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Abstract 17 

Once released into the environment antibiotics can kill or inhibit the growth of 18 

bacteria, and in turn potentially have effects on bacterial community structure 19 

and ecosystem function. Environmental risk assessment (ERA) seeks to establish 20 

protection limits to minimise chemical impacts on the environment, but recent 21 

evidence suggests that the current regulatory approaches for ERA for antibiotics 22 

may not be adequate for protecting bacteria that have fundamental roles in 23 

ecosystem function. In this study we assess the differences in interspecies 24 

sensitivity of eight species of cyanobacteria to seven antibiotics (cefazolin, 25 

cefotaxime, ampicillin, sufamethazine, sulfadiazine, azithromycin and 26 

erythromycin) with three different modes of action. We found that variability in 27 

the sensitivity to these antibiotics between species was dependent on the mode 28 

of action and varied by up to 70 times for β-lactams. Probabilistic analysis using 29 

species sensitivity distributions suggest that the current predicted no effect 30 

concentration PNEC for the antibiotics may be either over or under protective of 31 

cyanobacteria dependent on the species on which it is based and the mode of 32 

action of the antibiotic; the PNECs derived for the macrolide antibiotics were 33 

over protective but PNECs for β-lactams were generally under protective. For 34 

some geographical locations we identify a significant risk to cyanobacteria 35 

populations based upon measured environmental concentrations of selected 36 

antibiotics.  We conclude that protection limits, as determined according to 37 

current regulatory guidance, may not always be protective and might be better 38 

derived using SSDs and that including toxicity data for a wider range of (cyano-) 39 

bacteria would improve confidence for the ERA of antibiotics.40 
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1. Introduction 45 

Antibiotics are designed to kill or inhibit the growth of bacteria and are 46 

fundamental in the treatment of pathogens in human and veterinary healthcare. 47 

Following their release into the environment however, non-target bacteria may 48 

be affected and the vital ecosystem services they facilitate may be disrupted as a 49 

consequence, which include primary productivity, nutrient cycling and 50 

contaminant degradation (Dopheide et al., 2015; Grenni et al., 2018; Kümmerer, 51 

2009). Aquatic ecosystems are especially at risk due to the concentrations of 52 

antibiotic inputs received from manufacturing plants and hospital effluents, 53 

wastewater treatment plants (WWTP), aquaculture, and run-off from agriculture 54 

(Batt et al., 2007; Brown et al., 2006; Cabello, 2006; Jaimes-Correa et al., 2015; 55 

Larsson, 2014; Larsson et al., 2007; Li et al., 2008; Liu et al., 2017; Watkinson et 56 

al., 2009). The European regulatory environmental risk assessment (ERA) for 57 

antibiotics aims to establish protection limits that prevent “risk of undesirable 58 

effects on the environment” (EC, 2001), but the effectiveness of the current 59 

approach to do so has been questioned (Agerstrand et al., 2015; Brandt et al., 60 

2015; Le Page et al., 2017). In addition, many antibiotics lack data for 61 

environmental bacteria due to the regulatory requirement for ERA testing only 62 

coming into force in 2006; before which most antibiotics had already been 63 

approved (Le Page et al. 2017). Consequently, there is an urgent need to assess 64 

whether the protection limits currently derived according to the current ERA 65 

guideline for antibiotics are able to protect against undesirable effects on the 66 

environment. 67 

 68 
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In the European ERA for human medicinal products and the VICH guidelines for 69 

veterinary antibiotics, protection limits for pharmaceuticals, including 70 

antibiotics, are represented by a predicted no effect concentration (PNEC). This 71 

is calculated by applying an assessment factor (AF) of 10 to the lowest no 72 

observed effect concentration (NOEC) following testing upon a cyanobacteria 73 

(green algae when not an antibiotic), invertebrate, fish and an activated sludge 74 

respiration inhibition test (ASRIT); i.e the PNEC is calculated by dividing the 75 

lowest NOEC by 10. The ASRIT however, is not sensitive to antibiotics 76 

(Kümmerer, 2009; Le Page et al., 2017) and consequently only a single species of 77 

cyanobacteria represents all bacterial diversity in an antibiotic ERA that also 78 

measures a single functional endpoint: primary productivity. Additionally, most 79 

tests use either Anabaena flos-aquae (particularly in the case of regulatory 80 

studies) or Microcystis aeruginosa, providing a limited understanding of 81 

cyanobacteria interspecies sensitivity. In a revised version of the EMA guidance 82 

for ERA that is currently under consultation, however, it is advocated that two 83 

cyanobacteria species should be tested and fish are only tested when the 84 

pharmaceutical targets are present. The AF is applied to account for uncertainty 85 

due to interspecies variability and the extrapolation from controlled laboratory 86 

studies to the field. But the application of an AF of 10 for antibiotics is 87 

unsupported by experimental data and evidence shows that in some cases 88 

interspecies bacterial sensitivity may exceed this by several orders of magnitude 89 

(Chapman et al., 1998; Le Page et al., 2017). Consequently, there may be cases 90 

where the PNEC is not protective of all species in the environment. Moreover, a 91 

PNEC calculated this way has two potential drawbacks: firstly, the NOEC has 92 

been heavily criticised due to its dependence on the design of the experiment 93 
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conducted to derive it (Green et al., 2013) and secondly, because it uses only a 94 

single effect value (the NOEC); quantification of the uncertainty around the PNEC 95 

is not determined (Chapman et al., 1998).  96 

A second approach for establishing protection limits that overcomes some of the 97 

problems associated with the current PNEC approach is through the 98 

construction of a species sensitivity distribution (SSD). A SSD is a probability 99 

model of interspecies variability across a toxicity endpoint following chemical 100 

exposure (e.g. NOEC or ECx) and it allows prediction of the proportion of species 101 

affected at any concentration for the species group modelled (Aldenberg et al., 102 

2001; Belanger et al., 2017; Wheeler et al., 2002). SSDs are more commonly used 103 

for higher tier ERA in plant protection product regulations (EFSA, 2013) or in the 104 

Water Framework Directive (European Commission Joint Research Centre, 105 

2003). The protection limit most often derived from a SSD is the hazardous 106 

concentration that affects no more than 5% of species (HC5), although it has 107 

been suggested that the lower 95% confidence limit of the HC5 (HC52.5%) should 108 

be used to ensure a truly protective limit (Verdonck et al., 2001; Wheeler et al., 109 

2002). This lower, more protective limit, however, will have more statistical 110 

uncertainty. An AF of less than 10 is sometimes applied depending on the 111 

specific regulations and quality/quantity of the data on which the SSD is based 112 

(EFSA, 2013). 113 

In the past SSDs have been criticised for being ecologically unrealistic and for a 114 

lack of statistical robustness but recent advances allow for the mitigation of 115 

some of these concerns (Forbes and Calow, 2002; Kon Kam King et al., 2015; Kon 116 

Kam King et al., 2014). Importantly, SSDs are influenced by the quality and 117 
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number of data included, as well as the choice of taxa, their sensitivity to the 118 

mode of action and the even representation of the taxonomic groups of interest. 119 

Where previously a sample size of 10-15 species was required for a robust 120 

analysis (TGD, 2003), newer protocols that use bootstrap regression and the 121 

incorporation of censored data now allow for the computation of reliable 122 

statistics from a limited dataset (<10 data points) (Kon Kam King et al., 2014; 123 

Wheeler et al., 2002). Fewer species therefore are arguably required to reliably 124 

model the lower tail of the SSD (comprising the most sensitive species) from 125 

which a protection limit could be derived, providing they are all known to be 126 

sensitive to the mode of action (MoA) of the chemical. This is because the SSD 127 

focuses upon the species most at risk and the distribution will not be impacted 128 

by non-sensitive species or taxonomic clades (Schmitt-Jansen et al., 2008; 129 

Segner, 2011). 130 

It is not uncommon for the measured environmental concentrations (MECs) of 131 

antibiotics to exceed the PNEC in the environment, especially in WWTP, hospital 132 

and manufacturing effluents (Batt et al., 2007; Brown et al., 2006; Jaimes-Correa 133 

et al., 2015; Larsson, 2014; Larsson et al., 2007; Li et al., 2008; Watkinson et al., 134 

2009). In these cases it is likely that there is a risk to bacterial communities and 135 

the ecosystem functions that they provide. By considering these MECs in relation 136 

to a SSD it is possible to obtain an indication of the proportion of species that 137 

may be at risk.  138 

In a recent meta-analysis of all publicly available literature we identified that 139 

cyanobacteria sensitivity to antibiotics may vary by up to 100,000 times (Le Page 140 

et al., 2017). For some antibiotics a sensitivity difference exceeding the AF of 10 141 



 8 

occurred between the most sensitive species, most commonly, Microcystis 142 

aeruginosa, and the two species recommended in the OECD 201 test guideline for 143 

establishing protection limits, namely Anabaena flos-aquae and Synechococcus 144 

leopoliensis.  Although in some cases when A. flos-aquae was the most sensitive 145 

species the assessment factor of 10 did appear to be protective. The 146 

aforementioned meta-analysis was based on an assessment of published data 147 

and collated studies performed using different methodologies and test 148 

conditions in different laboratories by different researchers. Accurate 149 

numeration and confidence in relative sensitivities to antibiotic exposure in 150 

cyanobacteria species are best derived through comparative experiments 151 

conducted under the same test design without inter-laboratory variation. 152 

 153 

To this end we optimised a microplate growth inhibition assay to assess the 154 

effects of antibiotic on population growth for eight species of phylogenetically 155 

diverse cyanobacteria (as assessed by their genome sequences (Shih et al., 156 

2013)) culturable under laboratory conditions that are of environmental 157 

relevance (Le Page et al. under review). We focused on cyanobacteria due to 158 

their current key role within ERA and because they are a diverse bacterial clade 159 

of photoautotrophs that are ubiquitous in both aquatic and terrestrial 160 

environments, play key roles in many bacterial communities, and they have a 161 

range of important ecological functions such as primary production and nitrogen 162 

fixation (Falkowski, 1997). 163 

 164 

Seven antibiotics were selected that spanned both a range of antibiotic classes 165 

and modes of action (MoA) in order to assess the impact MoA may have on the 166 
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degree of interspecies sensitivity observed. These included; i) three cell envelope 167 

synthesis inhibiting antibiotics, β-lactams, which target penicillin binding 168 

proteins (which catalyse the building of the peptidoglycan cell membrane of 169 

bacteria) namely, cefazolin and cefotaxime (1st and 3rd generation 170 

cephalosporins, respectively) and ampicillin (a penicillin); ii) two DNA synthesis 171 

inhibitors, sulfadiazine and sulfamethazine (sulfonamides) that prevent the 172 

production of folic acid, a key precursor in the DNA synthesis pathway; and iii) 173 

two protein synthesis inhibitors, erythromycin and azithromycin (macrolides), 174 

which inhibit the normal functioning of the bacterial ribosome. The macrolides, 175 

azithromycin and erythromycin are both candidates to be priority substances in 176 

the EU Water Framework Directive watch list (Carvalho et al., 2015) and US EPA 177 

contaminate list 3 (US EPA, 2009). Cefazolin and sulfamethazine have no 178 

ecotoxicological data available for cyanobacteria in the open literature. 179 

Sulfadiazine, cefotaxime and azithromycin have very limited ERA relevant 180 

ecotoxicological data (Le Page et al., 2017). 181 

 182 

We addressed the hypothesis that current protection limits for antibiotics in 183 

surface water (PNECSW) are not fully protective of all cyanobacteria populations. 184 

We first determined the interspecies sensitivity differences of eight species of 185 

cyanobacteria by performing growth inhibition assays. We then established SSDs 186 

and compared the PNEC calculated according to current guidance with the HC5 187 

and HC52.5% to determine the proportion of species that would be affected 188 

following exposure to the PNEC determined from these results. Finally, based on 189 

our SSDs, we calculated the proportion of cyanobacteria likely to be affected 190 

using published MECs. 191 
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2. Materials and methods 192 

2.1. Test organisms and maintenance 193 

We selected eight cyanobacteria species: Anabaena flos-aquae (CCAP 1403/13A), 194 

Synechococcus leopoliensis (CCAP 1405/1), Anabaena cylindrica (PCC 7122), 195 

Synechococcus elongatus (PCC 6301), Synechococcus sp (PCC 6312), Synechocystis 196 

sp (PCC 6803), Cyanobium gracile (PCC 6307) and Geminocystis herdmanii (PCC 197 

6308). The basis for the selection of each species is given in Supplementary 198 

material A.  199 

 200 

Continuous cultures of exponentially growing cyanobacteria were maintained in 201 

50mL BG-11 medium ((Rippka et al., 1979); using laboratory grade constituents 202 

of >97% purity). Cultures were incubated in Multitron II incubators (Infors) 203 

under test conditions. Cultures were examined visually using an inverted light 204 

microscope to ensure cells appeared healthy before testing. 205 

2.2. Antibiotics 206 

Seven antibiotics were selected: cefozolin sodium salt (CAS: 27164-46-1; purity 207 

≥98%; Tokyo Chemical Industry UK Ltd (TCI)), cefotaxime sodium salt (CAS: 208 

64485-93-4; purity ≥ 91.6%; Sigma-Aldrich), ampicillin trihydrate (CAS: 7177-209 

48-2; purity ≥98%; TCI), sulfadiazine (CAS: 68-35-9; purity ≥99%; Sigma-210 

Aldrich), sulfamethazine (CAS: 57-68-1; purity ≥98%; TCI), azithromycin 211 

dihydrate (CAS: 117772-70-0; purity ≥98%; TCI) and erythromycin (CAS: 114-212 

07-8; purity ≥98%; TCI). These antibiotics span three MoAs that are detailed 213 

above in the introduction.  Additional rationale for their choice was based upon 214 
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one or a combination of the following; i) being a compound of regulatory concern 215 

(Carvalho et al., 2015; US EPA, 2009), ii) having suitable solubility in the test 216 

media, and iii) having limited or no cyanobacteria data available in the literature. 217 

A summary of the chemical properties is given in table 1. 218 

2.3. Growth inhibition assays 219 

Growth rate inhibition assays were performed in 96 well microplates that 220 

followed a procedure adapted from the (Environment Canada, 2007) and (OECD, 221 

2011) test guidelines which was developed as a medium throughput test and 222 

aims to identify which species are susceptible than others and of which the 223 

development and validation is documented in (Le Page et al., under review). 224 

Biomass was measured using phycocyanin fluorescence as a surrogate 225 

(excitation = 590 nm, emission = 650 nm, cut-off = 635 nm; bottom read mode; 226 

Spectromax M5 with Softmax® Pro software (Molecular Devices)). This has been 227 

previously demonstrated to have a linear relationship with cell density for all 228 

species except A. flos-aquae that had a shallower gradient at cell densities below 229 

eight artificial fluorescence units (AFU, Le Page et al., under review). 230 

 231 

A pre-culture for each species was prepared between three and four days prior 232 

to the start of the test in 50 mL of BG-11 under the experimental exposure 233 

conditions (but in the absence of the antibiotic) in order to obtain exponentially 234 

growing cells. A cyanobacteria inoculum was prepared in BG-11 medium at a 235 

phycocyanin fluorescence of 4 AFU (twice the nominal starting inoculum). 236 

Following this a geometric series of stock solutions for each test concentration 237 

were prepared in BG-11 medium at double the nominal test concentrations. 238 
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100μL of test solution was added to 100 μL of cyanobacteria inoculum to achieve 239 

a final cyanobacteria density at 2 AFU at the nominal test concentration in each 240 

well. Assays were conducted in non-transparent, 96 well plates (Greiner Bio-one 241 

item no. 650201), sealed with AMPLIsealTM sealer (Greiner Bio-one item no. 242 

676040) to prevent water loss due to evaporation over the test period. The plate 243 

layout for the incubations described is provided in Supplementary material A. 244 

 245 

The assays were run in Multitron II incubators (Infors) under the following test 246 

conditions: light intensity = 4000 lux, temperature = 28 +/- 1°C and shaking = 247 

140 rpm. The test lengths were optimised to ensure toxicity testing was carried 248 

out, as best as possible, during exponential growth for each species, and these 249 

were: i) 24 hours for the fastest growing species, S. leopoliensis, S. elongates and 250 

Synechococcus sp,; ii) 48 hours for A. flos-aque and Synechocystis sp. The 251 

exception here was for the exposure of the Synechocystis sp. to sulfadiazine 252 

where due to a slower growth rate than expected, an exposure period of 72 253 

hours was adopted; iii) 72 hours for the slower growing species, A. cylindrical, C. 254 

gracile and G. herdmanii. (Le Page et al., under review) provides further 255 

discussion around the selection of exposure times and the potential 256 

consequences for their extension or reduction, although we highlight that with 257 

the current set up we cannot discern the magnitude of effect of the technical 258 

uncertainty caused by comparing several species and how this may impact on 259 

the biological differences observed. 260 

 261 

Daily cell density determinations were made for each well via measurement of 262 

phycocyanin fluorescence. pH was measured in the stocks and in a replicate of 263 
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each test concentration for each species at the end of the test using micro pH 264 

meter (Jenco 6230N; pH probe: Hanna instruments HI1083) to ensure 265 

fluctuations did not exceed the acceptable limits of ±0.2 as defined by most 266 

standardised test guidelines (OECD, 2011). 267 

 268 

For the azithromycin exposure, dimethyl sulfoxide (DMSO) was used as a solvent 269 

carrier at a concentration of 10 μl/L. Ten solvent control replicates were 270 

employed and comparisons of the dilution water control and solvent control 271 

replicates for all species are provided in Supplementary material A. Growth rate 272 

was found not to be significantly different from the dilution water control for any 273 

cyanobacteria with exception of A. flos-aquae and S. elongates where small but 274 

significant decreases in growth rate (p < 0.01) were observed in the solvent 275 

control (two tailed t.test in R, version 3.3.0; R Project for Statistical Computing, 276 

Vienna, Austria). All dose-response curves and subsequent statistical 277 

comparisons with antibiotic exposures were performed using the solvent control 278 

data.  279 
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 280 

Antibiotic 
Primary 

pharmacological 
Target a 

Log 
Kow b 

pKa b 
Log 

Dow 
(pH 8) b 

Solubility 
at pH 8.0 b 

(g/L) 

Cefazolin 
Penicillin 

binding protein 
-1.52 

2.84 (acid)  
0.26 (base) 

-5.04 454.5 

Cefotaxime 
Penicillin 

binding protein 
-1.49 

2.73 (acid)  
3.58 (base) 

-4.24 455.5 

Ampicillin 
Penicillin 

binding protein 
-2 

3.24 (acid)  
7.23 (base) 

-2.72 0.04 

Sulfadiazine 
Dihydropteroate 

synthetase 
-0.39 

6.99 (acid)  
2.01 (base) 

-0.33 8.91 

Sulfamethazine 
Dihydropteroate 

synthetase 
0.65 

6.99 (acid) 
2.00 (base) 

-0.06 4.72 

Azithromycin 
Bacterial 

ribosome 
2.44 

12.43 (acid)  
9.57 (base) 

-0.08 1810 

Erythromycin 
Bacterial 

ribosome 
2.6 

12.45 (acid)   
9 (base) 

1.55 43.3 

Table 1 – Chemical properties of antibiotics.a according to drugbank (www.drugbank.ca). 281 

b predicted by ChemAxon (www.chemicalize.org) 282 

2.4. Chemical analysis 283 

The concentrations of antibiotics in the stocks and in three exposure replicates 284 

for all concentrations and in each species at the end of the tests were measured 285 

using liquid chromatography-mass spectrometry (method supplied in 286 

Supplementary material A). Following the final cell density determination of the 287 

assay, microplates were centrifuged at 4000 rpm for 30 minutes. 150μL of 288 

supernatant was carefully removed and transferred to a deep well microplate 289 

(96-well, 2ml; Porvair Sciences) with acetonitrile (50% volume). Where 290 

necessary samples were further diluted to within the calibration range. All 291 

chemical concentrations are reported as free acids and bases. 292 

In the instances where analytical data was <LOQ or where an extraction error 293 

occurred (see Supplementary material B and Table S.B1) these 294 

http://www.drugbank.ca/
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samples/replicates were excluded from further analysis (detailed in Table S.B1) 295 

Limits of quantification (LOQ) for each antibiotic are given in Table S.B2. 296 

2.5. Measured environmental concentrations 297 

The MECs for each antibiotic were obtained from Umweltbundesamt's (UBA) 298 

'Pharmaceuticals in the environment' database (Umwelt bundesamt, 2018). 299 

MECs from all matrices that were measured in, or able to be converted into μg/L 300 

were extracted for use. Measurements of 0 μg/L were removed as they represent 301 

either the absence of the antibiotic or presence below the limit of detection, 302 

which make this analysis assume a worst-case scenario by moving the median to 303 

higher concentrations. MECs from matrixes such as inflows to WWTP, sewage 304 

sludge or untreated hospital and industrial effluents were also removed from the 305 

analysis to leave only environmentally relevant MECs. 306 

2.6. Statistical analysis 307 

2.6.1. Growth rate calculations 308 

Growth rate of cyanobacteria was calculated according to equation below based 309 

on the phycocyanin fluorescence at the start and the end of the assay. 310 

 311 

Growth Rate =
lnΧ𝑗 − lnΧ𝑖

t𝑗 − t𝑖
 312 

where 313 

Xi = cell density at time ti 314 

ti =  i'th time point 315 
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2.6.2. Dose-response modelling and ECx determination 316 

Dose-response curves were fitted in R (version 3.3.0; R Project for Statistical 317 

Computing, Vienna, Austria) using the drc package (Ritz et al., 2015). For all 318 

pairs of bacterial species and antibiotics, growth rate data were fitted to log-319 

logistic (3, 4 and 5 parameters) and Weibull distributions (4 and 5 parameters). 320 

Of these, the optimal distribution was selected based of the log-likelihood score 321 

to represent the data. From this fitted distribution estimates of the 10 and 50% 322 

effective concentrations (ECx) and associated confidence limits were determined. 323 

Data handing for the growth rate determinants for each species are provided in 324 

Supplementary material A. 325 

2.6.3. Species Sensitivity Distributions 326 

SSDs were constructed in R (version 3.3.0; R Project for Statistical Computing, 327 

Vienna, Austria) using the fitdistrplus package (Delignette-Muller and Dutang, 328 

2015) following procedure outlined in the MOSAIC SSD platform (Kon Kam King 329 

et al., 2014). The 95% confidence intervals of the EC10 for each species were used 330 

as interval-censored data (i.e. not a single fixed value but a range between the 331 

95% confidence limits). This allowed for the incorporation of the uncertainty 332 

around the EC10 into the SSD and this increases confidence in the SSD output 333 

(Kon Kam King et al., 2014). Six parametric distributions were fitted to the data: 334 

i) normal, ii) log-normal, iii) Weibull, iv) log-logistic, v) gamma and vi) 335 

exponential. The best fitting distribution was selected based upon a combination 336 

of the Akaike Information Criterion (AIC) score.  337 

The HC5 and associated confidence intervals were determined from 338 

bootstrapping of the data (5000 iterations) based on the parameters of the fitted 339 
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distribution. A similar protocol was followed to derive the SSD, HC5 and 340 

confidence intervals from the NOEC data but for this the NOEC values were used 341 

as non-censored data. 342 

3. Results 343 

3.1. Antibiotic exposure concentrations 344 

The measured concentrations of the antibiotics in each microplate assay, 345 

calculated using a geometric mean of the concentrations at the start (stocks) and 346 

end (exposure replicates) of the test, are provided in the Supplementary material 347 

B (figures S.B1 – S.B14). Overall concentrations of the antibiotics in the test 348 

media varied with losses due, in part, to the presence of the bacteria.  These 349 

losses differed across the various antibiotics tested and species (graphs S.B15 – 350 

S.B21; determined as the difference between concentrations in the wells 351 

containing cyanobacteria and blank replicates (without cyanobacteria)).   352 

 353 

For cefazolin, mean measured concentrations in the exposure replicates ranged 354 

between 14 to 32 % of the nominal concentrations (Fig S.B1). The greatest losses 355 

of cefazolin occurred in the exposures to S. elongates and Synechococcus sp.  356 

 357 

Mean measured concentrations of cefotaxime in the exposure replicates ranged 358 

between 18 and 44% of nominal (Fig S.B3). The greatest reductions in the 359 

exposure replicates compared with replicates without cyanobacteria were for 360 

the Synechococcus genus (Fig S.B16). 361 

 362 
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Mean measured concentrations of ampicillin in the exposure replicates ranged 363 

between 44 and 95% of nominal (Fig S.B5). In the presence of the cyanobacteria 364 

there were generally between 10 and 30% additional reductions compared with 365 

the replicates without bacteria, but was most pronounced in the A. cylindrical 366 

exposure replicates (S.B17). 367 

 368 

Mean measured concentrations of sulfadiazine in the exposure replicates were 369 

between 101 and 142% of nominal (Fig S.B7). The high measured concentrations 370 

of up to 142% of nominal occurred in the nominal 2.36, 145 and 1140 μg/L test 371 

concentrations and they would increase the uncertainty around toxicity 372 

estimates calculated. However, due to the lack of sensitivity of the cyanobacteria 373 

to sulfadiazine (see below) this doesn’t affect any conclusions drawn. Reductions 374 

in sulfadiazine concentrations due to the presence of the cyanobacteria varied 375 

across tests concentrations (S.B18). 376 

 377 

Mean measured concentrations of sulfamethazine in the exposure replicates 378 

ranged between 87 to and 134% of nominal (Fig S.B9). Extraction errors for 379 

nominal concentrations 907 and 1633 μg/L in the S. elongates exposure meant 380 

that these had to be excluded for the analyses.  381 

 382 

Mean measured concentrations of erythromycin in the exposure replicates were 383 

between 71 and 100% of nominal (Fig S.B11) with exception of the nominal 384 

3.77 μg/L test concentration (53% of nominal). Erythromycin concentrations 385 

were lowered by up to 50% over the exposure period and the presence of the 386 

cyanobacteria in the exposure replicates caused additional erythromycin losses 387 
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of on average of 10 and 20% (but up to 60%) compared to replicates without 388 

cyanobacteria present (Fig S.B20).  389 

 390 

Mean measured concentrations of azithromycin in the exposure replicates 391 

ranged between 23 and 79% of nominal (Fig S.B13). Azithromycin 392 

concentrations in the exposure and blank replicates at the end of the exposures 393 

were considerably lower, by up to 96%. The presence of all species of 394 

cyanobacteria had an effect of reducing the test concentrations further by 395 

between 10 and 15% (Fig S.B21). 396 

3.2. Growth inhibition, species sensitivity distributions and protection 397 

limit analysis: 398 

The dose-response curves for growth inhibition of the eight cyanobacteria for 399 

each antibiotic tested are presented in Figure 1. The EC10s, EC50s and NOECs for 400 

the experimental data are given in Table 2 (raw data are provided, and shown 401 

graphically in Supplementary material C, figures S.C1 – S.C7). All dose-response 402 

analyses are based upon geometric mean measured test concentrations. The pHs 403 

at the start and at the end of the tests are provided in Supplementary material D. 404 

 405 

The data in Figure 2 presents the SSDs, based upon cyanobacteria EC10s for each 406 

antibiotic, together with PNECs based upon the NOEC of the most sensitive 407 

species tested (PNEClowest) and the PNECs, based upon the two Organisation for 408 

Economic Co-operation and Development (OECD) test guideline recommended 409 

species (from which all PNECs derived for regulatory purposes are likely derived 410 

from) A. flos-aquae (PNECA. flos-aquae) and S. leopoldensis (PNECS.leopoldensis). SSDs 411 
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based upon cyanobacteria NOECs are provided in Supplementary material C 412 

(figure S.C8).  It was not possible to establish the SSDs for sulfamethazine or for 413 

sulfadiazine as neither produced a full dose response curve from which to 414 

calculate an EC10. 415 

The data in Table 2 provide values for the HC5, PNECs and the proportion of 416 

cyanobacteria affected at these concentrations, predicted from the SSD (based on 417 

the EC10s). Table 3 gives the highest and median MECs and the proportion of 418 

cyanobacteria affected at these concentrations predicted from the SSD (based on 419 

the EC10s). The same information as Tables 2 and 3 are provided in Tables S.C1 420 

and S.C2 but here using the SSD based upon NOEC data.  Table SC.3 provides the 421 

best fitting distributions used for establishing the SSD. 422 

EC10s for the different cyanobacteria exposure for cefazolin ranged between 2.4 423 

and 124 μg/L and the EC50s ranged between 4.1 to 283 μg/L (Figure 1 and Table 424 

1). Based upon both EC10 and EC50 A. flos-aquae and G. herdmanii were the most 425 

sensitive species to cefazolin. Species in the Synechococcus genera (S. leopoliensis, 426 

S. elongates and Synechococcus sp.) along with Synechocystis sp. were the least 427 

sensitive. Synechococcus sp. was up to 70 times less sensitive than the most 428 

sensitive species based on the EC50. The HC5 for cefazolin, based on EC10s, was 429 

1.13 μg/L, which was 7.5 times higher than the lowest PNEC (for A. flos-aquae) 430 

but 4 times lower than that based on S. leopoldensis (Figure 2 and Table 2). The 431 

predicted proportion of cyanobacteria affected at the PNECs ranged between 432 

0.95 and 13.3% depending on which species was used to derive the PNEC (Table 433 

2). The HC5 based on the NOEC data was 5 μg/L, 4 times higher than when based 434 

on the EC10 (Table SC.1). The median MEC was predicted to affect a small fraction 435 
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of cyanobacteria (<1%) based on the SSD. The highest recorded MEC (42.9 μg/L; 436 

the maximum concentration observed in a range of effluents in Taiwan, including 437 

manufacturing and hospital effluents (Lin et al., 2008)) was predicted to affect 438 

60.2% of cyanobacteria (Table 3) with the second highest MEC of 6.2 μg/L 439 

affecting 16.2% of cyanobacteria. The median MEC of 6 hospital effluents in the 440 

same study, of 6.2 μg/L (Lin et al., 2008), would affect 17.3% of cyanobacteria 441 

based on the SSD. 442 

 443 

EC10s for the different cyanobacteria exposure to cefotaxime ranged between 1.2 444 

and 39.8 μg/L and EC50s ranged between 2.2 and 98 μg/L (Figure 1 and Table 1). 445 

The maximum difference in sensitivity (45 times) occurred between A. flos-aquae 446 

(the most sensitive) and Synechococcus sp (the least sensitive). The four least 447 

sensitive species, S. leopoliensis, Synechocystis sp., S. elongates and 448 

Synechococcus sp., were also the least sensitive species to cefazolin, the other 449 

cephalosporin tested, with the same order of relative sensitivity. The HC5 for 450 

cefotaxime, based upon EC10s, was 0.67 μg/L, which was 4 times higher than the 451 

lowest PNEC (for A. cylindrica) and approximately the same value as for the 452 

PNEC based upon S. leopoldensis (Figure 2 and Table 2). The predicted 453 

proportion of cyanobacteria affected at the PNECs ranged between 1.3 and 5.2% 454 

depending on which species was used to derive the PNEC (Table 2). The HC5 455 

based upon the NOEC data was approximately the same as when based on the 456 

EC10 (Table SC.1). The median MEC had little effect upon cyanobacteria based on 457 

the SSD. The highest recorded MEC (41.9 μg/L; the maximum concentration 458 

observed in a range of effluents in Taiwan, including manufacturing and hospital 459 

effluents (Lin et al., 2008)) was predicted to affect 95.9% of cyanobacteria (Table 460 
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3). The median MEC of 6 hospital effluents in the same study, of 0.413 μg/L (Lin 461 

et al., 2008), would affect 3.1% of cyanobacteria based on the SSD. 462 

 463 

EC10s for the different cyanobacteria exposure to ampicillin ranged between 5.9 464 

and 44.6 μg/L and EC50s ranged between 8.4 and 81.4 μg/L (Figure 1 and Table 465 

1). Based on the EC50, there was a difference in sensitivity of approximately 10 466 

times (9.7) between the most sensitive (C. gracile) and least sensitive species 467 

(A. cylindrical). C. gracile was 3 times more sensitive than the next most sensitive 468 

species, S. leopoliensis. The remaining cyanobacteria all had similar sensitivities 469 

with EC50s of between 52 and 81.4 μg/L. The HC5 for ampicillin, based on EC10s, 470 

was 8.6 μg/L, which was 17.5 times higher than the lowest PNEC (for C. gracile) 471 

and 2.9 and 7.4 times higher than the PNECs based on A. flos-aquae and 472 

S. leopoldensis, respectively (Figure 2 and Table 2). The predicted proportion of 473 

cyanobacteria affected at the PNECs ranged between 0.9 and 1.6% depending on 474 

which species was used to derive the PNEC (Table 2). The HC5 based upon the 475 

NOEC data was approximately the same as those based on the EC10 (Table SC.1). 476 

The median MEC indicated little effect upon cyanobacteria based on the SSD. The 477 

highest recorded MEC of 27.1 μg/L (WWTP effluent in India (Mutiyar and Mittal, 478 

2013)) was predicted to affect 44.3% of the cyanobacteria (Table 3). 479 

 480 

Exposure to sulfadiazine only caused partial inhibition of growth of the 481 

cyanobacteria tested (Figure 1). It was possible to fit log-logistic or Weibull 482 

distributions to the growth data but as growth inhibition ceased before the point 483 

of 50% growth inhibition EC10 or EC50 values (and therefore SSDs) could not be 484 



 23 

calculated. The highest recorded MEC was 30.5 μg/L; treated WWTP effluent in 485 

east China (Chen et al., 2012), whilst the median MEC was 0.019 μg/L. 486 

 487 

As for sulfadiazine, sulfamethazine did not induce full growth inhibition for any 488 

of the cyanobacteria tested (Figure 1) preventing the ability to calculate EC10 or 489 

EC50 values (or SSDs). C. gracile was the most sensitive species to the growth 490 

inhibition effects of sulfamethazine (a 50% reduction in growth rate was 491 

observed at an exposure concentration of 1465 μg/L). At the highest tested 492 

exposure concentration (10,000 μg/L) there was between a 30% and 40% 493 

decrease in growth rate in A. flos-aquae, A. cylindrical, S. leopoliensis, S. elongates, 494 

Synechococcus sp., and G. herdmanii. Synechocystis sp was far less affected with 495 

only a 4% inhibition of growth at the highest tested concentration. The highest 496 

recorded MEC was 25.4 μg/L; treated WWTP effluent in Korea (Sim et al., 2011), 497 

whilst the median MEC was 0.015 μg/L. 498 

 499 

EC10s for the different cyanobacteria exposure to erythromycin ranged between 500 

21.1 and 58.8 μg/L and the EC50s were between 43.4 and 135.1 μg/L (Figure 1 501 

and Table 1). Based upon the EC50, there was only a small interspecies difference 502 

in sensitivity; 3.1 times, between the most sensitive (A. cylindrical) and least 503 

sensitive species (A. flos-aquae). The HC5 for erythromycin, based upon EC10s, 504 

was 21.3 μg/L, which was 34.4 times higher than the lowest PNEC (for 505 

S. elongatus) and 7.3 and 6.9 times higher than the PNECs for A. flos-aquae and 506 

S. leopoldensis, respectively (Figure 2 and Table 2). The proportion of 507 

cyanobacteria affected at the PNECs was <1% for all PNECs irrespective of which 508 

species was used to derive it (Table 2). The HC5 based upon the NOEC data was 509 
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3.5 times lower than when based on the EC10 (Table SC.2). No species of 510 

cyanobacteria are predicted to be affected by the MECs based on the SSD 511 

(highest MEC was 7.8 μg/L; untreated manufacturing discharge in China (Lin and 512 

Tsai, 2009)) (Table 3).  The HC5 in this study was 107 times higher (HC52.5 was 513 

81 times higher) than the PNEC in the European Unions watch list of priority 514 

substances for erythromycin is 0.2 μg/L (Loos et al., 2018), but a PNEC based 515 

upon the lowest NOEC, based on S. elongates, would have been only <3 times 516 

higher (NOEC <0.62 μg/L). 517 

 518 

EC10s for the different cyanobacteria exposure to azithromycin ranged between 519 

3.2 and 17.7 μg/L and EC50s ranged between 5.4 and 33.8 μg/L (Figure 1 and 520 

Table 1). Based upon the EC50, there was difference in sensitivity of 6.3 times 521 

only between the most sensitive (A. cylindrical) and least sensitive species 522 

(Synechococcus sp.). The HC5 for azithromycin, based on EC10s, was 3.2 μg/L, 523 

which was 21 times higher than the lowest PNEC (for G. herdmanii) and 3.1 and 524 

16.6 times higher than the PNECs for A. flos-aquae and S. leopoldensis, 525 

respectively (Figure 2 and Table 2). The predicted proportion of cyanobacteria 526 

affected at the PNECs was <1% for all PNECs irrespective of which species was 527 

used to derive it (Table 2). The HC5 based upon the NOEC data was 528 

approximately half as much as when based on the EC10 (Table SC.2). The median 529 

MEC had no effect upon cyanobacteria based on the SSD, whilst the highest 530 

recorded MEC of 2.8 μg/L (from a WWTP in Las Vegas; (Jones-Lepp et al., 2012)) 531 

was predicted to affect 3% of cyanobacteria (Table 3). The HC5 in this study was 532 

166 times higher (HC52.5 was 111 times higher) than the PNEC in the European 533 

Unions watch list of priority substances for azithromycin, 0.019 μg/L (Loos et al., 534 
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2018), but a PNEC based upon the lowest NOEC, based on G. herdmenii, would 535 

have been only <8 times higher (NOEC = 0.15 μg/L).  536 
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 537 

Figure 1 – Fitted concentration - response curves showing the effects of antibiotics on the growth 538 

rate of cyanobacteria. Curves are based upon 10 exposure concentrations Antibiotics are 539 

arranged (vertical panels) according to their mode of action. Red dotted line indicates the highest 540 

measured environmental concentration (MEC) in UBA database (Umwelt bundesamt, 2018). Raw 541 

data plots are presented in Supplementary material C. In some cases the number of 542 

concentrations tested falling on the slope of the dose response curve may be low (< 3) and this 543 

may influence the confidence (robustness) of  the toxicity estimation.  544 
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 545 

Antibiotic Species 

EC10 

estimate 

(μg/L) 

EC10 

Low CL 

(μg/L) 

EC10 

High CL 

(μg/L) 

EC50 

estimate 

(μg/L) 

EC50 

Low CL 

(μg/L) 

EC50 

High CL 

(μg/L) 

NOEC 

(μg/L) 

Difference in 

sensitivity a 

Cefazolin 

A. flos-aquae 2.4 1.7 3.0 4.1 3.7 4.5 1.5 

70 

A. cylindrical  7.9 2.9 12.8 17.8 15.4 20.2 6.4 

C. gracile  32.2 24.8 39.5 51.3 47.5 55.1 44.0 

G. herdmanii  3.1 2.6 3.5 5.1 4.8 5.3 4.5 

S. elongates  111.3 97.3 125.3 238.0 217.6 258.3 66.4 

S. leopoliensis 51.6 41.4 61.9 134.1 122.5 145.6 45.3 

Synechococcus sp 124.1 101.5 146.8 283.2 263.6 302.8 93.4 

Synechocystis sp 104.5 80.9 128.1 191.3 170.0 212.5 157.0 

Cefotaxime 

A. flos-aquae 1.4 1.0 1.8 2.2 2.0 2.4 1.9 

45 

A. cylindrical  1.2 0.3 2.2 3.1 2.2 4.1 1.7 

C. gracile  8.3 7.5 9.2 15.4 14.8 16.0 9.6 

G. herdmanii  15.1 8.9 21.4 17.7 14.7 20.6 9.9 

S. elongates  20.8 16.2 25.4 75.4 56.3 94.4 12.7 

S. leopoliensis 8.7 7.0 10.3 31.0 28.7 33.3 7.0 

Synechococcus sp 16.2 11.5 20.8 97.9 74.2 121.6 12.1 

Synechocystis sp 39.8 28.3 51.3 62.3 53.7 71.0 46.3 

Ampicillin 

A. flos-aquae 18.7 11.6 25.9 52.4 45.2 59.7 30.2 

9.7 

A. cylindrical  44.6 40.0 49.3 81.4 73.5 89.2 37.1 

C. gracile  5.9 5.1 6.7 8.4 7.4 9.4 4.9 

G. herdmanii  34.3 27.2 41.4 64.4 60.5 68.3 12.2 

S. elongates  38.8 35.0 42.7 54.0 50.4 57.6 36.4 
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Antibiotic Species 

EC10 

estimate 

(μg/L) 

EC10 

Low CL 

(μg/L) 

EC10 

High CL 

(μg/L) 

EC50 

estimate 

(μg/L) 

EC50 

Low CL 

(μg/L) 

EC50 

High CL 

(μg/L) 

NOEC 

(μg/L) 

Difference in 

sensitivity a 

S. leopoliensis 16.2 11.8 20.6 27.5 25.1 29.9 11.5 

Synechococcus sp 38.0 30.1 45.9 66.6 63.0 70.1 31.5 

Synechocystis sp 36.5 25.8 47.2 57.1 50.7 63.5 34.2 

Sufadiazine 

A. flos-aquae N/A N/A N/A N/A N/A N/A N/A 

N/A 

A. cylindrical  N/A N/A N/A N/A N/A N/A N/A 

C. gracile  N/A N/A N/A N/A N/A N/A N/A 

G. herdmanii  N/A N/A N/A N/A N/A N/A N/A 

S. elongates  N/A N/A N/A N/A N/A N/A N/A 

S. leopoliensis N/A N/A N/A N/A N/A N/A N/A 

Synechococcus sp N/A N/A N/A N/A N/A N/A N/A 

Synechocystis sp N/A N/A N/A 1275 1058 1493 380 

Sulfamethazine 

A. flos-aquae N/A N/A N/A N/A N/A N/A N/A 

N/A 

A. cylindrical  N/A N/A N/A N/A N/A N/A N/A 

C. gracile  N/A N/A N/A N/A N/A N/A N/A 

G. herdmanii  N/A N/A N/A N/A N/A N/A N/A 

S. elongates  N/A N/A N/A N/A N/A N/A N/A 

S. leopoliensis N/A N/A N/A N/A N/A N/A N/A 

Synechococcus sp N/A N/A N/A N/A N/A N/A N/A 

Synechocystis sp N/A N/A N/A N/A N/A N/A N/A 

Azithromycin 

A. flos-aquae 10.5 7.1 14.0 25.8 22.4 29.3 10.2 

6.3 A. cylindrical  5.0 3.8 6.2 5.4 0.6 10.1 4.9 

C. gracile  4.8 3.8 5.7 12.5 10.3 14.6 9.5 
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Antibiotic Species 

EC10 

estimate 

(μg/L) 

EC10 

Low CL 

(μg/L) 

EC10 

High CL 

(μg/L) 

EC50 

estimate 

(μg/L) 

EC50 

Low CL 

(μg/L) 

EC50 

High CL 

(μg/L) 

NOEC 

(μg/L) 

Difference in 

sensitivity a 

G. herdmanii  3.2 2.2 4.3 13.8 11.8 15.8 1.5 

S. elongates  4.4 2.7 6.0 17.4 14.9 19.9 3.3 

S. leopoliensis 8.7 6.7 10.6 23.5 21.6 25.4 1.9 

Synechococcus sp 17.7 13.5 21.9 33.8 31.5 36.1 2.6 

Synechocystis sp 8.6 5.7 11.4 18.1 12.9 23.4 9.6 

Erythromycin 

A. flos-aquae 58.8 41.5 76.1 135.1 121.9 148.3 28.8 

3.1 

A. cylindrical  22.3 16.5 28.2 43.9 40.2 47.6 12.2 

C. gracile  44.5 15.5 73.5 57.3 56.0 58.6 31.2 

G. herdmanii  50.7 42.6 58.7 104.8 98.1 111.5 11.5 

S. elongates  30.1 26.4 33.9 63.3 57.7 68.9 <6.2 

S. leopoliensis 35.0 28.6 41.3 63.9 53.6 74.1 31 

Synechococcus sp 29.1 23.8 34.4 59.8 55.6 64.0 13.4 

Synechocystis sp 21.2 12.3 30.1 55.7 49.5 61.8 <7.2 

Table 2 – Antibiotic 10% and 50% effective concentrations (ECx) and no observed effect concentrations (NOEC) for growth inhibition of eight cyanobacteria 546 

species. All concentrations are reported in μg/L. CL = Confidence Limit. a Times difference calculated by largest ECx/smallest ECx – reported value is based on 547 

largest range of EC10 and EC50. Mode of Actions: cefazolin , cefotaxime amd ampicillin are cell membrane synthesis inhibitors; sufadiazine and sulfamethazine are 548 

DNA synthesis inhibitors (Anti-folates); Azithromycin and Erythromycin are Protein synthesis inhibitors. 549 
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 550 

Figure 2. Species sensitivity distributions of cyanobacteria exposed to five antibiotics; cefazolin and cefotaxime (cephalosporins), ampicillin (penicillin), 551 

azithromycin and erythromycin (macrolides). Red line indicates the modelled species sensitivity distribution. Dashed black lines represent upper and lower 95% 552 

confidence limits. Blue shaded area indicates results of bootstrapped distributions. Orange coloured vertical lines indicate predicted no effect concentrations 553 

(PNEC): Dot-dash orange line= PNEClowest; Dashed orange line = PNECA. flos-aquae; Dotted orange line = PNECS. leopoldensis.554 
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Antibiotic 
Protection 

limit 
Concentration 

(μg/L) 
Lower 95% CI Higher 95% CI 

Proportion of 
cyanobacteria 
affected (%) 

Cefazolin 

HC5 1.13 0.13 19.88 5 

PNECLowest 0.15 - - 0.95 

PNECA. flos-aquae 0.15 - - 0.95 

PNECS. leopoldensis 4.53 - - 13.26 

Cefotaxime 

HC5 0.67 0.32 1.13 5 

PNECLowest 0.17 - - 1.29 

PNECA. flos-aquae 0.19 - - 1.44 

PNECS. leopoldensis 0.7 - - 5.2 

Ampicillin 

HC5 8.56 0** 26.47 5 

PNECLowest 0.49 - - 0.91 

PNECA. flos-aquae 3 - - 1.56 

PNECS. leopoldensis 1.15 - - 1.05 

Erythromycin 

HC5 21.3 16.18 28.76 5 

PNECLowest 0.62 * - - 0 

PNECA. flos-aquae 2.9 - - 0 

PNECS. leopoldensis 3.1 - - 0 

Azithromycin 

HC5 3.15 2.11 5.03 5 

PNECLowest 0.15 * - - 0 

PNECA. flos-aquae 1.02 - - 0 

PNECS. leopoldensis 0.19 - - 0 

Table 2. Protection limits; 5% hazardous concentration (HC5) based upon a species sensitivity 555 

distribution (SSD) using 10% effective concentrations (EC10), predicted no effect concentrations 556 

(PNECs) and the proportion of cyanobacteria affected based upon the SSD. PNECs determined as 557 

specified in current environmental risk assessment. PNECLowest represents the PNEC based on the 558 

most sensitive cyanobacteria in the conducted assays. PNECA. flos-aquae and PNECS. leopoldensis are 559 

based on the data of species recommended in the OECD 201 test guideline (OECD, 2011). 560 

* PNECLowest for erythromycin is < 0.62 and < 0.15 for azithromycin. ** CI was determined to be 561 

<0.  562 
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 563 

Antibiotic 
Measured 

concentration 
Concentration (μg/L) 

Proportion of 
cyanobacteria 
affected (%) 

Cefazolin 
Median 0.15 (10) 0.95 

Highest 42.9 (Lin et al., 2008) 60 

Cefotaxime 
Median 0.033 (16) 0.25 

Highest 41.9 (Lin et al., 2008) 96 

Ampicillin 
Median 0.021 (15) 0.85 

Highest 27.1 (Mutiyar and Mittal, 2013) 44 

Erythromycin 
Median 0.050 (533) 0 

Highest 7.8  (Lin and Tsai, 2009) 0 

Azithromycin 
Median 0.054 (255) 0 

Highest 2.8 (Jones-Lepp et al., 2012) 3 

Table 3. Proportion (%) of cyanobacteria affected at median and highest measured environmental 564 

concentrations (MECs) based on the cyanobacteria species sensitivity distributions using 10% 565 

effective concentrations and MECs obtained from Umweltbundesamt's 'Pharmaceuticals in the 566 

environment' database (Umwelt bundesamt, 2018). Bracketed numbers indicate number of MECs 567 

in median calculation. 568 

4. Discussion 569 

We show that for eight species of cyanobacteria the sensitivity for growth 570 

inhibition for antibiotic exposure can vary widely and is influenced by the 571 

antibiotic MoA. For the β-lactam antibiotics in particular, the interspecies 572 

sensitivity varied by up to 70 times, far exceeding the AF of 10 currently applied 573 

to the NOEC to establish the PNEC in ERA (based on a single species of 574 

cyanobacteria). The SSD analysis indicated however that the current regulatory 575 

approach to ERA in Europe was generally protective of >98% of cyanobacteria 576 

populations when the reference test species employed for this was A. flos-aque. 577 

In contrast, the PNECs derived for cefazolin and cefotaxime when testing was 578 

based upon S. leopoldensis (another OECD recommended species) would result in 579 

growth inhibition for 13% and 5% of the tested cyanobacteria, respectively. In 580 
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the case of macrolides, the SSDs showed that an AF of 10 might be at a level that 581 

is suitable for the adequate population protection of cyanobacteria. We show 582 

that in some of the more polluted environments with antibiotics, based on the 583 

highest published MECs in the literature, up to 60% of cyanobacteria populations 584 

may be affected in these specific environments.  585 

4.1. Chemical analysis, fate and behavior in the cultures 586 

Our analytical results showed considerable variation in the fate of the antibiotics 587 

in our assays. Generally speaking, reductions in the measured concentrations 588 

over the exposure period were high for the β-lactams, likely due to 589 

photodegradation (Wang and Lin, 2012 {Arsand, 2018 #177), and for 590 

azithromycin possibly due to adsorption to the culture vessel materials and 591 

cellular or extracellular matter given its high partition-coefficient (LogP, 4.02) 592 

and adsorption coefficient (Kd, 3100) (National Center for Biotechnology 593 

Information, 2018). Erythromycin and the sulfonamides were more stable in the 594 

assay system. 595 

 596 

Generally, the presence of the cyanobacteria resulted in a reduced amount of 597 

antibiotic in the culture medium (measured at the end of the exposure) likely as 598 

a consequence of adsorption and/or uptake into the bacterial cells and/or 599 

biodegradation by the cyanobacteria. Biodegradation is considered the most 600 

likely factor influencing the measured levels between the species studied for any 601 

one antibiotic, particularly notable in the β-lactams, as differences in surface 602 

binding of the antibiotic alone are very unlikely to account for this variation. 603 
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Further discussion on the fate of the antibiotics tested in the assays can be found 604 

in Supplementary material B. 605 

4.2. Cyanobacteria sensitivity 606 

β-lactams: There was a major difference (up to 70 times) in sensitivity to β-607 

lactams (and in particular the cephalosporins) between the different species of 608 

cyanobacteria in our study. The reason for this is unknown but it may reflect 609 

differences in uptake rates caused by the quantity and type of porins in the outer 610 

membrane (Li et al., 2015; Sugawara et al., 2016). The bilayered outer 611 

membrane of cyanobacteria (and Gram-negative bacteria) is comprised of a 612 

hydrophobic lipopolysaccharide and acts as an effective barrier to most drugs. 613 

Antibiotics must therefore permeate through the membrane or use porin 614 

channels to enter the periplasm. Porins tend to let small and non-lipophilic 615 

molecules pass through with ease, which includes the β-lactams (as well as 616 

fluoroquinolones, tetracycline, chloramphenicol, cycloserine, and 617 

aminoglycosides antibiotics) (Delcour, 2009; Li et al., 2015). For the relatively 618 

small molecules of cefazolin and ampicillin, we might thus expect that porin 619 

channels to be the uptake main route. For the larger antibiotic cefotaxime 620 

however, diffusion through the outer membrane may be more important in 621 

cellular uptake as it may be too large to easily pass through porins.  Indeed, the 622 

susceptibility of the Gram-negative bacteria, K. pneumonia, was 4-8 times higher 623 

to cefotaxime when the strain expressed a larger porin channel (García-Sureda et 624 

al., 2011). 625 

 626 
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Porins differ between bacterial clades and cyanobacteria specifically do not 627 

appear to have the same porin families as those typically found in other bacteria 628 

(Flores et al., 2006). Gram-negative bacteria, for example, generally have smaller 629 

outer membrane porins but with higher channel conductance than cyanobacteria 630 

allowing more molecules to enter into the cell (Hoiczyk and Hansel, 2000). It is 631 

hypothesised that, as autotrophs, cyanobacteria synthesise the large organic 632 

molecules they require (Hoiczyk and Hansel, 2000; Kowata et al., 2017), whilst 633 

non-autotrophic bacteria need to uptake more (and larger) molecule types from 634 

outside of the cell. It is therefore reasonable to hypothesise that cyanobacteria 635 

may not be as susceptible as Gram-negative bacteria to larger antibiotics that 636 

require larger porin channels. Since ERA only uses one species of cyanobacteria 637 

to represent all primary producer diversity, if sensitivity is, at least in part, 638 

driven by uptake due to their outer membrane porins, other bacterial clades 639 

such as Gram-negative bacteria that differ in their membrane structure and 640 

porins may not be well represented.  641 

 642 

In addition to uptake, efflux and β-lactamase enzymes may have key roles in 643 

determining the sensitivity of bacteria to antibiotics. Efflux rates of the 644 

antibiotics in cyanobacteria studied are not known and thus conclusions cannot 645 

be drawn, but our data do indicate the possibility of biodegradation for all the β-646 

lactams tested. For cefazolin this (potential) biodegradation was greatest for 647 

S. elongates and Synechococcus sp., which were also the least sensitive species 648 

tested based on growth inhibition. This is in accordance with findings that the 649 

Gram-negative Enterobacteriaceae family showed interspecies variability in 650 

sensitivity to β-lactams, ranging by between one and two orders of magnitude, 651 
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which were attributed to differences in chromosomal β-lactamases (Stock, 652 

2005). 653 

 654 

Sulphonamides: Growth inhibition of cyanobacteria following exposure to 655 

sulfonamides was generally limited and in some species the inhibitory effect 656 

plateaued with increasing antibiotic concentration, which may suggest the 657 

initiation of a possible resistance mechanism. The results are in accordance with 658 

a recent meta-analysis where cyanobacteria were found to be less sensitive to 659 

sulfonamides compared to microalgae and macrophytes (Le Page et al., 2017). A 660 

possible explanation for their insensitivity could be that cyanobacteria contain a 661 

protein (slr0642 identified in Synechocystis) that may act as a folate transporter 662 

and which allows the uptake of folates from the environment. This in turn 663 

overcomes the effect of the targeting of this drug on the folate synthesis pathway 664 

(de Crécy-Lagard et al., 2007; Klaus et al., 2005). It should be highlighted that the 665 

growth rate was lower than the controls and thus there appears to be some 666 

fitness consequence to this resistance mechanism. 667 

 668 

Macrolides: Responses to the macrolides were more consistent across the 669 

cyanobacteria compared with the β-lactam antibiotics; the EC10s and EC50s for 670 

the eight species differed by less than an order of magnitude.  Uptake and efflux 671 

may also influence the differences in cyanobacteria sensitivity to macrolides. 672 

Indeed, (Stock, 2005) hypothesized that Gram-negative bacteria species specific 673 

differences are, at least in part, driven by differences in outer membrane 674 

hydrophobicity. Due to macrolides large size, uptake is generally thought to be 675 

restricted by the outer membrane (Delcour, 2009; Stock, 2005), although there is 676 
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some evidence that porin-like uptake may be present (Hahn et al., 2012). 677 

Azithromycin is dicationic and less hydrophobic than erythromycin and may 678 

therefore pass through the outer membrane more easily (Farmer et al., 1992; 679 

Stock, 2005).  680 

 681 

The similar levels of efficacy of the macrolides across the different cyanobacteria 682 

species may, in part, be explained by the highly conserved ribosome drug target 683 

(Lecompte et al., 2002; Yutin et al., 2012). R-proteins however, which make up 684 

the ribosome, do vary between broader bacterial taxonomic clades and because 685 

the MoA of macrolide antibiotics is highly dependent on the positioning and 686 

interaction with the ribosome, differences in r-proteins between bacterial taxa 687 

could feasibly affect antibiotic efficacy/action. Based on the literature, therefore, 688 

the differences in cyanobacterial sensitivity to macrolides are more likely to 689 

driven by differences in uptake or efflux than differences in the drug target given 690 

that their ribosomes are likely evolutionarily well conserved. In addition to 691 

decreased uptake/increased efflux, other mechanisms of resistance to 692 

macrolides in Gram-negative bacteria comprise target mutations, methylation, 693 

pseudouridylation and modification of the macrolide (Gomes et al., 2017), but 694 

such resistance mechanisms have not yet been considered in cyanobacteria. 695 

 696 

In our assays azithromycin had a greater potency than erythromycin across all 697 

cyanobacteria species. Interestingly, azithromycin is reported to have modes of 698 

action in addition to the ribosomal drug target that may help to explain this 699 

enhanced potency. It is dicationic and it may disrupt the outer bacterial 700 

membrane through the displacement of divalent cations from their binding sites 701 
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on adjacent lipopolysaccharide molecules in Gram-negative bacteria (Farmer et 702 

al., 1992; Imamura et al., 2005).  703 

4.3. Sensitivity comparisons with other bacteria 704 

Due to the limited data available for environmental bacteria we have compared 705 

the MIC for clinically relevant bacteria with the data obtained in our assays, but 706 

these values represent different parts of the dose-response curve (the MIC 707 

represents the concentration with complete inhibition and the EC10 the 708 

concentration that inhibits growth rate by 10%) (Bengtsson-Palme and Larsson, 709 

2018; Le Page et al., 2018). Additionally, the EUCAST data is not based on 710 

measured concentrations and since the tests are conducted in the dark, we might 711 

thus expect less degradation via photolysis than observed in our assays. 712 

 713 

When comparing the effects of β-lactams in this study with the MICs of clinically 714 

relevant bacteria in the EUCAST database, the most sensitive cyanobacteria in 715 

our study were 3-6 times more sensitive to cefozolin. In accordance with our 716 

hypothesis above that cyanobacteria may be less sensitive to the larger 717 

antibiotics as they do not have porins that enable their uptake, several of the 718 

clinically relevant bacteria appeared to be more sensitive to cefotaxime than 719 

cyanobacteria (EUCAST). The effects of ampicillin on the cyanobacteria were 720 

similar to those observed on cyanobacteria by (Ando et al., 2007) and within the 721 

ranges seen in clinically relevant bacteria in the EUCAST database (EUCAST).  722 

 723 

There are limited published data available for sulfadiazine and sulfamethazine. 724 

They are both veterinary antibiotics and so neither have EUCAST data and their 725 
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ecotoxicological profiles are rather poorly understood. Investigators have found 726 

however that the MICs for sulfamethazine tend to be relatively high (>512 mg/L 727 

for both Gram-negative and Gram positive bacterial strains) compared with 728 

other antibiotics (Salmon and Watts, 2000; Salmon et al., 1995).  729 

 730 

Data on azithromycin is limited for ecotoxicologically relevant species but our 731 

results are in accordance with those reported in (Vestel et al., 2015) where 732 

cyanobacteria (species not provided) had a EC50 of 1.8 μg/L. The MICs of 733 

clinically relevant bacteria in the EUCAST database suggest that growth in the 734 

most sensitive bacteria is inhibited completely at 16 μg/L, which is consistent 735 

with that for the more sensitive cyanobacteria in this study. For erythromycin, 736 

EC50s were generally similar to those obtained for eight species of cyanobacteria 737 

by (Ando et al., 2007). They similarly found, A. cylindrical, to be the most 738 

sensitive species but calculated the EC50s to be over an order of magnitude lower 739 

than in this study (3.5 compared to 44 μg/L respectively), albeit their tests 740 

exposure period was twice that of in this study (6 days) (Ando et al., 2007)). The 741 

most sensitive clinically relevant bacteria to erythromycin in the EUCAST 742 

database have MICs from 8 μg/L (EUCAST), suggesting that for this antibiotic 743 

that clinically relevant bacteria may be more sensitive than cyanobacteria. 744 

4.4. Implications for ERA 745 

4.4.1. PNECs with an assessment factor of 10 are not always protective 746 

Our data suggest that for the β-lactams, depending on which species the PNEC 747 

was derived from, protection of >95% of cyanobacteria species was not be 748 

predicted by our SSDs, even with an assessment factor of 10 applied to account 749 
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for such interspecies sensitivity differences. For the two macrolides however, the 750 

PNEC was protective of all cyanobacteria regardless of the species from which 751 

the PNEC was derived. These data indicate that under current ERA procedures 752 

(of using a single test species) the choice of species is critical in establishing a 753 

protection limit and the MoA can be an important factor in this consideration. 754 

The large interspecies variability observed between cyanobacteria exposed to 755 

cell membrane synthesis inhibitors causes the PNEC to have a higher probability 756 

of being under protective because the assessment factor of 10 is likely 757 

inadequate as highlighted in our previous meta-analysis (Le Page et al., 2017). 758 

For other MoAs, such as the macrolides, the smaller interspecies variability 759 

means an assessment factor of 10 is sufficient to cover the entire SSD no matter 760 

which species is selected on which to base the PNEC.  761 

The limited sensitivity of cyanobacteria to sulfonamide antibiotics confirmed the 762 

findings from the previous meta-analysis (Le Page et al., 2017) expressing 763 

concern that cyanobacteria may not be suitable for the estimation of 764 

environmental protection limits. Furthermore, in some cases microalgae and 765 

macrophytes may be more sensitive than cyanobacteria to this class of 766 

antibiotics (Le Page et al., 2017) but under current ERA framework for 767 

pharmaceuticals neither microalgae nor macrophytes would be tested, although 768 

the revised ERA currently under consultation for the European Medicine Agency 769 

does require a microalgae in addition to two cyanobacteria species and an 770 

invertebrate (EMA, 2018). 771 

 772 
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4.4.2. The HC5 may provide a better protection limit than the traditional 773 

PNEC 774 

Results from this analysis suggest that an approach using a SSD with eight 775 

cyanobacteria to derive an HC5 or HC5(2.5) with a small assessment factor (of less 776 

than 10) may be more suitable for the determination of protection limits for 777 

cyanobacteria populations than the traditional PNEC. But additional testing on 778 

other bacterial classes is required to ensure protection of bacteria more 779 

generally.  We emphasise that a PNEC based on the NOEC and AF of 10 was 780 

generally adequately protective providing the species on which it was based was 781 

sensitive. If we consider the two species recommended in the OECD 201 test 782 

guideline, a PNEC based upon A. flos-aquae was protective but a PNEC based 783 

upon S. leopoldensis was under protective for both cefazolin and cefotaxime. 784 

Furthermore, for some MoAs such as sulphonamides, its possible that a PNEC 785 

using an AF of 10 will be under protective of bacteria more generally regardless 786 

of which cyanobacteria species is used.  787 

For the cephalosporins, the HC5 was generally 4 - 8 times higher than the 788 

PNEClowest but the HC5(2.5%) was more similar at 0.9 - 2 times higher. For the 789 

macrolides the HC5 far exceeded this and was up to 34 times higher than the 790 

PNEClowest, further highlighting how the PNEC and assessment factor of 10 might 791 

be highly conservative as a protective factor for this antibiotic class/MoA. These 792 

results therefore support the suggestion that the HC5(2.5%) could be used to 793 

ensure an empirically based protection limit that is a more accurate and is 794 

protective of 95% of cyanobacteria (Wheeler et al., 2002) without being over 795 

protective in for some MoAs as appears to be the case for the PNECs for 796 
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macrolides. The HC5 95% confidence intervals suggest some uncertainty 797 

(although this is relatively small) but given that these estimates incorporate the 798 

error around the original EC10s via the use of the 95% confidence limits as 799 

censored data, this might be expected. The wider HC5 95% confidence limits for 800 

cefazolin may be due to higher variability observed between replicates in the 801 

microplate assay.  802 

The HC5 has been suggested as a protection limit under the premise that 803 

functional redundancy (where multiple species are capable of performing the 804 

same ecological functions) in the ecosystem will compensate for some small 805 

effects on the most sensitive species (Solomon and Sibley, 2002). However, the 806 

magnitude of functional redundancy is not clear, especially in bacterial 807 

communities (Antwis et al., 2017). Further investigation is required to explore 808 

the hypothesis that 5% of species can be affected beyond their EC10 without 809 

adverse effects upon environmental communities and ecosystem function. Such 810 

studies are best undertaken using semi-field test designs, as conducted, for 811 

example, by (Rico et al., 2014). These authors found disruptions to the nitrogen 812 

cycle occurred in mesocoms exposed to enrofloxacin that resulted from reduced 813 

numbers of ammonia-oxidising bacteria and archaea leading to higher ammonia 814 

and lower nitrate concentrations.  In order to better estimate the effects of 815 

antibiotics on ecosystem functioning, additional endpoints that better represent 816 

functions of interest might usefully be included, for example oxygen evolution 817 

(as a proxy for photosynthetic rate) and pigment content (Guo et al., 2016b).  818 

The selection of species for use in an SSD is important (Verdonck et al., 2003). 819 

Our analysis reflects only cyanobacteria sensitivity, and even here we studied 820 



 43 

only a small selection of classes of cyanobacteria that grew adequately in the 821 

assay method adopted. Thus, a more diverse range of bacteria should be 822 

included since sensitivity differences between taxonomic clades could be large, 823 

even spanning several orders of magnitude. Furthermore, it should be 824 

emphasised that non-bacterial taxa including certain macrophytes (Le Page et al., 825 

2017) and diatoms (Guo et al., 2016a) have been shown to be more sensitive to 826 

some antibiotics (e.g. sulphonamides and trimethoprim) than cyanobacteria. It is 827 

likely that some other bacterial taxa (i.e. not cyanobacteria) could be equally or 828 

more sensitive than all eukaryotes and thus it should be possible to select an 829 

appropriate diversity of bacteria for ERA testing of antibiotics that provide 830 

appropriate limits for the protection of all prokaryotes and eukaryotes.  831 

A protection limit also needs to consider the extrapolation from the laboratory to 832 

the field. Previous authors have concluded that large safety factors are not 833 

considered necessary for extrapolation between the laboratory and field 834 

(Chapman et al., 1998). Indeed, biofilms in the field may provide resilience to 835 

chemical toxicity due to the protective nature of complex biofilm communities 836 

and extracellular substances (Harrison et al., 2007) and interspecies competition 837 

for resources may lower sensitivity to chemical contaminants (Rico et al., 2018). 838 

On the other hand, environmental conditions could significantly increase the 839 

sensitivity of bacteria to antibiotics due to chemical mixtures or as a result of 840 

different biotic and abiotic factors (e.g. competition, predation, temperature, pH 841 

(Rohr et al., 2016)). As such, in the absence of conclusive evidence 842 

demonstrating the safe concentrations in mixtures or in a variety of 843 

environmental conditions, it may be prudent to take a protective approach and 844 
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continue to include an assessment factor to compensate for this, as is required in 845 

some regulatory guidance (EFSA, 2013; TGD, 2003). Using an assessment factor 846 

with the HC5 or HC5(2.5) to establish a protection limit may appear to undermine 847 

the benefits of conducting a more accurate, reliable and robust SSD but more 848 

confidence can be applied to an empirically derived HC5/HC5(2.5) with a smaller 849 

assessment factor (of less than 10, although further investigation is required as 850 

these are still largely arbitrary) and for which error can be quantified. 851 

Furthermore, a HC5 has greater certainty compared with the current PNEC and 852 

thus a reduced likelihood of underestimating the PNEC where interspecies 853 

variability is high and overestimating the PNEC where interspecies variability is 854 

low. Finally, a SSD based on an ECx avoids the criticisms of the NOEC that is 855 

flawed and dependent of experimental design. 856 

The SSDs highlight that for the majority of MECs there is a limited general effect 857 

on cyanobacteria in the natural systems (potentially affected proportions of 858 

<1%) from all antibiotics based on the median MEC, which was based on data 859 

where the non-detects were excluded and thus a worse case scenario. However, 860 

60, 96 and 44% of cyanobacteria may be affected when exposed to the highest 861 

cefazolin, cefotaxime and ampicillin environmentally relevant MECs recorded in 862 

the UBA database (Umwelt bundesamt, 2018). Our analysis therefore suggests 863 

that there are some cyanobacterial communities that may be severely affected by 864 

antibiotic pollution with potential consequences on the ecosystem functions that 865 

they provide. Equally, however, our data suggests  that these effects are likely to 866 

be restricted to a small number of highly contaminated locations. In order to 867 

better estimate the risk of antibiotics in the environment, there is an urgent need 868 



 45 

for more quantitative data on antibiotics in freshwater systems allowing for a 869 

better understanding of the distribution of MECs and more accurate estimations 870 

on possible associated  risks.  871 

Our results also show that a more comprehensive understanding of the effects of 872 

antibiotics upon prokaryotic diversity is needed for appropriate environmental 873 

protection. We argue that an ERA should include consideration of microbes that 874 

are known to play key roles in ecosystems function/services, such as nitrifying 875 

bacteria or sulphate-reducing bacteria as some of the organisms we may wish 876 

most to protect. Additionally, the effects on community structure and diversity 877 

should also be considered given that if a specific group of bacteria in a 878 

community increased or decreased in abundance due to antibiotic exposure, 879 

there may be significant consequences for the normal functioning of that 880 

community. 881 

5. Conclusions 882 

In this study we have used a microplate assay to assess the relative interspecies 883 

sensitivity of a range of cyanobacteria to the effects of seven antibiotics spanning 884 

three general MoAs. Our experimental data verify the findings of a meta-analysis 885 

of published literature (Le Page et al., 2017) where large interspecies sensitivity 886 

is observed and is influenced by the MoA. To our knowledge, we present the first 887 

environmentally relevant bacterial data for cefazolin and sulfamethazine.  888 

Although a PNEC established using an assessment factor of 10 on a NOEC 889 

appears to generally be protective when a sensitive species for that antibiotic is  890 

tested, it may cause protection limits to be either over- or under-protective 891 
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depending on the MoA. This approach may also result in  an increased level of 892 

uncertainty around the PNEC estimated. We conclude a probabilistic approach 893 

using an SSD and several bacterial assays that cover a wider range of bacterial 894 

diversity would better protect against the detrimental effects of antibiotics on 895 

the environment. These results therefore support previous recommendations by 896 

Le Page et al. (2017) and Brandt et al (2016) to widen the number of bacterial 897 

and cyanobacteria species tested. The data presented also suggest that 898 

cyanobacteria may not be a suitable group of bacteria for determining 899 

environmental risk to sulfonamides due to their insensitivity relative to other 900 

environmentally important taxa (e.g. other bacterial clades or macrophytes (Le 901 

Page et al., 2017)). Finally, we show that the highest recorded MECs in the 902 

literature may pose a significant threat to cyanobacteria populations. 903 
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