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ABSTRACT 

Phase-change photonic memory devices, conventionally implemented as a thin layer of phase-change 

material deposited on the top of an integrated Si or SiN waveguide, have the flexibility to be applied 

in a widely diverse context, as a pure memory device, a logic gate, an arithmetic processing unit and 

for biologically inspired computing. In all such applications increasing the speed, and reducing the 

power consumption, of the phase-switching process is most desirable.  In this work, therefore, we 

investigate, via simulation, a novel integrated photonic device architecture that exploits plasmonic 

effects to enhance the light-matter interaction. Our device comprises a dimer nanoantenna fabricated 

on top of a SiN waveguide and with a phase-change material deposited into the gap between the two 

nanoantenna halves. We observed very considerably increased device speeds and reduced energy 

requirements, of up to two orders of magnitude, when compared to the conventional structure. 
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1. STRUCTURE CONFIGURATION AND OPTICAL BEHAVIOR 

Integrated phase-change photonic devices have recently found exciting applications in the areas of 

memory, arithmetic and logic processing and even neuromorphic computing [1-4]. Reducing the 

power consumption and increasing the speed of such devices is thus of much interest and importance. 

We attempt to do this by here using the proposed structure of Fig. 1(a-b), which consists of a dimer 

nanoantenna, composed by two symmetrically placed silver nanodiscs, of 75 nm radius and 30 nm 

thickness, with an edge-to-edge gap of 40 nm, fabricated on top of a 330 nm x 1300 nm SiN 

waveguide. A TE-mode (wavelength λ = 1550 nm) pulse traveling along the waveguide initiates a 

dipolar plasmonic resonance, with the consequent magnification of the electric field in the gap region. 

A convenient placement of Ge2Sb2Te5 (GST) in the nanoantenna gap modulates the resonance strength 

(see Fig. 1(c)), due to the sensitivity of such structure to the chemical environment, and henceforth the 

amount of absorbed and scattered light, tuning the waveguide optical attenuation as a function of the 

GST crystal fraction X, owing to the phase-dependent GST dielectric function. The device exhibits a 

transmission T of 0.943 for amorphous GST, and T = 0.799 for crystalline GST. 

2. MODELING OF WRITE AND ERASE OPERATIONS 

2.1. WRITE.  Starting from the fully crystallized GST, the delivery of a single 1 mW, 2 ns rectangular 

pulse is capable of melting ~82% of the GST cell. The subsequent extremely rapid thermal quenching 

(1/e thermal decay calculated to be 0.6 ns) vitrifies the molten phase, resulting in an optical contrast 

((Tam-Tx)/Tam) variation of 12.1%. Slightly higher power (1.2 mW) allows to reach a X value of 88% 

in less than 500 ps (with a consequent read signal of T = 0.815). 

2.2 ERASE.  Recovery of the crystalline phase here uses a decreasing power double-step pulse, to 

compensate for the absorption increase during the recrystallization process. Starting from X ≈ 18%, we 

deliver a rectangular pulse of 1.5 mW x 1.5 ns, which initiates the melting process. We then deliver a 
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1.2 mW to 0.5 mW, 15 ns linearly decreasing pulse, which results in mainly growth-dominated 

recrystallization (from the external surfaces towards the inner region). After the pulse delivery, 

accounting of a total energy of 15 pJ, the system is fully recrystallized (X = 98%, T = 0.801)  

2.3 MULTI-LEVEL STORAGE.  Interruption of the erase pulse before its completion allows the 

retrieval of partially crystallized states. In particular, we obtain values of X of 18%, 44%, 72%, and 

98% by stopping the erase sequence at 10.2, 12.4, 13.8, and 16.5 ns respectively. We observe a related 

optical contrast separation of ~4% (more specifically, 12.1%, 8.3%, 4.1%, and 0.2% respectively), 

thus enabling the achievement of multi-level (ML) storage. We’ve found that it is sufficient to use a 

preceding overwrite pulse, of 1 mW, 2 ns, to return to X = 18% from any of the considered levels. Our 

results are displayed in Fig. 1(d). 

 

 
Fig. 1 Plasmonically-enhanced phase-change optical cell: architecture, principles and operations. (a) 

Structure configuration and operating principles. The disc dimer nanoantenna (b, top view), 

comprising of a GST inclusion within the gap, is fabricated on top of a SiN waveguide. With an 

optical pulse traveling along the waveguide, a dipolar resonance is initiated on the nanoantenna, which 

magnifies the electric field in the gap region (c, electric field [V/m]). The structure’s resonance is 

tailored by the GST phase, yielding a measurable difference of the waveguide transmission. Stored 

information is thus encoded in the GST crystal fraction X: it modulates the waveguide optical 

attenuation (read, performed through a low power signal), and can be modified via the same optical 

path by use of higher power pulses. (d) Plots of X vs time during the write/erase operations. Each line 

corresponds to a unique initial or final X value; the greyed area provides a view of the optical pulse 

profile. (left) write/overwrite, using a 1 mW / 1 ns pulse. (right) erase operation, by use of a double-

step pulse composed of an initial pulse of 1.5 mW / 1.5 ns followed immediately by a pulse with 

linearly decreasing power (1.2 mW to 0.5 mW) and 15 ns duration. (inset) optical contrast vs X, 

showing a quasi-linear dependency through the whole range. 

3. CONCLUSION 

A novel plasmonically-enhanced integrated phase-change photonic device structure has been 

introduced and simulated. Results suggest a very significant increase in device switching speed, and a 

reduction in power consumption, should be achievable using such a structure. Fabrication and testing 

of our proposed architecture are currently being carried out.  
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