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Abstract- The idea of technological computing has immensely 

assisted to enhance accuracy and maximize computed errors 

involving computational math. Softcodes computer programme 

is guided towards supplying comfortable computation, 

proficiency and faster results at all times. The objective of this 

study will be to devise softcodes of parallel processing Milne’s 

device (SPPMD) via exponentially fitted method for valuating 

special ordinary differential equations. This is established 

through collocation and interpolation of the exponentially fitted 

method. Dissecting (SPPMD) produces the principal local 

truncation error (PLTE) after expressing the order of SPPMD 

leading to the boundary of convergence. Some selected examples 

of special ODEs were tested to show the efficiency and accuracy 

of (SPPMD) at different boundary of convergence. The finished 

results exist with the aid of (SPPMD). Computed results show 

that the (SPPMD) is more proficient compare to subsisting 

methods in terms of the work out max errors at all levels.  

 

Index Terms- Softcodes, exponentially fitted method, boundary 

of convergence, Principal local truncation errors 

 

I. INTRODUCTION 

     Several computational methods for the direct consolidation 

of (1) exist and subsequently, authors have not been able to 

utilize the peculiar info concerning special ODEs. For 

instance, scholars will not take into consideration the 

vibrating or decomposing behavioral attributes of the exact 

solution. Thus, SPPMD is consider as one of the most 

effective technic for valuating special ODEs. See [15]. This 

research study sees special ODEs owning an exceptional 

character of the approximative solution been situated ahead of 

time. Such special problem is of the class [10]-[11], [14], 

[19], [26] 
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                                       (1) 

with vibrating exact solutions, where          ,   is the 

proportion of the physical organization and         . See 

[27], [34]. 

Equation (1) possesses majorly alternating, increasing and 

decomposing solutions that are widely known in numerous 

areas, these includes, ambiance, biological sciences, 

Newtonian mechanics, celestial bodies/universe, quanta 

theory, control theory and electrical circuit. Technological 

computing of distinct technics has been laid down by 

exponentially fitted method with recognized frequence and 

having solution beforehand abounds in literatures. Observe 

[4]-[5], [14], [19], [24] is particularly reserve. Scholarly 

persons have projected and implemented (1) to give the 

sought after result. See [27], [35]. However, [26]-[28] carried 

out all math calculations employing electronic computer 

programming code in Matlab format. On another occasion, 

[10]-[11], [17], [29]-[30] concluded math application using a 

composed encrypt in Mathematica 10. 0 to showcase the 

efficiency and accuracy of the technics. However, [9] 

executed all numeric computations on a PC computing 

machine device initiated by running PYTHON. Nevertheless, 

several shortcomings were noticed from the bookmen’s 

contribution listed supra. This admits; applying a set step size 

and lack of suit step size, lack of boundary of convergence to 

insure convergence of the method and cumbersome 

computation without error control. The motivation of this 

study stems from the need to design an exceptional SPPMD 

with known frequence of one as seen in [23], [34] thereby 

yielding better computed max errors at the least boundary of 

convergence.   

     From the gaps enlisted earlier, this research study apart 

from demonstrating the use of SPPMD comes with some 

computational benefits such as designing suitable step size, 

varying the step size, deciding the boundary of convergence 

to ascertain convergence and maximize error control. Hence, 

this constitute the primary objective of SPPMD as computing 

technics which is suitable to valuate vibrating problems. See 

[7], [12]-[13], [19]-[20], [32]-[33].  

Theorem (Weierstrass Approximation Theorem) 

Let       be continuous and    periodic. Then for each 

   , there exists a trigonometric polynomial      
   

 
         such that for all                .  

Tantamountly, as for any such  , there must exist a successive 
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polynomial such that      in a uniform manner on  . See 

[8].  

     The residuary of this research study is as complies: in 

Subsection 2 SPPMD of Materials and Methods; in 

Subsection 3 Examples of Vibrating Problems; in Subsection 

4 Computational Results and Discussion; in Subsection 5 

Conclusion as cited [3], [32]-[33].  

 

II. MATERIALS AND METHODS 

     Under this subsection, the objective to be attained will be 

to invent SPPMD. Parallel processing Milne’s device is a 

conjugation of        parallel processing predictor scheme 

(PPPS) and           parallel processing corrector 

scheme (PPCS) of ilk order. This pair is defined as   

        
 
                   

 
   ,              (2) 

        
 
           

        
 
   .            (3) 

Par (2) and (3) gives the SPPMD with     ,          
       containing characteristics that bank on suited step size, 

changing step size and frequence. Mentioning that      is the 

numeric estimate to the precise solutions         i.e.  

            , and                    owning   
     . In order to arrive at par (2) and (3), the exponentially 

fitted method is employed in concert with the collocating 

/interpolating scheme to estimate the precise solution      on 

time interval of      for PPPS. Again, PPCS utilizes      for 

PPCS via the interpolating subprogram of the type (4) 

         
    

 
 

 
 
     

   

  

 
   .                      (4) 

Rewriting (4) give birth to the softcodes of exponentially 

fitted method (SEFM) of the form 

                    
        

  

 

         

         

 
 

          

   

 

 
          

   

 
 ,                 (5) 

since w is always given,          and    are unchanging 

parameters needed to ascertain in a particular manner. 

Presuming the condition that equation (5) matches the precise 

solution at some picked out interval         to give the 

approximation as   

        ,                  .           (6) 

Demanding that the interpolating function (6) gratifies par (1) 

at the points  
               to bring forth the coming estimation of 

PPPS as   

                              (7) 

while PPCS is stated as 

                 
                          (8) 

Uniting the estimation of (6), (7) and (8) will produce the 

four-fold systems of equation in Au=b pattern.  
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                                 ,    (10) 

Working out the systems of equation will develop the 

softcodes of PPPS and PPCS for solving the systems of 

equation. Finding              and subbing the measures 

of      into (5) will generate the continuous SPPMD for PPPS 

and PPCS as  
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 .                 (12) 

Valuating the continuous PPPS and PPCS (11) and (12) at 

some selected points of              will bring forth the 

PPPS and PPPCS as 

                                      
                 ,       (13) 

                             
                                    (14) 

where   is the known frequence,                 and 

         are unchanging constants. Find [1]-[2], [13], [26]-

[30], [32]-[33] for more items.  

Inventing the convergence boundary of SPPMD 

To propel the SPPMD, the         PPPS and           

PPCS are processed as PPPS-PPCS pair possessing the ilk 

order. A compendium of [7], [12]-[13], [19]-[20], [32]-[33] 

shows that it is executable to look for the approximate of 

principal local truncation error of the PPPS-PPPS pair in 

absence of calculating higher differential constants of     . 

Make bold that      , where    and    establishes the order of 

the PPPS and PPCS. Straightaway, for a scheme of order   , 

the investigation of         PPPS will give birth to the 

principal local truncation errors as 

      
   

                  

            
    

  
             

                 

      
   

                              
    

  
  

 
 

  

   
 

 

   
 

 
                           (15) 

      
   

                  

            
    

  
                      

              .  

     A like computing analysis of          PPCS will 

generate the principal local truncation errors as 

  
    
   

                  

            
    

  
                       

               

  

  
    
   

                  

            
    

  
                     

                             

(16) 

  
    
   

                               
    

   
    

  
 

   

    
  

   
  

 
          , 

where       
   

       
   

       
   

    
    
   

   
    
   

 and   
    
   

 are in existent as 

a separate entity of the step-size h and      behave as the 

precise solution to the differential constant fulfiliing the 

starting pre-condition         . See [7], [12]-[13], [19]-

[20], [32]-[33] for more info. 

     To advance, the pre-condition is set small for h valuates to 

be attained as   

                   ,          (17) 

and executing the SPPMD relies immediately on this 

precondition put forward by (17).  

Further simplification of the principal local truncation errors 

of (15) and (16) as well as dropping off terms of degree 

        , it gets well to achieve the computation of the 

principal local truncation errors of SPPMD as    

  
    
   

                  
  

  
     

    
     

    
       

      

  
    
   

                  
   

   
     

    
     

    
       (18)                                                                

  
    
   

                  
 

  
     

    
     

    
     .  

     Citing the statements that     
    

     
    

,     
    

     
    

 and 

    
    

     
    

 are acknowledged as PPPS and PPCS estimates 

brought forth by the SPPMD of order p, while 

  
    
   

                 ,   
    
   

                  and 

  
    
   

                  are distinctly named the principal local 

truncation errors.       and    are the boundaries of 

convergence of SPPMD.  

     Yet, the estimates of the principal local truncation error 

(18) is employed to make decision either to allow or 
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discontinue the final results of the iterative process or repeat 

the successive process with a smaller varying step size. The 

procedure is truly acceptable on the basis of a try out test 

evaluation as defined by (18). Check [7], [12]-[13], [19]-[20], 

[32]-[33] for more details.  

 

III. NUMERICAL EXAMPLES 

     Two problems are studied and solve employing SPPMD at 

distinct boundaries of convergence such as     ,     ,        

and      . See [23], [34] for more details. A softcodes 

founded on SPPMD is composed applying computing 

software package. This SPPMD is carried out in a parallel 

processing style as prescribed by SPPMD. See appendix. 

Problem 1: Consider the initial value ODE 

               ,           . 

Exact Solution:         .    

Problem 2: Consider the nonlinear Duffing equation:  

                             ,           . 

Exact Solution:          .  

 

IV. RESULTS AND DISCUSSION 

     This subsection introduces the softcodes of the 

computational results executed employing the SPPMD. The 

finalized output supplied were achieved with the assistance of 

Mathematica 9 kernel to show-case the efficiency and 

preciseness. See [1]-[2].  
 

Table 1 of problem 1 

 

Tused Maxerrs BOconvergence 

2BPC            10-4 

1PVSO             

3PS             

4PS             

SPPMD             10-4 

SPPMD              

SPPMD             

2BPC            10-6 

1PVSO             

3PS             

4PS             

SPPMD              10-6 

SPPMD               

SPPMD              

Tused Maxerrs BOconvergence 

2BPC             10-8 

1PVSO             

3PS              

4PS              

SPPMD    10-8 

SPPMD     

SPPMD               

2BPC             10-10 

1PVSO              

3PS              

4PS              

SPPMD    10-10 

SPPMD     

SPPMD     

 

 

Table 2 of problem 2 

Tused Maxerrs BOconvergence 

2BPC            10-4 

1PVSO             

SPPMD             10-4 

SPPMD              

SPPMD              

2BPC            10-6 

1PVSO             

SPPMD              10-6 

SPPMD               

SPPMD               

2BPC            10-8 

1PVSO             

SPPMD              10-8 

SPPMD               

SPPMD               
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Tused Maxerrs BOconvergence 

2BPC             10-10 

1PVSO              

SPPMD              10-10 

SPPMD               

SPPMD               

 

SPPMD: errors in SPPMD (Softcodes of parallel processing 

Milne’s device) for tested problems 1 and 2. 

Tused: technic used. 

Maxerrs: magnitude of the maximum errors of SPPMD. 

     : boundary of convergence. 

2BPC: error in 2BPC (implementation of the two 

point predictor-corrector block method using variable 

step size) for tested problem 1 and 2. See [23]. 

1PVSO: errors in 1PVSO (implementation of the one 

point method variable step size and order using the 

integration coefficients. See [23]. 

3PS: errors in 3PS (the implementation of the three-step 

implicit block method for tested problem 1. See [34]. 

4PS: errors in 4PS (the implementation of the four-step 

implicit block method for tested problem 1. See [34]. 

 

 

A composed step by step technic that will enforce the SPPMD 

implementation and valuation of the maximum errors is been 

prescribed below as follows: 

 

Stride 1: Choose the step size for h. 

Stride 2: The order of the parallel processing predictor-

corrector pair must be the alike. 

Stride 3: The stride measure of the parallel processing 

Predictor method must be one stride above the parallel 

processing corrector method. 

Stride 4: Define the boundary of convergence of the SPPMD. 

Stride 5: Insert the SPPMD in any computing software 

package. 

Stride 6: Adopt single stride technic to prime if necessary, if 

not, avoid stride 6 and move on to stride 7. 

Stride 7: Carried out the implementation of SSPMD in 

computing software package. 

Stride 8: If stride 7 is discontinued due to h value and 

boundary of convergence, adopt this new rule of generator 

stated below to find the true value of length h to achieve 

convergence, otherwise move on to stride 9. 

    
  

       
   

    
   
   

 
 

 

 

. 

 

Stride 9: Valuate the magnitude of the maximum errors after 

the boundary of convergence is satisfied. 

Stride 10: Put into writing the magnitude of the maximum 

errors. See [32]. 

V. CONCLUSION 

     The computed terminal outputs shown in Table 1 and 

Table 2 demonstrates the SPPMD is attained with the aid of 

the boundary of convergence, suited and varying stride size. 

This boundary of convergence helps to check whether the 

looping is allowed or disallowed.  Therefore, establishes the 

efficiency of the SPPMD to obtain better maximum errors 

compare to 2BPC, 1PVSO, 3PS and 4PS in the least boundary 

of convergence of     ,     ,      ,   and       as cited 

[23], [34]. For this reason, it will satisfactory to resolve that 

the SPPMD is effective for computing special problem of 

frequence one as against [23], [34]. Further work will be to 

apply trigonometrically fitted parallel processing Milne’s 

device on first order ODEs. 

 

APPENDIX 

The SPPMD for solving problem 1 and 2 is seen infra. 

g[t_]=Exp[-t] 

w=1 

h= given value, x[n]=given starting value 

t=given value 

g[1]=g[0]+h(g'[0])+(h^2/2)g''[0]+(h^3/6)g'''[0]+(h^4/24)g''''[0] 

g[2]=g[1]+h(g'[x[n]])+(h^2/2)g''[x[n]]+(h^3/6)g'''[x[n]]+(h^4/24)g''''[

x[n]] 

g[3]=g[2]+h(g'[x[n]+h])+(h^2/2)g''[x[n]+h]+(h^3/6)g'''[x[n]+h]+(h^4

/24)g''''[x[n]+h] 

g[4]=g[3]+h(g'[x[n]+2h])+(h^2/2)g''[x[n]+2h]+(h^3/6)g'''[x[n]+2h]+(

h^4/24)g''''[x[n]+2h] 

g[5]=g[4]+h(g'[x[n]+3h])+(h^2/2)g''[x[n]+3h]+(h^3/6)g'''[x[n]+3h]+(

h^4/24)g''''[x[n]+3h] 

 

t=x[n]+2h 

g[4]=g[3]+h((-(6+3w-37w^2)/(6w^2))g'[t-x[n]]+(-19/3+3/w)g'[t-

x[n]+h]-(-(6+3w-13w^2)/(6w^2))g'[t-x[n]+2h]) 

t=x[n]+4h 

g[6]=g[4]+h((155/12+7/w^3-2/w^2-2/w)g'[t-x[n]]+(-46/3-

14/w^3+4/w^2+4/w)g'[t-x[n]+h]+(65/12+7/w^3-2/w^2-2/w)g'[t-

x[n]+2h]) 

t=x[n]+6h 

g[8]=g[5]+h((133/6+26/w^3-3/w^2-9/(2w))g'[t-x[n]]+(-85/3-

52/w^3+6/w^2+9/w)g'[t-x[n]+h]+(61/6+26/w^3-3/w^2-9/(2w))g'[t-

x[n]+2h]) 

t=x[n]+5h 

g[7]=g[6]+h((-(6+3w-37w^2)/(6w^2))g'[t-x[n]]+(-19/3+3/w)g'[t-

x[n]+h]-(-(6+3w-13w^2)/(6w^2))g'[t-x[n]+2h]) 

t=x[n]+7h 

g[9]=g[7]+h((155/12+7/w^3-2/w^2-2/w)g'[t-x[n]]+(-46/3-

14/w^3+4/w^2+4/w)g'[t-x[n]+h]+(65/12+7/w^3-2/w^2-2/w)g'[t-

x[n]+2h]) 

t=x[n]+9h 

g[11]=g[8]+h((133/6+26/w^3-3/w^2-9/(2w))g'[t-x[n]]+(-85/3-

52/w^3+6/w^2+9/w)g'[t-x[n]+h]+(61/6+26/w^3-3/w^2-9/(2w))g'[t-

x[n]+2h]) 

 

y[u_]=Exp[-u] 

w=1 

h=given value, x[n]=given starting value 

u=given value 

y[1]=y[0]+h(y'[0])+(h^2/2)y''[0]+(h^3/6)y'''[0]+(h^4/24)y''''[0] 
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y[2]=y[1]+h(y'[x[n]])+(h^2/2)y''[x[n]]+(h^3/6)y'''[x[n]]+(h^4/24)y''''[

x[n]] 

y[3]=y[2]+h(y'[x[n]+h])+(h^2/2)y''[x[n]+h]+(h^3/6)y'''[x[n]+h]+(h^4

/24)y''''[x[n]+h] 

y[4]=y[3]+h(y'[x[n]+2h])+(h^2/2)y''[x[n]+2h]+(h^3/6)y'''[x[n]+2h]+(

h^4/24)y''''[x[n]+2h] 

y[5]=y[4]+h(y'[x[n]+3h])+(h^2/2)y''[x[n]+3h]+(h^3/6)y'''[x[n]+3h]+(

h^4/24)y''''[x[n]+3h] 

 

u=x[n]+2h 

y[4]=y[1]+h((169/12-1/w^2-1/(2w))y'[u+x[n]]+(-

53/3+2/w^2+1/w)y'[u+x[n]+h]+(79/12-1/w^2-1/(2w))y'[u+x[n]+2h]) 

u=x[n]+4h 

y[6]=y[2]+h((40/3+7/w^3-2/w^2-2/w)y'[u+x[n]]+(-44/3-

14/w^3+4/w^2+4/w)y'[u+x[n]+h]+(16/3+7/w^3-2/w^2-

2/w)y'[u+x[n]+2h]) 

u=x[n]+6h 

y[8]=y[3]+h((121/12+26/w^3-3/w^2-9(2w))y'[u+x[n]]+(-23/3-

52/w^3+6/w^2+9/w)y'[u+x[n]+h]+(31/12+26/w^3-3/w^2-

9/(2w))y'[u+x[n]+2h]) 

u=x[n]+5h 

y[7]=y[4]+h((169/12-1/w^2-1/(2w))y'[u+x[n]]+(-

53/3+2/w^2+1/w)y'[u+x[n]+h]+(79/12-1/w^2-1/(2w))y'[u+x[n]+2h]) 

u=x[n]+7h 

y[9]=y[5]+h((40/3+7/w^3-2/w^2-2/w)y'[u+x[n]]+(-44/3-

14/w^3+4/w^2+4/w)y'[u+x[n]+h]+(16/3+7/w^3-2/w^2-

2/w)y'[u+x[n]+2h]) 

u=x[n]+9h 

y[11]=y[6]+h((121/12+26/w^3-3/w^2-9(2w))y'[u+x[n]]+(-23/3-

52/w^3+6/w^2+9/w)y'[u+x[n]+h]+(31/12+26/w^3-3/w^2-

9/(2w))y'[u+x[n]+2h]) 
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