatum Game

Participants for the experiment were recruited through Amazon's Mechanical Turk. We recruited only participants from the US. Participants first learned about the Ultimatum Game from the instructions below:

In this interaction you are matched with one other person.
One of you will be person A, one of you will be person B.
Person A starts with 200 units and person B starts with 0. For this interaction, and those that follow, units will be converted at the end of the study to real dollars. Specifically, for every 10 units you earn you will receive 1 cent. *First person A makes a choice, then person B responds*.
1) Person A will make an offer on how to split the 200 units with person B.
2) Person B will either *accept* or *reject* this offer. *If* person B *accepts*, then B will get the offered amount and A will keep the rest. *If B rejects the offer then both individuals will get 0 units*.

Participants then answered a set of comprehension questions about the Ultimatum Game while they still had access to the instructions. The comprehension questions are below:

What choice by Player A will result in Player A earning the most money?
 [Player A offering Player B nothing, Player A offering Player B everything, It depends on what the receiver is willing to accept]
 Which choice by Player B will result in Player B earning the most money?
 [Player B deciding to accept the offer, Player B deciding to reject the offer]
 If Player B decides to accept Player A's offer, what happens?
 [Each Player's bonus is determined by Player A's offer, Each Player gets a random bonus, Both Player B decides to reject Player A's offer, what happens?
 [Each Player's bonus is determined by Player A's offer, Each Player gets a random bonus, Both Player B decides to reject Player A's offer, Each Player gets a random bonus, Both Player's bonus is determined by Player A's offer, Each Player gets a random bonus, Both Player's bonus is determined by Player A's offer, Each Player gets a random bonus, Both Player's bonus is determined by Player A's offer, Each Player gets a random bonus, Both Player's bonus is determined by Player A's offer, Each Player gets a random bonus, Both Player's bonus is determined by Player A's offer, Each Player gets a random bonus, Both Players get no bonus]

Once participants had passed the comprehension test, we elicited their MAO. They could choose in 10-unit increments between 0 and 200. After they had reported their MAO, they reported what they would offer, using the same increments as the MAO.

Baseline and Social Dilemma Interactions

After the Ultimatum Game, participants moved onto the main portion of the experiment. They were randomly assigned to a group with 2 other people and each group was randomly assigned to either the Baseline condition or the Social Dilemma condition.

Below are the instructions and comprehension questions for the Baseline condition:

You have been assigned to a group with 2 other people. You each will have the opportunity to earn units over a series of rounds of play, which will be converted to real money at a rate of 10 units per cent.

Each of you will be assigned an identifier, but these identifiers are randomly shuffled each round. Thus you will not be able to track the behavior of the other people from round to round.

Each round works as follows:

1) Each of you receives a randomly determined number of units, between 0 and 500. Each of you may receive a different amount. You do not know the amounts received by the other group members, and they do not know the amount you receive.

2) You each choose how many of these units to keep toward your bonus, and how many to contribute to the group. In order to continue to the next round, each person must contribute 200 units to the group. Otherwise, the game ends and none of you have a chance to earn additional money, unless a group member 'pitches in' in stage 3.3) If anyone in your group contributes *less* than 200 units, the group is told how many additional units are needed to meet the 200-unit-per-person threshold. Then each of you in turn can choose whether (or to what extent) to 'pitch in' and make up the difference by contributing more than 200 units yourself.

4) If the threshold is met, your group will continue to the next round. Your group will play at least 8 rounds. After the 8th round, there is a 50% probability that there will be another round, and another, and so on. If the threshold is not met, the game ends immediately and none of you have a chance to earn any further bonus money.

Participants then answered the following comprehension questions and if they failed one or more (in either condition) they were excluded from the remained of the study.

- 1) Might you receive a different amount of starting money in each round than other people in your group? [Yes / No]
- 2) How many units are you responsible for contributing each round? [100, 200, 300, 400, 500, 600]
- If you or someone in your group does not make their full contribution, what happens? [the game ends immediately; nothing happens and the game continues to the next round; other group members can 'pitch in' and make up the difference in that player's contribution]
- 4) After the 'pitching in' phase is over, if you or someone in your group has failed to contribute enough units to get over the 200 unit threshold, what happens? [the game ends immediately; nothing happens and the game continues to the next round; everyone gets a bonus unit]

Below are the instructions and comprehension questions for the Social Dilemma condition:

You have been assigned to a group with 2 other people. You each will have the opportunity to earn units over a series of rounds of play, which will be converted to real money at a rate of 10 units per cent.

Each of you will be assigned an identified, but these identifiers are randomly shuffled each round. Thus you will not be able to track the behavior of the other people from round to round.

Each round works as follows:

1) Each of you receives a randomly determined number of units, between 0 and 500. Each of you may receive a different amount. You do not know the amounts received by the other group members, and they do not know the amount you receive.

2) You each choose how many of these units to keep toward your bonus, and how many to contribute to the group. In order to continue to the next round, a total of at least 600 units must be contributed to the group. Otherwise, the game ends and none of you have a chance to earn additional money.

3) If less than 600 units are contributed, the group is told how many additional units are needed to meet the 600-unit threshold. Then each of you in turn can choose whether to 'pitch in' and make up the difference by contributing more, unless a group member 'pitches in' in stage 3.

4) If the threshold is met, your group will continue to the next round. Your group will play at least 8 rounds. After the 8th round, there is a 50% probability that there will be another round, and another, and so on. If the threshold is not met, the game ends immediately and none of you have a chance to earn any further bonus money.

After reading the instructions, participants in the threshold condition answered the following comprehension questions.

- 1) Might you receive a different amount of starting money in each round than other people in your group? [Yes / No]
- 2) How many units is your group responsible for contributing each round? [100, 200, 300, 400, 500, 600]
- 3) If your group does not make its full contribution, what happens? [the game ends immediately; nothing happens and the game continues to the next round; the group members can 'pitch in' and make up the difference]
- 4) After the 'pitching in' is done, if your group failed to contribute enough units to get over the 600 unit threshold, what happens? [the game ends immediately; nothing happens and the game continues to the next round; everyone gets a bonus unit]

Regression table

Below is a regression table that shows the regression results from the three sets of statistical models we fit. Specifications 1-4 are fit using logistic regression, while specifications 5 and 6 are fit using OLS regression. For each specification, we use the lowest MAO in the group in order to capture the how inequity averse the group's least inequity averse member was. Groups with lower minimum MAOs have at least one member who will be more willing to pitch in, while groups with high minimum MAOs are less likely to have a member who will be willing to pitch in.

	(1)	(2)	(3)	(4)	(5)	(6)
VARIABLES	Defaulted a	Defaulted at any point		n first round	Fraction of rounds foregone	
Group minimum MAO	4.719***	4.655**	3.952***	3.713*	0.636**	0.747**
	(1.766)	(2.057)	(1.451)	(2.219)	(0.286)	(0.361)
Condition (Social dilemma=1)	1.590***	1.554**	1.305***	1.194	0.276***	0.327**
	(0.484)	(0.763)	(0.437)	(0.898)	(0.074)	(0.132)
Group minimum MAO x Condition		0.245		-0.412		0.264
		(4.017)		(2.929)		(0.558)
Constant	0.553	0.539	2.261***	2.186***	0.665***	0.690***
	(0.462)	(0.512)	(0.551)	(0.759)	(0.081)	(0.0972)
Observations	120	120	120	120	120	120
R-squared/Pseudo R-squared	11.8%	11.9%	9.2%	9.2%	12.2%	12.4%

Table S4. Regression results from the experimental data

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1